]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i960/i960.h
Daily bump.
[gcc.git] / gcc / config / i960 / i960.h
CommitLineData
ba8ab355 1/* Definitions of target machine for GNU compiler, for Intel 80960
16c484c7 2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
c2749e2d 3 Free Software Foundation, Inc.
ba8ab355
JW
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
7
7ec022b2 8This file is part of GCC.
ba8ab355 9
7ec022b2 10GCC is free software; you can redistribute it and/or modify
ba8ab355
JW
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2, or (at your option)
13any later version.
14
7ec022b2 15GCC is distributed in the hope that it will be useful,
ba8ab355
JW
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
7ec022b2 21along with GCC; see the file COPYING. If not, write to
5b1a918b
RK
22the Free Software Foundation, 59 Temple Place - Suite 330,
23Boston, MA 02111-1307, USA. */
ba8ab355
JW
24
25/* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
27
8d55c164
NB
28/* Target CPU builtins. */
29#define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 builtin_define_std ("i960"); \
33 builtin_define_std ("I960"); \
34 builtin_define_std ("i80960"); \
35 builtin_define_std ("I80960"); \
36 builtin_assert ("cpu=i960"); \
37 builtin_assert ("machine=i960"); \
38 } \
39 while (0)
eaa4b44c 40
8d55c164 41#define MULTILIB_DEFAULTS { "mnumerics" }
ba8ab355 42
0fef3fd0
NB
43/* Name to predefine in the preprocessor for processor variations.
44 -mic* options make characters signed by default. */
45#define CPP_SPEC "%{mic*:-D__i960 -fsigned-char\
c3eebffb 46 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
555d459c
RK
47 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
48 %{mrp:-D__i960RP}\
c3eebffb 49 %{msa:-D__i960SA}%{msb:-D__i960SB}\
ba8ab355 50 %{mmc:-D__i960MC}\
c3eebffb 51 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
ba8ab355 52 %{mcf:-D__i960CF}}\
303e979a 53 %{msoft-float:-D_SOFT_FLOAT}\
ba8ab355
JW
54 %{mka:-D__i960KA__ -D__i960_KA__}\
55 %{mkb:-D__i960KB__ -D__i960_KB__}\
ba8ab355
JW
56 %{msa:-D__i960SA__ -D__i960_SA__}\
57 %{msb:-D__i960SB__ -D__i960_SB__}\
ba8ab355
JW
58 %{mmc:-D__i960MC__ -D__i960_MC__}\
59 %{mca:-D__i960CA__ -D__i960_CA__}\
ba8ab355
JW
60 %{mcc:-D__i960CC__ -D__i960_CC__}\
61 %{mcf:-D__i960CF__ -D__i960_CF__}\
c3eebffb 62 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
eaa4b44c
VM
63 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
64 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
ba8ab355 65
0e089454
JW
66/* Specs for the compiler, to handle processor variations.
67 If the user gives an explicit -gstabs or -gcoff option, then do not
0fef3fd0
NB
68 try to add an implicit one, as this will fail.
69 -mic* options make characters signed by default. */
ba8ab355 70#define CC1_SPEC \
0fef3fd0
NB
71 "%{mic*:-fsigned-char}\
72%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
0e089454
JW
73 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
74 %{mcoff:%{g*:-gcoff}}\
75 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
ba8ab355
JW
76
77/* Specs for the assembler, to handle processor variations.
78 For compatibility with Intel's gnu960 tool chain, pass -A options to
79 the assembler. */
80#define ASM_SPEC \
c3eebffb
JW
81 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
82 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
555d459c
RK
83 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
84 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
647902e0 85 %{mlink-relax:-linkrelax}"
ba8ab355
JW
86
87/* Specs for the linker, to handle processor variations.
88 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
89 to the linker. */
90#define LINK_SPEC \
c3eebffb
JW
91 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
92 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
e9a25f70 93 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
c3eebffb
JW
94 %{mbout:-Fbout}%{mcoff:-Fcoff}\
95 %{mlink-relax:-relax}"
ba8ab355
JW
96
97/* Specs for the libraries to link with, to handle processor variations.
98 Compatible with Intel's gnu960 tool chain. */
99#define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
100 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
101
bcf783f4
VM
102/* Defining the macro shows we can debug even without a frame pointer.
103 Actually, we can debug without FP. But defining the macro results in
104 that -O means FP elimination. Addressing through sp requires
105 negative offset and more one word addressing in the most cases
106 (offsets except for 0-4095 require one more word). Therefore we've
e5837c07 107 not defined the macro. */
bcf783f4 108/*#define CAN_DEBUG_WITHOUT_FP*/
b0f43a24
RK
109
110/* Do leaf procedure and tail call optimizations for -O2 and higher. */
c6aded7c 111#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
ba8ab355
JW
112{ \
113 if ((LEVEL) >= 2) \
114 { \
ba8ab355
JW
115 target_flags |= TARGET_FLAG_LEAFPROC; \
116 target_flags |= TARGET_FLAG_TAILCALL; \
117 } \
ba8ab355
JW
118}
119
120/* Print subsidiary information on the compiler version in use. */
121#define TARGET_VERSION fprintf (stderr," (intel 80960)");
122
123/* Generate DBX debugging information. */
23532de9 124#define DBX_DEBUGGING_INFO 1
ba8ab355
JW
125
126/* Generate SDB style debugging information. */
23532de9 127#define SDB_DEBUGGING_INFO 1
6321d910 128#define EXTENDED_SDB_BASIC_TYPES
ba8ab355
JW
129
130/* Generate DBX_DEBUGGING_INFO by default. */
131#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
132
6321d910
JW
133/* Redefine this to print in hex. No value adjustment is necessary
134 anymore. */
3c2eb9e1 135#define PUT_SDB_TYPE(A) \
6321d910 136 fprintf (asm_out_file, "\t.type\t0x%x;", A)
ba8ab355 137
c9040e2c 138/* Handle pragmas for compatibility with Intel's compilers. */
43fabf7d
JW
139
140extern int i960_maxbitalignment;
141extern int i960_last_maxbitalignment;
142
c58b209a
NB
143#define REGISTER_TARGET_PRAGMAS() do { \
144 c_register_pragma (0, "align", i960_pr_align); \
145 c_register_pragma (0, "noalign", i960_pr_noalign); \
8b97c5f8 146} while (0)
c9040e2c 147
ba8ab355
JW
148/* Run-time compilation parameters selecting different hardware subsets. */
149
150/* 960 architecture with floating-point. */
151#define TARGET_FLAG_NUMERICS 0x01
152#define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
153
154/* 960 architecture with memory management. */
155/* ??? Not used currently. */
156#define TARGET_FLAG_PROTECTED 0x02
157#define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
158
159/* The following three are mainly used to provide a little sanity checking
555d459c 160 against the -mARCH flags given. The Jx series, for the purposes of
e5837c07 161 gcc, is a Kx with a data cache. */
ba8ab355
JW
162
163/* Nonzero if we should generate code for the KA and similar processors.
