]> gcc.gnu.org Git - gcc.git/blame - gcc/config/ia64/ia64.h
natFileDescriptorPosix.cc (open): Change error message formatting.
[gcc.git] / gcc / config / ia64 / ia64.h
CommitLineData
e65271be 1/* Definitions of target machine GNU compiler. IA-64 version.
cf011243 2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
c65ebc55
JW
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
c65ebc55
JW
23/* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26/* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
c65ebc55
JW
29/* ??? Add support for short data/bss sections. */
30
31\f
32/* Run-time target specifications */
33
34/* Define this to be a string constant containing `-D' options to define the
35 predefined macros that identify this machine and system. These macros will
36 be predefined unless the `-ansi' option is specified. */
37/* ??? This is undefed in svr4.h. */
2b57e919 38#define CPP_PREDEFINES "-Dia64 -Amachine=ia64"
c65ebc55
JW
39
40/* This declaration should be present. */
41extern int target_flags;
42
43/* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46#define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48#define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50#define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52#define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54#define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
aebf2462 56/* 0x00000020 is available. */
c65ebc55 57
099dde21 58#define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
c65ebc55 59
099dde21 60#define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
c65ebc55 61
099dde21 62#define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
59da9a7d 63
099dde21
BS
64#define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
65
66#define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
59da9a7d 67
35d9f39d 68#define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
655f2eb9 69
35d9f39d 70#define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
655f2eb9 71
c65ebc55
JW
72#define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
73
74#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
75
76#define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
77
78#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
79
80#define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
81
82#define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
83
099dde21
BS
84#define TARGET_B_STEP (target_flags & MASK_B_STEP)
85
c65ebc55
JW
86#define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
87
88#define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
89
59da9a7d
JW
90#define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
91
92#define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
93
655f2eb9
RH
94#define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
95
96#define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
97
98#define TARGET_INLINE_DIV \
99 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
100
c65ebc55
JW
101#define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
102
103/* This macro defines names of command options to set and clear bits in
104 `target_flags'. Its definition is an initializer with a subgrouping for
105 each command option. */
106
59da9a7d 107#define TARGET_SWITCHES \
c65ebc55
JW
108{ \
109 { "big-endian", MASK_BIG_ENDIAN, \
047142d3 110 N_("Generate big endian code") }, \
c65ebc55 111 { "little-endian", -MASK_BIG_ENDIAN, \
047142d3 112 N_("Generate little endian code") }, \
c65ebc55 113 { "gnu-as", MASK_GNU_AS, \
047142d3 114 N_("Generate code for GNU as") }, \
c65ebc55 115 { "no-gnu-as", -MASK_GNU_AS, \
047142d3 116 N_("Generate code for Intel as") }, \
c65ebc55 117 { "gnu-ld", MASK_GNU_LD, \
047142d3 118 N_("Generate code for GNU ld") }, \
c65ebc55 119 { "no-gnu-ld", -MASK_GNU_LD, \
047142d3 120 N_("Generate code for Intel ld") }, \
c65ebc55 121 { "no-pic", MASK_NO_PIC, \
047142d3 122 N_("Generate code without GP reg") }, \
c65ebc55 123 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
047142d3 124 N_("Emit stop bits before and after volatile extended asms") }, \
c65ebc55 125 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
047142d3 126 N_("Don't emit stop bits before and after volatile extended asms") }, \
099dde21
BS
127 { "b-step", MASK_B_STEP, \
128 N_("Emit code for Itanium (TM) processor B step")}, \
c65ebc55 129 { "register-names", MASK_REG_NAMES, \
047142d3 130 N_("Use in/loc/out register names")}, \
c65ebc55 131 { "no-sdata", MASK_NO_SDATA, \
047142d3 132 N_("Disable use of sdata/scommon/sbss")}, \
c65ebc55 133 { "sdata", -MASK_NO_SDATA, \
047142d3 134 N_("Enable use of sdata/scommon/sbss")}, \
59da9a7d 135 { "constant-gp", MASK_CONST_GP, \
047142d3 136 N_("gp is constant (but save/restore gp on indirect calls)") }, \
59da9a7d 137 { "auto-pic", MASK_AUTO_PIC, \
047142d3 138 N_("Generate self-relocatable code") }, \
655f2eb9
RH
139 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
140 N_("Generate inline division, optimize for latency") }, \
141 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
142 N_("Generate inline division, optimize for throughput") }, \
c65ebc55 143 { "dwarf2-asm", MASK_DWARF2_ASM, \
047142d3 144 N_("Enable Dwarf 2 line debug info via GNU as")}, \
c65ebc55 145 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
047142d3 146 N_("Disable Dwarf 2 line debug info via GNU as")}, \
c65ebc55
JW
147 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
148 NULL } \
149}
150
151/* Default target_flags if no switches are specified */
152
153#ifndef TARGET_DEFAULT
154#define TARGET_DEFAULT MASK_DWARF2_ASM
155#endif
156
157#ifndef TARGET_CPU_DEFAULT
158#define TARGET_CPU_DEFAULT 0
159#endif
160
161/* This macro is similar to `TARGET_SWITCHES' but defines names of command
162 options that have values. Its definition is an initializer with a
163 subgrouping for each command option. */
164
165extern const char *ia64_fixed_range_string;
166#define TARGET_OPTIONS \
167{ \
168 { "fixed-range=", &ia64_fixed_range_string, \
047142d3 169 N_("Specify range of registers to make fixed.")}, \
c65ebc55
JW
170}
171
172/* This macro is a C statement to print on `stderr' a string describing the
173 particular machine description choice. */
174
175#define TARGET_VERSION fprintf (stderr, " (IA-64)");
176
177/* Sometimes certain combinations of command options do not make sense on a
178 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
179 take account of this. This macro, if defined, is executed once just after
180 all the command options have been parsed. */
181
182#define OVERRIDE_OPTIONS ia64_override_options ()
183
184/* Some machines may desire to change what optimizations are performed for
185 various optimization levels. This macro, if defined, is executed once just
186 after the optimization level is determined and before the remainder of the
187 command options have been parsed. Values set in this macro are used as the
188 default values for the other command line options. */
189
190/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
c65ebc55
JW
191\f
192/* Driver configuration */
193
194/* A C string constant that tells the GNU CC driver program options to pass to
195 CPP. It can also specify how to translate options you give to GNU CC into
196 options for GNU CC to pass to the CPP. */
197
198/* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
199/* ??? An alternative is to modify glimits.h to check for __LP64__ instead
200 of checked for CPU specific defines. We could also get rid of all LONG_MAX
201 defines in other tm.h files. */
202#define CPP_SPEC \
203 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
204 -D__LONG_MAX__=9223372036854775807L"
205
206/* If this macro is defined, the preprocessor will not define the builtin macro
207 `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must then be defined by
208 `CPP_SPEC' instead.
209
210 This should be defined if `SIZE_TYPE' depends on target dependent flags
211 which are not accessible to the preprocessor. Otherwise, it should not be
212 defined. */
213/* ??? Needs to be defined for P64 code. */
214/* #define NO_BUILTIN_SIZE_TYPE */
215
216/* If this macro is defined, the preprocessor will not define the builtin macro
217 `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__' must then be defined by
218 `CPP_SPEC' instead.
219
220 This should be defined if `PTRDIFF_TYPE' depends on target dependent flags
221 which are not accessible to the preprocessor. Otherwise, it should not be
222 defined. */
223/* ??? Needs to be defined for P64 code. */
224/* #define NO_BUILTIN_PTRDIFF_TYPE */
225
226/* A C string constant that tells the GNU CC driver program options to pass to
227 `cc1'. It can also specify how to translate options you give to GNU CC into
228 options for GNU CC to pass to the `cc1'. */
229
ad5042df
JJ
230#undef CC1_SPEC
231#define CC1_SPEC "%{G*}"
c65ebc55
JW
232
233/* A C string constant that tells the GNU CC driver program options to pass to
234 `cc1plus'. It can also specify how to translate options you give to GNU CC
235 into options for GNU CC to pass to the `cc1plus'. */
236
237/* #define CC1PLUS_SPEC "" */
238
239/* A C string constant that tells the GNU CC driver program options to pass to
240 the assembler. It can also specify how to translate options you give to GNU
241 CC into options for GNU CC to pass to the assembler. */
242
243#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_AS) != 0
244/* GNU AS. */
00e149c7
JW
245#define ASM_SPEC \
246 "%{mno-gnu-as:-N so} %{!mno-gnu-as:-x} %{mconstant-gp} %{mauto-pic}"
c65ebc55
JW
247#else
248/* Intel ias. */
00e149c7
JW
249#define ASM_SPEC \
250 "%{!mgnu-as:-N so} %{mgnu-as:-x} %{mconstant-gp:-M const_gp}\
251 %{mauto-pic:-M no_plabel}"
c65ebc55
JW
252#endif
253
254/* A C string constant that tells the GNU CC driver program options to pass to
255 the linker. It can also specify how to translate options you give to GNU CC
256 into options for GNU CC to pass to the linker. */
257
258/* The Intel linker does not support dynamic linking, so we need -dn.
259 The Intel linker gives annoying messages unless -N so is used. */
260#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_LD) != 0
261/* GNU LD. */
262#define LINK_SPEC "%{mno-gnu-ld:-dn -N so}"
263#else
264/* Intel ild. */
265#define LINK_SPEC "%{!mgnu-ld:-dn -N so}"
266#endif
267
268\f
269/* Storage Layout */
270
271/* Define this macro to have the value 1 if the most significant bit in a byte
272 has the lowest number; otherwise define it to have the value zero. */
273
274#define BITS_BIG_ENDIAN 0
275
276/* Define this macro to have the value 1 if the most significant byte in a word
277 has the lowest number. This macro need not be a constant. */
278
279#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
280
281/* Define this macro to have the value 1 if, in a multiword object, the most
282 significant word has the lowest number. */
283
284#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
285
286/* Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
287 constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
288 only when compiling libgcc2.c. Typically the value will be set based on
289 preprocessor defines. */
290#if defined(__BIG_ENDIAN__)
291#define LIBGCC2_WORDS_BIG_ENDIAN 1
292#else
293#define LIBGCC2_WORDS_BIG_ENDIAN 0
294#endif
295
296/* Define this macro to be the number of bits in an addressable storage unit
297 (byte); normally 8. */
298#define BITS_PER_UNIT 8
299
300/* Number of bits in a word; normally 32. */
301#define BITS_PER_WORD 64
302
303/* Number of storage units in a word; normally 4. */
304#define UNITS_PER_WORD 8
305
306/* Width of a pointer, in bits. You must specify a value no wider than the
307 width of `Pmode'. If it is not equal to the width of `Pmode', you must
308 define `POINTERS_EXTEND_UNSIGNED'. */
309/* ??? Implement optional 32 bit pointer size later? */
310#define POINTER_SIZE 64
311
312/* A C expression whose value is nonzero if pointers that need to be extended
313 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and zero if
314 they are zero-extended.
315
316 You need not define this macro if the `POINTER_SIZE' is equal to the width
317 of `Pmode'. */
318/* ??? May need this for 32 bit pointers. */
319/* #define POINTERS_EXTEND_UNSIGNED */
320
321/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
322 which has the specified mode and signedness is to be stored in a register.
323 This macro is only called when TYPE is a scalar type. */
c65ebc55
JW
324#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
325do \
326 { \
327 if (GET_MODE_CLASS (MODE) == MODE_INT \
dcf6e674
RH
328 && GET_MODE_SIZE (MODE) < 4) \
329 (MODE) = SImode; \
c65ebc55
JW
330 } \
331while (0)
332
333/* Define this macro if the promotion described by `PROMOTE_MODE' should also
334 be done for outgoing function arguments. */
335/* ??? ABI doesn't allow us to define this. */
336/* #define PROMOTE_FUNCTION_ARGS */
337
338/* Define this macro if the promotion described by `PROMOTE_MODE' should also
339 be done for the return value of functions.
340
341 If this macro is defined, `FUNCTION_VALUE' must perform the same promotions
342 done by `PROMOTE_MODE'. */
343/* ??? ABI doesn't allow us to define this. */
344/* #define PROMOTE_FUNCTION_RETURN */
345
346/* Normal alignment required for function parameters on the stack, in bits.
347 All stack parameters receive at least this much alignment regardless of data
348 type. On most machines, this is the same as the size of an integer. */
349#define PARM_BOUNDARY 64
350
351/* Define this macro if you wish to preserve a certain alignment for the stack
352 pointer. The definition is a C expression for the desired alignment
353 (measured in bits). */
354
355#define STACK_BOUNDARY 128
356
357/* Align frames on double word boundaries */
358#ifndef IA64_STACK_ALIGN
359#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
360#endif
361
362/* Alignment required for a function entry point, in bits. */
363#define FUNCTION_BOUNDARY 128
364
365/* Biggest alignment that any data type can require on this machine,
366 in bits. */
367/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
368 128 bit integers all require 128 bit alignment. */
369#define BIGGEST_ALIGNMENT 128
370
371/* If defined, a C expression to compute the alignment for a static variable.
372 TYPE is the data type, and ALIGN is the alignment that the object
373 would ordinarily have. The value of this macro is used instead of that
374 alignment to align the object. */
375
376#define DATA_ALIGNMENT(TYPE, ALIGN) \
377 (TREE_CODE (TYPE) == ARRAY_TYPE \
378 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
379 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
380
381/* If defined, a C expression to compute the alignment given to a constant that
382 is being placed in memory. CONSTANT is the constant and ALIGN is the
383 alignment that the object would ordinarily have. The value of this macro is
384 used instead of that alignment to align the object. */
385
386#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
387 (TREE_CODE (EXP) == STRING_CST \
388 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
389
390/* Define this macro to be the value 1 if instructions will fail to work if
391 given data not on the nominal alignment. If instructions will merely go
392 slower in that case, define this macro as 0. */
393#define STRICT_ALIGNMENT 1
394
395/* Define this if you wish to imitate the way many other C compilers handle
396 alignment of bitfields and the structures that contain them.
