]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i960/i960.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / i960 / i960.h
CommitLineData
ba8ab355 1/* Definitions of target machine for GNU compiler, for Intel 80960
8b109b37 2 Copyright (C) 1992, 1993, 1995 Free Software Foundation, Inc.
ba8ab355
JW
3 Contributed by Steven McGeady, Intel Corp.
4 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
5 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
21the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23/* Note that some other tm.h files may include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26/* Names to predefine in the preprocessor for this target machine. */
65c42379 27#define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
ba8ab355
JW
28
29/* Name to predefine in the preprocessor for processor variations. */
30#define CPP_SPEC "%{mic*:-D__i960\
c3eebffb
JW
31 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
32 %{msa:-D__i960SA}%{msb:-D__i960SB}\
ba8ab355 33 %{mmc:-D__i960MC}\
c3eebffb 34 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
ba8ab355
JW
35 %{mcf:-D__i960CF}}\
36 %{mka:-D__i960KA__ -D__i960_KA__}\
37 %{mkb:-D__i960KB__ -D__i960_KB__}\
ba8ab355
JW
38 %{msa:-D__i960SA__ -D__i960_SA__}\
39 %{msb:-D__i960SB__ -D__i960_SB__}\
ba8ab355
JW
40 %{mmc:-D__i960MC__ -D__i960_MC__}\
41 %{mca:-D__i960CA__ -D__i960_CA__}\
ba8ab355
JW
42 %{mcc:-D__i960CC__ -D__i960_CC__}\
43 %{mcf:-D__i960CF__ -D__i960_CF__}\
c3eebffb
JW
44 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
45 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
ba8ab355
JW
46
47/* -mic* options make characters signed by default. */
0f1d97b8
JW
48/* Use #if rather than ?: because MIPS C compiler rejects ?: in
49 initializers. */
50#if DEFAULT_SIGNED_CHAR
51#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
52#else
53#define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
54#endif
ba8ab355
JW
55
56/* Specs for the compiler, to handle processor variations. */
57#define CC1_SPEC \
c3eebffb 58 "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
ba8ab355
JW
59 %{mbout:%{g*:-gstabs}}\
60 %{mcoff:%{g*:-gcoff}}\
61 %{!mbout:%{!mcoff:%{g*:-gstabs}}}"
62
63/* Specs for the assembler, to handle processor variations.
64 For compatibility with Intel's gnu960 tool chain, pass -A options to
65 the assembler. */
66#define ASM_SPEC \
c3eebffb
JW
67 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
68 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
69 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
647902e0 70 %{mlink-relax:-linkrelax}"
ba8ab355
JW
71
72/* Specs for the linker, to handle processor variations.
73 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
74 to the linker. */
75#define LINK_SPEC \
c3eebffb
JW
76 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
77 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
78 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
79 %{mbout:-Fbout}%{mcoff:-Fcoff}\
80 %{mlink-relax:-relax}"
ba8ab355
JW
81
82/* Specs for the libraries to link with, to handle processor variations.
83 Compatible with Intel's gnu960 tool chain. */
84#define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
85 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
86
b0f43a24
RK
87/* Show we can debug even without a frame pointer. */
88#define CAN_DEBUG_WITHOUT_FP
89
90/* Do leaf procedure and tail call optimizations for -O2 and higher. */
ba8ab355
JW
91#define OPTIMIZATION_OPTIONS(LEVEL) \
92{ \
93 if ((LEVEL) >= 2) \
94 { \
ba8ab355
JW
95 target_flags |= TARGET_FLAG_LEAFPROC; \
96 target_flags |= TARGET_FLAG_TAILCALL; \
97 } \
ba8ab355
JW
98}
99
100/* Print subsidiary information on the compiler version in use. */
101#define TARGET_VERSION fprintf (stderr," (intel 80960)");
102
103/* Generate DBX debugging information. */
104#define DBX_DEBUGGING_INFO
105
106/* Generate SDB style debugging information. */
107#define SDB_DEBUGGING_INFO
108
109/* Generate DBX_DEBUGGING_INFO by default. */
110#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
111
3c2eb9e1
JW
112/* Redefine this to print in hex and adjust values like GNU960. The extra
113 bit is used to handle the type long double. Gcc does not support long
114 double in sdb output, but we do support the non-standard format. */
115#define PUT_SDB_TYPE(A) \
116 fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
ba8ab355
JW
117
118/* Run-time compilation parameters selecting different hardware subsets. */
119
120/* 960 architecture with floating-point. */
121#define TARGET_FLAG_NUMERICS 0x01
122#define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
123
124/* 960 architecture with memory management. */
125/* ??? Not used currently. */
126#define TARGET_FLAG_PROTECTED 0x02
127#define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
128
129/* The following three are mainly used to provide a little sanity checking
130 against the -mARCH flags given. */
131
132/* Nonzero if we should generate code for the KA and similar processors.
133 No FPU, no microcode instructions. */
134#define TARGET_FLAG_K_SERIES 0x04
135#define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
136
137/* Nonzero if we should generate code for the MC processor.
138 Not really different from KB for our purposes. */
139#define TARGET_FLAG_MC 0x08
140#define TARGET_MC (target_flags & TARGET_FLAG_MC)
141
142/* Nonzero if we should generate code for the CA processor.
143 Enables different optimization strategies. */
144#define TARGET_FLAG_C_SERIES 0x10
145#define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
146
147/* Nonzero if we should generate leaf-procedures when we find them.
148 You may not want to do this because leaf-proc entries are
149 slower when not entered via BAL - this would be true when
150 a linker not supporting the optimization is used. */
151#define TARGET_FLAG_LEAFPROC 0x20
152#define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
153
154/* Nonzero if we should perform tail-call optimizations when we find them.
155 You may not want to do this because the detection of cases where
156 this is not valid is not totally complete. */
157#define TARGET_FLAG_TAILCALL 0x40
158#define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
159
160/* Nonzero if use of a complex addressing mode is a win on this implementation.
