]> gcc.gnu.org Git - gcc.git/blame - gcc/config/ia64/ia64.h
regclass.c (init_reg_sets_1): Don't assume cost 2 within a register class.
[gcc.git] / gcc / config / ia64 / ia64.h
CommitLineData
e65271be 1/* Definitions of target machine GNU compiler. IA-64 version.
cf011243 2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
c65ebc55
JW
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
c65ebc55
JW
23/* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26/* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
c65ebc55
JW
29/* ??? Add support for short data/bss sections. */
30
31\f
32/* Run-time target specifications */
33
34/* Define this to be a string constant containing `-D' options to define the
35 predefined macros that identify this machine and system. These macros will
36 be predefined unless the `-ansi' option is specified. */
37/* ??? This is undefed in svr4.h. */
2b57e919 38#define CPP_PREDEFINES "-Dia64 -Amachine=ia64"
c65ebc55
JW
39
40/* This declaration should be present. */
41extern int target_flags;
42
43/* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46#define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48#define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50#define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52#define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54#define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
6dd12198 56#define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
c65ebc55 57
099dde21 58#define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
c65ebc55 59
099dde21 60#define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
c65ebc55 61
099dde21 62#define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
59da9a7d 63
099dde21
BS
64#define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
65
66#define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
59da9a7d 67
35d9f39d 68#define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
655f2eb9 69
35d9f39d 70#define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
655f2eb9 71
c65ebc55
JW
72#define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
73
74#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
75
76#define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
77
78#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
79
80#define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
81
82#define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
83
6dd12198
SE
84#define TARGET_ILP32 (target_flags & MASK_ILP32)
85
099dde21
BS
86#define TARGET_B_STEP (target_flags & MASK_B_STEP)
87
c65ebc55
JW
88#define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
89
90#define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
91
59da9a7d
JW
92#define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
93
94#define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
95
655f2eb9
RH
96#define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
97
98#define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
99
100#define TARGET_INLINE_DIV \
101 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
102
c65ebc55
JW
103#define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
104
105/* This macro defines names of command options to set and clear bits in
106 `target_flags'. Its definition is an initializer with a subgrouping for
107 each command option. */
108
59da9a7d 109#define TARGET_SWITCHES \
c65ebc55
JW
110{ \
111 { "big-endian", MASK_BIG_ENDIAN, \
047142d3 112 N_("Generate big endian code") }, \
c65ebc55 113 { "little-endian", -MASK_BIG_ENDIAN, \
047142d3 114 N_("Generate little endian code") }, \
c65ebc55 115 { "gnu-as", MASK_GNU_AS, \
047142d3 116 N_("Generate code for GNU as") }, \
c65ebc55 117 { "no-gnu-as", -MASK_GNU_AS, \
047142d3 118 N_("Generate code for Intel as") }, \
c65ebc55 119 { "gnu-ld", MASK_GNU_LD, \
047142d3 120 N_("Generate code for GNU ld") }, \
c65ebc55 121 { "no-gnu-ld", -MASK_GNU_LD, \
047142d3 122 N_("Generate code for Intel ld") }, \
c65ebc55 123 { "no-pic", MASK_NO_PIC, \
047142d3 124 N_("Generate code without GP reg") }, \
c65ebc55 125 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
047142d3 126 N_("Emit stop bits before and after volatile extended asms") }, \
c65ebc55 127 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
047142d3 128 N_("Don't emit stop bits before and after volatile extended asms") }, \
099dde21
BS
129 { "b-step", MASK_B_STEP, \
130 N_("Emit code for Itanium (TM) processor B step")}, \
c65ebc55 131 { "register-names", MASK_REG_NAMES, \
047142d3 132 N_("Use in/loc/out register names")}, \
c65ebc55 133 { "no-sdata", MASK_NO_SDATA, \
047142d3 134 N_("Disable use of sdata/scommon/sbss")}, \
c65ebc55 135 { "sdata", -MASK_NO_SDATA, \
047142d3 136 N_("Enable use of sdata/scommon/sbss")}, \
59da9a7d 137 { "constant-gp", MASK_CONST_GP, \
047142d3 138 N_("gp is constant (but save/restore gp on indirect calls)") }, \
59da9a7d 139 { "auto-pic", MASK_AUTO_PIC, \
047142d3 140 N_("Generate self-relocatable code") }, \
655f2eb9
RH
141 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
142 N_("Generate inline division, optimize for latency") }, \
143 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
144 N_("Generate inline division, optimize for throughput") }, \
c65ebc55 145 { "dwarf2-asm", MASK_DWARF2_ASM, \
047142d3 146 N_("Enable Dwarf 2 line debug info via GNU as")}, \
c65ebc55 147 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
047142d3 148 N_("Disable Dwarf 2 line debug info via GNU as")}, \
6dd12198 149 SUBTARGET_SWITCHES \
c65ebc55
JW
150 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
151 NULL } \
152}
153
154/* Default target_flags if no switches are specified */
155
156#ifndef TARGET_DEFAULT
157#define TARGET_DEFAULT MASK_DWARF2_ASM
158#endif
159
160#ifndef TARGET_CPU_DEFAULT
161#define TARGET_CPU_DEFAULT 0
162#endif
163
6dd12198
SE
164#ifndef SUBTARGET_SWITCHES
165#define SUBTARGET_SWITCHES
166#endif
167
c65ebc55
JW
168/* This macro is similar to `TARGET_SWITCHES' but defines names of command
169 options that have values. Its definition is an initializer with a
170 subgrouping for each command option. */
171
172extern const char *ia64_fixed_range_string;
173#define TARGET_OPTIONS \
174{ \
175 { "fixed-range=", &ia64_fixed_range_string, \
047142d3 176 N_("Specify range of registers to make fixed.")}, \
c65ebc55
JW
177}
178
179/* This macro is a C statement to print on `stderr' a string describing the
180 particular machine description choice. */
181
182#define TARGET_VERSION fprintf (stderr, " (IA-64)");
183
184/* Sometimes certain combinations of command options do not make sense on a
185 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
186 take account of this. This macro, if defined, is executed once just after
187 all the command options have been parsed. */
188
189#define OVERRIDE_OPTIONS ia64_override_options ()
190
191/* Some machines may desire to change what optimizations are performed for
192 various optimization levels. This macro, if defined, is executed once just
193 after the optimization level is determined and before the remainder of the
194 command options have been parsed. Values set in this macro are used as the
195 default values for the other command line options. */
196
197/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
c65ebc55
JW
198\f
199/* Driver configuration */
200
201/* A C string constant that tells the GNU CC driver program options to pass to
202 CPP. It can also specify how to translate options you give to GNU CC into
203 options for GNU CC to pass to the CPP. */
204
205/* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
206/* ??? An alternative is to modify glimits.h to check for __LP64__ instead
207 of checked for CPU specific defines. We could also get rid of all LONG_MAX
208 defines in other tm.h files. */
209#define CPP_SPEC \
210 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
211 -D__LONG_MAX__=9223372036854775807L"
212
213/* If this macro is defined, the preprocessor will not define the builtin macro
214 `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must then be defined by
215 `CPP_SPEC' instead.
216
217 This should be defined if `SIZE_TYPE' depends on target dependent flags
218 which are not accessible to the preprocessor. Otherwise, it should not be
219 defined. */
6dd12198 220/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
c65ebc55
JW
221/* #define NO_BUILTIN_SIZE_TYPE */
222
223/* If this macro is defined, the preprocessor will not define the builtin macro
224 `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__' must then be defined by
225 `CPP_SPEC' instead.
226
227 This should be defined if `PTRDIFF_TYPE' depends on target dependent flags
228 which are not accessible to the preprocessor. Otherwise, it should not be
229 defined. */
6dd12198 230/* This is always "long" so it doesn't "change" in ILP32 vs. LP64. */
c65ebc55
JW
231/* #define NO_BUILTIN_PTRDIFF_TYPE */
232
233/* A C string constant that tells the GNU CC driver program options to pass to
234 `cc1'. It can also specify how to translate options you give to GNU CC into
235 options for GNU CC to pass to the `cc1'. */
236
ad5042df
JJ
237#undef CC1_SPEC
238#define CC1_SPEC "%{G*}"
c65ebc55
JW
239
240/* A C string constant that tells the GNU CC driver program options to pass to
241 `cc1plus'. It can also specify how to translate options you give to GNU CC
242 into options for GNU CC to pass to the `cc1plus'. */
243
244/* #define CC1PLUS_SPEC "" */
245
246/* A C string constant that tells the GNU CC driver program options to pass to
247 the assembler. It can also specify how to translate options you give to GNU
248 CC into options for GNU CC to pass to the assembler. */
249
250#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_AS) != 0
251/* GNU AS. */
00e149c7
JW
252#define ASM_SPEC \
253 "%{mno-gnu-as:-N so} %{!mno-gnu-as:-x} %{mconstant-gp} %{mauto-pic}"
c65ebc55
JW
254#else
255/* Intel ias. */
00e149c7
JW
256#define ASM_SPEC \
257 "%{!mgnu-as:-N so} %{mgnu-as:-x} %{mconstant-gp:-M const_gp}\
258 %{mauto-pic:-M no_plabel}"
c65ebc55
JW
259#endif
260
261/* A C string constant that tells the GNU CC driver program options to pass to
262 the linker. It can also specify how to translate options you give to GNU CC
263 into options for GNU CC to pass to the linker. */
264
265/* The Intel linker does not support dynamic linking, so we need -dn.
266 The Intel linker gives annoying messages unless -N so is used. */
267#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_LD) != 0
268/* GNU LD. */
269#define LINK_SPEC "%{mno-gnu-ld:-dn -N so}"
270#else
271/* Intel ild. */
272#define LINK_SPEC "%{!mgnu-ld:-dn -N so}"
273#endif
274
275\f
276/* Storage Layout */
277
278/* Define this macro to have the value 1 if the most significant bit in a byte
279 has the lowest number; otherwise define it to have the value zero. */
280
281#define BITS_BIG_ENDIAN 0
282
283/* Define this macro to have the value 1 if the most significant byte in a word
284 has the lowest number. This macro need not be a constant. */
285
286#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
287
288/* Define this macro to have the value 1 if, in a multiword object, the most
289 significant word has the lowest number. */
290
291#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
292
293/* Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
294 constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
295 only when compiling libgcc2.c. Typically the value will be set based on
296 preprocessor defines. */
297#if defined(__BIG_ENDIAN__)
298#define LIBGCC2_WORDS_BIG_ENDIAN 1
299#else
300#define LIBGCC2_WORDS_BIG_ENDIAN 0
301#endif
302
303/* Define this macro to be the number of bits in an addressable storage unit
304 (byte); normally 8. */
305#define BITS_PER_UNIT 8
306
307/* Number of bits in a word; normally 32. */
308#define BITS_PER_WORD 64
309
310/* Number of storage units in a word; normally 4. */
311#define UNITS_PER_WORD 8
312
313/* Width of a pointer, in bits. You must specify a value no wider than the
314 width of `Pmode'. If it is not equal to the width of `Pmode', you must
315 define `POINTERS_EXTEND_UNSIGNED'. */
6dd12198 316#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
c65ebc55 317
6dd12198
SE
318/* A C expression whose value is zero if pointers that need to be extended
319 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
320 they are zero-extended and negative one if there is an ptr_extend operation.
c65ebc55
JW
321
322 You need not define this macro if the `POINTER_SIZE' is equal to the width
323 of `Pmode'. */
6dd12198 324/* Need this for 32 bit pointers, see hpux.h for setting it. */
c65ebc55
JW
325/* #define POINTERS_EXTEND_UNSIGNED */
326
327/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
328 which has the specified mode and signedness is to be stored in a register.
329 This macro is only called when TYPE is a scalar type. */
c65ebc55
JW
330#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
331do \
332 { \
333 if (GET_MODE_CLASS (MODE) == MODE_INT \
dcf6e674
RH
334 && GET_MODE_SIZE (MODE) < 4) \
335 (MODE) = SImode; \
c65ebc55
JW
336 } \
337while (0)
338
339/* Define this macro if the promotion described by `PROMOTE_MODE' should also
340 be done for outgoing function arguments. */
341/* ??? ABI doesn't allow us to define this. */
342/* #define PROMOTE_FUNCTION_ARGS */
343
344/* Define this macro if the promotion described by `PROMOTE_MODE' should also
345 be done for the return value of functions.
346
347 If this macro is defined, `FUNCTION_VALUE' must perform the same promotions
348 done by `PROMOTE_MODE'. */
349/* ??? ABI doesn't allow us to define this. */
350/* #define PROMOTE_FUNCTION_RETURN */
351
352/* Normal alignment required for function parameters on the stack, in bits.
