]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i386/i386.h
config.gcc (i?86-*-darwin): Add 64-bit HWI support.
[gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5bf5a10b 3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
c98f8742 4
188fc5b5 5This file is part of GCC.
c98f8742 6
188fc5b5 7GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
188fc5b5 12GCC is distributed in the hope that it will be useful,
c98f8742
JVA
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
188fc5b5 18along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
f676971a 44 const int mult_init[5]; /* cost of starting a multiply
4977bab6 45 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 46 const int mult_bit; /* cost of multiply per each bit set */
f676971a 47 const int divide[5]; /* cost of a divide/mod
4977bab6 48 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
8b60264b
KG
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
ac775968 53 memory-to-memory move insns. */
8b60264b
KG
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
8b60264b 58 const int int_store[3]; /* cost of storing integer register
96e7ae40 59 in QImode, HImode and SImode */
8b60264b
KG
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b 63 const int fp_store[3]; /* cost of storing FP register
96e7ae40 64 in SFmode, DFmode and XFmode */
8b60264b
KG
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 67 in SImode and DImode */
8b60264b 68 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 69 in SImode and DImode */
8b60264b
KG
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int sse_store[3]; /* cost of storing SSE register
fa79946e 74 in SImode, DImode and TImode*/
8b60264b 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 76 integer and vice versa. */
f4365627
JH
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
4977bab6 80 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
87};
88
8b60264b 89extern const struct processor_costs *ix86_cost;
d4ba09c0 90
c98f8742
JVA
91/* Macros used in the machine description to test the flags. */
92
ddd5a7c1 93/* configure can arrange to make this 2, to force a 486. */
e075ae69 94
35b528be 95#ifndef TARGET_CPU_DEFAULT
d326eaf0 96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 97#endif
35b528be 98
004d3859
GK
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
6ac49599 104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 105
5791cc29
JT
106/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
107 compile-time constant. */
108#ifdef IN_LIBGCC2
6ac49599 109#undef TARGET_64BIT
5791cc29
JT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
6ac49599
RS
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
67adf6a9 118#if TARGET_64BIT_DEFAULT
0c2dc519
JH
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
5791cc29 124#endif
25f94bb5 125
750054a2
CT
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
9e555526
RH
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
134#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
135#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
136#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 137#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 138#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
d326eaf0
JH
139#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
140#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
141#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
a269a03c 142
9e555526 143#define TUNEMASK (1 << ix86_tune)
a269a03c 144extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
9199f050 145extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
ef6257cd 146extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69 147extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
862e2886 148extern const int x86_use_himode_fiop, x86_use_simode_fiop;
0e8c2b0d 149extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
e075ae69 150extern const int x86_read_modify, x86_split_long_moves;
285464d0 151extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 152extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 153extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 154extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 155extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 156extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 157extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 158extern const int x86_arch_always_fancy_math_387, x86_shift1;
41afe4ef 159extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
4977bab6 160extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
41afe4ef 161extern const int x86_use_ffreep;
ad7b96a9 162extern const int x86_inter_unit_moves, x86_schedule;
7cacf53e 163extern const int x86_use_bt;
a0274e3e 164extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
d326eaf0
JH
165extern const int x86_use_incdec;
166extern const int x86_pad_returns;
995cc369 167extern const int x86_partial_flag_reg_stall;
f4365627 168extern int x86_prefetch_sse;
a269a03c 169
9e555526
RH
170#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
171#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
172#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
173#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
174#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
0644b628
JH
175/* For sane SSE instruction set generation we need fcomi instruction. It is
176 safe to enable all CMOVE instructions. */
177#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
84c2b4da
UB
178#define TARGET_FISTTP (((x86_fisttp & (1 << ix86_arch)) || TARGET_SSE3) \
179 && TARGET_80387)
9e555526
RH
180#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
181#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
182#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
183#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
184#define TARGET_MOVX (x86_movx & TUNEMASK)
185#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
995cc369 186#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
0e8c2b0d
UB
187#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
188#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
9e555526
RH
189#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
190#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
191#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
192#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
193#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
194#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
195#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
196#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
197#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
198#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
199#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
200#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
201#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
202#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
203#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
204#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
205#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
206#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
4977bab6 207#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
9e555526 208 (x86_sse_partial_reg_dependency & TUNEMASK)
41afe4ef 209#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
9e555526 210#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
9e555526
RH
211#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
212#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
213#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
214#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
f4365627 215#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
9e555526
RH
216#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
217#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
218#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
219#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
be04394b 220#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
ad7b96a9 221#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
7cacf53e 222#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
d326eaf0
JH
223#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
224#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
a269a03c 225
c93e80a5 226#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 227
965f5423
JH
228#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
229#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
230 && (ix86_fpmath & FPMATH_387))
4977bab6 231
f996902d 232#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
5bf5a10b
AO
233#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
234#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
f996902d
RH
235#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
236
1ef45b77 237#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
a0274e3e
JJ
238#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
239#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
1ef45b77
RH
240#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
241
67adf6a9
RH
242#ifndef TARGET_64BIT_DEFAULT
243#define TARGET_64BIT_DEFAULT 0
25f94bb5 244#endif
74dc3e94
RH
245#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
246#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
247#endif
25f94bb5 248
0ed4a390
JL
249/* Once GDB has been enhanced to deal with functions without frame
250 pointers, we can change this to allow for elimination of
251 the frame pointer in leaf functions. */
252#define TARGET_DEFAULT 0
67adf6a9 253
b069de3b
SS
254/* This is not really a target flag, but is done this way so that
255 it's analogous to similar code for Mach-O on PowerPC. darwin.h
256 redefines this to 1. */
257#define TARGET_MACHO 0
258
cc69336f
RH
259/* Subtargets may reset this to 1 in order to enable 96-bit long double
260 with the rounding mode forced to 53 bits. */
261#define TARGET_96_ROUND_53_LONG_DOUBLE 0
262
f5316dfe
MM
263/* Sometimes certain combinations of command options do not make
264 sense on a particular target machine. You can define a macro
265 `OVERRIDE_OPTIONS' to take account of this. This macro, if
266 defined, is executed once just after all the command options have
267 been parsed.
268
269 Don't use this macro to turn on various extra optimizations for
270 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
271
272#define OVERRIDE_OPTIONS override_options ()
273
d4ba09c0 274/* Define this to change the optimizations performed by default. */
d9a5f180
GS
275#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
276 optimization_options ((LEVEL), (SIZE))
d4ba09c0 277
fa959ce4
MM
278/* -march=native handling only makes sense with a native compiler. */
279#ifndef CROSS_COMPILE
280/* In driver-i386.c. */
281extern const char *host_detect_local_cpu (int argc, const char **argv);
282#define EXTRA_SPEC_FUNCTIONS \
283 { "local_cpu_detect", host_detect_local_cpu },
284#endif
285
1cba2b96
EC
286/* Support for configure-time defaults of some command line options.