161 Complex addressing modes are probably not worthwhile on the K-series,
162 but they definitely are on the C-series. */
163#define TARGET_FLAG_COMPLEX_ADDR 0x80
164#define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
165
166/* Align code to 8 byte boundaries for faster fetching. */
167#define TARGET_FLAG_CODE_ALIGN 0x100
168#define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
169
170/* Append branch prediction suffixes to branch opcodes. */
171/* ??? Not used currently. */
172#define TARGET_FLAG_BRANCH_PREDICT 0x200
173#define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
174
175/* Forces prototype and return promotions. */
176/* ??? This does not work. */
177#define TARGET_FLAG_CLEAN_LINKAGE 0x400
178#define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
179
180/* For compatibility with iC960 v3.0. */
181#define TARGET_FLAG_IC_COMPAT3_0 0x800
182#define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
183
184/* For compatibility with iC960 v2.0. */
185#define TARGET_FLAG_IC_COMPAT2_0 0x1000
186#define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
187
188/* If no unaligned accesses are to be permitted. */
189#define TARGET_FLAG_STRICT_ALIGN 0x2000
190#define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
191
192/* For compatibility with iC960 assembler. */
193#define TARGET_FLAG_ASM_COMPAT 0x4000
194#define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
195
196/* For compatibility with the gcc960 v1.2 compiler. Use the old structure
13d39dbc 197 alignment rules. Also, turns on STRICT_ALIGNMENT. */
ba8ab355
JW
198#define TARGET_FLAG_OLD_ALIGN 0x8000
199#define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
200
201extern int target_flags;
202
203/* Macro to define tables used to set the flags.
204 This is a list in braces of pairs in braces,
205 each pair being { "NAME", VALUE }
206 where VALUE is the bits to set or minus the bits to clear.
207 An empty string NAME is used to identify the default VALUE. */
208
209/* ??? Not all ten of these architecture variations actually exist, but I
210 am not sure which are real and which aren't. */
211
212#define TARGET_SWITCHES \
213 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
214 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
215 TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb
JW
216/* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
217 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
ba8ab355
JW
218 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
219 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
220 TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb
JW
221/* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
222 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
ba8ab355
JW
223 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
224 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
225 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
226 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
c3eebffb 227/* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
ba8ab355
JW
228 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
229 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
230 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
c3eebffb 231 TARGET_FLAG_CODE_ALIGN)}, */ \
ba8ab355
JW
232 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
233 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
234 {"numerics", (TARGET_FLAG_NUMERICS)}, \
235 {"soft-float", -(TARGET_FLAG_NUMERICS)}, \
236 {"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
237 {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
238 {"tail-call",TARGET_FLAG_TAILCALL}, \
239 {"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
240 {"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
241 {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
242 {"code-align",TARGET_FLAG_CODE_ALIGN}, \
243 {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
244 {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
245 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
246 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
247 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
248 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
249 {"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
250 {"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
251 {"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
252 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
253 {"old-align", TARGET_FLAG_OLD_ALIGN}, \
254 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN)}, \
c3eebffb
JW
255 {"link-relax", 0}, \
256 {"no-link-relax", 0}, \
ba8ab355
JW
257 { "", TARGET_DEFAULT}}
258
259/* Override conflicting target switch options.
260 Doesn't actually detect if more than one -mARCH option is given, but
261 does handle the case of two blatantly conflicting -mARCH options. */
262#define OVERRIDE_OPTIONS \
263{ \
264 if (TARGET_K_SERIES && TARGET_C_SERIES) \
265 { \
266 warning ("conflicting architectures defined - using C series", 0); \
267 target_flags &= ~TARGET_FLAG_K_SERIES; \
268 } \
269 if (TARGET_K_SERIES && TARGET_MC) \
270 { \
271 warning ("conflicting architectures defined - using K series", 0); \
272 target_flags &= ~TARGET_FLAG_MC; \
273 } \
274 if (TARGET_C_SERIES && TARGET_MC) \
275 { \
276 warning ("conflicting architectures defined - using C series", 0);\
277 target_flags &= ~TARGET_FLAG_MC; \
278 } \
279 if (TARGET_IC_COMPAT3_0) \
280 { \
281 flag_short_enums = 1; \
282 flag_signed_char = 1; \
283 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
284 if (TARGET_IC_COMPAT2_0) \
285 { \
286 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
287 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
288 } \
289 } \
290 if (TARGET_IC_COMPAT2_0) \
291 { \
292 flag_signed_char = 1; \
293 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
294 } \
295 i960_initialize (); \
296}
297
298/* Don't enable anything by default. The user is expected to supply a -mARCH
299 option. If none is given, then -mkb is added by CC1_SPEC. */
300#define TARGET_DEFAULT 0
301\f
302/* Target machine storage layout. */
303
304/* Define this if most significant bit is lowest numbered
305 in instructions that operate on numbered bit-fields. */
306#define BITS_BIG_ENDIAN 0
307
308/* Define this if most significant byte of a word is the lowest numbered.
309 The i960 case be either big endian or little endian. We only support
310 little endian, which is the most common. */
311#define BYTES_BIG_ENDIAN 0
312
313/* Define this if most significant word of a multiword number is lowest
314 numbered. */
315#define WORDS_BIG_ENDIAN 0
316
c3eebffb 317/* Number of bits in an addressable storage unit. */
ba8ab355
JW
318#define BITS_PER_UNIT 8
319
320/* Bitfields cannot cross word boundaries. */
321#define BITFIELD_NBYTES_LIMITED 1
322
323/* Width in bits of a "word", which is the contents of a machine register.
324 Note that this is not necessarily the width of data type `int';
325 if using 16-bit ints on a 68000, this would still be 32.
326 But on a machine with 16-bit registers, this would be 16. */
327#define BITS_PER_WORD 32
328
329/* Width of a word, in units (bytes). */
330#define UNITS_PER_WORD 4
331
332/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
333#define POINTER_SIZE 32
334
335/* Width in bits of a long double. Identical to double for now. */
336#define LONG_DOUBLE_TYPE_SIZE 64
337
338/* Allocation boundary (in *bits*) for storing pointers in memory. */
339#define POINTER_BOUNDARY 32
340
341/* Allocation boundary (in *bits*) for storing arguments in argument list. */
342#define PARM_BOUNDARY 32
343
344/* Boundary (in *bits*) on which stack pointer should be aligned. */
345#define STACK_BOUNDARY 128
346
347/* Allocation boundary (in *bits*) for the code of a function. */
348#define FUNCTION_BOUNDARY 128
349
350/* Alignment of field after `int : 0' in a structure. */
351#define EMPTY_FIELD_BOUNDARY 32
352
353/* This makes zero-length anonymous fields lay the next field
354 at a word boundary. It also makes the whole struct have
355 at least word alignment if there are any bitfields at all. */
356#define PCC_BITFIELD_TYPE_MATTERS 1
357
358/* Every structure's size must be a multiple of this. */
359#define STRUCTURE_SIZE_BOUNDARY 8
360
361/* No data type wants to be aligned rounder than this.
362 Extended precision floats gets 4-word alignment. */
363#define BIGGEST_ALIGNMENT 128
364
365/* Define this if move instructions will actually fail to work
366 when given unaligned data.
