]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i386/i386.h
re PR target/19010 (sse and mmx parameter passing broken)
[gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
9184f892 3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c98f8742 4
188fc5b5 5This file is part of GCC.
c98f8742 6
188fc5b5 7GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
188fc5b5 12GCC is distributed in the hope that it will be useful,
c98f8742
JVA
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
188fc5b5 18along with GCC; see the file COPYING. If not, write to
97aadbb9 19the Free Software Foundation, 59 Temple Place - Suite 330,
892a2d68 20Boston, MA 02111-1307, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
f676971a 44 const int mult_init[5]; /* cost of starting a multiply
4977bab6 45 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 46 const int mult_bit; /* cost of multiply per each bit set */
f676971a 47 const int divide[5]; /* cost of a divide/mod
4977bab6 48 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
8b60264b
KG
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
ac775968 53 memory-to-memory move insns. */
8b60264b
KG
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
8b60264b 58 const int int_store[3]; /* cost of storing integer register
96e7ae40 59 in QImode, HImode and SImode */
8b60264b
KG
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b 63 const int fp_store[3]; /* cost of storing FP register
96e7ae40 64 in SFmode, DFmode and XFmode */
8b60264b
KG
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 67 in SImode and DImode */
8b60264b 68 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 69 in SImode and DImode */
8b60264b
KG
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int sse_store[3]; /* cost of storing SSE register
fa79946e 74 in SImode, DImode and TImode*/
8b60264b 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 76 integer and vice versa. */
f4365627
JH
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
4977bab6 80 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
87};
88
8b60264b 89extern const struct processor_costs *ix86_cost;
d4ba09c0 90
c98f8742
JVA
91/* Run-time compilation parameters selecting different hardware subsets. */
92
93extern int target_flags;
94
95/* Macros used in the machine description to test the flags. */
96
ddd5a7c1 97/* configure can arrange to make this 2, to force a 486. */
e075ae69 98
35b528be 99#ifndef TARGET_CPU_DEFAULT
10e9fecc
JH
100#ifdef TARGET_64BIT_DEFAULT
101#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102#else
35b528be
RS
103#define TARGET_CPU_DEFAULT 0
104#endif
10e9fecc 105#endif
35b528be 106
3b3c6a3f 107/* Masks for the -m switches */
e075ae69
RH
108#define MASK_80387 0x00000001 /* Hardware floating point */
109#define MASK_RTD 0x00000002 /* Use ret that pops args */
110#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
0dd0e980
JH
117#define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118#define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119#define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
9ef1b13a
RH
121#define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122#define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123#define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
9e200aaf 124#define MASK_SSE3 0x00010000 /* Support SSE3 regs/builtins */
22c7c85e
L
125#define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126#define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127#define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128#define MASK_64BIT 0x00100000 /* Produce 64bit code */
129#define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130#define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
9ef1b13a 131
4977bab6 132/* Unused: 0x03e0000 */
9ef1b13a 133
c93e80a5
JH
134/* ... overlap with subtarget options starts by 0x04000000. */
135#define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
3b3c6a3f
MM
136
137/* Use the floating point instructions */
138#define TARGET_80387 (target_flags & MASK_80387)
139
c98f8742
JVA
140/* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
fce5a9f2 142 for all functions that can take varying numbers of args. */
3b3c6a3f
MM
143#define TARGET_RTD (target_flags & MASK_RTD)
144
b08de47e
MM
145/* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
c98f8742 149
f73ad30e
JH
150/* Use push instructions to save outgoing args. */
151#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153/* Accumulate stack adjustments to prologue/epilogue. */
154#define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
d7cd15e9
RS
157/* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
3b3c6a3f 159#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
d7cd15e9 160
c572e5ba
JVA
161/* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
3b3c6a3f 164#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
c572e5ba 165
8c2bf92a
JVA
166/* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
892a2d68 168 the 387 to be used, which is compatible with most calling conventions. */
3b3c6a3f 169#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
8c2bf92a 170
2b589241 171/* Long double is 128bit instead of 96bit, even when only 80bits are used.
f5143c46 172 This mode wastes cache, but avoid misaligned data accesses and simplifies
2b589241
JH
173 address calculations. */
174#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
099800e3
RK
176/* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
3b3c6a3f
MM
178#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
ba2baa55
RS
180/* Generate 387 floating point intrinsics for the current target. */
181#define TARGET_USE_FANCY_MATH_387 (! TARGET_NO_FANCY_MATH_387)
182
2f2fa5b1 183/* Don't create frame pointers for leaf functions */
e075ae69
RH
184#define TARGET_OMIT_LEAF_FRAME_POINTER \
185 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
f6f58ba3 186
3b3c6a3f 187/* Debug GO_IF_LEGITIMATE_ADDRESS */
c93e80a5 188#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
3b3c6a3f 189
b08de47e 190/* Debug FUNCTION_ARG macros */
c93e80a5 191#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
b08de47e 192
5791cc29
JT
193/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
194 compile-time constant. */
195#ifdef IN_LIBGCC2
196#ifdef __x86_64__
197#define TARGET_64BIT 1
198#else
199#define TARGET_64BIT 0
200#endif
201#else
0c2dc519 202#ifdef TARGET_BI_ARCH
25f94bb5 203#define TARGET_64BIT (target_flags & MASK_64BIT)
0c2dc519 204#else
67adf6a9 205#if TARGET_64BIT_DEFAULT
0c2dc519
JH
206#define TARGET_64BIT 1
207#else
208#define TARGET_64BIT 0
209#endif
210#endif
5791cc29 211#endif
25f94bb5 212
750054a2
CT
213#define HAS_LONG_COND_BRANCH 1
214#define HAS_LONG_UNCOND_BRANCH 1
215
74dc3e94
RH
216/* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
217#define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
218
9e555526
RH
219#define TARGET_386 (ix86_tune == PROCESSOR_I386)
220#define TARGET_486 (ix86_tune == PROCESSOR_I486)
221#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
222#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
223#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
224#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
225#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
226#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 227#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 228#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
a269a03c 229
9e555526 230#define TUNEMASK (1 << ix86_tune)
a269a03c
JC
231extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
232extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 233extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69
RH
234extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
235extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
236extern const int x86_use_cltd, x86_read_modify_write;
237extern const int x86_read_modify, x86_split_long_moves;
285464d0 238extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 239extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 240extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 241extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 242extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 243extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 244extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 245extern const int x86_arch_always_fancy_math_387, x86_shift1;
4977bab6
ZW
246extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
247extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
248extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
ad7b96a9 249extern const int x86_inter_unit_moves, x86_schedule;
7cacf53e 250extern const int x86_use_bt;
f4365627 251extern int x86_prefetch_sse;
a269a03c 252
9e555526
RH
253#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
254#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
255#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
256#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
257#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
0644b628
JH
258/* For sane SSE instruction set generation we need fcomi instruction. It is
259 safe to enable all CMOVE instructions. */
260#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
9e555526
RH
261#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
262#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
263#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
264#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
265#define TARGET_MOVX (x86_movx & TUNEMASK)
266#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
267#define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
268#define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
269#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
270#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
271#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
272#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
273#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
274#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
275#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
276#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
277#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
278#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
279#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
280#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
281#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
282#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
283#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
284#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
285#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
286#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
4977bab6 287#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
9e555526
RH
288 (x86_sse_partial_reg_dependency & TUNEMASK)
289#define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
4977bab6 290#define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
9e555526
RH
291 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
292#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
293#define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
294#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
295#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
296#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
297#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
298#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
f4365627 299#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
9e555526
RH
300#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
301#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
302#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
303#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
be04394b 304#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
ad7b96a9 305#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
7cacf53e 306#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
a269a03c 307
8c9be447 308#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
3b3c6a3f 309
79f05c19
JH
310#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
311#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
312
c93e80a5 313#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 314
37f22004 315#define TARGET_SSE ((target_flags & MASK_SSE) != 0)
446988df 316#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
9e200aaf 317#define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
965f5423
JH
318#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
319#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
320 && (ix86_fpmath & FPMATH_387))
a7180f70 321#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
47f339cf
BS
322#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
323#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
a7180f70 324
8362f420
JH
325#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
326
4977bab6
ZW
327#define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
328
f996902d
RH
329#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
330#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
331
a5d17ff3
PT
332/* WARNING: Do not mark empty strings for translation, as calling
333 gettext on an empty string does NOT return an empty
43f3a59d 334 string. */
a5d17ff3
PT
335
336
e075ae69 337#define TARGET_SWITCHES \
047142d3
PT
338{ { "80387", MASK_80387, N_("Use hardware fp") }, \
339 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
340 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
341 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
342 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
a5d17ff3
PT
343 { "386", 0, "" /*Deprecated.*/}, \
344 { "486", 0, "" /*Deprecated.*/}, \
345 { "pentium", 0, "" /*Deprecated.*/}, \
346 { "pentiumpro", 0, "" /*Deprecated.*/}, \
347 { "intel-syntax", 0, "" /*Deprecated.*/}, \
348 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
047142d3
PT
349 { "rtd", MASK_RTD, \
350 N_("Alternate calling convention") }, \
351 { "no-rtd", -MASK_RTD, \
352 N_("Use normal calling convention") }, \
e075ae69 353 { "align-double", MASK_ALIGN_DOUBLE, \
047142d3 354 N_("Align some doubles on dword boundary") }, \
e075ae69 355 { "no-align-double", -MASK_ALIGN_DOUBLE, \
047142d3 356 N_("Align doubles on word boundary") }, \
e075ae69 357 { "svr3-shlib", MASK_SVR3_SHLIB, \
047142d3 358 N_("Uninitialized locals in .bss") }, \
e075ae69 359 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
047142d3 360 N_("Uninitialized locals in .data") }, \
e075ae69 361 { "ieee-fp", MASK_IEEE_FP, \
047142d3 362 N_("Use IEEE math for fp comparisons") }, \
e075ae69 363 { "no-ieee-fp", -MASK_IEEE_FP, \
047142d3 364 N_("Do not use IEEE math for fp comparisons") }, \
e075ae69 365 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
047142d3 366 N_("Return values of functions in FPU registers") }, \
e075ae69 367 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
047142d3 368 N_("Do not return values of functions in FPU registers")}, \
e075ae69 369 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
047142d3 370 N_("Do not generate sin, cos, sqrt for FPU") }, \
e075ae69 371 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
047142d3 372 N_("Generate sin, cos, sqrt for FPU")}, \
e075ae69 373 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
047142d3 374 N_("Omit the frame pointer in leaf functions") }, \
e075ae69 375 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
047142d3
PT
376 { "stack-arg-probe", MASK_STACK_PROBE, \
377 N_("Enable stack probing") }, \
e075ae69
RH
378 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
379 { "windows", 0, 0 /* undocumented */ }, \
380 { "dll", 0, 0 /* undocumented */ }, \
79f05c19 381 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
047142d3 382 N_("Align destination of the string operations") }, \
79f05c19 383 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
047142d3 384 N_("Do not align destination of the string operations") }, \
4be2e5d9 385 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
047142d3 386 N_("Inline all known string operations") }, \
79f05c19 387 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
047142d3 388 N_("Do not inline all known string operations") }, \
f73ad30e 389 { "push-args", -MASK_NO_PUSH_ARGS, \
047142d3 390 N_("Use push instructions to save outgoing arguments") }, \
053f1126 391 { "no-push-args", MASK_NO_PUSH_ARGS, \
047142d3 392 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 393 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 394 N_("Use push instructions to save outgoing arguments") }, \
9ef1b13a 395 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
047142d3 396 N_("Do not use push instructions to save outgoing arguments") }, \
9ef1b13a 397 { "mmx", MASK_MMX, \
b0287a90 398 N_("Support MMX built-in functions") }, \
0dd0e980 399 { "no-mmx", -MASK_MMX, \
b0287a90 400 N_("Do not support MMX built-in functions") }, \
9ef1b13a 401 { "3dnow", MASK_3DNOW, \
b0287a90 402 N_("Support 3DNow! built-in functions") }, \
9ef1b13a 403 { "no-3dnow", -MASK_3DNOW, \
b0287a90 404 N_("Do not support 3DNow! built-in functions") }, \
9ef1b13a 405 { "sse", MASK_SSE, \
b0287a90 406 N_("Support MMX and SSE built-in functions and code generation") }, \
9ef1b13a 407 { "no-sse", -MASK_SSE, \
b0287a90 408 N_("Do not support MMX and SSE built-in functions and code generation") },\
22c7c85e 409 { "sse2", MASK_SSE2, \
b0287a90 410 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
9ef1b13a 411 { "no-sse2", -MASK_SSE2, \
b0287a90 412 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
9e200aaf
KC
413 { "sse3", MASK_SSE3, \
414 N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
415 { "no-sse3", -MASK_SSE3, \
416 N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
2b589241 417 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
c725bd79 418 N_("sizeof(long double) is 16") }, \
2b589241 419 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
c725bd79 420 N_("sizeof(long double) is 12") }, \
25f94bb5
JH
421 { "64", MASK_64BIT, \
422 N_("Generate 64bit x86-64 code") }, \
423 { "32", -MASK_64BIT, \
424 N_("Generate 32bit i386 code") }, \
4977bab6
ZW
425 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
426 N_("Use native (MS) bitfield layout") }, \
427 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
428 N_("Use gcc default bitfield layout") }, \
8362f420
JH
429 { "red-zone", -MASK_NO_RED_ZONE, \
430 N_("Use red-zone in the x86-64 code") }, \
431 { "no-red-zone", MASK_NO_RED_ZONE, \
4cba3b67 432 N_("Do not use red-zone in the x86-64 code") }, \
74dc3e94
RH
433 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
434 N_("Use direct references against %gs when accessing tls data") }, \
435 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
436 N_("Do not use direct references against %gs when accessing tls data") }, \
e075ae69 437 SUBTARGET_SWITCHES \
74dc3e94
RH
438 { "", \
439 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
440 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
241e1a89 441
67adf6a9
RH
442#ifndef TARGET_64BIT_DEFAULT
443#define TARGET_64BIT_DEFAULT 0
25f94bb5 444#endif
74dc3e94
RH
445#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
446#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
447#endif
25f94bb5 448
0ed4a390
JL
449/* Once GDB has been enhanced to deal with functions without frame
450 pointers, we can change this to allow for elimination of
451 the frame pointer in leaf functions. */
452#define TARGET_DEFAULT 0
67adf6a9 453
b069de3b
SS
454/* This is not really a target flag, but is done this way so that
455 it's analogous to similar code for Mach-O on PowerPC. darwin.h
456 redefines this to 1. */
457#define TARGET_MACHO 0
458
cc69336f
RH
459/* Subtargets may reset this to 1 in order to enable 96-bit long double
460 with the rounding mode forced to 53 bits. */
461#define TARGET_96_ROUND_53_LONG_DOUBLE 0
462
f5316dfe
MM
463/* This macro is similar to `TARGET_SWITCHES' but defines names of
464 command options that have values. Its definition is an
465 initializer with a subgrouping for each command option.