287 The order here is important so that -march doesn't squash the
288 tune or cpu values. */
7816bea0 289#define OPTION_DEFAULT_SPECS \
da2d4c01 290 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
291 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
292 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 293
241e1a89
SC
294/* Specs for the compiler proper */
295
628714d8 296#ifndef CC1_CPU_SPEC
fa959ce4 297#define CC1_CPU_SPEC_1 "\
9d913bbf
KC
298%{!mtune*: \
299%{m386:mtune=i386 \
300%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
301%{m486:-mtune=i486 \
302%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
303%{mpentium:-mtune=pentium \
304%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
305%{mpentiumpro:-mtune=pentiumpro \
306%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
307%{mcpu=*:-mtune=%* \
308%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
309%<mcpu=* \
c93e80a5
JH
310%{mintel-syntax:-masm=intel \
311%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
312%{mno-intel-syntax:-masm=att \
313%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4
MM
314
315#ifdef CROSS_COMPILE
316#define CC1_CPU_SPEC CC1_CPU_SPEC_1
317#else
318#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
319"%{march=native:%<march=native %:local_cpu_detect(arch)} \
320%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
321#endif
241e1a89 322#endif
c98f8742 323\f
30efe578 324/* Target CPU builtins. */
1ba7b414
NB
325#define TARGET_CPU_CPP_BUILTINS() \
326 do \
327 { \
328 size_t arch_len = strlen (ix86_arch_string); \
9e555526 329 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 330 int last_arch_char = ix86_arch_string[arch_len - 1]; \
9e555526 331 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
332 \
333 if (TARGET_64BIT) \
334 { \
335 builtin_assert ("cpu=x86_64"); \
26b0ad13 336 builtin_assert ("machine=x86_64"); \
97242ddc
JH
337 builtin_define ("__amd64"); \
338 builtin_define ("__amd64__"); \
1ba7b414
NB
339 builtin_define ("__x86_64"); \
340 builtin_define ("__x86_64__"); \
341 } \
342 else \
343 { \
344 builtin_assert ("cpu=i386"); \
345 builtin_assert ("machine=i386"); \
346 builtin_define_std ("i386"); \
347 } \
348 \
9d913bbf 349 /* Built-ins based on -mtune= (or -march= if no \
9e555526 350 -mtune= given). */ \
1ba7b414
NB
351 if (TARGET_386) \
352 builtin_define ("__tune_i386__"); \
353 else if (TARGET_486) \
354 builtin_define ("__tune_i486__"); \
355 else if (TARGET_PENTIUM) \
356 { \
357 builtin_define ("__tune_i586__"); \
358 builtin_define ("__tune_pentium__"); \
9e555526 359 if (last_tune_char == 'x') \
1ba7b414
NB
360 builtin_define ("__tune_pentium_mmx__"); \
361 } \
362 else if (TARGET_PENTIUMPRO) \
363 { \
364 builtin_define ("__tune_i686__"); \
365 builtin_define ("__tune_pentiumpro__"); \
9e555526 366 switch (last_tune_char) \
2e37b0ce
RH
367 { \
368 case '3': \
369 builtin_define ("__tune_pentium3__"); \
5efb1046 370 /* FALLTHRU */ \
2e37b0ce
RH
371 case '2': \
372 builtin_define ("__tune_pentium2__"); \
373 break; \
374 } \
1ba7b414
NB
375 } \
376 else if (TARGET_K6) \
377 { \
378 builtin_define ("__tune_k6__"); \
9e555526 379 if (last_tune_char == '2') \
1ba7b414 380 builtin_define ("__tune_k6_2__"); \
9e555526 381 else if (last_tune_char == '3') \
1ba7b414
NB
382 builtin_define ("__tune_k6_3__"); \
383 } \
384 else if (TARGET_ATHLON) \
385 { \
386 builtin_define ("__tune_athlon__"); \
387 /* Only plain "athlon" lacks SSE. */ \
9e555526 388 if (last_tune_char != 'n') \
1ba7b414
NB
389 builtin_define ("__tune_athlon_sse__"); \
390 } \
4977bab6
ZW
391 else if (TARGET_K8) \
392 builtin_define ("__tune_k8__"); \
1ba7b414
NB
393 else if (TARGET_PENTIUM4) \
394 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
395 else if (TARGET_NOCONA) \
396 builtin_define ("__tune_nocona__"); \
1ba7b414
NB
397 \
398 if (TARGET_MMX) \
399 builtin_define ("__MMX__"); \
400 if (TARGET_3DNOW) \
401 builtin_define ("__3dNOW__"); \
402 if (TARGET_3DNOW_A) \
403 builtin_define ("__3dNOW_A__"); \
404 if (TARGET_SSE) \
405 builtin_define ("__SSE__"); \
406 if (TARGET_SSE2) \
407 builtin_define ("__SSE2__"); \
9e200aaf
KC
408 if (TARGET_SSE3) \
409 builtin_define ("__SSE3__"); \
48ddd46c
JH
410 if (TARGET_SSE_MATH && TARGET_SSE) \
411 builtin_define ("__SSE_MATH__"); \
412 if (TARGET_SSE_MATH && TARGET_SSE2) \
413 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
414 \
415 /* Built-ins based on -march=. */ \
416 if (ix86_arch == PROCESSOR_I486) \
417 { \
418 builtin_define ("__i486"); \
419 builtin_define ("__i486__"); \
420 } \
421 else if (ix86_arch == PROCESSOR_PENTIUM) \
422 { \
423 builtin_define ("__i586"); \
424 builtin_define ("__i586__"); \
425 builtin_define ("__pentium"); \
426 builtin_define ("__pentium__"); \
427 if (last_arch_char == 'x') \
428 builtin_define ("__pentium_mmx__"); \
429 } \
430 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
431 { \
432 builtin_define ("__i686"); \
433 builtin_define ("__i686__"); \
434 builtin_define ("__pentiumpro"); \
435 builtin_define ("__pentiumpro__"); \
436 } \
437 else if (ix86_arch == PROCESSOR_K6) \
438 { \
439 \
440 builtin_define ("__k6"); \
441 builtin_define ("__k6__"); \
442 if (last_arch_char == '2') \
443 builtin_define ("__k6_2__"); \
444 else if (last_arch_char == '3') \
445 builtin_define ("__k6_3__"); \
446 } \
447 else if (ix86_arch == PROCESSOR_ATHLON) \
448 { \
449 builtin_define ("__athlon"); \
450 builtin_define ("__athlon__"); \
451 /* Only plain "athlon" lacks SSE. */ \
452 if (last_arch_char != 'n') \
453 builtin_define ("__athlon_sse__"); \
454 } \
4977bab6
ZW
455 else if (ix86_arch == PROCESSOR_K8) \
456 { \
457 builtin_define ("__k8"); \
458 builtin_define ("__k8__"); \
459 } \
1ba7b414
NB
460 else if (ix86_arch == PROCESSOR_PENTIUM4) \
461 { \
462 builtin_define ("__pentium4"); \
463 builtin_define ("__pentium4__"); \
464 } \
89c43c0a
VM
465 else if (ix86_arch == PROCESSOR_NOCONA) \
466 { \
467 builtin_define ("__nocona"); \
468 builtin_define ("__nocona__"); \
469 } \
1ba7b414 470 } \
30efe578
NB
471 while (0)
472
f4365627
JH
473#define TARGET_CPU_DEFAULT_i386 0
474#define TARGET_CPU_DEFAULT_i486 1
475#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
476#define TARGET_CPU_DEFAULT_pentium_mmx 3
477#define TARGET_CPU_DEFAULT_pentiumpro 4
478#define TARGET_CPU_DEFAULT_pentium2 5
479#define TARGET_CPU_DEFAULT_pentium3 6
480#define TARGET_CPU_DEFAULT_pentium4 7
481#define TARGET_CPU_DEFAULT_k6 8
482#define TARGET_CPU_DEFAULT_k6_2 9
483#define TARGET_CPU_DEFAULT_k6_3 10
484#define TARGET_CPU_DEFAULT_athlon 11
485#define TARGET_CPU_DEFAULT_athlon_sse 12
4977bab6 486#define TARGET_CPU_DEFAULT_k8 13
5bbeea44
JH
487#define TARGET_CPU_DEFAULT_pentium_m 14
488#define TARGET_CPU_DEFAULT_prescott 15
eb3d7f9d 489#define TARGET_CPU_DEFAULT_nocona 16
d326eaf0 490#define TARGET_CPU_DEFAULT_generic 17
f4365627
JH
491
492#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
493 "pentiumpro", "pentium2", "pentium3", \
494 "pentium4", "k6", "k6-2", "k6-3",\
5bbeea44 495 "athlon", "athlon-4", "k8", \
d326eaf0
JH
496 "pentium-m", "prescott", "nocona", \
497 "generic"}
0c2dc519 498
628714d8 499#ifndef CC1_SPEC
8015b78d 500#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
501#endif
502
503/* This macro defines names of additional specifications to put in the
504 specs that can be used in various specifications like CC1_SPEC. Its
505 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
506
507 Each subgrouping contains a string constant, that defines the
188fc5b5 508 specification name, and a string constant that used by the GCC driver
bcd86433
SC
509 program.
510
511 Do not define this macro if it does not need to do anything. */
512
513#ifndef SUBTARGET_EXTRA_SPECS
514#define SUBTARGET_EXTRA_SPECS
515#endif
516
517#define EXTRA_SPECS \
628714d8 518 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
519 SUBTARGET_EXTRA_SPECS
520\f
c98f8742
JVA
521/* target machine storage layout */
522
968a7562 523#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 524
d57a4b98
RH
525/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
526 FPU, assume that the fpcw is set to extended precision; when using
527 only SSE, rounding is correct; when using both SSE and the FPU,
528 the rounding precision is indeterminate, since either may be chosen
529 apparently at random. */
530#define TARGET_FLT_EVAL_METHOD \
5ccd517a 531 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 532
65d9c0ab
JH
533#define SHORT_TYPE_SIZE 16
534#define INT_TYPE_SIZE 32
535#define FLOAT_TYPE_SIZE 32
536#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
537#define DOUBLE_TYPE_SIZE 64
538#define LONG_LONG_TYPE_SIZE 64
539
67adf6a9 540#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 541#define MAX_BITS_PER_WORD 64
0c2dc519
JH
542#else
543#define MAX_BITS_PER_WORD 32
0c2dc519
JH
544#endif
545
c98f8742
JVA
546/* Define this if most significant byte of a word is the lowest numbered. */
547/* That is true on the 80386. */
548
549#define BITS_BIG_ENDIAN 0
550
551/* Define this if most significant byte of a word is the lowest numbered. */
552/* That is not true on the 80386. */
553#define BYTES_BIG_ENDIAN 0
554
555/* Define this if most significant word of a multiword number is the lowest
556 numbered. */
557/* Not true for 80386 */
558#define WORDS_BIG_ENDIAN 0
559
c98f8742 560/* Width of a word, in units (bytes). */
65d9c0ab 561#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
562#ifdef IN_LIBGCC2
563#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
564#else
565#define MIN_UNITS_PER_WORD 4
566#endif
c98f8742 567
c98f8742 568/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 569#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 570
e075ae69 571/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 572#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 573
d1f87653 574/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 575 aligned; the compiler cannot rely on having this alignment. */
e075ae69 576#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 577
ead903e9 578/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 579 entering main. This causes expand_main_function to forcibly align
1d482056
RH
580 the stack, which results in aligned frames for functions called from
581 main, though it does nothing for the alignment of main itself. */
582#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 583 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 584
f963b5d9
RS
585/* Minimum allocation boundary for the code of a function. */
586#define FUNCTION_BOUNDARY 8
587
588/* C++ stores the virtual bit in the lowest bit of function pointers. */
589#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 590
892a2d68 591/* Alignment of field after `int : 0' in a structure. */
c98f8742 592
65d9c0ab 593#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
594
595/* Minimum size in bits of the largest boundary to which any
596 and all fundamental data types supported by the hardware
597 might need to be aligned. No data type wants to be aligned
17f24ff0 598 rounder than this.
fce5a9f2 599
d1f87653 600 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
601 and Pentium Pro XFmode values at 128 bit boundaries. */
602
603#define BIGGEST_ALIGNMENT 128
604
822eda12 605/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 606#define ALIGN_MODE_128(MODE) \
4501d314 607 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 608
17f24ff0 609/* The published ABIs say that doubles should be aligned on word
d1f87653 610 boundaries, so lower the alignment for structure fields unless
6fc605d8 611 -malign-double is set. */
e932b21b 612
e83f3cff
RH
613/* ??? Blah -- this macro is used directly by libobjc. Since it
614 supports no vector modes, cut out the complexity and fall back
615 on BIGGEST_FIELD_ALIGNMENT. */
616#ifdef IN_TARGET_LIBS
ef49d42e
JH
617#ifdef __x86_64__
618#define BIGGEST_FIELD_ALIGNMENT 128
619#else
e83f3cff 620#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 621#endif
e83f3cff 622#else
e932b21b
JH
623#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
624 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 625#endif
c98f8742 626
e5e8a8bf 627/* If defined, a C expression to compute the alignment given to a
a7180f70 628 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
629 and ALIGN is the alignment that the object would ordinarily have.