367 80960 will work even with unaligned data, but it is slow. */
368#define STRICT_ALIGNMENT TARGET_OLD_ALIGN
369
370/* Specify alignment for string literals (which might be higher than the
13d39dbc 371 base type's minimal alignment requirement. This allows strings to be
ba8ab355
JW
372 aligned on word boundaries, and optimizes calls to the str* and mem*
373 library functions. */
374#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
ad237340
JW
375 (TREE_CODE (EXP) == STRING_CST \
376 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
ba8ab355
JW
377 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
378 : (ALIGN))
379
380/* Macros to determine size of aggregates (structures and unions
381 in C). Normally, these may be defined to simply return the maximum
382 alignment and simple rounded-up size, but on some machines (like
383 the i960), the total size of a structure is based on a non-trivial
384 rounding method. */
385
386#define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
387 ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
388 ? i960_round_align ((SPECIFIED), TYPE_SIZE (TYPE)) \
389 : MAX ((COMPUTED), (SPECIFIED)))
390
391#define ROUND_TYPE_SIZE(TYPE, SIZE, ALIGN) \
392 ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
393 ? (tree) i960_round_size (SIZE) \
394 : round_up ((SIZE), (ALIGN)))
395\f
396/* Standard register usage. */
397
398/* Number of actual hardware registers.
399 The hardware registers are assigned numbers for the compiler
400 from 0 to just below FIRST_PSEUDO_REGISTER.
401 All registers that the compiler knows about must be given numbers,
402 even those that are not normally considered general registers.
403
404 Registers 0-15 are the global registers (g0-g15).
405 Registers 16-31 are the local registers (r0-r15).
406 Register 32-35 are the fp registers (fp0-fp3).
407 Register 36 is the condition code register.
408 Register 37 is unused. */
409
410#define FIRST_PSEUDO_REGISTER 38
411
412/* 1 for registers that have pervasive standard uses and are not available
413 for the register allocator. On 80960, this includes the frame pointer
414 (g15), the previous FP (r0), the stack pointer (r1), the return
415 instruction pointer (r2), and the argument pointer (g14). */
416#define FIXED_REGISTERS \
417 {0, 0, 0, 0, 0, 0, 0, 0, \
418 0, 0, 0, 0, 0, 0, 1, 1, \
419 1, 1, 1, 0, 0, 0, 0, 0, \
420 0, 0, 0, 0, 0, 0, 0, 0, \
421 0, 0, 0, 0, 1, 1}
422
423/* 1 for registers not available across function calls.
424 These must include the FIXED_REGISTERS and also any
425 registers that can be used without being saved.
426 The latter must include the registers where values are returned
427 and the register where structure-value addresses are passed.
428 Aside from that, you can include as many other registers as you like. */
429
430/* On the 80960, note that:
431 g0..g3 are used for return values,
432 g0..g7 may always be used for parameters,
433 g8..g11 may be used for parameters, but are preserved if they aren't,
434 g12 is always preserved, but otherwise unused,
435 g13 is the struct return ptr if used, or temp, but may be trashed,
436 g14 is the leaf return ptr or the arg block ptr otherwise zero,
437 must be reset to zero before returning if it was used,
438 g15 is the frame pointer,
439 r0 is the previous FP,
440 r1 is the stack pointer,
441 r2 is the return instruction pointer,
442 r3-r15 are always available,
1e39f528
JW
443 r3 is clobbered by calls in functions that use the arg pointer
444 r4-r11 may be clobbered by the mcount call when profiling
445 r4-r15 if otherwise unused may be used for preserving global registers
ba8ab355
JW
446 fp0..fp3 are never available. */
447#define CALL_USED_REGISTERS \
448 {1, 1, 1, 1, 1, 1, 1, 1, \
449 0, 0, 0, 0, 0, 1, 1, 1, \
450 1, 1, 1, 0, 0, 0, 0, 0, \
451 0, 0, 0, 0, 0, 0, 0, 0, \
452 1, 1, 1, 1, 1, 1}
453
454/* If no fp unit, make all of the fp registers fixed so that they can't
455 be used. */
456#define CONDITIONAL_REGISTER_USAGE \
457 if (! TARGET_NUMERICS) { \
458 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
459 } \
460
461/* Return number of consecutive hard regs needed starting at reg REGNO
462 to hold something of mode MODE.
463 This is ordinarily the length in words of a value of mode MODE
464 but can be less for certain modes in special long registers.
465
466 On 80960, ordinary registers hold 32 bits worth, but can be ganged
467 together to hold double or extended precision floating point numbers,
468 and the floating point registers hold any size floating point number */
469#define HARD_REGNO_NREGS(REGNO, MODE) \
470 ((REGNO) < 32 \
471 ? (((MODE) == VOIDmode) \
472 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
473 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
474
475/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On 80960, the cpu registers can hold any mode but the float registers
477 can only hold SFmode, DFmode, or TFmode. */
17704846 478extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
ba8ab355
JW
479#define HARD_REGNO_MODE_OK(REGNO, MODE) \
480 ((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
481
482/* Value is 1 if it is a good idea to tie two pseudo registers
483 when one has mode MODE1 and one has mode MODE2.
484 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
485 for any hard reg, then this must be 0 for correct output. */
486
487#define MODES_TIEABLE_P(MODE1, MODE2) \
488 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
489
490/* Specify the registers used for certain standard purposes.
491 The values of these macros are register numbers. */
492
493/* 80960 pc isn't overloaded on a register that the compiler knows about. */
494/* #define PC_REGNUM */
495
496/* Register to use for pushing function arguments. */
497#define STACK_POINTER_REGNUM 17
498
499/* Actual top-of-stack address is same as
500 the contents of the stack pointer register. */
501#define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
502
503/* Base register for access to local variables of the function. */
504#define FRAME_POINTER_REGNUM 15
505
506/* Value should be nonzero if functions must have frame pointers.
507 Zero means the frame pointer need not be set up (and parms
508 may be accessed via the stack pointer) in functions that seem suitable.
509 This is computed in `reload', in reload1.c. */
43a92256
JW
510/* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
511 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
512 caused this to fail. */
ba8ab355
JW
513#define FRAME_POINTER_REQUIRED (! leaf_function_p ())
514
515/* C statement to store the difference between the frame pointer
43a92256
JW
516 and the stack pointer values immediately after the function prologue.
517
518 Since the stack grows upward on the i960, this must be a negative number.
519 This includes the 64 byte hardware register save area and the size of
520 the frame. */
ba8ab355
JW
521
522#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
43a92256 523 do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
ba8ab355
JW
524
525/* Base register for access to arguments of the function. */
526#define ARG_POINTER_REGNUM 14
527
528/* Register in which static-chain is passed to a function.