397 The behavior is that the type written for a bitfield (`int', `short', or
398 other integer type) imposes an alignment for the entire structure, as if the
399 structure really did contain an ordinary field of that type. In addition,
400 the bitfield is placed within the structure so that it would fit within such
401 a field, not crossing a boundary for it. */
402#define PCC_BITFIELD_TYPE_MATTERS 1
403
c65ebc55
JW
404/* An integer expression for the size in bits of the largest integer machine
405 mode that should actually be used. */
406
407/* Allow pairs of registers to be used, which is the intent of the default. */
408#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
409
410/* A code distinguishing the floating point format of the target machine. */
411#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
412
413/* GNU CC supports two ways of implementing C++ vtables: traditional or with
414 so-called "thunks". The flag `-fvtable-thunk' chooses between them. Define
415 this macro to be a C expression for the default value of that flag. If
416 `DEFAULT_VTABLE_THUNKS' is 0, GNU CC uses the traditional implementation by
417 default. The "thunk" implementation is more efficient (especially if you
418 have provided an implementation of `ASM_OUTPUT_MI_THUNK', but is not binary
419 compatible with code compiled using the traditional implementation. If you
420 are writing a new ports, define `DEFAULT_VTABLE_THUNKS' to 1.
421
422 If you do not define this macro, the default for `-fvtable-thunk' is 0. */
423#define DEFAULT_VTABLE_THUNKS 1
424
425\f
426/* Layout of Source Language Data Types */
427
428/* A C expression for the size in bits of the type `int' on the target machine.
429 If you don't define this, the default is one word. */
430#define INT_TYPE_SIZE 32
431
432/* A C expression for the size in bits of the type `short' on the target
433 machine. If you don't define this, the default is half a word. (If this
434 would be less than one storage unit, it is rounded up to one unit.) */
435#define SHORT_TYPE_SIZE 16
436
437/* A C expression for the size in bits of the type `long' on the target
438 machine. If you don't define this, the default is one word. */
439/* ??? Should be 32 for ILP32 code. */
440#define LONG_TYPE_SIZE 64
441
442/* Maximum number for the size in bits of the type `long' on the target
443 machine. If this is undefined, the default is `LONG_TYPE_SIZE'. Otherwise,
444 it is the constant value that is the largest value that `LONG_TYPE_SIZE' can
445 have at run-time. This is used in `cpp'. */
446/* ??? Should be 64 for ILP32 code. */
447/* #define MAX_LONG_TYPE_SIZE */
448
449/* A C expression for the size in bits of the type `long long' on the target
450 machine. If you don't define this, the default is two words. If you want
451 to support GNU Ada on your machine, the value of macro must be at least 64. */
452#define LONG_LONG_TYPE_SIZE 64
453
454/* A C expression for the size in bits of the type `char' on the target
455 machine. If you don't define this, the default is one quarter of a word.
456 (If this would be less than one storage unit, it is rounded up to one unit.) */
457#define CHAR_TYPE_SIZE 8
458
459/* A C expression for the size in bits of the type `float' on the target
460 machine. If you don't define this, the default is one word. */
461#define FLOAT_TYPE_SIZE 32
462
463/* A C expression for the size in bits of the type `double' on the target
464 machine. If you don't define this, the default is two words. */
465#define DOUBLE_TYPE_SIZE 64
466
467/* A C expression for the size in bits of the type `long double' on the target
468 machine. If you don't define this, the default is two words. */
3f622353
RH
469#define LONG_DOUBLE_TYPE_SIZE 128
470
471/* Tell real.c that this is the 80-bit Intel extended float format
472 packaged in a 128-bit entity. */
473#define INTEL_EXTENDED_IEEE_FORMAT
c65ebc55
JW
474
475/* An expression whose value is 1 or 0, according to whether the type `char'
476 should be signed or unsigned by default. The user can always override this
477 default with the options `-fsigned-char' and `-funsigned-char'. */
478#define DEFAULT_SIGNED_CHAR 1
479
480/* A C expression for a string describing the name of the data type to use for
481 size values. The typedef name `size_t' is defined using the contents of the
482 string. */
483/* ??? Needs to be defined for P64 code. */
484/* #define SIZE_TYPE */
485
486/* A C expression for a string describing the name of the data type to use for
487 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
488 defined using the contents of the string. See `SIZE_TYPE' above for more
489 information. */
490/* ??? Needs to be defined for P64 code. */
491/* #define PTRDIFF_TYPE */
492
493/* A C expression for a string describing the name of the data type to use for
494 wide characters. The typedef name `wchar_t' is defined using the contents
495 of the string. See `SIZE_TYPE' above for more information. */
496/* #define WCHAR_TYPE */
497
498/* A C expression for the size in bits of the data type for wide characters.
499 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
500/* #define WCHAR_TYPE_SIZE */
501
502/* Maximum number for the size in bits of the data type for wide characters.
503 If this is undefined, the default is `WCHAR_TYPE_SIZE'. Otherwise, it is
504 the constant value that is the largest value that `WCHAR_TYPE_SIZE' can have
505 at run-time. This is used in `cpp'. */
506/* #define MAX_WCHAR_TYPE_SIZE */
507
508/* A C constant expression for the integer value for escape sequence
509 `\a'. */
510#define TARGET_BELL 0x7
511
512/* C constant expressions for the integer values for escape sequences
513 `\b', `\t' and `\n'. */
514#define TARGET_BS 0x8
515#define TARGET_TAB 0x9
516#define TARGET_NEWLINE 0xa
517
518/* C constant expressions for the integer values for escape sequences
519 `\v', `\f' and `\r'. */
520#define TARGET_VT 0xb
521#define TARGET_FF 0xc
522#define TARGET_CR 0xd
523
524\f
525/* Register Basics */
526
527/* Number of hardware registers known to the compiler.
5527bf14
RH
528 We have 128 general registers, 128 floating point registers,
529 64 predicate registers, 8 branch registers, one frame pointer,
530 and several "application" registers. */
c65ebc55 531
97e242b0 532#define FIRST_PSEUDO_REGISTER 335
c65ebc55
JW
533
534/* Ranges for the various kinds of registers. */
3b572406
RH
535#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
536#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
c65ebc55
JW
537#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
538#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
539#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
540#define GENERAL_REGNO_P(REGNO) \
541 (GR_REGNO_P (REGNO) \
542 || (REGNO) == FRAME_POINTER_REGNUM \
46327bc5 543 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
c65ebc55
JW
544
545#define GR_REG(REGNO) ((REGNO) + 0)
546#define FR_REG(REGNO) ((REGNO) + 128)
547#define PR_REG(REGNO) ((REGNO) + 256)
548#define BR_REG(REGNO) ((REGNO) + 320)
549#define OUT_REG(REGNO) ((REGNO) + 120)
550#define IN_REG(REGNO) ((REGNO) + 112)
551#define LOC_REG(REGNO) ((REGNO) + 32)
552
5527bf14 553#define AR_CCV_REGNUM 330
97e242b0
RH
554#define AR_UNAT_REGNUM 331
555#define AR_PFS_REGNUM 332
556#define AR_LC_REGNUM 333
557#define AR_EC_REGNUM 334
5527bf14 558
c65ebc55
JW
559#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
560#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
561#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
562
97e242b0
RH
563#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
564 || (REGNO) == AR_UNAT_REGNUM)
565#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
5527bf14
RH
566 && (REGNO) < FIRST_PSEUDO_REGISTER)
567#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
568 && (REGNO) < FIRST_PSEUDO_REGISTER)
569
570
c65ebc55
JW
571/* ??? Don't really need two sets of macros. I like this one better because
572 it is less typing. */
573#define R_GR(REGNO) GR_REG (REGNO)
574#define R_FR(REGNO) FR_REG (REGNO)
575#define R_PR(REGNO) PR_REG (REGNO)
576#define R_BR(REGNO) BR_REG (REGNO)
577
578/* An initializer that says which registers are used for fixed purposes all
579 throughout the compiled code and are therefore not available for general
580 allocation.
581
582 r0: constant 0
583 r1: global pointer (gp)
584 r12: stack pointer (sp)
585 r13: thread pointer (tp)
586 f0: constant 0.0
587 f1: constant 1.0
588 p0: constant true
589 fp: eliminable frame pointer */
590
1ff5b671
JW
591/* The last 16 stacked regs are reserved for the 8 input and 8 output
592 registers. */
c65ebc55 593
c65ebc55
JW
594#define FIXED_REGISTERS \
595{ /* General registers. */ \
596 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
597 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 603 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c65ebc55
JW
604 /* Floating-point registers. */ \
605 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
606 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
607 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
608 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
609 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
613 /* Predicate registers. */ \
614 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
618 /* Branch registers. */ \
619 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0
RH
620 /*FP RA CCV UNAT PFS LC EC */ \
621 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
622 }
623
5527bf14
RH
624/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
625 (in general) by function calls as well as for fixed registers. This
626 macro therefore identifies the registers that are not available for
627 general allocation of values that must live across function calls. */
c65ebc55 628
c65ebc55
JW
629#define CALL_USED_REGISTERS \
630{ /* General registers. */ \
631 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
632 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
634 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 638 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
c65ebc55
JW
639 /* Floating-point registers. */ \
640 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
641 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
642 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
643 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
644 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
645 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
646 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
647 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
648 /* Predicate registers. */ \
649 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
653 /* Branch registers. */ \
654 1, 0, 0, 0, 0, 0, 1, 1, \
97e242b0
RH
655 /*FP RA CCV UNAT PFS LC EC */ \
656 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
657}
658
659/* Define this macro if the target machine has register windows. This C
660 expression returns the register number as seen by the called function
661 corresponding to the register number OUT as seen by the calling function.
662 Return OUT if register number OUT is not an outbound register. */
663
664#define INCOMING_REGNO(OUT) \
665 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
666
667/* Define this macro if the target machine has register windows. This C
668 expression returns the register number as seen by the calling function
669 corresponding to the register number IN as seen by the called function.
670 Return IN if register number IN is not an inbound register. */
671
672#define OUTGOING_REGNO(IN) \
673 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
674
2a3e384f
RH
675/* Define this macro if the target machine has register windows. This
676 C expression returns true if the register is call-saved but is in the
677 register window. */
678
679#define LOCAL_REGNO(REGNO) \
680 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
97e242b0
RH
681
682/* Add any extra modes needed to represent the condition code.
683
684 CCImode is used to mark a single predicate register instead
685 of a register pair. This is currently only used in reg_raw_mode
686 so that flow doesn't do something stupid. */
687
688#define EXTRA_CC_MODES CC(CCImode, "CCI")
689
690/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
691 return the mode to be used for the comparison. Must be defined if
692 EXTRA_CC_MODES is defined. */
693
694#define SELECT_CC_MODE(OP,X,Y) CCmode
c65ebc55
JW
695\f
696/* Order of allocation of registers */
697
698/* If defined, an initializer for a vector of integers, containing the numbers
699 of hard registers in the order in which GNU CC should prefer to use them
700 (from most preferred to least).
701
702 If this macro is not defined, registers are used lowest numbered first (all
703 else being equal).
