]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i960/i960.h
Fix thinko
[gcc.git] / gcc / config / i960 / i960.h
CommitLineData
ba8ab355 1/* Definitions of target machine for GNU compiler, for Intel 80960
c6aded7c 2 Copyright (C) 1992, 1993, 1995, 1996, 1998 Free Software Foundation, Inc.
ba8ab355
JW
3 Contributed by Steven McGeady, Intel Corp.
4 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
5 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
5b1a918b
RK
21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA. */
ba8ab355
JW
23
24/* Note that some other tm.h files may include this one and then override
25 many of the definitions that relate to assembler syntax. */
26
27/* Names to predefine in the preprocessor for this target machine. */
65c42379 28#define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
ba8ab355
JW
29
30/* Name to predefine in the preprocessor for processor variations. */
31#define CPP_SPEC "%{mic*:-D__i960\
c3eebffb 32 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
555d459c
RK
33 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
34 %{mrp:-D__i960RP}\
c3eebffb 35 %{msa:-D__i960SA}%{msb:-D__i960SB}\
ba8ab355 36 %{mmc:-D__i960MC}\
c3eebffb 37 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
ba8ab355
JW
38 %{mcf:-D__i960CF}}\
39 %{mka:-D__i960KA__ -D__i960_KA__}\
40 %{mkb:-D__i960KB__ -D__i960_KB__}\
ba8ab355
JW
41 %{msa:-D__i960SA__ -D__i960_SA__}\
42 %{msb:-D__i960SB__ -D__i960_SB__}\
ba8ab355
JW
43 %{mmc:-D__i960MC__ -D__i960_MC__}\
44 %{mca:-D__i960CA__ -D__i960_CA__}\
ba8ab355
JW
45 %{mcc:-D__i960CC__ -D__i960_CC__}\
46 %{mcf:-D__i960CF__ -D__i960_CF__}\
c3eebffb
JW
47 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
48 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
ba8ab355
JW
49
50/* -mic* options make characters signed by default. */
0f1d97b8
JW
51/* Use #if rather than ?: because MIPS C compiler rejects ?: in
52 initializers. */
53#if DEFAULT_SIGNED_CHAR
54#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
55#else
56#define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
57#endif
ba8ab355 58
0e089454
JW
59/* Specs for the compiler, to handle processor variations.
60 If the user gives an explicit -gstabs or -gcoff option, then do not
61 try to add an implicit one, as this will fail. */
ba8ab355 62#define CC1_SPEC \
555d459c 63 "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
0e089454
JW
64 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
65 %{mcoff:%{g*:-gcoff}}\
66 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
ba8ab355
JW
67
68/* Specs for the assembler, to handle processor variations.
69 For compatibility with Intel's gnu960 tool chain, pass -A options to
70 the assembler. */
71#define ASM_SPEC \
c3eebffb
JW
72 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
73 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
555d459c
RK
74 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
75 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
647902e0 76 %{mlink-relax:-linkrelax}"
ba8ab355
JW
77
78/* Specs for the linker, to handle processor variations.
79 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
80 to the linker. */
81#define LINK_SPEC \
c3eebffb
JW
82 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
83 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
e9a25f70 84 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
c3eebffb
JW
85 %{mbout:-Fbout}%{mcoff:-Fcoff}\
86 %{mlink-relax:-relax}"
ba8ab355
JW
87
88/* Specs for the libraries to link with, to handle processor variations.
89 Compatible with Intel's gnu960 tool chain. */
90#define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
91 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
92
b0f43a24
RK
93/* Show we can debug even without a frame pointer. */
94#define CAN_DEBUG_WITHOUT_FP
95
96/* Do leaf procedure and tail call optimizations for -O2 and higher. */
c6aded7c 97#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
ba8ab355
JW
98{ \
99 if ((LEVEL) >= 2) \
100 { \
ba8ab355
JW
101 target_flags |= TARGET_FLAG_LEAFPROC; \
102 target_flags |= TARGET_FLAG_TAILCALL; \
103 } \
ba8ab355
JW
104}
105
106/* Print subsidiary information on the compiler version in use. */
107#define TARGET_VERSION fprintf (stderr," (intel 80960)");
108
109/* Generate DBX debugging information. */
110#define DBX_DEBUGGING_INFO
111
112/* Generate SDB style debugging information. */
113#define SDB_DEBUGGING_INFO
6321d910 114#define EXTENDED_SDB_BASIC_TYPES
ba8ab355
JW
115
116/* Generate DBX_DEBUGGING_INFO by default. */
117#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
118
6321d910
JW
119/* Redefine this to print in hex. No value adjustment is necessary
120 anymore. */
3c2eb9e1 121#define PUT_SDB_TYPE(A) \
6321d910 122 fprintf (asm_out_file, "\t.type\t0x%x;", A)
ba8ab355 123
c9040e2c 124/* Handle pragmas for compatibility with Intel's compilers. */
67988bd2
NC
125#define HANDLE_PRAGMA(GET, UNGET, NAME) process_pragma (GET, UNGET, NAME)
126extern int process_pragma ();
c9040e2c 127
ba8ab355
JW
128/* Run-time compilation parameters selecting different hardware subsets. */
129
130/* 960 architecture with floating-point. */
131#define TARGET_FLAG_NUMERICS 0x01
132#define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
133
134/* 960 architecture with memory management. */
135/* ??? Not used currently. */
136#define TARGET_FLAG_PROTECTED 0x02
137#define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
138
139/* The following three are mainly used to provide a little sanity checking
555d459c
RK
140 against the -mARCH flags given. The Jx series, for the purposes of
141 gcc, is a Kx with a data cache. */
ba8ab355
JW
142
143/* Nonzero if we should generate code for the KA and similar processors.
144 No FPU, no microcode instructions. */
145#define TARGET_FLAG_K_SERIES 0x04
146#define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
147
148/* Nonzero if we should generate code for the MC processor.
149 Not really different from KB for our purposes. */
150#define TARGET_FLAG_MC 0x08
151#define TARGET_MC (target_flags & TARGET_FLAG_MC)
152
153/* Nonzero if we should generate code for the CA processor.
154 Enables different optimization strategies. */
155#define TARGET_FLAG_C_SERIES 0x10
156#define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
157
158/* Nonzero if we should generate leaf-procedures when we find them.
159 You may not want to do this because leaf-proc entries are
160 slower when not entered via BAL - this would be true when
161 a linker not supporting the optimization is used. */
162#define TARGET_FLAG_LEAFPROC 0x20
163#define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
164
165/* Nonzero if we should perform tail-call optimizations when we find them.
166 You may not want to do this because the detection of cases where
167 this is not valid is not totally complete. */
168#define TARGET_FLAG_TAILCALL 0x40
169#define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
170
171/* Nonzero if use of a complex addressing mode is a win on this implementation.
