]> gcc.gnu.org Git - gcc.git/blame - gcc/config/ia64/ia64.h
simplify-rtx.c (simplify_replace_rtx): Try to obtain mode from old and new operands...
[gcc.git] / gcc / config / ia64 / ia64.h
CommitLineData
e65271be 1/* Definitions of target machine GNU compiler. IA-64 version.
cf011243 2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
c65ebc55
JW
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
c65ebc55
JW
23/* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26/* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
c65ebc55
JW
29/* ??? Add support for short data/bss sections. */
30
31\f
32/* Run-time target specifications */
33
34/* Define this to be a string constant containing `-D' options to define the
35 predefined macros that identify this machine and system. These macros will
36 be predefined unless the `-ansi' option is specified. */
37/* ??? This is undefed in svr4.h. */
2b57e919 38#define CPP_PREDEFINES "-Dia64 -Amachine=ia64"
c65ebc55
JW
39
40/* This declaration should be present. */
41extern int target_flags;
42
43/* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46#define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48#define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50#define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52#define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54#define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
aebf2462 56/* 0x00000020 is available. */
c65ebc55 57
099dde21 58#define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
c65ebc55 59
099dde21 60#define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
c65ebc55 61
099dde21 62#define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
59da9a7d 63
099dde21
BS
64#define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
65
66#define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
59da9a7d 67
35d9f39d 68#define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
655f2eb9 69
35d9f39d 70#define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
655f2eb9 71
c65ebc55
JW
72#define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
73
74#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
75
76#define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
77
78#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
79
80#define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
81
82#define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
83
099dde21
BS
84#define TARGET_B_STEP (target_flags & MASK_B_STEP)
85
c65ebc55
JW
86#define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
87
88#define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
89
59da9a7d
JW
90#define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
91
92#define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
93
655f2eb9
RH
94#define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
95
96#define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
97
98#define TARGET_INLINE_DIV \
99 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
100
c65ebc55
JW
101#define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
102
103/* This macro defines names of command options to set and clear bits in
104 `target_flags'. Its definition is an initializer with a subgrouping for
105 each command option. */
106
59da9a7d 107#define TARGET_SWITCHES \
c65ebc55
JW
108{ \
109 { "big-endian", MASK_BIG_ENDIAN, \
047142d3 110 N_("Generate big endian code") }, \
c65ebc55 111 { "little-endian", -MASK_BIG_ENDIAN, \
047142d3 112 N_("Generate little endian code") }, \
c65ebc55 113 { "gnu-as", MASK_GNU_AS, \
047142d3 114 N_("Generate code for GNU as") }, \
c65ebc55 115 { "no-gnu-as", -MASK_GNU_AS, \
047142d3 116 N_("Generate code for Intel as") }, \
c65ebc55 117 { "gnu-ld", MASK_GNU_LD, \
047142d3 118 N_("Generate code for GNU ld") }, \
c65ebc55 119 { "no-gnu-ld", -MASK_GNU_LD, \
047142d3 120 N_("Generate code for Intel ld") }, \
c65ebc55 121 { "no-pic", MASK_NO_PIC, \
047142d3 122 N_("Generate code without GP reg") }, \
c65ebc55 123 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
047142d3 124 N_("Emit stop bits before and after volatile extended asms") }, \
c65ebc55 125 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
047142d3 126 N_("Don't emit stop bits before and after volatile extended asms") }, \
099dde21
BS
127 { "b-step", MASK_B_STEP, \
128 N_("Emit code for Itanium (TM) processor B step")}, \
c65ebc55 129 { "register-names", MASK_REG_NAMES, \
047142d3 130 N_("Use in/loc/out register names")}, \
c65ebc55 131 { "no-sdata", MASK_NO_SDATA, \
047142d3 132 N_("Disable use of sdata/scommon/sbss")}, \
c65ebc55 133 { "sdata", -MASK_NO_SDATA, \
047142d3 134 N_("Enable use of sdata/scommon/sbss")}, \
59da9a7d 135 { "constant-gp", MASK_CONST_GP, \
047142d3 136 N_("gp is constant (but save/restore gp on indirect calls)") }, \
59da9a7d 137 { "auto-pic", MASK_AUTO_PIC, \
047142d3 138 N_("Generate self-relocatable code") }, \
655f2eb9
RH
139 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
140 N_("Generate inline division, optimize for latency") }, \
141 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
142 N_("Generate inline division, optimize for throughput") }, \
c65ebc55 143 { "dwarf2-asm", MASK_DWARF2_ASM, \
047142d3 144 N_("Enable Dwarf 2 line debug info via GNU as")}, \
c65ebc55 145 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
047142d3 146 N_("Disable Dwarf 2 line debug info via GNU as")}, \
c65ebc55
JW
147 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
148 NULL } \
149}
150
151/* Default target_flags if no switches are specified */
152
153#ifndef TARGET_DEFAULT
154#define TARGET_DEFAULT MASK_DWARF2_ASM
155#endif
156
157#ifndef TARGET_CPU_DEFAULT
158#define TARGET_CPU_DEFAULT 0
159#endif
160
161/* This macro is similar to `TARGET_SWITCHES' but defines names of command
162 options that have values. Its definition is an initializer with a
163 subgrouping for each command option. */
164
165extern const char *ia64_fixed_range_string;
166#define TARGET_OPTIONS \
167{ \
168 { "fixed-range=", &ia64_fixed_range_string, \
047142d3 169 N_("Specify range of registers to make fixed.")}, \
c65ebc55
JW
170}
171
172/* This macro is a C statement to print on `stderr' a string describing the
173 particular machine description choice. */
174
175#define TARGET_VERSION fprintf (stderr, " (IA-64)");
176
177/* Sometimes certain combinations of command options do not make sense on a
178 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
179 take account of this. This macro, if defined, is executed once just after
180 all the command options have been parsed. */
181
182#define OVERRIDE_OPTIONS ia64_override_options ()
183
184/* Some machines may desire to change what optimizations are performed for
185 various optimization levels. This macro, if defined, is executed once just
186 after the optimization level is determined and before the remainder of the
187 command options have been parsed. Values set in this macro are used as the
188 default values for the other command line options. */
189
190/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
c65ebc55
JW
191\f
192/* Driver configuration */
193
194/* A C string constant that tells the GNU CC driver program options to pass to
195 CPP. It can also specify how to translate options you give to GNU CC into
196 options for GNU CC to pass to the CPP. */
197
198/* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
199/* ??? An alternative is to modify glimits.h to check for __LP64__ instead
200 of checked for CPU specific defines. We could also get rid of all LONG_MAX
201 defines in other tm.h files. */
202#define CPP_SPEC \
203 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
204 -D__LONG_MAX__=9223372036854775807L"
205
206/* If this macro is defined, the preprocessor will not define the builtin macro
207 `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must then be defined by
208 `CPP_SPEC' instead.
209
210 This should be defined if `SIZE_TYPE' depends on target dependent flags
211 which are not accessible to the preprocessor. Otherwise, it should not be
212 defined. */
213/* ??? Needs to be defined for P64 code. */
214/* #define NO_BUILTIN_SIZE_TYPE */
215
216/* If this macro is defined, the preprocessor will not define the builtin macro
217 `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__' must then be defined by
218 `CPP_SPEC' instead.
219
220 This should be defined if `PTRDIFF_TYPE' depends on target dependent flags
221 which are not accessible to the preprocessor. Otherwise, it should not be
222 defined. */
223/* ??? Needs to be defined for P64 code. */
224/* #define NO_BUILTIN_PTRDIFF_TYPE */
225
226/* A C string constant that tells the GNU CC driver program options to pass to
227 `cc1'. It can also specify how to translate options you give to GNU CC into
228 options for GNU CC to pass to the `cc1'. */
229
ad5042df
JJ
230#undef CC1_SPEC
231#define CC1_SPEC "%{G*}"
c65ebc55
JW
232
233/* A C string constant that tells the GNU CC driver program options to pass to
234 `cc1plus'. It can also specify how to translate options you give to GNU CC
235 into options for GNU CC to pass to the `cc1plus'. */
236
237/* #define CC1PLUS_SPEC "" */
238
239/* A C string constant that tells the GNU CC driver program options to pass to
240 the assembler. It can also specify how to translate options you give to GNU
241 CC into options for GNU CC to pass to the assembler. */
242
243#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_AS) != 0
244/* GNU AS. */
00e149c7
JW
245#define ASM_SPEC \
246 "%{mno-gnu-as:-N so} %{!mno-gnu-as:-x} %{mconstant-gp} %{mauto-pic}"
c65ebc55
JW
247#else
248/* Intel ias. */
00e149c7
JW
249#define ASM_SPEC \
250 "%{!mgnu-as:-N so} %{mgnu-as:-x} %{mconstant-gp:-M const_gp}\
251 %{mauto-pic:-M no_plabel}"
c65ebc55
JW
252#endif
253
254/* A C string constant that tells the GNU CC driver program options to pass to
255 the linker. It can also specify how to translate options you give to GNU CC
256 into options for GNU CC to pass to the linker. */
257
258/* The Intel linker does not support dynamic linking, so we need -dn.
259 The Intel linker gives annoying messages unless -N so is used. */
260#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_LD) != 0
261/* GNU LD. */
262#define LINK_SPEC "%{mno-gnu-ld:-dn -N so}"
263#else
264/* Intel ild. */
265#define LINK_SPEC "%{!mgnu-ld:-dn -N so}"
266#endif
267
268\f
269/* Storage Layout */
270
271/* Define this macro to have the value 1 if the most significant bit in a byte
272 has the lowest number; otherwise define it to have the value zero. */
273
274#define BITS_BIG_ENDIAN 0
275
276/* Define this macro to have the value 1 if the most significant byte in a word
277 has the lowest number. This macro need not be a constant. */
278
279#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
280
281/* Define this macro to have the value 1 if, in a multiword object, the most
282 significant word has the lowest number. */
283
284#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
285
286/* Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
287 constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
288 only when compiling libgcc2.c. Typically the value will be set based on
289 preprocessor defines. */
290#if defined(__BIG_ENDIAN__)
291#define LIBGCC2_WORDS_BIG_ENDIAN 1
292#else
293#define LIBGCC2_WORDS_BIG_ENDIAN 0
294#endif
295
296/* Define this macro to be the number of bits in an addressable storage unit
297 (byte); normally 8. */
298#define BITS_PER_UNIT 8
299
300/* Number of bits in a word; normally 32. */
301#define BITS_PER_WORD 64
302
303/* Number of storage units in a word; normally 4. */
304#define UNITS_PER_WORD 8
305
306/* Width of a pointer, in bits. You must specify a value no wider than the
307 width of `Pmode'. If it is not equal to the width of `Pmode', you must
308 define `POINTERS_EXTEND_UNSIGNED'. */
309/* ??? Implement optional 32 bit pointer size later? */
310#define POINTER_SIZE 64
311
312/* A C expression whose value is nonzero if pointers that need to be extended
313 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and zero if
314 they are zero-extended.
315
316 You need not define this macro if the `POINTER_SIZE' is equal to the width
317 of `Pmode'. */
318/* ??? May need this for 32 bit pointers. */
319/* #define POINTERS_EXTEND_UNSIGNED */
320
321/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
322 which has the specified mode and signedness is to be stored in a register.
323 This macro is only called when TYPE is a scalar type. */
c65ebc55
JW
324#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
325do \
326 { \
327 if (GET_MODE_CLASS (MODE) == MODE_INT \
dcf6e674
RH
328 && GET_MODE_SIZE (MODE) < 4) \
329 (MODE) = SImode; \
c65ebc55
JW
330 } \
331while (0)
332
333/* Define this macro if the promotion described by `PROMOTE_MODE' should also
334 be done for outgoing function arguments. */
335/* ??? ABI doesn't allow us to define this. */
336/* #define PROMOTE_FUNCTION_ARGS */
337
338/* Define this macro if the promotion described by `PROMOTE_MODE' should also
339 be done for the return value of functions.
340
341 If this macro is defined, `FUNCTION_VALUE' must perform the same promotions
342 done by `PROMOTE_MODE'. */
343/* ??? ABI doesn't allow us to define this. */
344/* #define PROMOTE_FUNCTION_RETURN */
345
346/* Normal alignment required for function parameters on the stack, in bits.
347 All stack parameters receive at least this much alignment regardless of data
348 type. On most machines, this is the same as the size of an integer. */
349#define PARM_BOUNDARY 64
350
351/* Define this macro if you wish to preserve a certain alignment for the stack
352 pointer. The definition is a C expression for the desired alignment
353 (measured in bits). */
354
355#define STACK_BOUNDARY 128
356
357/* Align frames on double word boundaries */
358#ifndef IA64_STACK_ALIGN
359#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
360#endif
361
362/* Alignment required for a function entry point, in bits. */
363#define FUNCTION_BOUNDARY 128
364
365/* Biggest alignment that any data type can require on this machine,
366 in bits. */
367/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
368 128 bit integers all require 128 bit alignment. */
369#define BIGGEST_ALIGNMENT 128
370
371/* If defined, a C expression to compute the alignment for a static variable.