704
705 One use of this macro is on machines where the highest numbered registers
706 must always be saved and the save-multiple-registers instruction supports
707 only sequences of consecutive registers. On such machines, define
708 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
709 allocatable register first. */
710
711/* ??? Should the GR return value registers come before or after the rest
712 of the caller-save GRs? */
713
97e242b0 714#define REG_ALLOC_ORDER \
c65ebc55
JW
715{ \
716 /* Caller-saved general registers. */ \
97e242b0
RH
717 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
718 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
719 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
c65ebc55 720 R_GR (30), R_GR (31), \
1ff5b671
JW
721 /* Output registers. */ \
722 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
97e242b0 723 R_GR (126), R_GR (127), \
c65ebc55 724 /* Caller-saved general registers, also used for return values. */ \
97e242b0 725 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
c65ebc55
JW
726 /* addl caller-saved general registers. */ \
727 R_GR (2), R_GR (3), \
728 /* Caller-saved FP registers. */ \
729 R_FR (6), R_FR (7), \
730 /* Caller-saved FP registers, used for parameters and return values. */ \
97e242b0
RH
731 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
732 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
c65ebc55 733 /* Rotating caller-saved FP registers. */ \
97e242b0
RH
734 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
735 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
736 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
737 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
738 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
739 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
740 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
741 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
742 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
743 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
744 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
745 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
c65ebc55
JW
746 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
747 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
748 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
749 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
97e242b0 750 R_FR (126), R_FR (127), \
c65ebc55 751 /* Caller-saved predicate registers. */ \
97e242b0 752 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
c65ebc55
JW
753 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
754 /* Rotating caller-saved predicate registers. */ \
97e242b0
RH
755 R_PR (16), R_PR (17), \
756 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
757 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
758 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
759 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
760 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
761 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
762 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
763 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
c65ebc55
JW
764 /* Caller-saved branch registers. */ \
765 R_BR (6), R_BR (7), \
766 \
767 /* Stacked callee-saved general registers. */ \
97e242b0
RH
768 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
769 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
770 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
771 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
772 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
773 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
774 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
775 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
776 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
777 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
778 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
779 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
c65ebc55
JW
780 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
781 R_GR (108), \
1ff5b671
JW
782 /* Input registers. */ \
783 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
784 R_GR (118), R_GR (119), \
c65ebc55
JW
785 /* Callee-saved general registers. */ \
786 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
787 /* Callee-saved FP registers. */ \
97e242b0
RH
788 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
789 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
790 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
c65ebc55
JW
791 R_FR (30), R_FR (31), \
792 /* Callee-saved predicate registers. */ \
97e242b0 793 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
c65ebc55
JW
794 /* Callee-saved branch registers. */ \
795 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
796 \
797 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
798 R_GR (109), R_GR (110), R_GR (111), \
c65ebc55
JW
799 \
800 /* Special general registers. */ \
97e242b0 801 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
c65ebc55
JW
802 /* Special FP registers. */ \
803 R_FR (0), R_FR (1), \
804 /* Special predicate registers. */ \
805 R_PR (0), \
806 /* Special branch registers. */ \
807 R_BR (0), \
5527bf14 808 /* Other fixed registers. */ \
46327bc5 809 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
97e242b0
RH
810 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
811 AR_EC_REGNUM \
c65ebc55 812}
c65ebc55
JW
813\f
814/* How Values Fit in Registers */
815
816/* A C expression for the number of consecutive hard registers, starting at
817 register number REGNO, required to hold a value of mode MODE. */
818
f2f90c63 819/* ??? We say that BImode PR values require two registers. This allows us to
97e242b0
RH
820 easily store the normal and inverted values. We use CCImode to indicate
821 a single predicate register. */
c65ebc55 822
97e242b0
RH
823#define HARD_REGNO_NREGS(REGNO, MODE) \
824 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
f2f90c63 825 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
97e242b0 826 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
3f622353 827 : FR_REGNO_P (REGNO) && (MODE) == TFmode ? 1 \
c65ebc55
JW
828 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
829
830/* A C expression that is nonzero if it is permissible to store a value of mode
831 MODE in hard register number REGNO (or in several registers starting with
832 that one). */
0ea1e106 833
f2f90c63
RH
834#define HARD_REGNO_MODE_OK(REGNO, MODE) \
835 (FR_REGNO_P (REGNO) ? \
836 GET_MODE_CLASS (MODE) != MODE_CC && (MODE) != TImode && (MODE) != BImode \
837 : PR_REGNO_P (REGNO) ? \
838 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
839 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
840 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
841 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
3f622353 842 : 0)
c65ebc55
JW
843
844/* A C expression that is nonzero if it is desirable to choose register
845 allocation so as to avoid move instructions between a value of mode MODE1
846 and a value of mode MODE2.
847
848 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
849 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
850 zero. */
ad06f2e3 851/* Don't tie integer and FP modes, as that causes us to get integer registers
3f622353
RH
852 allocated for FP instructions. TFmode only supported in FP registers so
853 we can't tie it with any other modes. */
f2f90c63
RH
854#define MODES_TIEABLE_P(MODE1, MODE2) \
855 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
856 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
857 && (((MODE1) == BImode) == ((MODE2) == BImode)))
c65ebc55
JW
858\f
859/* Handling Leaf Functions */
860
861/* A C initializer for a vector, indexed by hard register number, which
862 contains 1 for a register that is allowable in a candidate for leaf function
863 treatment. */
864/* ??? This might be useful. */
865/* #define LEAF_REGISTERS */
866
867/* A C expression whose value is the register number to which REGNO should be
868 renumbered, when a function is treated as a leaf function. */
869/* ??? This might be useful. */
870/* #define LEAF_REG_REMAP(REGNO) */
871
872\f
873/* Register Classes */
874
875/* An enumeral type that must be defined with all the register class names as
876 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
877 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
878 which is not a register class but rather tells how many classes there
879 are. */
c65ebc55
JW
880/* ??? When compiling without optimization, it is possible for the only use of
881 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
882 Regclass handles this case specially and does not assign any costs to the
883 pseudo. The pseudo then ends up using the last class before ALL_REGS.
884 Thus we must not let either PR_REGS or BR_REGS be the last class. The
885 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
886enum reg_class
887{
888 NO_REGS,
889 PR_REGS,
890 BR_REGS,
891 ADDL_REGS,
892 GR_REGS,
c65ebc55 893 FR_REGS,
c65ebc55 894 GR_AND_FR_REGS,
5527bf14
RH
895 AR_M_REGS,
896 AR_I_REGS,
c65ebc55
JW
897 ALL_REGS,
898 LIM_REG_CLASSES
899};
900
901#define GENERAL_REGS GR_REGS
902
903/* The number of distinct register classes. */
904#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
905
906/* An initializer containing the names of the register classes as C string
907 constants. These names are used in writing some of the debugging dumps. */
908#define REG_CLASS_NAMES \
f2f90c63
RH
909{ "NO_REGS", "PR_REGS", "BR_REGS", "ADDL_REGS", "GR_REGS", "FR_REGS", \
910 "GR_AND_FR_REGS", "AR_M_REGS", "AR_I_REGS", "ALL_REGS" }
c65ebc55
JW
911
912/* An initializer containing the contents of the register classes, as integers
913 which are bit masks. The Nth integer specifies the contents of class N.
914 The way the integer MASK is interpreted is that register R is in the class
915 if `MASK & (1 << R)' is 1. */
916#define REG_CLASS_CONTENTS \
917{ \
918 /* NO_REGS. */ \
919 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
920 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 921 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
922 /* PR_REGS. */ \
923 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
924 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 925 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
c65ebc55
JW
926 /* BR_REGS. */ \
927 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
928 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 929 0x00000000, 0x00000000, 0x00FF }, \
c65ebc55
JW
930 /* ADDL_REGS. */ \
931 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
932 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 933 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
934 /* GR_REGS. */ \
935 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
936 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 937 0x00000000, 0x00000000, 0x0300 }, \
c65ebc55
JW
938 /* FR_REGS. */ \
939 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
940 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14 941 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
942 /* GR_AND_FR_REGS. */ \
943 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
944 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14
RH
945 0x00000000, 0x00000000, 0x0300 }, \
946 /* AR_M_REGS. */ \
947 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
948 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 949 0x00000000, 0x00000000, 0x0C00 }, \
5527bf14
RH
950 /* AR_I_REGS. */ \
951 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
952 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 953 0x00000000, 0x00000000, 0x7000 }, \
c65ebc55
JW
954 /* ALL_REGS. */ \
955 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
956 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
97e242b0 957 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
c65ebc55
JW
958}
959
960/* A C expression whose value is a register class containing hard register
961 REGNO. In general there is more than one such class; choose a class which
962 is "minimal", meaning that no smaller class also contains the register. */
963/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
964 may call here with private (invalid) register numbers, such as
965 REG_VOLATILE. */
966#define REGNO_REG_CLASS(REGNO) \
967(ADDL_REGNO_P (REGNO) ? ADDL_REGS \
968 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
13da91fd 969 : FR_REGNO_P (REGNO) ? FR_REGS \
c65ebc55
JW
970 : PR_REGNO_P (REGNO) ? PR_REGS \
971 : BR_REGNO_P (REGNO) ? BR_REGS \
97e242b0
RH
972 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
973 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
c65ebc55
JW
974 : NO_REGS)
975
976/* A macro whose definition is the name of the class to which a valid base
977 register must belong. A base register is one used in an address which is
978 the register value plus a displacement. */
979#define BASE_REG_CLASS GENERAL_REGS
980
981/* A macro whose definition is the name of the class to which a valid index
982 register must belong. An index register is one used in an address where its
983 value is either multiplied by a scale factor or added to another register
cf606f45
JW
984 (as well as added to a displacement). This is needed for POST_MODIFY. */
985#define INDEX_REG_CLASS GENERAL_REGS
c65ebc55
JW
986
987/* A C expression which defines the machine-dependent operand constraint
988 letters for register classes. If CHAR is such a letter, the value should be
989 the register class corresponding to it. Otherwise, the value should be
990 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
991 will not be passed to this macro; you do not need to handle it. */
992
993#define REG_CLASS_FROM_LETTER(CHAR) \
13da91fd 994((CHAR) == 'f' ? FR_REGS \
c65ebc55
JW
995 : (CHAR) == 'a' ? ADDL_REGS \
996 : (CHAR) == 'b' ? BR_REGS \
997 : (CHAR) == 'c' ? PR_REGS \
5527bf14
RH
998 : (CHAR) == 'd' ? AR_M_REGS \
999 : (CHAR) == 'e' ? AR_I_REGS \
c65ebc55
JW
1000 : NO_REGS)
1001
1002/* A C expression which is nonzero if register number NUM is suitable for use
1003 as a base register in operand addresses. It may be either a suitable hard
1004 register or a pseudo register that has been allocated such a hard reg. */
1005#define REGNO_OK_FOR_BASE_P(REGNO) \
1006 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
1007
1008/* A C expression which is nonzero if register number NUM is suitable for use
1009 as an index register in operand addresses. It may be either a suitable hard
cf606f45
JW
1010 register or a pseudo register that has been allocated such a hard reg.
1011 This is needed for POST_MODIFY. */
1012#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
c65ebc55
JW
1013
1014/* A C expression that places additional restrictions on the register class to
1015 use when it is necessary to copy value X into a register in class CLASS.
1016 The value is a register class; perhaps CLASS, or perhaps another, smaller
1017 class. */
1018
ffaff414
JW
1019/* Don't allow volatile mem reloads into floating point registers. This
1020 is defined to force reload to choose the r/m case instead of the f/f case
f2f90c63
RH
1021 when reloading (set (reg fX) (mem/v)).
1022
1023 Do not reload expressions into AR regs. */
ffaff414
JW
1024
1025#define PREFERRED_RELOAD_CLASS(X, CLASS) \
f2f90c63 1026 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
036099eb 1027 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
f2f90c63 1028 : GET_RTX_CLASS (GET_CODE (X)) != 'o' && CLASS > GR_AND_FR_REGS ? NO_REGS \
ffaff414 1029 : CLASS)
c65ebc55
JW
1030
1031/* You should define this macro to indicate to the reload phase that it may
1032 need to allocate at least one register for a reload in addition to the
1033 register to contain the data. Specifically, if copying X to a register
1034 CLASS in MODE requires an intermediate register, you should define this
1035 to return the largest register class all of whose registers can be used
1036 as intermediate registers or scratch registers. */
1037
1038#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1039 ia64_secondary_reload_class (CLASS, MODE, X)
1040
1041/* Certain machines have the property that some registers cannot be copied to
1042 some other registers without using memory. Define this macro on those
1043 machines to be a C expression that is non-zero if objects of mode M in
1044 registers of CLASS1 can only be copied to registers of class CLASS2 by
1045 storing a register of CLASS1 into memory and loading that memory location
1046 into a register of CLASS2. */
3f622353
RH
1047
1048#if 0
1049/* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1050 I'm not quite sure how it could be invoked. The normal problems
1051 with unions should be solved with the addressof fiddling done by
1052 movtf and friends. */
1053#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1054 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1055 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1056#endif
c65ebc55
JW
1057
1058/* A C expression for the maximum number of consecutive registers of
1059 class CLASS needed to hold a value of mode MODE.
1060 This is closely related to the macro `HARD_REGNO_NREGS'. */
1061
1062#define CLASS_MAX_NREGS(CLASS, MODE) \
f2f90c63 1063 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
3f622353 1064 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
c65ebc55
JW
1065 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1066
02188693
RH
1067/* If defined, gives a class of registers that cannot be used as the
1068 operand of a SUBREG that changes the mode of the object illegally. */
1069
1070#define CLASS_CANNOT_CHANGE_MODE FR_REGS
1071
46146529
JW
1072/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
1073 In FP regs, we can't change FP values to integer values and vice
1074 versa, but we can change e.g. DImode to SImode. */
02188693 1075
46146529
JW
1076#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1077 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
02188693 1078
97e242b0
RH
1079/* A C expression that defines the machine-dependent operand constraint
1080 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1081 integer values. */
c65ebc55
JW
1082
1083/* 14 bit signed immediate for arithmetic instructions. */
1084#define CONST_OK_FOR_I(VALUE) \
1085 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1086/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1087#define CONST_OK_FOR_J(VALUE) \
1088 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1089/* 8 bit signed immediate for logical instructions. */
1090#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1091/* 8 bit adjusted signed immediate for compare pseudo-ops. */
1092#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1093/* 6 bit unsigned immediate for shift counts. */
1094#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1095/* 9 bit signed immediate for load/store post-increments. */
c65ebc55
JW
1096#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1097/* 0 for r0. Used by Linux kernel, do not change. */
1098#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1099/* 0 or -1 for dep instruction. */
1100#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1101
1102#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1103((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1104 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1105 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1106 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1107 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1108 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1109 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1110 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1111 : 0)
1112
1113/* A C expression that defines the machine-dependent operand constraint letters
1114 (`G', `H') that specify particular ranges of `const_double' values. */
1115
1116/* 0.0 and 1.0 for fr0 and fr1. */
1117#define CONST_DOUBLE_OK_FOR_G(VALUE) \
1118 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1119 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1120
1121#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1122 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1123
1124/* A C expression that defines the optional machine-dependent constraint
1125 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1126 types of operands, usually memory references, for the target machine. */
3b572406 1127
041f25e6 1128/* Non-volatile memory for FP_REG loads/stores. */
3b572406
RH
1129#define CONSTRAINT_OK_FOR_Q(VALUE) \
1130 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
041f25e6
RH
1131/* 1..4 for shladd arguments. */
1132#define CONSTRAINT_OK_FOR_R(VALUE) \
1133 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
0551c32d
RH
1134/* Non-post-inc memory for asms and other unsavory creatures. */
1135#define CONSTRAINT_OK_FOR_S(VALUE) \
1136 (GET_CODE (VALUE) == MEM \
1137 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1138 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
3b572406
RH
1139
1140#define EXTRA_CONSTRAINT(VALUE, C) \
041f25e6
RH
1141 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1142 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
0551c32d 1143 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
041f25e6 1144 : 0)
c65ebc55
JW
1145\f
1146/* Basic Stack Layout */
1147
1148/* Define this macro if pushing a word onto the stack moves the stack pointer
1149 to a smaller address. */
1150#define STACK_GROWS_DOWNWARD 1
1151
1152/* Define this macro if the addresses of local variable slots are at negative
1153 offsets from the frame pointer. */
97e242b0
RH
1154/* #define FRAME_GROWS_DOWNWARD */
1155
1156/* Offset from the frame pointer to the first local variable slot to
1157 be allocated. */
1158#define STARTING_FRAME_OFFSET 0
c65ebc55
JW
1159
1160/* Offset from the stack pointer register to the first location at which
1161 outgoing arguments are placed. If not specified, the default value of zero
1162 is used. This is the proper value for most machines. */
1163/* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1164#define STACK_POINTER_OFFSET 16
1165
1166/* Offset from the argument pointer register to the first argument's address.