466
467 Each subgrouping contains a string constant, that defines the
468 fixed part of the option name, and the address of a variable. The
469 variable, type `char *', is set to the variable part of the given
470 option if the fixed part matches. The actual option name is made
471 by appending `-m' to the specified name. */
e075ae69 472#define TARGET_OPTIONS \
9e555526 473{ { "tune=", &ix86_tune_string, \
c409ea0d 474 N_("Schedule code for given CPU"), 0}, \
965f5423 475 { "fpmath=", &ix86_fpmath_string, \
c409ea0d 476 N_("Generate floating point mathematics using given instruction set"), 0},\
e075ae69 477 { "arch=", &ix86_arch_string, \
c409ea0d 478 N_("Generate code for given CPU"), 0}, \
e075ae69 479 { "regparm=", &ix86_regparm_string, \
c409ea0d 480 N_("Number of registers used to pass integer arguments"), 0},\
e075ae69 481 { "align-loops=", &ix86_align_loops_string, \
c409ea0d 482 N_("Loop code aligned to this power of 2"), 0}, \
e075ae69 483 { "align-jumps=", &ix86_align_jumps_string, \
c409ea0d 484 N_("Jump targets are aligned to this power of 2"), 0}, \
e075ae69 485 { "align-functions=", &ix86_align_funcs_string, \
c409ea0d 486 N_("Function starts are aligned to this power of 2"), 0}, \
e075ae69
RH
487 { "preferred-stack-boundary=", \
488 &ix86_preferred_stack_boundary_string, \
c409ea0d 489 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
e075ae69 490 { "branch-cost=", &ix86_branch_cost_string, \
c409ea0d 491 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
6189a572 492 { "cmodel=", &ix86_cmodel_string, \
c409ea0d 493 N_("Use given x86-64 code model"), 0}, \
c93e80a5 494 { "debug-arg", &ix86_debug_arg_string, \
43f3a59d 495 "" /* Undocumented. */, 0}, \
c93e80a5 496 { "debug-addr", &ix86_debug_addr_string, \
43f3a59d 497 "" /* Undocumented. */, 0}, \
c93e80a5 498 { "asm=", &ix86_asm_string, \
c409ea0d 499 N_("Use given assembler dialect"), 0}, \
f996902d 500 { "tls-dialect=", &ix86_tls_dialect_string, \
c409ea0d 501 N_("Use given thread-local storage dialect"), 0}, \
e075ae69 502 SUBTARGET_OPTIONS \
b08de47e 503}
f5316dfe
MM
504
505/* Sometimes certain combinations of command options do not make
506 sense on a particular target machine. You can define a macro
507 `OVERRIDE_OPTIONS' to take account of this. This macro, if
508 defined, is executed once just after all the command options have
509 been parsed.
510
511 Don't use this macro to turn on various extra optimizations for
512 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
513
514#define OVERRIDE_OPTIONS override_options ()
515
516/* These are meant to be redefined in the host dependent files */
95393dfd 517#define SUBTARGET_SWITCHES
f5316dfe 518#define SUBTARGET_OPTIONS
95393dfd 519
d4ba09c0 520/* Define this to change the optimizations performed by default. */
d9a5f180
GS
521#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
522 optimization_options ((LEVEL), (SIZE))
d4ba09c0 523
7816bea0
DJ
524/* Support for configure-time defaults of some command line options. */
525#define OPTION_DEFAULT_SPECS \
526 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
da2d4c01
JH
527 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
528 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
7816bea0 529
241e1a89
SC
530/* Specs for the compiler proper */
531
628714d8
RK
532#ifndef CC1_CPU_SPEC
533#define CC1_CPU_SPEC "\
9d913bbf
KC
534%{!mtune*: \
535%{m386:mtune=i386 \
536%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
537%{m486:-mtune=i486 \
538%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
539%{mpentium:-mtune=pentium \
540%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
541%{mpentiumpro:-mtune=pentiumpro \
542%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
543%{mcpu=*:-mtune=%* \
544%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
545%<mcpu=* \
c93e80a5
JH
546%{mintel-syntax:-masm=intel \
547%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
548%{mno-intel-syntax:-masm=att \
549%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
241e1a89 550#endif
c98f8742 551\f
30efe578 552/* Target CPU builtins. */
1ba7b414
NB
553#define TARGET_CPU_CPP_BUILTINS() \
554 do \
555 { \
556 size_t arch_len = strlen (ix86_arch_string); \
9e555526 557 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 558 int last_arch_char = ix86_arch_string[arch_len - 1]; \
9e555526 559 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
560 \
561 if (TARGET_64BIT) \
562 { \
563 builtin_assert ("cpu=x86_64"); \
26b0ad13 564 builtin_assert ("machine=x86_64"); \
97242ddc
JH
565 builtin_define ("__amd64"); \
566 builtin_define ("__amd64__"); \
1ba7b414
NB
567 builtin_define ("__x86_64"); \
568 builtin_define ("__x86_64__"); \
569 } \
570 else \
571 { \
572 builtin_assert ("cpu=i386"); \
573 builtin_assert ("machine=i386"); \
574 builtin_define_std ("i386"); \
575 } \
576 \
9d913bbf 577 /* Built-ins based on -mtune= (or -march= if no \
9e555526 578 -mtune= given). */ \
1ba7b414
NB
579 if (TARGET_386) \
580 builtin_define ("__tune_i386__"); \
581 else if (TARGET_486) \
582 builtin_define ("__tune_i486__"); \
583 else if (TARGET_PENTIUM) \
584 { \
585 builtin_define ("__tune_i586__"); \
586 builtin_define ("__tune_pentium__"); \
9e555526 587 if (last_tune_char == 'x') \
1ba7b414
NB
588 builtin_define ("__tune_pentium_mmx__"); \
589 } \
590 else if (TARGET_PENTIUMPRO) \
591 { \
592 builtin_define ("__tune_i686__"); \
593 builtin_define ("__tune_pentiumpro__"); \
9e555526 594 switch (last_tune_char) \
2e37b0ce
RH
595 { \
596 case '3': \
597 builtin_define ("__tune_pentium3__"); \
5efb1046 598 /* FALLTHRU */ \
2e37b0ce
RH
599 case '2': \
600 builtin_define ("__tune_pentium2__"); \
601 break; \
602 } \
1ba7b414
NB
603 } \
604 else if (TARGET_K6) \
605 { \
606 builtin_define ("__tune_k6__"); \
9e555526 607 if (last_tune_char == '2') \
1ba7b414 608 builtin_define ("__tune_k6_2__"); \
9e555526 609 else if (last_tune_char == '3') \
1ba7b414
NB
610 builtin_define ("__tune_k6_3__"); \
611 } \
612 else if (TARGET_ATHLON) \
613 { \
614 builtin_define ("__tune_athlon__"); \
615 /* Only plain "athlon" lacks SSE. */ \
9e555526 616 if (last_tune_char != 'n') \
1ba7b414
NB
617 builtin_define ("__tune_athlon_sse__"); \
618 } \
4977bab6
ZW
619 else if (TARGET_K8) \
620 builtin_define ("__tune_k8__"); \
1ba7b414
NB
621 else if (TARGET_PENTIUM4) \
622 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
623 else if (TARGET_NOCONA) \
624 builtin_define ("__tune_nocona__"); \
1ba7b414
NB
625 \
626 if (TARGET_MMX) \
627 builtin_define ("__MMX__"); \
628 if (TARGET_3DNOW) \
629 builtin_define ("__3dNOW__"); \
630 if (TARGET_3DNOW_A) \
631 builtin_define ("__3dNOW_A__"); \
632 if (TARGET_SSE) \
633 builtin_define ("__SSE__"); \
634 if (TARGET_SSE2) \
635 builtin_define ("__SSE2__"); \
9e200aaf
KC
636 if (TARGET_SSE3) \
637 builtin_define ("__SSE3__"); \
48ddd46c
JH
638 if (TARGET_SSE_MATH && TARGET_SSE) \
639 builtin_define ("__SSE_MATH__"); \
640 if (TARGET_SSE_MATH && TARGET_SSE2) \
641 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
642 \
643 /* Built-ins based on -march=. */ \
644 if (ix86_arch == PROCESSOR_I486) \
645 { \
646 builtin_define ("__i486"); \
647 builtin_define ("__i486__"); \
648 } \
649 else if (ix86_arch == PROCESSOR_PENTIUM) \
650 { \
651 builtin_define ("__i586"); \
652 builtin_define ("__i586__"); \
653 builtin_define ("__pentium"); \
654 builtin_define ("__pentium__"); \
655 if (last_arch_char == 'x') \
656 builtin_define ("__pentium_mmx__"); \
657 } \
658 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
659 { \
660 builtin_define ("__i686"); \
661 builtin_define ("__i686__"); \
662 builtin_define ("__pentiumpro"); \
663 builtin_define ("__pentiumpro__"); \
664 } \
665 else if (ix86_arch == PROCESSOR_K6) \
666 { \
667 \
668 builtin_define ("__k6"); \
669 builtin_define ("__k6__"); \
670 if (last_arch_char == '2') \
671 builtin_define ("__k6_2__"); \
672 else if (last_arch_char == '3') \
673 builtin_define ("__k6_3__"); \
674 } \
675 else if (ix86_arch == PROCESSOR_ATHLON) \
676 { \
677 builtin_define ("__athlon"); \
678 builtin_define ("__athlon__"); \
679 /* Only plain "athlon" lacks SSE. */ \
680 if (last_arch_char != 'n') \
681 builtin_define ("__athlon_sse__"); \
682 } \
4977bab6
ZW
683 else if (ix86_arch == PROCESSOR_K8) \
684 { \
685 builtin_define ("__k8"); \
686 builtin_define ("__k8__"); \
687 } \
1ba7b414
NB
688 else if (ix86_arch == PROCESSOR_PENTIUM4) \
689 { \
690 builtin_define ("__pentium4"); \
691 builtin_define ("__pentium4__"); \
692 } \
89c43c0a
VM
693 else if (ix86_arch == PROCESSOR_NOCONA) \
694 { \
695 builtin_define ("__nocona"); \
696 builtin_define ("__nocona__"); \
697 } \
1ba7b414 698 } \
30efe578
NB
699 while (0)
700
f4365627
JH
701#define TARGET_CPU_DEFAULT_i386 0
702#define TARGET_CPU_DEFAULT_i486 1
703#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
704#define TARGET_CPU_DEFAULT_pentium_mmx 3
705#define TARGET_CPU_DEFAULT_pentiumpro 4
706#define TARGET_CPU_DEFAULT_pentium2 5
707#define TARGET_CPU_DEFAULT_pentium3 6
708#define TARGET_CPU_DEFAULT_pentium4 7
709#define TARGET_CPU_DEFAULT_k6 8
710#define TARGET_CPU_DEFAULT_k6_2 9
711#define TARGET_CPU_DEFAULT_k6_3 10
712#define TARGET_CPU_DEFAULT_athlon 11
713#define TARGET_CPU_DEFAULT_athlon_sse 12
4977bab6 714#define TARGET_CPU_DEFAULT_k8 13
5bbeea44
JH
715#define TARGET_CPU_DEFAULT_pentium_m 14
716#define TARGET_CPU_DEFAULT_prescott 15
eb3d7f9d 717#define TARGET_CPU_DEFAULT_nocona 16
f4365627
JH
718
719#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
720 "pentiumpro", "pentium2", "pentium3", \
721 "pentium4", "k6", "k6-2", "k6-3",\
5bbeea44
JH
722 "athlon", "athlon-4", "k8", \
723 "pentium-m", "prescott", "nocona"}
0c2dc519 724
628714d8 725#ifndef CC1_SPEC
8015b78d 726#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
727#endif
728
729/* This macro defines names of additional specifications to put in the
730 specs that can be used in various specifications like CC1_SPEC. Its
731 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
732
733 Each subgrouping contains a string constant, that defines the
188fc5b5 734 specification name, and a string constant that used by the GCC driver
bcd86433
SC
735 program.