372 TYPE is the data type, and ALIGN is the alignment that the object
373 would ordinarily have. The value of this macro is used instead of that
374 alignment to align the object. */
375
376#define DATA_ALIGNMENT(TYPE, ALIGN) \
377 (TREE_CODE (TYPE) == ARRAY_TYPE \
378 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
379 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
380
381/* If defined, a C expression to compute the alignment given to a constant that
382 is being placed in memory. CONSTANT is the constant and ALIGN is the
383 alignment that the object would ordinarily have. The value of this macro is
384 used instead of that alignment to align the object. */
385
386#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
387 (TREE_CODE (EXP) == STRING_CST \
388 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
389
390/* Define this macro to be the value 1 if instructions will fail to work if
391 given data not on the nominal alignment. If instructions will merely go
392 slower in that case, define this macro as 0. */
393#define STRICT_ALIGNMENT 1
394
395/* Define this if you wish to imitate the way many other C compilers handle
396 alignment of bitfields and the structures that contain them.
397 The behavior is that the type written for a bitfield (`int', `short', or
398 other integer type) imposes an alignment for the entire structure, as if the
399 structure really did contain an ordinary field of that type. In addition,
400 the bitfield is placed within the structure so that it would fit within such
401 a field, not crossing a boundary for it. */
402#define PCC_BITFIELD_TYPE_MATTERS 1
403
c65ebc55
JW
404/* An integer expression for the size in bits of the largest integer machine
405 mode that should actually be used. */
406
407/* Allow pairs of registers to be used, which is the intent of the default. */
408#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
409
410/* A code distinguishing the floating point format of the target machine. */
411#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
412
413/* GNU CC supports two ways of implementing C++ vtables: traditional or with
414 so-called "thunks". The flag `-fvtable-thunk' chooses between them. Define
415 this macro to be a C expression for the default value of that flag. If
416 `DEFAULT_VTABLE_THUNKS' is 0, GNU CC uses the traditional implementation by
417 default. The "thunk" implementation is more efficient (especially if you
418 have provided an implementation of `ASM_OUTPUT_MI_THUNK', but is not binary
419 compatible with code compiled using the traditional implementation. If you
420 are writing a new ports, define `DEFAULT_VTABLE_THUNKS' to 1.
421
422 If you do not define this macro, the default for `-fvtable-thunk' is 0. */
423#define DEFAULT_VTABLE_THUNKS 1
424
425\f
426/* Layout of Source Language Data Types */
427
428/* A C expression for the size in bits of the type `int' on the target machine.
429 If you don't define this, the default is one word. */
430#define INT_TYPE_SIZE 32
431
432/* A C expression for the size in bits of the type `short' on the target
433 machine. If you don't define this, the default is half a word. (If this
434 would be less than one storage unit, it is rounded up to one unit.) */
435#define SHORT_TYPE_SIZE 16
436
437/* A C expression for the size in bits of the type `long' on the target
438 machine. If you don't define this, the default is one word. */
439/* ??? Should be 32 for ILP32 code. */
440#define LONG_TYPE_SIZE 64
441
442/* Maximum number for the size in bits of the type `long' on the target
443 machine. If this is undefined, the default is `LONG_TYPE_SIZE'. Otherwise,
444 it is the constant value that is the largest value that `LONG_TYPE_SIZE' can
445 have at run-time. This is used in `cpp'. */
446/* ??? Should be 64 for ILP32 code. */
447/* #define MAX_LONG_TYPE_SIZE */
448
449/* A C expression for the size in bits of the type `long long' on the target
450 machine. If you don't define this, the default is two words. If you want
451 to support GNU Ada on your machine, the value of macro must be at least 64. */
452#define LONG_LONG_TYPE_SIZE 64
453
454/* A C expression for the size in bits of the type `char' on the target
455 machine. If you don't define this, the default is one quarter of a word.
456 (If this would be less than one storage unit, it is rounded up to one unit.) */
457#define CHAR_TYPE_SIZE 8
458
459/* A C expression for the size in bits of the type `float' on the target
460 machine. If you don't define this, the default is one word. */
461#define FLOAT_TYPE_SIZE 32
462
463/* A C expression for the size in bits of the type `double' on the target
464 machine. If you don't define this, the default is two words. */
465#define DOUBLE_TYPE_SIZE 64
466
467/* A C expression for the size in bits of the type `long double' on the target
468 machine. If you don't define this, the default is two words. */
3f622353
RH
469#define LONG_DOUBLE_TYPE_SIZE 128
470
471/* Tell real.c that this is the 80-bit Intel extended float format
472 packaged in a 128-bit entity. */
23c108af
SE
473
474#define INTEL_EXTENDED_IEEE_FORMAT 1
c65ebc55
JW
475
476/* An expression whose value is 1 or 0, according to whether the type `char'
477 should be signed or unsigned by default. The user can always override this
478 default with the options `-fsigned-char' and `-funsigned-char'. */
479#define DEFAULT_SIGNED_CHAR 1
480
481/* A C expression for a string describing the name of the data type to use for
482 size values. The typedef name `size_t' is defined using the contents of the
483 string. */
484/* ??? Needs to be defined for P64 code. */
485/* #define SIZE_TYPE */
486
487/* A C expression for a string describing the name of the data type to use for
488 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
489 defined using the contents of the string. See `SIZE_TYPE' above for more
490 information. */
491/* ??? Needs to be defined for P64 code. */
492/* #define PTRDIFF_TYPE */
493
494/* A C expression for a string describing the name of the data type to use for
495 wide characters. The typedef name `wchar_t' is defined using the contents
496 of the string. See `SIZE_TYPE' above for more information. */
497/* #define WCHAR_TYPE */
498
499/* A C expression for the size in bits of the data type for wide characters.
500 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
501/* #define WCHAR_TYPE_SIZE */
502
503/* Maximum number for the size in bits of the data type for wide characters.
504 If this is undefined, the default is `WCHAR_TYPE_SIZE'. Otherwise, it is
505 the constant value that is the largest value that `WCHAR_TYPE_SIZE' can have
506 at run-time. This is used in `cpp'. */
507/* #define MAX_WCHAR_TYPE_SIZE */
508
c65ebc55
JW
509\f
510/* Register Basics */
511
512/* Number of hardware registers known to the compiler.
5527bf14
RH
513 We have 128 general registers, 128 floating point registers,
514 64 predicate registers, 8 branch registers, one frame pointer,
515 and several "application" registers. */
c65ebc55 516
97e242b0 517#define FIRST_PSEUDO_REGISTER 335
c65ebc55
JW
518
519/* Ranges for the various kinds of registers. */
3b572406
RH
520#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
521#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
c65ebc55
JW
522#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
523#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
524#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
525#define GENERAL_REGNO_P(REGNO) \
526 (GR_REGNO_P (REGNO) \
527 || (REGNO) == FRAME_POINTER_REGNUM \
46327bc5 528 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
c65ebc55
JW
529
530#define GR_REG(REGNO) ((REGNO) + 0)
531#define FR_REG(REGNO) ((REGNO) + 128)
532#define PR_REG(REGNO) ((REGNO) + 256)
533#define BR_REG(REGNO) ((REGNO) + 320)
534#define OUT_REG(REGNO) ((REGNO) + 120)
535#define IN_REG(REGNO) ((REGNO) + 112)
536#define LOC_REG(REGNO) ((REGNO) + 32)
537
5527bf14 538#define AR_CCV_REGNUM 330
97e242b0
RH
539#define AR_UNAT_REGNUM 331
540#define AR_PFS_REGNUM 332
541#define AR_LC_REGNUM 333
542#define AR_EC_REGNUM 334
5527bf14 543
c65ebc55
JW
544#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
545#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
546#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
547
97e242b0
RH
548#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
549 || (REGNO) == AR_UNAT_REGNUM)
550#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
5527bf14
RH
551 && (REGNO) < FIRST_PSEUDO_REGISTER)
552#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
553 && (REGNO) < FIRST_PSEUDO_REGISTER)
554
555
c65ebc55
JW
556/* ??? Don't really need two sets of macros. I like this one better because
557 it is less typing. */
558#define R_GR(REGNO) GR_REG (REGNO)
559#define R_FR(REGNO) FR_REG (REGNO)
560#define R_PR(REGNO) PR_REG (REGNO)
561#define R_BR(REGNO) BR_REG (REGNO)
562
563/* An initializer that says which registers are used for fixed purposes all
564 throughout the compiled code and are therefore not available for general
565 allocation.
566
567 r0: constant 0
568 r1: global pointer (gp)
569 r12: stack pointer (sp)
570 r13: thread pointer (tp)
571 f0: constant 0.0
572 f1: constant 1.0
573 p0: constant true
574 fp: eliminable frame pointer */
575
1ff5b671
JW
576/* The last 16 stacked regs are reserved for the 8 input and 8 output
577 registers. */
c65ebc55 578
c65ebc55
JW
579#define FIXED_REGISTERS \
580{ /* General registers. */ \
581 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
582 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 587 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c65ebc55
JW
589 /* Floating-point registers. */ \
590 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
591 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
594 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
597 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
598 /* Predicate registers. */ \
599 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
603 /* Branch registers. */ \
604 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0
RH
605 /*FP RA CCV UNAT PFS LC EC */ \
606 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
607 }
608
5527bf14
RH
609/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
610 (in general) by function calls as well as for fixed registers. This
611 macro therefore identifies the registers that are not available for
612 general allocation of values that must live across function calls. */
c65ebc55 613
c65ebc55
JW
614#define CALL_USED_REGISTERS \
615{ /* General registers. */ \
616 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
617 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
620 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
97e242b0 622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1ff5b671 623 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
c65ebc55
JW
624 /* Floating-point registers. */ \
625 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
626 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
627 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
628 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
629 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
630 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
631 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
632 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
633 /* Predicate registers. */ \
634 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
638 /* Branch registers. */ \
639 1, 0, 0, 0, 0, 0, 1, 1, \
97e242b0
RH
640 /*FP RA CCV UNAT PFS LC EC */ \
641 1, 1, 1, 1, 1, 0, 1 \
c65ebc55
JW
642}
643
644/* Define this macro if the target machine has register windows. This C
645 expression returns the register number as seen by the called function
646 corresponding to the register number OUT as seen by the calling function.
647 Return OUT if register number OUT is not an outbound register. */
648
649#define INCOMING_REGNO(OUT) \
650 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
651
652/* Define this macro if the target machine has register windows. This C
653 expression returns the register number as seen by the calling function
654 corresponding to the register number IN as seen by the called function.
655 Return IN if register number IN is not an inbound register. */
656
657#define OUTGOING_REGNO(IN) \
658 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
659
2a3e384f
RH
660/* Define this macro if the target machine has register windows. This
661 C expression returns true if the register is call-saved but is in the
662 register window. */
663
664#define LOCAL_REGNO(REGNO) \
665 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
97e242b0
RH
666
667/* Add any extra modes needed to represent the condition code.
668
669 CCImode is used to mark a single predicate register instead
670 of a register pair. This is currently only used in reg_raw_mode
671 so that flow doesn't do something stupid. */
672
673#define EXTRA_CC_MODES CC(CCImode, "CCI")
674
675/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
676 return the mode to be used for the comparison. Must be defined if
677 EXTRA_CC_MODES is defined. */
678
679#define SELECT_CC_MODE(OP,X,Y) CCmode
c65ebc55
JW
680\f
681/* Order of allocation of registers */
682
683/* If defined, an initializer for a vector of integers, containing the numbers
684 of hard registers in the order in which GNU CC should prefer to use them
685 (from most preferred to least).
686
687 If this macro is not defined, registers are used lowest numbered first (all
688 else being equal).