172 Complex addressing modes are probably not worthwhile on the K-series,
173 but they definitely are on the C-series. */
174#define TARGET_FLAG_COMPLEX_ADDR 0x80
175#define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
176
177/* Align code to 8 byte boundaries for faster fetching. */
178#define TARGET_FLAG_CODE_ALIGN 0x100
179#define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
180
181/* Append branch prediction suffixes to branch opcodes. */
182/* ??? Not used currently. */
183#define TARGET_FLAG_BRANCH_PREDICT 0x200
184#define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
185
186/* Forces prototype and return promotions. */
187/* ??? This does not work. */
188#define TARGET_FLAG_CLEAN_LINKAGE 0x400
189#define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
190
191/* For compatibility with iC960 v3.0. */
192#define TARGET_FLAG_IC_COMPAT3_0 0x800
193#define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
194
195/* For compatibility with iC960 v2.0. */
196#define TARGET_FLAG_IC_COMPAT2_0 0x1000
197#define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
198
199/* If no unaligned accesses are to be permitted. */
200#define TARGET_FLAG_STRICT_ALIGN 0x2000
201#define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
202
203/* For compatibility with iC960 assembler. */
204#define TARGET_FLAG_ASM_COMPAT 0x4000
205#define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
206
207/* For compatibility with the gcc960 v1.2 compiler. Use the old structure
13d39dbc 208 alignment rules. Also, turns on STRICT_ALIGNMENT. */
ba8ab355
JW
209#define TARGET_FLAG_OLD_ALIGN 0x8000
210#define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
211
212extern int target_flags;
213
214/* Macro to define tables used to set the flags.
215 This is a list in braces of pairs in braces,
216 each pair being { "NAME", VALUE }
217 where VALUE is the bits to set or minus the bits to clear.
218 An empty string NAME is used to identify the default VALUE. */
219
220/* ??? Not all ten of these architecture variations actually exist, but I
221 am not sure which are real and which aren't. */
222
223#define TARGET_SWITCHES \
224 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
225 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
226 TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb
JW
227/* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
228 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
ba8ab355
JW
229 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
230 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
231 TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb
JW
232/* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
233 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
555d459c
RK
234 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
235 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
236 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
237 TARGET_FLAG_COMPLEX_ADDR)},\
238 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
ba8ab355
JW
239 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
240 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
241 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
242 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb 243/* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
ba8ab355
JW
244 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
245 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
246 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
c3eebffb 247 TARGET_FLAG_CODE_ALIGN)}, */ \
ba8ab355
JW
248 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
249 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
250 {"numerics", (TARGET_FLAG_NUMERICS)}, \
251 {"soft-float", -(TARGET_FLAG_NUMERICS)}, \
252 {"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
253 {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
254 {"tail-call",TARGET_FLAG_TAILCALL}, \
255 {"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
256 {"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
257 {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
258 {"code-align",TARGET_FLAG_CODE_ALIGN}, \
259 {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
260 {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
261 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
262 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
263 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
264 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
265 {"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
266 {"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
267 {"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
268 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
3a011f48
JW
269 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
270 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
c3eebffb
JW
271 {"link-relax", 0}, \
272 {"no-link-relax", 0}, \
5d84b57e 273 SUBTARGET_SWITCHES \
ba8ab355
JW
274 { "", TARGET_DEFAULT}}
275
02d7a569
JS
276/* This are meant to be redefined in the host dependent files */
277#define SUBTARGET_SWITCHES
278
ba8ab355
JW
279/* Override conflicting target switch options.
280 Doesn't actually detect if more than one -mARCH option is given, but
281 does handle the case of two blatantly conflicting -mARCH options. */
282#define OVERRIDE_OPTIONS \
283{ \
284 if (TARGET_K_SERIES && TARGET_C_SERIES) \
285 { \
286 warning ("conflicting architectures defined - using C series", 0); \
287 target_flags &= ~TARGET_FLAG_K_SERIES; \
288 } \
289 if (TARGET_K_SERIES && TARGET_MC) \
290 { \
291 warning ("conflicting architectures defined - using K series", 0); \
292 target_flags &= ~TARGET_FLAG_MC; \
293 } \
294 if (TARGET_C_SERIES && TARGET_MC) \
295 { \
296 warning ("conflicting architectures defined - using C series", 0);\
297 target_flags &= ~TARGET_FLAG_MC; \
298 } \
299 if (TARGET_IC_COMPAT3_0) \
300 { \
301 flag_short_enums = 1; \
302 flag_signed_char = 1; \
303 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
304 if (TARGET_IC_COMPAT2_0) \
305 { \
306 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
307 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
308 } \
309 } \
310 if (TARGET_IC_COMPAT2_0) \
311 { \
312 flag_signed_char = 1; \
313 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
314 } \
315 i960_initialize (); \
316}
317
318/* Don't enable anything by default. The user is expected to supply a -mARCH
555d459c 319 option. If none is given, then -mka is added by CC1_SPEC. */
ba8ab355
JW
320#define TARGET_DEFAULT 0
321\f
322/* Target machine storage layout. */
323
819f6d59 324/* Define for cross-compilation from a host with a different float format
abc95ed3 325 or endianness, as well as to support 80 bit long doubles on the i960. */
819f6d59
JW
326#define REAL_ARITHMETIC
327
ba8ab355
JW
328/* Define this if most significant bit is lowest numbered
329 in instructions that operate on numbered bit-fields. */
330#define BITS_BIG_ENDIAN 0
331
332/* Define this if most significant byte of a word is the lowest numbered.
333 The i960 case be either big endian or little endian. We only support
334 little endian, which is the most common. */
335#define BYTES_BIG_ENDIAN 0
336
337/* Define this if most significant word of a multiword number is lowest
338 numbered. */
339#define WORDS_BIG_ENDIAN 0
340
c3eebffb 341/* Number of bits in an addressable storage unit. */
ba8ab355
JW
342#define BITS_PER_UNIT 8
343
344/* Bitfields cannot cross word boundaries. */
345#define BITFIELD_NBYTES_LIMITED 1
346
347/* Width in bits of a "word", which is the contents of a machine register.
348 Note that this is not necessarily the width of data type `int';
349 if using 16-bit ints on a 68000, this would still be 32.
350 But on a machine with 16-bit registers, this would be 16. */
351#define BITS_PER_WORD 32
352
353/* Width of a word, in units (bytes). */
354#define UNITS_PER_WORD 4
355
356/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
357#define POINTER_SIZE 32
358
359/* Width in bits of a long double. Identical to double for now. */
360#define LONG_DOUBLE_TYPE_SIZE 64
361
362/* Allocation boundary (in *bits*) for storing pointers in memory. */
363#define POINTER_BOUNDARY 32
364
365/* Allocation boundary (in *bits*) for storing arguments in argument list. */
366#define PARM_BOUNDARY 32
367
368/* Boundary (in *bits*) on which stack pointer should be aligned. */
369#define STACK_BOUNDARY 128
370
371/* Allocation boundary (in *bits*) for the code of a function. */
372#define FUNCTION_BOUNDARY 128
373
374/* Alignment of field after `int : 0' in a structure. */
375#define EMPTY_FIELD_BOUNDARY 32
376
377/* This makes zero-length anonymous fields lay the next field
378 at a word boundary. It also makes the whole struct have
379 at least word alignment if there are any bitfields at all. */
380#define PCC_BITFIELD_TYPE_MATTERS 1
381
382/* Every structure's size must be a multiple of this. */
383#define STRUCTURE_SIZE_BOUNDARY 8
384
385/* No data type wants to be aligned rounder than this.