164 No FPU, no microcode instructions. */
165#define TARGET_FLAG_K_SERIES 0x04
166#define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
167
168/* Nonzero if we should generate code for the MC processor.
169 Not really different from KB for our purposes. */
170#define TARGET_FLAG_MC 0x08
171#define TARGET_MC (target_flags & TARGET_FLAG_MC)
172
173/* Nonzero if we should generate code for the CA processor.
174 Enables different optimization strategies. */
175#define TARGET_FLAG_C_SERIES 0x10
176#define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
177
178/* Nonzero if we should generate leaf-procedures when we find them.
179 You may not want to do this because leaf-proc entries are
180 slower when not entered via BAL - this would be true when
181 a linker not supporting the optimization is used. */
182#define TARGET_FLAG_LEAFPROC 0x20
183#define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
184
185/* Nonzero if we should perform tail-call optimizations when we find them.
186 You may not want to do this because the detection of cases where
187 this is not valid is not totally complete. */
188#define TARGET_FLAG_TAILCALL 0x40
189#define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
190
191/* Nonzero if use of a complex addressing mode is a win on this implementation.
192 Complex addressing modes are probably not worthwhile on the K-series,
193 but they definitely are on the C-series. */
194#define TARGET_FLAG_COMPLEX_ADDR 0x80
195#define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
196
197/* Align code to 8 byte boundaries for faster fetching. */
198#define TARGET_FLAG_CODE_ALIGN 0x100
199#define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
200
201/* Append branch prediction suffixes to branch opcodes. */
202/* ??? Not used currently. */
203#define TARGET_FLAG_BRANCH_PREDICT 0x200
204#define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
205
206/* Forces prototype and return promotions. */
207/* ??? This does not work. */
208#define TARGET_FLAG_CLEAN_LINKAGE 0x400
209#define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
210
211/* For compatibility with iC960 v3.0. */
212#define TARGET_FLAG_IC_COMPAT3_0 0x800
213#define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
214
215/* For compatibility with iC960 v2.0. */
216#define TARGET_FLAG_IC_COMPAT2_0 0x1000
217#define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
218
219/* If no unaligned accesses are to be permitted. */
220#define TARGET_FLAG_STRICT_ALIGN 0x2000
221#define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
222
223/* For compatibility with iC960 assembler. */
224#define TARGET_FLAG_ASM_COMPAT 0x4000
225#define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
226
227/* For compatibility with the gcc960 v1.2 compiler. Use the old structure
13d39dbc 228 alignment rules. Also, turns on STRICT_ALIGNMENT. */
ba8ab355
JW
229#define TARGET_FLAG_OLD_ALIGN 0x8000
230#define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
231
eaa4b44c
VM
232/* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
233 if 80 bit long double support is missing. */
234#define TARGET_FLAG_LONG_DOUBLE_64 0x10000
235#define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
236
ba8ab355
JW
237extern int target_flags;
238
239/* Macro to define tables used to set the flags.
240 This is a list in braces of pairs in braces,
241 each pair being { "NAME", VALUE }
242 where VALUE is the bits to set or minus the bits to clear.
243 An empty string NAME is used to identify the default VALUE. */
244
245/* ??? Not all ten of these architecture variations actually exist, but I
246 am not sure which are real and which aren't. */
247
248#define TARGET_SWITCHES \
4e8d7ddc 249 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 250 N_("Generate SA code")}, \
4e8d7ddc
JW
251 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
252 TARGET_FLAG_COMPLEX_ADDR), \
047142d3 253 N_("Generate SB code")}, \
4e8d7ddc
JW
254/* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
255 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 256 N_("Generate SC code")}, */ \
4e8d7ddc 257 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 258 N_("Generate KA code")}, \
4e8d7ddc
JW
259 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
260 TARGET_FLAG_COMPLEX_ADDR), \
047142d3 261 N_("Generate KB code")}, \
4e8d7ddc
JW
262/* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
263 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 264 N_("Generate KC code")}, */ \
4e8d7ddc 265 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 266 N_("Generate JA code")}, \
4e8d7ddc 267 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 268 N_("Generate JD code")}, \
4e8d7ddc
JW
269 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
270 TARGET_FLAG_COMPLEX_ADDR), \
047142d3 271 N_("Generate JF code")}, \
4e8d7ddc 272 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 273 N_("generate RP code")}, \
4e8d7ddc
JW
274 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
275 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
047142d3 276 N_("Generate MC code")}, \
4e8d7ddc
JW
277 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
278 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
047142d3 279 N_("Generate CA code")}, \
4e8d7ddc
JW
280/* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
281 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
047142d3 282 N_("Generate CB code")}, \
4e8d7ddc 283 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
ba8ab355 284 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
4e8d7ddc 285 TARGET_FLAG_CODE_ALIGN), \
047142d3 286 N_("Generate CC code")}, */ \
4e8d7ddc
JW
287 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
288 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
047142d3 289 N_("Generate CF code")}, \
4e8d7ddc 290 {"numerics", (TARGET_FLAG_NUMERICS), \
047142d3 291 N_("Use hardware floating point instructions")}, \
4e8d7ddc 292 {"soft-float", -(TARGET_FLAG_NUMERICS), \
047142d3 293 N_("Use software floating point")}, \
4e8d7ddc 294 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
047142d3 295 N_("Use alternate leaf function entries")}, \
4e8d7ddc 296 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
047142d3 297 N_("Do not use alternate leaf function entries")}, \
4e8d7ddc 298 {"tail-call", TARGET_FLAG_TAILCALL, \
047142d3 299 N_("Perform tail call optimization")}, \
4e8d7ddc 300 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
047142d3 301 N_("Do not perform tail call optimization")}, \
4e8d7ddc 302 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
047142d3 303 N_("Use complex addressing modes")}, \
4e8d7ddc 304 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
047142d3 305 N_("Do not use complex addressing modes")}, \
4e8d7ddc 306 {"code-align", TARGET_FLAG_CODE_ALIGN, \
047142d3 307 N_("Align code to 8 byte boundary")}, \
4e8d7ddc 308 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
047142d3 309 N_("Do not align code to 8 byte boundary")}, \
4e8d7ddc 310/* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
047142d3 311 N_("Force use of prototypes")}, \
4e8d7ddc 312 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
047142d3 313 N_("Do not force use of prototypes")}, */ \
4e8d7ddc 314 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
047142d3 315 N_("Enable compatibility with iC960 v2.0")}, \
4e8d7ddc 316 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
047142d3 317 N_("Enable compatibility with iC960 v2.0")}, \
4e8d7ddc 318 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
047142d3 319 N_("Enable compatibility with iC960 v3.0")}, \
4e8d7ddc 320 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
047142d3 321 N_("Enable compatibility with ic960 assembler")}, \
4e8d7ddc 322 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
047142d3 323 N_("Enable compatibility with ic960 assembler")}, \
4e8d7ddc 324 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
047142d3 325 N_("Do not permit unaligned accesses")}, \
4e8d7ddc 326 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
047142d3 327 N_("Permit unaligned accesses")}, \
4e8d7ddc 328 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
047142d3 329 N_("Layout types like Intel's v1.3 gcc")}, \
4e8d7ddc 330 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
047142d3 331 N_("Do not layout types like Intel's v1.3 gcc")}, \
4e8d7ddc 332 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
047142d3 333 N_("Use 64 bit long doubles")}, \
4e8d7ddc 334 {"link-relax", 0, \
047142d3 335 N_("Enable linker relaxation")}, \
4e8d7ddc 336 {"no-link-relax", 0, \
047142d3 337 N_("Do not enable linker relaxation")}, \
5d84b57e 338 SUBTARGET_SWITCHES \
4e8d7ddc
JW
339 { "", TARGET_DEFAULT, \
340 NULL}}
ba8ab355 341
02d7a569
JS
342/* This are meant to be redefined in the host dependent files */
343#define SUBTARGET_SWITCHES
344
ba8ab355
JW
345/* Override conflicting target switch options.