630 The value of this macro is used instead of that alignment to align
631 the object.
632
633 If this macro is not defined, then ALIGN is used.
634
635 The typical use of this macro is to increase alignment for string
636 constants to be word aligned so that `strcpy' calls that copy
637 constants can be done inline. */
638
d9a5f180 639#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 640
8a022443
JW
641/* If defined, a C expression to compute the alignment for a static
642 variable. TYPE is the data type, and ALIGN is the alignment that
643 the object would ordinarily have. The value of this macro is used
644 instead of that alignment to align the object.
645
646 If this macro is not defined, then ALIGN is used.
647
648 One use of this macro is to increase alignment of medium-size
649 data to make it all fit in fewer cache lines. Another is to
650 cause character arrays to be word-aligned so that `strcpy' calls
651 that copy constants to character arrays can be done inline. */
652
d9a5f180 653#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
654
655/* If defined, a C expression to compute the alignment for a local
656 variable. TYPE is the data type, and ALIGN is the alignment that
657 the object would ordinarily have. The value of this macro is used
658 instead of that alignment to align the object.
659
660 If this macro is not defined, then ALIGN is used.
661
662 One use of this macro is to increase alignment of medium-size
663 data to make it all fit in fewer cache lines. */
664
d9a5f180 665#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 666
53c17031
JH
667/* If defined, a C expression that gives the alignment boundary, in
668 bits, of an argument with the specified mode and type. If it is
669 not defined, `PARM_BOUNDARY' is used for all arguments. */
670
d9a5f180
GS
671#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
672 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 673
9cd10576 674/* Set this nonzero if move instructions will actually fail to work
c98f8742 675 when given unaligned data. */
b4ac57ab 676#define STRICT_ALIGNMENT 0
c98f8742
JVA
677
678/* If bit field type is int, don't let it cross an int,
679 and give entire struct the alignment of an int. */
43a88a8c 680/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 681#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
682\f
683/* Standard register usage. */
684
685/* This processor has special stack-like registers. See reg-stack.c
892a2d68 686 for details. */
c98f8742
JVA
687
688#define STACK_REGS
d9a5f180 689#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
690 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
691 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
692 || (MODE) == XFmode)
c98f8742
JVA
693
694/* Number of actual hardware registers.
695 The hardware registers are assigned numbers for the compiler
696 from 0 to just below FIRST_PSEUDO_REGISTER.
697 All registers that the compiler knows about must be given numbers,
698 even those that are not normally considered general registers.
699
700 In the 80386 we give the 8 general purpose registers the numbers 0-7.
701 We number the floating point registers 8-15.
702 Note that registers 0-7 can be accessed as a short or int,
703 while only 0-3 may be used with byte `mov' instructions.
704
705 Reg 16 does not correspond to any hardware register, but instead
706 appears in the RTL as an argument pointer prior to reload, and is
707 eliminated during reloading in favor of either the stack or frame
892a2d68 708 pointer. */
c98f8742 709
3f3f2124 710#define FIRST_PSEUDO_REGISTER 53
c98f8742 711
3073d01c
ML
712/* Number of hardware registers that go into the DWARF-2 unwind info.
713 If not defined, equals FIRST_PSEUDO_REGISTER. */
714
715#define DWARF_FRAME_REGISTERS 17
716
c98f8742
JVA
717/* 1 for registers that have pervasive standard uses
718 and are not available for the register allocator.
3f3f2124 719 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 720
3a4416fb
RS
721 The value is zero if the register is not fixed on either 32 or
722 64 bit targets, one if the register if fixed on both 32 and 64
723 bit targets, two if it is only fixed on 32bit targets and three
724 if its only fixed on 64bit targets.
725 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 726 */
a7180f70
BS
727#define FIXED_REGISTERS \
728/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 729{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 730/*arg,flags,fpsr,dir,frame*/ \
3a4416fb 731 1, 1, 1, 1, 1, \
a7180f70
BS
732/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
733 0, 0, 0, 0, 0, 0, 0, 0, \
734/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
735 0, 0, 0, 0, 0, 0, 0, 0, \
736/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 737 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 738/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 739 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 740
c98f8742
JVA
741
742/* 1 for registers not available across function calls.
743 These must include the FIXED_REGISTERS and also any
744 registers that can be used without being saved.
745 The latter must include the registers where values are returned
746 and the register where structure-value addresses are passed.
fce5a9f2
EC
747 Aside from that, you can include as many other registers as you like.
748
9d72d996
JJ
749 The value is zero if the register is not call used on either 32 or
750 64 bit targets, one if the register if call used on both 32 and 64
751 bit targets, two if it is only call used on 32bit targets and three
752 if its only call used on 64bit targets.
3a4416fb 753 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 754*/
a7180f70
BS
755#define CALL_USED_REGISTERS \
756/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 757{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 758/*arg,flags,fpsr,dir,frame*/ \
3a4416fb 759 1, 1, 1, 1, 1, \
a7180f70 760/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3a4416fb 761 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 762/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 763 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 764/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 765 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 766/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 767 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 768
3b3c6a3f
MM
769/* Order in which to allocate registers. Each register must be
770 listed once, even those in FIXED_REGISTERS. List frame pointer
771 late and fixed registers last. Note that, in general, we prefer
772 registers listed in CALL_USED_REGISTERS, keeping the others
773 available for storage of persistent values.
774
162f023b
JH
775 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
776 so this is just empty initializer for array. */
3b3c6a3f 777
162f023b
JH
778#define REG_ALLOC_ORDER \
779{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
780 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
781 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
782 48, 49, 50, 51, 52 }
3b3c6a3f 783
162f023b
JH
784/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
785 to be rearranged based on a particular function. When using sse math,
d1f87653 786 we want to allocate SSE before x87 registers and vice vera. */
3b3c6a3f 787
162f023b 788#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 789
f5316dfe 790
c98f8742 791/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 792#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 793do { \
3f3f2124
JH
794 int i; \
795 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
796 { \
3a4416fb
RS
797 if (fixed_regs[i] > 1) \
798 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
799 if (call_used_regs[i] > 1) \
800 call_used_regs[i] = (call_used_regs[i] \
801 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 802 } \
5b43fed1 803 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
804 { \
805 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
806 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
807 } \
808 if (! TARGET_MMX) \
809 { \
810 int i; \
811 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
812 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 813 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
814 } \
815 if (! TARGET_SSE) \
816 { \
817 int i; \
818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
819 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 820 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
821 } \
822 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
823 { \
824 int i; \
825 HARD_REG_SET x; \
826 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
827 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
828 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
829 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
830 } \
831 if (! TARGET_64BIT) \
832 { \
833 int i; \
834 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
835 reg_names[i] = ""; \
836 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
837 reg_names[i] = ""; \
a7180f70 838 } \
d9a5f180 839 } while (0)
c98f8742
JVA
840
841/* Return number of consecutive hard regs needed starting at reg REGNO
842 to hold something of mode MODE.
843 This is ordinarily the length in words of a value of mode MODE
844 but can be less for certain modes in special long registers.
845
fce5a9f2 846 Actually there are no two word move instructions for consecutive
c98f8742
JVA
847 registers. And only registers 0-3 may have mov byte instructions
848 applied to them.
849 */
850
851#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
852 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
853 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 854 : ((MODE) == XFmode \
92d0fb09 855 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 856 : (MODE) == XCmode \
92d0fb09 857 ? (TARGET_64BIT ? 4 : 6) \
2b589241 858 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 859
fbe5eb6d
BS
860#define VALID_SSE2_REG_MODE(MODE) \
861 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 862 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 863
d9a5f180
GS
864#define VALID_SSE_REG_MODE(MODE) \
865 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 866 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 867
47f339cf
BS
868#define VALID_MMX_REG_MODE_3DNOW(MODE) \
869 ((MODE) == V2SFmode || (MODE) == SFmode)
870
d9a5f180
GS
871#define VALID_MMX_REG_MODE(MODE) \
872 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
873 || (MODE) == V2SImode || (MODE) == SImode)
874
accde4cf
RH
875/* ??? No autovectorization into MMX or 3DNOW until we can reliably
876 place emms and femms instructions. */
c4336539 877#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 878
d9a5f180 879#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
880 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
881 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 882
d9a5f180
GS
883#define VALID_INT_MODE_P(MODE) \
884 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
885 || (MODE) == DImode \
886 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
887 || (MODE) == CDImode \
f8a1ebc6
JH
888 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
889 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 890
822eda12
JH
891/* Return true for modes passed in SSE registers. */
892#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 893 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
894 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
895 || (MODE) == V4SFmode || (MODE) == V4SImode)
896
e075ae69 897/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 898
a946dd00 899#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 900 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
901
902/* Value is 1 if it is a good idea to tie two pseudo registers
903 when one has mode MODE1 and one has mode MODE2.