689
690 One use of this macro is on machines where the highest numbered registers
691 must always be saved and the save-multiple-registers instruction supports
692 only sequences of consecutive registers. On such machines, define
693 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
694 allocatable register first. */
695
696/* ??? Should the GR return value registers come before or after the rest
697 of the caller-save GRs? */
698
97e242b0 699#define REG_ALLOC_ORDER \
c65ebc55
JW
700{ \
701 /* Caller-saved general registers. */ \
97e242b0
RH
702 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
703 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
704 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
c65ebc55 705 R_GR (30), R_GR (31), \
1ff5b671
JW
706 /* Output registers. */ \
707 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
97e242b0 708 R_GR (126), R_GR (127), \
c65ebc55 709 /* Caller-saved general registers, also used for return values. */ \
97e242b0 710 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
c65ebc55
JW
711 /* addl caller-saved general registers. */ \
712 R_GR (2), R_GR (3), \
713 /* Caller-saved FP registers. */ \
714 R_FR (6), R_FR (7), \
715 /* Caller-saved FP registers, used for parameters and return values. */ \
97e242b0
RH
716 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
717 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
c65ebc55 718 /* Rotating caller-saved FP registers. */ \
97e242b0
RH
719 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
720 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
721 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
722 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
723 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
724 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
725 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
726 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
727 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
728 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
729 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
730 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
c65ebc55
JW
731 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
732 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
733 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
734 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
97e242b0 735 R_FR (126), R_FR (127), \
c65ebc55 736 /* Caller-saved predicate registers. */ \
97e242b0 737 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
c65ebc55
JW
738 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
739 /* Rotating caller-saved predicate registers. */ \
97e242b0
RH
740 R_PR (16), R_PR (17), \
741 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
742 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
743 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
744 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
745 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
746 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
747 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
748 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
c65ebc55
JW
749 /* Caller-saved branch registers. */ \
750 R_BR (6), R_BR (7), \
751 \
752 /* Stacked callee-saved general registers. */ \
97e242b0
RH
753 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
754 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
755 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
756 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
757 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
758 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
759 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
760 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
761 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
762 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
763 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
764 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
c65ebc55
JW
765 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
766 R_GR (108), \
1ff5b671
JW
767 /* Input registers. */ \
768 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
769 R_GR (118), R_GR (119), \
c65ebc55
JW
770 /* Callee-saved general registers. */ \
771 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
772 /* Callee-saved FP registers. */ \
97e242b0
RH
773 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
774 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
775 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
c65ebc55
JW
776 R_FR (30), R_FR (31), \
777 /* Callee-saved predicate registers. */ \
97e242b0 778 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
c65ebc55
JW
779 /* Callee-saved branch registers. */ \
780 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
781 \
782 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
783 R_GR (109), R_GR (110), R_GR (111), \
c65ebc55
JW
784 \
785 /* Special general registers. */ \
97e242b0 786 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
c65ebc55
JW
787 /* Special FP registers. */ \
788 R_FR (0), R_FR (1), \
789 /* Special predicate registers. */ \
790 R_PR (0), \
791 /* Special branch registers. */ \
792 R_BR (0), \
5527bf14 793 /* Other fixed registers. */ \
46327bc5 794 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
97e242b0
RH
795 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
796 AR_EC_REGNUM \
c65ebc55 797}
c65ebc55
JW
798\f
799/* How Values Fit in Registers */
800
801/* A C expression for the number of consecutive hard registers, starting at
802 register number REGNO, required to hold a value of mode MODE. */
803
f2f90c63 804/* ??? We say that BImode PR values require two registers. This allows us to
97e242b0
RH
805 easily store the normal and inverted values. We use CCImode to indicate
806 a single predicate register. */
c65ebc55 807
97e242b0
RH
808#define HARD_REGNO_NREGS(REGNO, MODE) \
809 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
f2f90c63 810 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
97e242b0 811 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
23c108af 812 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
c65ebc55
JW
813 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
814
815/* A C expression that is nonzero if it is permissible to store a value of mode
816 MODE in hard register number REGNO (or in several registers starting with
817 that one). */
0ea1e106 818
f2f90c63
RH
819#define HARD_REGNO_MODE_OK(REGNO, MODE) \
820 (FR_REGNO_P (REGNO) ? \
23c108af
SE
821 GET_MODE_CLASS (MODE) != MODE_CC && \
822 (MODE) != TImode && \
823 (MODE) != BImode && \
824 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
f2f90c63
RH
825 : PR_REGNO_P (REGNO) ? \
826 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
827 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
828 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
829 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
3f622353 830 : 0)
c65ebc55
JW
831
832/* A C expression that is nonzero if it is desirable to choose register
833 allocation so as to avoid move instructions between a value of mode MODE1
834 and a value of mode MODE2.
835
836 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
837 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
838 zero. */
ad06f2e3 839/* Don't tie integer and FP modes, as that causes us to get integer registers
3f622353
RH
840 allocated for FP instructions. TFmode only supported in FP registers so
841 we can't tie it with any other modes. */
f2f90c63
RH
842#define MODES_TIEABLE_P(MODE1, MODE2) \
843 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
844 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
845 && (((MODE1) == BImode) == ((MODE2) == BImode)))
c65ebc55
JW
846\f
847/* Handling Leaf Functions */
848
849/* A C initializer for a vector, indexed by hard register number, which
850 contains 1 for a register that is allowable in a candidate for leaf function
851 treatment. */
852/* ??? This might be useful. */
853/* #define LEAF_REGISTERS */
854
855/* A C expression whose value is the register number to which REGNO should be
856 renumbered, when a function is treated as a leaf function. */
857/* ??? This might be useful. */
858/* #define LEAF_REG_REMAP(REGNO) */
859
860\f
861/* Register Classes */
862
863/* An enumeral type that must be defined with all the register class names as
864 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
865 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
866 which is not a register class but rather tells how many classes there
867 are. */
c65ebc55
JW
868/* ??? When compiling without optimization, it is possible for the only use of
869 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
870 Regclass handles this case specially and does not assign any costs to the
871 pseudo. The pseudo then ends up using the last class before ALL_REGS.
872 Thus we must not let either PR_REGS or BR_REGS be the last class. The
873 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
874enum reg_class
875{
876 NO_REGS,
877 PR_REGS,
878 BR_REGS,
879 ADDL_REGS,
880 GR_REGS,
c65ebc55 881 FR_REGS,
c65ebc55 882 GR_AND_FR_REGS,
5527bf14
RH
883 AR_M_REGS,
884 AR_I_REGS,
c65ebc55
JW
885 ALL_REGS,
886 LIM_REG_CLASSES
887};
888
889#define GENERAL_REGS GR_REGS
890
891/* The number of distinct register classes. */
892#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
893
894/* An initializer containing the names of the register classes as C string
895 constants. These names are used in writing some of the debugging dumps. */
896#define REG_CLASS_NAMES \
f2f90c63
RH
897{ "NO_REGS", "PR_REGS", "BR_REGS", "ADDL_REGS", "GR_REGS", "FR_REGS", \
898 "GR_AND_FR_REGS", "AR_M_REGS", "AR_I_REGS", "ALL_REGS" }
c65ebc55
JW
899
900/* An initializer containing the contents of the register classes, as integers
901 which are bit masks. The Nth integer specifies the contents of class N.
902 The way the integer MASK is interpreted is that register R is in the class
903 if `MASK & (1 << R)' is 1. */
904#define REG_CLASS_CONTENTS \
905{ \
906 /* NO_REGS. */ \
907 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
908 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 909 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
910 /* PR_REGS. */ \
911 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
912 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 913 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
c65ebc55
JW
914 /* BR_REGS. */ \
915 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
916 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 917 0x00000000, 0x00000000, 0x00FF }, \
c65ebc55
JW
918 /* ADDL_REGS. */ \
919 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
920 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 921 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
922 /* GR_REGS. */ \
923 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
924 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
5527bf14 925 0x00000000, 0x00000000, 0x0300 }, \
c65ebc55
JW
926 /* FR_REGS. */ \
927 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
928 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14 929 0x00000000, 0x00000000, 0x0000 }, \
c65ebc55
JW
930 /* GR_AND_FR_REGS. */ \
931 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
932 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
5527bf14
RH
933 0x00000000, 0x00000000, 0x0300 }, \
934 /* AR_M_REGS. */ \
935 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
936 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 937 0x00000000, 0x00000000, 0x0C00 }, \
5527bf14
RH
938 /* AR_I_REGS. */ \
939 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
940 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
97e242b0 941 0x00000000, 0x00000000, 0x7000 }, \
c65ebc55
JW
942 /* ALL_REGS. */ \
943 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
944 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
97e242b0 945 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
c65ebc55
JW
946}
947
948/* A C expression whose value is a register class containing hard register
949 REGNO. In general there is more than one such class; choose a class which
950 is "minimal", meaning that no smaller class also contains the register. */
951/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
952 may call here with private (invalid) register numbers, such as
953 REG_VOLATILE. */
954#define REGNO_REG_CLASS(REGNO) \
955(ADDL_REGNO_P (REGNO) ? ADDL_REGS \
956 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
13da91fd 957 : FR_REGNO_P (REGNO) ? FR_REGS \
c65ebc55
JW
958 : PR_REGNO_P (REGNO) ? PR_REGS \
959 : BR_REGNO_P (REGNO) ? BR_REGS \
97e242b0
RH
960 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
961 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
c65ebc55
JW
962 : NO_REGS)
963
964/* A macro whose definition is the name of the class to which a valid base
965 register must belong. A base register is one used in an address which is
966 the register value plus a displacement. */
967#define BASE_REG_CLASS GENERAL_REGS
968
969/* A macro whose definition is the name of the class to which a valid index
970 register must belong. An index register is one used in an address where its
971 value is either multiplied by a scale factor or added to another register
cf606f45
JW
972 (as well as added to a displacement). This is needed for POST_MODIFY. */
973#define INDEX_REG_CLASS GENERAL_REGS
c65ebc55
JW
974
975/* A C expression which defines the machine-dependent operand constraint
976 letters for register classes. If CHAR is such a letter, the value should be
977 the register class corresponding to it. Otherwise, the value should be
978 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
979 will not be passed to this macro; you do not need to handle it. */
980
981#define REG_CLASS_FROM_LETTER(CHAR) \
13da91fd 982((CHAR) == 'f' ? FR_REGS \
c65ebc55
JW
983 : (CHAR) == 'a' ? ADDL_REGS \
984 : (CHAR) == 'b' ? BR_REGS \
985 : (CHAR) == 'c' ? PR_REGS \
5527bf14
RH
986 : (CHAR) == 'd' ? AR_M_REGS \
987 : (CHAR) == 'e' ? AR_I_REGS \
c65ebc55
JW
988 : NO_REGS)
989
990/* A C expression which is nonzero if register number NUM is suitable for use
991 as a base register in operand addresses. It may be either a suitable hard
992 register or a pseudo register that has been allocated such a hard reg. */
993#define REGNO_OK_FOR_BASE_P(REGNO) \
994 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
995
996/* A C expression which is nonzero if register number NUM is suitable for use
997 as an index register in operand addresses. It may be either a suitable hard
cf606f45
JW
998 register or a pseudo register that has been allocated such a hard reg.
999 This is needed for POST_MODIFY. */
1000#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
c65ebc55
JW
1001
1002/* A C expression that places additional restrictions on the register class to
1003 use when it is necessary to copy value X into a register in class CLASS.
1004 The value is a register class; perhaps CLASS, or perhaps another, smaller
1005 class. */
1006
ffaff414
JW
1007/* Don't allow volatile mem reloads into floating point registers. This
1008 is defined to force reload to choose the r/m case instead of the f/f case
f2f90c63
RH
1009 when reloading (set (reg fX) (mem/v)).
1010
1011 Do not reload expressions into AR regs. */
ffaff414
JW
1012
1013#define PREFERRED_RELOAD_CLASS(X, CLASS) \
f2f90c63 1014 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
036099eb 1015 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
f2f90c63 1016 : GET_RTX_CLASS (GET_CODE (X)) != 'o' && CLASS > GR_AND_FR_REGS ? NO_REGS \
ffaff414 1017 : CLASS)
c65ebc55
JW
1018
1019/* You should define this macro to indicate to the reload phase that it may
1020 need to allocate at least one register for a reload in addition to the
1021 register to contain the data. Specifically, if copying X to a register
1022 CLASS in MODE requires an intermediate register, you should define this
1023 to return the largest register class all of whose registers can be used
1024 as intermediate registers or scratch registers. */
1025
1026#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1027 ia64_secondary_reload_class (CLASS, MODE, X)
1028
1029/* Certain machines have the property that some registers cannot be copied to
1030 some other registers without using memory. Define this macro on those
1031 machines to be a C expression that is non-zero if objects of mode M in
1032 registers of CLASS1 can only be copied to registers of class CLASS2 by
1033 storing a register of CLASS1 into memory and loading that memory location
1034 into a register of CLASS2. */
3f622353
RH
1035
1036#if 0
1037/* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1038 I'm not quite sure how it could be invoked. The normal problems
1039 with unions should be solved with the addressof fiddling done by
1040 movtf and friends. */
1041#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1042 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1043 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1044#endif
c65ebc55
JW
1045
1046/* A C expression for the maximum number of consecutive registers of
1047 class CLASS needed to hold a value of mode MODE.
1048 This is closely related to the macro `HARD_REGNO_NREGS'. */
1049
1050#define CLASS_MAX_NREGS(CLASS, MODE) \
f2f90c63 1051 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
3f622353 1052 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
c65ebc55
JW
1053 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1054
02188693
RH
1055/* If defined, gives a class of registers that cannot be used as the
1056 operand of a SUBREG that changes the mode of the object illegally. */
1057
1058#define CLASS_CANNOT_CHANGE_MODE FR_REGS
1059
46146529
JW
1060/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
1061 In FP regs, we can't change FP values to integer values and vice
1062 versa, but we can change e.g. DImode to SImode. */
02188693 1063
46146529
JW
1064#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1065 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
02188693 1066
97e242b0
RH
1067/* A C expression that defines the machine-dependent operand constraint
1068 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1069 integer values. */
c65ebc55
JW
1070
1071/* 14 bit signed immediate for arithmetic instructions. */
1072#define CONST_OK_FOR_I(VALUE) \
1073 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1074/* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1075#define CONST_OK_FOR_J(VALUE) \
1076 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1077/* 8 bit signed immediate for logical instructions. */
1078#define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1079/* 8 bit adjusted signed immediate for compare pseudo-ops. */
1080#define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1081/* 6 bit unsigned immediate for shift counts. */
1082#define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1083/* 9 bit signed immediate for load/store post-increments. */
c65ebc55
JW
1084#define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1085/* 0 for r0. Used by Linux kernel, do not change. */
1086#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1087/* 0 or -1 for dep instruction. */
1088#define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1089
1090#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1091((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1092 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1093 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1094 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1095 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1096 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1097 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1098 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1099 : 0)
1100
1101/* A C expression that defines the machine-dependent operand constraint letters
1102 (`G', `H') that specify particular ranges of `const_double' values. */
1103
1104/* 0.0 and 1.0 for fr0 and fr1. */
1105#define CONST_DOUBLE_OK_FOR_G(VALUE) \
1106 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1107 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1108
1109#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1110 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1111
1112/* A C expression that defines the optional machine-dependent constraint
1113 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1114 types of operands, usually memory references, for the target machine. */
3b572406 1115
041f25e6 1116/* Non-volatile memory for FP_REG loads/stores. */
3b572406
RH
1117#define CONSTRAINT_OK_FOR_Q(VALUE) \
1118 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
041f25e6
RH
1119/* 1..4 for shladd arguments. */
1120#define CONSTRAINT_OK_FOR_R(VALUE) \
1121 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
0551c32d
RH
1122/* Non-post-inc memory for asms and other unsavory creatures. */
1123#define CONSTRAINT_OK_FOR_S(VALUE) \
1124 (GET_CODE (VALUE) == MEM \
1125 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1126 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
3b572406
RH
1127
1128#define EXTRA_CONSTRAINT(VALUE, C) \
041f25e6
RH
1129 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1130 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
0551c32d 1131 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
041f25e6 1132 : 0)
c65ebc55
JW
1133\f
1134/* Basic Stack Layout */
1135
1136/* Define this macro if pushing a word onto the stack moves the stack pointer
1137 to a smaller address. */
1138#define STACK_GROWS_DOWNWARD 1
1139
1140/* Define this macro if the addresses of local variable slots are at negative
1141 offsets from the frame pointer. */
97e242b0
RH
1142/* #define FRAME_GROWS_DOWNWARD */
1143
1144/* Offset from the frame pointer to the first local variable slot to
1145 be allocated. */
1146#define STARTING_FRAME_OFFSET 0
c65ebc55
JW
1147
1148/* Offset from the stack pointer register to the first location at which
1149 outgoing arguments are placed. If not specified, the default value of zero
1150 is used. This is the proper value for most machines. */
1151/* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1152#define STACK_POINTER_OFFSET 16
1153
1154/* Offset from the argument pointer register to the first argument's address.