529 On i960, we use r3. */
530#define STATIC_CHAIN_REGNUM 19
531
532/* Functions which return large structures get the address
533 to place the wanted value at in g13. */
534
535#define STRUCT_VALUE_REGNUM 13
536
537/* The order in which to allocate registers. */
538
539#define REG_ALLOC_ORDER \
540{ 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
541 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
542 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
543 11, 12, /* g11, g12 */ \
544 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
545 /* We can't actually allocate these. */ \
546 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
547\f
548/* Define the classes of registers for register constraints in the
549 machine description. Also define ranges of constants.
550
551 One of the classes must always be named ALL_REGS and include all hard regs.
552 If there is more than one class, another class must be named NO_REGS
553 and contain no registers.
554
555 The name GENERAL_REGS must be the name of a class (or an alias for
556 another name such as ALL_REGS). This is the class of registers
557 that is allowed by "g" or "r" in a register constraint.
558 Also, registers outside this class are allocated only when
559 instructions express preferences for them.
560
561 The classes must be numbered in nondecreasing order; that is,
562 a larger-numbered class must never be contained completely
563 in a smaller-numbered class.
564
565 For any two classes, it is very desirable that there be another
566 class that represents their union. */
567
568/* The 80960 has four kinds of registers, global, local, floating point,
569 and condition code. The cc register is never allocated, so no class
570 needs to be defined for it. */
571
572enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
573 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
574
575/* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
576 does. */
577#define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
578
579#define N_REG_CLASSES (int) LIM_REG_CLASSES
580
581/* Give names of register classes as strings for dump file. */
582
583#define REG_CLASS_NAMES \
584{ "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
585 "FP_REGS", "ALL_REGS" }
586
587/* Define which registers fit in which classes.
588 This is an initializer for a vector of HARD_REG_SET
589 of length N_REG_CLASSES. */
590
591#define REG_CLASS_CONTENTS \
592{ {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
593
594/* The same information, inverted:
595 Return the class number of the smallest class containing
596 reg number REGNO. This could be a conditional expression
597 or could index an array. */
598
599#define REGNO_REG_CLASS(REGNO) \
600 ((REGNO) < 16 ? GLOBAL_REGS \
601 : (REGNO) < 32 ? LOCAL_REGS \
602 : (REGNO) < 36 ? FP_REGS \
603 : NO_REGS)
604
605/* The class value for index registers, and the one for base regs.
606 There is currently no difference between base and index registers on the
607 i960, but this distinction may one day be useful. */
608#define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
609#define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
610
611/* Get reg_class from a letter such as appears in the machine description.
612 'f' is a floating point register (fp0..fp3)
613 'l' is a local register (r0-r15)
614 'b' is a global register (g0-g15)
615 'd' is any local or global register
616 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
617/* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
618 the same thing, since 'r' may include the fp registers. */
619#define REG_CLASS_FROM_LETTER(C) \
620 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
621 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
622
623/* The letters I, J, K, L and M in a register constraint string
624 can be used to stand for particular ranges of immediate operands.
625 This macro defines what the ranges are.
626 C is the letter, and VALUE is a constant value.
627 Return 1 if VALUE is in the range specified by C.
628
629 For 80960:
630 'I' is used for literal values 0..31
631 'J' means literal 0
632 'K' means 0..-31. */
633
634#define CONST_OK_FOR_LETTER_P(VALUE, C) \
635 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
636 : (C) == 'J' ? ((VALUE) == 0) \
637 : (C) == 'K' ? ((VALUE) > -32 && (VALUE) <= 0) \
638 : 0)
639
640/* Similar, but for floating constants, and defining letters G and H.
641 Here VALUE is the CONST_DOUBLE rtx itself.
642 For the 80960, G is 0.0 and H is 1.0. */
643
644#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
645 ((TARGET_NUMERICS) && \
646 (((C) == 'G' && ((VALUE) == CONST0_RTX (DFmode) \
647 || (VALUE) == CONST0_RTX (SFmode))) \
648 || ((C) == 'H' && ((VALUE) == CONST1_RTX (DFmode) \
649 || (VALUE) == CONST1_RTX (SFmode)))))
650
651/* Given an rtx X being reloaded into a reg required to be
652 in class CLASS, return the class of reg to actually use.
653 In general this is just CLASS; but on some machines
654 in some cases it is preferable to use a more restrictive class. */
655
656/* On 960, can't load constant into floating-point reg except
657 0.0 or 1.0.
658
659 Any hard reg is ok as a src operand of a reload insn. */
660
661#define PREFERRED_RELOAD_CLASS(X,CLASS) \
662 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
663 ? (CLASS) \
664 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
665 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
666 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
667 ? NO_REGS \
668 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
669
670#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
671 secondary_reload_class (CLASS, MODE, IN)
672
673/* Return the maximum number of consecutive registers
674 needed to represent mode MODE in a register of class CLASS. */
675/* On 80960, this is the size of MODE in words,
676 except in the FP regs, where a single reg is always enough. */
677#define CLASS_MAX_NREGS(CLASS, MODE) \
678 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
679\f
680/* Stack layout; function entry, exit and calling. */
681
682/* Define this if pushing a word on the stack
683 makes the stack pointer a smaller address. */
684/* #define STACK_GROWS_DOWNWARD */
685
686/* Define this if the nominal address of the stack frame
687 is at the high-address end of the local variables;
688 that is, each additional local variable allocated
689 goes at a more negative offset in the frame. */
690/* #define FRAME_GROWS_DOWNWARD */
691
692/* Offset within stack frame to start allocating local variables at.
693 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
694 first local allocated. Otherwise, it is the offset to the BEGINNING
695 of the first local allocated.
696
697 The i960 has a 64 byte register save area, plus possibly some extra
698 bytes allocated for varargs functions. */
699#define STARTING_FRAME_OFFSET 64
700
701/* If we generate an insn to push BYTES bytes,
702 this says how many the stack pointer really advances by.
703 On 80960, don't define this because there are no push insns. */
704/* #define PUSH_ROUNDING(BYTES) BYTES */
705
706/* Offset of first parameter from the argument pointer register value. */
707#define FIRST_PARM_OFFSET(FNDECL) 0
708
709/* When a parameter is passed in a register, no stack space is
710 allocated for it. However, when args are passed in the
711 stack, space is allocated for every register parameter. */
712#define MAYBE_REG_PARM_STACK_SPACE 48
713#define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
714 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
715#define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
716#define OUTGOING_REG_PARM_STACK_SPACE
717
718/* Keep the stack pointer constant throughout the function. */
719#define ACCUMULATE_OUTGOING_ARGS
720
721/* Value is 1 if returning from a function call automatically
722 pops the arguments described by the number-of-args field in the call.