353 All stack parameters receive at least this much alignment regardless of data
354 type. On most machines, this is the same as the size of an integer. */
355#define PARM_BOUNDARY 64
356
357/* Define this macro if you wish to preserve a certain alignment for the stack
358 pointer. The definition is a C expression for the desired alignment
359 (measured in bits). */
360
361#define STACK_BOUNDARY 128
362
363/* Align frames on double word boundaries */
364#ifndef IA64_STACK_ALIGN
365#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
366#endif
367
368/* Alignment required for a function entry point, in bits. */
369#define FUNCTION_BOUNDARY 128
370
371/* Biggest alignment that any data type can require on this machine,
372 in bits. */
373/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
374 128 bit integers all require 128 bit alignment. */
375#define BIGGEST_ALIGNMENT 128
376
377/* If defined, a C expression to compute the alignment for a static variable.
378 TYPE is the data type, and ALIGN is the alignment that the object
379 would ordinarily have. The value of this macro is used instead of that
380 alignment to align the object. */
381
382#define DATA_ALIGNMENT(TYPE, ALIGN) \
383 (TREE_CODE (TYPE) == ARRAY_TYPE \
384 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
385 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
386
387/* If defined, a C expression to compute the alignment given to a constant that
388 is being placed in memory. CONSTANT is the constant and ALIGN is the
389 alignment that the object would ordinarily have. The value of this macro is
390 used instead of that alignment to align the object. */
391
392#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
393 (TREE_CODE (EXP) == STRING_CST \
394 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
395
396/* Define this macro to be the value 1 if instructions will fail to work if
397 given data not on the nominal alignment. If instructions will merely go
398 slower in that case, define this macro as 0. */
399#define STRICT_ALIGNMENT 1
400
401/* Define this if you wish to imitate the way many other C compilers handle
402 alignment of bitfields and the structures that contain them.
403 The behavior is that the type written for a bitfield (`int', `short', or
404 other integer type) imposes an alignment for the entire structure, as if the
405 structure really did contain an ordinary field of that type. In addition,
406 the bitfield is placed within the structure so that it would fit within such
407 a field, not crossing a boundary for it. */
408#define PCC_BITFIELD_TYPE_MATTERS 1
409
c65ebc55
JW
410/* An integer expression for the size in bits of the largest integer machine
411 mode that should actually be used. */
412
413/* Allow pairs of registers to be used, which is the intent of the default. */
414#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
415
416/* A code distinguishing the floating point format of the target machine. */
417#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
418
c65ebc55
JW
419\f
420/* Layout of Source Language Data Types */
421
422/* A C expression for the size in bits of the type `int' on the target machine.
423 If you don't define this, the default is one word. */
424#define INT_TYPE_SIZE 32
425
426/* A C expression for the size in bits of the type `short' on the target
427 machine. If you don't define this, the default is half a word. (If this
428 would be less than one storage unit, it is rounded up to one unit.) */
429#define SHORT_TYPE_SIZE 16
430
431/* A C expression for the size in bits of the type `long' on the target
432 machine. If you don't define this, the default is one word. */
6dd12198 433#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
c65ebc55
JW
434
435/* Maximum number for the size in bits of the type `long' on the target
436 machine. If this is undefined, the default is `LONG_TYPE_SIZE'. Otherwise,
437 it is the constant value that is the largest value that `LONG_TYPE_SIZE' can
438 have at run-time. This is used in `cpp'. */
6dd12198 439#define MAX_LONG_TYPE_SIZE 64
c65ebc55
JW
440
441/* A C expression for the size in bits of the type `long long' on the target
442 machine. If you don't define this, the default is two words. If you want
443 to support GNU Ada on your machine, the value of macro must be at least 64. */
444#define LONG_LONG_TYPE_SIZE 64
445
446/* A C expression for the size in bits of the type `char' on the target
447 machine. If you don't define this, the default is one quarter of a word.
448 (If this would be less than one storage unit, it is rounded up to one unit.) */
449#define CHAR_TYPE_SIZE 8
450
451/* A C expression for the size in bits of the type `float' on the target
452 machine. If you don't define this, the default is one word. */
453#define FLOAT_TYPE_SIZE 32
454
455/* A C expression for the size in bits of the type `double' on the target
456 machine. If you don't define this, the default is two words. */
457#define DOUBLE_TYPE_SIZE 64
458
459/* A C expression for the size in bits of the type `long double' on the target
460 machine. If you don't define this, the default is two words. */
3f622353
RH
461#define LONG_DOUBLE_TYPE_SIZE 128
462
463/* Tell real.c that this is the 80-bit Intel extended float format
464 packaged in a 128-bit entity. */
23c108af
SE
465
466#define INTEL_EXTENDED_IEEE_FORMAT 1
c65ebc55
JW
467
468/* An expression whose value is 1 or 0, according to whether the type `char'
469 should be signed or unsigned by default. The user can always override this
470 default with the options `-fsigned-char' and `-funsigned-char'. */
471#define DEFAULT_SIGNED_CHAR 1
472
473/* A C expression for a string describing the name of the data type to use for
474 size values. The typedef name `size_t' is defined using the contents of the
475 string. */
476/* ??? Needs to be defined for P64 code. */
477/* #define SIZE_TYPE */
478
479/* A C expression for a string describing the name of the data type to use for
480 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
481 defined using the contents of the string. See `SIZE_TYPE' above for more
482 information. */
483/* ??? Needs to be defined for P64 code. */
484/* #define PTRDIFF_TYPE */
485
486/* A C expression for a string describing the name of the data type to use for
487 wide characters. The typedef name `wchar_t' is defined using the contents
488 of the string. See `SIZE_TYPE' above for more information. */
489/* #define WCHAR_TYPE */
490
491/* A C expression for the size in bits of the data type for wide characters.
492 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
493/* #define WCHAR_TYPE_SIZE */
494
495/* Maximum number for the size in bits of the data type for wide characters.
496 If this is undefined, the default is `WCHAR_TYPE_SIZE'. Otherwise, it is
497 the constant value that is the largest value that `WCHAR_TYPE_SIZE' can have
498 at run-time. This is used in `cpp'. */
499/* #define MAX_WCHAR_TYPE_SIZE */
500
c65ebc55
JW
501\f
502/* Register Basics */
503
504/* Number of hardware registers known to the compiler.
5527bf14
RH
505 We have 128 general registers, 128 floating point registers,
506 64 predicate registers, 8 branch registers, one frame pointer,
507 and several "application" registers. */
c65ebc55 508
97e242b0 509#define FIRST_PSEUDO_REGISTER 335
c65ebc55
JW
510
511/* Ranges for the various kinds of registers. */
3b572406
RH
512#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
513#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
c65ebc55
JW
514#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
515#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
516#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
517#define GENERAL_REGNO_P(REGNO) \
518 (GR_REGNO_P (REGNO) \
519 || (REGNO) == FRAME_POINTER_REGNUM \
46327bc5 520 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
c65ebc55
JW
521
522#define GR_REG(REGNO) ((REGNO) + 0)
523#define FR_REG(REGNO) ((REGNO) + 128)
524#define PR_REG(REGNO) ((REGNO) + 256)
525#define BR_REG(REGNO) ((REGNO) + 320)
526#define OUT_REG(REGNO) ((REGNO) + 120)
527#define IN_REG(REGNO) ((REGNO) + 112)
528#define LOC_REG(REGNO) ((REGNO) + 32)
529
5527bf14 530#define AR_CCV_REGNUM 330
97e242b0
RH
531#define AR_UNAT_REGNUM 331
532#define AR_PFS_REGNUM 332
533#define AR_LC_REGNUM 333
534#define AR_EC_REGNUM 334
5527bf14 535
c65ebc55
JW
536#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
537#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
538#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
539
97e242b0
RH
540#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
541 || (REGNO) == AR_UNAT_REGNUM)
542#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
5527bf14
RH
543 && (REGNO) < FIRST_PSEUDO_REGISTER)
544#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
545 && (REGNO) < FIRST_PSEUDO_REGISTER)
546
547
c65ebc55
JW
548/* ??? Don't really need two sets of macros. I like this one better because
549 it is less typing. */
550#define R_GR(REGNO) GR_REG (REGNO)
551#define R_FR(REGNO) FR_REG (REGNO)
552#define R_PR(REGNO) PR_REG (REGNO)
553#define R_BR(REGNO) BR_REG (REGNO)
554
555/* An initializer that says which registers are used for fixed purposes all
556 throughout the compiled code and are therefore not available for general
557 allocation.
558
559 r0: constant 0
560 r1: global pointer (gp)
561 r12: stack pointer (sp)
562 r13: thread pointer (tp)
563 f0: constant 0.0
564 f1: constant 1.0
565 p0: constant true
566 fp: eliminable frame pointer */
567
1ff5b671
JW
568/* The last 16 stacked regs are reserved for the 8 input and 8 output
569 registers. */
c65ebc55 570
c65ebc55
JW
571#define FIXED_REGISTERS \
572{ /* General registers. */ \
573 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
574 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
575 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
576 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
577 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
578 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 579 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 580 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c65ebc55
JW
581 /* Floating-point registers. */ \
582 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
587 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
590 /* Predicate registers. */ \
591 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
594 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
595 /* Branch registers. */ \
596 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0
RH
597 /*FP RA CCV UNAT PFS LC EC */ \
598 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
599 }
600
5527bf14
RH
601/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
602 (in general) by function calls as well as for fixed registers. This
603 macro therefore identifies the registers that are not available for
604 general allocation of values that must live across function calls. */
c65ebc55 605
c65ebc55
JW
606#define CALL_USED_REGISTERS \
607{ /* General registers. */ \
608 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
609 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 615 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
c65ebc55
JW
616 /* Floating-point registers. */ \
617 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
619 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
620 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
621 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
622 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
623 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
624 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
625 /* Predicate registers. */ \
626 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
627 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
628 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
629 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
630 /* Branch registers. */ \
631 1, 0, 0, 0, 0, 0, 1, 1, \
97e242b0
RH
632 /*FP RA CCV UNAT PFS LC EC */ \
633 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
634}
635
fc1296b7
AM
636/* Like `CALL_USED_REGISTERS' but used to overcome a historical
637 problem which makes CALL_USED_REGISTERS *always* include
6ca3c22f 638 all the FIXED_REGISTERS. Until this problem has been
fc1296b7
AM
639 resolved this macro can be used to overcome this situation.
640 In particular, block_propagate() requires this list
641 be acurate, or we can remove registers which should be live.
6ca3c22f 642 This macro is used in regs_invalidated_by_call. */
fc1296b7
AM
643
644#define CALL_REALLY_USED_REGISTERS \
645{ /* General registers. */ \
646 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
647 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
648 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
649 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
653 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
654 /* Floating-point registers. */ \
655 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
656 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
657 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
658 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
659 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
660 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
661 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
662 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
663 /* Predicate registers. */ \
664 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
668 /* Branch registers. */ \
669 1, 0, 0, 0, 0, 0, 1, 1, \
670 /*FP RA CCV UNAT PFS LC EC */ \
6ca3c22f 671 0, 0, 1, 0, 1, 0, 0 \
fc1296b7
AM
672}
673
674
c65ebc55
JW
675/* Define this macro if the target machine has register windows. This C
676 expression returns the register number as seen by the called function
677 corresponding to the register number OUT as seen by the calling function.
678 Return OUT if register number OUT is not an outbound register. */
679
680#define INCOMING_REGNO(OUT) \
681 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
682
683/* Define this macro if the target machine has register windows. This C
684 expression returns the register number as seen by the calling function
685 corresponding to the register number IN as seen by the called function.
686 Return IN if register number IN is not an inbound register. */
687
688#define OUTGOING_REGNO(IN) \
689 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
690
2a3e384f
RH
691/* Define this macro if the target machine has register windows. This
692 C expression returns true if the register is call-saved but is in the
693 register window. */
694
695#define LOCAL_REGNO(REGNO) \
696 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
97e242b0
RH
697
698/* Add any extra modes needed to represent the condition code.
699
700 CCImode is used to mark a single predicate register instead
701 of a register pair. This is currently only used in reg_raw_mode
702 so that flow doesn't do something stupid. */
703
704#define EXTRA_CC_MODES CC(CCImode, "CCI")
705
706/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
707 return the mode to be used for the comparison. Must be defined if
708 EXTRA_CC_MODES is defined. */
709
710#define SELECT_CC_MODE(OP,X,Y) CCmode
c65ebc55
JW
711\f
712/* Order of allocation of registers */
713
714/* If defined, an initializer for a vector of integers, containing the numbers
715 of hard registers in the order in which GNU CC should prefer to use them
716 (from most preferred to least).
717
718 If this macro is not defined, registers are used lowest numbered first (all
719 else being equal).