346 Doesn't actually detect if more than one -mARCH option is given, but
347 does handle the case of two blatantly conflicting -mARCH options. */
3dc85dfb 348#define OVERRIDE_OPTIONS i960_initialize ()
ba8ab355
JW
349
350/* Don't enable anything by default. The user is expected to supply a -mARCH
555d459c 351 option. If none is given, then -mka is added by CC1_SPEC. */
ba8ab355
JW
352#define TARGET_DEFAULT 0
353\f
354/* Target machine storage layout. */
355
356/* Define this if most significant bit is lowest numbered
357 in instructions that operate on numbered bit-fields. */
358#define BITS_BIG_ENDIAN 0
359
360/* Define this if most significant byte of a word is the lowest numbered.
361 The i960 case be either big endian or little endian. We only support
362 little endian, which is the most common. */
363#define BYTES_BIG_ENDIAN 0
364
365/* Define this if most significant word of a multiword number is lowest
366 numbered. */
367#define WORDS_BIG_ENDIAN 0
368
ba8ab355
JW
369/* Bitfields cannot cross word boundaries. */
370#define BITFIELD_NBYTES_LIMITED 1
371
ba8ab355
JW
372/* Width of a word, in units (bytes). */
373#define UNITS_PER_WORD 4
374
87cb2a87
RH
375/* Width in bits of a long double. */
376#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 128)
377#define MAX_LONG_DOUBLE_TYPE_SIZE 128
d86037fa 378
eaa4b44c
VM
379/* Define this to set long double type size to use in libgcc2.c, which can
380 not depend on target_flags. */
381#if defined(__LONG_DOUBLE_64__)
382#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
383#else
87cb2a87 384#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
eaa4b44c 385#endif
ba8ab355
JW
386
387/* Allocation boundary (in *bits*) for storing pointers in memory. */
388#define POINTER_BOUNDARY 32
389
390/* Allocation boundary (in *bits*) for storing arguments in argument list. */
391#define PARM_BOUNDARY 32
392
393/* Boundary (in *bits*) on which stack pointer should be aligned. */
394#define STACK_BOUNDARY 128
395
396/* Allocation boundary (in *bits*) for the code of a function. */
397#define FUNCTION_BOUNDARY 128
398
399/* Alignment of field after `int : 0' in a structure. */
400#define EMPTY_FIELD_BOUNDARY 32
401
402/* This makes zero-length anonymous fields lay the next field
403 at a word boundary. It also makes the whole struct have
404 at least word alignment if there are any bitfields at all. */
405#define PCC_BITFIELD_TYPE_MATTERS 1
406
407/* Every structure's size must be a multiple of this. */
408#define STRUCTURE_SIZE_BOUNDARY 8
409
410/* No data type wants to be aligned rounder than this.
411 Extended precision floats gets 4-word alignment. */
412#define BIGGEST_ALIGNMENT 128
413
414/* Define this if move instructions will actually fail to work
415 when given unaligned data.
416 80960 will work even with unaligned data, but it is slow. */
3a011f48 417#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
ba8ab355
JW
418
419/* Specify alignment for string literals (which might be higher than the
13d39dbc 420 base type's minimal alignment requirement. This allows strings to be
ba8ab355
JW
421 aligned on word boundaries, and optimizes calls to the str* and mem*
422 library functions. */
423#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
ad237340 424 (TREE_CODE (EXP) == STRING_CST \
ad929cd5 425 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (int)(ALIGN) \
ba8ab355 426 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
ad929cd5 427 : (int)(ALIGN))
ba8ab355
JW
428
429/* Macros to determine size of aggregates (structures and unions
430 in C). Normally, these may be defined to simply return the maximum
431 alignment and simple rounded-up size, but on some machines (like
432 the i960), the total size of a structure is based on a non-trivial
433 rounding method. */
434
87cb2a87
RH
435#define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
436 i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE)
ba8ab355
JW
437\f
438/* Standard register usage. */
439
440/* Number of actual hardware registers.
441 The hardware registers are assigned numbers for the compiler
442 from 0 to just below FIRST_PSEUDO_REGISTER.
443 All registers that the compiler knows about must be given numbers,
444 even those that are not normally considered general registers.