8b109b37 723 FUNDECL is the declaration node of the function (as a tree),
ba8ab355
JW
724 FUNTYPE is the data type of the function (as a tree),
725 or for a library call it is an identifier node for the subroutine name. */
726
8b109b37 727#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
ba8ab355
JW
728
729/* Define how to find the value returned by a library function
730 assuming the value has mode MODE. */
731
732#define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
733
734/* 1 if N is a possible register number for a function value
735 as seen by the caller.
736 On 80960, returns are in g0..g3 */
737
cc5ae869 738#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
ba8ab355
JW
739
740/* 1 if N is a possible register number for function argument passing.
741 On 80960, parameters are passed in g0..g11 */
742
743#define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
744
745/* Perform any needed actions needed for a function that is receiving a
746 variable number of arguments.
747
748 CUM is as above.
749
750 MODE and TYPE are the mode and type of the current parameter.
751
752 PRETEND_SIZE is a variable that should be set to the amount of stack
753 that must be pushed by the prolog to pretend that our caller pushed
754 it.
755
756 Normally, this macro will push all remaining incoming registers on the
757 stack and set PRETEND_SIZE to the length of the registers pushed. */
758
759#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
760 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
761\f
762/* Define a data type for recording info about an argument list
763 during the scan of that argument list. This data type should
764 hold all necessary information about the function itself
765 and about the args processed so far, enough to enable macros
766 such as FUNCTION_ARG to determine where the next arg should go.
767
768 On 80960, this is two integers, which count the number of register
769 parameters and the number of stack parameters seen so far. */
770
771struct cum_args { int ca_nregparms; int ca_nstackparms; };
772
773#define CUMULATIVE_ARGS struct cum_args
774
775/* Define the number of registers that can hold parameters.
776 This macro is used only in macro definitions below and/or i960.c. */
777#define NPARM_REGS 12
778
779/* Define how to round to the next parameter boundary.
780 This macro is used only in macro definitions below and/or i960.c. */
b46db6e4 781#define ROUND_PARM(X, MULTIPLE_OF) \
ba8ab355
JW
782 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
783
784/* Initialize a variable CUM of type CUMULATIVE_ARGS
785 for a call to a function whose data type is FNTYPE.
786 For a library call, FNTYPE is 0.
787
788 On 80960, the offset always starts at 0; the first parm reg is g0. */
789
790#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
791 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
792
793/* Update the data in CUM to advance over an argument
794 of mode MODE and data type TYPE.
795 CUM should be advanced to align with the data type accessed and
796 also the size of that data type in # of regs.
797 (TYPE is null for libcalls where that information may not be available.) */
798
799#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
800 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
801
802/* Indicate the alignment boundary for an argument of the specified mode and
803 type. */
804#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
29008b51
JW
805 (((TYPE) != 0) \
806 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
807 ? PARM_BOUNDARY \
808 : TYPE_ALIGN (TYPE)) \
809 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
810 ? PARM_BOUNDARY \
811 : GET_MODE_ALIGNMENT (MODE)))
ba8ab355
JW
812
813/* Determine where to put an argument to a function.
814 Value is zero to push the argument on the stack,
815 or a hard register in which to store the argument.
816
817 MODE is the argument's machine mode.
818 TYPE is the data type of the argument (as a tree).
819 This is null for libcalls where that information may
820 not be available.
821 CUM is a variable of type CUMULATIVE_ARGS which gives info about
822 the preceding args and about the function being called.
823 NAMED is nonzero if this argument is a named parameter
824 (otherwise it is an extra parameter matching an ellipsis). */
825
826extern struct rtx_def *i960_function_arg ();
827#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
828 i960_function_arg(&CUM, MODE, TYPE, NAMED)
829
830/* Define how to find the value returned by a function.
831 VALTYPE is the data type of the value (as a tree).
832 If the precise function being called is known, FUNC is its FUNCTION_DECL;
833 otherwise, FUNC is 0. */
834
254f7d80
JW
835#define FUNCTION_VALUE(TYPE, FUNC) \
836 gen_rtx (REG, TYPE_MODE (TYPE), 0)
ba8ab355 837
e14fa9c4
DE
838/* Force aggregates and objects larger than 16 bytes to be returned in memory,
839 since we only have 4 registers available for return values. */
ba8ab355 840
e14fa9c4
DE
841#define RETURN_IN_MEMORY(TYPE) \
842 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
ba8ab355 843
40f32220
JW
844/* Don't default to pcc-struct-return, because we have already specified
845 exactly how to return structures in the RETURN_IN_MEMORY macro. */
846#define DEFAULT_PCC_STRUCT_RETURN 0
847
ba8ab355
JW
848/* For an arg passed partly in registers and partly in memory,
849 this is the number of registers used.
850 This never happens on 80960. */
851
852#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
853\f
854/* Output the label for a function definition.
855 This handles leaf functions and a few other things for the i960. */
856
857#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
858 i960_function_name_declare (FILE, NAME, DECL)
859
860/* This macro generates the assembly code for function entry.
861 FILE is a stdio stream to output the code to.
862 SIZE is an int: how many units of temporary storage to allocate.
863 Refer to the array `regs_ever_live' to determine which registers
864 to save; `regs_ever_live[I]' is nonzero if register number I
865 is ever used in the function. This macro is responsible for
866 knowing which registers should not be saved even if used. */
867
868#define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
869
870/* Output assembler code to FILE to increment profiler label # LABELNO
871 for profiling a function entry. */
872
1e39f528
JW
873#define FUNCTION_PROFILER(FILE, LABELNO) \
874 output_function_profiler ((FILE), (LABELNO));
ba8ab355
JW
875
876/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
877 the stack pointer does not matter. The value is tested only in
878 functions that have frame pointers.
879 No definition is equivalent to always zero. */
880
881#define EXIT_IGNORE_STACK 1
882
883/* This macro generates the assembly code for function exit,
884 on machines that need it. If FUNCTION_EPILOGUE is not defined
885 then individual return instructions are generated for each
886 return statement. Args are same as for FUNCTION_PROLOGUE.
887
888 The function epilogue should not depend on the current stack pointer!
889 It should use the frame pointer only. This is mandatory because
890 of alloca; we also take advantage of it to omit stack adjustments
891 before returning. */
892
893#define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
894\f
895/* Addressing modes, and classification of registers for them. */
896
897/* #define HAVE_POST_INCREMENT */
898/* #define HAVE_POST_DECREMENT */
899
900/* #define HAVE_PRE_DECREMENT */
901/* #define HAVE_PRE_INCREMENT */
902
903/* Macros to check register numbers against specific register classes. */
904
905/* These assume that REGNO is a hard or pseudo reg number.
906 They give nonzero only if REGNO is a hard reg of the suitable class
907 or a pseudo reg currently allocated to a suitable hard reg.