736
737 Do not define this macro if it does not need to do anything. */
738
739#ifndef SUBTARGET_EXTRA_SPECS
740#define SUBTARGET_EXTRA_SPECS
741#endif
742
743#define EXTRA_SPECS \
628714d8 744 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
745 SUBTARGET_EXTRA_SPECS
746\f
c98f8742
JVA
747/* target machine storage layout */
748
968a7562 749#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 750
d57a4b98
RH
751/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
752 FPU, assume that the fpcw is set to extended precision; when using
753 only SSE, rounding is correct; when using both SSE and the FPU,
754 the rounding precision is indeterminate, since either may be chosen
755 apparently at random. */
756#define TARGET_FLT_EVAL_METHOD \
5ccd517a 757 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 758
65d9c0ab
JH
759#define SHORT_TYPE_SIZE 16
760#define INT_TYPE_SIZE 32
761#define FLOAT_TYPE_SIZE 32
762#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
763#define DOUBLE_TYPE_SIZE 64
764#define LONG_LONG_TYPE_SIZE 64
765
67adf6a9 766#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 767#define MAX_BITS_PER_WORD 64
0c2dc519
JH
768#else
769#define MAX_BITS_PER_WORD 32
0c2dc519
JH
770#endif
771
c98f8742
JVA
772/* Define this if most significant byte of a word is the lowest numbered. */
773/* That is true on the 80386. */
774
775#define BITS_BIG_ENDIAN 0
776
777/* Define this if most significant byte of a word is the lowest numbered. */
778/* That is not true on the 80386. */
779#define BYTES_BIG_ENDIAN 0
780
781/* Define this if most significant word of a multiword number is the lowest
782 numbered. */
783/* Not true for 80386 */
784#define WORDS_BIG_ENDIAN 0
785
c98f8742 786/* Width of a word, in units (bytes). */
65d9c0ab 787#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
788#ifdef IN_LIBGCC2
789#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
790#else
791#define MIN_UNITS_PER_WORD 4
792#endif
c98f8742 793
c98f8742 794/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 795#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 796
e075ae69 797/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 798#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 799
d1f87653 800/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 801 aligned; the compiler cannot rely on having this alignment. */
e075ae69 802#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 803
1d482056 804/* As of July 2001, many runtimes to not align the stack properly when
d1f87653 805 entering main. This causes expand_main_function to forcibly align
1d482056
RH
806 the stack, which results in aligned frames for functions called from
807 main, though it does nothing for the alignment of main itself. */
808#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 809 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 810
f963b5d9
RS
811/* Minimum allocation boundary for the code of a function. */
812#define FUNCTION_BOUNDARY 8
813
814/* C++ stores the virtual bit in the lowest bit of function pointers. */
815#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 816
892a2d68 817/* Alignment of field after `int : 0' in a structure. */
c98f8742 818
65d9c0ab 819#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
820
821/* Minimum size in bits of the largest boundary to which any
822 and all fundamental data types supported by the hardware
823 might need to be aligned. No data type wants to be aligned
17f24ff0 824 rounder than this.
fce5a9f2 825
d1f87653 826 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
827 and Pentium Pro XFmode values at 128 bit boundaries. */
828
829#define BIGGEST_ALIGNMENT 128
830
822eda12 831/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 832#define ALIGN_MODE_128(MODE) \
822eda12 833 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
a7180f70 834
17f24ff0 835/* The published ABIs say that doubles should be aligned on word
d1f87653 836 boundaries, so lower the alignment for structure fields unless
6fc605d8 837 -malign-double is set. */
e932b21b 838
e83f3cff
RH
839/* ??? Blah -- this macro is used directly by libobjc. Since it
840 supports no vector modes, cut out the complexity and fall back
841 on BIGGEST_FIELD_ALIGNMENT. */
842#ifdef IN_TARGET_LIBS
ef49d42e
JH
843#ifdef __x86_64__
844#define BIGGEST_FIELD_ALIGNMENT 128
845#else
e83f3cff 846#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 847#endif
e83f3cff 848#else
e932b21b
JH
849#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
850 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 851#endif
c98f8742 852
e5e8a8bf 853/* If defined, a C expression to compute the alignment given to a
a7180f70 854 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
855 and ALIGN is the alignment that the object would ordinarily have.
856 The value of this macro is used instead of that alignment to align
857 the object.
858
859 If this macro is not defined, then ALIGN is used.
860
861 The typical use of this macro is to increase alignment for string
862 constants to be word aligned so that `strcpy' calls that copy
863 constants can be done inline. */
864
d9a5f180 865#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 866
8a022443
JW
867/* If defined, a C expression to compute the alignment for a static
868 variable. TYPE is the data type, and ALIGN is the alignment that
869 the object would ordinarily have. The value of this macro is used
870 instead of that alignment to align the object.
871
872 If this macro is not defined, then ALIGN is used.
873
874 One use of this macro is to increase alignment of medium-size
875 data to make it all fit in fewer cache lines. Another is to
876 cause character arrays to be word-aligned so that `strcpy' calls
877 that copy constants to character arrays can be done inline. */
878
d9a5f180 879#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
880
881/* If defined, a C expression to compute the alignment for a local
882 variable. TYPE is the data type, and ALIGN is the alignment that
883 the object would ordinarily have. The value of this macro is used
884 instead of that alignment to align the object.
885
886 If this macro is not defined, then ALIGN is used.
887
888 One use of this macro is to increase alignment of medium-size
889 data to make it all fit in fewer cache lines. */
890
d9a5f180 891#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 892
53c17031
JH
893/* If defined, a C expression that gives the alignment boundary, in
894 bits, of an argument with the specified mode and type. If it is
895 not defined, `PARM_BOUNDARY' is used for all arguments. */
896
d9a5f180
GS
897#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
898 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 899
9cd10576 900/* Set this nonzero if move instructions will actually fail to work
c98f8742 901 when given unaligned data. */
b4ac57ab 902#define STRICT_ALIGNMENT 0
c98f8742
JVA
903
904/* If bit field type is int, don't let it cross an int,
905 and give entire struct the alignment of an int. */
43a88a8c 906/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 907#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
908\f
909/* Standard register usage. */
910
911/* This processor has special stack-like registers. See reg-stack.c
892a2d68 912 for details. */
c98f8742
JVA
913
914#define STACK_REGS
d9a5f180 915#define IS_STACK_MODE(MODE) \
f8a1ebc6 916 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
c98f8742
JVA
917
918/* Number of actual hardware registers.
919 The hardware registers are assigned numbers for the compiler
920 from 0 to just below FIRST_PSEUDO_REGISTER.
921 All registers that the compiler knows about must be given numbers,
922 even those that are not normally considered general registers.
923
924 In the 80386 we give the 8 general purpose registers the numbers 0-7.
925 We number the floating point registers 8-15.
926 Note that registers 0-7 can be accessed as a short or int,
927 while only 0-3 may be used with byte `mov' instructions.
928
929 Reg 16 does not correspond to any hardware register, but instead
930 appears in the RTL as an argument pointer prior to reload, and is
931 eliminated during reloading in favor of either the stack or frame
892a2d68 932 pointer. */
c98f8742 933
3f3f2124 934#define FIRST_PSEUDO_REGISTER 53
c98f8742 935
3073d01c
ML
936/* Number of hardware registers that go into the DWARF-2 unwind info.
937 If not defined, equals FIRST_PSEUDO_REGISTER. */
938
939#define DWARF_FRAME_REGISTERS 17
940
c98f8742
JVA
941/* 1 for registers that have pervasive standard uses
942 and are not available for the register allocator.
3f3f2124 943 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 944
3a4416fb
RS
945 The value is zero if the register is not fixed on either 32 or
946 64 bit targets, one if the register if fixed on both 32 and 64
947 bit targets, two if it is only fixed on 32bit targets and three
948 if its only fixed on 64bit targets.
949 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 950 */
a7180f70
BS
951#define FIXED_REGISTERS \
952/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 953{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
a7180f70 954/*arg,flags,fpsr,dir,frame*/ \
3a4416fb 955 1, 1, 1, 1, 1, \
a7180f70
BS
956/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
957 0, 0, 0, 0, 0, 0, 0, 0, \
958/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
959 0, 0, 0, 0, 0, 0, 0, 0, \
960/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 961 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 962/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 963 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 964
c98f8742
JVA
965
966/* 1 for registers not available across function calls.
967 These must include the FIXED_REGISTERS and also any
968 registers that can be used without being saved.
969 The latter must include the registers where values are returned
970 and the register where structure-value addresses are passed.
fce5a9f2
EC
971 Aside from that, you can include as many other registers as you like.
972
3a4416fb
RS
973 The value is zero if the register is not fixed on either 32 or
974 64 bit targets, one if the register if fixed on both 32 and 64
975 bit targets, two if it is only fixed on 32bit targets and three
976 if its only fixed on 64bit targets.
977 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 978*/
a7180f70
BS
979#define CALL_USED_REGISTERS \
980/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 981{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 982/*arg,flags,fpsr,dir,frame*/ \
3a4416fb 983 1, 1, 1, 1, 1, \
a7180f70 984/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3a4416fb 985 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 986/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 987 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 988/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 989 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 990/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 991 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 992
3b3c6a3f
MM
993/* Order in which to allocate registers. Each register must be
994 listed once, even those in FIXED_REGISTERS. List frame pointer
995 late and fixed registers last. Note that, in general, we prefer
996 registers listed in CALL_USED_REGISTERS, keeping the others
997 available for storage of persistent values.
998
162f023b
JH
999 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1000 so this is just empty initializer for array. */
3b3c6a3f 1001
162f023b
JH
1002#define REG_ALLOC_ORDER \
1003{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1004 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1005 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1006 48, 49, 50, 51, 52 }
3b3c6a3f 1007
162f023b
JH
1008/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1009 to be rearranged based on a particular function. When using sse math,
d1f87653 1010 we want to allocate SSE before x87 registers and vice vera. */
3b3c6a3f 1011
162f023b 1012#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 1013
f5316dfe 1014
c98f8742 1015/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 1016#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 1017do { \
3f3f2124
JH
1018 int i; \
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1020 { \
3a4416fb
RS
1021 if (fixed_regs[i] > 1) \
1022 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1023 if (call_used_regs[i] > 1) \
1024 call_used_regs[i] = (call_used_regs[i] \
1025 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 1026 } \
5b43fed1 1027 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
1028 { \
1029 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1030 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1031 } \
1032 if (! TARGET_MMX) \
1033 { \
1034 int i; \
1035 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1036 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1037 fixed_regs[i] = call_used_regs[i] = 1; \
1038 } \
1039 if (! TARGET_SSE) \
1040 { \
1041 int i; \
1042 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1043 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1044 fixed_regs[i] = call_used_regs[i] = 1; \
1045 } \
1046 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1047 { \
1048 int i; \
1049 HARD_REG_SET x; \
1050 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1052 if (TEST_HARD_REG_BIT (x, i)) \
1053 fixed_regs[i] = call_used_regs[i] = 1; \
1054 } \
d9a5f180 1055 } while (0)
c98f8742
JVA
1056
1057/* Return number of consecutive hard regs needed starting at reg REGNO
1058 to hold something of mode MODE.
1059 This is ordinarily the length in words of a value of mode MODE
1060 but can be less for certain modes in special long registers.
1061
fce5a9f2 1062 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1063 registers. And only registers 0-3 may have mov byte instructions
1064 applied to them.
1065 */
1066
1067#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1068 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1069 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1070 : ((MODE) == XFmode \
92d0fb09 1071 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1072 : (MODE) == XCmode \
92d0fb09 1073 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1074 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1075
fbe5eb6d
BS
1076#define VALID_SSE2_REG_MODE(MODE) \
1077 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
dcbca208
RH
1078 || (MODE) == V2DImode || (MODE) == DFmode \
1079 || VALID_MMX_REG_MODE (MODE))
fbe5eb6d 1080
d9a5f180
GS
1081#define VALID_SSE_REG_MODE(MODE) \
1082 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 1083 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1084
47f339cf
BS
1085#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1086 ((MODE) == V2SFmode || (MODE) == SFmode)
1087
d9a5f180
GS
1088#define VALID_MMX_REG_MODE(MODE) \
1089 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1090 || (MODE) == V2SImode || (MODE) == SImode)
1091
0bf43309
DN
1092#define UNITS_PER_SIMD_WORD \
1093 (TARGET_SSE ? 16 : TARGET_MMX || TARGET_3DNOW ? 8 : 0)
1094
d9a5f180 1095#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
1096 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1097 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1098
d9a5f180
GS
1099#define VALID_INT_MODE_P(MODE) \
1100 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1101 || (MODE) == DImode \
1102 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1103 || (MODE) == CDImode \
f8a1ebc6
JH
1104 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1105 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1106
822eda12
JH
1107/* Return true for modes passed in SSE registers. */
1108#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 1109 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1110 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1111 || (MODE) == V4SFmode || (MODE) == V4SImode)
1112
1113/* Return true for modes passed in MMX registers. */
1114#define MMX_REG_MODE_P(MODE) \
1115 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1116 || (MODE) == V2SFmode)
1117
e075ae69 1118/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1119
a946dd00 1120#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1121 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1122
1123/* Value is 1 if it is a good idea to tie two pseudo registers
1124 when one has mode MODE1 and one has mode MODE2.
1125 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1126 for any hard reg, then this must be 0 for correct output. */
1127
95912252
RH
1128#define MODES_TIEABLE_P(MODE1, MODE2) \
1129 ((MODE1) == (MODE2) \
d2836273
JH
1130 || (((MODE1) == HImode || (MODE1) == SImode \
1131 || ((MODE1) == QImode \
1132 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1133 || ((MODE1) == DImode && TARGET_64BIT)) \
1134 && ((MODE2) == HImode || (MODE2) == SImode \
a64d0bc6 1135 || ((MODE2) == QImode \
d2836273
JH
1136 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1137 || ((MODE2) == DImode && TARGET_64BIT))))
1138
ff25ef99
ZD
1139/* It is possible to write patterns to move flags; but until someone
1140 does it, */
1141#define AVOID_CCMODE_COPIES
c98f8742 1142
e075ae69 1143/* Specify the modes required to caller save a given hard regno.
787dc842 1144 We do this on i386 to prevent flags from being saved at all.
e075ae69 1145
787dc842
JH
1146 Kill any attempts to combine saving of modes. */
1147
d9a5f180
GS
1148#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1149 (CC_REGNO_P (REGNO) ? VOIDmode \
1150 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 1151 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
1152 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1153 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1154 : (MODE))
c98f8742
JVA
1155/* Specify the registers used for certain standard purposes.
1156 The values of these macros are register numbers. */
1157
1158/* on the 386 the pc register is %eip, and is not usable as a general
1159 register. The ordinary mov instructions won't work */
1160/* #define PC_REGNUM */
1161
1162/* Register to use for pushing function arguments. */
1163#define STACK_POINTER_REGNUM 7
1164
1165/* Base register for access to local variables of the function. */
564d80f4
JH
1166#define HARD_FRAME_POINTER_REGNUM 6
1167
1168/* Base register for access to local variables of the function. */
1169#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1170
1171/* First floating point reg */
1172#define FIRST_FLOAT_REG 8
1173
1174/* First & last stack-like regs */
1175#define FIRST_STACK_REG FIRST_FLOAT_REG
1176#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1177
a7180f70
BS
1178#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1179#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1180
a7180f70
BS
1181#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1182#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1183
3f3f2124
JH
1184#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1185#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1186
1187#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1188#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1189
c98f8742
JVA
1190/* Value should be nonzero if functions must have frame pointers.