445
446 Registers 0-15 are the global registers (g0-g15).
447 Registers 16-31 are the local registers (r0-r15).
448 Register 32-35 are the fp registers (fp0-fp3).
449 Register 36 is the condition code register.
450 Register 37 is unused. */
451
452#define FIRST_PSEUDO_REGISTER 38
453
454/* 1 for registers that have pervasive standard uses and are not available
455 for the register allocator. On 80960, this includes the frame pointer
456 (g15), the previous FP (r0), the stack pointer (r1), the return
457 instruction pointer (r2), and the argument pointer (g14). */
458#define FIXED_REGISTERS \
459 {0, 0, 0, 0, 0, 0, 0, 0, \
460 0, 0, 0, 0, 0, 0, 1, 1, \
461 1, 1, 1, 0, 0, 0, 0, 0, \
462 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 1, 1}
464
465/* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471
472/* On the 80960, note that:
473 g0..g3 are used for return values,
474 g0..g7 may always be used for parameters,
475 g8..g11 may be used for parameters, but are preserved if they aren't,
a45f3331 476 g12 is the static chain if needed, otherwise is preserved
ba8ab355
JW
477 g13 is the struct return ptr if used, or temp, but may be trashed,
478 g14 is the leaf return ptr or the arg block ptr otherwise zero,
479 must be reset to zero before returning if it was used,
480 g15 is the frame pointer,
481 r0 is the previous FP,
482 r1 is the stack pointer,
483 r2 is the return instruction pointer,
484 r3-r15 are always available,
1e39f528
JW
485 r3 is clobbered by calls in functions that use the arg pointer
486 r4-r11 may be clobbered by the mcount call when profiling
487 r4-r15 if otherwise unused may be used for preserving global registers
ba8ab355
JW
488 fp0..fp3 are never available. */
489#define CALL_USED_REGISTERS \
490 {1, 1, 1, 1, 1, 1, 1, 1, \
491 0, 0, 0, 0, 0, 1, 1, 1, \
492 1, 1, 1, 0, 0, 0, 0, 0, \
493 0, 0, 0, 0, 0, 0, 0, 0, \
494 1, 1, 1, 1, 1, 1}
495
496/* If no fp unit, make all of the fp registers fixed so that they can't
497 be used. */
498#define CONDITIONAL_REGISTER_USAGE \
499 if (! TARGET_NUMERICS) { \
500 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
501 } \
502
503/* Return number of consecutive hard regs needed starting at reg REGNO
504 to hold something of mode MODE.
505 This is ordinarily the length in words of a value of mode MODE
506 but can be less for certain modes in special long registers.
507
508 On 80960, ordinary registers hold 32 bits worth, but can be ganged
509 together to hold double or extended precision floating point numbers,
510 and the floating point registers hold any size floating point number */
511#define HARD_REGNO_NREGS(REGNO, MODE) \
512 ((REGNO) < 32 \
513 ? (((MODE) == VOIDmode) \
514 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
515 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
516
517/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
518 On 80960, the cpu registers can hold any mode but the float registers
87cb2a87 519 can only hold SFmode, DFmode, or TFmode. */
2129b081 520#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
ba8ab355
JW
521
522/* Value is 1 if it is a good idea to tie two pseudo registers
523 when one has mode MODE1 and one has mode MODE2.
524 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
525 for any hard reg, then this must be 0 for correct output. */
526
527#define MODES_TIEABLE_P(MODE1, MODE2) \
528 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
529
530/* Specify the registers used for certain standard purposes.
531 The values of these macros are register numbers. */
532
533/* 80960 pc isn't overloaded on a register that the compiler knows about. */
534/* #define PC_REGNUM */
535
536/* Register to use for pushing function arguments. */
537#define STACK_POINTER_REGNUM 17
538
539/* Actual top-of-stack address is same as
540 the contents of the stack pointer register. */
541#define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
542
543/* Base register for access to local variables of the function. */
544#define FRAME_POINTER_REGNUM 15
545
546/* Value should be nonzero if functions must have frame pointers.
547 Zero means the frame pointer need not be set up (and parms
548 may be accessed via the stack pointer) in functions that seem suitable.
549 This is computed in `reload', in reload1.c. */
43a92256
JW
550/* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
551 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
552 caused this to fail. */
4f0a3098
DD
553/* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
554 elimination messes up nonlocal goto sequences. I think this works for other
555 targets because they use indirect jumps for the return which disables fp
556 elimination. */
557#define FRAME_POINTER_REQUIRED \
558 (! leaf_function_p () || current_function_has_nonlocal_goto)
ba8ab355 559
bcf783f4
VM
560/* Definitions for register eliminations.
561
562 This is an array of structures. Each structure initializes one pair
563 of eliminable registers. The "from" register number is given first,
564 followed by "to". Eliminations of the same "from" register are listed
e5837c07 565 in order of preference.. */
bcf783f4
VM
566
567#define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
568
569/* Given FROM and TO register numbers, say whether this elimination is allowed.
570 Frame pointer elimination is automatically handled. */
571#define CAN_ELIMINATE(FROM, TO) 1
572
573/* Define the offset between two registers, one to be eliminated, and
574 the other its replacement, at the start of a routine.
43a92256
JW
575
576 Since the stack grows upward on the i960, this must be a negative number.
577 This includes the 64 byte hardware register save area and the size of
578 the frame. */
ba8ab355 579
bcf783f4
VM
580#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
581 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
ba8ab355
JW
582
583/* Base register for access to arguments of the function. */
584#define ARG_POINTER_REGNUM 14
585
586/* Register in which static-chain is passed to a function.
a45f3331
JW
587 On i960, we use g12. We can't use any local register, because we need
588 a register that can be set before a call or before a jump. */
589#define STATIC_CHAIN_REGNUM 12
ba8ab355
JW
590
591/* Functions which return large structures get the address
592 to place the wanted value at in g13. */
593
594#define STRUCT_VALUE_REGNUM 13
595
596/* The order in which to allocate registers. */
597
598#define REG_ALLOC_ORDER \
599{ 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
600 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
601 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
602 11, 12, /* g11, g12 */ \
603 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
604 /* We can't actually allocate these. */ \
605 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
606\f
607/* Define the classes of registers for register constraints in the
608 machine description. Also define ranges of constants.
609
610 One of the classes must always be named ALL_REGS and include all hard regs.
611 If there is more than one class, another class must be named NO_REGS
612 and contain no registers.
613
614 The name GENERAL_REGS must be the name of a class (or an alias for
615 another name such as ALL_REGS). This is the class of registers
616 that is allowed by "g" or "r" in a register constraint.
617 Also, registers outside this class are allocated only when
618 instructions express preferences for them.
619
620 The classes must be numbered in nondecreasing order; that is,
621 a larger-numbered class must never be contained completely
622 in a smaller-numbered class.
623
624 For any two classes, it is very desirable that there be another
625 class that represents their union. */
626
627/* The 80960 has four kinds of registers, global, local, floating point,
628 and condition code. The cc register is never allocated, so no class
629 needs to be defined for it. */
630
631enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
632 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
633
634/* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
635 does. */
636#define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
637
638#define N_REG_CLASSES (int) LIM_REG_CLASSES
639
640/* Give names of register classes as strings for dump file. */
641
642#define REG_CLASS_NAMES \
643{ "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
644 "FP_REGS", "ALL_REGS" }
645
646/* Define which registers fit in which classes.
647 This is an initializer for a vector of HARD_REG_SET
648 of length N_REG_CLASSES. */
649
650#define REG_CLASS_CONTENTS \
651{ {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
652
653/* The same information, inverted:
654 Return the class number of the smallest class containing
655 reg number REGNO. This could be a conditional expression
656 or could index an array. */
657
658#define REGNO_REG_CLASS(REGNO) \
659 ((REGNO) < 16 ? GLOBAL_REGS \
660 : (REGNO) < 32 ? LOCAL_REGS \
661 : (REGNO) < 36 ? FP_REGS \
662 : NO_REGS)
663
664/* The class value for index registers, and the one for base regs.