386 Extended precision floats gets 4-word alignment. */
387#define BIGGEST_ALIGNMENT 128
388
389/* Define this if move instructions will actually fail to work
390 when given unaligned data.
391 80960 will work even with unaligned data, but it is slow. */
3a011f48 392#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
ba8ab355
JW
393
394/* Specify alignment for string literals (which might be higher than the
13d39dbc 395 base type's minimal alignment requirement. This allows strings to be
ba8ab355
JW
396 aligned on word boundaries, and optimizes calls to the str* and mem*
397 library functions. */
398#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
ad237340
JW
399 (TREE_CODE (EXP) == STRING_CST \
400 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
ba8ab355
JW
401 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
402 : (ALIGN))
403
b6e78be7
TG
404/* Make XFmode floating point quantities be 128 bit aligned. */
405#define DATA_ALIGNMENT(TYPE, ALIGN) \
406 (TREE_CODE (TYPE) == ARRAY_TYPE \
407 && TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
408 && (ALIGN) < 128 ? 128 : (ALIGN))
409
ba8ab355
JW
410/* Macros to determine size of aggregates (structures and unions
411 in C). Normally, these may be defined to simply return the maximum
412 alignment and simple rounded-up size, but on some machines (like
413 the i960), the total size of a structure is based on a non-trivial
414 rounding method. */
415
416#define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
b6e78be7
TG
417 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
418 ? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
3ddf29de
JW
419 : ((!TARGET_OLD_ALIGN && !TYPE_PACKED (TYPE) \
420 && TREE_CODE (TYPE) == RECORD_TYPE) \
b6e78be7
TG
421 ? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
422 : MAX ((COMPUTED), (SPECIFIED))))
423
424#define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
425 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
d3debd4b 426 ? build_int_2 (128, 0) : round_up (COMPUTED, SPECIFIED))
ba8ab355
JW
427\f
428/* Standard register usage. */
429
430/* Number of actual hardware registers.
431 The hardware registers are assigned numbers for the compiler
432 from 0 to just below FIRST_PSEUDO_REGISTER.
433 All registers that the compiler knows about must be given numbers,
434 even those that are not normally considered general registers.
435
436 Registers 0-15 are the global registers (g0-g15).
437 Registers 16-31 are the local registers (r0-r15).
438 Register 32-35 are the fp registers (fp0-fp3).
439 Register 36 is the condition code register.
440 Register 37 is unused. */
441
442#define FIRST_PSEUDO_REGISTER 38
443
444/* 1 for registers that have pervasive standard uses and are not available
445 for the register allocator. On 80960, this includes the frame pointer
446 (g15), the previous FP (r0), the stack pointer (r1), the return
447 instruction pointer (r2), and the argument pointer (g14). */
448#define FIXED_REGISTERS \
449 {0, 0, 0, 0, 0, 0, 0, 0, \
450 0, 0, 0, 0, 0, 0, 1, 1, \
451 1, 1, 1, 0, 0, 0, 0, 0, \
452 0, 0, 0, 0, 0, 0, 0, 0, \
453 0, 0, 0, 0, 1, 1}
454
455/* 1 for registers not available across function calls.
456 These must include the FIXED_REGISTERS and also any
457 registers that can be used without being saved.
458 The latter must include the registers where values are returned
459 and the register where structure-value addresses are passed.
460 Aside from that, you can include as many other registers as you like. */
461
462/* On the 80960, note that:
463 g0..g3 are used for return values,
464 g0..g7 may always be used for parameters,
465 g8..g11 may be used for parameters, but are preserved if they aren't,
466 g12 is always preserved, but otherwise unused,
467 g13 is the struct return ptr if used, or temp, but may be trashed,
468 g14 is the leaf return ptr or the arg block ptr otherwise zero,
469 must be reset to zero before returning if it was used,
470 g15 is the frame pointer,
471 r0 is the previous FP,
472 r1 is the stack pointer,
473 r2 is the return instruction pointer,
474 r3-r15 are always available,
1e39f528
JW
475 r3 is clobbered by calls in functions that use the arg pointer
476 r4-r11 may be clobbered by the mcount call when profiling
477 r4-r15 if otherwise unused may be used for preserving global registers
ba8ab355
JW
478 fp0..fp3 are never available. */
479#define CALL_USED_REGISTERS \
480 {1, 1, 1, 1, 1, 1, 1, 1, \
481 0, 0, 0, 0, 0, 1, 1, 1, \
482 1, 1, 1, 0, 0, 0, 0, 0, \
483 0, 0, 0, 0, 0, 0, 0, 0, \
484 1, 1, 1, 1, 1, 1}
485
486/* If no fp unit, make all of the fp registers fixed so that they can't
487 be used. */
488#define CONDITIONAL_REGISTER_USAGE \
489 if (! TARGET_NUMERICS) { \
490 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
491 } \
492
493/* Return number of consecutive hard regs needed starting at reg REGNO
494 to hold something of mode MODE.
495 This is ordinarily the length in words of a value of mode MODE
496 but can be less for certain modes in special long registers.
497
498 On 80960, ordinary registers hold 32 bits worth, but can be ganged
499 together to hold double or extended precision floating point numbers,
500 and the floating point registers hold any size floating point number */
501#define HARD_REGNO_NREGS(REGNO, MODE) \
502 ((REGNO) < 32 \
503 ? (((MODE) == VOIDmode) \
504 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
505 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
506
507/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
508 On 80960, the cpu registers can hold any mode but the float registers
b6e78be7 509 can only hold SFmode, DFmode, or XFmode. */
2129b081
JW
510extern int hard_regno_mode_ok ();
511#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
ba8ab355
JW
512
513/* Value is 1 if it is a good idea to tie two pseudo registers
514 when one has mode MODE1 and one has mode MODE2.
515 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
516 for any hard reg, then this must be 0 for correct output. */
517
518#define MODES_TIEABLE_P(MODE1, MODE2) \
519 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
520
521/* Specify the registers used for certain standard purposes.
522 The values of these macros are register numbers. */
523
524/* 80960 pc isn't overloaded on a register that the compiler knows about. */
525/* #define PC_REGNUM */
526
527/* Register to use for pushing function arguments. */
528#define STACK_POINTER_REGNUM 17
529
530/* Actual top-of-stack address is same as
531 the contents of the stack pointer register. */
532#define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
533
534/* Base register for access to local variables of the function. */
535#define FRAME_POINTER_REGNUM 15
536
537/* Value should be nonzero if functions must have frame pointers.
538 Zero means the frame pointer need not be set up (and parms
539 may be accessed via the stack pointer) in functions that seem suitable.
540 This is computed in `reload', in reload1.c. */
43a92256
JW
541/* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
542 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
543 caused this to fail. */
ba8ab355
JW
544#define FRAME_POINTER_REQUIRED (! leaf_function_p ())
545
546/* C statement to store the difference between the frame pointer
43a92256
JW
547 and the stack pointer values immediately after the function prologue.
548
549 Since the stack grows upward on the i960, this must be a negative number.
550 This includes the 64 byte hardware register save area and the size of
551 the frame. */
ba8ab355
JW
552
553#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
43a92256 554 do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
ba8ab355
JW
555
556/* Base register for access to arguments of the function. */
557#define ARG_POINTER_REGNUM 14
558
559/* Register in which static-chain is passed to a function.