904 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
905 for any hard reg, then this must be 0 for correct output. */
906
c1c5b5e3 907#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 908
ff25ef99
ZD
909/* It is possible to write patterns to move flags; but until someone
910 does it, */
911#define AVOID_CCMODE_COPIES
c98f8742 912
e075ae69 913/* Specify the modes required to caller save a given hard regno.
787dc842 914 We do this on i386 to prevent flags from being saved at all.
e075ae69 915
787dc842
JH
916 Kill any attempts to combine saving of modes. */
917
d9a5f180
GS
918#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
919 (CC_REGNO_P (REGNO) ? VOIDmode \
920 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 921 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
922 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
923 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 924 : (MODE))
c98f8742
JVA
925/* Specify the registers used for certain standard purposes.
926 The values of these macros are register numbers. */
927
928/* on the 386 the pc register is %eip, and is not usable as a general
929 register. The ordinary mov instructions won't work */
930/* #define PC_REGNUM */
931
932/* Register to use for pushing function arguments. */
933#define STACK_POINTER_REGNUM 7
934
935/* Base register for access to local variables of the function. */
564d80f4
JH
936#define HARD_FRAME_POINTER_REGNUM 6
937
938/* Base register for access to local variables of the function. */
939#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
940
941/* First floating point reg */
942#define FIRST_FLOAT_REG 8
943
944/* First & last stack-like regs */
945#define FIRST_STACK_REG FIRST_FLOAT_REG
946#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
947
a7180f70
BS
948#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
949#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 950
a7180f70
BS
951#define FIRST_MMX_REG (LAST_SSE_REG + 1)
952#define LAST_MMX_REG (FIRST_MMX_REG + 7)
953
3f3f2124
JH
954#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
955#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
956
957#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
958#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
959
c98f8742
JVA
960/* Value should be nonzero if functions must have frame pointers.
961 Zero means the frame pointer need not be set up (and parms
962 may be accessed via the stack pointer) in functions that seem suitable.
963 This is computed in `reload', in reload1.c. */
6fca22eb
RH
964#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
965
aabcd309 966/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
967 requiring a frame pointer. */
968#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
969#define SUBTARGET_FRAME_POINTER_REQUIRED 0
970#endif
971
972/* Make sure we can access arbitrary call frames. */
973#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
974
975/* Base register for access to arguments of the function. */
976#define ARG_POINTER_REGNUM 16
977
d2836273
JH
978/* Register in which static-chain is passed to a function.
979 We do use ECX as static chain register for 32 bit ABI. On the
980 64bit ABI, ECX is an argument register, so we use R10 instead. */
981#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
982
983/* Register to hold the addressing base for position independent
5b43fed1
RH
984 code access to data items. We don't use PIC pointer for 64bit
985 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 986 pessimizing code dealing with EBX.
bd09bdeb
RH
987
988 To avoid clobbering a call-saved register unnecessarily, we renumber
989 the pic register when possible. The change is visible after the
990 prologue has been emitted. */
991
992#define REAL_PIC_OFFSET_TABLE_REGNUM 3
993
994#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
995 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
996 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
997 : reload_completed ? REGNO (pic_offset_table_rtx) \
998 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 999
5fc0e5df
KW
1000#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1001
713225d4
MM
1002/* A C expression which can inhibit the returning of certain function
1003 values in registers, based on the type of value. A nonzero value
1004 says to return the function value in memory, just as large
1005 structures are always returned. Here TYPE will be a C expression
1006 of type `tree', representing the data type of the value.
1007
1008 Note that values of mode `BLKmode' must be explicitly handled by
1009 this macro. Also, the option `-fpcc-struct-return' takes effect
1010 regardless of this macro. On most systems, it is possible to
1011 leave the macro undefined; this causes a default definition to be
1012 used, whose value is the constant 1 for `BLKmode' values, and 0
1013 otherwise.
1014
1015 Do not use this macro to indicate that structures and unions
1016 should always be returned in memory. You should instead use
1017 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1018
d9a5f180 1019#define RETURN_IN_MEMORY(TYPE) \
53c17031 1020 ix86_return_in_memory (TYPE)
713225d4 1021
c51e6d85 1022/* This is overridden by <cygwin.h>. */
5e062767
DS
1023#define MS_AGGREGATE_RETURN 0
1024
61fec9ff
JB
1025/* This is overridden by <netware.h>. */
1026#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1027\f
1028/* Define the classes of registers for register constraints in the
1029 machine description. Also define ranges of constants.
1030
1031 One of the classes must always be named ALL_REGS and include all hard regs.
1032 If there is more than one class, another class must be named NO_REGS
1033 and contain no registers.
1034
1035 The name GENERAL_REGS must be the name of a class (or an alias for
1036 another name such as ALL_REGS). This is the class of registers
1037 that is allowed by "g" or "r" in a register constraint.
1038 Also, registers outside this class are allocated only when
1039 instructions express preferences for them.
1040
1041 The classes must be numbered in nondecreasing order; that is,
1042 a larger-numbered class must never be contained completely
1043 in a smaller-numbered class.
1044
1045 For any two classes, it is very desirable that there be another
ab408a86
JVA
1046 class that represents their union.
1047
1048 It might seem that class BREG is unnecessary, since no useful 386
1049 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1050 and the "b" register constraint is useful in asms for syscalls.
1051
1052 The flags and fpsr registers are in no class. */
c98f8742
JVA
1053
1054enum reg_class
1055{
1056 NO_REGS,
e075ae69 1057 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1058 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1059 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1060 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1061 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1062 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1063 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1064 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1065 FLOAT_REGS,
a7180f70
BS
1066 SSE_REGS,
1067 MMX_REGS,
446988df
JH
1068 FP_TOP_SSE_REGS,
1069 FP_SECOND_SSE_REGS,
1070 FLOAT_SSE_REGS,
1071 FLOAT_INT_REGS,
1072 INT_SSE_REGS,
1073 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1074 ALL_REGS, LIM_REG_CLASSES
1075};
1076
d9a5f180
GS
1077#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1078
1079#define INTEGER_CLASS_P(CLASS) \
1080 reg_class_subset_p ((CLASS), GENERAL_REGS)
1081#define FLOAT_CLASS_P(CLASS) \
1082 reg_class_subset_p ((CLASS), FLOAT_REGS)
1083#define SSE_CLASS_P(CLASS) \
f75959a6 1084 ((CLASS) == SSE_REGS)
d9a5f180 1085#define MMX_CLASS_P(CLASS) \
f75959a6 1086 ((CLASS) == MMX_REGS)
d9a5f180
GS
1087#define MAYBE_INTEGER_CLASS_P(CLASS) \
1088 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1089#define MAYBE_FLOAT_CLASS_P(CLASS) \
1090 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1091#define MAYBE_SSE_CLASS_P(CLASS) \
1092 reg_classes_intersect_p (SSE_REGS, (CLASS))
1093#define MAYBE_MMX_CLASS_P(CLASS) \
1094 reg_classes_intersect_p (MMX_REGS, (CLASS))
1095
1096#define Q_CLASS_P(CLASS) \
1097 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1098
43f3a59d 1099/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1100
1101#define REG_CLASS_NAMES \
1102{ "NO_REGS", \
ab408a86 1103 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1104 "SIREG", "DIREG", \
e075ae69
RH
1105 "AD_REGS", \
1106 "Q_REGS", "NON_Q_REGS", \
c98f8742 1107 "INDEX_REGS", \
3f3f2124 1108 "LEGACY_REGS", \
c98f8742
JVA
1109 "GENERAL_REGS", \
1110 "FP_TOP_REG", "FP_SECOND_REG", \
1111 "FLOAT_REGS", \
a7180f70
BS
1112 "SSE_REGS", \
1113 "MMX_REGS", \
446988df
JH
1114 "FP_TOP_SSE_REGS", \
1115 "FP_SECOND_SSE_REGS", \
1116 "FLOAT_SSE_REGS", \
8fcaaa80 1117 "FLOAT_INT_REGS", \
446988df
JH
1118 "INT_SSE_REGS", \
1119 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1120 "ALL_REGS" }
1121
1122/* Define which registers fit in which classes.