665 There is currently no difference between base and index registers on the
666 i960, but this distinction may one day be useful. */
667#define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
668#define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
669
670/* Get reg_class from a letter such as appears in the machine description.
671 'f' is a floating point register (fp0..fp3)
672 'l' is a local register (r0-r15)
673 'b' is a global register (g0-g15)
674 'd' is any local or global register
675 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
676/* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
677 the same thing, since 'r' may include the fp registers. */
678#define REG_CLASS_FROM_LETTER(C) \
679 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
680 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
681
682/* The letters I, J, K, L and M in a register constraint string
683 can be used to stand for particular ranges of immediate operands.
684 This macro defines what the ranges are.
685 C is the letter, and VALUE is a constant value.
686 Return 1 if VALUE is in the range specified by C.
687
688 For 80960:
689 'I' is used for literal values 0..31
690 'J' means literal 0
691 'K' means 0..-31. */
692
693#define CONST_OK_FOR_LETTER_P(VALUE, C) \
694 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
695 : (C) == 'J' ? ((VALUE) == 0) \
82eaec4a
TG
696 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
697 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
698 : 0)
ba8ab355
JW
699
700/* Similar, but for floating constants, and defining letters G and H.
701 Here VALUE is the CONST_DOUBLE rtx itself.
702 For the 80960, G is 0.0 and H is 1.0. */
703
b6e78be7
TG
704#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
705 ((TARGET_NUMERICS) && \
706 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
707 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
ba8ab355
JW
708
709/* Given an rtx X being reloaded into a reg required to be
710 in class CLASS, return the class of reg to actually use.
711 In general this is just CLASS; but on some machines
712 in some cases it is preferable to use a more restrictive class. */
713
714/* On 960, can't load constant into floating-point reg except
715 0.0 or 1.0.
716
717 Any hard reg is ok as a src operand of a reload insn. */
718
719#define PREFERRED_RELOAD_CLASS(X,CLASS) \
720 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
721 ? (CLASS) \
722 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
723 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
724 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
725 ? NO_REGS \
726 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
727
728#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
729 secondary_reload_class (CLASS, MODE, IN)
730
731/* Return the maximum number of consecutive registers
732 needed to represent mode MODE in a register of class CLASS. */
733/* On 80960, this is the size of MODE in words,
734 except in the FP regs, where a single reg is always enough. */
735#define CLASS_MAX_NREGS(CLASS, MODE) \
736 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
737\f
738/* Stack layout; function entry, exit and calling. */
739
740/* Define this if pushing a word on the stack
741 makes the stack pointer a smaller address. */
742/* #define STACK_GROWS_DOWNWARD */
743
744/* Define this if the nominal address of the stack frame
745 is at the high-address end of the local variables;
746 that is, each additional local variable allocated
747 goes at a more negative offset in the frame. */
748/* #define FRAME_GROWS_DOWNWARD */
749
750/* Offset within stack frame to start allocating local variables at.
751 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
752 first local allocated. Otherwise, it is the offset to the BEGINNING
753 of the first local allocated.
754
755 The i960 has a 64 byte register save area, plus possibly some extra
756 bytes allocated for varargs functions. */
757#define STARTING_FRAME_OFFSET 64
758
759/* If we generate an insn to push BYTES bytes,
760 this says how many the stack pointer really advances by.
761 On 80960, don't define this because there are no push insns. */
762/* #define PUSH_ROUNDING(BYTES) BYTES */
763
764/* Offset of first parameter from the argument pointer register value. */
765#define FIRST_PARM_OFFSET(FNDECL) 0
766
767/* When a parameter is passed in a register, no stack space is
768 allocated for it. However, when args are passed in the
769 stack, space is allocated for every register parameter. */
770#define MAYBE_REG_PARM_STACK_SPACE 48
771#define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
772 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
773#define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
774#define OUTGOING_REG_PARM_STACK_SPACE
775
776/* Keep the stack pointer constant throughout the function. */
f73ad30e 777#define ACCUMULATE_OUTGOING_ARGS 1
ba8ab355
JW
778
779/* Value is 1 if returning from a function call automatically
780 pops the arguments described by the number-of-args field in the call.
8b109b37 781 FUNDECL is the declaration node of the function (as a tree),
ba8ab355
JW
782 FUNTYPE is the data type of the function (as a tree),
783 or for a library call it is an identifier node for the subroutine name. */
784
8b109b37 785#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
ba8ab355
JW
786
787/* Define how to find the value returned by a library function
788 assuming the value has mode MODE. */
789
c5c76735 790#define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
ba8ab355
JW
791
792/* 1 if N is a possible register number for a function value
793 as seen by the caller.
794 On 80960, returns are in g0..g3 */
795
cc5ae869 796#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
ba8ab355
JW
797
798/* 1 if N is a possible register number for function argument passing.
799 On 80960, parameters are passed in g0..g11 */
800
801#define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
802
803/* Perform any needed actions needed for a function that is receiving a
804 variable number of arguments.
805
806 CUM is as above.
807
808 MODE and TYPE are the mode and type of the current parameter.
809
810 PRETEND_SIZE is a variable that should be set to the amount of stack
811 that must be pushed by the prolog to pretend that our caller pushed
812 it.
813
814 Normally, this macro will push all remaining incoming registers on the
815 stack and set PRETEND_SIZE to the length of the registers pushed. */
816
817#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
818 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
c2749e2d 819
c2749e2d 820/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
821#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
822 i960_va_start (valist, nextarg)
c2749e2d
RH
823
824/* Implement `va_arg'. */
825#define EXPAND_BUILTIN_VA_ARG(valist, type) \
826 i960_va_arg (valist, type)
ba8ab355
JW
827\f
828/* Define a data type for recording info about an argument list
829 during the scan of that argument list. This data type should
830 hold all necessary information about the function itself
831 and about the args processed so far, enough to enable macros
832 such as FUNCTION_ARG to determine where the next arg should go.
833
834 On 80960, this is two integers, which count the number of register
835 parameters and the number of stack parameters seen so far. */
836
837struct cum_args { int ca_nregparms; int ca_nstackparms; };
838
839#define CUMULATIVE_ARGS struct cum_args
840
841/* Define the number of registers that can hold parameters.
842 This macro is used only in macro definitions below and/or i960.c. */
843#define NPARM_REGS 12
844
845/* Define how to round to the next parameter boundary.
846 This macro is used only in macro definitions below and/or i960.c. */
b46db6e4 847#define ROUND_PARM(X, MULTIPLE_OF) \
ba8ab355
JW
848 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
849
850/* Initialize a variable CUM of type CUMULATIVE_ARGS
851 for a call to a function whose data type is FNTYPE.