1155 On some machines it may depend on the data type of the function. */
1156#define FIRST_PARM_OFFSET(FUNDECL) 0
1157
1158/* A C expression whose value is RTL representing the value of the return
1159 address for the frame COUNT steps up from the current frame, after the
1160 prologue. */
1161
1162/* ??? Frames other than zero would likely require interpreting the frame
1163 unwind info, so we don't try to support them. We would also need to define
1164 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1165
46327bc5
RH
1166#define RETURN_ADDR_RTX(COUNT, FRAME) \
1167 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
c65ebc55
JW
1168
1169/* A C expression whose value is RTL representing the location of the incoming
1170 return address at the beginning of any function, before the prologue. This
1171 RTL is either a `REG', indicating that the return value is saved in `REG',
1172 or a `MEM' representing a location in the stack. This enables DWARF2
1173 unwind info for C++ EH. */
1174#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
13da91fd 1175
c65ebc55
JW
1176/* ??? This is not defined because of three problems.
1177 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1178 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1179 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1180 unused register number.
1181 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1182 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1183 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1184 to zero, despite what the documentation implies, because it is tested in
1185 a few places with #ifdef instead of #if. */
1186#undef INCOMING_RETURN_ADDR_RTX
1187
1188/* A C expression whose value is an integer giving the offset, in bytes, from
1189 the value of the stack pointer register to the top of the stack frame at the
1190 beginning of any function, before the prologue. The top of the frame is
1191 defined to be the value of the stack pointer in the previous frame, just
1192 before the call instruction. */
1193#define INCOMING_FRAME_SP_OFFSET 0
1194
1195\f
1196/* Register That Address the Stack Frame. */
1197
1198/* The register number of the stack pointer register, which must also be a
1199 fixed register according to `FIXED_REGISTERS'. On most machines, the
1200 hardware determines which register this is. */
1201
1202#define STACK_POINTER_REGNUM 12
1203
1204/* The register number of the frame pointer register, which is used to access
1205 automatic variables in the stack frame. On some machines, the hardware
1206 determines which register this is. On other machines, you can choose any
1207 register you wish for this purpose. */
1208
1209#define FRAME_POINTER_REGNUM 328
1210
97e242b0
RH
1211/* Base register for access to local variables of the function. */
1212#define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
c65ebc55
JW
1213
1214/* The register number of the arg pointer register, which is used to access the
1215 function's argument list. */
1216/* r0 won't otherwise be used, so put the always eliminated argument pointer
1217 in it. */
1218#define ARG_POINTER_REGNUM R_GR(0)
1219
97e242b0
RH
1220/* The register number for the return address register. For IA-64, this
1221 is not actually a pointer as the name suggests, but that's a name that
1222 gen_rtx_REG already takes care to keep unique. We modify
1223 return_address_pointer_rtx in ia64_expand_prologue to reference the
1224 final output regnum. */
46327bc5 1225#define RETURN_ADDRESS_POINTER_REGNUM 329
c65ebc55
JW
1226
1227/* Register numbers used for passing a function's static chain pointer. */
97e242b0 1228/* ??? The ABI sez the static chain should be passed as a normal parameter. */
c65ebc55 1229#define STATIC_CHAIN_REGNUM 15
c65ebc55
JW
1230\f
1231/* Eliminating the Frame Pointer and the Arg Pointer */
1232
1233/* A C expression which is nonzero if a function must have and use a frame
1234 pointer. This expression is evaluated in the reload pass. If its value is
1235 nonzero the function will have a frame pointer. */
c65ebc55
JW
1236#define FRAME_POINTER_REQUIRED 0
1237
97e242b0
RH
1238/* Show we can debug even without a frame pointer. */
1239#define CAN_DEBUG_WITHOUT_FP
1240
c65ebc55
JW
1241/* If defined, this macro specifies a table of register pairs used to eliminate
1242 unneeded registers that point into the stack frame. */
1243
1244#define ELIMINABLE_REGS \
1245{ \
1246 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0 1247 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
46327bc5 1248 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
97e242b0
RH
1249 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1250 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
c65ebc55
JW
1251}
1252
1253/* A C expression that returns non-zero if the compiler is allowed to try to
97e242b0
RH
1254 replace register number FROM with register number TO. The frame pointer
1255 is automatically handled. */
c65ebc55 1256
46327bc5
RH
1257#define CAN_ELIMINATE(FROM, TO) \
1258 (TO == BR_REG (0) ? current_function_is_leaf : 1)
c65ebc55 1259
97e242b0
RH
1260/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1261 specifies the initial difference between the specified pair of
1262 registers. This macro must be defined if `ELIMINABLE_REGS' is
1263 defined. */
1264#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1265 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
c65ebc55
JW
1266\f
1267/* Passing Function Arguments on the Stack */
1268
1269/* Define this macro if an argument declared in a prototype as an integral type
1270 smaller than `int' should actually be passed as an `int'. In addition to
1271 avoiding errors in certain cases of mismatch, it also makes for better code
1272 on certain machines. */
1273/* ??? Investigate. */
1274/* #define PROMOTE_PROTOTYPES */
1275
1276/* If defined, the maximum amount of space required for outgoing arguments will
1277 be computed and placed into the variable
1278 `current_function_outgoing_args_size'. */
1279
f73ad30e 1280#define ACCUMULATE_OUTGOING_ARGS 1
c65ebc55
JW
1281
1282/* A C expression that should indicate the number of bytes of its own arguments
1283 that a function pops on returning, or 0 if the function pops no arguments
1284 and the caller must therefore pop them all after the function returns. */
1285
1286#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1287
1288\f
1289/* Function Arguments in Registers */
1290
1291#define MAX_ARGUMENT_SLOTS 8
1292#define MAX_INT_RETURN_SLOTS 4
1293#define GR_ARG_FIRST IN_REG (0)
1294#define GR_RET_FIRST GR_REG (8)
1295#define GR_RET_LAST GR_REG (11)
1296#define FR_ARG_FIRST FR_REG (8)
1297#define FR_RET_FIRST FR_REG (8)
1298#define FR_RET_LAST FR_REG (15)
1299#define AR_ARG_FIRST OUT_REG (0)
1300
1301/* A C expression that controls whether a function argument is passed in a
1302 register, and which register. */
1303
1304#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1305 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1306
1307/* Define this macro if the target machine has "register windows", so that the
1308 register in which a function sees an arguments is not necessarily the same
1309 as the one in which the caller passed the argument. */
1310
1311#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1312 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1313
1314/* A C expression for the number of words, at the beginning of an argument,
1315 must be put in registers. The value must be zero for arguments that are
1316 passed entirely in registers or that are entirely pushed on the stack. */
1317
1318#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1319 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1320
1321/* A C expression that indicates when an argument must be passed by reference.
1322 If nonzero for an argument, a copy of that argument is made in memory and a
1323 pointer to the argument is passed instead of the argument itself. The
1324 pointer is passed in whatever way is appropriate for passing a pointer to
1325 that type. */
1326
1327#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1328
1329/* A C type for declaring a variable that is used as the first argument of
1330 `FUNCTION_ARG' and other related values. For some target machines, the type
1331 `int' suffices and can hold the number of bytes of argument so far. */
1332
1333typedef struct ia64_args
1334{
1335 int words; /* # words of arguments so far */
1336 int fp_regs; /* # FR registers used so far */
1337 int prototype; /* whether function prototyped */
1338} CUMULATIVE_ARGS;
1339
1340/* A C statement (sans semicolon) for initializing the variable CUM for the
1341 state at the beginning of the argument list. */
1342
1343#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1344do { \
1345 (CUM).words = 0; \
1346 (CUM).fp_regs = 0; \
1347 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1348} while (0)
1349
1350/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1351 arguments for the function being compiled. If this macro is undefined,
1352 `INIT_CUMULATIVE_ARGS' is used instead. */
1353
1354/* We set prototype to true so that we never try to return a PARALLEL from
1355 function_arg. */
1356#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1357do { \
1358 (CUM).words = 0; \
1359 (CUM).fp_regs = 0; \
1360 (CUM).prototype = 1; \
1361} while (0)
1362
1363/* A C statement (sans semicolon) to update the summarizer variable CUM to
1364 advance past an argument in the argument list. The values MODE, TYPE and
1365 NAMED describe that argument. Once this is done, the variable CUM is
1366 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1367
1368#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1369 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1370
1371/* If defined, a C expression that gives the alignment boundary, in bits, of an
1372 argument with the specified mode and type. */
1373
93dd6255
JW
1374/* Arguments with alignment larger than 8 bytes start at the next even
1375 boundary. See ia64_function_arg. */
c65ebc55
JW
1376
1377#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
93dd6255
JW
1378 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1379 : (((((MODE) == BLKmode \
1380 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1381 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1382 ? 128 : PARM_BOUNDARY)
c65ebc55
JW
1383
1384/* A C expression that is nonzero if REGNO is the number of a hard register in
1385 which function arguments are sometimes passed. This does *not* include
1386 implicit arguments such as the static chain and the structure-value address.
1387 On many machines, no registers can be used for this purpose since all
1388 function arguments are pushed on the stack. */
1389#define FUNCTION_ARG_REGNO_P(REGNO) \
1390(((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1391 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1392\f
1393/* Implement `va_start' for varargs and stdarg. */
1394#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1395 ia64_va_start (stdarg, valist, nextarg)
1396
1397/* Implement `va_arg'. */
1398#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1399 ia64_va_arg (valist, type)
1400\f
1401/* How Scalar Function Values are Returned */
1402
1403/* A C expression to create an RTX representing the place where a function
1404 returns a value of data type VALTYPE. */
1405
1406#define FUNCTION_VALUE(VALTYPE, FUNC) \
1407 ia64_function_value (VALTYPE, FUNC)
1408
1409/* A C expression to create an RTX representing the place where a library
1410 function returns a value of mode MODE. */
1411
1412#define LIBCALL_VALUE(MODE) \
1413 gen_rtx_REG (MODE, \
23c108af
SE
1414 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1415 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1416 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
c65ebc55
JW
1417 ? FR_RET_FIRST : GR_RET_FIRST))
1418
1419/* A C expression that is nonzero if REGNO is the number of a hard register in
1420 which the values of called function may come back. */
1421
1422#define FUNCTION_VALUE_REGNO_P(REGNO) \
1423 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1424 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1425
1426\f
1427/* How Large Values are Returned */
1428
1429/* A nonzero value says to return the function value in memory, just as large
1430 structures are always returned. */
1431
1432#define RETURN_IN_MEMORY(TYPE) \
1433 ia64_return_in_memory (TYPE)
1434
1435/* If you define this macro to be 0, then the conventions used for structure
1436 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1437
1438#define DEFAULT_PCC_STRUCT_RETURN 0
1439
1440/* If the structure value address is passed in a register, then
1441 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1442
1443#define STRUCT_VALUE_REGNUM GR_REG (8)
1444
1445\f
1446/* Caller-Saves Register Allocation */
1447
1448/* A C expression to determine whether it is worthwhile to consider placing a
1449 pseudo-register in a call-clobbered hard register and saving and restoring
1450 it around each function call. The expression should be 1 when this is worth
1451 doing, and 0 otherwise.