1123 This is an initializer for a vector of HARD_REG_SET
1124 of length N_REG_CLASSES. */
1125
a7180f70 1126#define REG_CLASS_CONTENTS \
3f3f2124
JH
1127{ { 0x00, 0x0 }, \
1128 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1129 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1130 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1131 { 0x03, 0x0 }, /* AD_REGS */ \
1132 { 0x0f, 0x0 }, /* Q_REGS */ \
1133 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1134 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1135 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1136 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1137 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1138 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1139{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1140{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1141{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1142{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1143{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1144 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1145{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1146{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1147{ 0xffffffff,0x1fffff } \
e075ae69 1148}
c98f8742
JVA
1149
1150/* The same information, inverted:
1151 Return the class number of the smallest class containing
1152 reg number REGNO. This could be a conditional expression
1153 or could index an array. */
1154
c98f8742
JVA
1155#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1156
1157/* When defined, the compiler allows registers explicitly used in the
1158 rtl to be used as spill registers but prevents the compiler from
892a2d68 1159 extending the lifetime of these registers. */
c98f8742 1160
2922fe9e 1161#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1162
1163#define QI_REG_P(X) \
1164 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1165
d9a5f180
GS
1166#define GENERAL_REGNO_P(N) \
1167 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1168
1169#define GENERAL_REG_P(X) \
6189a572 1170 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1171
1172#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1173
c98f8742
JVA
1174#define NON_QI_REG_P(X) \
1175 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1176
d9a5f180 1177#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1178#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1179
c98f8742 1180#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1181#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1182#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1183#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1184
d9a5f180
GS
1185#define SSE_REGNO_P(N) \
1186 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1187 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1188
4977bab6
ZW
1189#define REX_SSE_REGNO_P(N) \
1190 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1191
d9a5f180
GS
1192#define SSE_REGNO(N) \
1193 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1194#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1195
d9a5f180 1196#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1197 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1198
d9a5f180
GS
1199#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1200#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1201
d9a5f180
GS
1202#define STACK_REG_P(XOP) \
1203 (REG_P (XOP) && \
1204 REGNO (XOP) >= FIRST_STACK_REG && \
1205 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1206
d9a5f180 1207#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1208
d9a5f180 1209#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1210
e075ae69
RH
1211#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1212#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1213
c98f8742
JVA
1214/* The class value for index registers, and the one for base regs. */
1215
1216#define INDEX_REG_CLASS INDEX_REGS
1217#define BASE_REG_CLASS GENERAL_REGS
1218
c98f8742 1219/* Place additional restrictions on the register class to use when it
4cbb525c 1220 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1221 register for which class CLASS would ordinarily be used. */
c98f8742 1222
d2836273
JH
1223#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1224 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1225 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1226 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1227 ? Q_REGS : (CLASS))
1228
1229/* Given an rtx X being reloaded into a reg required to be
1230 in class CLASS, return the class of reg to actually use.
1231 In general this is just CLASS; but on some machines
1232 in some cases it is preferable to use a more restrictive class.
1233 On the 80386 series, we prevent floating constants from being
1234 reloaded into floating registers (since no move-insn can do that)
1235 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1236
d398b3b1 1237/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1238 QImode must go into class Q_REGS.
d398b3b1 1239 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1240 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1241
d9a5f180
GS
1242#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1243 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1244
b5c82fa1
PB
1245/* Discourage putting floating-point values in SSE registers unless
1246 SSE math is being used, and likewise for the 387 registers. */
1247
1248#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1249 ix86_preferred_output_reload_class ((X), (CLASS))
1250
85ff473e 1251/* If we are copying between general and FP registers, we need a memory
f84aa48a 1252 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1253#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1254 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1255
1256/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1257 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1258 pseudo. */
1259
d9a5f180 1260#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1261 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1262 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1263 ? Q_REGS : NO_REGS)
c98f8742
JVA
1264
1265/* Return the maximum number of consecutive registers
1266 needed to represent mode MODE in a register of class CLASS. */
1267/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1268 except in the FP regs, where a single reg is always enough. */
a7180f70 1269#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1270 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1271 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1272 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1273 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1274
1275/* A C expression whose value is nonzero if pseudos that have been
1276 assigned to registers of class CLASS would likely be spilled
1277 because registers of CLASS are needed for spill registers.
1278
1279 The default value of this macro returns 1 if CLASS has exactly one
1280 register and zero otherwise. On most machines, this default
1281 should be used. Only define this macro to some other expression
1282 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1283 their hard registers were needed for spill registers. If this
f5316dfe
MM
1284 macro returns nonzero for those classes, those pseudos will only
1285 be allocated by `global.c', which knows how to reallocate the
1286 pseudo to another register. If there would not be another
1287 register available for reallocation, you should not change the
1288 definition of this macro since the only effect of such a
1289 definition would be to slow down register allocation. */
1290
1291#define CLASS_LIKELY_SPILLED_P(CLASS) \
1292 (((CLASS) == AREG) \
1293 || ((CLASS) == DREG) \
1294 || ((CLASS) == CREG) \
1295 || ((CLASS) == BREG) \
1296 || ((CLASS) == AD_REGS) \
1297 || ((CLASS) == SIREG) \
b0af5c03
JH
1298 || ((CLASS) == DIREG) \
1299 || ((CLASS) == FP_TOP_REG) \
1300 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1301
1272914c
RH
1302/* Return a class of registers that cannot change FROM mode to TO mode. */
1303
1304#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1305 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1306\f
1307/* Stack layout; function entry, exit and calling. */
1308
1309/* Define this if pushing a word on the stack
1310 makes the stack pointer a smaller address. */
1311#define STACK_GROWS_DOWNWARD
1312
a4d05547 1313/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1314 is at the high-address end of the local variables;
1315 that is, each additional local variable allocated
1316 goes at a more negative offset in the frame. */
f62c8a5c 1317#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1318
1319/* Offset within stack frame to start allocating local variables at.
1320 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1321 first local allocated. Otherwise, it is the offset to the BEGINNING
1322 of the first local allocated. */
1323#define STARTING_FRAME_OFFSET 0
1324
1325/* If we generate an insn to push BYTES bytes,
1326 this says how many the stack pointer really advances by.
6541fe75
JJ
1327 On 386, we have pushw instruction that decrements by exactly 2 no
1328 matter what the position was, there is no pushb.
1329 But as CIE data alignment factor on this arch is -4, we need to make
1330 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1331
d2836273
JH
1332 For 64bit ABI we round up to 8 bytes.
1333 */
c98f8742 1334
d2836273
JH
1335#define PUSH_ROUNDING(BYTES) \
1336 (TARGET_64BIT \
1337 ? (((BYTES) + 7) & (-8)) \
6541fe75 1338 : (((BYTES) + 3) & (-4)))
c98f8742 1339
f73ad30e
JH
1340/* If defined, the maximum amount of space required for outgoing arguments will
1341 be computed and placed into the variable
1342 `current_function_outgoing_args_size'. No space will be pushed onto the
1343 stack for each call; instead, the function prologue should increase the stack
1344 frame size by this amount. */
1345
1346#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1347
1348/* If defined, a C expression whose value is nonzero when we want to use PUSH
1349 instructions to pass outgoing arguments. */
1350
1351#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1352
2da4124d
L
1353/* We want the stack and args grow in opposite directions, even if
1354 PUSH_ARGS is 0. */
1355#define PUSH_ARGS_REVERSED 1
1356
c98f8742
JVA
1357/* Offset of first parameter from the argument pointer register value. */
1358#define FIRST_PARM_OFFSET(FNDECL) 0
1359
a7180f70
BS
1360/* Define this macro if functions should assume that stack space has been
1361 allocated for arguments even when their values are passed in registers.
1362
1363 The value of this macro is the size, in bytes, of the area reserved for
1364 arguments passed in registers for the function represented by FNDECL.
1365
1366 This space can be allocated by the caller, or be a part of the
1367 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1368 which. */
1369#define REG_PARM_STACK_SPACE(FNDECL) 0
1370
c98f8742
JVA
1371/* Value is the number of bytes of arguments automatically
1372 popped when returning from a subroutine call.
8b109b37 1373 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1374 FUNTYPE is the data type of the function (as a tree),
1375 or for a library call it is an identifier node for the subroutine name.
1376 SIZE is the number of bytes of arguments passed on the stack.
1377
1378 On the 80386, the RTD insn may be used to pop them if the number
1379 of args is fixed, but if the number is variable then the caller
1380 must pop them all. RTD can't be used for library calls now
1381 because the library is compiled with the Unix compiler.
1382 Use of RTD is a selectable option, since it is incompatible with
1383 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1384 the caller must always pop the args.
1385
1386 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1387
d9a5f180
GS
1388#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1389 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1390
53c17031
JH
1391#define FUNCTION_VALUE_REGNO_P(N) \
1392 ix86_function_value_regno_p (N)
c98f8742
JVA
1393
1394/* Define how to find the value returned by a library function
1395 assuming the value has mode MODE. */
1396
1397#define LIBCALL_VALUE(MODE) \
53c17031 1398 ix86_libcall_value (MODE)
c98f8742 1399
e9125c09
TW
1400/* Define the size of the result block used for communication between
1401 untyped_call and untyped_return. The block contains a DImode value
1402 followed by the block used by fnsave and frstor. */
1403
1404#define APPLY_RESULT_SIZE (8+108)
1405
b08de47e 1406/* 1 if N is a possible register number for function argument passing. */
53c17031 1407#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1408
1409/* Define a data type for recording info about an argument list
1410 during the scan of that argument list. This data type should
1411 hold all necessary information about the function itself
1412 and about the args processed so far, enough to enable macros
b08de47e 1413 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1414
e075ae69 1415typedef struct ix86_args {
b08de47e
MM
1416 int words; /* # words passed so far */
1417 int nregs; /* # registers available for passing */
1418 int regno; /* next available register number */
9d72d996 1419 int fastcall; /* fastcall calling convention is used */
a7180f70
BS
1420 int sse_words; /* # sse words passed so far */
1421 int sse_nregs; /* # sse registers available for passing */
e1be55d0
JH
1422 int warn_sse; /* True when we want to warn about SSE ABI. */
1423 int warn_mmx; /* True when we want to warn about MMX ABI. */
a7180f70 1424 int sse_regno; /* next available sse register number */
bcf17554
JH
1425 int mmx_words; /* # mmx words passed so far */
1426 int mmx_nregs; /* # mmx registers available for passing */
1427 int mmx_regno; /* next available mmx register number */
892a2d68 1428 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1429 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1430 be passed in SSE registers. Otherwise 0. */
b08de47e 1431} CUMULATIVE_ARGS;
c98f8742
JVA
1432
1433/* Initialize a variable CUM of type CUMULATIVE_ARGS
1434 for a call to a function whose data type is FNTYPE.
b08de47e 1435 For a library call, FNTYPE is 0. */
c98f8742 1436
0f6937fe 1437#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1438 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1439
1440/* Update the data in CUM to advance over an argument
1441 of mode MODE and data type TYPE.