852 For a library call, FNTYPE is 0.
853
854 On 80960, the offset always starts at 0; the first parm reg is g0. */
855
2c7ee1a6 856#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
ba8ab355
JW
857 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
858
859/* Update the data in CUM to advance over an argument
860 of mode MODE and data type TYPE.
861 CUM should be advanced to align with the data type accessed and
862 also the size of that data type in # of regs.
863 (TYPE is null for libcalls where that information may not be available.) */
864
865#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
866 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
867
868/* Indicate the alignment boundary for an argument of the specified mode and
869 type. */
870#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
29008b51
JW
871 (((TYPE) != 0) \
872 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
873 ? PARM_BOUNDARY \
874 : TYPE_ALIGN (TYPE)) \
875 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
876 ? PARM_BOUNDARY \
877 : GET_MODE_ALIGNMENT (MODE)))
ba8ab355
JW
878
879/* Determine where to put an argument to a function.
880 Value is zero to push the argument on the stack,
881 or a hard register in which to store the argument.
882
883 MODE is the argument's machine mode.
884 TYPE is the data type of the argument (as a tree).
885 This is null for libcalls where that information may
886 not be available.
887 CUM is a variable of type CUMULATIVE_ARGS which gives info about
888 the preceding args and about the function being called.
889 NAMED is nonzero if this argument is a named parameter
890 (otherwise it is an extra parameter matching an ellipsis). */
891
ba8ab355
JW
892#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
893 i960_function_arg(&CUM, MODE, TYPE, NAMED)
894
895/* Define how to find the value returned by a function.
896 VALTYPE is the data type of the value (as a tree).
897 If the precise function being called is known, FUNC is its FUNCTION_DECL;
898 otherwise, FUNC is 0. */
899
254f7d80 900#define FUNCTION_VALUE(TYPE, FUNC) \
c5c76735 901 gen_rtx_REG (TYPE_MODE (TYPE), 0)
ba8ab355 902
e14fa9c4
DE
903/* Force aggregates and objects larger than 16 bytes to be returned in memory,
904 since we only have 4 registers available for return values. */
ba8ab355 905
e14fa9c4
DE
906#define RETURN_IN_MEMORY(TYPE) \
907 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
ba8ab355 908
40f32220
JW
909/* Don't default to pcc-struct-return, because we have already specified
910 exactly how to return structures in the RETURN_IN_MEMORY macro. */
911#define DEFAULT_PCC_STRUCT_RETURN 0
912
ba8ab355
JW
913/* For an arg passed partly in registers and partly in memory,
914 this is the number of registers used.
915 This never happens on 80960. */
916
917#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
918\f
919/* Output the label for a function definition.
920 This handles leaf functions and a few other things for the i960. */
921
922#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
923 i960_function_name_declare (FILE, NAME, DECL)
924
ba8ab355
JW
925/* Output assembler code to FILE to increment profiler label # LABELNO
926 for profiling a function entry. */
927
1e39f528
JW
928#define FUNCTION_PROFILER(FILE, LABELNO) \
929 output_function_profiler ((FILE), (LABELNO));
ba8ab355
JW
930
931/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
932 the stack pointer does not matter. The value is tested only in
933 functions that have frame pointers.
934 No definition is equivalent to always zero. */
935
936#define EXIT_IGNORE_STACK 1
ba8ab355
JW
937\f
938/* Addressing modes, and classification of registers for them. */
939
ba8ab355
JW
940/* Macros to check register numbers against specific register classes. */
941
942/* These assume that REGNO is a hard or pseudo reg number.
943 They give nonzero only if REGNO is a hard reg of the suitable class
944 or a pseudo reg currently allocated to a suitable hard reg.
945 Since they use reg_renumber, they are safe only once reg_renumber
946 has been allocated, which happens in local-alloc.c. */
947
948#define REGNO_OK_FOR_INDEX_P(REGNO) \
949 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
950#define REGNO_OK_FOR_BASE_P(REGNO) \
951 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
952#define REGNO_OK_FOR_FP_P(REGNO) \
953 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
954
955/* Now macros that check whether X is a register and also,
956 strictly, whether it is in a specified class.
957
958 These macros are specific to the 960, and may be used only
959 in code for printing assembler insns and in conditions for
960 define_optimization. */
961
962/* 1 if X is an fp register. */
963
964#define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
965
966/* Maximum number of registers that can appear in a valid memory address. */
967#define MAX_REGS_PER_ADDRESS 2
968
6eff269e
BK
969#define CONSTANT_ADDRESS_P(X) \
970 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
971 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
972 || GET_CODE (X) == HIGH)
ba8ab355
JW
973
974/* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
975 is a legitimate general operand.
976 It is given that X satisfies CONSTANT_P.
977
819f6d59
JW
978 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
979
980 ??? This probably should be defined to 1. */
ba8ab355
JW
981
982#define LEGITIMATE_CONSTANT_P(X) \
819f6d59 983 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
ba8ab355
JW
984
985/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
986 and check its validity for a certain class.
987 We have two alternate definitions for each of them.
988 The usual definition accepts all pseudo regs; the other rejects
989 them unless they have been allocated suitable hard regs.
990 The symbol REG_OK_STRICT causes the latter definition to be used.
991
992 Most source files want to accept pseudo regs in the hope that
993 they will get allocated to the class that the insn wants them to be in.
994 Source files for reload pass need to be strict.
995 After reload, it makes no difference, since pseudo regs have
996 been eliminated by then. */
997
998#ifndef REG_OK_STRICT
999
1000/* Nonzero if X is a hard reg that can be used as an index
1001 or if it is a pseudo reg. */
1002#define REG_OK_FOR_INDEX_P(X) \
1003 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1004/* Nonzero if X is a hard reg that can be used as a base reg
1005 or if it is a pseudo reg. */
1006#define REG_OK_FOR_BASE_P(X) \
1007 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1008
1009#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1010#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1011
1012#else
1013
1014/* Nonzero if X is a hard reg that can be used as an index. */
1015#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1016/* Nonzero if X is a hard reg that can be used as a base reg. */
1017#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1018
1019#endif
1020\f
1021/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1022 that is a valid memory address for an instruction.
1023 The MODE argument is the machine mode for the MEM expression
1024 that wants to use this address.
1025
1026 On 80960, legitimate addresses are:
1027 base ld (g0),r0
1028 disp (12 or 32 bit) ld foo,r0
1029 base + index ld (g0)[g1*1],r0
1030 base + displ ld 0xf00(g0),r0
1031 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1032 index*scale + base ld (g0)[g1*4],r0
1033 index*scale + displ ld 0xf00[g1*4],r0
1034 index*scale ld [g1*4],r0
1035 index + base + displ ld 0xf00(g0)[g1*1],r0
1036
1037 In each case, scale can be 1, 2, 4, 8, or 16. */
1038
e5837c07 1039/* Returns 1 if the scale factor of an index term is valid. */
ba8ab355
JW
1040#define SCALE_TERM_P(X) \
1041 (GET_CODE (X) == CONST_INT \
1042 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1043 || INTVAL(X) == 8 || INTVAL (X) == 16))
1044
1045
1046#ifdef REG_OK_STRICT
1047#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1048 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1049#else
1050#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1051 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1052#endif
1053\f
1054/* Try machine-dependent ways of modifying an illegitimate address
1055 to be legitimate. If we find one, return the new, valid address.