1191 Zero means the frame pointer need not be set up (and parms
1192 may be accessed via the stack pointer) in functions that seem suitable.
1193 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1194#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1195
1196/* Override this in other tm.h files to cope with various OS losage
1197 requiring a frame pointer. */
1198#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1199#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1200#endif
1201
1202/* Make sure we can access arbitrary call frames. */
1203#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1204
1205/* Base register for access to arguments of the function. */
1206#define ARG_POINTER_REGNUM 16
1207
d2836273
JH
1208/* Register in which static-chain is passed to a function.
1209 We do use ECX as static chain register for 32 bit ABI. On the
1210 64bit ABI, ECX is an argument register, so we use R10 instead. */
1211#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1212
1213/* Register to hold the addressing base for position independent
5b43fed1
RH
1214 code access to data items. We don't use PIC pointer for 64bit
1215 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1216 pessimizing code dealing with EBX.
bd09bdeb
RH
1217
1218 To avoid clobbering a call-saved register unnecessarily, we renumber
1219 the pic register when possible. The change is visible after the
1220 prologue has been emitted. */
1221
1222#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1223
1224#define PIC_OFFSET_TABLE_REGNUM \
1225 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1226 : reload_completed ? REGNO (pic_offset_table_rtx) \
1227 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1228
5fc0e5df
KW
1229#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1230
713225d4
MM
1231/* A C expression which can inhibit the returning of certain function
1232 values in registers, based on the type of value. A nonzero value
1233 says to return the function value in memory, just as large
1234 structures are always returned. Here TYPE will be a C expression
1235 of type `tree', representing the data type of the value.
1236
1237 Note that values of mode `BLKmode' must be explicitly handled by
1238 this macro. Also, the option `-fpcc-struct-return' takes effect
1239 regardless of this macro. On most systems, it is possible to
1240 leave the macro undefined; this causes a default definition to be
1241 used, whose value is the constant 1 for `BLKmode' values, and 0
1242 otherwise.
1243
1244 Do not use this macro to indicate that structures and unions
1245 should always be returned in memory. You should instead use
1246 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1247
d9a5f180 1248#define RETURN_IN_MEMORY(TYPE) \
53c17031 1249 ix86_return_in_memory (TYPE)
713225d4 1250
c51e6d85 1251/* This is overridden by <cygwin.h>. */
5e062767
DS
1252#define MS_AGGREGATE_RETURN 0
1253
61fec9ff
JB
1254/* This is overridden by <netware.h>. */
1255#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1256\f
1257/* Define the classes of registers for register constraints in the
1258 machine description. Also define ranges of constants.
1259
1260 One of the classes must always be named ALL_REGS and include all hard regs.
1261 If there is more than one class, another class must be named NO_REGS
1262 and contain no registers.
1263
1264 The name GENERAL_REGS must be the name of a class (or an alias for
1265 another name such as ALL_REGS). This is the class of registers
1266 that is allowed by "g" or "r" in a register constraint.
1267 Also, registers outside this class are allocated only when
1268 instructions express preferences for them.
1269
1270 The classes must be numbered in nondecreasing order; that is,
1271 a larger-numbered class must never be contained completely
1272 in a smaller-numbered class.
1273
1274 For any two classes, it is very desirable that there be another
ab408a86
JVA
1275 class that represents their union.
1276
1277 It might seem that class BREG is unnecessary, since no useful 386
1278 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1279 and the "b" register constraint is useful in asms for syscalls.
1280
1281 The flags and fpsr registers are in no class. */
c98f8742
JVA
1282
1283enum reg_class
1284{
1285 NO_REGS,
e075ae69 1286 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1287 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1288 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1289 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1290 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1291 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1292 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1293 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1294 FLOAT_REGS,
a7180f70
BS
1295 SSE_REGS,
1296 MMX_REGS,
446988df
JH
1297 FP_TOP_SSE_REGS,
1298 FP_SECOND_SSE_REGS,
1299 FLOAT_SSE_REGS,
1300 FLOAT_INT_REGS,
1301 INT_SSE_REGS,
1302 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1303 ALL_REGS, LIM_REG_CLASSES
1304};
1305
d9a5f180
GS
1306#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1307
1308#define INTEGER_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), GENERAL_REGS)
1310#define FLOAT_CLASS_P(CLASS) \
1311 reg_class_subset_p ((CLASS), FLOAT_REGS)
1312#define SSE_CLASS_P(CLASS) \
1313 reg_class_subset_p ((CLASS), SSE_REGS)
1314#define MMX_CLASS_P(CLASS) \
1315 reg_class_subset_p ((CLASS), MMX_REGS)
1316#define MAYBE_INTEGER_CLASS_P(CLASS) \
1317 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1318#define MAYBE_FLOAT_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1320#define MAYBE_SSE_CLASS_P(CLASS) \
1321 reg_classes_intersect_p (SSE_REGS, (CLASS))
1322#define MAYBE_MMX_CLASS_P(CLASS) \
1323 reg_classes_intersect_p (MMX_REGS, (CLASS))
1324
1325#define Q_CLASS_P(CLASS) \
1326 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1327
43f3a59d 1328/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1329
1330#define REG_CLASS_NAMES \
1331{ "NO_REGS", \
ab408a86 1332 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1333 "SIREG", "DIREG", \
e075ae69
RH
1334 "AD_REGS", \
1335 "Q_REGS", "NON_Q_REGS", \
c98f8742 1336 "INDEX_REGS", \
3f3f2124 1337 "LEGACY_REGS", \
c98f8742
JVA
1338 "GENERAL_REGS", \
1339 "FP_TOP_REG", "FP_SECOND_REG", \
1340 "FLOAT_REGS", \
a7180f70
BS
1341 "SSE_REGS", \
1342 "MMX_REGS", \
446988df
JH
1343 "FP_TOP_SSE_REGS", \
1344 "FP_SECOND_SSE_REGS", \
1345 "FLOAT_SSE_REGS", \
8fcaaa80 1346 "FLOAT_INT_REGS", \
446988df
JH
1347 "INT_SSE_REGS", \
1348 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1349 "ALL_REGS" }
1350
1351/* Define which registers fit in which classes.
1352 This is an initializer for a vector of HARD_REG_SET
1353 of length N_REG_CLASSES. */
1354
a7180f70 1355#define REG_CLASS_CONTENTS \
3f3f2124
JH
1356{ { 0x00, 0x0 }, \
1357 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1358 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1359 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1360 { 0x03, 0x0 }, /* AD_REGS */ \
1361 { 0x0f, 0x0 }, /* Q_REGS */ \
1362 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1363 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1364 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1365 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1366 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1367 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1368{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1369{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1370{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1371{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1372{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1373 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1374{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1375{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1376{ 0xffffffff,0x1fffff } \
e075ae69 1377}
c98f8742
JVA
1378
1379/* The same information, inverted:
1380 Return the class number of the smallest class containing
1381 reg number REGNO. This could be a conditional expression
1382 or could index an array. */
1383
c98f8742
JVA
1384#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1385
1386/* When defined, the compiler allows registers explicitly used in the
1387 rtl to be used as spill registers but prevents the compiler from
892a2d68 1388 extending the lifetime of these registers. */
c98f8742 1389
2922fe9e 1390#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1391
1392#define QI_REG_P(X) \
1393 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1394
d9a5f180
GS
1395#define GENERAL_REGNO_P(N) \
1396 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1397
1398#define GENERAL_REG_P(X) \
6189a572 1399 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1400
1401#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1402
c98f8742
JVA
1403#define NON_QI_REG_P(X) \
1404 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1405
d9a5f180 1406#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1407#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1408
c98f8742 1409#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1410#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1411#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1412#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1413
d9a5f180
GS
1414#define SSE_REGNO_P(N) \
1415 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1416 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1417
4977bab6
ZW
1418#define REX_SSE_REGNO_P(N) \
1419 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1420
d9a5f180
GS
1421#define SSE_REGNO(N) \
1422 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1423#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1424
d9a5f180 1425#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1426 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1427
d9a5f180
GS
1428#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1429#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1430
d9a5f180
GS
1431#define STACK_REG_P(XOP) \
1432 (REG_P (XOP) && \
1433 REGNO (XOP) >= FIRST_STACK_REG && \
1434 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1435
d9a5f180 1436#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1437
d9a5f180 1438#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1439
e075ae69
RH
1440#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1441#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1442
c98f8742
JVA
1443/* The class value for index registers, and the one for base regs. */
1444
1445#define INDEX_REG_CLASS INDEX_REGS
1446#define BASE_REG_CLASS GENERAL_REGS
1447
9a9286af
RH
1448/* Unused letters:
1449 B TU W
1450 h jk vw z
1451*/
1452
c98f8742
JVA
1453/* Get reg_class from a letter such as appears in the machine description. */
1454
1455#define REG_CLASS_FROM_LETTER(C) \
8c2bf92a 1456 ((C) == 'r' ? GENERAL_REGS : \
3f3f2124
JH
1457 (C) == 'R' ? LEGACY_REGS : \
1458 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1459 (C) == 'Q' ? Q_REGS : \
8c2bf92a
JVA
1460 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1461 ? FLOAT_REGS \
1462 : NO_REGS) : \
1463 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1464 ? FP_TOP_REG \
1465 : NO_REGS) : \
1466 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1467 ? FP_SECOND_REG \
1468 : NO_REGS) : \
1469 (C) == 'a' ? AREG : \
1470 (C) == 'b' ? BREG : \
1471 (C) == 'c' ? CREG : \
1472 (C) == 'd' ? DREG : \
446988df
JH
1473 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1474 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1475 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
4b71cd6e 1476 (C) == 'A' ? AD_REGS : \
8c2bf92a 1477 (C) == 'D' ? DIREG : \
9a9286af
RH
1478 (C) == 'S' ? SIREG : \
1479 (C) == 'l' ? INDEX_REGS : \
1480 NO_REGS)
c98f8742
JVA
1481
1482/* The letters I, J, K, L and M in a register constraint string
1483 can be used to stand for particular ranges of immediate operands.
1484 This macro defines what the ranges are.
1485 C is the letter, and VALUE is a constant value.
1486 Return 1 if VALUE is in the range specified by C.
1487
1488 I is for non-DImode shifts.
1489 J is for DImode shifts.
e075ae69
RH
1490 K is for signed imm8 operands.
1491 L is for andsi as zero-extending move.
c98f8742 1492 M is for shifts that can be executed by the "lea" opcode.
d1f87653 1493 N is for immediate operands for out/in instructions (0-255)
c98f8742
JVA
1494 */
1495
e075ae69
RH
1496#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1497 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1498 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1499 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1500 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1501 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1aa9fd24 1502 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
e075ae69 1503 : 0)
c98f8742
JVA
1504
1505/* Similar, but for floating constants, and defining letters G and H.
b4ac57ab
RS
1506 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1507 TARGET_387 isn't set, because the stack register converter may need to
c47f5ea5 1508 load 0.0 into the function value register. */
c98f8742
JVA
1509
1510#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2b04e52b 1511 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
f8ca7923 1512 : 0)
c98f8742 1513
6189a572
JH
1514/* A C expression that defines the optional machine-dependent
1515 constraint letters that can be used to segregate specific types of
1516 operands, usually memory references, for the target machine. Any
1517 letter that is not elsewhere defined and not matched by
1518 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1519 be defined.
1520
1521 If it is required for a particular target machine, it should
1522 return 1 if VALUE corresponds to the operand type represented by
1523 the constraint letter C. If C is not defined as an extra
1524 constraint, the value returned should be 0 regardless of VALUE. */
1525
8fe75e43
RH
1526#define EXTRA_CONSTRAINT(VALUE, D) \
1527 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1528 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1529 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
6189a572
JH
1530 : 0)
1531
c98f8742 1532/* Place additional restrictions on the register class to use when it
4cbb525c 1533 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1534 register for which class CLASS would ordinarily be used. */
c98f8742 1535
d2836273
JH
1536#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1537 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1538 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1539 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1540 ? Q_REGS : (CLASS))
1541
1542/* Given an rtx X being reloaded into a reg required to be
1543 in class CLASS, return the class of reg to actually use.
1544 In general this is just CLASS; but on some machines
1545 in some cases it is preferable to use a more restrictive class.
1546 On the 80386 series, we prevent floating constants from being
1547 reloaded into floating registers (since no move-insn can do that)
1548 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1549
d398b3b1 1550/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1551 QImode must go into class Q_REGS.
d398b3b1 1552 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1553 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1554
d9a5f180
GS
1555#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1556 ix86_preferred_reload_class ((X), (CLASS))
85ff473e
JVA
1557
1558/* If we are copying between general and FP registers, we need a memory
f84aa48a 1559 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1560#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1561 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1562
1563/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1564 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1565 pseudo. */
1566
d9a5f180 1567#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1568 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1569 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1570 ? Q_REGS : NO_REGS)
c98f8742
JVA
1571
1572/* Return the maximum number of consecutive registers
1573 needed to represent mode MODE in a register of class CLASS. */
1574/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1575 except in the FP regs, where a single reg is always enough. */
a7180f70 1576#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1577 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1578 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1579 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1580 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1581
1582/* A C expression whose value is nonzero if pseudos that have been
1583 assigned to registers of class CLASS would likely be spilled
1584 because registers of CLASS are needed for spill registers.