720
721 One use of this macro is on machines where the highest numbered registers
722 must always be saved and the save-multiple-registers instruction supports
723 only sequences of consecutive registers. On such machines, define
724 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
725 allocatable register first. */
726
727/* ??? Should the GR return value registers come before or after the rest
728 of the caller-save GRs? */
729
97e242b0 730#define REG_ALLOC_ORDER \
c65ebc55
JW
731{ \
732 /* Caller-saved general registers. */ \
97e242b0
RH
733 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
734 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
735 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
c65ebc55 736 R_GR (30), R_GR (31), \
1ff5b671
JW
737 /* Output registers. */ \
738 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
97e242b0 739 R_GR (126), R_GR (127), \
c65ebc55 740 /* Caller-saved general registers, also used for return values. */ \
97e242b0 741 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
c65ebc55
JW
742 /* addl caller-saved general registers. */ \
743 R_GR (2), R_GR (3), \
744 /* Caller-saved FP registers. */ \
745 R_FR (6), R_FR (7), \
746 /* Caller-saved FP registers, used for parameters and return values. */ \
97e242b0
RH
747 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
748 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
c65ebc55 749 /* Rotating caller-saved FP registers. */ \
97e242b0
RH
750 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
751 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
752 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
753 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
754 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
755 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
756 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
757 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
758 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
759 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
760 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
761 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
c65ebc55
JW
762 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
763 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
764 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
765 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
97e242b0 766 R_FR (126), R_FR (127), \
c65ebc55 767 /* Caller-saved predicate registers. */ \
97e242b0 768 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
c65ebc55
JW
769 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
770 /* Rotating caller-saved predicate registers. */ \
97e242b0
RH
771 R_PR (16), R_PR (17), \
772 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
773 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
774 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
775 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
776 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
777 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
778 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
779 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
c65ebc55
JW
780 /* Caller-saved branch registers. */ \
781 R_BR (6), R_BR (7), \
782 \
783 /* Stacked callee-saved general registers. */ \
97e242b0
RH
784 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
785 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
786 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
787 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
788 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
789 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
790 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
791 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
792 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
793 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
794 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
795 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
c65ebc55
JW
796 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
797 R_GR (108), \
1ff5b671
JW
798 /* Input registers. */ \
799 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
800 R_GR (118), R_GR (119), \
c65ebc55
JW
801 /* Callee-saved general registers. */ \
802 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
803 /* Callee-saved FP registers. */ \
97e242b0
RH
804 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
805 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
806 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
c65ebc55
JW
807 R_FR (30), R_FR (31), \
808 /* Callee-saved predicate registers. */ \
97e242b0 809 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
c65ebc55
JW
810 /* Callee-saved branch registers. */ \
811 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
812 \
813 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
814 R_GR (109), R_GR (110), R_GR (111), \
c65ebc55
JW
815 \
816 /* Special general registers. */ \
97e242b0 817 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
c65ebc55
JW
818 /* Special FP registers. */ \
819 R_FR (0), R_FR (1), \
820 /* Special predicate registers. */ \
821 R_PR (0), \
822 /* Special branch registers. */ \
823 R_BR (0), \
5527bf14 824 /* Other fixed registers. */ \
46327bc5 825 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
97e242b0
RH
826 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
827 AR_EC_REGNUM \
c65ebc55 828}
c65ebc55
JW
829\f
830/* How Values Fit in Registers */
831
832/* A C expression for the number of consecutive hard registers, starting at
833 register number REGNO, required to hold a value of mode MODE. */
834
f2f90c63 835/* ??? We say that BImode PR values require two registers. This allows us to
97e242b0
RH
836 easily store the normal and inverted values. We use CCImode to indicate
837 a single predicate register. */
c65ebc55 838
97e242b0
RH
839#define HARD_REGNO_NREGS(REGNO, MODE) \
840 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
f2f90c63 841 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
97e242b0 842 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
23c108af 843 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
c65ebc55
JW
844 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
845
846/* A C expression that is nonzero if it is permissible to store a value of mode
847 MODE in hard register number REGNO (or in several registers starting with
848 that one). */
0ea1e106 849
f2f90c63
RH
850#define HARD_REGNO_MODE_OK(REGNO, MODE) \
851 (FR_REGNO_P (REGNO) ? \
23c108af
SE
852 GET_MODE_CLASS (MODE) != MODE_CC && \
853 (MODE) != TImode && \
854 (MODE) != BImode && \
855 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
f2f90c63
RH
856 : PR_REGNO_P (REGNO) ? \
857 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
858 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
859 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
860 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
3f622353 861 : 0)
c65ebc55
JW
862
863/* A C expression that is nonzero if it is desirable to choose register
864 allocation so as to avoid move instructions between a value of mode MODE1
865 and a value of mode MODE2.
866
867 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
868 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
869 zero. */
ad06f2e3 870/* Don't tie integer and FP modes, as that causes us to get integer registers
3f622353
RH
871 allocated for FP instructions. TFmode only supported in FP registers so
872 we can't tie it with any other modes. */
f2f90c63
RH
873#define MODES_TIEABLE_P(MODE1, MODE2) \
874 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
875 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
876 && (((MODE1) == BImode) == ((MODE2) == BImode)))
c65ebc55
JW
877\f
878/* Handling Leaf Functions */
879
880/* A C initializer for a vector, indexed by hard register number, which
881 contains 1 for a register that is allowable in a candidate for leaf function
882 treatment. */
883/* ??? This might be useful. */
884/* #define LEAF_REGISTERS */
885
886/* A C expression whose value is the register number to which REGNO should be
887 renumbered, when a function is treated as a leaf function. */
888/* ??? This might be useful. */
889/* #define LEAF_REG_REMAP(REGNO) */
890
891\f
892/* Register Classes */
893
894/* An enumeral type that must be defined with all the register class names as
895 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
896 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
897 which is not a register class but rather tells how many classes there
898 are. */
c65ebc55
JW
899/* ??? When compiling without optimization, it is possible for the only use of
900 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
901 Regclass handles this case specially and does not assign any costs to the
902 pseudo. The pseudo then ends up using the last class before ALL_REGS.
903 Thus we must not let either PR_REGS or BR_REGS be the last class. The
904 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
905enum reg_class
906{
907 NO_REGS,
908 PR_REGS,
909 BR_REGS,
910 ADDL_REGS,
911 GR_REGS,
c65ebc55 912 FR_REGS,
c65ebc55 913 GR_AND_FR_REGS,
5527bf14
RH
914 AR_M_REGS,
915 AR_I_REGS,
c65ebc55
JW
916 ALL_REGS,
917 LIM_REG_CLASSES
918};
919
920#define GENERAL_REGS GR_REGS
921
922/* The number of distinct register classes. */
923#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
924
925/* An initializer containing the names of the register classes as C string
926 constants. These names are used in writing some of the debugging dumps. */
927#define REG_CLASS_NAMES \
f2f90c63
RH
928{ "NO_REGS", "PR_REGS", "BR_REGS", "ADDL_REGS", "GR_REGS", "FR_REGS", \
929 "GR_AND_FR_REGS", "AR_M_REGS", "AR_I_REGS", "ALL_REGS" }
c65ebc55
JW
930
931/* An initializer containing the contents of the register classes, as integers
932 which are bit masks. The Nth integer specifies the contents of class N.
933 The way the integer MASK is interpreted is that register R is in the class
934 if `MASK & (1 << R)' is 1. */
935#define REG_CLASS_CONTENTS \
936{ \
937 /* NO_REGS. */ \
938 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
939 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 940 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
941 /* PR_REGS. */ \
942 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
943 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 944 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
c65ebc55
JW
945 /* BR_REGS. */ \
946 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
947 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 948 0x00000000, 0x00000000, 0x00FF }, \
c65ebc55
JW
949 /* ADDL_REGS. */ \
950 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
951 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 952 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
953 /* GR_REGS. */ \
954 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
955 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 956 0x00000000, 0x00000000, 0x0300 }, \
c65ebc55
JW
957 /* FR_REGS. */ \
958 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
959 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14 960 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
961 /* GR_AND_FR_REGS. */ \
962 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
963 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14
RH
964 0x00000000, 0x00000000, 0x0300 }, \
965 /* AR_M_REGS. */ \
966 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
967 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 968 0x00000000, 0x00000000, 0x0C00 }, \
5527bf14
RH
969 /* AR_I_REGS. */ \
970 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
971 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 972 0x00000000, 0x00000000, 0x7000 }, \
c65ebc55
JW
973 /* ALL_REGS. */ \
974 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
975 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
97e242b0 976 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
c65ebc55
JW
977}
978
979/* A C expression whose value is a register class containing hard register
980 REGNO. In general there is more than one such class; choose a class which
981 is "minimal", meaning that no smaller class also contains the register. */
982/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
983 may call here with private (invalid) register numbers, such as
984 REG_VOLATILE. */
985#define REGNO_REG_CLASS(REGNO) \
986(ADDL_REGNO_P (REGNO) ? ADDL_REGS \
987 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
13da91fd 988 : FR_REGNO_P (REGNO) ? FR_REGS \
c65ebc55
JW
989 : PR_REGNO_P (REGNO) ? PR_REGS \
990 : BR_REGNO_P (REGNO) ? BR_REGS \
97e242b0
RH
991 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
992 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
c65ebc55
JW
993 : NO_REGS)
994
995/* A macro whose definition is the name of the class to which a valid base
996 register must belong. A base register is one used in an address which is
997 the register value plus a displacement. */
998#define BASE_REG_CLASS GENERAL_REGS
999
1000/* A macro whose definition is the name of the class to which a valid index
1001 register must belong. An index register is one used in an address where its
1002 value is either multiplied by a scale factor or added to another register
cf606f45
JW
1003 (as well as added to a displacement). This is needed for POST_MODIFY. */
1004#define INDEX_REG_CLASS GENERAL_REGS
c65ebc55
JW
1005
1006/* A C expression which defines the machine-dependent operand constraint
1007 letters for register classes. If CHAR is such a letter, the value should be
1008 the register class corresponding to it. Otherwise, the value should be
1009 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1010 will not be passed to this macro; you do not need to handle it. */
1011
1012#define REG_CLASS_FROM_LETTER(CHAR) \
13da91fd 1013((CHAR) == 'f' ? FR_REGS \
c65ebc55
JW
1014 : (CHAR) == 'a' ? ADDL_REGS \
1015 : (CHAR) == 'b' ? BR_REGS \
1016 : (CHAR) == 'c' ? PR_REGS \
5527bf14
RH
1017 : (CHAR) == 'd' ? AR_M_REGS \
1018 : (CHAR) == 'e' ? AR_I_REGS \
c65ebc55
JW
1019 : NO_REGS)
1020
1021/* A C expression which is nonzero if register number NUM is suitable for use
1022 as a base register in operand addresses. It may be either a suitable hard
1023 register or a pseudo register that has been allocated such a hard reg. */
1024#define REGNO_OK_FOR_BASE_P(REGNO) \
1025 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
1026
1027/* A C expression which is nonzero if register number NUM is suitable for use
1028 as an index register in operand addresses. It may be either a suitable hard
cf606f45
JW
1029 register or a pseudo register that has been allocated such a hard reg.
1030 This is needed for POST_MODIFY. */
1031#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
c65ebc55
JW
1032
1033/* A C expression that places additional restrictions on the register class to
1034 use when it is necessary to copy value X into a register in class CLASS.
1035 The value is a register class; perhaps CLASS, or perhaps another, smaller
1036 class. */
1037
ffaff414
JW
1038/* Don't allow volatile mem reloads into floating point registers. This
1039 is defined to force reload to choose the r/m case instead of the f/f case
f2f90c63
RH
1040 when reloading (set (reg fX) (mem/v)).
1041
1042 Do not reload expressions into AR regs. */
ffaff414
JW
1043
1044#define PREFERRED_RELOAD_CLASS(X, CLASS) \
f2f90c63 1045 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
036099eb 1046 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
f2f90c63 1047 : GET_RTX_CLASS (GET_CODE (X)) != 'o' && CLASS > GR_AND_FR_REGS ? NO_REGS \
ffaff414 1048 : CLASS)
c65ebc55
JW
1049
1050/* You should define this macro to indicate to the reload phase that it may
1051 need to allocate at least one register for a reload in addition to the
1052 register to contain the data. Specifically, if copying X to a register
1053 CLASS in MODE requires an intermediate register, you should define this
1054 to return the largest register class all of whose registers can be used
1055 as intermediate registers or scratch registers. */
1056
1057#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1058 ia64_secondary_reload_class (CLASS, MODE, X)
1059
1060/* Certain machines have the property that some registers cannot be copied to
1061 some other registers without using memory. Define this macro on those
1062 machines to be a C expression that is non-zero if objects of mode M in
1063 registers of CLASS1 can only be copied to registers of class CLASS2 by
1064 storing a register of CLASS1 into memory and loading that memory location
1065 into a register of CLASS2. */
3f622353
RH
1066
1067#if 0
1068/* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1069 I'm not quite sure how it could be invoked. The normal problems
1070 with unions should be solved with the addressof fiddling done by
1071 movtf and friends. */
1072#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1073 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1074 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1075#endif
c65ebc55
JW
1076
1077/* A C expression for the maximum number of consecutive registers of
1078 class CLASS needed to hold a value of mode MODE.