1452
1453 If you don't define this macro, a default is used which is good on most
1454 machines: `4 * CALLS < REFS'. */
1455/* ??? Investigate. */
1456/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1457
1458\f
1459/* Function Entry and Exit */
1460
c65ebc55
JW
1461/* Define this macro as a C expression that is nonzero if the return
1462 instruction or the function epilogue ignores the value of the stack pointer;
1463 in other words, if it is safe to delete an instruction to adjust the stack
1464 pointer before a return from the function. */
1465
1466#define EXIT_IGNORE_STACK 1
1467
1468/* Define this macro as a C expression that is nonzero for registers
1469 used by the epilogue or the `return' pattern. */
1470
1471#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1472
3b572406
RH
1473/* Output at beginning of assembler file. */
1474
1475#define ASM_FILE_START(FILE) \
ca3920ad 1476 emit_safe_across_calls (FILE)
3b572406 1477
c65ebc55
JW
1478/* A C compound statement that outputs the assembler code for a thunk function,
1479 used to implement C++ virtual function calls with multiple inheritance. */
1480
c65ebc55
JW
1481#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1482do { \
591eb4ba
JW
1483 if (CONST_OK_FOR_I (DELTA)) \
1484 fprintf (FILE, "\tadds r32 = %d, r32\n", (DELTA)); \
1485 else \
1486 { \
1487 if (CONST_OK_FOR_J (DELTA)) \
1488 fprintf (FILE, "\taddl r2 = %d, r0\n", (DELTA)); \
1489 else \
1490 fprintf (FILE, "\tmovl r2 = %d\n", (DELTA)); \
1491 fprintf (FILE, "\t;;\n"); \
1492 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1493 } \
c65ebc55
JW
1494 fprintf (FILE, "\tbr "); \
1495 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1496 fprintf (FILE, "\n"); \
1497} while (0)
1498
1499\f
1500/* Generating Code for Profiling. */
1501
1502/* A C statement or compound statement to output to FILE some assembler code to
1503 call the profiling subroutine `mcount'. */
1504
1505/* ??? Unclear if this will actually work. No way to test this currently. */
1506
1507#define FUNCTION_PROFILER(FILE, LABELNO) \
1508do { \
1509 char buf[20]; \
1510 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1511 fputs ("\taddl r16 = @ltoff(", FILE); \
1512 assemble_name (FILE, buf); \
1513 fputs ("), gp\n", FILE); \
1514 fputs ("\tmov r17 = r1;;\n", FILE); \
1515 fputs ("\tld8 out0 = [r16]\n", FILE); \
1516 fputs ("\tmov r18 = b0\n", FILE); \
1517 fputs ("\tbr.call.sptk.many rp = mcount;;\n", FILE); \
1518 fputs ("\tmov b0 = r18\n", FILE); \
1519 fputs ("\tmov r1 = r17;;\n", FILE); \
1520} while (0)
1521
1522/* A C statement or compound statement to output to FILE some assembler code to
1523 initialize basic-block profiling for the current object module. */
1524
1525/* ??? Unclear if this will actually work. No way to test this currently. */
1526
1527#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1528do { \
1529 int labelno = LABELNO; \
1530 switch (profile_block_flag) \
1531 { \
1532 case 2: \
1533 fputs ("\taddl r16 = @ltoff(LPBX0), gp\n", FILE); \
1534 fprintf (FILE, "\tmov out1 = %d;;\n", labelno); \
1535 fputs ("\tld8 out0 = [r16]\n", FILE); \
1536 fputs ("\tmov r17 = r1\n", FILE); \
1537 fputs ("\tmov r18 = b0\n", FILE); \
1538 fputs ("\tbr.call.sptk.many rp = __bb_init_trace_func;;\n", FILE);\
1539 fputs ("\tmov r1 = r17\n", FILE); \
1540 fputs ("\tmov b0 = r18;;\n", FILE); \
1541 break; \
1542 default: \
1543 fputs ("\taddl r16 = @ltoff(LPBX0), gp;;\n", FILE); \
1544 fputs ("\tld8 out0 = [r16];;\n", FILE); \
1545 fputs ("\tld8 r17 = [out0];;\n", FILE); \
1546 fputs ("\tcmp.eq p6, p0 = r0, r17;;\n", FILE); \
1547 fputs ("(p6)\tmov r16 = r1\n", FILE); \
1548 fputs ("(p6)\tmov r17 = b0\n", FILE); \
1549 fputs ("(p6)\tbr.call.sptk.many rp = __bb_init_func;;\n", FILE); \
1550 fputs ("(p6)\tmov r1 = r16\n", FILE); \
1551 fputs ("(p6)\tmov b0 = r17;;\n", FILE); \
1552 break; \
1553 } \
1554} while (0)
1555
1556/* A C statement or compound statement to output to FILE some assembler code to
1557 increment the count associated with the basic block number BLOCKNO. */
1558
1559/* ??? This can't work unless we mark some registers as fixed, so that we
1560 can use them as temporaries in this macro. We need two registers for -a
1561 profiling and 4 registers for -ax profiling. */
1562
1563#define BLOCK_PROFILER(FILE, BLOCKNO) \
1564do { \
1565 int blockn = BLOCKNO; \
1566 switch (profile_block_flag) \
1567 { \
1568 case 2: \
1569 fputs ("\taddl r2 = @ltoff(__bb), gp\n", FILE); \
1570 fputs ("\taddl r3 = @ltoff(LPBX0), gp;;\n", FILE); \
1571 fprintf (FILE, "\tmov r9 = %d\n", blockn); \
1572 fputs ("\tld8 r2 = [r2]\n", FILE); \
1573 fputs ("\tld8 r3 = [r3];;\n", FILE); \
1574 fputs ("\tadd r8 = 8, r2\n", FILE); \
1575 fputs ("\tst8 [r2] = r9;;\n", FILE); \
1576 fputs ("\tst8 [r8] = r3\n", FILE); \
1577 fputs ("\tbr.call.sptk.many rp = __bb_trace_func\n", FILE); \
1578 break; \
1579 \
1580 default: \
1581 fputs ("\taddl r2 = @ltoff(LPBX2), gp;;\n", FILE); \
1582 fputs ("\tld8 r2 = [r2];;\n", FILE); \
1583 fprintf (FILE, "\taddl r2 = %d, r2;;\n", 8 * blockn); \
1584 fputs ("\tld8 r3 = [r2];;\n", FILE); \
1585 fputs ("\tadd r3 = 1, r3;;\n", FILE); \
1586 fputs ("\tst8 [r2] = r3;;\n", FILE); \
1587 break; \
1588 } \
1589} while(0)
1590
1591/* A C statement or compound statement to output to FILE assembler
1592 code to call function `__bb_trace_ret'. */
1593
1594/* ??? Unclear if this will actually work. No way to test this currently. */
1595
1596/* ??? This needs to be emitted into the epilogue. Perhaps rewrite to emit
1597 rtl and call from ia64_expand_epilogue? */
1598
1599#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1600 fputs ("\tbr.call.sptk.many rp = __bb_trace_ret\n", FILE);
1601#undef FUNCTION_BLOCK_PROFILER_EXIT
1602
1603/* A C statement or compound statement to save all registers, which may be
1604 clobbered by a function call, including condition codes. */
1605
1606/* ??? We would have to save 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1607 other things. This is not practical. Perhaps leave this feature (-ax)
1608 unsupported by undefining above macros? */
1609
1610/* #define MACHINE_STATE_SAVE(ID) */
1611
1612/* A C statement or compound statement to restore all registers, including
1613 condition codes, saved by `MACHINE_STATE_SAVE'. */
1614
1615/* ??? We would have to restore 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1616 other things. This is not practical. Perhaps leave this feature (-ax)
1617 unsupported by undefining above macros? */
1618
1619/* #define MACHINE_STATE_RESTORE(ID) */
1620
1621\f
1622/* Implementing the Varargs Macros. */
1623
1624/* Define this macro to store the anonymous register arguments into the stack
1625 so that all the arguments appear to have been passed consecutively on the
1626 stack. */
1627
1628#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1629 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1630
1631/* Define this macro if the location where a function argument is passed
1632 depends on whether or not it is a named argument. */
1633
1634#define STRICT_ARGUMENT_NAMING 1
1635
1636\f
1637/* Trampolines for Nested Functions. */
1638
1639/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1640 the function containing a non-local goto target. */
1641
1642#define STACK_SAVEAREA_MODE(LEVEL) \
1643 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1644
1645/* Output assembler code for a block containing the constant parts of
1646 a trampoline, leaving space for the variable parts.
1647
1648 The trampoline should set the static chain pointer to value placed
97e242b0
RH
1649 into the trampoline and should branch to the specified routine.
1650 To make the normal indirect-subroutine calling convention work,
1651 the trampoline must look like a function descriptor; the first
1652 word being the target address and the second being the target's
1653 global pointer.
1654
1655 We abuse the concept of a global pointer by arranging for it
1656 to point to the data we need to load. The complete trampoline
c65ebc55
JW
1657 has the following form:
1658
97e242b0
RH
1659 +-------------------+ \
1660 TRAMP: | __ia64_trampoline | |
1661 +-------------------+ > fake function descriptor
1662 | TRAMP+16 | |
1663 +-------------------+ /
1664 | target descriptor |
1665 +-------------------+
1666 | static link |
1667 +-------------------+
c65ebc55
JW
1668*/
1669
c65ebc55
JW
1670/* A C expression for the size in bytes of the trampoline, as an integer. */
1671
97e242b0 1672#define TRAMPOLINE_SIZE 32
c65ebc55
JW
1673
1674/* Alignment required for trampolines, in bits. */
1675
97e242b0 1676#define TRAMPOLINE_ALIGNMENT 64
c65ebc55
JW
1677
1678/* A C statement to initialize the variable parts of a trampoline. */
1679
1680#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
97e242b0 1681 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
c65ebc55
JW
1682\f
1683/* Implicit Calls to Library Routines */
1684
c65ebc55
JW
1685/* Define this macro if GNU CC should generate calls to the System V (and ANSI
1686 C) library functions `memcpy' and `memset' rather than the BSD functions
1687 `bcopy' and `bzero'. */
1688
1689#define TARGET_MEM_FUNCTIONS
1690
1691\f
1692/* Addressing Modes */
1693
1694/* Define this macro if the machine supports post-increment addressing. */
1695
1696#define HAVE_POST_INCREMENT 1
1697#define HAVE_POST_DECREMENT 1
4b983fdc
RH
1698#define HAVE_POST_MODIFY_DISP 1
1699#define HAVE_POST_MODIFY_REG 1
c65ebc55
JW
1700
1701/* A C expression that is 1 if the RTX X is a constant which is a valid
1702 address. */
1703
1704#define CONSTANT_ADDRESS_P(X) 0
1705
1706/* The max number of registers that can appear in a valid memory address. */
1707
4b983fdc 1708#define MAX_REGS_PER_ADDRESS 2
c65ebc55
JW
1709
1710/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1711 RTX) is a legitimate memory address on the target machine for a memory
1712 operand of mode MODE. */
1713
4b983fdc
RH
1714#define LEGITIMATE_ADDRESS_REG(X) \
1715 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1716 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1717 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1718
1719#define LEGITIMATE_ADDRESS_DISP(R, X) \
1720 (GET_CODE (X) == PLUS \
1721 && rtx_equal_p (R, XEXP (X, 0)) \
cf606f45 1722 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
4b983fdc 1723 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
5527bf14
RH
1724 && INTVAL (XEXP (X, 1)) >= -256 \
1725 && INTVAL (XEXP (X, 1)) < 256)))
c65ebc55
JW
1726
1727#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1728do { \
4b983fdc 1729 if (LEGITIMATE_ADDRESS_REG (X)) \
c65ebc55 1730 goto LABEL; \
4b983fdc
RH
1731 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1732 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1733 && XEXP (X, 0) != arg_pointer_rtx) \
1734 goto LABEL; \
1735 else if (GET_CODE (X) == POST_MODIFY \
1736 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1737 && XEXP (X, 0) != arg_pointer_rtx \
1738 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
c65ebc55 1739 goto LABEL; \
c65ebc55
JW
1740} while (0)
1741
1742/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1743 use as a base register. */
1744
1745#ifdef REG_OK_STRICT
1746#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1747#else
1748#define REG_OK_FOR_BASE_P(X) \
1749 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1750#endif
1751
1752/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
cf606f45 1753 use as an index register. This is needed for POST_MODIFY. */
c65ebc55 1754
cf606f45 1755#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
c65ebc55
JW
1756
1757/* A C compound statement that attempts to replace X with a valid memory
1758 address for an operand of mode MODE.