1585
1586 The default value of this macro returns 1 if CLASS has exactly one
1587 register and zero otherwise. On most machines, this default
1588 should be used. Only define this macro to some other expression
1589 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1590 their hard registers were needed for spill registers. If this
f5316dfe
MM
1591 macro returns nonzero for those classes, those pseudos will only
1592 be allocated by `global.c', which knows how to reallocate the
1593 pseudo to another register. If there would not be another
1594 register available for reallocation, you should not change the
1595 definition of this macro since the only effect of such a
1596 definition would be to slow down register allocation. */
1597
1598#define CLASS_LIKELY_SPILLED_P(CLASS) \
1599 (((CLASS) == AREG) \
1600 || ((CLASS) == DREG) \
1601 || ((CLASS) == CREG) \
1602 || ((CLASS) == BREG) \
1603 || ((CLASS) == AD_REGS) \
1604 || ((CLASS) == SIREG) \
b0af5c03
JH
1605 || ((CLASS) == DIREG) \
1606 || ((CLASS) == FP_TOP_REG) \
1607 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1608
b0c42aed 1609/* Return a class of registers that cannot change FROM mode to TO mode.
f676971a 1610
b0c42aed
JH
1611 x87 registers can't do subreg as all values are reformated to extended
1612 precision. XMM registers does not support with nonzero offsets equal
1613 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1614 determine these, prohibit all nonparadoxical subregs changing size. */
1615
1616#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1617 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1618 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1619 || MAYBE_MMX_CLASS_P (CLASS) \
1620 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1621 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
c98f8742
JVA
1622\f
1623/* Stack layout; function entry, exit and calling. */
1624
1625/* Define this if pushing a word on the stack
1626 makes the stack pointer a smaller address. */
1627#define STACK_GROWS_DOWNWARD
1628
1629/* Define this if the nominal address of the stack frame
1630 is at the high-address end of the local variables;
1631 that is, each additional local variable allocated
1632 goes at a more negative offset in the frame. */
1633#define FRAME_GROWS_DOWNWARD
1634
1635/* Offset within stack frame to start allocating local variables at.
1636 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1637 first local allocated. Otherwise, it is the offset to the BEGINNING
1638 of the first local allocated. */
1639#define STARTING_FRAME_OFFSET 0
1640
1641/* If we generate an insn to push BYTES bytes,
1642 this says how many the stack pointer really advances by.
1643 On 386 pushw decrements by exactly 2 no matter what the position was.
1644 On the 386 there is no pushb; we use pushw instead, and this
d2836273 1645 has the effect of rounding up to 2.
fce5a9f2 1646
d2836273
JH
1647 For 64bit ABI we round up to 8 bytes.
1648 */
c98f8742 1649
d2836273
JH
1650#define PUSH_ROUNDING(BYTES) \
1651 (TARGET_64BIT \
1652 ? (((BYTES) + 7) & (-8)) \
1653 : (((BYTES) + 1) & (-2)))
c98f8742 1654
f73ad30e
JH
1655/* If defined, the maximum amount of space required for outgoing arguments will
1656 be computed and placed into the variable
1657 `current_function_outgoing_args_size'. No space will be pushed onto the
1658 stack for each call; instead, the function prologue should increase the stack
1659 frame size by this amount. */
1660
1661#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1662
1663/* If defined, a C expression whose value is nonzero when we want to use PUSH
1664 instructions to pass outgoing arguments. */
1665
1666#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1667
2da4124d
L
1668/* We want the stack and args grow in opposite directions, even if
1669 PUSH_ARGS is 0. */
1670#define PUSH_ARGS_REVERSED 1
1671
c98f8742
JVA
1672/* Offset of first parameter from the argument pointer register value. */
1673#define FIRST_PARM_OFFSET(FNDECL) 0
1674
a7180f70
BS
1675/* Define this macro if functions should assume that stack space has been
1676 allocated for arguments even when their values are passed in registers.
1677
1678 The value of this macro is the size, in bytes, of the area reserved for
1679 arguments passed in registers for the function represented by FNDECL.
1680
1681 This space can be allocated by the caller, or be a part of the
1682 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1683 which. */
1684#define REG_PARM_STACK_SPACE(FNDECL) 0
1685
c98f8742
JVA
1686/* Value is the number of bytes of arguments automatically
1687 popped when returning from a subroutine call.
8b109b37 1688 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1689 FUNTYPE is the data type of the function (as a tree),
1690 or for a library call it is an identifier node for the subroutine name.
1691 SIZE is the number of bytes of arguments passed on the stack.
1692
1693 On the 80386, the RTD insn may be used to pop them if the number
1694 of args is fixed, but if the number is variable then the caller
1695 must pop them all. RTD can't be used for library calls now
1696 because the library is compiled with the Unix compiler.
1697 Use of RTD is a selectable option, since it is incompatible with
1698 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1699 the caller must always pop the args.
1700
1701 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1702
d9a5f180
GS
1703#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1704 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1705
8c2bf92a
JVA
1706/* Define how to find the value returned by a function.
1707 VALTYPE is the data type of the value (as a tree).
1708 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1709 otherwise, FUNC is 0. */
c98f8742 1710#define FUNCTION_VALUE(VALTYPE, FUNC) \
53c17031
JH
1711 ix86_function_value (VALTYPE)
1712
1713#define FUNCTION_VALUE_REGNO_P(N) \
1714 ix86_function_value_regno_p (N)
c98f8742
JVA
1715
1716/* Define how to find the value returned by a library function
1717 assuming the value has mode MODE. */
1718
1719#define LIBCALL_VALUE(MODE) \
53c17031 1720 ix86_libcall_value (MODE)
c98f8742 1721
e9125c09
TW
1722/* Define the size of the result block used for communication between
1723 untyped_call and untyped_return. The block contains a DImode value
1724 followed by the block used by fnsave and frstor. */
1725
1726#define APPLY_RESULT_SIZE (8+108)
1727
b08de47e 1728/* 1 if N is a possible register number for function argument passing. */
53c17031 1729#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1730
1731/* Define a data type for recording info about an argument list
1732 during the scan of that argument list. This data type should
1733 hold all necessary information about the function itself
1734 and about the args processed so far, enough to enable macros
b08de47e 1735 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1736
e075ae69 1737typedef struct ix86_args {
b08de47e
MM
1738 int words; /* # words passed so far */
1739 int nregs; /* # registers available for passing */
1740 int regno; /* next available register number */
e91f04de 1741 int fastcall; /* fastcall calling convention is used */
a7180f70
BS
1742 int sse_words; /* # sse words passed so far */
1743 int sse_nregs; /* # sse registers available for passing */
e1be55d0
JH
1744 int warn_sse; /* True when we want to warn about SSE ABI. */
1745 int warn_mmx; /* True when we want to warn about MMX ABI. */
a7180f70 1746 int sse_regno; /* next available sse register number */
bcf17554
JH
1747 int mmx_words; /* # mmx words passed so far */
1748 int mmx_nregs; /* # mmx registers available for passing */
1749 int mmx_regno; /* next available mmx register number */
892a2d68 1750 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
b08de47e 1751} CUMULATIVE_ARGS;
c98f8742
JVA
1752
1753/* Initialize a variable CUM of type CUMULATIVE_ARGS
1754 for a call to a function whose data type is FNTYPE.
b08de47e 1755 For a library call, FNTYPE is 0. */
c98f8742 1756
0f6937fe 1757#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1758 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1759
1760/* Update the data in CUM to advance over an argument
1761 of mode MODE and data type TYPE.
1762 (TYPE is null for libcalls where that information may not be available.) */
1763
d9a5f180
GS
1764#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1765 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1766
1767/* Define where to put the arguments to a function.
1768 Value is zero to push the argument on the stack,
1769 or a hard register in which to store the argument.
1770
1771 MODE is the argument's machine mode.
1772 TYPE is the data type of the argument (as a tree).
1773 This is null for libcalls where that information may
1774 not be available.
1775 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1776 the preceding args and about the function being called.
1777 NAMED is nonzero if this argument is a named parameter
1778 (otherwise it is an extra parameter matching an ellipsis). */
1779
c98f8742 1780#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1781 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1782
1783/* For an arg passed partly in registers and partly in memory,
1784 this is the number of registers used.
1785 For args passed entirely in registers or entirely in memory, zero. */
1786
e075ae69 1787#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
c98f8742 1788
ad919812 1789/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1790#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1791 ix86_va_start (VALIST, NEXTARG)
ad919812 1792
a5fe455b
ZW
1793#define TARGET_ASM_FILE_END ix86_file_end
1794#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1795
c98f8742
JVA
1796/* Output assembler code to FILE to increment profiler label # LABELNO
1797 for profiling a function entry. */
1798
a5fa1ecd
JH
1799#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1800
1801#define MCOUNT_NAME "_mcount"
1802
1803#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1804
1805/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1806 the stack pointer does not matter. The value is tested only in
1807 functions that have frame pointers.
1808 No definition is equivalent to always zero. */
fce5a9f2 1809/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1810 we have to restore it ourselves from the frame pointer, in order to
1811 use pop */
1812
1813#define EXIT_IGNORE_STACK 1
1814
c98f8742
JVA
1815/* Output assembler code for a block containing the constant parts
1816 of a trampoline, leaving space for the variable parts. */
1817
a269a03c 1818/* On the 386, the trampoline contains two instructions:
c98f8742 1819 mov #STATIC,ecx
a269a03c
JC
1820 jmp FUNCTION
1821 The trampoline is generated entirely at runtime. The operand of JMP
1822 is the address of FUNCTION relative to the instruction following the
1823 JMP (which is 5 bytes long). */
c98f8742
JVA
1824
1825/* Length in units of the trampoline for entering a nested function. */
1826
39d04363 1827#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1828
1829/* Emit RTL insns to initialize the variable parts of a trampoline.
1830 FNADDR is an RTX for the address of the function's pure code.
1831 CXT is an RTX for the static chain value for the function. */
1832
d9a5f180
GS
1833#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1834 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1835\f
1836/* Definitions for register eliminations.
1837
1838 This is an array of structures. Each structure initializes one pair
1839 of eliminable registers. The "from" register number is given first,
1840 followed by "to". Eliminations of the same "from" register are listed
1841 in order of preference.
1842
afc2cd05
NC
1843 There are two registers that can always be eliminated on the i386.
1844 The frame pointer and the arg pointer can be replaced by either the
1845 hard frame pointer or to the stack pointer, depending upon the
1846 circumstances. The hard frame pointer is not used before reload and
1847 so it is not eligible for elimination. */
c98f8742 1848
564d80f4
JH
1849#define ELIMINABLE_REGS \
1850{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1851 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1852 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1853 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1854
2c5a510c
RH
1855/* Given FROM and TO register numbers, say whether this elimination is
1856 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1857
1858 All other eliminations are valid. */
1859
2c5a510c
RH
1860#define CAN_ELIMINATE(FROM, TO) \
1861 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1862
1863/* Define the offset between two registers, one to be eliminated, and the other
1864 its replacement, at the start of a routine. */
1865
d9a5f180
GS
1866#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1867 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1868\f
1869/* Addressing modes, and classification of registers for them. */
1870
c98f8742
JVA
1871/* Macros to check register numbers against specific register classes. */
1872
1873/* These assume that REGNO is a hard or pseudo reg number.
1874 They give nonzero only if REGNO is a hard reg of the suitable class
1875 or a pseudo reg currently allocated to a suitable hard reg.
1876 Since they use reg_renumber, they are safe only once reg_renumber
1877 has been allocated, which happens in local-alloc.c. */
1878
3f3f2124
JH
1879#define REGNO_OK_FOR_INDEX_P(REGNO) \
1880 ((REGNO) < STACK_POINTER_REGNUM \
1881 || (REGNO >= FIRST_REX_INT_REG \
1882 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1883 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1884 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1885 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1886
3f3f2124
JH
1887#define REGNO_OK_FOR_BASE_P(REGNO) \
1888 ((REGNO) <= STACK_POINTER_REGNUM \
1889 || (REGNO) == ARG_POINTER_REGNUM \
1890 || (REGNO) == FRAME_POINTER_REGNUM \
1891 || (REGNO >= FIRST_REX_INT_REG \
1892 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1893 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1894 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1895 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1896
d9a5f180
GS
1897#define REGNO_OK_FOR_SIREG_P(REGNO) \
1898 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1899#define REGNO_OK_FOR_DIREG_P(REGNO) \
1900 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1901
1902/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1903 and check its validity for a certain class.
1904 We have two alternate definitions for each of them.
1905 The usual definition accepts all pseudo regs; the other rejects
1906 them unless they have been allocated suitable hard regs.
1907 The symbol REG_OK_STRICT causes the latter definition to be used.
1908
1909 Most source files want to accept pseudo regs in the hope that
1910 they will get allocated to the class that the insn wants them to be in.
1911 Source files for reload pass need to be strict.
1912 After reload, it makes no difference, since pseudo regs have
1913 been eliminated by then. */
1914
c98f8742 1915
ff482c8d 1916/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1917#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1918 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1919 || (REGNO (X) >= FIRST_REX_INT_REG \
1920 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1921 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1922
3b3c6a3f
MM
1923#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1924 (REGNO (X) <= STACK_POINTER_REGNUM \
1925 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1926 || REGNO (X) == FRAME_POINTER_REGNUM \
1927 || (REGNO (X) >= FIRST_REX_INT_REG \
1928 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1929 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1930
3b3c6a3f
MM
1931/* Strict versions, hard registers only */
1932#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1933#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1934
3b3c6a3f 1935#ifndef REG_OK_STRICT
d9a5f180
GS
1936#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1937#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1938
1939#else
d9a5f180
GS
1940#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1941#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1942#endif
1943
1944/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1945 that is a valid memory address for an instruction.
1946 The MODE argument is the machine mode for the MEM expression
1947 that wants to use this address.
1948
1949 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1950 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1951
1952 See legitimize_pic_address in i386.c for details as to what
1953 constitutes a legitimate address when -fpic is used. */
1954
1955#define MAX_REGS_PER_ADDRESS 2
1956
f996902d 1957#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1958
1959/* Nonzero if the constant value X is a legitimate general operand.
1960 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1961
f996902d 1962#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1963
3b3c6a3f
MM
1964#ifdef REG_OK_STRICT
1965#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1966do { \
1967 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1968 goto ADDR; \
d9a5f180 1969} while (0)
c98f8742 1970
3b3c6a3f
MM
1971#else
1972#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1973do { \
1974 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1975 goto ADDR; \
d9a5f180 1976} while (0)
c98f8742 1977
3b3c6a3f
MM
1978#endif
1979
b949ea8b
JW
1980/* If defined, a C expression to determine the base term of address X.
1981 This macro is used in only one place: `find_base_term' in alias.c.
1982
1983 It is always safe for this macro to not be defined. It exists so
1984 that alias analysis can understand machine-dependent addresses.
1985
1986 The typical use of this macro is to handle addresses containing
1987 a label_ref or symbol_ref within an UNSPEC. */
1988
d9a5f180 1989#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1990
c98f8742
JVA
1991/* Try machine-dependent ways of modifying an illegitimate address
1992 to be legitimate. If we find one, return the new, valid address.