1056 This macro is used in only one place: `memory_address' in explow.c.
1057
1058 OLDX is the address as it was before break_out_memory_refs was called.
1059 In some cases it is useful to look at this to decide what needs to be done.
1060
1061 MODE and WIN are passed so that this macro can use
1062 GO_IF_LEGITIMATE_ADDRESS.
1063
1064 It is always safe for this macro to do nothing. It exists to recognize
1065 opportunities to optimize the output. */
1066
13d39dbc 1067/* On 80960, convert non-canonical addresses to canonical form. */
ba8ab355 1068
ba8ab355
JW
1069#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1070{ rtx orig_x = (X); \
1071 (X) = legitimize_address (X, OLDX, MODE); \
1072 if ((X) != orig_x && memory_address_p (MODE, X)) \
1073 goto WIN; }
1074
1075/* Go to LABEL if ADDR (a legitimate address expression)
1076 has an effect that depends on the machine mode it is used for.
1077 On the 960 this is never true. */
1078
1079#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1080\f
1081/* Specify the machine mode that this machine uses
1082 for the index in the tablejump instruction. */
1083#define CASE_VECTOR_MODE SImode
1084
18543a22
ILT
1085/* Define as C expression which evaluates to nonzero if the tablejump
1086 instruction expects the table to contain offsets from the address of the
1087 table.
e5837c07 1088 Do not define this if the table should contain absolute addresses. */
18543a22 1089/* #define CASE_VECTOR_PC_RELATIVE 1 */
ba8ab355 1090
ba8ab355
JW
1091/* Define this as 1 if `char' should by default be signed; else as 0. */
1092#define DEFAULT_SIGNED_CHAR 0
1093
ba8ab355
JW
1094/* Max number of bytes we can move from memory to memory
1095 in one reasonably fast instruction. */
1096#define MOVE_MAX 16
1097
9a63901f
RK
1098/* Define if operations between registers always perform the operation
1099 on the full register even if a narrower mode is specified. */
1100#define WORD_REGISTER_OPERATIONS
1101
1102/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1103 will either zero-extend or sign-extend. The value of this macro should
1104 be the code that says which one of the two operations is implicitly
1105 done, NIL if none. */
1106#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
ba8ab355
JW
1107
1108/* Nonzero if access to memory by bytes is no faster than for words.
43a88a8c 1109 Value changed to 1 after reports of poor bit-field code with g++.
e5837c07 1110 Indications are that code is usually as good, sometimes better. */
ba8ab355 1111
8a21007c 1112#define SLOW_BYTE_ACCESS 1
ba8ab355 1113
d969caf8 1114/* Define this to be nonzero if shift instructions ignore all but the low-order
e5837c07 1115 few bits. */
82eaec4a 1116#define SHIFT_COUNT_TRUNCATED 0
ba8ab355
JW
1117
1118/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1119 is done just by pretending it is already truncated. */
1120#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1121
1122/* Specify the machine mode that pointers have.
1123 After generation of rtl, the compiler makes no further distinction
1124 between pointers and any other objects of this machine mode. */
1125#define Pmode SImode
1126
1127/* Specify the widest mode that BLKmode objects can be promoted to */
1128#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1129\f
1130/* These global variables are used to pass information between
1131 cc setter and cc user at insn emit time. */
1132
1133extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1134
ba8ab355
JW
1135/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1136 return the mode to be used for the comparison. For floating-point, CCFPmode
1137 should be used. CC_NOOVmode should be used when the first operand is a
1138 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1139 needed. */
c3eebffb 1140#define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
ba8ab355
JW
1141
1142/* A function address in a call instruction is a byte address
1143 (for indexing purposes) so give the MEM rtx a byte's mode. */
1144#define FUNCTION_MODE SImode
1145
1146/* Define this if addresses of constant functions
1147 shouldn't be put through pseudo regs where they can be cse'd.
1148 Desirable on machines where ordinary constants are expensive
1149 but a CALL with constant address is cheap. */
1150#define NO_FUNCTION_CSE
1151
1152/* Use memcpy, etc. instead of bcopy. */
1153
1154#ifndef WIND_RIVER
1155#define TARGET_MEM_FUNCTIONS 1
1156#endif
ba8ab355
JW
1157\f
1158/* Control the assembler format that we output. */
1159
ba8ab355
JW
1160/* Output to assembler file text saying following lines
1161 may contain character constants, extra white space, comments, etc. */
1162
1163#define ASM_APP_ON ""
1164
1165/* Output to assembler file text saying following lines
1166 no longer contain unusual constructs. */
1167
1168#define ASM_APP_OFF ""
1169
1170/* Output before read-only data. */
1171
de323aa1 1172#define TEXT_SECTION_ASM_OP "\t.text"
ba8ab355
JW
1173
1174/* Output before writable data. */
1175
de323aa1 1176#define DATA_SECTION_ASM_OP "\t.data"
ba8ab355
JW
1177
1178/* How to refer to registers in assembler output.
1179 This sequence is indexed by compiler's hard-register-number (see above). */
1180
1181#define REGISTER_NAMES { \
1182 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1183 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1184 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1185 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1186 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1187
1188/* How to renumber registers for dbx and gdb.
1189 In the 960 encoding, g0..g15 are registers 16..31. */
1190
1191#define DBX_REGISTER_NUMBER(REGNO) \
1192 (((REGNO) < 16) ? (REGNO) + 16 \
1193 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1194
1195/* Don't emit dbx records longer than this. This is an arbitrary value. */
1196#define DBX_CONTIN_LENGTH 1500
1197
1198/* This is how to output a note to DBX telling it the line number
e5837c07 1199 to which the following sequence of instructions corresponds. */
ba8ab355 1200
a8d0467e 1201#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE, COUNTER) \
ba8ab355
JW
1202{ if (write_symbols == SDB_DEBUG) { \
1203 fprintf ((FILE), "\t.ln %d\n", \
1204 (sdb_begin_function_line \
1205 ? (LINE) - sdb_begin_function_line : 1)); \
1206 } else if (write_symbols == DBX_DEBUG) { \
1207 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1208 } }
1209
506a61b1
KG
1210/* Globalizing directive for a label. */
1211#define GLOBAL_ASM_OP "\t.globl "
ba8ab355 1212
e5837c07 1213/* The prefix to add to user-visible assembler symbols. */
ba8ab355 1214
4e0c8ad2 1215#define USER_LABEL_PREFIX "_"
ba8ab355 1216
ba8ab355
JW
1217/* This is how to store into the string LABEL
1218 the symbol_ref name of an internal numbered label where
1219 PREFIX is the class of label and NUM is the number within the class.
1220 This is suitable for output with `assemble_name'. */
1221
1222#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
74eda121 1223 sprintf (LABEL, "*%s%lu", PREFIX, (unsigned long)(NUM))
ba8ab355 1224
ba8ab355
JW
1225#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1226 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1227
1228/* This is how to output an insn to pop a register from the stack.