560 On i960, we use r3. */
561#define STATIC_CHAIN_REGNUM 19
562
563/* Functions which return large structures get the address
564 to place the wanted value at in g13. */
565
566#define STRUCT_VALUE_REGNUM 13
567
568/* The order in which to allocate registers. */
569
570#define REG_ALLOC_ORDER \
571{ 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
572 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
573 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
574 11, 12, /* g11, g12 */ \
575 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
576 /* We can't actually allocate these. */ \
577 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
578\f
579/* Define the classes of registers for register constraints in the
580 machine description. Also define ranges of constants.
581
582 One of the classes must always be named ALL_REGS and include all hard regs.
583 If there is more than one class, another class must be named NO_REGS
584 and contain no registers.
585
586 The name GENERAL_REGS must be the name of a class (or an alias for
587 another name such as ALL_REGS). This is the class of registers
588 that is allowed by "g" or "r" in a register constraint.
589 Also, registers outside this class are allocated only when
590 instructions express preferences for them.
591
592 The classes must be numbered in nondecreasing order; that is,
593 a larger-numbered class must never be contained completely
594 in a smaller-numbered class.
595
596 For any two classes, it is very desirable that there be another
597 class that represents their union. */
598
599/* The 80960 has four kinds of registers, global, local, floating point,
600 and condition code. The cc register is never allocated, so no class
601 needs to be defined for it. */
602
603enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
604 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
605
606/* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
607 does. */
608#define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
609
610#define N_REG_CLASSES (int) LIM_REG_CLASSES
611
612/* Give names of register classes as strings for dump file. */
613
614#define REG_CLASS_NAMES \
615{ "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
616 "FP_REGS", "ALL_REGS" }
617
618/* Define which registers fit in which classes.
619 This is an initializer for a vector of HARD_REG_SET
620 of length N_REG_CLASSES. */
621
622#define REG_CLASS_CONTENTS \
623{ {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
624
625/* The same information, inverted:
626 Return the class number of the smallest class containing
627 reg number REGNO. This could be a conditional expression
628 or could index an array. */
629
630#define REGNO_REG_CLASS(REGNO) \
631 ((REGNO) < 16 ? GLOBAL_REGS \
632 : (REGNO) < 32 ? LOCAL_REGS \
633 : (REGNO) < 36 ? FP_REGS \
634 : NO_REGS)
635
636/* The class value for index registers, and the one for base regs.
637 There is currently no difference between base and index registers on the
638 i960, but this distinction may one day be useful. */
639#define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
640#define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
641
642/* Get reg_class from a letter such as appears in the machine description.
643 'f' is a floating point register (fp0..fp3)
644 'l' is a local register (r0-r15)
645 'b' is a global register (g0-g15)
646 'd' is any local or global register
647 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
648/* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
649 the same thing, since 'r' may include the fp registers. */
650#define REG_CLASS_FROM_LETTER(C) \
651 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
652 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
653
654/* The letters I, J, K, L and M in a register constraint string
655 can be used to stand for particular ranges of immediate operands.
656 This macro defines what the ranges are.
657 C is the letter, and VALUE is a constant value.
658 Return 1 if VALUE is in the range specified by C.
659
660 For 80960:
661 'I' is used for literal values 0..31
662 'J' means literal 0
663 'K' means 0..-31. */
664
665#define CONST_OK_FOR_LETTER_P(VALUE, C) \
666 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
667 : (C) == 'J' ? ((VALUE) == 0) \
82eaec4a
TG
668 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
669 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
670 : 0)
ba8ab355
JW
671
672/* Similar, but for floating constants, and defining letters G and H.
673 Here VALUE is the CONST_DOUBLE rtx itself.
674 For the 80960, G is 0.0 and H is 1.0. */
675
b6e78be7
TG
676#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
677 ((TARGET_NUMERICS) && \
678 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
679 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
ba8ab355
JW
680
681/* Given an rtx X being reloaded into a reg required to be
682 in class CLASS, return the class of reg to actually use.
683 In general this is just CLASS; but on some machines
684 in some cases it is preferable to use a more restrictive class. */
685
686/* On 960, can't load constant into floating-point reg except
687 0.0 or 1.0.
688
689 Any hard reg is ok as a src operand of a reload insn. */
690
691#define PREFERRED_RELOAD_CLASS(X,CLASS) \
692 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
693 ? (CLASS) \
694 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
695 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
696 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
697 ? NO_REGS \
698 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
699
700#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
701 secondary_reload_class (CLASS, MODE, IN)
702
703/* Return the maximum number of consecutive registers
704 needed to represent mode MODE in a register of class CLASS. */
705/* On 80960, this is the size of MODE in words,
706 except in the FP regs, where a single reg is always enough. */
707#define CLASS_MAX_NREGS(CLASS, MODE) \
708 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
709\f
710/* Stack layout; function entry, exit and calling. */
711
712/* Define this if pushing a word on the stack
713 makes the stack pointer a smaller address. */
714/* #define STACK_GROWS_DOWNWARD */
715
716/* Define this if the nominal address of the stack frame
717 is at the high-address end of the local variables;
718 that is, each additional local variable allocated
719 goes at a more negative offset in the frame. */
720/* #define FRAME_GROWS_DOWNWARD */
721
722/* Offset within stack frame to start allocating local variables at.
723 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
724 first local allocated. Otherwise, it is the offset to the BEGINNING
725 of the first local allocated.
726
727 The i960 has a 64 byte register save area, plus possibly some extra
728 bytes allocated for varargs functions. */
729#define STARTING_FRAME_OFFSET 64
730
731/* If we generate an insn to push BYTES bytes,
732 this says how many the stack pointer really advances by.
733 On 80960, don't define this because there are no push insns. */
734/* #define PUSH_ROUNDING(BYTES) BYTES */
735
736/* Offset of first parameter from the argument pointer register value. */
737#define FIRST_PARM_OFFSET(FNDECL) 0
738
739/* When a parameter is passed in a register, no stack space is
740 allocated for it. However, when args are passed in the
741 stack, space is allocated for every register parameter. */
742#define MAYBE_REG_PARM_STACK_SPACE 48
743#define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
744 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
745#define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
746#define OUTGOING_REG_PARM_STACK_SPACE
747
748/* Keep the stack pointer constant throughout the function. */
749#define ACCUMULATE_OUTGOING_ARGS
750
751/* Value is 1 if returning from a function call automatically
752 pops the arguments described by the number-of-args field in the call.
8b109b37 753 FUNDECL is the declaration node of the function (as a tree),
ba8ab355
JW
754 FUNTYPE is the data type of the function (as a tree),
755 or for a library call it is an identifier node for the subroutine name. */
756
8b109b37 757#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
ba8ab355
JW
758
759/* Define how to find the value returned by a library function
760 assuming the value has mode MODE. */
761
762#define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
763
764/* 1 if N is a possible register number for a function value
765 as seen by the caller.
766 On 80960, returns are in g0..g3 */
767
cc5ae869 768#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
ba8ab355
JW
769
770/* 1 if N is a possible register number for function argument passing.