1993 This macro is used in only one place: `memory_address' in explow.c.
1994
1995 OLDX is the address as it was before break_out_memory_refs was called.
1996 In some cases it is useful to look at this to decide what needs to be done.
1997
1998 MODE and WIN are passed so that this macro can use
1999 GO_IF_LEGITIMATE_ADDRESS.
2000
2001 It is always safe for this macro to do nothing. It exists to recognize
2002 opportunities to optimize the output.
2003
2004 For the 80386, we handle X+REG by loading X into a register R and
2005 using R+REG. R will go in a general reg and indexing will be used.
2006 However, if REG is a broken-out memory address or multiplication,
2007 nothing needs to be done because REG can certainly go in a general reg.
2008
2009 When -fpic is used, special handling is needed for symbolic references.
2010 See comments by legitimize_pic_address in i386.c for details. */
2011
3b3c6a3f 2012#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
2013do { \
2014 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2015 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 2016 goto WIN; \
d9a5f180 2017} while (0)
c98f8742 2018
d9a5f180 2019#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 2020
c98f8742 2021/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 2022 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
2023 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2024
f996902d 2025#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
2026
2027#define SYMBOLIC_CONST(X) \
d9a5f180
GS
2028 (GET_CODE (X) == SYMBOL_REF \
2029 || GET_CODE (X) == LABEL_REF \
2030 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
2031
2032/* Go to LABEL if ADDR (a legitimate address expression)
2033 has an effect that depends on the machine mode it is used for.
2034 On the 80386, only postdecrement and postincrement address depend thus
2035 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
2036#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2037do { \
2038 if (GET_CODE (ADDR) == POST_INC \
2039 || GET_CODE (ADDR) == POST_DEC) \
2040 goto LABEL; \
2041} while (0)
c98f8742 2042\f
bd793c65
BS
2043/* Codes for all the SSE/MMX builtins. */
2044enum ix86_builtins
2045{
2046 IX86_BUILTIN_ADDPS,
2047 IX86_BUILTIN_ADDSS,
2048 IX86_BUILTIN_DIVPS,
2049 IX86_BUILTIN_DIVSS,
2050 IX86_BUILTIN_MULPS,
2051 IX86_BUILTIN_MULSS,
2052 IX86_BUILTIN_SUBPS,
2053 IX86_BUILTIN_SUBSS,
2054
2055 IX86_BUILTIN_CMPEQPS,
2056 IX86_BUILTIN_CMPLTPS,
2057 IX86_BUILTIN_CMPLEPS,
2058 IX86_BUILTIN_CMPGTPS,
2059 IX86_BUILTIN_CMPGEPS,
2060 IX86_BUILTIN_CMPNEQPS,
2061 IX86_BUILTIN_CMPNLTPS,
2062 IX86_BUILTIN_CMPNLEPS,
2063 IX86_BUILTIN_CMPNGTPS,
2064 IX86_BUILTIN_CMPNGEPS,
2065 IX86_BUILTIN_CMPORDPS,
2066 IX86_BUILTIN_CMPUNORDPS,
2067 IX86_BUILTIN_CMPNEPS,
2068 IX86_BUILTIN_CMPEQSS,
2069 IX86_BUILTIN_CMPLTSS,
2070 IX86_BUILTIN_CMPLESS,
bd793c65
BS
2071 IX86_BUILTIN_CMPNEQSS,
2072 IX86_BUILTIN_CMPNLTSS,
2073 IX86_BUILTIN_CMPNLESS,
bd793c65
BS
2074 IX86_BUILTIN_CMPORDSS,
2075 IX86_BUILTIN_CMPUNORDSS,
2076 IX86_BUILTIN_CMPNESS,
2077
2078 IX86_BUILTIN_COMIEQSS,
2079 IX86_BUILTIN_COMILTSS,
2080 IX86_BUILTIN_COMILESS,
2081 IX86_BUILTIN_COMIGTSS,
2082 IX86_BUILTIN_COMIGESS,
2083 IX86_BUILTIN_COMINEQSS,
2084 IX86_BUILTIN_UCOMIEQSS,
2085 IX86_BUILTIN_UCOMILTSS,
2086 IX86_BUILTIN_UCOMILESS,
2087 IX86_BUILTIN_UCOMIGTSS,
2088 IX86_BUILTIN_UCOMIGESS,
2089 IX86_BUILTIN_UCOMINEQSS,
2090
2091 IX86_BUILTIN_CVTPI2PS,
2092 IX86_BUILTIN_CVTPS2PI,
2093 IX86_BUILTIN_CVTSI2SS,
453ee231 2094 IX86_BUILTIN_CVTSI642SS,
bd793c65 2095 IX86_BUILTIN_CVTSS2SI,
453ee231 2096 IX86_BUILTIN_CVTSS2SI64,
bd793c65
BS
2097 IX86_BUILTIN_CVTTPS2PI,
2098 IX86_BUILTIN_CVTTSS2SI,
453ee231 2099 IX86_BUILTIN_CVTTSS2SI64,
bd793c65
BS
2100
2101 IX86_BUILTIN_MAXPS,
2102 IX86_BUILTIN_MAXSS,
2103 IX86_BUILTIN_MINPS,
2104 IX86_BUILTIN_MINSS,
2105
2106 IX86_BUILTIN_LOADAPS,
2107 IX86_BUILTIN_LOADUPS,
2108 IX86_BUILTIN_STOREAPS,
2109 IX86_BUILTIN_STOREUPS,
2110 IX86_BUILTIN_LOADSS,
2111 IX86_BUILTIN_STORESS,
2112 IX86_BUILTIN_MOVSS,
2113
2114 IX86_BUILTIN_MOVHLPS,
2115 IX86_BUILTIN_MOVLHPS,
2116 IX86_BUILTIN_LOADHPS,
2117 IX86_BUILTIN_LOADLPS,
2118 IX86_BUILTIN_STOREHPS,
2119 IX86_BUILTIN_STORELPS,
2120
2121 IX86_BUILTIN_MASKMOVQ,
2122 IX86_BUILTIN_MOVMSKPS,
2123 IX86_BUILTIN_PMOVMSKB,
2124
2125 IX86_BUILTIN_MOVNTPS,
2126 IX86_BUILTIN_MOVNTQ,
2127
f02e1358
JH
2128 IX86_BUILTIN_LOADDQA,
2129 IX86_BUILTIN_LOADDQU,
2130 IX86_BUILTIN_STOREDQA,
2131 IX86_BUILTIN_STOREDQU,
2132 IX86_BUILTIN_MOVQ,
2133 IX86_BUILTIN_LOADD,
2134 IX86_BUILTIN_STORED,
2135
2136 IX86_BUILTIN_CLRTI,
2137
bd793c65
BS
2138 IX86_BUILTIN_PACKSSWB,
2139 IX86_BUILTIN_PACKSSDW,
2140 IX86_BUILTIN_PACKUSWB,
2141
2142 IX86_BUILTIN_PADDB,
2143 IX86_BUILTIN_PADDW,
2144 IX86_BUILTIN_PADDD,
d50672ef 2145 IX86_BUILTIN_PADDQ,
bd793c65
BS
2146 IX86_BUILTIN_PADDSB,
2147 IX86_BUILTIN_PADDSW,
2148 IX86_BUILTIN_PADDUSB,
2149 IX86_BUILTIN_PADDUSW,
2150 IX86_BUILTIN_PSUBB,
2151 IX86_BUILTIN_PSUBW,
2152 IX86_BUILTIN_PSUBD,
d50672ef 2153 IX86_BUILTIN_PSUBQ,
bd793c65
BS
2154 IX86_BUILTIN_PSUBSB,
2155 IX86_BUILTIN_PSUBSW,
2156 IX86_BUILTIN_PSUBUSB,
2157 IX86_BUILTIN_PSUBUSW,
2158
2159 IX86_BUILTIN_PAND,
2160 IX86_BUILTIN_PANDN,
2161 IX86_BUILTIN_POR,
2162 IX86_BUILTIN_PXOR,
2163
2164 IX86_BUILTIN_PAVGB,
2165 IX86_BUILTIN_PAVGW,
2166
2167 IX86_BUILTIN_PCMPEQB,
2168 IX86_BUILTIN_PCMPEQW,
2169 IX86_BUILTIN_PCMPEQD,
2170 IX86_BUILTIN_PCMPGTB,
2171 IX86_BUILTIN_PCMPGTW,
2172 IX86_BUILTIN_PCMPGTD,
2173
2174 IX86_BUILTIN_PEXTRW,
2175 IX86_BUILTIN_PINSRW,
2176
2177 IX86_BUILTIN_PMADDWD,
2178
2179 IX86_BUILTIN_PMAXSW,
2180 IX86_BUILTIN_PMAXUB,
2181 IX86_BUILTIN_PMINSW,
2182 IX86_BUILTIN_PMINUB,
2183
2184 IX86_BUILTIN_PMULHUW,
2185 IX86_BUILTIN_PMULHW,
2186 IX86_BUILTIN_PMULLW,
2187
2188 IX86_BUILTIN_PSADBW,
2189 IX86_BUILTIN_PSHUFW,
2190
2191 IX86_BUILTIN_PSLLW,
2192 IX86_BUILTIN_PSLLD,
2193 IX86_BUILTIN_PSLLQ,
2194 IX86_BUILTIN_PSRAW,
2195 IX86_BUILTIN_PSRAD,
2196 IX86_BUILTIN_PSRLW,
2197 IX86_BUILTIN_PSRLD,
2198 IX86_BUILTIN_PSRLQ,
2199 IX86_BUILTIN_PSLLWI,
2200 IX86_BUILTIN_PSLLDI,
2201 IX86_BUILTIN_PSLLQI,
2202 IX86_BUILTIN_PSRAWI,
2203 IX86_BUILTIN_PSRADI,
2204 IX86_BUILTIN_PSRLWI,
2205 IX86_BUILTIN_PSRLDI,
2206 IX86_BUILTIN_PSRLQI,
2207
2208 IX86_BUILTIN_PUNPCKHBW,
2209 IX86_BUILTIN_PUNPCKHWD,
2210 IX86_BUILTIN_PUNPCKHDQ,
2211 IX86_BUILTIN_PUNPCKLBW,
2212 IX86_BUILTIN_PUNPCKLWD,
2213 IX86_BUILTIN_PUNPCKLDQ,
2214
2215 IX86_BUILTIN_SHUFPS,
2216
2217 IX86_BUILTIN_RCPPS,
2218 IX86_BUILTIN_RCPSS,
2219 IX86_BUILTIN_RSQRTPS,
2220 IX86_BUILTIN_RSQRTSS,
2221 IX86_BUILTIN_SQRTPS,
2222 IX86_BUILTIN_SQRTSS,
fce5a9f2 2223
bd793c65
BS
2224 IX86_BUILTIN_UNPCKHPS,
2225 IX86_BUILTIN_UNPCKLPS,
2226
2227 IX86_BUILTIN_ANDPS,
2228 IX86_BUILTIN_ANDNPS,
2229 IX86_BUILTIN_ORPS,
2230 IX86_BUILTIN_XORPS,
2231
2232 IX86_BUILTIN_EMMS,
2233 IX86_BUILTIN_LDMXCSR,
2234 IX86_BUILTIN_STMXCSR,
2235 IX86_BUILTIN_SFENCE,
bd793c65 2236
47f339cf
BS
2237 /* 3DNow! Original */
2238 IX86_BUILTIN_FEMMS,
2239 IX86_BUILTIN_PAVGUSB,
2240 IX86_BUILTIN_PF2ID,
2241 IX86_BUILTIN_PFACC,
2242 IX86_BUILTIN_PFADD,
2243 IX86_BUILTIN_PFCMPEQ,
2244 IX86_BUILTIN_PFCMPGE,
2245 IX86_BUILTIN_PFCMPGT,
2246 IX86_BUILTIN_PFMAX,
2247 IX86_BUILTIN_PFMIN,
2248 IX86_BUILTIN_PFMUL,
2249 IX86_BUILTIN_PFRCP,
2250 IX86_BUILTIN_PFRCPIT1,
2251 IX86_BUILTIN_PFRCPIT2,
2252 IX86_BUILTIN_PFRSQIT1,
2253 IX86_BUILTIN_PFRSQRT,
2254 IX86_BUILTIN_PFSUB,
2255 IX86_BUILTIN_PFSUBR,
2256 IX86_BUILTIN_PI2FD,
2257 IX86_BUILTIN_PMULHRW,
47f339cf
BS
2258
2259 /* 3DNow! Athlon Extensions */
2260 IX86_BUILTIN_PF2IW,
2261 IX86_BUILTIN_PFNACC,
2262 IX86_BUILTIN_PFPNACC,
2263 IX86_BUILTIN_PI2FW,
2264 IX86_BUILTIN_PSWAPDSI,
2265 IX86_BUILTIN_PSWAPDSF,
2266
e37af218 2267 IX86_BUILTIN_SSE_ZERO,
bd793c65
BS
2268 IX86_BUILTIN_MMX_ZERO,
2269
fbe5eb6d
BS
2270 /* SSE2 */
2271 IX86_BUILTIN_ADDPD,
2272 IX86_BUILTIN_ADDSD,
2273 IX86_BUILTIN_DIVPD,
2274 IX86_BUILTIN_DIVSD,
2275 IX86_BUILTIN_MULPD,
2276 IX86_BUILTIN_MULSD,
2277 IX86_BUILTIN_SUBPD,
2278 IX86_BUILTIN_SUBSD,
2279
2280 IX86_BUILTIN_CMPEQPD,
2281 IX86_BUILTIN_CMPLTPD,
2282 IX86_BUILTIN_CMPLEPD,
2283 IX86_BUILTIN_CMPGTPD,
2284 IX86_BUILTIN_CMPGEPD,
2285 IX86_BUILTIN_CMPNEQPD,
2286 IX86_BUILTIN_CMPNLTPD,
2287 IX86_BUILTIN_CMPNLEPD,
2288 IX86_BUILTIN_CMPNGTPD,
2289 IX86_BUILTIN_CMPNGEPD,
2290 IX86_BUILTIN_CMPORDPD,
2291 IX86_BUILTIN_CMPUNORDPD,
2292 IX86_BUILTIN_CMPNEPD,
2293 IX86_BUILTIN_CMPEQSD,
2294 IX86_BUILTIN_CMPLTSD,
2295 IX86_BUILTIN_CMPLESD,
fbe5eb6d
BS
2296 IX86_BUILTIN_CMPNEQSD,
2297 IX86_BUILTIN_CMPNLTSD,
2298 IX86_BUILTIN_CMPNLESD,
fbe5eb6d
BS
2299 IX86_BUILTIN_CMPORDSD,
2300 IX86_BUILTIN_CMPUNORDSD,
2301 IX86_BUILTIN_CMPNESD,
2302
2303 IX86_BUILTIN_COMIEQSD,
2304 IX86_BUILTIN_COMILTSD,
2305 IX86_BUILTIN_COMILESD,
2306 IX86_BUILTIN_COMIGTSD,
2307 IX86_BUILTIN_COMIGESD,
2308 IX86_BUILTIN_COMINEQSD,
2309 IX86_BUILTIN_UCOMIEQSD,
2310 IX86_BUILTIN_UCOMILTSD,
2311 IX86_BUILTIN_UCOMILESD,
2312 IX86_BUILTIN_UCOMIGTSD,
2313 IX86_BUILTIN_UCOMIGESD,
2314 IX86_BUILTIN_UCOMINEQSD,
2315
2316 IX86_BUILTIN_MAXPD,
2317 IX86_BUILTIN_MAXSD,
2318 IX86_BUILTIN_MINPD,
2319 IX86_BUILTIN_MINSD,
2320