1442 (TYPE is null for libcalls where that information may not be available.) */
1443
d9a5f180
GS
1444#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1445 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1446
1447/* Define where to put the arguments to a function.
1448 Value is zero to push the argument on the stack,
1449 or a hard register in which to store the argument.
1450
1451 MODE is the argument's machine mode.
1452 TYPE is the data type of the argument (as a tree).
1453 This is null for libcalls where that information may
1454 not be available.
1455 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1456 the preceding args and about the function being called.
1457 NAMED is nonzero if this argument is a named parameter
1458 (otherwise it is an extra parameter matching an ellipsis). */
1459
c98f8742 1460#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1461 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1462
ad919812 1463/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1464#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1465 ix86_va_start (VALIST, NEXTARG)
ad919812 1466
a5fe455b
ZW
1467#define TARGET_ASM_FILE_END ix86_file_end
1468#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1469
c98f8742
JVA
1470/* Output assembler code to FILE to increment profiler label # LABELNO
1471 for profiling a function entry. */
1472
a5fa1ecd
JH
1473#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1474
1475#define MCOUNT_NAME "_mcount"
1476
1477#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1478
1479/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1480 the stack pointer does not matter. The value is tested only in
1481 functions that have frame pointers.
1482 No definition is equivalent to always zero. */
fce5a9f2 1483/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1484 we have to restore it ourselves from the frame pointer, in order to
1485 use pop */
1486
1487#define EXIT_IGNORE_STACK 1
1488
c98f8742
JVA
1489/* Output assembler code for a block containing the constant parts
1490 of a trampoline, leaving space for the variable parts. */
1491
a269a03c 1492/* On the 386, the trampoline contains two instructions:
c98f8742 1493 mov #STATIC,ecx
a269a03c
JC
1494 jmp FUNCTION
1495 The trampoline is generated entirely at runtime. The operand of JMP
1496 is the address of FUNCTION relative to the instruction following the
1497 JMP (which is 5 bytes long). */
c98f8742
JVA
1498
1499/* Length in units of the trampoline for entering a nested function. */
1500
39d04363 1501#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1502
1503/* Emit RTL insns to initialize the variable parts of a trampoline.
1504 FNADDR is an RTX for the address of the function's pure code.
1505 CXT is an RTX for the static chain value for the function. */
1506
d9a5f180
GS
1507#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1508 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1509\f
1510/* Definitions for register eliminations.
1511
1512 This is an array of structures. Each structure initializes one pair
1513 of eliminable registers. The "from" register number is given first,
1514 followed by "to". Eliminations of the same "from" register are listed
1515 in order of preference.
1516
afc2cd05
NC
1517 There are two registers that can always be eliminated on the i386.
1518 The frame pointer and the arg pointer can be replaced by either the
1519 hard frame pointer or to the stack pointer, depending upon the
1520 circumstances. The hard frame pointer is not used before reload and
1521 so it is not eligible for elimination. */
c98f8742 1522
564d80f4
JH
1523#define ELIMINABLE_REGS \
1524{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1525 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1526 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1527 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1528
2c5a510c
RH
1529/* Given FROM and TO register numbers, say whether this elimination is
1530 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1531
1532 All other eliminations are valid. */
1533
2c5a510c
RH
1534#define CAN_ELIMINATE(FROM, TO) \
1535 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1536
1537/* Define the offset between two registers, one to be eliminated, and the other
1538 its replacement, at the start of a routine. */
1539
d9a5f180
GS
1540#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1541 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1542\f
1543/* Addressing modes, and classification of registers for them. */
1544
c98f8742
JVA
1545/* Macros to check register numbers against specific register classes. */
1546
1547/* These assume that REGNO is a hard or pseudo reg number.
1548 They give nonzero only if REGNO is a hard reg of the suitable class
1549 or a pseudo reg currently allocated to a suitable hard reg.
1550 Since they use reg_renumber, they are safe only once reg_renumber
1551 has been allocated, which happens in local-alloc.c. */
1552
3f3f2124
JH
1553#define REGNO_OK_FOR_INDEX_P(REGNO) \
1554 ((REGNO) < STACK_POINTER_REGNUM \
1555 || (REGNO >= FIRST_REX_INT_REG \
1556 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1557 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1558 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1559 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1560
3f3f2124
JH
1561#define REGNO_OK_FOR_BASE_P(REGNO) \
1562 ((REGNO) <= STACK_POINTER_REGNUM \
1563 || (REGNO) == ARG_POINTER_REGNUM \
1564 || (REGNO) == FRAME_POINTER_REGNUM \
1565 || (REGNO >= FIRST_REX_INT_REG \
1566 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1567 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1568 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1569 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1570
d9a5f180
GS
1571#define REGNO_OK_FOR_SIREG_P(REGNO) \
1572 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1573#define REGNO_OK_FOR_DIREG_P(REGNO) \
1574 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1575
1576/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1577 and check its validity for a certain class.
1578 We have two alternate definitions for each of them.
1579 The usual definition accepts all pseudo regs; the other rejects
1580 them unless they have been allocated suitable hard regs.
1581 The symbol REG_OK_STRICT causes the latter definition to be used.
1582
1583 Most source files want to accept pseudo regs in the hope that
1584 they will get allocated to the class that the insn wants them to be in.
1585 Source files for reload pass need to be strict.
1586 After reload, it makes no difference, since pseudo regs have
1587 been eliminated by then. */
1588
c98f8742 1589
ff482c8d 1590/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1591#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1592 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1593 || (REGNO (X) >= FIRST_REX_INT_REG \
1594 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1595 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1596
3b3c6a3f
MM
1597#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1598 (REGNO (X) <= STACK_POINTER_REGNUM \
1599 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1600 || REGNO (X) == FRAME_POINTER_REGNUM \
1601 || (REGNO (X) >= FIRST_REX_INT_REG \
1602 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1603 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1604
3b3c6a3f
MM
1605/* Strict versions, hard registers only */
1606#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1607#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1608
3b3c6a3f 1609#ifndef REG_OK_STRICT
d9a5f180
GS
1610#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1611#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1612
1613#else
d9a5f180
GS
1614#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1615#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1616#endif
1617
1618/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1619 that is a valid memory address for an instruction.
1620 The MODE argument is the machine mode for the MEM expression
1621 that wants to use this address.
1622
1623 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1624 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1625
1626 See legitimize_pic_address in i386.c for details as to what
1627 constitutes a legitimate address when -fpic is used. */
1628
1629#define MAX_REGS_PER_ADDRESS 2
1630
f996902d 1631#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1632
1633/* Nonzero if the constant value X is a legitimate general operand.
1634 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1635
f996902d 1636#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1637
3b3c6a3f
MM
1638#ifdef REG_OK_STRICT
1639#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1640do { \
1641 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1642 goto ADDR; \
d9a5f180 1643} while (0)
c98f8742 1644
3b3c6a3f
MM
1645#else
1646#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1647do { \
1648 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1649 goto ADDR; \
d9a5f180 1650} while (0)
c98f8742 1651
3b3c6a3f
MM
1652#endif
1653
b949ea8b
JW
1654/* If defined, a C expression to determine the base term of address X.
1655 This macro is used in only one place: `find_base_term' in alias.c.
1656
1657 It is always safe for this macro to not be defined. It exists so
1658 that alias analysis can understand machine-dependent addresses.
1659
1660 The typical use of this macro is to handle addresses containing
1661 a label_ref or symbol_ref within an UNSPEC. */
1662
d9a5f180 1663#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1664
c98f8742
JVA
1665/* Try machine-dependent ways of modifying an illegitimate address
1666 to be legitimate. If we find one, return the new, valid address.
1667 This macro is used in only one place: `memory_address' in explow.c.
1668
1669 OLDX is the address as it was before break_out_memory_refs was called.
1670 In some cases it is useful to look at this to decide what needs to be done.
1671
1672 MODE and WIN are passed so that this macro can use
1673 GO_IF_LEGITIMATE_ADDRESS.
1674
1675 It is always safe for this macro to do nothing. It exists to recognize
1676 opportunities to optimize the output.
1677
1678 For the 80386, we handle X+REG by loading X into a register R and
1679 using R+REG. R will go in a general reg and indexing will be used.
1680 However, if REG is a broken-out memory address or multiplication,
1681 nothing needs to be done because REG can certainly go in a general reg.
1682
1683 When -fpic is used, special handling is needed for symbolic references.
1684 See comments by legitimize_pic_address in i386.c for details. */
1685
3b3c6a3f 1686#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1687do { \
1688 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1689 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1690 goto WIN; \
d9a5f180 1691} while (0)
c98f8742 1692
d9a5f180 1693#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1694
c98f8742 1695/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1696 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1697 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1698
f996902d 1699#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1700
1701#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1702 (GET_CODE (X) == SYMBOL_REF \
1703 || GET_CODE (X) == LABEL_REF \
1704 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1705
1706/* Go to LABEL if ADDR (a legitimate address expression)
1707 has an effect that depends on the machine mode it is used for.