1167 On some machines it may depend on the data type of the function. */
1168#define FIRST_PARM_OFFSET(FUNDECL) 0
1169
1170/* A C expression whose value is RTL representing the value of the return
1171 address for the frame COUNT steps up from the current frame, after the
1172 prologue. */
1173
1174/* ??? Frames other than zero would likely require interpreting the frame
1175 unwind info, so we don't try to support them. We would also need to define
1176 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1177
46327bc5
RH
1178#define RETURN_ADDR_RTX(COUNT, FRAME) \
1179 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
c65ebc55
JW
1180
1181/* A C expression whose value is RTL representing the location of the incoming
1182 return address at the beginning of any function, before the prologue. This
1183 RTL is either a `REG', indicating that the return value is saved in `REG',
1184 or a `MEM' representing a location in the stack. This enables DWARF2
1185 unwind info for C++ EH. */
1186#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
13da91fd 1187
c65ebc55
JW
1188/* ??? This is not defined because of three problems.
1189 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1190 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1191 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1192 unused register number.
1193 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1194 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1195 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1196 to zero, despite what the documentation implies, because it is tested in
1197 a few places with #ifdef instead of #if. */
1198#undef INCOMING_RETURN_ADDR_RTX
1199
1200/* A C expression whose value is an integer giving the offset, in bytes, from
1201 the value of the stack pointer register to the top of the stack frame at the
1202 beginning of any function, before the prologue. The top of the frame is
1203 defined to be the value of the stack pointer in the previous frame, just
1204 before the call instruction. */
1205#define INCOMING_FRAME_SP_OFFSET 0
1206
1207\f
1208/* Register That Address the Stack Frame. */
1209
1210/* The register number of the stack pointer register, which must also be a
1211 fixed register according to `FIXED_REGISTERS'. On most machines, the
1212 hardware determines which register this is. */
1213
1214#define STACK_POINTER_REGNUM 12
1215
1216/* The register number of the frame pointer register, which is used to access
1217 automatic variables in the stack frame. On some machines, the hardware
1218 determines which register this is. On other machines, you can choose any
1219 register you wish for this purpose. */
1220
1221#define FRAME_POINTER_REGNUM 328
1222
97e242b0
RH
1223/* Base register for access to local variables of the function. */
1224#define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
c65ebc55
JW
1225
1226/* The register number of the arg pointer register, which is used to access the
1227 function's argument list. */
1228/* r0 won't otherwise be used, so put the always eliminated argument pointer
1229 in it. */
1230#define ARG_POINTER_REGNUM R_GR(0)
1231
97e242b0
RH
1232/* The register number for the return address register. For IA-64, this
1233 is not actually a pointer as the name suggests, but that's a name that
1234 gen_rtx_REG already takes care to keep unique. We modify
1235 return_address_pointer_rtx in ia64_expand_prologue to reference the
1236 final output regnum. */
46327bc5 1237#define RETURN_ADDRESS_POINTER_REGNUM 329
c65ebc55
JW
1238
1239/* Register numbers used for passing a function's static chain pointer. */
97e242b0 1240/* ??? The ABI sez the static chain should be passed as a normal parameter. */
c65ebc55 1241#define STATIC_CHAIN_REGNUM 15
c65ebc55
JW
1242\f
1243/* Eliminating the Frame Pointer and the Arg Pointer */
1244
1245/* A C expression which is nonzero if a function must have and use a frame
1246 pointer. This expression is evaluated in the reload pass. If its value is
1247 nonzero the function will have a frame pointer. */
c65ebc55
JW
1248#define FRAME_POINTER_REQUIRED 0
1249
97e242b0
RH
1250/* Show we can debug even without a frame pointer. */
1251#define CAN_DEBUG_WITHOUT_FP
1252
c65ebc55
JW
1253/* If defined, this macro specifies a table of register pairs used to eliminate
1254 unneeded registers that point into the stack frame. */
1255
1256#define ELIMINABLE_REGS \
1257{ \
1258 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0 1259 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
46327bc5 1260 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0
RH
1261 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1262 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
c65ebc55
JW
1263}
1264
1265/* A C expression that returns non-zero if the compiler is allowed to try to
97e242b0
RH
1266 replace register number FROM with register number TO. The frame pointer
1267 is automatically handled. */
c65ebc55 1268
46327bc5
RH
1269#define CAN_ELIMINATE(FROM, TO) \
1270 (TO == BR_REG (0) ? current_function_is_leaf : 1)
c65ebc55 1271
97e242b0
RH
1272/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1273 specifies the initial difference between the specified pair of
1274 registers. This macro must be defined if `ELIMINABLE_REGS' is
1275 defined. */
1276#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1277 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
c65ebc55
JW
1278\f
1279/* Passing Function Arguments on the Stack */
1280
1281/* Define this macro if an argument declared in a prototype as an integral type
1282 smaller than `int' should actually be passed as an `int'. In addition to
1283 avoiding errors in certain cases of mismatch, it also makes for better code
1284 on certain machines. */
1285/* ??? Investigate. */
1286/* #define PROMOTE_PROTOTYPES */
1287
1288/* If defined, the maximum amount of space required for outgoing arguments will
1289 be computed and placed into the variable
1290 `current_function_outgoing_args_size'. */
1291
f73ad30e 1292#define ACCUMULATE_OUTGOING_ARGS 1
c65ebc55
JW
1293
1294/* A C expression that should indicate the number of bytes of its own arguments
1295 that a function pops on returning, or 0 if the function pops no arguments
1296 and the caller must therefore pop them all after the function returns. */
1297
1298#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1299
1300\f
1301/* Function Arguments in Registers */
1302
1303#define MAX_ARGUMENT_SLOTS 8
1304#define MAX_INT_RETURN_SLOTS 4
1305#define GR_ARG_FIRST IN_REG (0)
1306#define GR_RET_FIRST GR_REG (8)
1307#define GR_RET_LAST GR_REG (11)
1308#define FR_ARG_FIRST FR_REG (8)
1309#define FR_RET_FIRST FR_REG (8)
1310#define FR_RET_LAST FR_REG (15)
1311#define AR_ARG_FIRST OUT_REG (0)
1312
1313/* A C expression that controls whether a function argument is passed in a
1314 register, and which register. */
1315
1316#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1317 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1318
1319/* Define this macro if the target machine has "register windows", so that the
1320 register in which a function sees an arguments is not necessarily the same
1321 as the one in which the caller passed the argument. */
1322
1323#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1324 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1325
1326/* A C expression for the number of words, at the beginning of an argument,
1327 must be put in registers. The value must be zero for arguments that are
1328 passed entirely in registers or that are entirely pushed on the stack. */
1329
1330#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1331 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1332
1333/* A C expression that indicates when an argument must be passed by reference.
1334 If nonzero for an argument, a copy of that argument is made in memory and a
1335 pointer to the argument is passed instead of the argument itself. The
1336 pointer is passed in whatever way is appropriate for passing a pointer to
1337 that type. */
1338
1339#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1340
1341/* A C type for declaring a variable that is used as the first argument of
1342 `FUNCTION_ARG' and other related values. For some target machines, the type
1343 `int' suffices and can hold the number of bytes of argument so far. */
1344
1345typedef struct ia64_args
1346{
1347 int words; /* # words of arguments so far */
1348 int fp_regs; /* # FR registers used so far */
1349 int prototype; /* whether function prototyped */
1350} CUMULATIVE_ARGS;
1351
1352/* A C statement (sans semicolon) for initializing the variable CUM for the
1353 state at the beginning of the argument list. */
1354
1355#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1356do { \
1357 (CUM).words = 0; \
1358 (CUM).fp_regs = 0; \
1359 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1360} while (0)
1361
1362/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1363 arguments for the function being compiled. If this macro is undefined,
1364 `INIT_CUMULATIVE_ARGS' is used instead. */
1365
1366/* We set prototype to true so that we never try to return a PARALLEL from
1367 function_arg. */
1368#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1369do { \
1370 (CUM).words = 0; \
1371 (CUM).fp_regs = 0; \
1372 (CUM).prototype = 1; \
1373} while (0)
1374
1375/* A C statement (sans semicolon) to update the summarizer variable CUM to
1376 advance past an argument in the argument list. The values MODE, TYPE and
1377 NAMED describe that argument. Once this is done, the variable CUM is
1378 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1379
1380#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1381 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1382
1383/* If defined, a C expression that gives the alignment boundary, in bits, of an
1384 argument with the specified mode and type. */
1385
93dd6255
JW
1386/* Arguments with alignment larger than 8 bytes start at the next even
1387 boundary. See ia64_function_arg. */
c65ebc55
JW
1388
1389#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
93dd6255
JW
1390 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1391 : (((((MODE) == BLKmode \
1392 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1393 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1394 ? 128 : PARM_BOUNDARY)
c65ebc55
JW
1395
1396/* A C expression that is nonzero if REGNO is the number of a hard register in
1397 which function arguments are sometimes passed. This does *not* include
1398 implicit arguments such as the static chain and the structure-value address.
1399 On many machines, no registers can be used for this purpose since all
1400 function arguments are pushed on the stack. */
1401#define FUNCTION_ARG_REGNO_P(REGNO) \
1402(((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1403 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1404\f
1405/* Implement `va_start' for varargs and stdarg. */
1406#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1407 ia64_va_start (stdarg, valist, nextarg)
1408
1409/* Implement `va_arg'. */
1410#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1411 ia64_va_arg (valist, type)
1412\f
1413/* How Scalar Function Values are Returned */
1414
1415/* A C expression to create an RTX representing the place where a function
1416 returns a value of data type VALTYPE. */
1417
1418#define FUNCTION_VALUE(VALTYPE, FUNC) \
1419 ia64_function_value (VALTYPE, FUNC)
1420
1421/* A C expression to create an RTX representing the place where a library
1422 function returns a value of mode MODE. */
1423
1424#define LIBCALL_VALUE(MODE) \
1425 gen_rtx_REG (MODE, \
1426 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1427 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1428 ? FR_RET_FIRST : GR_RET_FIRST))
1429
1430/* A C expression that is nonzero if REGNO is the number of a hard register in
1431 which the values of called function may come back. */
1432
1433#define FUNCTION_VALUE_REGNO_P(REGNO) \
1434 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1435 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1436
1437\f
1438/* How Large Values are Returned */
1439
1440/* A nonzero value says to return the function value in memory, just as large
1441 structures are always returned. */
1442
1443#define RETURN_IN_MEMORY(TYPE) \
1444 ia64_return_in_memory (TYPE)
1445
1446/* If you define this macro to be 0, then the conventions used for structure
1447 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1448
1449#define DEFAULT_PCC_STRUCT_RETURN 0
1450
1451/* If the structure value address is passed in a register, then
1452 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1453
1454#define STRUCT_VALUE_REGNUM GR_REG (8)
1455
1456\f
1457/* Caller-Saves Register Allocation */
1458
1459/* A C expression to determine whether it is worthwhile to consider placing a
1460 pseudo-register in a call-clobbered hard register and saving and restoring
1461 it around each function call. The expression should be 1 when this is worth
1462 doing, and 0 otherwise.