1079 This is closely related to the macro `HARD_REGNO_NREGS'. */
1080
1081#define CLASS_MAX_NREGS(CLASS, MODE) \
f2f90c63 1082 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
3f622353 1083 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
c65ebc55
JW
1084 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1085
02188693
RH
1086/* If defined, gives a class of registers that cannot be used as the
1087 operand of a SUBREG that changes the mode of the object illegally. */
1088
1089#define CLASS_CANNOT_CHANGE_MODE FR_REGS
1090
46146529
JW
1091/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
1092 In FP regs, we can't change FP values to integer values and vice
1093 versa, but we can change e.g. DImode to SImode. */
02188693 1094
46146529
JW
1095#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1096 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
02188693 1097
97e242b0
RH
1098/* A C expression that defines the machine-dependent operand constraint
1099 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1100 integer values. */
c65ebc55
JW
1101
1102/* 14 bit signed immediate for arithmetic instructions. */
1103#define CONST_OK_FOR_I(VALUE) \
1104 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1105/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1106#define CONST_OK_FOR_J(VALUE) \
1107 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1108/* 8 bit signed immediate for logical instructions. */
1109#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1110/* 8 bit adjusted signed immediate for compare pseudo-ops. */
1111#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1112/* 6 bit unsigned immediate for shift counts. */
1113#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1114/* 9 bit signed immediate for load/store post-increments. */
c65ebc55
JW
1115#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1116/* 0 for r0. Used by Linux kernel, do not change. */
1117#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1118/* 0 or -1 for dep instruction. */
1119#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1120
1121#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1122((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1123 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1124 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1125 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1126 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1127 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1128 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1129 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1130 : 0)
1131
1132/* A C expression that defines the machine-dependent operand constraint letters
1133 (`G', `H') that specify particular ranges of `const_double' values. */
1134
1135/* 0.0 and 1.0 for fr0 and fr1. */
1136#define CONST_DOUBLE_OK_FOR_G(VALUE) \
1137 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1138 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1139
1140#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1141 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1142
1143/* A C expression that defines the optional machine-dependent constraint
1144 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1145 types of operands, usually memory references, for the target machine. */
3b572406 1146
041f25e6 1147/* Non-volatile memory for FP_REG loads/stores. */
3b572406
RH
1148#define CONSTRAINT_OK_FOR_Q(VALUE) \
1149 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
041f25e6
RH
1150/* 1..4 for shladd arguments. */
1151#define CONSTRAINT_OK_FOR_R(VALUE) \
1152 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
0551c32d
RH
1153/* Non-post-inc memory for asms and other unsavory creatures. */
1154#define CONSTRAINT_OK_FOR_S(VALUE) \
1155 (GET_CODE (VALUE) == MEM \
1156 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1157 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
3b572406
RH
1158
1159#define EXTRA_CONSTRAINT(VALUE, C) \
041f25e6
RH
1160 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1161 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
0551c32d 1162 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
041f25e6 1163 : 0)
c65ebc55
JW
1164\f
1165/* Basic Stack Layout */
1166
1167/* Define this macro if pushing a word onto the stack moves the stack pointer
1168 to a smaller address. */
1169#define STACK_GROWS_DOWNWARD 1
1170
1171/* Define this macro if the addresses of local variable slots are at negative
1172 offsets from the frame pointer. */
97e242b0
RH
1173/* #define FRAME_GROWS_DOWNWARD */
1174
1175/* Offset from the frame pointer to the first local variable slot to
1176 be allocated. */
1177#define STARTING_FRAME_OFFSET 0
c65ebc55
JW
1178
1179/* Offset from the stack pointer register to the first location at which
1180 outgoing arguments are placed. If not specified, the default value of zero
1181 is used. This is the proper value for most machines. */
1182/* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1183#define STACK_POINTER_OFFSET 16
1184
1185/* Offset from the argument pointer register to the first argument's address.
1186 On some machines it may depend on the data type of the function. */
1187#define FIRST_PARM_OFFSET(FUNDECL) 0
1188
1189/* A C expression whose value is RTL representing the value of the return
1190 address for the frame COUNT steps up from the current frame, after the
1191 prologue. */
1192
1193/* ??? Frames other than zero would likely require interpreting the frame
1194 unwind info, so we don't try to support them. We would also need to define
1195 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1196
46327bc5
RH
1197#define RETURN_ADDR_RTX(COUNT, FRAME) \
1198 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
c65ebc55
JW
1199
1200/* A C expression whose value is RTL representing the location of the incoming
1201 return address at the beginning of any function, before the prologue. This
1202 RTL is either a `REG', indicating that the return value is saved in `REG',
1203 or a `MEM' representing a location in the stack. This enables DWARF2
1204 unwind info for C++ EH. */
1205#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
13da91fd 1206
c65ebc55
JW
1207/* ??? This is not defined because of three problems.
1208 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1209 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1210 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1211 unused register number.
1212 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1213 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1214 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1215 to zero, despite what the documentation implies, because it is tested in
1216 a few places with #ifdef instead of #if. */
1217#undef INCOMING_RETURN_ADDR_RTX
1218
1219/* A C expression whose value is an integer giving the offset, in bytes, from
1220 the value of the stack pointer register to the top of the stack frame at the
1221 beginning of any function, before the prologue. The top of the frame is
1222 defined to be the value of the stack pointer in the previous frame, just
1223 before the call instruction. */
1224#define INCOMING_FRAME_SP_OFFSET 0
1225
1226\f
1227/* Register That Address the Stack Frame. */
1228
1229/* The register number of the stack pointer register, which must also be a
1230 fixed register according to `FIXED_REGISTERS'. On most machines, the
1231 hardware determines which register this is. */
1232
1233#define STACK_POINTER_REGNUM 12
1234
1235/* The register number of the frame pointer register, which is used to access
1236 automatic variables in the stack frame. On some machines, the hardware
1237 determines which register this is. On other machines, you can choose any
1238 register you wish for this purpose. */
1239
1240#define FRAME_POINTER_REGNUM 328
1241
97e242b0
RH
1242/* Base register for access to local variables of the function. */
1243#define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
c65ebc55
JW
1244
1245/* The register number of the arg pointer register, which is used to access the
1246 function's argument list. */
1247/* r0 won't otherwise be used, so put the always eliminated argument pointer
1248 in it. */
1249#define ARG_POINTER_REGNUM R_GR(0)
1250
97e242b0
RH
1251/* The register number for the return address register. For IA-64, this
1252 is not actually a pointer as the name suggests, but that's a name that
1253 gen_rtx_REG already takes care to keep unique. We modify
1254 return_address_pointer_rtx in ia64_expand_prologue to reference the
1255 final output regnum. */
46327bc5 1256#define RETURN_ADDRESS_POINTER_REGNUM 329
c65ebc55
JW
1257
1258/* Register numbers used for passing a function's static chain pointer. */
97e242b0 1259/* ??? The ABI sez the static chain should be passed as a normal parameter. */
c65ebc55 1260#define STATIC_CHAIN_REGNUM 15
c65ebc55
JW
1261\f
1262/* Eliminating the Frame Pointer and the Arg Pointer */
1263
1264/* A C expression which is nonzero if a function must have and use a frame
1265 pointer. This expression is evaluated in the reload pass. If its value is
1266 nonzero the function will have a frame pointer. */
c65ebc55
JW
1267#define FRAME_POINTER_REQUIRED 0
1268
97e242b0
RH
1269/* Show we can debug even without a frame pointer. */
1270#define CAN_DEBUG_WITHOUT_FP
1271
c65ebc55
JW
1272/* If defined, this macro specifies a table of register pairs used to eliminate
1273 unneeded registers that point into the stack frame. */
1274
1275#define ELIMINABLE_REGS \
1276{ \
1277 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0 1278 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
46327bc5 1279 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0
RH
1280 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1281 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
c65ebc55
JW
1282}
1283
1284/* A C expression that returns non-zero if the compiler is allowed to try to
97e242b0
RH
1285 replace register number FROM with register number TO. The frame pointer
1286 is automatically handled. */
c65ebc55 1287
46327bc5
RH
1288#define CAN_ELIMINATE(FROM, TO) \
1289 (TO == BR_REG (0) ? current_function_is_leaf : 1)
c65ebc55 1290
97e242b0
RH
1291/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1292 specifies the initial difference between the specified pair of
1293 registers. This macro must be defined if `ELIMINABLE_REGS' is
1294 defined. */
1295#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1296 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
c65ebc55
JW
1297\f
1298/* Passing Function Arguments on the Stack */
1299
1300/* Define this macro if an argument declared in a prototype as an integral type
1301 smaller than `int' should actually be passed as an `int'. In addition to
1302 avoiding errors in certain cases of mismatch, it also makes for better code
1303 on certain machines. */
1304/* ??? Investigate. */
1305/* #define PROMOTE_PROTOTYPES */
1306
1307/* If defined, the maximum amount of space required for outgoing arguments will
1308 be computed and placed into the variable
1309 `current_function_outgoing_args_size'. */
1310
f73ad30e 1311#define ACCUMULATE_OUTGOING_ARGS 1
c65ebc55
JW
1312
1313/* A C expression that should indicate the number of bytes of its own arguments
1314 that a function pops on returning, or 0 if the function pops no arguments
1315 and the caller must therefore pop them all after the function returns. */
1316
1317#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1318
1319\f
1320/* Function Arguments in Registers */
1321
1322#define MAX_ARGUMENT_SLOTS 8
1323#define MAX_INT_RETURN_SLOTS 4
1324#define GR_ARG_FIRST IN_REG (0)
1325#define GR_RET_FIRST GR_REG (8)
1326#define GR_RET_LAST GR_REG (11)
1327#define FR_ARG_FIRST FR_REG (8)
1328#define FR_RET_FIRST FR_REG (8)
1329#define FR_RET_LAST FR_REG (15)
1330#define AR_ARG_FIRST OUT_REG (0)
1331
1332/* A C expression that controls whether a function argument is passed in a
1333 register, and which register. */
1334
1335#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1336 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1337
1338/* Define this macro if the target machine has "register windows", so that the
1339 register in which a function sees an arguments is not necessarily the same
1340 as the one in which the caller passed the argument. */
1341
1342#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1343 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1344
1345/* A C expression for the number of words, at the beginning of an argument,
1346 must be put in registers. The value must be zero for arguments that are
1347 passed entirely in registers or that are entirely pushed on the stack. */
1348
1349#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1350 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1351
1352/* A C expression that indicates when an argument must be passed by reference.
1353 If nonzero for an argument, a copy of that argument is made in memory and a
1354 pointer to the argument is passed instead of the argument itself. The
1355 pointer is passed in whatever way is appropriate for passing a pointer to
1356 that type. */
1357
1358#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1359
1360/* A C type for declaring a variable that is used as the first argument of
1361 `FUNCTION_ARG' and other related values. For some target machines, the type
1362 `int' suffices and can hold the number of bytes of argument so far. */
1363
1364typedef struct ia64_args
1365{
1366 int words; /* # words of arguments so far */
1367 int fp_regs; /* # FR registers used so far */
1368 int prototype; /* whether function prototyped */
1369} CUMULATIVE_ARGS;
1370
1371/* A C statement (sans semicolon) for initializing the variable CUM for the
1372 state at the beginning of the argument list. */
1373
1374#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1375do { \
1376 (CUM).words = 0; \
1377 (CUM).fp_regs = 0; \
1378 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1379} while (0)
1380
1381/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1382 arguments for the function being compiled. If this macro is undefined,
1383 `INIT_CUMULATIVE_ARGS' is used instead. */
1384
1385/* We set prototype to true so that we never try to return a PARALLEL from
1386 function_arg. */
1387#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1388do { \
1389 (CUM).words = 0; \
1390 (CUM).fp_regs = 0; \
1391 (CUM).prototype = 1; \
1392} while (0)
1393
1394/* A C statement (sans semicolon) to update the summarizer variable CUM to
1395 advance past an argument in the argument list. The values MODE, TYPE and
1396 NAMED describe that argument. Once this is done, the variable CUM is
1397 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1398
1399#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1400 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1401
1402/* If defined, a C expression that gives the alignment boundary, in bits, of an
1403 argument with the specified mode and type. */
1404
93dd6255
JW
1405/* Arguments with alignment larger than 8 bytes start at the next even
1406 boundary. See ia64_function_arg. */
c65ebc55
JW
1407
1408#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
93dd6255
JW
1409 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1410 : (((((MODE) == BLKmode \
1411 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1412 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1413 ? 128 : PARM_BOUNDARY)
c65ebc55
JW
1414
1415/* A C expression that is nonzero if REGNO is the number of a hard register in
1416 which function arguments are sometimes passed. This does *not* include
1417 implicit arguments such as the static chain and the structure-value address.