771 On 80960, parameters are passed in g0..g11 */
772
773#define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
774
775/* Perform any needed actions needed for a function that is receiving a
776 variable number of arguments.
777
778 CUM is as above.
779
780 MODE and TYPE are the mode and type of the current parameter.
781
782 PRETEND_SIZE is a variable that should be set to the amount of stack
783 that must be pushed by the prolog to pretend that our caller pushed
784 it.
785
786 Normally, this macro will push all remaining incoming registers on the
787 stack and set PRETEND_SIZE to the length of the registers pushed. */
788
789#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
790 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
791\f
792/* Define a data type for recording info about an argument list
793 during the scan of that argument list. This data type should
794 hold all necessary information about the function itself
795 and about the args processed so far, enough to enable macros
796 such as FUNCTION_ARG to determine where the next arg should go.
797
798 On 80960, this is two integers, which count the number of register
799 parameters and the number of stack parameters seen so far. */
800
801struct cum_args { int ca_nregparms; int ca_nstackparms; };
802
803#define CUMULATIVE_ARGS struct cum_args
804
805/* Define the number of registers that can hold parameters.
806 This macro is used only in macro definitions below and/or i960.c. */
807#define NPARM_REGS 12
808
809/* Define how to round to the next parameter boundary.
810 This macro is used only in macro definitions below and/or i960.c. */
b46db6e4 811#define ROUND_PARM(X, MULTIPLE_OF) \
ba8ab355
JW
812 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
813
814/* Initialize a variable CUM of type CUMULATIVE_ARGS
815 for a call to a function whose data type is FNTYPE.
816 For a library call, FNTYPE is 0.
817
818 On 80960, the offset always starts at 0; the first parm reg is g0. */
819
2c7ee1a6 820#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
ba8ab355
JW
821 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
822
823/* Update the data in CUM to advance over an argument
824 of mode MODE and data type TYPE.
825 CUM should be advanced to align with the data type accessed and
826 also the size of that data type in # of regs.
827 (TYPE is null for libcalls where that information may not be available.) */
828
829#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
830 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
831
832/* Indicate the alignment boundary for an argument of the specified mode and
833 type. */
834#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
29008b51
JW
835 (((TYPE) != 0) \
836 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
837 ? PARM_BOUNDARY \
838 : TYPE_ALIGN (TYPE)) \
839 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
840 ? PARM_BOUNDARY \
841 : GET_MODE_ALIGNMENT (MODE)))
ba8ab355
JW
842
843/* Determine where to put an argument to a function.
844 Value is zero to push the argument on the stack,
845 or a hard register in which to store the argument.
846
847 MODE is the argument's machine mode.
848 TYPE is the data type of the argument (as a tree).
849 This is null for libcalls where that information may
850 not be available.
851 CUM is a variable of type CUMULATIVE_ARGS which gives info about
852 the preceding args and about the function being called.
853 NAMED is nonzero if this argument is a named parameter
854 (otherwise it is an extra parameter matching an ellipsis). */
855
856extern struct rtx_def *i960_function_arg ();
857#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
858 i960_function_arg(&CUM, MODE, TYPE, NAMED)
859
860/* Define how to find the value returned by a function.
861 VALTYPE is the data type of the value (as a tree).
862 If the precise function being called is known, FUNC is its FUNCTION_DECL;
863 otherwise, FUNC is 0. */
864
254f7d80
JW
865#define FUNCTION_VALUE(TYPE, FUNC) \
866 gen_rtx (REG, TYPE_MODE (TYPE), 0)
ba8ab355 867
e14fa9c4
DE
868/* Force aggregates and objects larger than 16 bytes to be returned in memory,
869 since we only have 4 registers available for return values. */
ba8ab355 870
e14fa9c4
DE
871#define RETURN_IN_MEMORY(TYPE) \
872 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
ba8ab355 873
40f32220
JW
874/* Don't default to pcc-struct-return, because we have already specified
875 exactly how to return structures in the RETURN_IN_MEMORY macro. */
876#define DEFAULT_PCC_STRUCT_RETURN 0
877
ba8ab355
JW
878/* For an arg passed partly in registers and partly in memory,
879 this is the number of registers used.
880 This never happens on 80960. */
881
882#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
883\f
884/* Output the label for a function definition.
885 This handles leaf functions and a few other things for the i960. */
886
887#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
888 i960_function_name_declare (FILE, NAME, DECL)
889
890/* This macro generates the assembly code for function entry.
891 FILE is a stdio stream to output the code to.
892 SIZE is an int: how many units of temporary storage to allocate.
893 Refer to the array `regs_ever_live' to determine which registers
894 to save; `regs_ever_live[I]' is nonzero if register number I
895 is ever used in the function. This macro is responsible for
896 knowing which registers should not be saved even if used. */
897
898#define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
899
900/* Output assembler code to FILE to increment profiler label # LABELNO
901 for profiling a function entry. */
902
1e39f528
JW
903#define FUNCTION_PROFILER(FILE, LABELNO) \
904 output_function_profiler ((FILE), (LABELNO));
ba8ab355
JW
905
906/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
907 the stack pointer does not matter. The value is tested only in
908 functions that have frame pointers.
909 No definition is equivalent to always zero. */
910
911#define EXIT_IGNORE_STACK 1
912
913/* This macro generates the assembly code for function exit,
914 on machines that need it. If FUNCTION_EPILOGUE is not defined
915 then individual return instructions are generated for each
916 return statement. Args are same as for FUNCTION_PROLOGUE.
917
918 The function epilogue should not depend on the current stack pointer!
919 It should use the frame pointer only. This is mandatory because
920 of alloca; we also take advantage of it to omit stack adjustments
921 before returning. */
922
923#define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
924\f
925/* Addressing modes, and classification of registers for them. */
926
927/* #define HAVE_POST_INCREMENT */
928/* #define HAVE_POST_DECREMENT */
929
930/* #define HAVE_PRE_DECREMENT */
931/* #define HAVE_PRE_INCREMENT */
932
933/* Macros to check register numbers against specific register classes. */
934
935/* These assume that REGNO is a hard or pseudo reg number.
936 They give nonzero only if REGNO is a hard reg of the suitable class
937 or a pseudo reg currently allocated to a suitable hard reg.
938 Since they use reg_renumber, they are safe only once reg_renumber
939 has been allocated, which happens in local-alloc.c. */
940
941#define REGNO_OK_FOR_INDEX_P(REGNO) \
942 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
943#define REGNO_OK_FOR_BASE_P(REGNO) \
944 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
945#define REGNO_OK_FOR_FP_P(REGNO) \
946 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
947
948/* Now macros that check whether X is a register and also,
949 strictly, whether it is in a specified class.
950
951 These macros are specific to the 960, and may be used only
952 in code for printing assembler insns and in conditions for
953 define_optimization. */
954
955/* 1 if X is an fp register. */
956
957#define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
958
959/* Maximum number of registers that can appear in a valid memory address. */
960#define MAX_REGS_PER_ADDRESS 2
961
6eff269e
BK
962#define CONSTANT_ADDRESS_P(X) \
963 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
964 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
965 || GET_CODE (X) == HIGH)
ba8ab355
JW
966
967/* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
968 is a legitimate general operand.