908 Since they use reg_renumber, they are safe only once reg_renumber
909 has been allocated, which happens in local-alloc.c. */
910
911#define REGNO_OK_FOR_INDEX_P(REGNO) \
912 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
913#define REGNO_OK_FOR_BASE_P(REGNO) \
914 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
915#define REGNO_OK_FOR_FP_P(REGNO) \
916 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
917
918/* Now macros that check whether X is a register and also,
919 strictly, whether it is in a specified class.
920
921 These macros are specific to the 960, and may be used only
922 in code for printing assembler insns and in conditions for
923 define_optimization. */
924
925/* 1 if X is an fp register. */
926
927#define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
928
929/* Maximum number of registers that can appear in a valid memory address. */
930#define MAX_REGS_PER_ADDRESS 2
931
6eff269e
BK
932#define CONSTANT_ADDRESS_P(X) \
933 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
934 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
935 || GET_CODE (X) == HIGH)
ba8ab355
JW
936
937/* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
938 is a legitimate general operand.
939 It is given that X satisfies CONSTANT_P.
940
941 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0. */
942
943#define LEGITIMATE_CONSTANT_P(X) \
944 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), VOIDmode))
945
946/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
947 and check its validity for a certain class.
948 We have two alternate definitions for each of them.
949 The usual definition accepts all pseudo regs; the other rejects
950 them unless they have been allocated suitable hard regs.
951 The symbol REG_OK_STRICT causes the latter definition to be used.
952
953 Most source files want to accept pseudo regs in the hope that
954 they will get allocated to the class that the insn wants them to be in.
955 Source files for reload pass need to be strict.
956 After reload, it makes no difference, since pseudo regs have
957 been eliminated by then. */
958
959#ifndef REG_OK_STRICT
960
961/* Nonzero if X is a hard reg that can be used as an index
962 or if it is a pseudo reg. */
963#define REG_OK_FOR_INDEX_P(X) \
964 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
965/* Nonzero if X is a hard reg that can be used as a base reg
966 or if it is a pseudo reg. */
967#define REG_OK_FOR_BASE_P(X) \
968 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
969
970#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
971#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
972
973#else
974
975/* Nonzero if X is a hard reg that can be used as an index. */
976#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
977/* Nonzero if X is a hard reg that can be used as a base reg. */
978#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
979
980#endif
981\f
982/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
983 that is a valid memory address for an instruction.
984 The MODE argument is the machine mode for the MEM expression
985 that wants to use this address.
986
987 On 80960, legitimate addresses are:
988 base ld (g0),r0
989 disp (12 or 32 bit) ld foo,r0
990 base + index ld (g0)[g1*1],r0
991 base + displ ld 0xf00(g0),r0
992 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
993 index*scale + base ld (g0)[g1*4],r0
994 index*scale + displ ld 0xf00[g1*4],r0
995 index*scale ld [g1*4],r0
996 index + base + displ ld 0xf00(g0)[g1*1],r0
997
998 In each case, scale can be 1, 2, 4, 8, or 16. */
999
1000/* Returns 1 if the scale factor of an index term is valid. */
1001#define SCALE_TERM_P(X) \
1002 (GET_CODE (X) == CONST_INT \
1003 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1004 || INTVAL(X) == 8 || INTVAL (X) == 16))
1005
1006
1007#ifdef REG_OK_STRICT
1008#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1009 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1010#else
1011#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1012 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1013#endif
1014\f
1015/* Try machine-dependent ways of modifying an illegitimate address
1016 to be legitimate. If we find one, return the new, valid address.
1017 This macro is used in only one place: `memory_address' in explow.c.
1018
1019 OLDX is the address as it was before break_out_memory_refs was called.
1020 In some cases it is useful to look at this to decide what needs to be done.
1021
1022 MODE and WIN are passed so that this macro can use
1023 GO_IF_LEGITIMATE_ADDRESS.
1024
1025 It is always safe for this macro to do nothing. It exists to recognize
1026 opportunities to optimize the output. */
1027
13d39dbc 1028/* On 80960, convert non-canonical addresses to canonical form. */
ba8ab355
JW
1029
1030extern struct rtx_def *legitimize_address ();
1031#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1032{ rtx orig_x = (X); \
1033 (X) = legitimize_address (X, OLDX, MODE); \
1034 if ((X) != orig_x && memory_address_p (MODE, X)) \
1035 goto WIN; }
1036
1037/* Go to LABEL if ADDR (a legitimate address expression)
1038 has an effect that depends on the machine mode it is used for.
1039 On the 960 this is never true. */
1040
1041#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1042\f
1043/* Specify the machine mode that this machine uses
1044 for the index in the tablejump instruction. */
1045#define CASE_VECTOR_MODE SImode
1046
1047/* Define this if the tablejump instruction expects the table
1048 to contain offsets from the address of the table.
1049 Do not define this if the table should contain absolute addresses. */
1050/* #define CASE_VECTOR_PC_RELATIVE */
1051
1052/* Specify the tree operation to be used to convert reals to integers. */
1053#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1054
1055/* This is the kind of divide that is easiest to do in the general case. */
1056#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1057
1058/* Define this as 1 if `char' should by default be signed; else as 0. */
1059#define DEFAULT_SIGNED_CHAR 0
1060
1061/* Allow and ignore #sccs directives. */
1062#define SCCS_DIRECTIVE
1063
1064/* Max number of bytes we can move from memory to memory
1065 in one reasonably fast instruction. */
1066#define MOVE_MAX 16
1067
9a63901f
RK
1068/* Define if operations between registers always perform the operation
1069 on the full register even if a narrower mode is specified. */
1070#define WORD_REGISTER_OPERATIONS
1071
1072/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1073 will either zero-extend or sign-extend. The value of this macro should
1074 be the code that says which one of the two operations is implicitly
1075 done, NIL if none. */
1076#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
ba8ab355
JW
1077
1078/* Nonzero if access to memory by bytes is no faster than for words.
1079 Defining this results in worse code on the i960. */
1080
1081#define SLOW_BYTE_ACCESS 0
1082
1083/* We assume that the store-condition-codes instructions store 0 for false
1084 and some other value for true. This is the value stored for true. */
1085
1086#define STORE_FLAG_VALUE 1
1087
d969caf8
RK
1088/* Define this to be nonzero if shift instructions ignore all but the low-order
1089 few bits. */
1090#define SHIFT_COUNT_TRUNCATED 1
ba8ab355
JW
1091
1092/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1093 is done just by pretending it is already truncated. */
1094#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1095
1096/* Specify the machine mode that pointers have.