1229 It need not be very fast code. */
1230
1231#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1232 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1233
1234/* This is how to output an element of a case-vector that is absolute. */
1235
1236#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1237 fprintf (FILE, "\t.word L%d\n", VALUE)
1238
1239/* This is how to output an element of a case-vector that is relative. */
1240
33f7f353 1241#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
ba8ab355
JW
1242 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1243
1244/* This is how to output an assembler line that says to advance the
1245 location counter to a multiple of 2**LOG bytes. */
1246
1247#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1248 fprintf (FILE, "\t.align %d\n", (LOG))
1249
1250#define ASM_OUTPUT_SKIP(FILE,SIZE) \
58e15542 1251 fprintf (FILE, "\t.space %d\n", (int)(SIZE))
ba8ab355
JW
1252
1253/* This says how to output an assembler line
1254 to define a global common symbol. */
1255
1256/* For common objects, output unpadded size... gld960 & lnk960 both
1257 have code to align each common object at link time. Also, if size
1258 is 0, treat this as a declaration, not a definition - i.e.,
1259 do nothing at all. */
1260
1261#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1262{ if ((SIZE) != 0) \
1263 { \
1264 fputs (".globl ", (FILE)), \
1265 assemble_name ((FILE), (NAME)), \
1266 fputs ("\n.comm ", (FILE)), \
1267 assemble_name ((FILE), (NAME)), \
58e15542 1268 fprintf ((FILE), ",%d\n", (int)(SIZE)); \
ba8ab355
JW
1269 } \
1270}
1271
1272/* This says how to output an assembler line to define a local common symbol.
1273 Output unpadded size, with request to linker to align as requested.
1274 0 size should not be possible here. */
1275
1276#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1277( fputs (".bss\t", (FILE)), \
1278 assemble_name ((FILE), (NAME)), \
58e15542 1279 fprintf ((FILE), ",%d,%d\n", (int)(SIZE), \
0ce200e5
JM
1280 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1281
1282/* A C statement (sans semicolon) to output to the stdio stream
1283 FILE the assembler definition of uninitialized global DECL named
1284 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1285 Try to use asm_output_aligned_bss to implement this macro. */
1286
1287#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1288 do { \
0ce200e5
JM
1289 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1290 } while (0)
ba8ab355
JW
1291
1292/* Output text for an #ident directive. */
1293#define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1294
1295/* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1296
fc470718 1297#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
ba8ab355 1298
ba8ab355 1299\f
ba8ab355
JW
1300/* Print operand X (an rtx) in assembler syntax to file FILE.
1301 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1302 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1303
1304#define PRINT_OPERAND(FILE, X, CODE) \
1305 i960_print_operand (FILE, X, CODE);
1306
1307/* Print a memory address as an operand to reference that memory location. */
1308
1309#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1310 i960_print_operand_addr (FILE, ADDR)
eb9c1bb6
RH
1311
1312/* Determine which codes are valid without a following integer. These must
1313 not be alphabetic (the characters are chosen so that
1314 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1315 using ASCII). */
1316
1317#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
ba8ab355
JW
1318\f
1319/* Output assembler code for a block containing the constant parts
1320 of a trampoline, leaving space for the variable parts. */
1321
1322/* On the i960, the trampoline contains three instructions:
1323 ldconst _function, r4
a45f3331 1324 ldconst static addr, g12
ba8ab355
JW
1325 jump (r4) */
1326
1327#define TRAMPOLINE_TEMPLATE(FILE) \
1328{ \
301d03af
RS
1329 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1330 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1331 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1332 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1333 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
ba8ab355
JW
1334}
1335
1336/* Length in units of the trampoline for entering a nested function. */
1337
1338#define TRAMPOLINE_SIZE 20
1339
1340/* Emit RTL insns to initialize the variable parts of a trampoline.
1341 FNADDR is an RTX for the address of the function's pure code.
1342 CXT is an RTX for the static chain value for the function. */
1343
1344#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1345{ \
c5c76735
JL
1346 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1347 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
ba8ab355
JW
1348}
1349
0bc02db4
MS
1350/* Generate RTL to flush the register windows so as to make arbitrary frames
1351 available. */
1352#define SETUP_FRAME_ADDRESSES() \
1353 emit_insn (gen_flush_register_windows ())
1354
1355#define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1356
ba8ab355 1357#if 0
13d39dbc 1358/* Promote char and short arguments to ints, when want compatibility with
ba8ab355
JW
1359 the iC960 compilers. */
1360
1361/* ??? In order for this to work, all users would need to be changed
1362 to test the value of the macro at run time. */
1363#define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1364/* ??? This does not exist. */
1365#define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1366#endif
1367
1368/* Instruction type definitions. Used to alternate instructions types for
1369 better performance on the C series chips. */
1370
1371enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1372
1373/* Holds the insn type of the last insn output to the assembly file. */
1374
1375extern enum insn_types i960_last_insn_type;
1376
1377/* Parse opcodes, and set the insn last insn type based on them. */
1378
1379#define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1380
1381/* Table listing what rtl codes each predicate in i960.c will accept. */
1382
1383#define PREDICATE_CODES \
1384 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1385 LABEL_REF, SUBREG, REG, MEM}}, \
1386 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
82eaec4a 1387 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
ba8ab355
JW
1388 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1389 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1390 {"literal", {CONST_INT}}, \
1391 {"fp_literal_one", {CONST_DOUBLE}}, \
1392 {"fp_literal_double", {CONST_DOUBLE}}, \
1393 {"fp_literal", {CONST_DOUBLE}}, \
1394 {"signed_literal", {CONST_INT}}, \
1395 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1396 {"eq_or_neq", {EQ, NE}}, \
1397 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1398 CONST_DOUBLE, CONST}}, \
f8634644
RK
1399 {"power2_operand", {CONST_INT}}, \
1400 {"cmplpower2_operand", {CONST_INT}},
ba8ab355 1401
778ebe62
JW
1402/* Defined in reload.c, and used in insn-recog.c. */
1403
1404extern int rtx_equal_function_value_matters;
This page took 1.530772 seconds and 5 git commands to generate.