1463
1464 If you don't define this macro, a default is used which is good on most
1465 machines: `4 * CALLS < REFS'. */
1466/* ??? Investigate. */
1467/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1468
1469\f
1470/* Function Entry and Exit */
1471
1472/* A C compound statement that outputs the assembler code for entry to a
1473 function. */
1474
1475#define FUNCTION_PROLOGUE(FILE, SIZE) \
1476 ia64_function_prologue (FILE, SIZE)
1477
0186257f
JW
1478/* This macro notes the end of the prologue. */
1479
1480#define FUNCTION_END_PROLOGUE(FILE) ia64_output_end_prologue (FILE)
1481
c65ebc55
JW
1482/* Define this macro as a C expression that is nonzero if the return
1483 instruction or the function epilogue ignores the value of the stack pointer;
1484 in other words, if it is safe to delete an instruction to adjust the stack
1485 pointer before a return from the function. */
1486
1487#define EXIT_IGNORE_STACK 1
1488
1489/* Define this macro as a C expression that is nonzero for registers
1490 used by the epilogue or the `return' pattern. */
1491
1492#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1493
1494/* A C compound statement that outputs the assembler code for exit from a
1495 function. */
1496
1497#define FUNCTION_EPILOGUE(FILE, SIZE) \
1498 ia64_function_epilogue (FILE, SIZE)
1499
3b572406
RH
1500/* Output at beginning of assembler file. */
1501
1502#define ASM_FILE_START(FILE) \
ca3920ad 1503 emit_safe_across_calls (FILE)
3b572406 1504
c65ebc55
JW
1505/* A C compound statement that outputs the assembler code for a thunk function,
1506 used to implement C++ virtual function calls with multiple inheritance. */
1507
c65ebc55
JW
1508#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1509do { \
591eb4ba
JW
1510 if (CONST_OK_FOR_I (DELTA)) \
1511 fprintf (FILE, "\tadds r32 = %d, r32\n", (DELTA)); \
1512 else \
1513 { \
1514 if (CONST_OK_FOR_J (DELTA)) \
1515 fprintf (FILE, "\taddl r2 = %d, r0\n", (DELTA)); \
1516 else \
1517 fprintf (FILE, "\tmovl r2 = %d\n", (DELTA)); \
1518 fprintf (FILE, "\t;;\n"); \
1519 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1520 } \
c65ebc55
JW
1521 fprintf (FILE, "\tbr "); \
1522 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1523 fprintf (FILE, "\n"); \
1524} while (0)
1525
1526\f
1527/* Generating Code for Profiling. */
1528
1529/* A C statement or compound statement to output to FILE some assembler code to
1530 call the profiling subroutine `mcount'. */
1531
1532/* ??? Unclear if this will actually work. No way to test this currently. */
1533
1534#define FUNCTION_PROFILER(FILE, LABELNO) \
1535do { \
1536 char buf[20]; \
1537 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1538 fputs ("\taddl r16 = @ltoff(", FILE); \
1539 assemble_name (FILE, buf); \
1540 fputs ("), gp\n", FILE); \
1541 fputs ("\tmov r17 = r1;;\n", FILE); \
1542 fputs ("\tld8 out0 = [r16]\n", FILE); \
1543 fputs ("\tmov r18 = b0\n", FILE); \
1544 fputs ("\tbr.call.sptk.many rp = mcount;;\n", FILE); \
1545 fputs ("\tmov b0 = r18\n", FILE); \
1546 fputs ("\tmov r1 = r17;;\n", FILE); \
1547} while (0)
1548
1549/* A C statement or compound statement to output to FILE some assembler code to
1550 initialize basic-block profiling for the current object module. */
1551
1552/* ??? Unclear if this will actually work. No way to test this currently. */
1553
1554#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1555do { \
1556 int labelno = LABELNO; \
1557 switch (profile_block_flag) \
1558 { \
1559 case 2: \
1560 fputs ("\taddl r16 = @ltoff(LPBX0), gp\n", FILE); \
1561 fprintf (FILE, "\tmov out1 = %d;;\n", labelno); \
1562 fputs ("\tld8 out0 = [r16]\n", FILE); \
1563 fputs ("\tmov r17 = r1\n", FILE); \
1564 fputs ("\tmov r18 = b0\n", FILE); \
1565 fputs ("\tbr.call.sptk.many rp = __bb_init_trace_func;;\n", FILE);\
1566 fputs ("\tmov r1 = r17\n", FILE); \
1567 fputs ("\tmov b0 = r18;;\n", FILE); \
1568 break; \
1569 default: \
1570 fputs ("\taddl r16 = @ltoff(LPBX0), gp;;\n", FILE); \
1571 fputs ("\tld8 out0 = [r16];;\n", FILE); \
1572 fputs ("\tld8 r17 = [out0];;\n", FILE); \
1573 fputs ("\tcmp.eq p6, p0 = r0, r17;;\n", FILE); \
1574 fputs ("(p6)\tmov r16 = r1\n", FILE); \
1575 fputs ("(p6)\tmov r17 = b0\n", FILE); \
1576 fputs ("(p6)\tbr.call.sptk.many rp = __bb_init_func;;\n", FILE); \
1577 fputs ("(p6)\tmov r1 = r16\n", FILE); \
1578 fputs ("(p6)\tmov b0 = r17;;\n", FILE); \
1579 break; \
1580 } \
1581} while (0)
1582
1583/* A C statement or compound statement to output to FILE some assembler code to
1584 increment the count associated with the basic block number BLOCKNO. */
1585
1586/* ??? This can't work unless we mark some registers as fixed, so that we
1587 can use them as temporaries in this macro. We need two registers for -a
1588 profiling and 4 registers for -ax profiling. */
1589
1590#define BLOCK_PROFILER(FILE, BLOCKNO) \
1591do { \
1592 int blockn = BLOCKNO; \
1593 switch (profile_block_flag) \
1594 { \
1595 case 2: \
1596 fputs ("\taddl r2 = @ltoff(__bb), gp\n", FILE); \
1597 fputs ("\taddl r3 = @ltoff(LPBX0), gp;;\n", FILE); \
1598 fprintf (FILE, "\tmov r9 = %d\n", blockn); \
1599 fputs ("\tld8 r2 = [r2]\n", FILE); \
1600 fputs ("\tld8 r3 = [r3];;\n", FILE); \
1601 fputs ("\tadd r8 = 8, r2\n", FILE); \
1602 fputs ("\tst8 [r2] = r9;;\n", FILE); \
1603 fputs ("\tst8 [r8] = r3\n", FILE); \
1604 fputs ("\tbr.call.sptk.many rp = __bb_trace_func\n", FILE); \
1605 break; \
1606 \
1607 default: \
1608 fputs ("\taddl r2 = @ltoff(LPBX2), gp;;\n", FILE); \
1609 fputs ("\tld8 r2 = [r2];;\n", FILE); \
1610 fprintf (FILE, "\taddl r2 = %d, r2;;\n", 8 * blockn); \
1611 fputs ("\tld8 r3 = [r2];;\n", FILE); \
1612 fputs ("\tadd r3 = 1, r3;;\n", FILE); \
1613 fputs ("\tst8 [r2] = r3;;\n", FILE); \
1614 break; \
1615 } \
1616} while(0)
1617
1618/* A C statement or compound statement to output to FILE assembler
1619 code to call function `__bb_trace_ret'. */
1620
1621/* ??? Unclear if this will actually work. No way to test this currently. */
1622
1623/* ??? This needs to be emitted into the epilogue. Perhaps rewrite to emit
1624 rtl and call from ia64_expand_epilogue? */
1625
1626#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1627 fputs ("\tbr.call.sptk.many rp = __bb_trace_ret\n", FILE);
1628#undef FUNCTION_BLOCK_PROFILER_EXIT
1629
1630/* A C statement or compound statement to save all registers, which may be
1631 clobbered by a function call, including condition codes. */
1632
1633/* ??? We would have to save 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1634 other things. This is not practical. Perhaps leave this feature (-ax)
1635 unsupported by undefining above macros? */
1636
1637/* #define MACHINE_STATE_SAVE(ID) */
1638
1639/* A C statement or compound statement to restore all registers, including
1640 condition codes, saved by `MACHINE_STATE_SAVE'. */
1641
1642/* ??? We would have to restore 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1643 other things. This is not practical. Perhaps leave this feature (-ax)
1644 unsupported by undefining above macros? */
1645
1646/* #define MACHINE_STATE_RESTORE(ID) */
1647
1648\f
1649/* Implementing the Varargs Macros. */
1650
1651/* Define this macro to store the anonymous register arguments into the stack
1652 so that all the arguments appear to have been passed consecutively on the
1653 stack. */
1654
1655#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1656 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1657
1658/* Define this macro if the location where a function argument is passed
1659 depends on whether or not it is a named argument. */
1660
1661#define STRICT_ARGUMENT_NAMING 1
1662
1663\f
1664/* Trampolines for Nested Functions. */
1665
1666/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1667 the function containing a non-local goto target. */
1668
1669#define STACK_SAVEAREA_MODE(LEVEL) \
1670 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1671
1672/* Output assembler code for a block containing the constant parts of
1673 a trampoline, leaving space for the variable parts.
1674
1675 The trampoline should set the static chain pointer to value placed
97e242b0
RH
1676 into the trampoline and should branch to the specified routine.
1677 To make the normal indirect-subroutine calling convention work,
1678 the trampoline must look like a function descriptor; the first
1679 word being the target address and the second being the target's
1680 global pointer.
1681
1682 We abuse the concept of a global pointer by arranging for it
1683 to point to the data we need to load. The complete trampoline
c65ebc55
JW
1684 has the following form:
1685
97e242b0
RH
1686 +-------------------+ \
1687 TRAMP: | __ia64_trampoline | |
1688 +-------------------+ > fake function descriptor
1689 | TRAMP+16 | |
1690 +-------------------+ /
1691 | target descriptor |
1692 +-------------------+
1693 | static link |
1694 +-------------------+
c65ebc55
JW
1695*/
1696
c65ebc55
JW
1697/* A C expression for the size in bytes of the trampoline, as an integer. */
1698
97e242b0 1699#define TRAMPOLINE_SIZE 32
c65ebc55
JW
1700
1701/* Alignment required for trampolines, in bits. */
1702
97e242b0 1703#define TRAMPOLINE_ALIGNMENT 64
c65ebc55
JW
1704
1705/* A C statement to initialize the variable parts of a trampoline. */
1706
1707#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
97e242b0 1708 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
c65ebc55
JW
1709\f
1710/* Implicit Calls to Library Routines */
1711
1712/* ??? The ia64 linux kernel requires that we use the standard names for
1713 divide and modulo routines. However, if we aren't careful, lib1funcs.asm
1714 will be overridden by libgcc2.c. We avoid this by using different names
1715 for lib1funcs.asm modules, e.g. __divdi3 vs _divdi3. Since lib1funcs.asm
1716 goes into libgcc.a first, the linker will find it first. */
1717
c65ebc55
JW
1718/* Define this macro if GNU CC should generate calls to the System V (and ANSI
1719 C) library functions `memcpy' and `memset' rather than the BSD functions
1720 `bcopy' and `bzero'. */
1721
1722#define TARGET_MEM_FUNCTIONS
1723
1724\f
1725/* Addressing Modes */
1726
1727/* Define this macro if the machine supports post-increment addressing. */
1728
1729#define HAVE_POST_INCREMENT 1
1730#define HAVE_POST_DECREMENT 1
4b983fdc
RH
1731#define HAVE_POST_MODIFY_DISP 1
1732#define HAVE_POST_MODIFY_REG 1
c65ebc55
JW
1733
1734/* A C expression that is 1 if the RTX X is a constant which is a valid
1735 address. */
1736
1737#define CONSTANT_ADDRESS_P(X) 0
1738
1739/* The max number of registers that can appear in a valid memory address. */
1740
4b983fdc 1741#define MAX_REGS_PER_ADDRESS 2
c65ebc55
JW
1742
1743/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1744 RTX) is a legitimate memory address on the target machine for a memory
1745 operand of mode MODE. */
1746
4b983fdc
RH
1747#define LEGITIMATE_ADDRESS_REG(X) \
1748 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1749 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1750 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1751
1752#define LEGITIMATE_ADDRESS_DISP(R, X) \
1753 (GET_CODE (X) == PLUS \
1754 && rtx_equal_p (R, XEXP (X, 0)) \
cf606f45 1755 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
4b983fdc 1756 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
5527bf14
RH
1757 && INTVAL (XEXP (X, 1)) >= -256 \
1758 && INTVAL (XEXP (X, 1)) < 256)))
c65ebc55
JW
1759
1760#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1761do { \
4b983fdc 1762 if (LEGITIMATE_ADDRESS_REG (X)) \
c65ebc55 1763 goto LABEL; \
4b983fdc
RH
1764 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1765 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1766 && XEXP (X, 0) != arg_pointer_rtx) \
1767 goto LABEL; \
1768 else if (GET_CODE (X) == POST_MODIFY \
1769 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1770 && XEXP (X, 0) != arg_pointer_rtx \
1771 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
c65ebc55 1772 goto LABEL; \
c65ebc55
JW
1773} while (0)
1774
1775/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1776 use as a base register. */
1777
1778#ifdef REG_OK_STRICT
1779#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1780#else
1781#define REG_OK_FOR_BASE_P(X) \
1782 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1783#endif
1784
1785/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
cf606f45 1786 use as an index register. This is needed for POST_MODIFY. */
c65ebc55 1787
cf606f45 1788#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
c65ebc55
JW
1789
1790/* A C compound statement that attempts to replace X with a valid memory
1791 address for an operand of mode MODE.