1097 After generation of rtl, the compiler makes no further distinction
1098 between pointers and any other objects of this machine mode. */
1099#define Pmode SImode
1100
1101/* Specify the widest mode that BLKmode objects can be promoted to */
1102#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1103\f
1104/* These global variables are used to pass information between
1105 cc setter and cc user at insn emit time. */
1106
1107extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1108
1109/* Define the function that build the compare insn for scc and bcc. */
1110
1111extern struct rtx_def *gen_compare_reg ();
1112
1113/* Add any extra modes needed to represent the condition code.
1114
1115 Also, signed and unsigned comparisons are distinguished, as
1116 are operations which are compatible with chkbit insns. */
1117#define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
1118
1119/* Define the names for the modes specified above. */
1120#define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
1121
1122/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1123 return the mode to be used for the comparison. For floating-point, CCFPmode
1124 should be used. CC_NOOVmode should be used when the first operand is a
1125 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1126 needed. */
c3eebffb 1127#define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
ba8ab355
JW
1128
1129/* A function address in a call instruction is a byte address
1130 (for indexing purposes) so give the MEM rtx a byte's mode. */
1131#define FUNCTION_MODE SImode
1132
1133/* Define this if addresses of constant functions
1134 shouldn't be put through pseudo regs where they can be cse'd.
1135 Desirable on machines where ordinary constants are expensive
1136 but a CALL with constant address is cheap. */
1137#define NO_FUNCTION_CSE
1138
1139/* Use memcpy, etc. instead of bcopy. */
1140
1141#ifndef WIND_RIVER
1142#define TARGET_MEM_FUNCTIONS 1
1143#endif
1144
1145/* Compute the cost of computing a constant rtl expression RTX
1146 whose rtx-code is CODE. The body of this macro is a portion
1147 of a switch statement. If the code is computed here,
1148 return it with a return statement. Otherwise, break from the switch. */
1149
1150/* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1151 that can be non-ldconst operands in rare cases are cost 1. Other constants
1152 have higher costs. */
1153
1154#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1155 case CONST_INT: \
1156 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1157 || power2_operand (RTX, VOIDmode)) \
1158 return 0; \
1159 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1160 return 1; \
1161 case CONST: \
1162 case LABEL_REF: \
1163 case SYMBOL_REF: \
1164 return (TARGET_FLAG_C_SERIES ? 6 : 8); \
1165 case CONST_DOUBLE: \
1166 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1167 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1168 return 1; \
1169 return 12;
1170
1171/* The i960 offers addressing modes which are "as cheap as a register".
1172 See i960.c (or gcc.texinfo) for details. */
1173
1174#define ADDRESS_COST(RTX) \
1175 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1176\f
1177/* Control the assembler format that we output. */
1178
1179/* Output at beginning of assembler file. */
1180
1181#define ASM_FILE_START(file)
1182
1183/* Output to assembler file text saying following lines
1184 may contain character constants, extra white space, comments, etc. */
1185
1186#define ASM_APP_ON ""
1187
1188/* Output to assembler file text saying following lines
1189 no longer contain unusual constructs. */
1190
1191#define ASM_APP_OFF ""
1192
1193/* Output before read-only data. */
1194
1195#define TEXT_SECTION_ASM_OP ".text"
1196
1197/* Output before writable data. */
1198
1199#define DATA_SECTION_ASM_OP ".data"
1200
1201/* How to refer to registers in assembler output.
1202 This sequence is indexed by compiler's hard-register-number (see above). */
1203
1204#define REGISTER_NAMES { \
1205 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1206 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1207 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1208 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1209 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1210
1211/* How to renumber registers for dbx and gdb.
1212 In the 960 encoding, g0..g15 are registers 16..31. */
1213
1214#define DBX_REGISTER_NUMBER(REGNO) \
1215 (((REGNO) < 16) ? (REGNO) + 16 \
1216 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1217
1218/* Don't emit dbx records longer than this. This is an arbitrary value. */
1219#define DBX_CONTIN_LENGTH 1500
1220
1221/* This is how to output a note to DBX telling it the line number
1222 to which the following sequence of instructions corresponds. */
1223
1224#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1225{ if (write_symbols == SDB_DEBUG) { \
1226 fprintf ((FILE), "\t.ln %d\n", \
1227 (sdb_begin_function_line \
1228 ? (LINE) - sdb_begin_function_line : 1)); \
1229 } else if (write_symbols == DBX_DEBUG) { \
1230 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1231 } }
1232
1233/* This is how to output the definition of a user-level label named NAME,
1234 such as the label on a static function or variable NAME. */
1235
1236#define ASM_OUTPUT_LABEL(FILE,NAME) \
1237 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1238
1239/* This is how to output a command to make the user-level label named NAME
1240 defined for reference from other files. */
1241
1242#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1243{ fputs ("\t.globl ", FILE); \
1244 assemble_name (FILE, NAME); \
1245 fputs ("\n", FILE); }
1246
1247/* This is how to output a reference to a user-level label named NAME.
1248 `assemble_name' uses this. */
1249
1250#define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "_%s", NAME)
1251
1252/* This is how to output an internal numbered label where
1253 PREFIX is the class of label and NUM is the number within the class. */
1254
1255#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1256 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1257
1258/* This is how to store into the string LABEL
1259 the symbol_ref name of an internal numbered label where
1260 PREFIX is the class of label and NUM is the number within the class.
1261 This is suitable for output with `assemble_name'. */
1262
1263#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1264 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1265
1266/* This is how to output an assembler line defining a `double' constant. */
1267
1268#define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
1269
1270/* This is how to output an assembler line defining a `float' constant. */
1271
1272#define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
1273
1274/* This is how to output an assembler line defining an `int' constant. */
1275
1276#define ASM_OUTPUT_INT(FILE,VALUE) \
1277( fprintf (FILE, "\t.word "), \
1278 output_addr_const (FILE, (VALUE)), \
1279 fprintf (FILE, "\n"))
1280
1281/* Likewise for `char' and `short' constants. */
1282
1283#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1284( fprintf (FILE, "\t.short "), \
1285 output_addr_const (FILE, (VALUE)), \
1286 fprintf (FILE, "\n"))
1287
1288#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1289( fprintf (FILE, "\t.byte "), \
1290 output_addr_const (FILE, (VALUE)), \
1291 fprintf (FILE, "\n"))
1292
1293/* This is how to output an assembler line for a numeric constant byte. */
1294
1295#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1296 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1297
1298#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1299 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1300
1301/* This is how to output an insn to pop a register from the stack.