2321 IX86_BUILTIN_ANDPD,
2322 IX86_BUILTIN_ANDNPD,
2323 IX86_BUILTIN_ORPD,
2324 IX86_BUILTIN_XORPD,
2325
2326 IX86_BUILTIN_SQRTPD,
2327 IX86_BUILTIN_SQRTSD,
2328
2329 IX86_BUILTIN_UNPCKHPD,
2330 IX86_BUILTIN_UNPCKLPD,
2331
2332 IX86_BUILTIN_SHUFPD,
2333
2334 IX86_BUILTIN_LOADAPD,
2335 IX86_BUILTIN_LOADUPD,
2336 IX86_BUILTIN_STOREAPD,
2337 IX86_BUILTIN_STOREUPD,
2338 IX86_BUILTIN_LOADSD,
2339 IX86_BUILTIN_STORESD,
2340 IX86_BUILTIN_MOVSD,
2341
2342 IX86_BUILTIN_LOADHPD,
2343 IX86_BUILTIN_LOADLPD,
2344 IX86_BUILTIN_STOREHPD,
2345 IX86_BUILTIN_STORELPD,
2346
2347 IX86_BUILTIN_CVTDQ2PD,
2348 IX86_BUILTIN_CVTDQ2PS,
2349
2350 IX86_BUILTIN_CVTPD2DQ,
2351 IX86_BUILTIN_CVTPD2PI,
2352 IX86_BUILTIN_CVTPD2PS,
2353 IX86_BUILTIN_CVTTPD2DQ,
2354 IX86_BUILTIN_CVTTPD2PI,
2355
2356 IX86_BUILTIN_CVTPI2PD,
2357 IX86_BUILTIN_CVTSI2SD,
453ee231 2358 IX86_BUILTIN_CVTSI642SD,
fbe5eb6d
BS
2359
2360 IX86_BUILTIN_CVTSD2SI,
453ee231 2361 IX86_BUILTIN_CVTSD2SI64,
fbe5eb6d
BS
2362 IX86_BUILTIN_CVTSD2SS,
2363 IX86_BUILTIN_CVTSS2SD,
2364 IX86_BUILTIN_CVTTSD2SI,
453ee231 2365 IX86_BUILTIN_CVTTSD2SI64,
fbe5eb6d
BS
2366
2367 IX86_BUILTIN_CVTPS2DQ,
2368 IX86_BUILTIN_CVTPS2PD,
2369 IX86_BUILTIN_CVTTPS2DQ,
2370
2371 IX86_BUILTIN_MOVNTI,
2372 IX86_BUILTIN_MOVNTPD,
2373 IX86_BUILTIN_MOVNTDQ,
2374
2375 IX86_BUILTIN_SETPD1,
2376 IX86_BUILTIN_SETPD,
2377 IX86_BUILTIN_CLRPD,
2378 IX86_BUILTIN_SETRPD,
2379 IX86_BUILTIN_LOADPD1,
2380 IX86_BUILTIN_LOADRPD,
2381 IX86_BUILTIN_STOREPD1,
2382 IX86_BUILTIN_STORERPD,
2383
2384 /* SSE2 MMX */
2385 IX86_BUILTIN_MASKMOVDQU,
2386 IX86_BUILTIN_MOVMSKPD,
2387 IX86_BUILTIN_PMOVMSKB128,
2388 IX86_BUILTIN_MOVQ2DQ,
f02e1358 2389 IX86_BUILTIN_MOVDQ2Q,
fbe5eb6d
BS
2390
2391 IX86_BUILTIN_PACKSSWB128,
2392 IX86_BUILTIN_PACKSSDW128,
2393 IX86_BUILTIN_PACKUSWB128,
2394
2395 IX86_BUILTIN_PADDB128,
2396 IX86_BUILTIN_PADDW128,
2397 IX86_BUILTIN_PADDD128,
2398 IX86_BUILTIN_PADDQ128,
2399 IX86_BUILTIN_PADDSB128,
2400 IX86_BUILTIN_PADDSW128,
2401 IX86_BUILTIN_PADDUSB128,
2402 IX86_BUILTIN_PADDUSW128,
2403 IX86_BUILTIN_PSUBB128,
2404 IX86_BUILTIN_PSUBW128,
2405 IX86_BUILTIN_PSUBD128,
2406 IX86_BUILTIN_PSUBQ128,
2407 IX86_BUILTIN_PSUBSB128,
2408 IX86_BUILTIN_PSUBSW128,
2409 IX86_BUILTIN_PSUBUSB128,
2410 IX86_BUILTIN_PSUBUSW128,
2411
2412 IX86_BUILTIN_PAND128,
2413 IX86_BUILTIN_PANDN128,
2414 IX86_BUILTIN_POR128,
2415 IX86_BUILTIN_PXOR128,
2416
2417 IX86_BUILTIN_PAVGB128,
2418 IX86_BUILTIN_PAVGW128,
2419
2420 IX86_BUILTIN_PCMPEQB128,
2421 IX86_BUILTIN_PCMPEQW128,
2422 IX86_BUILTIN_PCMPEQD128,
2423 IX86_BUILTIN_PCMPGTB128,
2424 IX86_BUILTIN_PCMPGTW128,
2425 IX86_BUILTIN_PCMPGTD128,
2426
2427 IX86_BUILTIN_PEXTRW128,
2428 IX86_BUILTIN_PINSRW128,
2429
2430 IX86_BUILTIN_PMADDWD128,
2431
2432 IX86_BUILTIN_PMAXSW128,
2433 IX86_BUILTIN_PMAXUB128,
2434 IX86_BUILTIN_PMINSW128,
2435 IX86_BUILTIN_PMINUB128,
2436
2437 IX86_BUILTIN_PMULUDQ,
2438 IX86_BUILTIN_PMULUDQ128,
2439 IX86_BUILTIN_PMULHUW128,
2440 IX86_BUILTIN_PMULHW128,
2441 IX86_BUILTIN_PMULLW128,
2442
2443 IX86_BUILTIN_PSADBW128,
2444 IX86_BUILTIN_PSHUFHW,
2445 IX86_BUILTIN_PSHUFLW,
2446 IX86_BUILTIN_PSHUFD,
2447
2448 IX86_BUILTIN_PSLLW128,
2449 IX86_BUILTIN_PSLLD128,
2450 IX86_BUILTIN_PSLLQ128,
2451 IX86_BUILTIN_PSRAW128,
2452 IX86_BUILTIN_PSRAD128,
2453 IX86_BUILTIN_PSRLW128,
2454 IX86_BUILTIN_PSRLD128,
2455 IX86_BUILTIN_PSRLQ128,
ab3146fd 2456 IX86_BUILTIN_PSLLDQI128,
fbe5eb6d
BS
2457 IX86_BUILTIN_PSLLWI128,
2458 IX86_BUILTIN_PSLLDI128,
2459 IX86_BUILTIN_PSLLQI128,
2460 IX86_BUILTIN_PSRAWI128,
2461 IX86_BUILTIN_PSRADI128,
ab3146fd 2462 IX86_BUILTIN_PSRLDQI128,
fbe5eb6d
BS
2463 IX86_BUILTIN_PSRLWI128,
2464 IX86_BUILTIN_PSRLDI128,
2465 IX86_BUILTIN_PSRLQI128,
2466
2467 IX86_BUILTIN_PUNPCKHBW128,
2468 IX86_BUILTIN_PUNPCKHWD128,
2469 IX86_BUILTIN_PUNPCKHDQ128,
077084dd 2470 IX86_BUILTIN_PUNPCKHQDQ128,
fbe5eb6d
BS
2471 IX86_BUILTIN_PUNPCKLBW128,
2472 IX86_BUILTIN_PUNPCKLWD128,
2473 IX86_BUILTIN_PUNPCKLDQ128,
f02e1358 2474 IX86_BUILTIN_PUNPCKLQDQ128,
fbe5eb6d
BS
2475
2476 IX86_BUILTIN_CLFLUSH,
2477 IX86_BUILTIN_MFENCE,
2478 IX86_BUILTIN_LFENCE,
2479
22c7c85e
L
2480 /* Prescott New Instructions. */
2481 IX86_BUILTIN_ADDSUBPS,
2482 IX86_BUILTIN_HADDPS,
2483 IX86_BUILTIN_HSUBPS,
2484 IX86_BUILTIN_MOVSHDUP,
2485 IX86_BUILTIN_MOVSLDUP,
2486 IX86_BUILTIN_ADDSUBPD,
2487 IX86_BUILTIN_HADDPD,
2488 IX86_BUILTIN_HSUBPD,
2489 IX86_BUILTIN_LOADDDUP,
2490 IX86_BUILTIN_MOVDDUP,
2491 IX86_BUILTIN_LDDQU,
2492
2493 IX86_BUILTIN_MONITOR,
2494 IX86_BUILTIN_MWAIT,
2495
bd793c65
BS
2496 IX86_BUILTIN_MAX
2497};
bd793c65 2498\f
b08de47e
MM
2499/* Max number of args passed in registers. If this is more than 3, we will
2500 have problems with ebx (register #4), since it is a caller save register and
2501 is also used as the pic register in ELF. So for now, don't allow more than
2502 3 registers to be passed in registers. */
2503
d2836273
JH
2504#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2505
bcf17554
JH
2506#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2507
2508#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 2509
c98f8742
JVA
2510\f
2511/* Specify the machine mode that this machine uses
2512 for the index in the tablejump instruction. */
6eb791fc 2513#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 2514
c98f8742
JVA
2515/* Define this as 1 if `char' should by default be signed; else as 0. */
2516#define DEFAULT_SIGNED_CHAR 1
2517
f4365627
JH
2518/* Number of bytes moved into a data cache for a single prefetch operation. */
2519#define PREFETCH_BLOCK ix86_cost->prefetch_block
2520
2521/* Number of prefetch operations that can be done in parallel. */
2522#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2523
c98f8742
JVA
2524/* Max number of bytes we can move from memory to memory
2525 in one reasonably fast instruction. */
65d9c0ab
JH
2526#define MOVE_MAX 16
2527
2528/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2529 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2530 number of bytes we can move with a single instruction. */
65d9c0ab 2531#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2532
7e24ffc9 2533/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 2534 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
2535 Increasing the value will always make code faster, but eventually
2536 incurs high cost in increased code size.
c98f8742 2537
e2e52e1b 2538 If you don't define this, a reasonable default is used. */
c98f8742 2539
e2e52e1b 2540#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 2541
45d78e7f
JJ
2542/* If a clear memory operation would take CLEAR_RATIO or more simple
2543 move-instruction sequences, we will do a clrmem or libcall instead. */
2544
2545#define CLEAR_RATIO (optimize_size ? 2 \
2546 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
2547
c98f8742
JVA
2548/* Define if shifts truncate the shift count
2549 which implies one can omit a sign-extension or zero-extension
2550 of a shift count. */
892a2d68 2551/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2552
2553/* #define SHIFT_COUNT_TRUNCATED */
2554
2555/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2556 is done just by pretending it is already truncated. */
2557#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2558
d9f32422
JH
2559/* A macro to update M and UNSIGNEDP when an object whose type is
2560 TYPE and which has the specified mode and signedness is to be
2561 stored in a register. This macro is only called when TYPE is a
2562 scalar type.
2563
f710504c 2564 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2565 quantities to SImode. The choice depends on target type. */
2566
2567#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2568do { \
d9f32422
JH
2569 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2570 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2571 (MODE) = SImode; \
2572} while (0)
d9f32422 2573
c98f8742
JVA
2574/* Specify the machine mode that pointers have.
2575 After generation of rtl, the compiler makes no further distinction
2576 between pointers and any other objects of this machine mode. */
65d9c0ab 2577#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2578
2579/* A function address in a call instruction
2580 is a byte address (for indexing purposes)
2581 so give the MEM rtx a byte's mode. */
2582#define FUNCTION_MODE QImode
d4ba09c0 2583\f
96e7ae40
JH
2584/* A C expression for the cost of moving data from a register in class FROM to
2585 one in class TO. The classes are expressed using the enumeration values
2586 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2587 interpreted relative to that.
d4ba09c0 2588
96e7ae40
JH
2589 It is not required that the cost always equal 2 when FROM is the same as TO;
2590 on some machines it is expensive to move between registers if they are not
f84aa48a 2591 general registers. */
d4ba09c0 2592
f84aa48a 2593#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2594 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2595
2596/* A C expression for the cost of moving data of mode M between a
2597 register and memory. A value of 2 is the default; this cost is
2598 relative to those in `REGISTER_MOVE_COST'.