1792
1793 This must be present, but there is nothing useful to be done here. */
1794
1795#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1796
1797/* A C statement or compound statement with a conditional `goto LABEL;'
1798 executed if memory address X (an RTX) can have different meanings depending
1799 on the machine mode of the memory reference it is used for or if the address
1800 is valid for some modes but not others. */
1801
3f622353 1802#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
c65ebc55
JW
1803 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1804 goto LABEL;
1805
1806/* A C expression that is nonzero if X is a legitimate constant for an
1807 immediate operand on the target machine. */
1808
1809#define LEGITIMATE_CONSTANT_P(X) \
1810 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1811 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1812
1813\f
1814/* Condition Code Status */
1815
1816/* One some machines not all possible comparisons are defined, but you can
1817 convert an invalid comparison into a valid one. */
1818/* ??? Investigate. See the alpha definition. */
1819/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1820
1821\f
1822/* Describing Relative Costs of Operations */
1823
1824/* A part of a C `switch' statement that describes the relative costs of
1825 constant RTL expressions. */
1826
1827/* ??? This is incomplete. */
1828
f2f90c63 1829#define CONST_COSTS(X, CODE, OUTER_CODE) \
c65ebc55
JW
1830 case CONST_INT: \
1831 if ((X) == const0_rtx) \
1832 return 0; \
f2f90c63
RH
1833 switch (OUTER_CODE) \
1834 { \
1835 case SET: \
1836 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1837 case PLUS: \
1838 if (CONST_OK_FOR_I (INTVAL (X))) \
1839 return 0; \
1840 if (CONST_OK_FOR_J (INTVAL (X))) \
1841 return 1; \
1842 return COSTS_N_INSNS (1); \
1843 default: \
1844 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1845 return 0; \
1846 return COSTS_N_INSNS (1); \
1847 } \
c65ebc55 1848 case CONST_DOUBLE: \
f2f90c63 1849 return COSTS_N_INSNS (1); \
c65ebc55
JW
1850 case CONST: \
1851 case SYMBOL_REF: \
1852 case LABEL_REF: \
2130b7fb 1853 return COSTS_N_INSNS (3);
c65ebc55
JW
1854
1855/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1856
f2f90c63
RH
1857#define RTX_COSTS(X, CODE, OUTER_CODE) \
1858 case MULT: \
1859 /* For multiplies wider than HImode, we have to go to the FPU, \
1860 which normally involves copies. Plus there's the latency \
005f39ce
BS
1861 of the multiply itself, and the latency of the instructions to \
1862 transfer integer regs to FP regs. */ \
f2f90c63 1863 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
005f39ce
BS
1864 return COSTS_N_INSNS (10); \
1865 return COSTS_N_INSNS (2); \
1866 case PLUS: \
1867 case MINUS: \
1868 case ASHIFT: \
1869 case ASHIFTRT: \
1870 case LSHIFTRT: \
f2f90c63 1871 return COSTS_N_INSNS (1); \
c65ebc55
JW
1872 case DIV: \
1873 case UDIV: \
1874 case MOD: \
1875 case UMOD: \
f2f90c63
RH
1876 /* We make divide expensive, so that divide-by-constant will be \
1877 optimized to a multiply. */ \
1878 return COSTS_N_INSNS (60);
c65ebc55
JW
1879
1880/* An expression giving the cost of an addressing mode that contains ADDRESS.
1881 If not defined, the cost is computed from the ADDRESS expression and the
1882 `CONST_COSTS' values. */
1883
1884#define ADDRESS_COST(ADDRESS) 0
1885
1886/* A C expression for the cost of moving data from a register in class FROM to
1887 one in class TO. */
1888
cf011243 1889#define REGISTER_MOVE_COST(MODE, FROM, TO) \
5527bf14 1890 ia64_register_move_cost((FROM), (TO))
c65ebc55 1891
f2f90c63
RH
1892/* A C expression for the cost of moving data of mode M between a
1893 register and memory. */
1894#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1895 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS ? 4 : 10)
c65ebc55
JW
1896
1897/* A C expression for the cost of a branch instruction. A value of 1 is the
e5bde68a
RH
1898 default; other values are interpreted relative to that. Used by the
1899 if-conversion code as max instruction count. */
1900/* ??? This requires investigation. The primary effect might be how
1901 many additional insn groups we run into, vs how good the dynamic
1902 branch predictor is. */
1903
1904#define BRANCH_COST 6
c65ebc55
JW
1905
1906/* Define this macro as a C expression which is nonzero if accessing less than
1907 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1908 word of memory. */
1909
1910#define SLOW_BYTE_ACCESS 1
1911
1912/* Define this macro if it is as good or better to call a constant function
1913 address than to call an address kept in a register.
1914
1915 Indirect function calls are more expensive that direct function calls, so
1916 don't cse function addresses. */
1917
1918#define NO_FUNCTION_CSE
1919
c65ebc55
JW
1920\f
1921/* Dividing the output into sections. */
1922
1923/* A C expression whose value is a string containing the assembler operation
1924 that should precede instructions and read-only data. */
1925
de323aa1 1926#define TEXT_SECTION_ASM_OP "\t.text"
c65ebc55
JW
1927
1928/* A C expression whose value is a string containing the assembler operation to
1929 identify the following data as writable initialized data. */
1930
de323aa1 1931#define DATA_SECTION_ASM_OP "\t.data"
c65ebc55
JW
1932
1933/* If defined, a C expression whose value is a string containing the assembler
1934 operation to identify the following data as uninitialized global data. */
1935
de323aa1 1936#define BSS_SECTION_ASM_OP "\t.bss"
c65ebc55
JW
1937
1938/* Define this macro if jump tables (for `tablejump' insns) should be output in
1939 the text section, along with the assembler instructions. */
1940
1941/* ??? It is probably better for the jump tables to be in the rodata section,
1942 which is where they go by default. Unfortunately, that currently does not
1943 work, because of some problem with pcrelative relocations not getting
1944 resolved correctly. */
1945/* ??? FIXME ??? rth says that we should use @gprel to solve this problem. */
1946/* ??? If jump tables are in the text section, then we can use 4 byte
1947 entries instead of 8 byte entries. */
1948
1949#define JUMP_TABLES_IN_TEXT_SECTION 1
1950
1951/* Define this macro if references to a symbol must be treated differently
1952 depending on something about the variable or function named by the symbol
1953 (such as what section it is in). */
1954
1955#define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1956
32adf8e6
AH
1957/* If a variable is weakened, made one only or moved into a different
1958 section, it may be necessary to redo the section info to move the
1959 variable out of sdata. */
1960
1961#define REDO_SECTION_INFO_P(DECL) \
1962 ((TREE_CODE (DECL) == VAR_DECL) \
94c21c17
GS
1963 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1964 || DECL_SECTION_NAME (DECL) != 0))
32adf8e6 1965
c65ebc55
JW
1966#define SDATA_NAME_FLAG_CHAR '@'
1967
1968#define IA64_DEFAULT_GVALUE 8
1969
1970/* Decode SYM_NAME and store the real name part in VAR, sans the characters
1971 that encode section info. */
1972
1973#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1974 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == SDATA_NAME_FLAG_CHAR)
1975
1976\f
1977/* Position Independent Code. */
1978
1979/* The register number of the register used to address a table of static data
1980 addresses in memory. */
1981
1982/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1983 gen_rtx_REG (DImode, 1). */
1984
1985/* ??? Should we set flag_pic? Probably need to define
1986 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1987
1988#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1989
1990/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1991 clobbered by calls. */
1992
1993#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1994
1995\f
1996/* The Overall Framework of an Assembler File. */
1997
1998/* A C string constant describing how to begin a comment in the target
1999 assembler language. The compiler assumes that the comment will end at the
2000 end of the line. */
2001
2002#define ASM_COMMENT_START "//"
2003
2004/* A C string constant for text to be output before each `asm' statement or
2005 group of consecutive ones. */
2006
2007/* ??? This won't work with the Intel assembler, because it does not accept
2008 # as a comment start character. However, //APP does not work in gas, so we
2009 can't use that either. Same problem for ASM_APP_OFF below. */
2010
2011#define ASM_APP_ON "#APP\n"
2012
2013/* A C string constant for text to be output after each `asm' statement or
2014 group of consecutive ones. */
2015
2016#define ASM_APP_OFF "#NO_APP\n"
2017
2018\f
2019/* Output of Data. */
2020
2021/* A C statement to output to the stdio stream STREAM an assembler instruction
3f622353 2022 to assemble a floating-point constant of `TFmode', `DFmode', `SFmode',
c65ebc55
JW
2023 respectively, whose value is VALUE. */
2024
c65ebc55
JW
2025/* ??? Must reverse the word order for big-endian code? */
2026
2027#define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
2028do { \
2029 long t[3]; \
2030 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, t); \
3f622353 2031 fprintf (FILE, "\tdata4 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n", \
0024a804 2032 t[0] & 0xffffffff, t[1] & 0xffffffff, t[2] & 0xffffffff, 0L);\
c65ebc55
JW
2033} while (0)
2034
2035/* ??? Must reverse the word order for big-endian code? */
2036
2037#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2038do { \
2039 long t[2]; \
2040 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, t); \
2041 fprintf (FILE, "\tdata8 0x%08lx%08lx\n", \
2042 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2043} while (0)
2044
2045#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2046 do { \
2047 long t; \
2048 REAL_VALUE_TO_TARGET_SINGLE (VALUE, t); \
2049 fprintf (FILE, "\tdata4 0x%lx\n", t & 0xffffffff); \
2050} while (0)
2051
2052/* A C statement to output to the stdio stream STREAM an assembler instruction
2053 to assemble an integer of 1, 2, 4, or 8 bytes, respectively, whose value
2054 is VALUE. */
2055
2056/* This is how to output an assembler line defining a `char' constant. */
2057
2058#define ASM_OUTPUT_CHAR(FILE, VALUE) \
2059do { \
f0ca81d2 2060 fprintf (FILE, "%s", ASM_BYTE_OP); \
c65ebc55
JW
2061 output_addr_const (FILE, (VALUE)); \
2062 fprintf (FILE, "\n"); \
2063} while (0)
2064
2065/* This is how to output an assembler line defining a `short' constant. */
2066
2067#define ASM_OUTPUT_SHORT(FILE, VALUE) \
2068do { \
2069 fprintf (FILE, "\tdata2\t"); \
2070 output_addr_const (FILE, (VALUE)); \
2071 fprintf (FILE, "\n"); \
2072} while (0)
2073
2074/* This is how to output an assembler line defining an `int' constant.
2075 We also handle symbol output here. */
2076
2077/* ??? For ILP32, also need to handle function addresses here. */
2078
2079#define ASM_OUTPUT_INT(FILE, VALUE) \
2080do { \
2081 fprintf (FILE, "\tdata4\t"); \
2082 output_addr_const (FILE, (VALUE)); \
2083 fprintf (FILE, "\n"); \
2084} while (0)
2085
2086/* This is how to output an assembler line defining a `long' constant.