1302 It need not be very fast code. */
1303
1304#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1305 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1306
1307/* This is how to output an element of a case-vector that is absolute. */
1308
1309#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1310 fprintf (FILE, "\t.word L%d\n", VALUE)
1311
1312/* This is how to output an element of a case-vector that is relative. */
1313
1314#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1315 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1316
1317/* This is how to output an assembler line that says to advance the
1318 location counter to a multiple of 2**LOG bytes. */
1319
1320#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1321 fprintf (FILE, "\t.align %d\n", (LOG))
1322
1323#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1324 fprintf (FILE, "\t.space %d\n", (SIZE))
1325
1326/* This says how to output an assembler line
1327 to define a global common symbol. */
1328
1329/* For common objects, output unpadded size... gld960 & lnk960 both
1330 have code to align each common object at link time. Also, if size
1331 is 0, treat this as a declaration, not a definition - i.e.,
1332 do nothing at all. */
1333
1334#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1335{ if ((SIZE) != 0) \
1336 { \
1337 fputs (".globl ", (FILE)), \
1338 assemble_name ((FILE), (NAME)), \
1339 fputs ("\n.comm ", (FILE)), \
1340 assemble_name ((FILE), (NAME)), \
1bc147fb 1341 fprintf ((FILE), ",%d\n", (SIZE)); \
ba8ab355
JW
1342 } \
1343}
1344
1345/* This says how to output an assembler line to define a local common symbol.
1346 Output unpadded size, with request to linker to align as requested.
1347 0 size should not be possible here. */
1348
1349#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1350( fputs (".bss\t", (FILE)), \
1351 assemble_name ((FILE), (NAME)), \
1352 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1353 ((ALIGN) <= 8 ? 0 \
1354 : ((ALIGN) <= 16 ? 1 \
1355 : ((ALIGN) <= 32 ? 2 \
1356 : ((ALIGN <= 64 ? 3 : 4)))))))
1357
1358/* Output text for an #ident directive. */
1359#define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1360
1361/* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1362
1363#define ASM_OUTPUT_ALIGN_CODE(FILE) \
1364{ if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
1365
1366/* Store in OUTPUT a string (made with alloca) containing
1367 an assembler-name for a local static variable named NAME.
1368 LABELNO is an integer which is different for each call. */
1369
1370#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1371 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1372 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1373
1374/* Define the parentheses used to group arithmetic operations
1375 in assembler code. */
1376
1377#define ASM_OPEN_PAREN "("
1378#define ASM_CLOSE_PAREN ")"
1379
1380/* Define results of standard character escape sequences. */
1381#define TARGET_BELL 007
1382#define TARGET_BS 010
1383#define TARGET_TAB 011
1384#define TARGET_NEWLINE 012
1385#define TARGET_VT 013
1386#define TARGET_FF 014
1387#define TARGET_CR 015
1388\f
1389/* Output assembler code to FILE to initialize this source file's
1390 basic block profiling info, if that has not already been done. */
1391
1392#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1393{ fprintf (FILE, "\tld LPBX0,g12\n"); \
1394 fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
1395 fprintf (FILE, "\tlda LPBX0,g12\n"); \
1396 fprintf (FILE, "\tcall ___bb_init_func\n"); \
1397 fprintf (FILE, "LPY%d:\n",LABELNO); }
1398
1399/* Output assembler code to FILE to increment the entry-count for
1400 the BLOCKNO'th basic block in this source file. */
1401
1402#define BLOCK_PROFILER(FILE, BLOCKNO) \
1403{ int blockn = (BLOCKNO); \
1404 fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
1405 fprintf (FILE, "\taddo g12,1,g12\n"); \
1406 fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
1407\f
1408/* Print operand X (an rtx) in assembler syntax to file FILE.
1409 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1410 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1411
1412#define PRINT_OPERAND(FILE, X, CODE) \
1413 i960_print_operand (FILE, X, CODE);
1414
1415/* Print a memory address as an operand to reference that memory location. */
1416
1417#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1418 i960_print_operand_addr (FILE, ADDR)
1419\f
1420/* Output assembler code for a block containing the constant parts
1421 of a trampoline, leaving space for the variable parts. */
1422
1423/* On the i960, the trampoline contains three instructions:
1424 ldconst _function, r4
1425 ldconst static addr, r3
1426 jump (r4) */
1427
1428#define TRAMPOLINE_TEMPLATE(FILE) \
1429{ \
1430 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000)); \
1431 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1432 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000)); \
1433 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1434 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000)); \
1435}
1436
1437/* Length in units of the trampoline for entering a nested function. */
1438
1439#define TRAMPOLINE_SIZE 20
1440
1441/* Emit RTL insns to initialize the variable parts of a trampoline.
1442 FNADDR is an RTX for the address of the function's pure code.
1443 CXT is an RTX for the static chain value for the function. */
1444
1445#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1446{ \
1447 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
1448 FNADDR); \
1449 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
1450 CXT); \
1451}
1452
1453#if 0
13d39dbc 1454/* Promote char and short arguments to ints, when want compatibility with
ba8ab355
JW
1455 the iC960 compilers. */
1456
1457/* ??? In order for this to work, all users would need to be changed
1458 to test the value of the macro at run time. */
1459#define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1460/* ??? This does not exist. */
1461#define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1462#endif
1463
1464/* Instruction type definitions. Used to alternate instructions types for
1465 better performance on the C series chips. */
1466
1467enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1468
1469/* Holds the insn type of the last insn output to the assembly file. */
1470
1471extern enum insn_types i960_last_insn_type;
1472
1473/* Parse opcodes, and set the insn last insn type based on them. */
1474
1475#define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1476
1477/* Table listing what rtl codes each predicate in i960.c will accept. */
1478
1479#define PREDICATE_CODES \
1480 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1481 LABEL_REF, SUBREG, REG, MEM}}, \
1482 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1483 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1484 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1485 {"literal", {CONST_INT}}, \
1486 {"fp_literal_one", {CONST_DOUBLE}}, \
1487 {"fp_literal_double", {CONST_DOUBLE}}, \
1488 {"fp_literal", {CONST_DOUBLE}}, \
1489 {"signed_literal", {CONST_INT}}, \
1490 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1491 {"eq_or_neq", {EQ, NE}}, \
1492 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1493 CONST_DOUBLE, CONST}}, \
f8634644
RK
1494 {"power2_operand", {CONST_INT}}, \
1495 {"cmplpower2_operand", {CONST_INT}},
ba8ab355
JW
1496
1497/* Define functions in i960.c and used in insn-output.c. */
1498
1499extern char *i960_output_ldconst ();
1500extern char *i960_output_call_insn ();
1501extern char *i960_output_ret_insn ();
778ebe62
JW
1502
1503/* Defined in reload.c, and used in insn-recog.c. */
1504
1505extern int rtx_equal_function_value_matters;
This page took 0.329941 seconds and 5 git commands to generate.