1759
1760 This must be present, but there is nothing useful to be done here. */
1761
1762#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1763
1764/* A C statement or compound statement with a conditional `goto LABEL;'
1765 executed if memory address X (an RTX) can have different meanings depending
1766 on the machine mode of the memory reference it is used for or if the address
1767 is valid for some modes but not others. */
1768
3f622353 1769#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
c65ebc55
JW
1770 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1771 goto LABEL;
1772
1773/* A C expression that is nonzero if X is a legitimate constant for an
1774 immediate operand on the target machine. */
1775
1776#define LEGITIMATE_CONSTANT_P(X) \
1777 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1778 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1779
1780\f
1781/* Condition Code Status */
1782
1783/* One some machines not all possible comparisons are defined, but you can
1784 convert an invalid comparison into a valid one. */
1785/* ??? Investigate. See the alpha definition. */
1786/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1787
1788\f
1789/* Describing Relative Costs of Operations */
1790
1791/* A part of a C `switch' statement that describes the relative costs of
1792 constant RTL expressions. */
1793
1794/* ??? This is incomplete. */
1795
f2f90c63 1796#define CONST_COSTS(X, CODE, OUTER_CODE) \
c65ebc55
JW
1797 case CONST_INT: \
1798 if ((X) == const0_rtx) \
1799 return 0; \
f2f90c63
RH
1800 switch (OUTER_CODE) \
1801 { \
1802 case SET: \
1803 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1804 case PLUS: \
1805 if (CONST_OK_FOR_I (INTVAL (X))) \
1806 return 0; \
1807 if (CONST_OK_FOR_J (INTVAL (X))) \
1808 return 1; \
1809 return COSTS_N_INSNS (1); \
1810 default: \
1811 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1812 return 0; \
1813 return COSTS_N_INSNS (1); \
1814 } \
c65ebc55 1815 case CONST_DOUBLE: \
f2f90c63 1816 return COSTS_N_INSNS (1); \
c65ebc55
JW
1817 case CONST: \
1818 case SYMBOL_REF: \
1819 case LABEL_REF: \
2130b7fb 1820 return COSTS_N_INSNS (3);
c65ebc55
JW
1821
1822/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1823
f2f90c63
RH
1824#define RTX_COSTS(X, CODE, OUTER_CODE) \
1825 case MULT: \
1826 /* For multiplies wider than HImode, we have to go to the FPU, \
1827 which normally involves copies. Plus there's the latency \
005f39ce
BS
1828 of the multiply itself, and the latency of the instructions to \
1829 transfer integer regs to FP regs. */ \
f2f90c63 1830 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
005f39ce
BS
1831 return COSTS_N_INSNS (10); \
1832 return COSTS_N_INSNS (2); \
1833 case PLUS: \
1834 case MINUS: \
1835 case ASHIFT: \
1836 case ASHIFTRT: \
1837 case LSHIFTRT: \
f2f90c63 1838 return COSTS_N_INSNS (1); \
c65ebc55
JW
1839 case DIV: \
1840 case UDIV: \
1841 case MOD: \
1842 case UMOD: \
f2f90c63
RH
1843 /* We make divide expensive, so that divide-by-constant will be \
1844 optimized to a multiply. */ \
1845 return COSTS_N_INSNS (60);
c65ebc55
JW
1846
1847/* An expression giving the cost of an addressing mode that contains ADDRESS.
1848 If not defined, the cost is computed from the ADDRESS expression and the
1849 `CONST_COSTS' values. */
1850
1851#define ADDRESS_COST(ADDRESS) 0
1852
1853/* A C expression for the cost of moving data from a register in class FROM to
1854 one in class TO. */
1855
cf011243 1856#define REGISTER_MOVE_COST(MODE, FROM, TO) \
5527bf14 1857 ia64_register_move_cost((FROM), (TO))
c65ebc55 1858
f2f90c63
RH
1859/* A C expression for the cost of moving data of mode M between a
1860 register and memory. */
1861#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1862 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS ? 4 : 10)
c65ebc55
JW
1863
1864/* A C expression for the cost of a branch instruction. A value of 1 is the
e5bde68a
RH
1865 default; other values are interpreted relative to that. Used by the
1866 if-conversion code as max instruction count. */
1867/* ??? This requires investigation. The primary effect might be how
1868 many additional insn groups we run into, vs how good the dynamic
1869 branch predictor is. */
1870
1871#define BRANCH_COST 6
c65ebc55
JW
1872
1873/* Define this macro as a C expression which is nonzero if accessing less than
1874 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1875 word of memory. */
1876
1877#define SLOW_BYTE_ACCESS 1
1878
1879/* Define this macro if it is as good or better to call a constant function
1880 address than to call an address kept in a register.
1881
1882 Indirect function calls are more expensive that direct function calls, so
1883 don't cse function addresses. */
1884
1885#define NO_FUNCTION_CSE
1886
c65ebc55
JW
1887\f
1888/* Dividing the output into sections. */
1889
1890/* A C expression whose value is a string containing the assembler operation
1891 that should precede instructions and read-only data. */
1892
de323aa1 1893#define TEXT_SECTION_ASM_OP "\t.text"
c65ebc55
JW
1894
1895/* A C expression whose value is a string containing the assembler operation to
1896 identify the following data as writable initialized data. */
1897
de323aa1 1898#define DATA_SECTION_ASM_OP "\t.data"
c65ebc55
JW
1899
1900/* If defined, a C expression whose value is a string containing the assembler
1901 operation to identify the following data as uninitialized global data. */
1902
de323aa1 1903#define BSS_SECTION_ASM_OP "\t.bss"
c65ebc55
JW
1904
1905/* Define this macro if jump tables (for `tablejump' insns) should be output in
1906 the text section, along with the assembler instructions. */
1907
1908/* ??? It is probably better for the jump tables to be in the rodata section,
1909 which is where they go by default. Unfortunately, that currently does not
1910 work, because of some problem with pcrelative relocations not getting
1911 resolved correctly. */
1912/* ??? FIXME ??? rth says that we should use @gprel to solve this problem. */
1913/* ??? If jump tables are in the text section, then we can use 4 byte
1914 entries instead of 8 byte entries. */
1915
1916#define JUMP_TABLES_IN_TEXT_SECTION 1
1917
1918/* Define this macro if references to a symbol must be treated differently
1919 depending on something about the variable or function named by the symbol
1920 (such as what section it is in). */
1921
1922#define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1923
32adf8e6
AH
1924/* If a variable is weakened, made one only or moved into a different
1925 section, it may be necessary to redo the section info to move the
1926 variable out of sdata. */
1927
1928#define REDO_SECTION_INFO_P(DECL) \
1929 ((TREE_CODE (DECL) == VAR_DECL) \
94c21c17
GS
1930 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1931 || DECL_SECTION_NAME (DECL) != 0))
32adf8e6 1932
c65ebc55
JW
1933#define SDATA_NAME_FLAG_CHAR '@'
1934
1935#define IA64_DEFAULT_GVALUE 8
1936
1937/* Decode SYM_NAME and store the real name part in VAR, sans the characters
1938 that encode section info. */
1939
1940#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1941 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == SDATA_NAME_FLAG_CHAR)
1942
1943\f
1944/* Position Independent Code. */
1945
1946/* The register number of the register used to address a table of static data
1947 addresses in memory. */
1948
1949/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1950 gen_rtx_REG (DImode, 1). */
1951
1952/* ??? Should we set flag_pic? Probably need to define
1953 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1954
1955#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1956
1957/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1958 clobbered by calls. */
1959
1960#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1961
1962\f
1963/* The Overall Framework of an Assembler File. */
1964
1965/* A C string constant describing how to begin a comment in the target
1966 assembler language. The compiler assumes that the comment will end at the
1967 end of the line. */
1968
1969#define ASM_COMMENT_START "//"
1970
1971/* A C string constant for text to be output before each `asm' statement or
1972 group of consecutive ones. */
1973
1974/* ??? This won't work with the Intel assembler, because it does not accept
1975 # as a comment start character. However, //APP does not work in gas, so we
1976 can't use that either. Same problem for ASM_APP_OFF below. */
1977
1978#define ASM_APP_ON "#APP\n"
1979
1980/* A C string constant for text to be output after each `asm' statement or
1981 group of consecutive ones. */
1982
1983#define ASM_APP_OFF "#NO_APP\n"
1984
1985\f
1986/* Output of Data. */
1987
1988/* A C statement to output to the stdio stream STREAM an assembler instruction
3f622353 1989 to assemble a floating-point constant of `TFmode', `DFmode', `SFmode',
c65ebc55
JW
1990 respectively, whose value is VALUE. */
1991
c65ebc55
JW
1992/* ??? Must reverse the word order for big-endian code? */
1993
1994#define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
1995do { \
1996 long t[3]; \
1997 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, t); \
3f622353 1998 fprintf (FILE, "\tdata4 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n", \
0024a804 1999 t[0] & 0xffffffff, t[1] & 0xffffffff, t[2] & 0xffffffff, 0L);\
c65ebc55
JW
2000} while (0)
2001
2002/* ??? Must reverse the word order for big-endian code? */
2003
2004#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2005do { \
2006 long t[2]; \
2007 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, t); \
2008 fprintf (FILE, "\tdata8 0x%08lx%08lx\n", \
2009 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2010} while (0)
2011
2012#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2013 do { \
2014 long t; \
2015 REAL_VALUE_TO_TARGET_SINGLE (VALUE, t); \
2016 fprintf (FILE, "\tdata4 0x%lx\n", t & 0xffffffff); \
2017} while (0)
2018
2019/* A C statement to output to the stdio stream STREAM an assembler instruction
2020 to assemble an integer of 1, 2, 4, or 8 bytes, respectively, whose value
2021 is VALUE. */
2022
2023/* This is how to output an assembler line defining a `char' constant. */
2024
2025#define ASM_OUTPUT_CHAR(FILE, VALUE) \
2026do { \
f0ca81d2 2027 fprintf (FILE, "%s", ASM_BYTE_OP); \
c65ebc55
JW
2028 output_addr_const (FILE, (VALUE)); \
2029 fprintf (FILE, "\n"); \
2030} while (0)
2031
2032/* This is how to output an assembler line defining a `short' constant. */
2033
2034#define ASM_OUTPUT_SHORT(FILE, VALUE) \
2035do { \
2036 fprintf (FILE, "\tdata2\t"); \
2037 output_addr_const (FILE, (VALUE)); \
2038 fprintf (FILE, "\n"); \
2039} while (0)
2040
2041/* This is how to output an assembler line defining an `int' constant.
2042 We also handle symbol output here. */
2043
2044/* ??? For ILP32, also need to handle function addresses here. */
2045
2046#define ASM_OUTPUT_INT(FILE, VALUE) \
2047do { \
2048 fprintf (FILE, "\tdata4\t"); \
2049 output_addr_const (FILE, (VALUE)); \
2050 fprintf (FILE, "\n"); \
2051} while (0)
2052
2053/* This is how to output an assembler line defining a `long' constant.