2087 We also handle symbol output here. */
2088
2089#define ASM_OUTPUT_DOUBLE_INT(FILE, VALUE) \
2090do { \
2091 fprintf (FILE, "\tdata8\t"); \
59da9a7d 2092 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2093 fprintf (FILE, "@fptr("); \
2094 output_addr_const (FILE, (VALUE)); \
59da9a7d 2095 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2096 fprintf (FILE, ")"); \
2097 fprintf (FILE, "\n"); \
2098} while (0)
2099
0c96007e
AM
2100/* This is how to output an assembler line defining a `char' constant
2101 to an xdata segment. */
2102
2103#define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
2104do { \
2105 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
2106 output_addr_const (FILE, (VALUE)); \
2107 fprintf (FILE, "\n"); \
2108} while (0)
2109
2110/* This is how to output an assembler line defining a `short' constant
2111 to an xdata segment. */
2112
2113#define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
2114do { \
2115 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
2116 output_addr_const (FILE, (VALUE)); \
2117 fprintf (FILE, "\n"); \
2118} while (0)
2119
2120/* This is how to output an assembler line defining an `int' constant
2121 to an xdata segment. We also handle symbol output here. */
2122
2123/* ??? For ILP32, also need to handle function addresses here. */
2124
2125#define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
2126do { \
2127 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
2128 output_addr_const (FILE, (VALUE)); \
2129 fprintf (FILE, "\n"); \
2130} while (0)
2131
2132/* This is how to output an assembler line defining a `long' constant
2133 to an xdata segment. We also handle symbol output here. */
2134
2135#define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
2136do { \
59da9a7d 2137 int need_closing_paren = 0; \
0c96007e 2138 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
59da9a7d
JW
2139 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
2140 && GET_CODE (VALUE) == SYMBOL_REF) \
0c96007e 2141 { \
59da9a7d
JW
2142 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
2143 need_closing_paren = 1; \
0c96007e 2144 } \
59da9a7d
JW
2145 output_addr_const (FILE, VALUE); \
2146 if (need_closing_paren) \
0c96007e
AM
2147 fprintf (FILE, ")"); \
2148 fprintf (FILE, "\n"); \
2149} while (0)
2150
2151
c65ebc55
JW
2152/* A C statement to output to the stdio stream STREAM an assembler instruction
2153 to assemble a single byte containing the number VALUE. */
2154
2155#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
f0ca81d2 2156 fprintf (STREAM, "%s0x%x\n", ASM_BYTE_OP, (int)(VALUE) & 0xff)
c65ebc55
JW
2157
2158/* These macros are defined as C string constant, describing the syntax in the
2159 assembler for grouping arithmetic expressions. */
2160
2161#define ASM_OPEN_PAREN "("
2162#define ASM_CLOSE_PAREN ")"
2163
2164\f
2165/* Output of Uninitialized Variables. */
2166
2167/* This is all handled by svr4.h. */
2168
2169\f
2170/* Output and Generation of Labels. */
2171
2172/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2173 assembler definition of a label named NAME. */
2174
2175/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
2176 why ia64_asm_output_label exists. */
2177
2178extern int ia64_asm_output_label;
2179#define ASM_OUTPUT_LABEL(STREAM, NAME) \
2180do { \
2181 ia64_asm_output_label = 1; \
2182 assemble_name (STREAM, NAME); \
2183 fputs (":\n", STREAM); \
2184 ia64_asm_output_label = 0; \
2185} while (0)
2186
2187/* A C statement (sans semicolon) to output to the stdio stream STREAM some
2188 commands that will make the label NAME global; that is, available for
2189 reference from other files. */
2190
2191#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2192do { \
2193 fputs ("\t.global ", STREAM); \
2194 assemble_name (STREAM, NAME); \
2195 fputs ("\n", STREAM); \
2196} while (0)
2197
2198/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2199 necessary for declaring the name of an external symbol named NAME which is
2200 referenced in this compilation but not defined. */
2201
2202#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2203 ia64_asm_output_external (FILE, DECL, NAME)
2204
2205/* A C statement to store into the string STRING a label whose name is made
2206 from the string PREFIX and the number NUM. */
2207
2208#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2209do { \
2210 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
2211} while (0)
2212
2213/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
2214 newly allocated string made from the string NAME and the number NUMBER, with
2215 some suitable punctuation added. */
2216
2217/* ??? Not sure if using a ? in the name for Intel as is safe. */
2218
2219#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
2220do { \
2221 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
2222 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
2223 (long)(NUMBER)); \
2224} while (0)
2225
2226/* A C statement to output to the stdio stream STREAM assembler code which
2227 defines (equates) the symbol NAME to have the value VALUE. */
2228
2229#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2230do { \
2231 assemble_name (STREAM, NAME); \
2232 fputs (" = ", STREAM); \
2233 assemble_name (STREAM, VALUE); \
2234 fputc ('\n', STREAM); \
2235} while (0)
2236
2237\f
2238/* Macros Controlling Initialization Routines. */
2239
2240/* This is handled by svr4.h and sysv4.h. */
2241
2242\f
2243/* Output of Assembler Instructions. */
2244
2245/* A C initializer containing the assembler's names for the machine registers,
2246 each one as a C string constant. */
2247
2248#define REGISTER_NAMES \
2249{ \
2250 /* General registers. */ \
2251 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
2252 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
2253 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
2254 "r30", "r31", \
2255 /* Local registers. */ \
2256 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
2257 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
2258 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
2259 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
2260 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
2261 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
2262 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
2263 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
2264 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
2265 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
2266 /* Input registers. */ \
2267 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
2268 /* Output registers. */ \
2269 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
2270 /* Floating-point registers. */ \
2271 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2272 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2273 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2274 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2275 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2276 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2277 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2278 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2279 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2280 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2281 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2282 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2283 "f120","f121","f122","f123","f124","f125","f126","f127", \
2284 /* Predicate registers. */ \
2285 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2286 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2287 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2288 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2289 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2290 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2291 "p60", "p61", "p62", "p63", \
2292 /* Branch registers. */ \
2293 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2294 /* Frame pointer. Return address. */ \
97e242b0 2295 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
c65ebc55
JW
2296}
2297
2298/* If defined, a C initializer for an array of structures containing a name and
2299 a register number. This macro defines additional names for hard registers,
2300 thus allowing the `asm' option in declarations to refer to registers using
2301 alternate names. */
2302
2303#define ADDITIONAL_REGISTER_NAMES \
2304{ \
2305 { "gp", R_GR (1) }, \
2306 { "sp", R_GR (12) }, \
2307 { "in0", IN_REG (0) }, \
2308 { "in1", IN_REG (1) }, \
2309 { "in2", IN_REG (2) }, \
2310 { "in3", IN_REG (3) }, \
2311 { "in4", IN_REG (4) }, \
2312 { "in5", IN_REG (5) }, \
2313 { "in6", IN_REG (6) }, \
2314 { "in7", IN_REG (7) }, \
2315 { "out0", OUT_REG (0) }, \
2316 { "out1", OUT_REG (1) }, \
2317 { "out2", OUT_REG (2) }, \
2318 { "out3", OUT_REG (3) }, \
2319 { "out4", OUT_REG (4) }, \
2320 { "out5", OUT_REG (5) }, \
2321 { "out6", OUT_REG (6) }, \
2322 { "out7", OUT_REG (7) }, \
2323 { "loc0", LOC_REG (0) }, \
2324 { "loc1", LOC_REG (1) }, \
2325 { "loc2", LOC_REG (2) }, \
2326 { "loc3", LOC_REG (3) }, \
2327 { "loc4", LOC_REG (4) }, \
2328 { "loc5", LOC_REG (5) }, \
2329 { "loc6", LOC_REG (6) }, \
2330 { "loc7", LOC_REG (7) }, \
2331 { "loc8", LOC_REG (8) }, \
2332 { "loc9", LOC_REG (9) }, \
2333 { "loc10", LOC_REG (10) }, \
2334 { "loc11", LOC_REG (11) }, \
2335 { "loc12", LOC_REG (12) }, \
2336 { "loc13", LOC_REG (13) }, \
2337 { "loc14", LOC_REG (14) }, \
2338 { "loc15", LOC_REG (15) }, \
2339 { "loc16", LOC_REG (16) }, \
2340 { "loc17", LOC_REG (17) }, \
2341 { "loc18", LOC_REG (18) }, \
2342 { "loc19", LOC_REG (19) }, \
2343 { "loc20", LOC_REG (20) }, \
2344 { "loc21", LOC_REG (21) }, \
2345 { "loc22", LOC_REG (22) }, \
2346 { "loc23", LOC_REG (23) }, \
2347 { "loc24", LOC_REG (24) }, \
2348 { "loc25", LOC_REG (25) }, \
2349 { "loc26", LOC_REG (26) }, \
2350 { "loc27", LOC_REG (27) }, \
2351 { "loc28", LOC_REG (28) }, \
2352 { "loc29", LOC_REG (29) }, \
2353 { "loc30", LOC_REG (30) }, \
2354 { "loc31", LOC_REG (31) }, \
2355 { "loc32", LOC_REG (32) }, \
2356 { "loc33", LOC_REG (33) }, \
2357 { "loc34", LOC_REG (34) }, \
2358 { "loc35", LOC_REG (35) }, \
2359 { "loc36", LOC_REG (36) }, \
2360 { "loc37", LOC_REG (37) }, \
2361 { "loc38", LOC_REG (38) }, \
2362 { "loc39", LOC_REG (39) }, \
2363 { "loc40", LOC_REG (40) }, \
2364 { "loc41", LOC_REG (41) }, \
2365 { "loc42", LOC_REG (42) }, \
2366 { "loc43", LOC_REG (43) }, \
2367 { "loc44", LOC_REG (44) }, \
2368 { "loc45", LOC_REG (45) }, \
2369 { "loc46", LOC_REG (46) }, \
2370 { "loc47", LOC_REG (47) }, \
2371 { "loc48", LOC_REG (48) }, \
2372 { "loc49", LOC_REG (49) }, \
2373 { "loc50", LOC_REG (50) }, \
2374 { "loc51", LOC_REG (51) }, \
2375 { "loc52", LOC_REG (52) }, \
2376 { "loc53", LOC_REG (53) }, \
2377 { "loc54", LOC_REG (54) }, \
2378 { "loc55", LOC_REG (55) }, \
2379 { "loc56", LOC_REG (56) }, \
2380 { "loc57", LOC_REG (57) }, \
2381 { "loc58", LOC_REG (58) }, \
2382 { "loc59", LOC_REG (59) }, \
2383 { "loc60", LOC_REG (60) }, \
2384 { "loc61", LOC_REG (61) }, \
2385 { "loc62", LOC_REG (62) }, \
2386 { "loc63", LOC_REG (63) }, \
2387 { "loc64", LOC_REG (64) }, \
2388 { "loc65", LOC_REG (65) }, \
2389 { "loc66", LOC_REG (66) }, \
2390 { "loc67", LOC_REG (67) }, \
2391 { "loc68", LOC_REG (68) }, \
2392 { "loc69", LOC_REG (69) }, \
2393 { "loc70", LOC_REG (70) }, \
2394 { "loc71", LOC_REG (71) }, \
2395 { "loc72", LOC_REG (72) }, \
2396 { "loc73", LOC_REG (73) }, \
2397 { "loc74", LOC_REG (74) }, \
2398 { "loc75", LOC_REG (75) }, \
2399 { "loc76", LOC_REG (76) }, \
2400 { "loc77", LOC_REG (77) }, \
2401 { "loc78", LOC_REG (78) }, \
794eefd9 2402 { "loc79", LOC_REG (79) }, \
c65ebc55
JW
2403}
2404
2405/* A C compound statement to output to stdio stream STREAM the assembler syntax
2406 for an instruction operand X. X is an RTL expression. */
2407
2408#define PRINT_OPERAND(STREAM, X, CODE) \
2409 ia64_print_operand (STREAM, X, CODE)
2410
2411/* A C expression which evaluates to true if CODE is a valid punctuation
2412 character for use in the `PRINT_OPERAND' macro. */
2413
2414/* ??? Keep this around for now, as we might need it later. */
2415
6f8aa100
RH
2416#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2417 ((CODE) == '+' || (CODE) == ',')
c65ebc55
JW
2418
2419/* A C compound statement to output to stdio stream STREAM the assembler syntax
2420 for an instruction operand that is a memory reference whose address is X. X
2421 is an RTL expression. */
2422
2423#define PRINT_OPERAND_ADDRESS(STREAM, X) \
2424 ia64_print_operand_address (STREAM, X)
2425
2426/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2427 `%I' options of `asm_fprintf' (see `final.c'). */
2428
2429#define REGISTER_PREFIX ""
2430#define LOCAL_LABEL_PREFIX "."
2431#define USER_LABEL_PREFIX ""
2432#define IMMEDIATE_PREFIX ""
2433
2434\f
2435/* Output of dispatch tables. */
2436
2437/* This macro should be provided on machines where the addresses in a dispatch
2438 table are relative to the table's own address. */
2439
2440/* ??? Depends on the pointer size. */
2441
2442#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2443 fprintf (STREAM, "\tdata8 .L%d-.L%d\n", VALUE, REL)
2444
2445/* This is how to output an element of a case-vector that is absolute.
2446 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2447
2448#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2449
2450/* Define this if something special must be output at the end of a jump-table.
2451 We need to align back to a 16 byte boundary because offsets are smaller than
2452 instructions. */
2453
2454#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) ASM_OUTPUT_ALIGN (STREAM, 4)
2455
2456/* Jump tables only need 8 byte alignment. */
2457
2458#define ADDR_VEC_ALIGN(ADDR_VEC) 3
2459
2460\f
2461/* Assembler Commands for Exception Regions. */
2462
c65ebc55
JW
2463/* If defined, a C string constant for the assembler operation to switch to the
2464 section for exception handling frame unwind information. If not defined,
2465 GNU CC will provide a default definition if the target supports named
2466 sections. `crtstuff.c' uses this macro to switch to the appropriate
2467 section.