969 It is given that X satisfies CONSTANT_P.
970
819f6d59
JW
971 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
972
973 ??? This probably should be defined to 1. */
ba8ab355
JW
974
975#define LEGITIMATE_CONSTANT_P(X) \
819f6d59 976 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
ba8ab355
JW
977
978/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
979 and check its validity for a certain class.
980 We have two alternate definitions for each of them.
981 The usual definition accepts all pseudo regs; the other rejects
982 them unless they have been allocated suitable hard regs.
983 The symbol REG_OK_STRICT causes the latter definition to be used.
984
985 Most source files want to accept pseudo regs in the hope that
986 they will get allocated to the class that the insn wants them to be in.
987 Source files for reload pass need to be strict.
988 After reload, it makes no difference, since pseudo regs have
989 been eliminated by then. */
990
991#ifndef REG_OK_STRICT
992
993/* Nonzero if X is a hard reg that can be used as an index
994 or if it is a pseudo reg. */
995#define REG_OK_FOR_INDEX_P(X) \
996 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
997/* Nonzero if X is a hard reg that can be used as a base reg
998 or if it is a pseudo reg. */
999#define REG_OK_FOR_BASE_P(X) \
1000 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1001
1002#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1003#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1004
1005#else
1006
1007/* Nonzero if X is a hard reg that can be used as an index. */
1008#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1009/* Nonzero if X is a hard reg that can be used as a base reg. */
1010#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1011
1012#endif
1013\f
1014/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1015 that is a valid memory address for an instruction.
1016 The MODE argument is the machine mode for the MEM expression
1017 that wants to use this address.
1018
1019 On 80960, legitimate addresses are:
1020 base ld (g0),r0
1021 disp (12 or 32 bit) ld foo,r0
1022 base + index ld (g0)[g1*1],r0
1023 base + displ ld 0xf00(g0),r0
1024 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1025 index*scale + base ld (g0)[g1*4],r0
1026 index*scale + displ ld 0xf00[g1*4],r0
1027 index*scale ld [g1*4],r0
1028 index + base + displ ld 0xf00(g0)[g1*1],r0
1029
1030 In each case, scale can be 1, 2, 4, 8, or 16. */
1031
1032/* Returns 1 if the scale factor of an index term is valid. */
1033#define SCALE_TERM_P(X) \
1034 (GET_CODE (X) == CONST_INT \
1035 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1036 || INTVAL(X) == 8 || INTVAL (X) == 16))
1037
1038
1039#ifdef REG_OK_STRICT
1040#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1041 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1042#else
1043#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1044 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1045#endif
1046\f
1047/* Try machine-dependent ways of modifying an illegitimate address
1048 to be legitimate. If we find one, return the new, valid address.
1049 This macro is used in only one place: `memory_address' in explow.c.
1050
1051 OLDX is the address as it was before break_out_memory_refs was called.
1052 In some cases it is useful to look at this to decide what needs to be done.
1053
1054 MODE and WIN are passed so that this macro can use
1055 GO_IF_LEGITIMATE_ADDRESS.
1056
1057 It is always safe for this macro to do nothing. It exists to recognize
1058 opportunities to optimize the output. */
1059
13d39dbc 1060/* On 80960, convert non-canonical addresses to canonical form. */
ba8ab355
JW
1061
1062extern struct rtx_def *legitimize_address ();
1063#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1064{ rtx orig_x = (X); \
1065 (X) = legitimize_address (X, OLDX, MODE); \
1066 if ((X) != orig_x && memory_address_p (MODE, X)) \
1067 goto WIN; }
1068
1069/* Go to LABEL if ADDR (a legitimate address expression)
1070 has an effect that depends on the machine mode it is used for.
1071 On the 960 this is never true. */
1072
1073#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1074\f
1075/* Specify the machine mode that this machine uses
1076 for the index in the tablejump instruction. */
1077#define CASE_VECTOR_MODE SImode
1078
18543a22
ILT
1079/* Define as C expression which evaluates to nonzero if the tablejump
1080 instruction expects the table to contain offsets from the address of the
1081 table.
1082 Do not define this if the table should contain absolute addresses. */
1083/* #define CASE_VECTOR_PC_RELATIVE 1 */
ba8ab355
JW
1084
1085/* Specify the tree operation to be used to convert reals to integers. */
1086#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1087
1088/* This is the kind of divide that is easiest to do in the general case. */
1089#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1090
1091/* Define this as 1 if `char' should by default be signed; else as 0. */
1092#define DEFAULT_SIGNED_CHAR 0
1093
1094/* Allow and ignore #sccs directives. */
1095#define SCCS_DIRECTIVE
1096
1097/* Max number of bytes we can move from memory to memory
1098 in one reasonably fast instruction. */
1099#define MOVE_MAX 16
1100
9a63901f
RK
1101/* Define if operations between registers always perform the operation
1102 on the full register even if a narrower mode is specified. */
1103#define WORD_REGISTER_OPERATIONS
1104
1105/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1106 will either zero-extend or sign-extend. The value of this macro should
1107 be the code that says which one of the two operations is implicitly
1108 done, NIL if none. */
1109#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
ba8ab355
JW
1110
1111/* Nonzero if access to memory by bytes is no faster than for words.
8a21007c
AM
1112 Value changed to 1 after reports of poor bitfield code with g++.
1113 Indications are that code is usually as good, sometimes better. */
ba8ab355 1114
8a21007c 1115#define SLOW_BYTE_ACCESS 1
ba8ab355
JW
1116
1117/* We assume that the store-condition-codes instructions store 0 for false
1118 and some other value for true. This is the value stored for true. */
1119
1120#define STORE_FLAG_VALUE 1
1121
d969caf8
RK
1122/* Define this to be nonzero if shift instructions ignore all but the low-order
1123 few bits. */
82eaec4a 1124#define SHIFT_COUNT_TRUNCATED 0
ba8ab355
JW
1125
1126/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1127 is done just by pretending it is already truncated. */
1128#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1129
1130/* Specify the machine mode that pointers have.
1131 After generation of rtl, the compiler makes no further distinction
1132 between pointers and any other objects of this machine mode. */
1133#define Pmode SImode
1134
1135/* Specify the widest mode that BLKmode objects can be promoted to */
1136#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1137\f
1138/* These global variables are used to pass information between
1139 cc setter and cc user at insn emit time. */
1140
1141extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1142
1143/* Define the function that build the compare insn for scc and bcc. */
1144
1145extern struct rtx_def *gen_compare_reg ();
1146
1147/* Add any extra modes needed to represent the condition code.
1148
1149 Also, signed and unsigned comparisons are distinguished, as
1150 are operations which are compatible with chkbit insns. */
1151#define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
1152
1153/* Define the names for the modes specified above. */
1154#define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
1155
1156/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1157 return the mode to be used for the comparison. For floating-point, CCFPmode
1158 should be used. CC_NOOVmode should be used when the first operand is a
1159 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1160 needed. */
c3eebffb 1161#define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
ba8ab355
JW
1162
1163/* A function address in a call instruction is a byte address
1164 (for indexing purposes) so give the MEM rtx a byte's mode. */
1165#define FUNCTION_MODE SImode
1166
1167/* Define this if addresses of constant functions
1168 shouldn't be put through pseudo regs where they can be cse'd.