2054 We also handle symbol output here. */
2055
2056#define ASM_OUTPUT_DOUBLE_INT(FILE, VALUE) \
2057do { \
2058 fprintf (FILE, "\tdata8\t"); \
59da9a7d 2059 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2060 fprintf (FILE, "@fptr("); \
2061 output_addr_const (FILE, (VALUE)); \
59da9a7d 2062 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
c65ebc55
JW
2063 fprintf (FILE, ")"); \
2064 fprintf (FILE, "\n"); \
2065} while (0)
2066
0c96007e
AM
2067/* This is how to output an assembler line defining a `char' constant
2068 to an xdata segment. */
2069
2070#define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
2071do { \
2072 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
2073 output_addr_const (FILE, (VALUE)); \
2074 fprintf (FILE, "\n"); \
2075} while (0)
2076
2077/* This is how to output an assembler line defining a `short' constant
2078 to an xdata segment. */
2079
2080#define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
2081do { \
2082 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
2083 output_addr_const (FILE, (VALUE)); \
2084 fprintf (FILE, "\n"); \
2085} while (0)
2086
2087/* This is how to output an assembler line defining an `int' constant
2088 to an xdata segment. We also handle symbol output here. */
2089
2090/* ??? For ILP32, also need to handle function addresses here. */
2091
2092#define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
2093do { \
2094 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
2095 output_addr_const (FILE, (VALUE)); \
2096 fprintf (FILE, "\n"); \
2097} while (0)
2098
2099/* This is how to output an assembler line defining a `long' constant
2100 to an xdata segment. We also handle symbol output here. */
2101
2102#define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
2103do { \
59da9a7d 2104 int need_closing_paren = 0; \
0c96007e 2105 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
59da9a7d
JW
2106 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
2107 && GET_CODE (VALUE) == SYMBOL_REF) \
0c96007e 2108 { \
59da9a7d
JW
2109 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
2110 need_closing_paren = 1; \
0c96007e 2111 } \
59da9a7d
JW
2112 output_addr_const (FILE, VALUE); \
2113 if (need_closing_paren) \
0c96007e
AM
2114 fprintf (FILE, ")"); \
2115 fprintf (FILE, "\n"); \
2116} while (0)
2117
2118
c65ebc55
JW
2119/* A C statement to output to the stdio stream STREAM an assembler instruction
2120 to assemble a single byte containing the number VALUE. */
2121
2122#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
f0ca81d2 2123 fprintf (STREAM, "%s0x%x\n", ASM_BYTE_OP, (int)(VALUE) & 0xff)
c65ebc55 2124
c65ebc55
JW
2125\f
2126/* Output of Uninitialized Variables. */
2127
2128/* This is all handled by svr4.h. */
2129
2130\f
2131/* Output and Generation of Labels. */
2132
2133/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2134 assembler definition of a label named NAME. */
2135
2136/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
2137 why ia64_asm_output_label exists. */
2138
2139extern int ia64_asm_output_label;
2140#define ASM_OUTPUT_LABEL(STREAM, NAME) \
2141do { \
2142 ia64_asm_output_label = 1; \
2143 assemble_name (STREAM, NAME); \
2144 fputs (":\n", STREAM); \
2145 ia64_asm_output_label = 0; \
2146} while (0)
2147
2148/* A C statement (sans semicolon) to output to the stdio stream STREAM some
2149 commands that will make the label NAME global; that is, available for
2150 reference from other files. */
2151
2152#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2153do { \
2154 fputs ("\t.global ", STREAM); \
2155 assemble_name (STREAM, NAME); \
2156 fputs ("\n", STREAM); \
2157} while (0)
2158
2159/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2160 necessary for declaring the name of an external symbol named NAME which is
2161 referenced in this compilation but not defined. */
2162
2163#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2164 ia64_asm_output_external (FILE, DECL, NAME)
2165
2166/* A C statement to store into the string STRING a label whose name is made
2167 from the string PREFIX and the number NUM. */
2168
2169#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2170do { \
2171 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
2172} while (0)
2173
2174/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
2175 newly allocated string made from the string NAME and the number NUMBER, with
2176 some suitable punctuation added. */
2177
2178/* ??? Not sure if using a ? in the name for Intel as is safe. */
2179
2180#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
2181do { \
2182 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
2183 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
2184 (long)(NUMBER)); \
2185} while (0)
2186
2187/* A C statement to output to the stdio stream STREAM assembler code which
2188 defines (equates) the symbol NAME to have the value VALUE. */
2189
2190#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2191do { \
2192 assemble_name (STREAM, NAME); \
2193 fputs (" = ", STREAM); \
2194 assemble_name (STREAM, VALUE); \
2195 fputc ('\n', STREAM); \
2196} while (0)
2197
2198\f
2199/* Macros Controlling Initialization Routines. */
2200
2201/* This is handled by svr4.h and sysv4.h. */
2202
2203\f
2204/* Output of Assembler Instructions. */
2205
2206/* A C initializer containing the assembler's names for the machine registers,
2207 each one as a C string constant. */
2208
2209#define REGISTER_NAMES \
2210{ \
2211 /* General registers. */ \
2212 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
2213 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
2214 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
2215 "r30", "r31", \
2216 /* Local registers. */ \
2217 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
2218 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
2219 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
2220 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
2221 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
2222 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
2223 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
2224 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
2225 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
2226 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
2227 /* Input registers. */ \
2228 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
2229 /* Output registers. */ \
2230 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
2231 /* Floating-point registers. */ \
2232 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2233 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2234 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2235 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2236 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2237 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2238 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2239 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2240 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2241 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2242 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2243 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2244 "f120","f121","f122","f123","f124","f125","f126","f127", \
2245 /* Predicate registers. */ \
2246 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2247 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2248 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2249 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2250 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2251 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2252 "p60", "p61", "p62", "p63", \
2253 /* Branch registers. */ \
2254 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2255 /* Frame pointer. Return address. */ \
97e242b0 2256 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
c65ebc55
JW
2257}
2258
2259/* If defined, a C initializer for an array of structures containing a name and
2260 a register number. This macro defines additional names for hard registers,
2261 thus allowing the `asm' option in declarations to refer to registers using
2262 alternate names. */
2263
2264#define ADDITIONAL_REGISTER_NAMES \
2265{ \
2266 { "gp", R_GR (1) }, \
2267 { "sp", R_GR (12) }, \
2268 { "in0", IN_REG (0) }, \
2269 { "in1", IN_REG (1) }, \
2270 { "in2", IN_REG (2) }, \
2271 { "in3", IN_REG (3) }, \
2272 { "in4", IN_REG (4) }, \
2273 { "in5", IN_REG (5) }, \
2274 { "in6", IN_REG (6) }, \
2275 { "in7", IN_REG (7) }, \
2276 { "out0", OUT_REG (0) }, \
2277 { "out1", OUT_REG (1) }, \
2278 { "out2", OUT_REG (2) }, \
2279 { "out3", OUT_REG (3) }, \
2280 { "out4", OUT_REG (4) }, \
2281 { "out5", OUT_REG (5) }, \
2282 { "out6", OUT_REG (6) }, \
2283 { "out7", OUT_REG (7) }, \
2284 { "loc0", LOC_REG (0) }, \
2285 { "loc1", LOC_REG (1) }, \
2286 { "loc2", LOC_REG (2) }, \
2287 { "loc3", LOC_REG (3) }, \
2288 { "loc4", LOC_REG (4) }, \
2289 { "loc5", LOC_REG (5) }, \
2290 { "loc6", LOC_REG (6) }, \
2291 { "loc7", LOC_REG (7) }, \
2292 { "loc8", LOC_REG (8) }, \
2293 { "loc9", LOC_REG (9) }, \
2294 { "loc10", LOC_REG (10) }, \
2295 { "loc11", LOC_REG (11) }, \
2296 { "loc12", LOC_REG (12) }, \
2297 { "loc13", LOC_REG (13) }, \
2298 { "loc14", LOC_REG (14) }, \
2299 { "loc15", LOC_REG (15) }, \
2300 { "loc16", LOC_REG (16) }, \
2301 { "loc17", LOC_REG (17) }, \
2302 { "loc18", LOC_REG (18) }, \
2303 { "loc19", LOC_REG (19) }, \
2304 { "loc20", LOC_REG (20) }, \
2305 { "loc21", LOC_REG (21) }, \
2306 { "loc22", LOC_REG (22) }, \
2307 { "loc23", LOC_REG (23) }, \
2308 { "loc24", LOC_REG (24) }, \
2309 { "loc25", LOC_REG (25) }, \
2310 { "loc26", LOC_REG (26) }, \
2311 { "loc27", LOC_REG (27) }, \
2312 { "loc28", LOC_REG (28) }, \
2313 { "loc29", LOC_REG (29) }, \
2314 { "loc30", LOC_REG (30) }, \
2315 { "loc31", LOC_REG (31) }, \
2316 { "loc32", LOC_REG (32) }, \
2317 { "loc33", LOC_REG (33) }, \
2318 { "loc34", LOC_REG (34) }, \
2319 { "loc35", LOC_REG (35) }, \
2320 { "loc36", LOC_REG (36) }, \
2321 { "loc37", LOC_REG (37) }, \
2322 { "loc38", LOC_REG (38) }, \
2323 { "loc39", LOC_REG (39) }, \
2324 { "loc40", LOC_REG (40) }, \
2325 { "loc41", LOC_REG (41) }, \
2326 { "loc42", LOC_REG (42) }, \
2327 { "loc43", LOC_REG (43) }, \
2328 { "loc44", LOC_REG (44) }, \
2329 { "loc45", LOC_REG (45) }, \
2330 { "loc46", LOC_REG (46) }, \
2331 { "loc47", LOC_REG (47) }, \
2332 { "loc48", LOC_REG (48) }, \
2333 { "loc49", LOC_REG (49) }, \
2334 { "loc50", LOC_REG (50) }, \
2335 { "loc51", LOC_REG (51) }, \
2336 { "loc52", LOC_REG (52) }, \
2337 { "loc53", LOC_REG (53) }, \
2338 { "loc54", LOC_REG (54) }, \
2339 { "loc55", LOC_REG (55) }, \
2340 { "loc56", LOC_REG (56) }, \
2341 { "loc57", LOC_REG (57) }, \
2342 { "loc58", LOC_REG (58) }, \
2343 { "loc59", LOC_REG (59) }, \
2344 { "loc60", LOC_REG (60) }, \
2345 { "loc61", LOC_REG (61) }, \
2346 { "loc62", LOC_REG (62) }, \
2347 { "loc63", LOC_REG (63) }, \
2348 { "loc64", LOC_REG (64) }, \
2349 { "loc65", LOC_REG (65) }, \
2350 { "loc66", LOC_REG (66) }, \
2351 { "loc67", LOC_REG (67) }, \
2352 { "loc68", LOC_REG (68) }, \
2353 { "loc69", LOC_REG (69) }, \
2354 { "loc70", LOC_REG (70) }, \
2355 { "loc71", LOC_REG (71) }, \
2356 { "loc72", LOC_REG (72) }, \
2357 { "loc73", LOC_REG (73) }, \
2358 { "loc74", LOC_REG (74) }, \
2359 { "loc75", LOC_REG (75) }, \
2360 { "loc76", LOC_REG (76) }, \
2361 { "loc77", LOC_REG (77) }, \
2362 { "loc78", LOC_REG (78) }, \
794eefd9 2363 { "loc79", LOC_REG (79) }, \
c65ebc55
JW
2364}
2365
2366/* A C compound statement to output to stdio stream STREAM the assembler syntax
2367 for an instruction operand X. X is an RTL expression. */
2368
2369#define PRINT_OPERAND(STREAM, X, CODE) \
2370 ia64_print_operand (STREAM, X, CODE)
2371
2372/* A C expression which evaluates to true if CODE is a valid punctuation
2373 character for use in the `PRINT_OPERAND' macro. */
2374
2375/* ??? Keep this around for now, as we might need it later. */
2376
6f8aa100
RH
2377#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2378 ((CODE) == '+' || (CODE) == ',')
c65ebc55
JW
2379
2380/* A C compound statement to output to stdio stream STREAM the assembler syntax
2381 for an instruction operand that is a memory reference whose address is X. X
2382 is an RTL expression. */
2383
2384#define PRINT_OPERAND_ADDRESS(STREAM, X) \
2385 ia64_print_operand_address (STREAM, X)
2386
2387/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2388 `%I' options of `asm_fprintf' (see `final.c'). */
2389
2390#define REGISTER_PREFIX ""
2391#define LOCAL_LABEL_PREFIX "."
2392#define USER_LABEL_PREFIX ""
2393#define IMMEDIATE_PREFIX ""
2394
2395\f
2396/* Output of dispatch tables. */
2397
2398/* This macro should be provided on machines where the addresses in a dispatch
2399 table are relative to the table's own address. */
2400
2401/* ??? Depends on the pointer size. */
2402
2403#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2404 fprintf (STREAM, "\tdata8 .L%d-.L%d\n", VALUE, REL)
2405
2406/* This is how to output an element of a case-vector that is absolute.
2407 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2408
2409#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2410
2411/* Define this if something special must be output at the end of a jump-table.
2412 We need to align back to a 16 byte boundary because offsets are smaller than
2413 instructions. */
2414
2415#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) ASM_OUTPUT_ALIGN (STREAM, 4)
2416
2417/* Jump tables only need 8 byte alignment. */
2418
2419#define ADDR_VEC_ALIGN(ADDR_VEC) 3
2420
2421\f
2422/* Assembler Commands for Exception Regions. */
2423
c65ebc55
JW
2424/* If defined, a C string constant for the assembler operation to switch to the
2425 section for exception handling frame unwind information. If not defined,
2426 GNU CC will provide a default definition if the target supports named
2427 sections. `crtstuff.c' uses this macro to switch to the appropriate
2428 section.