2468
2469 You should define this symbol if your target supports DWARF 2 frame unwind
2470 information and the default definition does not work. */
de323aa1 2471#define EH_FRAME_SECTION_ASM_OP "\t.section\t.IA_64.unwind,\"aw\""
c65ebc55 2472
2a1ee410
RH
2473/* Select a format to encode pointers in exception handling data. CODE
2474 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2475 true if the symbol may be affected by dynamic relocations. */
2476#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2477 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2478 | ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
2479
2480/* Handle special EH pointer encodings. Absolute, pc-relative, and
2481 indirect are handled automatically. */
2482#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2483 do { \
2484 const char *reltag = NULL; \
2485 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2486 reltag = "@segrel("; \
2487 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2488 reltag = "@gprel("; \
2489 if (reltag) \
2490 { \
2491 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2492 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2493 : (abort (), "")), FILE); \
2494 fputs (reltag, FILE); \
2495 assemble_name (FILE, XSTR (ADDR, 0)); \
2496 fputc (')', FILE); \
2497 goto DONE; \
2498 } \
2499 } while (0)
c65ebc55 2500
c65ebc55
JW
2501\f
2502/* Assembler Commands for Alignment. */
2503
2504/* The alignment (log base 2) to put in front of LABEL, which follows
2505 a BARRIER. */
2506
2507/* ??? Investigate. */
2508
2509/* ??? Emitting align directives increases the size of the line number debug
2510 info, because each .align forces use of an extended opcode. Perhaps try
2511 to fix this in the assembler? */
2512
2513/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2514
2515/* The desired alignment for the location counter at the beginning
2516 of a loop. */
2517
2518/* ??? Investigate. */
2519/* #define LOOP_ALIGN(LABEL) */
2520
2521/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2522 section because it fails put zeros in the bytes that are skipped. */
2523
2524#define ASM_NO_SKIP_IN_TEXT 1
2525
2526/* A C statement to output to the stdio stream STREAM an assembler command to
2527 advance the location counter to a multiple of 2 to the POWER bytes. */
2528
2529#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2530 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2531
2532\f
2533/* Macros Affecting all Debug Formats. */
2534
2535/* This is handled in svr4.h and sysv4.h. */
2536
2537\f
2538/* Specific Options for DBX Output. */
2539
2540/* This is handled by dbxelf.h which is included by svr4.h. */
2541
2542\f
2543/* Open ended Hooks for DBX Output. */
2544
2545/* Likewise. */
2546
2547\f
2548/* File names in DBX format. */
2549
2550/* Likewise. */
2551
2552\f
2553/* Macros for SDB and Dwarf Output. */
2554
2555/* Define this macro if GNU CC should produce dwarf version 2 format debugging
2556 output in response to the `-g' option. */
2557
2558#define DWARF2_DEBUGGING_INFO
2559
2560/* Section names for DWARF2 debug info. */
2561
2562#define DEBUG_INFO_SECTION ".debug_info, \"\", \"progbits\""
9d2f2c45
RH
2563#define DEBUG_ABBREV_SECTION ".debug_abbrev, \"\", \"progbits\""
2564#define DEBUG_ARANGES_SECTION ".debug_aranges, \"\", \"progbits\""
2565#define DEBUG_MACINFO_SECTION ".debug_macinfo, \"\", \"progbits\""
c65ebc55 2566#define DEBUG_LINE_SECTION ".debug_line, \"\", \"progbits\""
9d2f2c45
RH
2567#define DEBUG_LOC_SECTION ".debug_loc, \"\", \"progbits\""
2568#define DEBUG_PUBNAMES_SECTION ".debug_pubnames, \"\", \"progbits\""
2569#define DEBUG_STR_SECTION ".debug_str, \"\", \"progbits\""
c65ebc55
JW
2570
2571/* C string constants giving the pseudo-op to use for a sequence of
2572 2, 4, and 8 byte unaligned constants. dwarf2out.c needs these. */
2573
de323aa1
HPN
2574#define UNALIGNED_SHORT_ASM_OP "\tdata2.ua\t"
2575#define UNALIGNED_INT_ASM_OP "\tdata4.ua\t"
2576#define UNALIGNED_DOUBLE_INT_ASM_OP "\tdata8.ua\t"
c65ebc55
JW
2577
2578/* We need to override the default definition for this in dwarf2out.c so that
2579 we can emit the necessary # postfix. */
2580#define ASM_NAME_TO_STRING(STR, NAME) \
2581 do { \
2582 if ((NAME)[0] == '*') \
2583 dyn_string_append (STR, NAME + 1); \
2584 else \
2585 { \
2586 char *newstr; \
2587 STRIP_NAME_ENCODING (newstr, NAME); \
2588 dyn_string_append (STR, user_label_prefix); \
2589 dyn_string_append (STR, newstr); \
2590 dyn_string_append (STR, "#"); \
2591 } \
2592 } \
2593 while (0)
2594
2595#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2596
8215347e
JW
2597/* Use tags for debug info labels, so that they don't break instruction
2598 bundles. This also avoids getting spurious DV warnings from the
2599 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2600 add brackets around the label. */
2601
2602#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
7426e9a2 2603 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
8215347e 2604
7426e9a2
RH
2605/* Use section-relative relocations for debugging offsets. Unlike other
2606 targets that fake this by putting the section VMA at 0, IA-64 has
2607 proper relocations for them. */
2608#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2609 do { \
2610 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2611 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2612 : (abort (), "")), FILE); \
2613 fputs ("@secrel(", FILE); \
2614 assemble_name (FILE, LABEL); \
2615 fputc (')', FILE); \
2616 } while (0)
2617
2618/* Emit a PC-relative relocation. */
2619#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2620 do { \
2621 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2622 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2623 : (abort (), "")), FILE); \
2624 fputs ("@pcrel(", FILE); \
2625 assemble_name (FILE, LABEL); \
2626 fputc (')', FILE); \
2627 } while (0)
c65ebc55
JW
2628\f
2629/* Cross Compilation and Floating Point. */
2630
2631/* Define to enable software floating point emulation. */
2632#define REAL_ARITHMETIC
2633
7b82b5da
SC
2634\f
2635/* Register Renaming Parameters. */
2636
2637/* A C expression that is nonzero if hard register number REGNO2 can be
2638 considered for use as a rename register for REGNO1 */
2639
2640#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
10c9f189 2641 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
7b82b5da
SC
2642
2643/* Define this macro if the compiler should use extended basic blocks
2644 when renaming registers. Define this macro if the target has predicate
2645 registers. */
2646
2647#define RENAME_EXTENDED_BLOCKS
2648
c65ebc55
JW
2649\f
2650/* Miscellaneous Parameters. */
2651
2652/* Define this if you have defined special-purpose predicates in the file
2653 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2654 expressions matched by the predicate. */
2655
2656#define PREDICATE_CODES \
2657{ "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
ec039e3c 2658{ "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
c65ebc55
JW
2659{ "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2660{ "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2661{ "function_operand", {SYMBOL_REF}}, \
2662{ "setjmp_operand", {SYMBOL_REF}}, \
4b983fdc 2663{ "destination_operand", {SUBREG, REG, MEM}}, \
0551c32d 2664{ "not_postinc_memory_operand", {MEM}}, \
c65ebc55
JW
2665{ "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2666 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
0551c32d
RH
2667{ "gr_register_operand", {SUBREG, REG}}, \
2668{ "fr_register_operand", {SUBREG, REG}}, \
2669{ "grfr_register_operand", {SUBREG, REG}}, \
2670{ "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
655f2eb9 2671{ "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
0551c32d
RH
2672{ "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2673{ "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2674{ "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2675{ "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2676{ "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2677{ "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2678{ "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2679 CONSTANT_P_RTX}}, \
0551c32d 2680{ "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2681 CONSTANT_P_RTX}}, \
0551c32d
RH
2682{ "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2683{ "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
c65ebc55
JW
2684{ "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2685{ "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2686 CONSTANT_P_RTX}}, \
2687{ "shladd_operand", {CONST_INT}}, \
2688{ "fetchadd_operand", {CONST_INT}}, \
0551c32d 2689{ "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
c65ebc55
JW
2690{ "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2691{ "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
f2f90c63 2692{ "signed_inequality_operator", {GE, GT, LE, LT}}, \
5527bf14 2693{ "predicate_operator", {NE, EQ}}, \
97e242b0 2694{ "ar_lc_reg_operand", {REG}}, \
3f622353
RH
2695{ "ar_ccv_reg_operand", {REG}}, \
2696{ "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2697{ "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2698{ "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
c65ebc55
JW
2699
2700/* An alias for a machine mode name. This is the machine mode that elements of
2701 a jump-table should have. */
2702
2703#define CASE_VECTOR_MODE Pmode
2704
2705/* Define as C expression which evaluates to nonzero if the tablejump
2706 instruction expects the table to contain offsets from the address of the
2707 table. */
2708
2709#define CASE_VECTOR_PC_RELATIVE 1
2710
2711/* Define this macro if operations between registers with integral mode smaller
2712 than a word are always performed on the entire register. */
2713
2714#define WORD_REGISTER_OPERATIONS
2715
2716/* Define this macro to be a C expression indicating when insns that read
2717 memory in MODE, an integral mode narrower than a word, set the bits outside
2718 of MODE to be either the sign-extension or the zero-extension of the data
2719 read. */
2720
2721#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2722
2723/* An alias for a tree code that should be used by default for conversion of
2724 floating point values to fixed point. */
2725
2726/* ??? Looks like this macro is obsolete and should be deleted everywhere. */
2727
2728#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2729
2730/* An alias for a tree code that is the easiest kind of division to compile
2731 code for in the general case. */
2732
2733#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2734
2735/* The maximum number of bytes that a single instruction can move quickly from
2736 memory to memory. */
2737#define MOVE_MAX 8
2738
2739/* A C expression which is nonzero if on this machine it is safe to "convert"
2740 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2741 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2742
2743#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2744
2745/* A C expression describing the value returned by a comparison operator with
2746 an integral mode and stored by a store-flag instruction (`sCOND') when the
2747 condition is true. */
2748
2749/* ??? Investigate using -1 instead of 1. */
2750
2751#define STORE_FLAG_VALUE 1
2752
2753/* An alias for the machine mode for pointers. */
2754
2755/* ??? This would change if we had ILP32 support. */
2756
2757#define Pmode DImode
2758
2759/* An alias for the machine mode used for memory references to functions being
2760 called, in `call' RTL expressions. */
2761
2762#define FUNCTION_MODE Pmode
2763
2764/* Define this macro to handle System V style pragmas: #pragma pack and
2765 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2766 defined. */
2767
2768#define HANDLE_SYSV_PRAGMA
2769
2770/* If defined, a C expression whose value is nonzero if IDENTIFIER with
2771 arguments ARGS is a valid machine specific attribute for TYPE. The
2772 attributes in ATTRIBUTES have previously been assigned to TYPE. */
2773
2774#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, IDENTIFIER, ARGS) \
2775 ia64_valid_type_attribute (TYPE, ATTRIBUTES, IDENTIFIER, ARGS)
2776
2777/* In rare cases, correct code generation requires extra machine dependent
2778 processing between the second jump optimization pass and delayed branch
2779 scheduling. On those machines, define this macro as a C statement to act on
2780 the code starting at INSN. */
2781
2782#define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2783
2784/* A C expression for the maximum number of instructions to execute via
2785 conditional execution instructions instead of a branch. A value of
2786 BRANCH_COST+1 is the default if the machine does not use
2787 cc0, and 1 if it does use cc0. */
2788/* ??? Investigate. */
2130b7fb
BS
2789#define MAX_CONDITIONAL_EXECUTE 12
2790
2791/* A C statement (sans semicolon) to update the integer scheduling
2792 priority `INSN_PRIORITY(INSN)'. */
2793
2794/* ??? Investigate. */
2795/* #define ADJUST_PRIORITY (INSN) */
2796
2797/* A C statement (sans semicolon) to update the integer variable COST
2798 based on the relationship between INSN that is dependent on
2799 DEP_INSN through the dependence LINK. The default is to make no
2800 adjustment to COST. This can be used for example to specify to
2801 the scheduler that an output- or anti-dependence does not incur
2802 the same cost as a data-dependence. */
2803
2804#define ADJUST_COST(insn,link,dep_insn,cost) \
2805 (cost) = ia64_adjust_cost(insn, link, dep_insn, cost)
2806
2807#define ISSUE_RATE ia64_issue_rate ()
2808
2809#define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2810 ia64_sched_init (DUMP, SCHED_VERBOSE, MAX_READY)
2811
2812#define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
a0a7b566 2813 (CIM) = ia64_sched_reorder (DUMP, SCHED_VERBOSE, READY, &N_READY, 0, CLOCK)
2130b7fb
BS
2814
2815#define MD_SCHED_REORDER2(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
a0a7b566 2816 (CIM) = ia64_sched_reorder2 (DUMP, SCHED_VERBOSE, READY, &N_READY, CLOCK)
c65ebc55 2817
2130b7fb
BS
2818#define MD_SCHED_FINISH(DUMP, SCHED_VERBOSE) \
2819 ia64_sched_finish (DUMP, SCHED_VERBOSE)
c65ebc55 2820
2130b7fb
BS
2821#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2822 ((CAN_ISSUE_MORE) \
2823 = ia64_variable_issue (DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE))
c65ebc55 2824
2130b7fb 2825extern int ia64_final_schedule;
c65ebc55 2826
0c96007e 2827#define IA64_UNWIND_INFO 1
0c96007e
AM
2828#define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2829
2a1ee410
RH
2830#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2831
0c96007e
AM
2832/* This function contains machine specific function data. */
2833struct machine_function
2834{
2835 /* The new stack pointer when unwinding from EH. */
2836 struct rtx_def* ia64_eh_epilogue_sp;
2837
2838 /* The new bsp value when unwinding from EH. */
2839 struct rtx_def* ia64_eh_epilogue_bsp;
97e242b0
RH
2840
2841 /* The GP value save register. */
2842 struct rtx_def* ia64_gp_save;
26a110f5
RH
2843
2844 /* The number of varargs registers to save. */
2845 int n_varargs;
0c96007e
AM
2846};
2847
2848
c65ebc55
JW
2849enum ia64_builtins
2850{
2851 IA64_BUILTIN_SYNCHRONIZE,
2852
2853 IA64_BUILTIN_FETCH_AND_ADD_SI,
2854 IA64_BUILTIN_FETCH_AND_SUB_SI,
2855 IA64_BUILTIN_FETCH_AND_OR_SI,
2856 IA64_BUILTIN_FETCH_AND_AND_SI,
2857 IA64_BUILTIN_FETCH_AND_XOR_SI,
2858 IA64_BUILTIN_FETCH_AND_NAND_SI,
2859
2860 IA64_BUILTIN_ADD_AND_FETCH_SI,
2861 IA64_BUILTIN_SUB_AND_FETCH_SI,
2862 IA64_BUILTIN_OR_AND_FETCH_SI,
2863 IA64_BUILTIN_AND_AND_FETCH_SI,
2864 IA64_BUILTIN_XOR_AND_FETCH_SI,
2865 IA64_BUILTIN_NAND_AND_FETCH_SI,
2866
2867 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2868 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2869
2870 IA64_BUILTIN_SYNCHRONIZE_SI,
2871
2872 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2873
2874 IA64_BUILTIN_LOCK_RELEASE_SI,
2875
2876 IA64_BUILTIN_FETCH_AND_ADD_DI,
2877 IA64_BUILTIN_FETCH_AND_SUB_DI,
2878 IA64_BUILTIN_FETCH_AND_OR_DI,
2879 IA64_BUILTIN_FETCH_AND_AND_DI,
2880 IA64_BUILTIN_FETCH_AND_XOR_DI,
2881 IA64_BUILTIN_FETCH_AND_NAND_DI,
2882
2883 IA64_BUILTIN_ADD_AND_FETCH_DI,
2884 IA64_BUILTIN_SUB_AND_FETCH_DI,
2885 IA64_BUILTIN_OR_AND_FETCH_DI,
2886 IA64_BUILTIN_AND_AND_FETCH_DI,
2887 IA64_BUILTIN_XOR_AND_FETCH_DI,
2888 IA64_BUILTIN_NAND_AND_FETCH_DI,
2889
2890 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2891 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2892
2893 IA64_BUILTIN_SYNCHRONIZE_DI,
2894
2895 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2896
ce152ef8
AM
2897 IA64_BUILTIN_LOCK_RELEASE_DI,
2898
2899 IA64_BUILTIN_BSP,
2900 IA64_BUILTIN_FLUSHRS
c65ebc55
JW
2901};
2902
2903/* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2904enum fetchop_code {
2905 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2906};
2907
2908#define MD_INIT_BUILTINS do { \
2909 ia64_init_builtins (); \
2910 } while (0)
2911
2912#define MD_EXPAND_BUILTIN(EXP, TARGET, SUBTARGET, MODE, IGNORE) \
2913 ia64_expand_builtin ((EXP), (TARGET), (SUBTARGET), (MODE), (IGNORE))
2914
2915/* End of ia64.h */
This page took 0.649124 seconds and 5 git commands to generate.