1169 Desirable on machines where ordinary constants are expensive
1170 but a CALL with constant address is cheap. */
1171#define NO_FUNCTION_CSE
1172
1173/* Use memcpy, etc. instead of bcopy. */
1174
1175#ifndef WIND_RIVER
1176#define TARGET_MEM_FUNCTIONS 1
1177#endif
1178
1179/* Compute the cost of computing a constant rtl expression RTX
1180 whose rtx-code is CODE. The body of this macro is a portion
1181 of a switch statement. If the code is computed here,
1182 return it with a return statement. Otherwise, break from the switch. */
1183
1184/* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1185 that can be non-ldconst operands in rare cases are cost 1. Other constants
1186 have higher costs. */
1187
1188#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1189 case CONST_INT: \
1190 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1191 || power2_operand (RTX, VOIDmode)) \
1192 return 0; \
1193 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1194 return 1; \
1195 case CONST: \
1196 case LABEL_REF: \
1197 case SYMBOL_REF: \
bb210aaf 1198 return (TARGET_C_SERIES ? 6 : 8); \
ba8ab355
JW
1199 case CONST_DOUBLE: \
1200 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1201 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1202 return 1; \
1203 return 12;
1204
1205/* The i960 offers addressing modes which are "as cheap as a register".
1206 See i960.c (or gcc.texinfo) for details. */
1207
1208#define ADDRESS_COST(RTX) \
1209 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1210\f
1211/* Control the assembler format that we output. */
1212
1213/* Output at beginning of assembler file. */
1214
1215#define ASM_FILE_START(file)
1216
1217/* Output to assembler file text saying following lines
1218 may contain character constants, extra white space, comments, etc. */
1219
1220#define ASM_APP_ON ""
1221
1222/* Output to assembler file text saying following lines
1223 no longer contain unusual constructs. */
1224
1225#define ASM_APP_OFF ""
1226
1227/* Output before read-only data. */
1228
1229#define TEXT_SECTION_ASM_OP ".text"
1230
1231/* Output before writable data. */
1232
1233#define DATA_SECTION_ASM_OP ".data"
1234
1235/* How to refer to registers in assembler output.
1236 This sequence is indexed by compiler's hard-register-number (see above). */
1237
1238#define REGISTER_NAMES { \
1239 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1240 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1241 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1242 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1243 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1244
1245/* How to renumber registers for dbx and gdb.
1246 In the 960 encoding, g0..g15 are registers 16..31. */
1247
1248#define DBX_REGISTER_NUMBER(REGNO) \
1249 (((REGNO) < 16) ? (REGNO) + 16 \
1250 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1251
1252/* Don't emit dbx records longer than this. This is an arbitrary value. */
1253#define DBX_CONTIN_LENGTH 1500
1254
1255/* This is how to output a note to DBX telling it the line number
1256 to which the following sequence of instructions corresponds. */
1257
1258#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1259{ if (write_symbols == SDB_DEBUG) { \
1260 fprintf ((FILE), "\t.ln %d\n", \
1261 (sdb_begin_function_line \
1262 ? (LINE) - sdb_begin_function_line : 1)); \
1263 } else if (write_symbols == DBX_DEBUG) { \
1264 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1265 } }
1266
1267/* This is how to output the definition of a user-level label named NAME,
1268 such as the label on a static function or variable NAME. */
1269
1270#define ASM_OUTPUT_LABEL(FILE,NAME) \
1271 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1272
1273/* This is how to output a command to make the user-level label named NAME
1274 defined for reference from other files. */
1275
1276#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1277{ fputs ("\t.globl ", FILE); \
1278 assemble_name (FILE, NAME); \
1279 fputs ("\n", FILE); }
1280
4e0c8ad2 1281/* The prefix to add to user-visible assembler symbols. */
ba8ab355 1282
4e0c8ad2 1283#define USER_LABEL_PREFIX "_"
ba8ab355
JW
1284
1285/* This is how to output an internal numbered label where
1286 PREFIX is the class of label and NUM is the number within the class. */
1287
1288#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1289 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1290
1291/* This is how to store into the string LABEL
1292 the symbol_ref name of an internal numbered label where
1293 PREFIX is the class of label and NUM is the number within the class.
1294 This is suitable for output with `assemble_name'. */
1295
1296#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1297 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1298
b6e78be7
TG
1299/* This is how to output an assembler line defining a `long double'
1300 constant. */
1301
1302#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) i960_output_long_double(FILE, VALUE)
1303
ba8ab355
JW
1304/* This is how to output an assembler line defining a `double' constant. */
1305
1306#define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
1307
1308/* This is how to output an assembler line defining a `float' constant. */
1309
1310#define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
1311
1312/* This is how to output an assembler line defining an `int' constant. */
1313
1314#define ASM_OUTPUT_INT(FILE,VALUE) \
1315( fprintf (FILE, "\t.word "), \
1316 output_addr_const (FILE, (VALUE)), \
1317 fprintf (FILE, "\n"))
1318
1319/* Likewise for `char' and `short' constants. */
1320
1321#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1322( fprintf (FILE, "\t.short "), \
1323 output_addr_const (FILE, (VALUE)), \
1324 fprintf (FILE, "\n"))
1325
1326#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1327( fprintf (FILE, "\t.byte "), \
1328 output_addr_const (FILE, (VALUE)), \
1329 fprintf (FILE, "\n"))
1330
1331/* This is how to output an assembler line for a numeric constant byte. */
1332
1333#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1334 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1335
1336#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1337 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1338
1339/* This is how to output an insn to pop a register from the stack.
1340 It need not be very fast code. */
1341
1342#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1343 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1344
1345/* This is how to output an element of a case-vector that is absolute. */
1346
1347#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1348 fprintf (FILE, "\t.word L%d\n", VALUE)
1349
1350/* This is how to output an element of a case-vector that is relative. */
1351
33f7f353 1352#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
ba8ab355
JW
1353 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1354
1355/* This is how to output an assembler line that says to advance the
1356 location counter to a multiple of 2**LOG bytes. */
1357
1358#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1359 fprintf (FILE, "\t.align %d\n", (LOG))
1360
1361#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1362 fprintf (FILE, "\t.space %d\n", (SIZE))
1363
1364/* This says how to output an assembler line
1365 to define a global common symbol. */
1366
1367/* For common objects, output unpadded size... gld960 & lnk960 both
1368 have code to align each common object at link time. Also, if size
1369 is 0, treat this as a declaration, not a definition - i.e.,
1370 do nothing at all. */
1371
1372#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1373{ if ((SIZE) != 0) \
1374 { \
1375 fputs (".globl ", (FILE)), \
1376 assemble_name ((FILE), (NAME)), \
1377 fputs ("\n.comm ", (FILE)), \
1378 assemble_name ((FILE), (NAME)), \
1bc147fb 1379 fprintf ((FILE), ",%d\n", (SIZE)); \
ba8ab355
JW
1380 } \
1381}
1382
1383/* This says how to output an assembler line to define a local common symbol.