1418 On many machines, no registers can be used for this purpose since all
1419 function arguments are pushed on the stack. */
1420#define FUNCTION_ARG_REGNO_P(REGNO) \
1421(((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1422 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1423\f
1424/* Implement `va_start' for varargs and stdarg. */
1425#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1426 ia64_va_start (stdarg, valist, nextarg)
1427
1428/* Implement `va_arg'. */
1429#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1430 ia64_va_arg (valist, type)
1431\f
1432/* How Scalar Function Values are Returned */
1433
1434/* A C expression to create an RTX representing the place where a function
1435 returns a value of data type VALTYPE. */
1436
1437#define FUNCTION_VALUE(VALTYPE, FUNC) \
1438 ia64_function_value (VALTYPE, FUNC)
1439
1440/* A C expression to create an RTX representing the place where a library
1441 function returns a value of mode MODE. */
1442
1443#define LIBCALL_VALUE(MODE) \
1444 gen_rtx_REG (MODE, \
23c108af
SE
1445 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1446 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1447 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
c65ebc55
JW
1448 ? FR_RET_FIRST : GR_RET_FIRST))
1449
1450/* A C expression that is nonzero if REGNO is the number of a hard register in
1451 which the values of called function may come back. */
1452
1453#define FUNCTION_VALUE_REGNO_P(REGNO) \
1454 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1455 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1456
1457\f
1458/* How Large Values are Returned */
1459
1460/* A nonzero value says to return the function value in memory, just as large
1461 structures are always returned. */
1462
1463#define RETURN_IN_MEMORY(TYPE) \
1464 ia64_return_in_memory (TYPE)
1465
1466/* If you define this macro to be 0, then the conventions used for structure
1467 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1468
1469#define DEFAULT_PCC_STRUCT_RETURN 0
1470
1471/* If the structure value address is passed in a register, then
1472 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1473
1474#define STRUCT_VALUE_REGNUM GR_REG (8)
1475
1476\f
1477/* Caller-Saves Register Allocation */
1478
1479/* A C expression to determine whether it is worthwhile to consider placing a
1480 pseudo-register in a call-clobbered hard register and saving and restoring
1481 it around each function call. The expression should be 1 when this is worth
1482 doing, and 0 otherwise.
1483
1484 If you don't define this macro, a default is used which is good on most
1485 machines: `4 * CALLS < REFS'. */
1486/* ??? Investigate. */
1487/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1488
1489\f
1490/* Function Entry and Exit */
1491
c65ebc55
JW
1492/* Define this macro as a C expression that is nonzero if the return
1493 instruction or the function epilogue ignores the value of the stack pointer;
1494 in other words, if it is safe to delete an instruction to adjust the stack
1495 pointer before a return from the function. */
1496
1497#define EXIT_IGNORE_STACK 1
1498
1499/* Define this macro as a C expression that is nonzero for registers
1500 used by the epilogue or the `return' pattern. */
1501
1502#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1503
3b572406
RH
1504/* Output at beginning of assembler file. */
1505
1506#define ASM_FILE_START(FILE) \
ca3920ad 1507 emit_safe_across_calls (FILE)
3b572406 1508
c65ebc55
JW
1509/* A C compound statement that outputs the assembler code for a thunk function,
1510 used to implement C++ virtual function calls with multiple inheritance. */
1511
c65ebc55
JW
1512#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1513do { \
591eb4ba
JW
1514 if (CONST_OK_FOR_I (DELTA)) \
1515 fprintf (FILE, "\tadds r32 = %d, r32\n", (DELTA)); \
1516 else \
1517 { \
1518 if (CONST_OK_FOR_J (DELTA)) \
1519 fprintf (FILE, "\taddl r2 = %d, r0\n", (DELTA)); \
1520 else \
1521 fprintf (FILE, "\tmovl r2 = %d\n", (DELTA)); \
1522 fprintf (FILE, "\t;;\n"); \
1523 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1524 } \
c65ebc55
JW
1525 fprintf (FILE, "\tbr "); \
1526 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1527 fprintf (FILE, "\n"); \
1528} while (0)
1529
1530\f
1531/* Generating Code for Profiling. */
1532
1533/* A C statement or compound statement to output to FILE some assembler code to
1534 call the profiling subroutine `mcount'. */
1535
1536/* ??? Unclear if this will actually work. No way to test this currently. */
1537
1538#define FUNCTION_PROFILER(FILE, LABELNO) \
1539do { \
1540 char buf[20]; \
1541 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1542 fputs ("\taddl r16 = @ltoff(", FILE); \
1543 assemble_name (FILE, buf); \
1544 fputs ("), gp\n", FILE); \
1545 fputs ("\tmov r17 = r1;;\n", FILE); \
1546 fputs ("\tld8 out0 = [r16]\n", FILE); \
1547 fputs ("\tmov r18 = b0\n", FILE); \
1548 fputs ("\tbr.call.sptk.many rp = mcount;;\n", FILE); \
1549 fputs ("\tmov b0 = r18\n", FILE); \
1550 fputs ("\tmov r1 = r17;;\n", FILE); \
1551} while (0)
1552
1553/* A C statement or compound statement to output to FILE some assembler code to
1554 initialize basic-block profiling for the current object module. */
1555
1556/* ??? Unclear if this will actually work. No way to test this currently. */
1557
1558#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1559do { \
1560 int labelno = LABELNO; \
1561 switch (profile_block_flag) \
1562 { \
1563 case 2: \
1564 fputs ("\taddl r16 = @ltoff(LPBX0), gp\n", FILE); \
1565 fprintf (FILE, "\tmov out1 = %d;;\n", labelno); \
1566 fputs ("\tld8 out0 = [r16]\n", FILE); \
1567 fputs ("\tmov r17 = r1\n", FILE); \
1568 fputs ("\tmov r18 = b0\n", FILE); \
1569 fputs ("\tbr.call.sptk.many rp = __bb_init_trace_func;;\n", FILE);\
1570 fputs ("\tmov r1 = r17\n", FILE); \
1571 fputs ("\tmov b0 = r18;;\n", FILE); \
1572 break; \
1573 default: \
1574 fputs ("\taddl r16 = @ltoff(LPBX0), gp;;\n", FILE); \
1575 fputs ("\tld8 out0 = [r16];;\n", FILE); \
1576 fputs ("\tld8 r17 = [out0];;\n", FILE); \
1577 fputs ("\tcmp.eq p6, p0 = r0, r17;;\n", FILE); \
1578 fputs ("(p6)\tmov r16 = r1\n", FILE); \
1579 fputs ("(p6)\tmov r17 = b0\n", FILE); \
1580 fputs ("(p6)\tbr.call.sptk.many rp = __bb_init_func;;\n", FILE); \
1581 fputs ("(p6)\tmov r1 = r16\n", FILE); \
1582 fputs ("(p6)\tmov b0 = r17;;\n", FILE); \
1583 break; \
1584 } \
1585} while (0)
1586
1587/* A C statement or compound statement to output to FILE some assembler code to
1588 increment the count associated with the basic block number BLOCKNO. */
1589
1590/* ??? This can't work unless we mark some registers as fixed, so that we
1591 can use them as temporaries in this macro. We need two registers for -a
1592 profiling and 4 registers for -ax profiling. */
1593
1594#define BLOCK_PROFILER(FILE, BLOCKNO) \
1595do { \
1596 int blockn = BLOCKNO; \
1597 switch (profile_block_flag) \
1598 { \
1599 case 2: \
1600 fputs ("\taddl r2 = @ltoff(__bb), gp\n", FILE); \
1601 fputs ("\taddl r3 = @ltoff(LPBX0), gp;;\n", FILE); \
1602 fprintf (FILE, "\tmov r9 = %d\n", blockn); \
1603 fputs ("\tld8 r2 = [r2]\n", FILE); \
1604 fputs ("\tld8 r3 = [r3];;\n", FILE); \
1605 fputs ("\tadd r8 = 8, r2\n", FILE); \
1606 fputs ("\tst8 [r2] = r9;;\n", FILE); \
1607 fputs ("\tst8 [r8] = r3\n", FILE); \
1608 fputs ("\tbr.call.sptk.many rp = __bb_trace_func\n", FILE); \
1609 break; \
1610 \
1611 default: \
1612 fputs ("\taddl r2 = @ltoff(LPBX2), gp;;\n", FILE); \
1613 fputs ("\tld8 r2 = [r2];;\n", FILE); \
1614 fprintf (FILE, "\taddl r2 = %d, r2;;\n", 8 * blockn); \
1615 fputs ("\tld8 r3 = [r2];;\n", FILE); \
1616 fputs ("\tadd r3 = 1, r3;;\n", FILE); \
1617 fputs ("\tst8 [r2] = r3;;\n", FILE); \
1618 break; \
1619 } \
1620} while(0)
1621
1622/* A C statement or compound statement to output to FILE assembler
1623 code to call function `__bb_trace_ret'. */
1624
1625/* ??? Unclear if this will actually work. No way to test this currently. */
1626
1627/* ??? This needs to be emitted into the epilogue. Perhaps rewrite to emit
1628 rtl and call from ia64_expand_epilogue? */
1629
1630#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1631 fputs ("\tbr.call.sptk.many rp = __bb_trace_ret\n", FILE);
1632#undef FUNCTION_BLOCK_PROFILER_EXIT
1633
1634/* A C statement or compound statement to save all registers, which may be
1635 clobbered by a function call, including condition codes. */
1636
1637/* ??? We would have to save 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1638 other things. This is not practical. Perhaps leave this feature (-ax)
1639 unsupported by undefining above macros? */
1640
1641/* #define MACHINE_STATE_SAVE(ID) */
1642
1643/* A C statement or compound statement to restore all registers, including
1644 condition codes, saved by `MACHINE_STATE_SAVE'. */
1645
1646/* ??? We would have to restore 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1647 other things. This is not practical. Perhaps leave this feature (-ax)
1648 unsupported by undefining above macros? */
1649
1650/* #define MACHINE_STATE_RESTORE(ID) */
1651
1652\f
1653/* Implementing the Varargs Macros. */
1654
1655/* Define this macro to store the anonymous register arguments into the stack
1656 so that all the arguments appear to have been passed consecutively on the
1657 stack. */
1658
1659#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1660 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1661
1662/* Define this macro if the location where a function argument is passed
1663 depends on whether or not it is a named argument. */
1664
1665#define STRICT_ARGUMENT_NAMING 1
1666
1667\f
1668/* Trampolines for Nested Functions. */
1669
1670/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1671 the function containing a non-local goto target. */
1672
1673#define STACK_SAVEAREA_MODE(LEVEL) \
1674 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1675
1676/* Output assembler code for a block containing the constant parts of
1677 a trampoline, leaving space for the variable parts.
1678
1679 The trampoline should set the static chain pointer to value placed
97e242b0
RH
1680 into the trampoline and should branch to the specified routine.
1681 To make the normal indirect-subroutine calling convention work,
1682 the trampoline must look like a function descriptor; the first
1683 word being the target address and the second being the target's
1684 global pointer.
1685
1686 We abuse the concept of a global pointer by arranging for it
1687 to point to the data we need to load. The complete trampoline
c65ebc55
JW
1688 has the following form:
1689
97e242b0
RH
1690 +-------------------+ \
1691 TRAMP: | __ia64_trampoline | |
1692 +-------------------+ > fake function descriptor
1693 | TRAMP+16 | |
1694 +-------------------+ /
1695 | target descriptor |
1696 +-------------------+
1697 | static link |
1698 +-------------------+
c65ebc55
JW
1699*/
1700
c65ebc55
JW
1701/* A C expression for the size in bytes of the trampoline, as an integer. */
1702
97e242b0 1703#define TRAMPOLINE_SIZE 32
c65ebc55
JW
1704
1705/* Alignment required for trampolines, in bits. */
1706
97e242b0 1707#define TRAMPOLINE_ALIGNMENT 64
c65ebc55
JW
1708
1709/* A C statement to initialize the variable parts of a trampoline. */
1710
1711#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
97e242b0 1712 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
c65ebc55
JW
1713\f
1714/* Implicit Calls to Library Routines */
1715
c65ebc55
JW
1716/* Define this macro if GNU CC should generate calls to the System V (and ANSI
1717 C) library functions `memcpy' and `memset' rather than the BSD functions
1718 `bcopy' and `bzero'. */
1719
1720#define TARGET_MEM_FUNCTIONS
1721
1722\f
1723/* Addressing Modes */
1724
1725/* Define this macro if the machine supports post-increment addressing. */
1726
1727#define HAVE_POST_INCREMENT 1
1728#define HAVE_POST_DECREMENT 1
4b983fdc
RH
1729#define HAVE_POST_MODIFY_DISP 1
1730#define HAVE_POST_MODIFY_REG 1
c65ebc55
JW
1731
1732/* A C expression that is 1 if the RTX X is a constant which is a valid
1733 address. */
1734
1735#define CONSTANT_ADDRESS_P(X) 0
1736
1737/* The max number of registers that can appear in a valid memory address. */
1738
4b983fdc 1739#define MAX_REGS_PER_ADDRESS 2
c65ebc55
JW
1740
1741/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1742 RTX) is a legitimate memory address on the target machine for a memory
1743 operand of mode MODE. */
1744
4b983fdc
RH
1745#define LEGITIMATE_ADDRESS_REG(X) \
1746 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1747 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1748 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1749
1750#define LEGITIMATE_ADDRESS_DISP(R, X) \
1751 (GET_CODE (X) == PLUS \
1752 && rtx_equal_p (R, XEXP (X, 0)) \
cf606f45 1753 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
4b983fdc 1754 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
5527bf14
RH
1755 && INTVAL (XEXP (X, 1)) >= -256 \
1756 && INTVAL (XEXP (X, 1)) < 256)))
c65ebc55
JW
1757
1758#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1759do { \
4b983fdc 1760 if (LEGITIMATE_ADDRESS_REG (X)) \
c65ebc55 1761 goto LABEL; \
4b983fdc
RH
1762 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1763 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1764 && XEXP (X, 0) != arg_pointer_rtx) \
1765 goto LABEL; \
1766 else if (GET_CODE (X) == POST_MODIFY \
1767 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1768 && XEXP (X, 0) != arg_pointer_rtx \
1769 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
c65ebc55 1770 goto LABEL; \
c65ebc55
JW
1771} while (0)
1772
1773/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1774 use as a base register. */
1775
1776#ifdef REG_OK_STRICT
1777#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1778#else
1779#define REG_OK_FOR_BASE_P(X) \
1780 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1781#endif
1782
1783/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
cf606f45 1784 use as an index register. This is needed for POST_MODIFY. */
c65ebc55 1785
cf606f45 1786#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
c65ebc55
JW
1787
1788/* A C compound statement that attempts to replace X with a valid memory
1789 address for an operand of mode MODE.