1708 On the 80386, only postdecrement and postincrement address depend thus
1709 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1710#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1711do { \
1712 if (GET_CODE (ADDR) == POST_INC \
1713 || GET_CODE (ADDR) == POST_DEC) \
1714 goto LABEL; \
1715} while (0)
c98f8742 1716\f
b08de47e
MM
1717/* Max number of args passed in registers. If this is more than 3, we will
1718 have problems with ebx (register #4), since it is a caller save register and
1719 is also used as the pic register in ELF. So for now, don't allow more than
1720 3 registers to be passed in registers. */
1721
d2836273
JH
1722#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1723
bcf17554
JH
1724#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1725
1726#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1727
c98f8742
JVA
1728\f
1729/* Specify the machine mode that this machine uses
1730 for the index in the tablejump instruction. */
6eb791fc 1731#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 1732
c98f8742
JVA
1733/* Define this as 1 if `char' should by default be signed; else as 0. */
1734#define DEFAULT_SIGNED_CHAR 1
1735
f4365627
JH
1736/* Number of bytes moved into a data cache for a single prefetch operation. */
1737#define PREFETCH_BLOCK ix86_cost->prefetch_block
1738
1739/* Number of prefetch operations that can be done in parallel. */
1740#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1741
c98f8742
JVA
1742/* Max number of bytes we can move from memory to memory
1743 in one reasonably fast instruction. */
65d9c0ab
JH
1744#define MOVE_MAX 16
1745
1746/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1747 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1748 number of bytes we can move with a single instruction. */
65d9c0ab 1749#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1750
7e24ffc9 1751/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1752 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1753 Increasing the value will always make code faster, but eventually
1754 incurs high cost in increased code size.
c98f8742 1755
e2e52e1b 1756 If you don't define this, a reasonable default is used. */
c98f8742 1757
e2e52e1b 1758#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1759
45d78e7f
JJ
1760/* If a clear memory operation would take CLEAR_RATIO or more simple
1761 move-instruction sequences, we will do a clrmem or libcall instead. */
1762
1763#define CLEAR_RATIO (optimize_size ? 2 \
1764 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1765
c98f8742
JVA
1766/* Define if shifts truncate the shift count
1767 which implies one can omit a sign-extension or zero-extension
1768 of a shift count. */
892a2d68 1769/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1770
1771/* #define SHIFT_COUNT_TRUNCATED */
1772
1773/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1774 is done just by pretending it is already truncated. */
1775#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1776
d9f32422
JH
1777/* A macro to update M and UNSIGNEDP when an object whose type is
1778 TYPE and which has the specified mode and signedness is to be
1779 stored in a register. This macro is only called when TYPE is a
1780 scalar type.
1781
f710504c 1782 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1783 quantities to SImode. The choice depends on target type. */
1784
1785#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1786do { \
d9f32422
JH
1787 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1788 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1789 (MODE) = SImode; \
1790} while (0)
d9f32422 1791
c98f8742
JVA
1792/* Specify the machine mode that pointers have.
1793 After generation of rtl, the compiler makes no further distinction
1794 between pointers and any other objects of this machine mode. */
65d9c0ab 1795#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1796
1797/* A function address in a call instruction
1798 is a byte address (for indexing purposes)
1799 so give the MEM rtx a byte's mode. */
1800#define FUNCTION_MODE QImode
d4ba09c0 1801\f
96e7ae40
JH
1802/* A C expression for the cost of moving data from a register in class FROM to
1803 one in class TO. The classes are expressed using the enumeration values
1804 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1805 interpreted relative to that.
d4ba09c0 1806
96e7ae40
JH
1807 It is not required that the cost always equal 2 when FROM is the same as TO;
1808 on some machines it is expensive to move between registers if they are not
f84aa48a 1809 general registers. */
d4ba09c0 1810
f84aa48a 1811#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1812 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1813
1814/* A C expression for the cost of moving data of mode M between a
1815 register and memory. A value of 2 is the default; this cost is
1816 relative to those in `REGISTER_MOVE_COST'.
1817
1818 If moving between registers and memory is more expensive than
1819 between two registers, you should define this macro to express the
fa79946e 1820 relative cost. */
d4ba09c0 1821
d9a5f180
GS
1822#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1823 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1824
1825/* A C expression for the cost of a branch instruction. A value of 1
1826 is the default; other values are interpreted relative to that. */
1827
e075ae69 1828#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1829
1830/* Define this macro as a C expression which is nonzero if accessing
1831 less than a word of memory (i.e. a `char' or a `short') is no
1832 faster than accessing a word of memory, i.e., if such access
1833 require more than one instruction or if there is no difference in
1834 cost between byte and (aligned) word loads.
1835
1836 When this macro is not defined, the compiler will access a field by
1837 finding the smallest containing object; when it is defined, a
1838 fullword load will be used if alignment permits. Unless bytes
1839 accesses are faster than word accesses, using word accesses is
1840 preferable since it may eliminate subsequent memory access if
1841 subsequent accesses occur to other fields in the same word of the
1842 structure, but to different bytes. */
1843
1844#define SLOW_BYTE_ACCESS 0
1845
1846/* Nonzero if access to memory by shorts is slow and undesirable. */
1847#define SLOW_SHORT_ACCESS 0
1848
d4ba09c0
SC
1849/* Define this macro to be the value 1 if unaligned accesses have a
1850 cost many times greater than aligned accesses, for example if they
1851 are emulated in a trap handler.
1852
9cd10576
KH
1853 When this macro is nonzero, the compiler will act as if
1854 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1855 moves. This can cause significantly more instructions to be
9cd10576 1856 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1857 accesses only add a cycle or two to the time for a memory access.
1858
1859 If the value of this macro is always zero, it need not be defined. */
1860
e1565e65 1861/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1862
d4ba09c0
SC
1863/* Define this macro if it is as good or better to call a constant
1864 function address than to call an address kept in a register.
1865
1866 Desirable on the 386 because a CALL with a constant address is
1867 faster than one with a register address. */
1868
1869#define NO_FUNCTION_CSE
c98f8742 1870\f
c572e5ba
JVA
1871/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1872 return the mode to be used for the comparison.
1873
1874 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1875 VOIDmode should be used in all other cases.
c572e5ba 1876
16189740 1877 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1878 possible, to allow for more combinations. */
c98f8742 1879
d9a5f180 1880#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1881
9cd10576 1882/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1883 reversed. */
1884
1885#define REVERSIBLE_CC_MODE(MODE) 1
1886
1887/* A C expression whose value is reversed condition code of the CODE for
1888 comparison done in CC_MODE mode. */
3c5cb3e4 1889#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1890
c98f8742
JVA
1891\f
1892/* Control the assembler format that we output, to the extent
1893 this does not vary between assemblers. */
1894
1895/* How to refer to registers in assembler output.
892a2d68 1896 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1897
21bf822e 1898/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
c98f8742
JVA
1899 For non floating point regs, the following are the HImode names.
1900
1901 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 1902 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 1903
a7180f70
BS
1904#define HI_REGISTER_NAMES \
1905{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0
ZW
1906 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1907 "argp", "flags", "fpsr", "dirflag", "frame", \
a7180f70 1908 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
1909 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
1910 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1911 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1912
c98f8742
JVA
1913#define REGISTER_NAMES HI_REGISTER_NAMES
1914
1915/* Table of additional register names to use in user input. */
1916
1917#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1918{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1919 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1920 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1921 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1922 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1923 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1924
1925/* Note we are omitting these since currently I don't know how
1926to get gcc to use these, since they want the same but different
1927number as al, and ax.
1928*/
1929
c98f8742 1930#define QI_REGISTER_NAMES \
3f3f2124 1931{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1932
1933/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1934 of regs 0 through 3. */
c98f8742
JVA
1935
1936#define QI_HIGH_REGISTER_NAMES \
1937{"ah", "dh", "ch", "bh", }
1938
1939/* How to renumber registers for dbx and gdb. */
1940
d9a5f180
GS
1941#define DBX_REGISTER_NUMBER(N) \
1942 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1943
9a82e702
MS
1944extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1945extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1946extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1947
469ac993
JM
1948/* Before the prologue, RA is at 0(%esp). */
1949#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1950 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1951
e414ab29 1952/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1953#define RETURN_ADDR_RTX(COUNT, FRAME) \
1954 ((COUNT) == 0 \
1955 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1956 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1957
892a2d68 1958/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1959#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1960
a6ab3aad 1961/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1962#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1963
1020a5ab
RH
1964/* Describe how we implement __builtin_eh_return. */
1965#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1966#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1967
ad919812 1968
e4c4ebeb
RH
1969/* Select a format to encode pointers in exception handling data. CODE
1970 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1971 true if the symbol may be affected by dynamic relocations.
1972
1973 ??? All x86 object file formats are capable of representing this.
1974 After all, the relocation needed is the same as for the call insn.
1975 Whether or not a particular assembler allows us to enter such, I
1976 guess we'll have to see. */
d9a5f180 1977#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1978 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1979
c98f8742
JVA
1980/* This is how to output an insn to push a register on the stack.