1384 Output unpadded size, with request to linker to align as requested.
1385 0 size should not be possible here. */
1386
1387#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1388( fputs (".bss\t", (FILE)), \
1389 assemble_name ((FILE), (NAME)), \
1390 fprintf ((FILE), ",%d,%d\n", (SIZE), \
0ce200e5
JM
1391 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1392
1393/* A C statement (sans semicolon) to output to the stdio stream
1394 FILE the assembler definition of uninitialized global DECL named
1395 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1396 Try to use asm_output_aligned_bss to implement this macro. */
1397
1398#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1399 do { \
1400 fputs (".globl ", (FILE)); \
1401 assemble_name ((FILE), (NAME)); \
1402 fputs ("\n", (FILE)); \
1403 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1404 } while (0)
ba8ab355
JW
1405
1406/* Output text for an #ident directive. */
1407#define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1408
1409/* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1410
fc470718 1411#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
ba8ab355
JW
1412
1413/* Store in OUTPUT a string (made with alloca) containing
1414 an assembler-name for a local static variable named NAME.
1415 LABELNO is an integer which is different for each call. */
1416
1417#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1418 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1419 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1420
1421/* Define the parentheses used to group arithmetic operations
1422 in assembler code. */
1423
1424#define ASM_OPEN_PAREN "("
1425#define ASM_CLOSE_PAREN ")"
1426
1427/* Define results of standard character escape sequences. */
1428#define TARGET_BELL 007
1429#define TARGET_BS 010
1430#define TARGET_TAB 011
1431#define TARGET_NEWLINE 012
1432#define TARGET_VT 013
1433#define TARGET_FF 014
1434#define TARGET_CR 015
1435\f
1436/* Output assembler code to FILE to initialize this source file's
1437 basic block profiling info, if that has not already been done. */
1438
1439#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1440{ fprintf (FILE, "\tld LPBX0,g12\n"); \
1441 fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
1442 fprintf (FILE, "\tlda LPBX0,g12\n"); \
1443 fprintf (FILE, "\tcall ___bb_init_func\n"); \
1444 fprintf (FILE, "LPY%d:\n",LABELNO); }
1445
1446/* Output assembler code to FILE to increment the entry-count for
1447 the BLOCKNO'th basic block in this source file. */
1448
1449#define BLOCK_PROFILER(FILE, BLOCKNO) \
1450{ int blockn = (BLOCKNO); \
1451 fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
1452 fprintf (FILE, "\taddo g12,1,g12\n"); \
1453 fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
1454\f
1455/* Print operand X (an rtx) in assembler syntax to file FILE.
1456 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1457 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1458
1459#define PRINT_OPERAND(FILE, X, CODE) \
1460 i960_print_operand (FILE, X, CODE);
1461
1462/* Print a memory address as an operand to reference that memory location. */
1463
1464#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1465 i960_print_operand_addr (FILE, ADDR)
1466\f
1467/* Output assembler code for a block containing the constant parts
1468 of a trampoline, leaving space for the variable parts. */
1469
1470/* On the i960, the trampoline contains three instructions:
1471 ldconst _function, r4
1472 ldconst static addr, r3
1473 jump (r4) */
1474
1475#define TRAMPOLINE_TEMPLATE(FILE) \
1476{ \
3a598fbe
JL
1477 ASM_OUTPUT_INT (FILE, GEN_INT (0x8C203000)); \
1478 ASM_OUTPUT_INT (FILE, GEN_INT (0x00000000)); \
1479 ASM_OUTPUT_INT (FILE, GEN_INT (0x8C183000)); \
1480 ASM_OUTPUT_INT (FILE, GEN_INT (0x00000000)); \
1481 ASM_OUTPUT_INT (FILE, GEN_INT (0x84212000)); \
ba8ab355
JW
1482}
1483
1484/* Length in units of the trampoline for entering a nested function. */
1485
1486#define TRAMPOLINE_SIZE 20
1487
1488/* Emit RTL insns to initialize the variable parts of a trampoline.
1489 FNADDR is an RTX for the address of the function's pure code.
1490 CXT is an RTX for the static chain value for the function. */
1491
1492#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1493{ \
1494 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
1495 FNADDR); \
1496 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
1497 CXT); \
1498}
1499
0bc02db4
MS
1500/* Generate RTL to flush the register windows so as to make arbitrary frames
1501 available. */
1502#define SETUP_FRAME_ADDRESSES() \
1503 emit_insn (gen_flush_register_windows ())
1504
1505#define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1506
ba8ab355 1507#if 0
13d39dbc 1508/* Promote char and short arguments to ints, when want compatibility with
ba8ab355
JW
1509 the iC960 compilers. */
1510
1511/* ??? In order for this to work, all users would need to be changed
1512 to test the value of the macro at run time. */
1513#define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1514/* ??? This does not exist. */
1515#define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1516#endif
1517
1518/* Instruction type definitions. Used to alternate instructions types for
1519 better performance on the C series chips. */
1520
1521enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1522
1523/* Holds the insn type of the last insn output to the assembly file. */
1524
1525extern enum insn_types i960_last_insn_type;
1526
1527/* Parse opcodes, and set the insn last insn type based on them. */
1528
1529#define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1530
1531/* Table listing what rtl codes each predicate in i960.c will accept. */
1532
1533#define PREDICATE_CODES \
1534 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1535 LABEL_REF, SUBREG, REG, MEM}}, \
1536 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
82eaec4a 1537 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
ba8ab355
JW
1538 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1539 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1540 {"literal", {CONST_INT}}, \
1541 {"fp_literal_one", {CONST_DOUBLE}}, \
1542 {"fp_literal_double", {CONST_DOUBLE}}, \
1543 {"fp_literal", {CONST_DOUBLE}}, \
1544 {"signed_literal", {CONST_INT}}, \
1545 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1546 {"eq_or_neq", {EQ, NE}}, \
1547 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1548 CONST_DOUBLE, CONST}}, \
f8634644
RK
1549 {"power2_operand", {CONST_INT}}, \
1550 {"cmplpower2_operand", {CONST_INT}},
ba8ab355
JW
1551
1552/* Define functions in i960.c and used in insn-output.c. */
1553
1554extern char *i960_output_ldconst ();
1555extern char *i960_output_call_insn ();
1556extern char *i960_output_ret_insn ();
75694d38
JW
1557extern char *i960_output_move_double ();
1558extern char *i960_output_move_quad ();
778ebe62
JW
1559
1560/* Defined in reload.c, and used in insn-recog.c. */
1561
1562extern int rtx_equal_function_value_matters;
3e8d8d4b
JM
1563
1564/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1565 Used for C++ multiple inheritance. */
1566#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1567do { \
1568 int d = (DELTA); \
1569 if (d < 0 && d > -32) \
1570 fprintf (FILE, "\tsubo %d,g0,g0\n", -d); \
1571 else if (d > 0 && d < 32) \
1572 fprintf (FILE, "\taddo %d,g0,g0\n", d); \
1573 else \
1574 { \
1575 fprintf (FILE, "\tldconst %d,r5\n", d); \
1576 fprintf (FILE, "\taddo r5,g0,g0\n"); \
1577 } \
1578 fprintf (FILE, "\tbx "); \
92d4501f 1579 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3e8d8d4b
JM
1580 fprintf (FILE, "\n"); \
1581} while (0);
This page took 0.622558 seconds and 5 git commands to generate.