1790
1791 This must be present, but there is nothing useful to be done here. */
1792
1793#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1794
1795/* A C statement or compound statement with a conditional `goto LABEL;'
1796 executed if memory address X (an RTX) can have different meanings depending
1797 on the machine mode of the memory reference it is used for or if the address
1798 is valid for some modes but not others. */
1799
3f622353 1800#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
c65ebc55
JW
1801 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1802 goto LABEL;
1803
1804/* A C expression that is nonzero if X is a legitimate constant for an
1805 immediate operand on the target machine. */
1806
1807#define LEGITIMATE_CONSTANT_P(X) \
1808 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1809 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1810
1811\f
1812/* Condition Code Status */
1813
1814/* One some machines not all possible comparisons are defined, but you can
1815 convert an invalid comparison into a valid one. */
1816/* ??? Investigate. See the alpha definition. */
1817/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1818
1819\f
1820/* Describing Relative Costs of Operations */
1821
1822/* A part of a C `switch' statement that describes the relative costs of
1823 constant RTL expressions. */
1824
1825/* ??? This is incomplete. */
1826
f2f90c63 1827#define CONST_COSTS(X, CODE, OUTER_CODE) \
c65ebc55
JW
1828 case CONST_INT: \
1829 if ((X) == const0_rtx) \
1830 return 0; \
f2f90c63
RH
1831 switch (OUTER_CODE) \
1832 { \
1833 case SET: \
1834 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1835 case PLUS: \
1836 if (CONST_OK_FOR_I (INTVAL (X))) \
1837 return 0; \
1838 if (CONST_OK_FOR_J (INTVAL (X))) \
1839 return 1; \
1840 return COSTS_N_INSNS (1); \
1841 default: \
1842 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1843 return 0; \
1844 return COSTS_N_INSNS (1); \
1845 } \
c65ebc55 1846 case CONST_DOUBLE: \
f2f90c63 1847 return COSTS_N_INSNS (1); \
c65ebc55
JW
1848 case CONST: \
1849 case SYMBOL_REF: \
1850 case LABEL_REF: \
2130b7fb 1851 return COSTS_N_INSNS (3);
c65ebc55
JW
1852
1853/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1854
f2f90c63
RH
1855#define RTX_COSTS(X, CODE, OUTER_CODE) \
1856 case MULT: \
1857 /* For multiplies wider than HImode, we have to go to the FPU, \
1858 which normally involves copies. Plus there's the latency \
005f39ce
BS
1859 of the multiply itself, and the latency of the instructions to \
1860 transfer integer regs to FP regs. */ \
f2f90c63 1861 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
005f39ce
BS
1862 return COSTS_N_INSNS (10); \
1863 return COSTS_N_INSNS (2); \
1864 case PLUS: \
1865 case MINUS: \
1866 case ASHIFT: \
1867 case ASHIFTRT: \
1868 case LSHIFTRT: \
f2f90c63 1869 return COSTS_N_INSNS (1); \
c65ebc55
JW
1870 case DIV: \
1871 case UDIV: \
1872 case MOD: \
1873 case UMOD: \
f2f90c63
RH
1874 /* We make divide expensive, so that divide-by-constant will be \
1875 optimized to a multiply. */ \
1876 return COSTS_N_INSNS (60);
c65ebc55
JW
1877
1878/* An expression giving the cost of an addressing mode that contains ADDRESS.
1879 If not defined, the cost is computed from the ADDRESS expression and the
1880 `CONST_COSTS' values. */
1881
1882#define ADDRESS_COST(ADDRESS) 0
1883
1884/* A C expression for the cost of moving data from a register in class FROM to
1885 one in class TO. */
1886
cf011243 1887#define REGISTER_MOVE_COST(MODE, FROM, TO) \
5527bf14 1888 ia64_register_move_cost((FROM), (TO))
c65ebc55 1889
f2f90c63
RH
1890/* A C expression for the cost of moving data of mode M between a
1891 register and memory. */
1892#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1893 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS ? 4 : 10)
c65ebc55
JW
1894
1895/* A C expression for the cost of a branch instruction. A value of 1 is the
e5bde68a
RH
1896 default; other values are interpreted relative to that. Used by the
1897 if-conversion code as max instruction count. */
1898/* ??? This requires investigation. The primary effect might be how
1899 many additional insn groups we run into, vs how good the dynamic
1900 branch predictor is. */
1901
1902#define BRANCH_COST 6
c65ebc55
JW
1903
1904/* Define this macro as a C expression which is nonzero if accessing less than
1905 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1906 word of memory. */
1907
1908#define SLOW_BYTE_ACCESS 1
1909
1910/* Define this macro if it is as good or better to call a constant function
1911 address than to call an address kept in a register.
1912
1913 Indirect function calls are more expensive that direct function calls, so
1914 don't cse function addresses. */
1915
1916#define NO_FUNCTION_CSE
1917
c65ebc55
JW
1918\f
1919/* Dividing the output into sections. */
1920
1921/* A C expression whose value is a string containing the assembler operation
1922 that should precede instructions and read-only data. */
1923
de323aa1 1924#define TEXT_SECTION_ASM_OP "\t.text"
c65ebc55
JW
1925
1926/* A C expression whose value is a string containing the assembler operation to
1927 identify the following data as writable initialized data. */
1928
de323aa1 1929#define DATA_SECTION_ASM_OP "\t.data"
c65ebc55
JW
1930
1931/* If defined, a C expression whose value is a string containing the assembler
1932 operation to identify the following data as uninitialized global data. */
1933
de323aa1 1934#define BSS_SECTION_ASM_OP "\t.bss"
c65ebc55 1935
c65ebc55
JW
1936/* Define this macro if references to a symbol must be treated differently
1937 depending on something about the variable or function named by the symbol
1938 (such as what section it is in). */
1939
1940#define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1941
32adf8e6
AH
1942/* If a variable is weakened, made one only or moved into a different
1943 section, it may be necessary to redo the section info to move the
1944 variable out of sdata. */
1945
1946#define REDO_SECTION_INFO_P(DECL) \
1947 ((TREE_CODE (DECL) == VAR_DECL) \
94c21c17
GS
1948 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1949 || DECL_SECTION_NAME (DECL) != 0))
32adf8e6 1950
c65ebc55
JW
1951#define SDATA_NAME_FLAG_CHAR '@'
1952
1953#define IA64_DEFAULT_GVALUE 8
1954
1955/* Decode SYM_NAME and store the real name part in VAR, sans the characters
1956 that encode section info. */
1957
c45632b7
RH
1958#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1959do { \
1960 (VAR) = (SYMBOL_NAME); \
1961 if ((VAR)[0] == SDATA_NAME_FLAG_CHAR) \
1962 (VAR)++; \
1963 if ((VAR)[0] == '*') \
1964 (VAR)++; \
1965} while (0)
c65ebc55
JW
1966\f
1967/* Position Independent Code. */
1968
1969/* The register number of the register used to address a table of static data
1970 addresses in memory. */
1971
1972/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1973 gen_rtx_REG (DImode, 1). */
1974
1975/* ??? Should we set flag_pic? Probably need to define
1976 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1977
1978#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1979
1980/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1981 clobbered by calls. */
1982
1983#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1984
1985\f
1986/* The Overall Framework of an Assembler File. */
1987
1988/* A C string constant describing how to begin a comment in the target
1989 assembler language. The compiler assumes that the comment will end at the
1990 end of the line. */
1991
1992#define ASM_COMMENT_START "//"
1993
1994/* A C string constant for text to be output before each `asm' statement or
1995 group of consecutive ones. */
1996
1997/* ??? This won't work with the Intel assembler, because it does not accept
1998 # as a comment start character. However, //APP does not work in gas, so we
1999 can't use that either. Same problem for ASM_APP_OFF below. */
2000
2001#define ASM_APP_ON "#APP\n"
2002
2003/* A C string constant for text to be output after each `asm' statement or
2004 group of consecutive ones. */
2005
2006#define ASM_APP_OFF "#NO_APP\n"
2007
2008\f
2009/* Output of Data. */
2010
2011/* A C statement to output to the stdio stream STREAM an assembler instruction
3f622353 2012 to assemble a floating-point constant of `TFmode', `DFmode', `SFmode',
c65ebc55
JW
2013 respectively, whose value is VALUE. */
2014
c65ebc55
JW
2015/* ??? Must reverse the word order for big-endian code? */
2016
2017#define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
2018do { \
2019 long t[3]; \
2020 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, t); \
3f622353 2021 fprintf (FILE, "\tdata4 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n", \
0024a804 2022 t[0] & 0xffffffff, t[1] & 0xffffffff, t[2] & 0xffffffff, 0L);\
c65ebc55
JW
2023} while (0)
2024
2025/* ??? Must reverse the word order for big-endian code? */
2026
2027#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2028do { \
2029 long t[2]; \
2030 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, t); \
2031 fprintf (FILE, "\tdata8 0x%08lx%08lx\n", \
2032 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2033} while (0)
2034
2035#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2036 do { \
2037 long t; \
2038 REAL_VALUE_TO_TARGET_SINGLE (VALUE, t); \
2039 fprintf (FILE, "\tdata4 0x%lx\n", t & 0xffffffff); \
2040} while (0)
2041
2042/* A C statement to output to the stdio stream STREAM an assembler instruction
2043 to assemble an integer of 1, 2, 4, or 8 bytes, respectively, whose value
2044 is VALUE. */
2045
2046/* This is how to output an assembler line defining a `char' constant. */
2047
2048#define ASM_OUTPUT_CHAR(FILE, VALUE) \
2049do { \
f0ca81d2 2050 fprintf (FILE, "%s", ASM_BYTE_OP); \
c65ebc55
JW
2051 output_addr_const (FILE, (VALUE)); \
2052 fprintf (FILE, "\n"); \
2053} while (0)
2054
2055/* This is how to output an assembler line defining a `short' constant. */
2056
2057#define ASM_OUTPUT_SHORT(FILE, VALUE) \
2058do { \
2059 fprintf (FILE, "\tdata2\t"); \
2060 output_addr_const (FILE, (VALUE)); \
2061 fprintf (FILE, "\n"); \
2062} while (0)
2063
2064/* This is how to output an assembler line defining an `int' constant.
2065 We also handle symbol output here. */
2066
2067/* ??? For ILP32, also need to handle function addresses here. */
2068
2069#define ASM_OUTPUT_INT(FILE, VALUE) \
2070do { \
2071 fprintf (FILE, "\tdata4\t"); \
2072 output_addr_const (FILE, (VALUE)); \
2073 fprintf (FILE, "\n"); \
2074} while (0)
2075
2076/* This is how to output an assembler line defining a `long' constant.