1981 It need not be very fast code. */
1982
d9a5f180 1983#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1984do { \
1985 if (TARGET_64BIT) \
1986 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1987 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1988 else \
1989 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1990} while (0)
c98f8742
JVA
1991
1992/* This is how to output an insn to pop a register from the stack.
1993 It need not be very fast code. */
1994
d9a5f180 1995#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
1996do { \
1997 if (TARGET_64BIT) \
1998 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1999 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2000 else \
2001 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2002} while (0)
c98f8742 2003
f88c65f7 2004/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2005
2006#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2007 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2008
f88c65f7 2009/* This is how to output an element of a case-vector that is relative. */
c98f8742 2010
33f7f353 2011#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2012 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2013
f7288899
EC
2014/* Under some conditions we need jump tables in the text section,
2015 because the assembler cannot handle label differences between
2016 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2017
2018#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2019 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2020 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2021
cea3bd3e
RH
2022/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2023 and switch back. For x86 we do this only to save a few bytes that
2024 would otherwise be unused in the text section. */
2025#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2026 asm (SECTION_OP "\n\t" \
2027 "call " USER_LABEL_PREFIX #FUNC "\n" \
2028 TEXT_SECTION_ASM_OP);
74b42c8b 2029\f
c98f8742
JVA
2030/* Print operand X (an rtx) in assembler syntax to file FILE.
2031 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2032 Effect of various CODE letters is described in i386.c near
2033 print_operand function. */
c98f8742 2034
d9a5f180 2035#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2036 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2037
2038#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2039 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2040
2041#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2042 print_operand_address ((FILE), (ADDR))
c98f8742 2043
f996902d
RH
2044#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2045do { \
2046 if (! output_addr_const_extra (FILE, (X))) \
2047 goto FAIL; \
2048} while (0);
2049
c98f8742
JVA
2050/* a letter which is not needed by the normal asm syntax, which
2051 we can use for operand syntax in the extended asm */
2052
2053#define ASM_OPERAND_LETTER '#'
c98f8742 2054#define RET return ""
d9a5f180 2055#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 2056\f
5bf0ebab
RH
2057/* Which processor to schedule for. The cpu attribute defines a list that
2058 mirrors this list, so changes to i386.md must be made at the same time. */
2059
2060enum processor_type
2061{
2062 PROCESSOR_I386, /* 80386 */
2063 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2064 PROCESSOR_PENTIUM,
2065 PROCESSOR_PENTIUMPRO,
2066 PROCESSOR_K6,
2067 PROCESSOR_ATHLON,
2068 PROCESSOR_PENTIUM4,
4977bab6 2069 PROCESSOR_K8,
89c43c0a 2070 PROCESSOR_NOCONA,
d326eaf0
JH
2071 PROCESSOR_GENERIC32,
2072 PROCESSOR_GENERIC64,
5bf0ebab
RH
2073 PROCESSOR_max
2074};
2075
9e555526 2076extern enum processor_type ix86_tune;
5bf0ebab 2077extern enum processor_type ix86_arch;
5bf0ebab
RH
2078
2079enum fpmath_unit
2080{
2081 FPMATH_387 = 1,
2082 FPMATH_SSE = 2
2083};
2084
2085extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2086
f996902d
RH
2087enum tls_dialect
2088{
2089 TLS_DIALECT_GNU,
5bf5a10b 2090 TLS_DIALECT_GNU2,
f996902d
RH
2091 TLS_DIALECT_SUN
2092};
2093
2094extern enum tls_dialect ix86_tls_dialect;
f996902d 2095
6189a572 2096enum cmodel {
5bf0ebab
RH
2097 CM_32, /* The traditional 32-bit ABI. */
2098 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2099 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2100 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2101 CM_LARGE, /* No assumptions. */
7dcbf659
JH
2102 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2103 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
6189a572
JH
2104};
2105
5bf0ebab 2106extern enum cmodel ix86_cmodel;
5bf0ebab 2107
8362f420
JH
2108/* Size of the RED_ZONE area. */
2109#define RED_ZONE_SIZE 128
2110/* Reserved area of the red zone for temporaries. */
2111#define RED_ZONE_RESERVE 8
c93e80a5
JH
2112
2113enum asm_dialect {
2114 ASM_ATT,
2115 ASM_INTEL
2116};
5bf0ebab 2117
80f33d06 2118extern enum asm_dialect ix86_asm_dialect;
95899b34 2119extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2120extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2121
2122/* Smallest class containing REGNO. */
2123extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2124
d9a5f180
GS
2125extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2126extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2127extern rtx ix86_compare_emitted;
22fb740d
JH
2128\f
2129/* To properly truncate FP values into integers, we need to set i387 control
2130 word. We can't emit proper mode switching code before reload, as spills
2131 generated by reload may truncate values incorrectly, but we still can avoid
2132 redundant computation of new control word by the mode switching pass.
2133 The fldcw instructions are still emitted redundantly, but this is probably
2134 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2135 the sequence.
22fb740d
JH
2136
2137 The machinery is to emit simple truncation instructions and split them
2138 before reload to instructions having USEs of two memory locations that
2139 are filled by this code to old and new control word.
fce5a9f2 2140
22fb740d
JH
2141 Post-reload pass may be later used to eliminate the redundant fildcw if
2142 needed. */
2143
ff680eb1
UB
2144enum ix86_entity
2145{
2146 I387_TRUNC = 0,
2147 I387_FLOOR,
2148 I387_CEIL,
2149 I387_MASK_PM,
2150 MAX_386_ENTITIES
2151};
2152
1cba2b96 2153enum ix86_stack_slot
ff680eb1
UB
2154{
2155 SLOT_TEMP = 0,
2156 SLOT_CW_STORED,
2157 SLOT_CW_TRUNC,
2158 SLOT_CW_FLOOR,
2159 SLOT_CW_CEIL,
2160 SLOT_CW_MASK_PM,
2161 MAX_386_STACK_LOCALS
2162};
22fb740d
JH
2163
2164/* Define this macro if the port needs extra instructions inserted
2165 for mode switching in an optimizing compilation. */
2166
ff680eb1
UB
2167#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2168 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2169
2170/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2171 initializer for an array of integers. Each initializer element N
2172 refers to an entity that needs mode switching, and specifies the
2173 number of different modes that might need to be set for this
2174 entity. The position of the initializer in the initializer -
2175 starting counting at zero - determines the integer that is used to
2176 refer to the mode-switched entity in question. */
2177
ff680eb1
UB
2178#define NUM_MODES_FOR_MODE_SWITCHING \
2179 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2180
2181/* ENTITY is an integer specifying a mode-switched entity. If
2182 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2183 return an integer value not larger than the corresponding element
2184 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2185 must be switched into prior to the execution of INSN. */
2186
2187#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2188
2189/* This macro specifies the order in which modes for ENTITY are
2190 processed. 0 is the highest priority. */
2191
d9a5f180 2192#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2193
2194/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2195 is the set of hard registers live at the point where the insn(s)
2196 are to be inserted. */
2197
2198#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2199 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2200 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2201 : 0)
ff680eb1 2202
0f0138b6
JH
2203\f
2204/* Avoid renaming of stack registers, as doing so in combination with
2205 scheduling just increases amount of live registers at time and in
2206 the turn amount of fxch instructions needed.
2207
43f3a59d 2208 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2209
d9a5f180
GS
2210#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2211 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 2212
3b3c6a3f 2213\f
e91f04de
CH
2214#define DLL_IMPORT_EXPORT_PREFIX '#'
2215
2216#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2217\f
2218struct machine_function GTY(())
2219{
2220 struct stack_local_entry *stack_locals;
2221 const char *some_ld_name;
150cdc9e 2222 rtx force_align_arg_pointer;
fa1a0d02
JH
2223 int save_varrargs_registers;
2224 int accesses_prev_frame;
ff680eb1 2225 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2226 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2227 determine the style used. */
2228 int use_fast_prologue_epilogue;
d7394366
JH
2229 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2230 for. */
2231 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2232 /* If true, the current function needs the default PIC register, not
2233 an alternate register (on x86) and must not use the red zone (on
2234 x86_64), even if it's a leaf function. We don't want the
2235 function to be regarded as non-leaf because TLS calls need not
2236 affect register allocation. This flag is set when a TLS call
2237 instruction is expanded within a function, and never reset, even
2238 if all such instructions are optimized away. Use the
2239 ix86_current_function_calls_tls_descriptor macro for a better
2240 approximation. */
2241 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2242};
2243
2244#define ix86_stack_locals (cfun->machine->stack_locals)
2245#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2246#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2247#define ix86_tls_descriptor_calls_expanded_in_cfun \
2248 (cfun->machine->tls_descriptor_call_expanded_p)
2249/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2250 calls are optimized away, we try to detect cases in which it was
2251 optimized away. Since such instructions (use (reg REG_SP)), we can
2252 verify whether there's any such instruction live by testing that
2253 REG_SP is live. */
2254#define ix86_current_function_calls_tls_descriptor \
2255 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
249e6b63 2256
1bc7c5b6
ZW
2257/* Control behavior of x86_file_start. */
2258#define X86_FILE_START_VERSION_DIRECTIVE false
2259#define X86_FILE_START_FLTUSED false
2260
7dcbf659
JH
2261/* Flag to mark data that is in the large address area. */
2262#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2263#define SYMBOL_REF_FAR_ADDR_P(X) \
2264 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
c98f8742
JVA
2265/*
2266Local variables:
2267version-control: t
2268End:
2269*/
This page took 2.660813 seconds and 5 git commands to generate.