2429
2430 You should define this symbol if your target supports DWARF 2 frame unwind
2431 information and the default definition does not work. */
de323aa1 2432#define EH_FRAME_SECTION_ASM_OP "\t.section\t.IA_64.unwind,\"aw\""
c65ebc55 2433
2a1ee410
RH
2434/* Select a format to encode pointers in exception handling data. CODE
2435 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2436 true if the symbol may be affected by dynamic relocations. */
2437#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2438 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2439 | ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
2440
2441/* Handle special EH pointer encodings. Absolute, pc-relative, and
2442 indirect are handled automatically. */
2443#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2444 do { \
2445 const char *reltag = NULL; \
2446 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2447 reltag = "@segrel("; \
2448 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2449 reltag = "@gprel("; \
2450 if (reltag) \
2451 { \
2452 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2453 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2454 : (abort (), "")), FILE); \
2455 fputs (reltag, FILE); \
2456 assemble_name (FILE, XSTR (ADDR, 0)); \
2457 fputc (')', FILE); \
2458 goto DONE; \
2459 } \
2460 } while (0)
c65ebc55 2461
c65ebc55
JW
2462\f
2463/* Assembler Commands for Alignment. */
2464
2465/* The alignment (log base 2) to put in front of LABEL, which follows
2466 a BARRIER. */
2467
2468/* ??? Investigate. */
2469
2470/* ??? Emitting align directives increases the size of the line number debug
2471 info, because each .align forces use of an extended opcode. Perhaps try
2472 to fix this in the assembler? */
2473
2474/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2475
2476/* The desired alignment for the location counter at the beginning
2477 of a loop. */
2478
2479/* ??? Investigate. */
2480/* #define LOOP_ALIGN(LABEL) */
2481
2482/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2483 section because it fails put zeros in the bytes that are skipped. */
2484
2485#define ASM_NO_SKIP_IN_TEXT 1
2486
2487/* A C statement to output to the stdio stream STREAM an assembler command to
2488 advance the location counter to a multiple of 2 to the POWER bytes. */
2489
2490#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2491 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2492
2493\f
2494/* Macros Affecting all Debug Formats. */
2495
2496/* This is handled in svr4.h and sysv4.h. */
2497
2498\f
2499/* Specific Options for DBX Output. */
2500
2501/* This is handled by dbxelf.h which is included by svr4.h. */
2502
2503\f
2504/* Open ended Hooks for DBX Output. */
2505
2506/* Likewise. */
2507
2508\f
2509/* File names in DBX format. */
2510
2511/* Likewise. */
2512
2513\f
2514/* Macros for SDB and Dwarf Output. */
2515
2516/* Define this macro if GNU CC should produce dwarf version 2 format debugging
2517 output in response to the `-g' option. */
2518
2519#define DWARF2_DEBUGGING_INFO
2520
2521/* Section names for DWARF2 debug info. */
2522
2523#define DEBUG_INFO_SECTION ".debug_info, \"\", \"progbits\""
9d2f2c45
RH
2524#define DEBUG_ABBREV_SECTION ".debug_abbrev, \"\", \"progbits\""
2525#define DEBUG_ARANGES_SECTION ".debug_aranges, \"\", \"progbits\""
2526#define DEBUG_MACINFO_SECTION ".debug_macinfo, \"\", \"progbits\""
c65ebc55 2527#define DEBUG_LINE_SECTION ".debug_line, \"\", \"progbits\""
9d2f2c45
RH
2528#define DEBUG_LOC_SECTION ".debug_loc, \"\", \"progbits\""
2529#define DEBUG_PUBNAMES_SECTION ".debug_pubnames, \"\", \"progbits\""
2530#define DEBUG_STR_SECTION ".debug_str, \"\", \"progbits\""
c65ebc55
JW
2531
2532/* C string constants giving the pseudo-op to use for a sequence of
2533 2, 4, and 8 byte unaligned constants. dwarf2out.c needs these. */
2534
de323aa1
HPN
2535#define UNALIGNED_SHORT_ASM_OP "\tdata2.ua\t"
2536#define UNALIGNED_INT_ASM_OP "\tdata4.ua\t"
2537#define UNALIGNED_DOUBLE_INT_ASM_OP "\tdata8.ua\t"
c65ebc55
JW
2538
2539/* We need to override the default definition for this in dwarf2out.c so that
2540 we can emit the necessary # postfix. */
2541#define ASM_NAME_TO_STRING(STR, NAME) \
2542 do { \
2543 if ((NAME)[0] == '*') \
2544 dyn_string_append (STR, NAME + 1); \
2545 else \
2546 { \
2547 char *newstr; \
2548 STRIP_NAME_ENCODING (newstr, NAME); \
2549 dyn_string_append (STR, user_label_prefix); \
2550 dyn_string_append (STR, newstr); \
2551 dyn_string_append (STR, "#"); \
2552 } \
2553 } \
2554 while (0)
2555
2556#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2557
8215347e
JW
2558/* Use tags for debug info labels, so that they don't break instruction
2559 bundles. This also avoids getting spurious DV warnings from the
2560 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2561 add brackets around the label. */
2562
2563#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
7426e9a2 2564 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
8215347e 2565
7426e9a2
RH
2566/* Use section-relative relocations for debugging offsets. Unlike other
2567 targets that fake this by putting the section VMA at 0, IA-64 has
2568 proper relocations for them. */
2569#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2570 do { \
2571 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2572 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2573 : (abort (), "")), FILE); \
2574 fputs ("@secrel(", FILE); \
2575 assemble_name (FILE, LABEL); \
2576 fputc (')', FILE); \
2577 } while (0)
2578
2579/* Emit a PC-relative relocation. */
2580#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2581 do { \
2582 fputs (((SIZE) == 4 ? UNALIGNED_INT_ASM_OP \
2583 : (SIZE) == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP \
2584 : (abort (), "")), FILE); \
2585 fputs ("@pcrel(", FILE); \
2586 assemble_name (FILE, LABEL); \
2587 fputc (')', FILE); \
2588 } while (0)
c65ebc55
JW
2589\f
2590/* Cross Compilation and Floating Point. */
2591
2592/* Define to enable software floating point emulation. */
2593#define REAL_ARITHMETIC
2594
7b82b5da
SC
2595\f
2596/* Register Renaming Parameters. */
2597
2598/* A C expression that is nonzero if hard register number REGNO2 can be
2599 considered for use as a rename register for REGNO1 */
2600
2601#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
10c9f189 2602 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
7b82b5da
SC
2603
2604/* Define this macro if the compiler should use extended basic blocks
2605 when renaming registers. Define this macro if the target has predicate
2606 registers. */
2607
2608#define RENAME_EXTENDED_BLOCKS
2609
c65ebc55
JW
2610\f
2611/* Miscellaneous Parameters. */
2612
2613/* Define this if you have defined special-purpose predicates in the file
2614 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2615 expressions matched by the predicate. */
2616
2617#define PREDICATE_CODES \
2618{ "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
ec039e3c 2619{ "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
c65ebc55
JW
2620{ "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2621{ "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2622{ "function_operand", {SYMBOL_REF}}, \
2623{ "setjmp_operand", {SYMBOL_REF}}, \
4b983fdc 2624{ "destination_operand", {SUBREG, REG, MEM}}, \
0551c32d 2625{ "not_postinc_memory_operand", {MEM}}, \
c65ebc55
JW
2626{ "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2627 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
0551c32d
RH
2628{ "gr_register_operand", {SUBREG, REG}}, \
2629{ "fr_register_operand", {SUBREG, REG}}, \
2630{ "grfr_register_operand", {SUBREG, REG}}, \
2631{ "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
655f2eb9 2632{ "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
0551c32d
RH
2633{ "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2634{ "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2635{ "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2636{ "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2637{ "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2638{ "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2639{ "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2640 CONSTANT_P_RTX}}, \
0551c32d 2641{ "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
c65ebc55 2642 CONSTANT_P_RTX}}, \
0551c32d
RH
2643{ "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2644{ "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
c65ebc55
JW
2645{ "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2646{ "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2647 CONSTANT_P_RTX}}, \
2648{ "shladd_operand", {CONST_INT}}, \
2649{ "fetchadd_operand", {CONST_INT}}, \
0551c32d 2650{ "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
c65ebc55
JW
2651{ "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2652{ "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
f2f90c63 2653{ "signed_inequality_operator", {GE, GT, LE, LT}}, \
5527bf14 2654{ "predicate_operator", {NE, EQ}}, \
97e242b0 2655{ "ar_lc_reg_operand", {REG}}, \
3f622353
RH
2656{ "ar_ccv_reg_operand", {REG}}, \
2657{ "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2658{ "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2659{ "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
c65ebc55
JW
2660
2661/* An alias for a machine mode name. This is the machine mode that elements of
2662 a jump-table should have. */
2663
2664#define CASE_VECTOR_MODE Pmode
2665
2666/* Define as C expression which evaluates to nonzero if the tablejump
2667 instruction expects the table to contain offsets from the address of the
2668 table. */
2669
2670#define CASE_VECTOR_PC_RELATIVE 1
2671
2672/* Define this macro if operations between registers with integral mode smaller
2673 than a word are always performed on the entire register. */
2674
2675#define WORD_REGISTER_OPERATIONS
2676
2677/* Define this macro to be a C expression indicating when insns that read
2678 memory in MODE, an integral mode narrower than a word, set the bits outside
2679 of MODE to be either the sign-extension or the zero-extension of the data
2680 read. */
2681
2682#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2683
2684/* An alias for a tree code that should be used by default for conversion of
2685 floating point values to fixed point. */
2686
2687/* ??? Looks like this macro is obsolete and should be deleted everywhere. */
2688
2689#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2690
2691/* An alias for a tree code that is the easiest kind of division to compile
2692 code for in the general case. */
2693
2694#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2695
2696/* The maximum number of bytes that a single instruction can move quickly from
2697 memory to memory. */
2698#define MOVE_MAX 8
2699
2700/* A C expression which is nonzero if on this machine it is safe to "convert"
2701 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2702 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2703
2704#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2705
2706/* A C expression describing the value returned by a comparison operator with
2707 an integral mode and stored by a store-flag instruction (`sCOND') when the
2708 condition is true. */
2709
2710/* ??? Investigate using -1 instead of 1. */
2711
2712#define STORE_FLAG_VALUE 1
2713
2714/* An alias for the machine mode for pointers. */
2715
2716/* ??? This would change if we had ILP32 support. */
2717
2718#define Pmode DImode
2719
2720/* An alias for the machine mode used for memory references to functions being
2721 called, in `call' RTL expressions. */
2722
2723#define FUNCTION_MODE Pmode
2724
2725/* Define this macro to handle System V style pragmas: #pragma pack and
2726 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2727 defined. */
2728
2729#define HANDLE_SYSV_PRAGMA
2730
c65ebc55
JW
2731/* In rare cases, correct code generation requires extra machine dependent
2732 processing between the second jump optimization pass and delayed branch
2733 scheduling. On those machines, define this macro as a C statement to act on
2734 the code starting at INSN. */
2735
2736#define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2737
2738/* A C expression for the maximum number of instructions to execute via
2739 conditional execution instructions instead of a branch. A value of
2740 BRANCH_COST+1 is the default if the machine does not use
2741 cc0, and 1 if it does use cc0. */
2742/* ??? Investigate. */
2130b7fb
BS
2743#define MAX_CONDITIONAL_EXECUTE 12
2744
2745/* A C statement (sans semicolon) to update the integer scheduling
2746 priority `INSN_PRIORITY(INSN)'. */
2747
2748/* ??? Investigate. */
2749/* #define ADJUST_PRIORITY (INSN) */
2750
2751/* A C statement (sans semicolon) to update the integer variable COST
2752 based on the relationship between INSN that is dependent on
2753 DEP_INSN through the dependence LINK. The default is to make no
2754 adjustment to COST. This can be used for example to specify to
2755 the scheduler that an output- or anti-dependence does not incur
2756 the same cost as a data-dependence. */
2757
2758#define ADJUST_COST(insn,link,dep_insn,cost) \
2759 (cost) = ia64_adjust_cost(insn, link, dep_insn, cost)
2760
2761#define ISSUE_RATE ia64_issue_rate ()
2762
2763#define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2764 ia64_sched_init (DUMP, SCHED_VERBOSE, MAX_READY)
2765
2766#define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
a0a7b566 2767 (CIM) = ia64_sched_reorder (DUMP, SCHED_VERBOSE, READY, &N_READY, 0, CLOCK)
2130b7fb
BS
2768
2769#define MD_SCHED_REORDER2(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
a0a7b566 2770 (CIM) = ia64_sched_reorder2 (DUMP, SCHED_VERBOSE, READY, &N_READY, CLOCK)
c65ebc55 2771
2130b7fb
BS
2772#define MD_SCHED_FINISH(DUMP, SCHED_VERBOSE) \
2773 ia64_sched_finish (DUMP, SCHED_VERBOSE)
c65ebc55 2774
2130b7fb
BS
2775#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2776 ((CAN_ISSUE_MORE) \
2777 = ia64_variable_issue (DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE))
c65ebc55 2778
2130b7fb 2779extern int ia64_final_schedule;
c65ebc55 2780
0c96007e 2781#define IA64_UNWIND_INFO 1
0c96007e
AM
2782#define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2783
2a1ee410
RH
2784#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2785
0c96007e
AM
2786/* This function contains machine specific function data. */
2787struct machine_function
2788{
2789 /* The new stack pointer when unwinding from EH. */
2790 struct rtx_def* ia64_eh_epilogue_sp;
2791
2792 /* The new bsp value when unwinding from EH. */
2793 struct rtx_def* ia64_eh_epilogue_bsp;
97e242b0
RH
2794
2795 /* The GP value save register. */
2796 struct rtx_def* ia64_gp_save;
26a110f5
RH
2797
2798 /* The number of varargs registers to save. */
2799 int n_varargs;
0c96007e
AM
2800};
2801
2802
c65ebc55
JW
2803enum ia64_builtins
2804{
2805 IA64_BUILTIN_SYNCHRONIZE,
2806
2807 IA64_BUILTIN_FETCH_AND_ADD_SI,
2808 IA64_BUILTIN_FETCH_AND_SUB_SI,
2809 IA64_BUILTIN_FETCH_AND_OR_SI,
2810 IA64_BUILTIN_FETCH_AND_AND_SI,
2811 IA64_BUILTIN_FETCH_AND_XOR_SI,
2812 IA64_BUILTIN_FETCH_AND_NAND_SI,
2813
2814 IA64_BUILTIN_ADD_AND_FETCH_SI,
2815 IA64_BUILTIN_SUB_AND_FETCH_SI,
2816 IA64_BUILTIN_OR_AND_FETCH_SI,
2817 IA64_BUILTIN_AND_AND_FETCH_SI,
2818 IA64_BUILTIN_XOR_AND_FETCH_SI,
2819 IA64_BUILTIN_NAND_AND_FETCH_SI,
2820
2821 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2822 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2823
2824 IA64_BUILTIN_SYNCHRONIZE_SI,
2825
2826 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2827
2828 IA64_BUILTIN_LOCK_RELEASE_SI,
2829
2830 IA64_BUILTIN_FETCH_AND_ADD_DI,
2831 IA64_BUILTIN_FETCH_AND_SUB_DI,
2832 IA64_BUILTIN_FETCH_AND_OR_DI,
2833 IA64_BUILTIN_FETCH_AND_AND_DI,
2834 IA64_BUILTIN_FETCH_AND_XOR_DI,
2835 IA64_BUILTIN_FETCH_AND_NAND_DI,
2836
2837 IA64_BUILTIN_ADD_AND_FETCH_DI,
2838 IA64_BUILTIN_SUB_AND_FETCH_DI,
2839 IA64_BUILTIN_OR_AND_FETCH_DI,
2840 IA64_BUILTIN_AND_AND_FETCH_DI,
2841 IA64_BUILTIN_XOR_AND_FETCH_DI,
2842 IA64_BUILTIN_NAND_AND_FETCH_DI,
2843
2844 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2845 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2846
2847 IA64_BUILTIN_SYNCHRONIZE_DI,
2848
2849 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2850
ce152ef8
AM
2851 IA64_BUILTIN_LOCK_RELEASE_DI,
2852
2853 IA64_BUILTIN_BSP,
2854 IA64_BUILTIN_FLUSHRS
c65ebc55
JW
2855};
2856
2857/* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2858enum fetchop_code {
2859 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2860};
2861
c65ebc55 2862/* End of ia64.h */
This page took 0.676039 seconds and 5 git commands to generate.