2077 We also handle symbol output here. */
2078
2079#define ASM_OUTPUT_DOUBLE_INT(FILE, VALUE) \
2080do { \
2081 fprintf (FILE, "\tdata8\t"); \
59da9a7d 2082 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2083 fprintf (FILE, "@fptr("); \
2084 output_addr_const (FILE, (VALUE)); \
59da9a7d 2085 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2086 fprintf (FILE, ")"); \
2087 fprintf (FILE, "\n"); \
2088} while (0)
2089
0c96007e
AM
2090/* This is how to output an assembler line defining a `char' constant
2091 to an xdata segment. */
2092
2093#define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
2094do { \
2095 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
2096 output_addr_const (FILE, (VALUE)); \
2097 fprintf (FILE, "\n"); \
2098} while (0)
2099
2100/* This is how to output an assembler line defining a `short' constant
2101 to an xdata segment. */
2102
2103#define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
2104do { \
2105 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
2106 output_addr_const (FILE, (VALUE)); \
2107 fprintf (FILE, "\n"); \
2108} while (0)
2109
2110/* This is how to output an assembler line defining an `int' constant
2111 to an xdata segment. We also handle symbol output here. */
2112
2113/* ??? For ILP32, also need to handle function addresses here. */
2114
2115#define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
2116do { \
2117 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
2118 output_addr_const (FILE, (VALUE)); \
2119 fprintf (FILE, "\n"); \
2120} while (0)
2121
2122/* This is how to output an assembler line defining a `long' constant
2123 to an xdata segment. We also handle symbol output here. */
2124
2125#define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
2126do { \
59da9a7d 2127 int need_closing_paren = 0; \
0c96007e 2128 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
59da9a7d
JW
2129 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
2130 && GET_CODE (VALUE) == SYMBOL_REF) \
0c96007e 2131 { \
59da9a7d
JW
2132 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
2133 need_closing_paren = 1; \
0c96007e 2134 } \
59da9a7d
JW
2135 output_addr_const (FILE, VALUE); \
2136 if (need_closing_paren) \
0c96007e
AM
2137 fprintf (FILE, ")"); \
2138 fprintf (FILE, "\n"); \
2139} while (0)
2140
2141
c65ebc55
JW
2142/* A C statement to output to the stdio stream STREAM an assembler instruction
2143 to assemble a single byte containing the number VALUE. */
2144
2145#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
f0ca81d2 2146 fprintf (STREAM, "%s0x%x\n", ASM_BYTE_OP, (int)(VALUE) & 0xff)
c65ebc55 2147
c65ebc55
JW
2148\f
2149/* Output of Uninitialized Variables. */
2150
2151/* This is all handled by svr4.h. */
2152
2153\f
2154/* Output and Generation of Labels. */
2155
2156/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2157 assembler definition of a label named NAME. */
2158
2159/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
2160 why ia64_asm_output_label exists. */
2161
2162extern int ia64_asm_output_label;
2163#define ASM_OUTPUT_LABEL(STREAM, NAME) \
2164do { \
2165 ia64_asm_output_label = 1; \
2166 assemble_name (STREAM, NAME); \
2167 fputs (":\n", STREAM); \
2168 ia64_asm_output_label = 0; \
2169} while (0)
2170
2171/* A C statement (sans semicolon) to output to the stdio stream STREAM some
2172 commands that will make the label NAME global; that is, available for
2173 reference from other files. */
2174
2175#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2176do { \
2177 fputs ("\t.global ", STREAM); \
2178 assemble_name (STREAM, NAME); \
2179 fputs ("\n", STREAM); \
2180} while (0)
2181
2182/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2183 necessary for declaring the name of an external symbol named NAME which is
2184 referenced in this compilation but not defined. */
2185
2186#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2187 ia64_asm_output_external (FILE, DECL, NAME)
2188
2189/* A C statement to store into the string STRING a label whose name is made
2190 from the string PREFIX and the number NUM. */
2191
2192#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2193do { \
2194 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
2195} while (0)
2196
2197/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
2198 newly allocated string made from the string NAME and the number NUMBER, with
2199 some suitable punctuation added. */
2200
2201/* ??? Not sure if using a ? in the name for Intel as is safe. */
2202
2203#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
2204do { \
2205 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
2206 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
2207 (long)(NUMBER)); \
2208} while (0)
2209
2210/* A C statement to output to the stdio stream STREAM assembler code which
2211 defines (equates) the symbol NAME to have the value VALUE. */
2212
2213#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2214do { \
2215 assemble_name (STREAM, NAME); \
2216 fputs (" = ", STREAM); \
2217 assemble_name (STREAM, VALUE); \
2218 fputc ('\n', STREAM); \
2219} while (0)
2220
2221\f
2222/* Macros Controlling Initialization Routines. */
2223
2224/* This is handled by svr4.h and sysv4.h. */
2225
2226\f
2227/* Output of Assembler Instructions. */
2228
2229/* A C initializer containing the assembler's names for the machine registers,
2230 each one as a C string constant. */
2231
2232#define REGISTER_NAMES \
2233{ \
2234 /* General registers. */ \
2235 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
2236 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
2237 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
2238 "r30", "r31", \
2239 /* Local registers. */ \
2240 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
2241 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
2242 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
2243 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
2244 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
2245 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
2246 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
2247 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
2248 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
2249 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
2250 /* Input registers. */ \
2251 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
2252 /* Output registers. */ \
2253 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
2254 /* Floating-point registers. */ \
2255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2256 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2257 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2258 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2259 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2260 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2261 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2262 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2263 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2264 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2265 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2266 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2267 "f120","f121","f122","f123","f124","f125","f126","f127", \
2268 /* Predicate registers. */ \
2269 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2270 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2271 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2272 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2273 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2274 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2275 "p60", "p61", "p62", "p63", \
2276 /* Branch registers. */ \
2277 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2278 /* Frame pointer. Return address. */ \
97e242b0 2279 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
c65ebc55
JW
2280}
2281
2282/* If defined, a C initializer for an array of structures containing a name and
2283 a register number. This macro defines additional names for hard registers,
2284 thus allowing the `asm' option in declarations to refer to registers using
2285 alternate names. */
2286
2287#define ADDITIONAL_REGISTER_NAMES \
2288{ \
2289 { "gp", R_GR (1) }, \
2290 { "sp", R_GR (12) }, \
2291 { "in0", IN_REG (0) }, \
2292 { "in1", IN_REG (1) }, \
2293 { "in2", IN_REG (2) }, \
2294 { "in3", IN_REG (3) }, \
2295 { "in4", IN_REG (4) }, \
2296 { "in5", IN_REG (5) }, \
2297 { "in6", IN_REG (6) }, \
2298 { "in7", IN_REG (7) }, \
2299 { "out0", OUT_REG (0) }, \
2300 { "out1", OUT_REG (1) }, \
2301 { "out2", OUT_REG (2) }, \
2302 { "out3", OUT_REG (3) }, \
2303 { "out4", OUT_REG (4) }, \
2304 { "out5", OUT_REG (5) }, \
2305 { "out6", OUT_REG (6) }, \
2306 { "out7", OUT_REG (7) }, \
2307 { "loc0", LOC_REG (0) }, \
2308 { "loc1", LOC_REG (1) }, \
2309 { "loc2", LOC_REG (2) }, \
2310 { "loc3", LOC_REG (3) }, \
2311 { "loc4", LOC_REG (4) }, \
2312 { "loc5", LOC_REG (5) }, \
2313 { "loc6", LOC_REG (6) }, \
2314 { "loc7", LOC_REG (7) }, \
2315 { "loc8", LOC_REG (8) }, \
2316 { "loc9", LOC_REG (9) }, \
2317 { "loc10", LOC_REG (10) }, \
2318 { "loc11", LOC_REG (11) }, \
2319 { "loc12", LOC_REG (12) }, \
2320 { "loc13", LOC_REG (13) }, \
2321 { "loc14", LOC_REG (14) }, \
2322 { "loc15", LOC_REG (15) }, \
2323 { "loc16", LOC_REG (16) }, \
2324 { "loc17", LOC_REG (17) }, \
2325 { "loc18", LOC_REG (18) }, \
2326 { "loc19", LOC_REG (19) }, \
2327 { "loc20", LOC_REG (20) }, \
2328 { "loc21", LOC_REG (21) }, \
2329 { "loc22", LOC_REG (22) }, \
2330 { "loc23", LOC_REG (23) }, \
2331 { "loc24", LOC_REG (24) }, \
2332 { "loc25", LOC_REG (25) }, \
2333 { "loc26", LOC_REG (26) }, \
2334 { "loc27", LOC_REG (27) }, \
2335 { "loc28", LOC_REG (28) }, \
2336 { "loc29", LOC_REG (29) }, \
2337 { "loc30", LOC_REG (30) }, \
2338 { "loc31", LOC_REG (31) }, \
2339 { "loc32", LOC_REG (32) }, \
2340 { "loc33", LOC_REG (33) }, \
2341 { "loc34", LOC_REG (34) }, \
2342 { "loc35", LOC_REG (35) }, \
2343 { "loc36", LOC_REG (36) }, \
2344 { "loc37", LOC_REG (37) }, \
2345 { "loc38", LOC_REG (38) }, \
2346 { "loc39", LOC_REG (39) }, \
2347 { "loc40", LOC_REG (40) }, \
2348 { "loc41", LOC_REG (41) }, \
2349 { "loc42", LOC_REG (42) }, \
2350 { "loc43", LOC_REG (43) }, \
2351 { "loc44", LOC_REG (44) }, \
2352 { "loc45", LOC_REG (45) }, \
2353 { "loc46", LOC_REG (46) }, \
2354 { "loc47", LOC_REG (47) }, \
2355 { "loc48", LOC_REG (48) }, \
2356 { "loc49", LOC_REG (49) }, \
2357 { "loc50", LOC_REG (50) }, \
2358 { "loc51", LOC_REG (51) }, \
2359 { "loc52", LOC_REG (52) }, \
2360 { "loc53", LOC_REG (53) }, \
2361 { "loc54", LOC_REG (54) }, \
2362 { "loc55", LOC_REG (55) }, \
2363 { "loc56", LOC_REG (56) }, \
2364 { "loc57", LOC_REG (57) }, \
2365 { "loc58", LOC_REG (58) }, \
2366 { "loc59", LOC_REG (59) }, \
2367 { "loc60", LOC_REG (60) }, \
2368 { "loc61", LOC_REG (61) }, \
2369 { "loc62", LOC_REG (62) }, \
2370 { "loc63", LOC_REG (63) }, \
2371 { "loc64", LOC_REG (64) }, \
2372 { "loc65", LOC_REG (65) }, \
2373 { "loc66", LOC_REG (66) }, \
2374 { "loc67", LOC_REG (67) }, \
2375 { "loc68", LOC_REG (68) }, \
2376 { "loc69", LOC_REG (69) }, \
2377 { "loc70", LOC_REG (70) }, \
2378 { "loc71", LOC_REG (71) }, \
2379 { "loc72", LOC_REG (72) }, \
2380 { "loc73", LOC_REG (73) }, \
2381 { "loc74", LOC_REG (74) }, \
2382 { "loc75", LOC_REG (75) }, \
2383 { "loc76", LOC_REG (76) }, \
2384 { "loc77", LOC_REG (77) }, \
2385 { "loc78", LOC_REG (78) }, \
794eefd9 2386 { "loc79", LOC_REG (79) }, \
c65ebc55
JW
2387}
2388
2389/* A C compound statement to output to stdio stream STREAM the assembler syntax
2390 for an instruction operand X. X is an RTL expression. */
2391
2392#define PRINT_OPERAND(STREAM, X, CODE) \
2393 ia64_print_operand (STREAM, X, CODE)
2394
2395/* A C expression which evaluates to true if CODE is a valid punctuation
2396 character for use in the `PRINT_OPERAND' macro. */
2397
2398/* ??? Keep this around for now, as we might need it later. */
2399
6f8aa100
RH
2400#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2401 ((CODE) == '+' || (CODE) == ',')
c65ebc55
JW
2402
2403/* A C compound statement to output to stdio stream STREAM the assembler syntax
2404 for an instruction operand that is a memory reference whose address is X. X
2405 is an RTL expression. */
2406
2407#define PRINT_OPERAND_ADDRESS(STREAM, X) \
2408 ia64_print_operand_address (STREAM, X)
2409
2410/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2411 `%I' options of `asm_fprintf' (see `final.c'). */
2412
2413#define REGISTER_PREFIX ""
2414#define LOCAL_LABEL_PREFIX "."
2415#define USER_LABEL_PREFIX ""
2416#define IMMEDIATE_PREFIX ""
2417
2418\f
2419/* Output of dispatch tables. */
2420
2421/* This macro should be provided on machines where the addresses in a dispatch
2422 table are relative to the table's own address. */
2423
2424/* ??? Depends on the pointer size. */
2425
2426#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
340f7e7c 2427 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE)
c65ebc55
JW
2428
2429/* This is how to output an element of a case-vector that is absolute.
2430 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2431
2432#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2433
c65ebc55
JW
2434/* Jump tables only need 8 byte alignment. */
2435
2436#define ADDR_VEC_ALIGN(ADDR_VEC) 3
2437
2438\f
2439/* Assembler Commands for Exception Regions. */
2440
2a1ee410
RH
2441/* Select a format to encode pointers in exception handling data. CODE
2442 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2443 true if the symbol may be affected by dynamic relocations. */
2444#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2445 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2446 | ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
2447
2448/* Handle special EH pointer encodings. Absolute, pc-relative, and
2449 indirect are handled automatically. */
2450#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2451 do { \
2452 const char *reltag = NULL; \
2453 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2454 reltag = "@segrel("; \
2455 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2456 reltag = "@gprel("; \
2457 if (reltag) \
2458 { \
2459 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2460 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2461 : (abort (), "")), FILE); \
2462 fputs (reltag, FILE); \
2463 assemble_name (FILE, XSTR (ADDR, 0)); \
2464 fputc (')', FILE); \
2465 goto DONE; \
2466 } \
2467 } while (0)
c65ebc55 2468
c65ebc55
JW
2469\f
2470/* Assembler Commands for Alignment. */
2471
c65ebc55
JW
2472/* ??? Investigate. */
2473
340f7e7c
RH
2474/* The alignment (log base 2) to put in front of LABEL, which follows
2475 a BARRIER. */
c65ebc55
JW
2476
2477/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2478
2479/* The desired alignment for the location counter at the beginning
2480 of a loop. */
2481
c65ebc55
JW
2482/* #define LOOP_ALIGN(LABEL) */
2483
2484/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2485 section because it fails put zeros in the bytes that are skipped. */
2486
2487#define ASM_NO_SKIP_IN_TEXT 1
2488
2489/* A C statement to output to the stdio stream STREAM an assembler command to
2490 advance the location counter to a multiple of 2 to the POWER bytes. */
2491
2492#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2493 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2494
2495\f
2496/* Macros Affecting all Debug Formats. */
2497
2498/* This is handled in svr4.h and sysv4.h. */
2499
2500\f
2501/* Specific Options for DBX Output. */
2502
2503/* This is handled by dbxelf.h which is included by svr4.h. */
2504
2505\f
2506/* Open ended Hooks for DBX Output. */
2507
2508/* Likewise. */
2509
2510\f
2511/* File names in DBX format. */
2512
2513/* Likewise. */
2514
2515\f
2516/* Macros for SDB and Dwarf Output. */
2517
2518/* Define this macro if GNU CC should produce dwarf version 2 format debugging
2519 output in response to the `-g' option. */
2520
2521#define DWARF2_DEBUGGING_INFO
2522
c65ebc55
JW
2523/* C string constants giving the pseudo-op to use for a sequence of
2524 2, 4, and 8 byte unaligned constants. dwarf2out.c needs these. */
2525
de323aa1
HPN
2526#define UNALIGNED_SHORT_ASM_OP "\tdata2.ua\t"
2527#define UNALIGNED_INT_ASM_OP "\tdata4.ua\t"
2528#define UNALIGNED_DOUBLE_INT_ASM_OP "\tdata8.ua\t"
c65ebc55 2529
c65ebc55
JW
2530#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2531
8215347e
JW
2532/* Use tags for debug info labels, so that they don't break instruction
2533 bundles. This also avoids getting spurious DV warnings from the
2534 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2535 add brackets around the label. */
2536
2537#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
7426e9a2 2538 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
8215347e 2539
7426e9a2
RH
2540/* Use section-relative relocations for debugging offsets. Unlike other
2541 targets that fake this by putting the section VMA at 0, IA-64 has
2542 proper relocations for them. */
2543#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2544 do { \
2545 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2546 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2547 : (abort (), "")), FILE); \
2548 fputs ("@secrel(", FILE); \
2549 assemble_name (FILE, LABEL); \
2550 fputc (')', FILE); \
2551 } while (0)
2552
2553/* Emit a PC-relative relocation. */
2554#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2555 do { \
2556 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2557 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2558 : (abort (), "")), FILE); \
2559 fputs ("@pcrel(", FILE); \
2560 assemble_name (FILE, LABEL); \
2561 fputc (')', FILE); \
2562 } while (0)
c65ebc55
JW
2563\f
2564/* Cross Compilation and Floating Point. */
2565
2566/* Define to enable software floating point emulation. */
2567#define REAL_ARITHMETIC
2568
7b82b5da
SC
2569\f
2570/* Register Renaming Parameters. */
2571
2572/* A C expression that is nonzero if hard register number REGNO2 can be
2573 considered for use as a rename register for REGNO1 */
2574
2575#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
10c9f189 2576 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
7b82b5da
SC
2577
2578/* Define this macro if the compiler should use extended basic blocks
2579 when renaming registers. Define this macro if the target has predicate
2580 registers. */
2581
2582#define RENAME_EXTENDED_BLOCKS
2583
c65ebc55
JW
2584\f
2585/* Miscellaneous Parameters. */
2586
2587/* Define this if you have defined special-purpose predicates in the file
2588 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2589 expressions matched by the predicate. */
2590
2591#define PREDICATE_CODES \
2592{ "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
ec039e3c 2593{ "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
c65ebc55
JW
2594{ "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2595{ "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2596{ "function_operand", {SYMBOL_REF}}, \
2597{ "setjmp_operand", {SYMBOL_REF}}, \
4b983fdc 2598{ "destination_operand", {SUBREG, REG, MEM}}, \
0551c32d 2599{ "not_postinc_memory_operand", {MEM}}, \
c65ebc55
JW
2600{ "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2601 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
0551c32d
RH
2602{ "gr_register_operand", {SUBREG, REG}}, \
2603{ "fr_register_operand", {SUBREG, REG}}, \
2604{ "grfr_register_operand", {SUBREG, REG}}, \
2605{ "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
655f2eb9 2606{ "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
0551c32d
RH
2607{ "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2608{ "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2609{ "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2610{ "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2611{ "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2612{ "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2613{ "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2614 CONSTANT_P_RTX}}, \
0551c32d 2615{ "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2616 CONSTANT_P_RTX}}, \
0551c32d
RH
2617{ "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2618{ "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
c65ebc55
JW
2619{ "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2620{ "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2621 CONSTANT_P_RTX}}, \
2622{ "shladd_operand", {CONST_INT}}, \
2623{ "fetchadd_operand", {CONST_INT}}, \
0551c32d 2624{ "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
c65ebc55
JW
2625{ "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2626{ "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
f2f90c63 2627{ "signed_inequality_operator", {GE, GT, LE, LT}}, \
5527bf14 2628{ "predicate_operator", {NE, EQ}}, \
acb0638d 2629{ "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
97e242b0 2630{ "ar_lc_reg_operand", {REG}}, \
3f622353 2631{ "ar_ccv_reg_operand", {REG}}, \
6ca3c22f 2632{ "ar_pfs_reg_operand", {REG}}, \
3f622353
RH
2633{ "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2634{ "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2635{ "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
c65ebc55
JW
2636
2637/* An alias for a machine mode name. This is the machine mode that elements of
2638 a jump-table should have. */
2639
2640#define CASE_VECTOR_MODE Pmode
2641
2642/* Define as C expression which evaluates to nonzero if the tablejump
2643 instruction expects the table to contain offsets from the address of the
2644 table. */
2645
2646#define CASE_VECTOR_PC_RELATIVE 1
2647
2648/* Define this macro if operations between registers with integral mode smaller
2649 than a word are always performed on the entire register. */
2650
2651#define WORD_REGISTER_OPERATIONS
2652
2653/* Define this macro to be a C expression indicating when insns that read
2654 memory in MODE, an integral mode narrower than a word, set the bits outside
2655 of MODE to be either the sign-extension or the zero-extension of the data
2656 read. */
2657
2658#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2659
2660/* An alias for a tree code that should be used by default for conversion of
2661 floating point values to fixed point. */
2662
2663/* ??? Looks like this macro is obsolete and should be deleted everywhere. */
2664
2665#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2666
2667/* An alias for a tree code that is the easiest kind of division to compile
2668 code for in the general case. */
2669
2670#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2671
2672/* The maximum number of bytes that a single instruction can move quickly from
2673 memory to memory. */
2674#define MOVE_MAX 8
2675
2676/* A C expression which is nonzero if on this machine it is safe to "convert"
2677 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2678 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2679
2680#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2681
2682/* A C expression describing the value returned by a comparison operator with
2683 an integral mode and stored by a store-flag instruction (`sCOND') when the
2684 condition is true. */
2685
2686/* ??? Investigate using -1 instead of 1. */
2687
2688#define STORE_FLAG_VALUE 1
2689
2690/* An alias for the machine mode for pointers. */
2691
2692/* ??? This would change if we had ILP32 support. */
2693
2694#define Pmode DImode
2695
2696/* An alias for the machine mode used for memory references to functions being
2697 called, in `call' RTL expressions. */
2698
2699#define FUNCTION_MODE Pmode
2700
2701/* Define this macro to handle System V style pragmas: #pragma pack and
2702 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2703 defined. */
2704
2705#define HANDLE_SYSV_PRAGMA
2706
c65ebc55
JW
2707/* In rare cases, correct code generation requires extra machine dependent
2708 processing between the second jump optimization pass and delayed branch
2709 scheduling. On those machines, define this macro as a C statement to act on
2710 the code starting at INSN. */
2711
2712#define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2713
2714/* A C expression for the maximum number of instructions to execute via
2715 conditional execution instructions instead of a branch. A value of
2716 BRANCH_COST+1 is the default if the machine does not use
2717 cc0, and 1 if it does use cc0. */
2718/* ??? Investigate. */
2130b7fb
BS
2719#define MAX_CONDITIONAL_EXECUTE 12
2720
2130b7fb 2721extern int ia64_final_schedule;
c65ebc55 2722
0c96007e 2723#define IA64_UNWIND_INFO 1
0c96007e
AM
2724#define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2725
2a1ee410
RH
2726#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2727
0c96007e
AM
2728/* This function contains machine specific function data. */
2729struct machine_function
2730{
2731 /* The new stack pointer when unwinding from EH. */
2732 struct rtx_def* ia64_eh_epilogue_sp;
2733
2734 /* The new bsp value when unwinding from EH. */
2735 struct rtx_def* ia64_eh_epilogue_bsp;
97e242b0
RH
2736
2737 /* The GP value save register. */
2738 struct rtx_def* ia64_gp_save;
26a110f5
RH
2739
2740 /* The number of varargs registers to save. */
2741 int n_varargs;
0c96007e
AM
2742};
2743
2744
c65ebc55
JW
2745enum ia64_builtins
2746{
2747 IA64_BUILTIN_SYNCHRONIZE,
2748
2749 IA64_BUILTIN_FETCH_AND_ADD_SI,
2750 IA64_BUILTIN_FETCH_AND_SUB_SI,
2751 IA64_BUILTIN_FETCH_AND_OR_SI,
2752 IA64_BUILTIN_FETCH_AND_AND_SI,
2753 IA64_BUILTIN_FETCH_AND_XOR_SI,
2754 IA64_BUILTIN_FETCH_AND_NAND_SI,
2755
2756 IA64_BUILTIN_ADD_AND_FETCH_SI,
2757 IA64_BUILTIN_SUB_AND_FETCH_SI,
2758 IA64_BUILTIN_OR_AND_FETCH_SI,
2759 IA64_BUILTIN_AND_AND_FETCH_SI,
2760 IA64_BUILTIN_XOR_AND_FETCH_SI,
2761 IA64_BUILTIN_NAND_AND_FETCH_SI,
2762
2763 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2764 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2765
2766 IA64_BUILTIN_SYNCHRONIZE_SI,
2767
2768 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2769
2770 IA64_BUILTIN_LOCK_RELEASE_SI,
2771
2772 IA64_BUILTIN_FETCH_AND_ADD_DI,
2773 IA64_BUILTIN_FETCH_AND_SUB_DI,
2774 IA64_BUILTIN_FETCH_AND_OR_DI,
2775 IA64_BUILTIN_FETCH_AND_AND_DI,
2776 IA64_BUILTIN_FETCH_AND_XOR_DI,
2777 IA64_BUILTIN_FETCH_AND_NAND_DI,
2778
2779 IA64_BUILTIN_ADD_AND_FETCH_DI,
2780 IA64_BUILTIN_SUB_AND_FETCH_DI,
2781 IA64_BUILTIN_OR_AND_FETCH_DI,
2782 IA64_BUILTIN_AND_AND_FETCH_DI,
2783 IA64_BUILTIN_XOR_AND_FETCH_DI,
2784 IA64_BUILTIN_NAND_AND_FETCH_DI,
2785
2786 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2787 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2788
2789 IA64_BUILTIN_SYNCHRONIZE_DI,
2790
2791 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2792
ce152ef8
AM
2793 IA64_BUILTIN_LOCK_RELEASE_DI,
2794
2795 IA64_BUILTIN_BSP,
2796 IA64_BUILTIN_FLUSHRS
c65ebc55
JW
2797};
2798
2799/* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2800enum fetchop_code {
2801 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2802};
2803
c65ebc55 2804/* End of ia64.h */
This page took 0.690103 seconds and 5 git commands to generate.