2599
2600 If moving between registers and memory is more expensive than
2601 between two registers, you should define this macro to express the
fa79946e 2602 relative cost. */
d4ba09c0 2603
d9a5f180
GS
2604#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2605 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2606
2607/* A C expression for the cost of a branch instruction. A value of 1
2608 is the default; other values are interpreted relative to that. */
2609
e075ae69 2610#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2611
2612/* Define this macro as a C expression which is nonzero if accessing
2613 less than a word of memory (i.e. a `char' or a `short') is no
2614 faster than accessing a word of memory, i.e., if such access
2615 require more than one instruction or if there is no difference in
2616 cost between byte and (aligned) word loads.
2617
2618 When this macro is not defined, the compiler will access a field by
2619 finding the smallest containing object; when it is defined, a
2620 fullword load will be used if alignment permits. Unless bytes
2621 accesses are faster than word accesses, using word accesses is
2622 preferable since it may eliminate subsequent memory access if
2623 subsequent accesses occur to other fields in the same word of the
2624 structure, but to different bytes. */
2625
2626#define SLOW_BYTE_ACCESS 0
2627
2628/* Nonzero if access to memory by shorts is slow and undesirable. */
2629#define SLOW_SHORT_ACCESS 0
2630
d4ba09c0
SC
2631/* Define this macro to be the value 1 if unaligned accesses have a
2632 cost many times greater than aligned accesses, for example if they
2633 are emulated in a trap handler.
2634
9cd10576
KH
2635 When this macro is nonzero, the compiler will act as if
2636 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2637 moves. This can cause significantly more instructions to be
9cd10576 2638 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2639 accesses only add a cycle or two to the time for a memory access.
2640
2641 If the value of this macro is always zero, it need not be defined. */
2642
e1565e65 2643/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2644
d4ba09c0
SC
2645/* Define this macro if it is as good or better to call a constant
2646 function address than to call an address kept in a register.
2647
2648 Desirable on the 386 because a CALL with a constant address is
2649 faster than one with a register address. */
2650
2651#define NO_FUNCTION_CSE
c98f8742 2652\f
c572e5ba
JVA
2653/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2654 return the mode to be used for the comparison.
2655
2656 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2657 VOIDmode should be used in all other cases.
c572e5ba 2658
16189740 2659 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2660 possible, to allow for more combinations. */
c98f8742 2661
d9a5f180 2662#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2663
9cd10576 2664/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2665 reversed. */
2666
2667#define REVERSIBLE_CC_MODE(MODE) 1
2668
2669/* A C expression whose value is reversed condition code of the CODE for
2670 comparison done in CC_MODE mode. */
3c5cb3e4 2671#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2672
c98f8742
JVA
2673\f
2674/* Control the assembler format that we output, to the extent
2675 this does not vary between assemblers. */
2676
2677/* How to refer to registers in assembler output.
892a2d68 2678 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742
JVA
2679
2680/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2681 For non floating point regs, the following are the HImode names.
2682
2683 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2684 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2685
a7180f70
BS
2686#define HI_REGISTER_NAMES \
2687{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0
ZW
2688 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2689 "argp", "flags", "fpsr", "dirflag", "frame", \
a7180f70 2690 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
3f3f2124
JH
2691 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2692 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2693 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2694
c98f8742
JVA
2695#define REGISTER_NAMES HI_REGISTER_NAMES
2696
2697/* Table of additional register names to use in user input. */
2698
2699#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2700{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2701 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2702 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2703 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2704 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
a7180f70
BS
2705 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2706 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2707 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
c98f8742
JVA
2708
2709/* Note we are omitting these since currently I don't know how
2710to get gcc to use these, since they want the same but different
2711number as al, and ax.
2712*/
2713
c98f8742 2714#define QI_REGISTER_NAMES \
3f3f2124 2715{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2716
2717/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2718 of regs 0 through 3. */
c98f8742
JVA
2719
2720#define QI_HIGH_REGISTER_NAMES \
2721{"ah", "dh", "ch", "bh", }
2722
2723/* How to renumber registers for dbx and gdb. */
2724
d9a5f180
GS
2725#define DBX_REGISTER_NUMBER(N) \
2726 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849
RH
2727
2728extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
0f7fa3d0 2729extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
83774849 2730extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2731
469ac993
JM
2732/* Before the prologue, RA is at 0(%esp). */
2733#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2734 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2735
e414ab29 2736/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2737#define RETURN_ADDR_RTX(COUNT, FRAME) \
2738 ((COUNT) == 0 \
2739 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2740 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2741
892a2d68 2742/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2743#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2744
a6ab3aad 2745/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2746#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2747
1020a5ab
RH
2748/* Describe how we implement __builtin_eh_return. */
2749#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2750#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2751
ad919812 2752
e4c4ebeb
RH
2753/* Select a format to encode pointers in exception handling data. CODE
2754 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2755 true if the symbol may be affected by dynamic relocations.
2756
2757 ??? All x86 object file formats are capable of representing this.
2758 After all, the relocation needed is the same as for the call insn.
2759 Whether or not a particular assembler allows us to enter such, I
2760 guess we'll have to see. */
d9a5f180 2761#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
b932f770 2762 (flag_pic \
d9a5f180 2763 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
e4c4ebeb
RH
2764 : DW_EH_PE_absptr)
2765
c98f8742
JVA
2766/* This is how to output an insn to push a register on the stack.
2767 It need not be very fast code. */
2768
d9a5f180 2769#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2770do { \
2771 if (TARGET_64BIT) \
2772 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2773 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2774 else \
2775 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2776} while (0)
c98f8742
JVA
2777
2778/* This is how to output an insn to pop a register from the stack.
2779 It need not be very fast code. */
2780
d9a5f180 2781#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2782do { \
2783 if (TARGET_64BIT) \
2784 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2785 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2786 else \
2787 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2788} while (0)
c98f8742 2789
f88c65f7 2790/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2791
2792#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2793 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2794
f88c65f7 2795/* This is how to output an element of a case-vector that is relative. */
c98f8742 2796
33f7f353 2797#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2798 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7
RH
2799
2800/* Under some conditions we need jump tables in the text section, because
2801 the assembler cannot handle label differences between sections. */
2802
2803#define JUMP_TABLES_IN_TEXT_SECTION \
2804 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
c98f8742 2805
b9203463
RH
2806/* Emit a dtp-relative reference to a TLS variable. */
2807
2808#ifdef HAVE_AS_TLS
2809#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2810 i386_output_dwarf_dtprel (FILE, SIZE, X)
2811#endif
2812
cea3bd3e
RH
2813/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2814 and switch back. For x86 we do this only to save a few bytes that
2815 would otherwise be unused in the text section. */
2816#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2817 asm (SECTION_OP "\n\t" \
2818 "call " USER_LABEL_PREFIX #FUNC "\n" \
2819 TEXT_SECTION_ASM_OP);
74b42c8b 2820\f
c98f8742
JVA
2821/* Print operand X (an rtx) in assembler syntax to file FILE.
2822 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2823 Effect of various CODE letters is described in i386.c near
2824 print_operand function. */
c98f8742 2825
d9a5f180 2826#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2827 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2828
2829#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2830 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2831
2832#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2833 print_operand_address ((FILE), (ADDR))
c98f8742 2834
f996902d
RH
2835#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2836do { \
2837 if (! output_addr_const_extra (FILE, (X))) \
2838 goto FAIL; \
2839} while (0);
2840
c98f8742
JVA
2841/* a letter which is not needed by the normal asm syntax, which
2842 we can use for operand syntax in the extended asm */
2843
2844#define ASM_OPERAND_LETTER '#'
c98f8742 2845#define RET return ""
d9a5f180 2846#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 2847\f
5bf0ebab
RH
2848/* Which processor to schedule for. The cpu attribute defines a list that
2849 mirrors this list, so changes to i386.md must be made at the same time. */
2850
2851enum processor_type
2852{
2853 PROCESSOR_I386, /* 80386 */
2854 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2855 PROCESSOR_PENTIUM,
2856 PROCESSOR_PENTIUMPRO,
2857 PROCESSOR_K6,
2858 PROCESSOR_ATHLON,
2859 PROCESSOR_PENTIUM4,
4977bab6 2860 PROCESSOR_K8,
89c43c0a 2861 PROCESSOR_NOCONA,
5bf0ebab
RH
2862 PROCESSOR_max
2863};
2864
9e555526
RH
2865extern enum processor_type ix86_tune;
2866extern const char *ix86_tune_string;
5bf0ebab
RH
2867
2868extern enum processor_type ix86_arch;
2869extern const char *ix86_arch_string;
2870
2871enum fpmath_unit
2872{
2873 FPMATH_387 = 1,
2874 FPMATH_SSE = 2
2875};
2876
2877extern enum fpmath_unit ix86_fpmath;
2878extern const char *ix86_fpmath_string;
2879
f996902d
RH
2880enum tls_dialect
2881{
2882 TLS_DIALECT_GNU,
2883 TLS_DIALECT_SUN
2884};
2885
2886extern enum tls_dialect ix86_tls_dialect;
2887extern const char *ix86_tls_dialect_string;
2888
6189a572 2889enum cmodel {
5bf0ebab
RH
2890 CM_32, /* The traditional 32-bit ABI. */
2891 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2892 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2893 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2894 CM_LARGE, /* No assumptions. */
2895 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
6189a572
JH
2896};
2897
5bf0ebab
RH
2898extern enum cmodel ix86_cmodel;
2899extern const char *ix86_cmodel_string;
2900
8362f420
JH
2901/* Size of the RED_ZONE area. */
2902#define RED_ZONE_SIZE 128
2903/* Reserved area of the red zone for temporaries. */
2904#define RED_ZONE_RESERVE 8
c93e80a5
JH
2905
2906enum asm_dialect {
2907 ASM_ATT,
2908 ASM_INTEL
2909};
5bf0ebab 2910
c93e80a5 2911extern const char *ix86_asm_string;
80f33d06 2912extern enum asm_dialect ix86_asm_dialect;
5bf0ebab
RH
2913
2914extern int ix86_regparm;
fce5a9f2 2915extern const char *ix86_regparm_string;
5bf0ebab 2916
95899b34 2917extern unsigned int ix86_preferred_stack_boundary;
5bf0ebab
RH
2918extern const char *ix86_preferred_stack_boundary_string;
2919
2920extern int ix86_branch_cost;
2921extern const char *ix86_branch_cost_string;
2922
2923extern const char *ix86_debug_arg_string;
2924extern const char *ix86_debug_addr_string;
2925
2926/* Obsoleted by -f options. Remove before 3.2 ships. */
2927extern const char *ix86_align_loops_string;
2928extern const char *ix86_align_jumps_string;
2929extern const char *ix86_align_funcs_string;
2930
2931/* Smallest class containing REGNO. */
2932extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2933
d9a5f180
GS
2934extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2935extern rtx ix86_compare_op1; /* operand 1 for comparisons */
22fb740d
JH
2936\f
2937/* To properly truncate FP values into integers, we need to set i387 control
2938 word. We can't emit proper mode switching code before reload, as spills
2939 generated by reload may truncate values incorrectly, but we still can avoid
2940 redundant computation of new control word by the mode switching pass.
2941 The fldcw instructions are still emitted redundantly, but this is probably
2942 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2943 the sequence.
22fb740d
JH
2944
2945 The machinery is to emit simple truncation instructions and split them
2946 before reload to instructions having USEs of two memory locations that
2947 are filled by this code to old and new control word.
fce5a9f2 2948
22fb740d
JH
2949 Post-reload pass may be later used to eliminate the redundant fildcw if
2950 needed. */
2951
22fb740d
JH
2952
2953/* Define this macro if the port needs extra instructions inserted
2954 for mode switching in an optimizing compilation. */
2955
fa1a0d02 2956#define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
22fb740d
JH
2957
2958/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2959 initializer for an array of integers. Each initializer element N
2960 refers to an entity that needs mode switching, and specifies the
2961 number of different modes that might need to be set for this
2962 entity. The position of the initializer in the initializer -
2963 starting counting at zero - determines the integer that is used to
2964 refer to the mode-switched entity in question. */
2965
edeacc14 2966#define NUM_MODES_FOR_MODE_SWITCHING { I387_CW_ANY }
22fb740d
JH
2967
2968/* ENTITY is an integer specifying a mode-switched entity. If
2969 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2970 return an integer value not larger than the corresponding element
2971 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
1d1df0df
JH
2972 must be switched into prior to the execution of INSN.
2973
2974 The mode UNINITIALIZED is used to force re-load of possibly previously
2975 stored control word after function call. The mode ANY specify that
2976 function has no requirements on the control word and make no changes
2977 in the bits we are interested in. */
22fb740d
JH
2978
2979#define MODE_NEEDED(ENTITY, I) \
2980 (GET_CODE (I) == CALL_INSN \
2981 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
2982 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
1d1df0df 2983 ? I387_CW_UNINITIALIZED \
edeacc14
UB
2984 : recog_memoized (I) < 0 \
2985 ? I387_CW_ANY \
2986 : get_attr_i387_cw (I))
22fb740d
JH
2987
2988/* This macro specifies the order in which modes for ENTITY are
2989 processed. 0 is the highest priority. */
2990
d9a5f180 2991#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2992
2993/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2994 is the set of hard registers live at the point where the insn(s)
2995 are to be inserted. */
2996
2997#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2998 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
22fb740d 2999 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
edeacc14
UB
3000 assign_386_stack_local (HImode, 2), \
3001 MODE), 0 \
22fb740d 3002 : 0)
0f0138b6
JH
3003\f
3004/* Avoid renaming of stack registers, as doing so in combination with
3005 scheduling just increases amount of live registers at time and in
3006 the turn amount of fxch instructions needed.
3007
43f3a59d 3008 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 3009
d9a5f180
GS
3010#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3011 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 3012
3b3c6a3f 3013\f
e91f04de
CH
3014#define DLL_IMPORT_EXPORT_PREFIX '#'
3015
3016#define FASTCALL_PREFIX '@'
fa1a0d02
JH
3017\f
3018struct machine_function GTY(())
3019{
3020 struct stack_local_entry *stack_locals;
3021 const char *some_ld_name;
3022 int save_varrargs_registers;
3023 int accesses_prev_frame;
3024 int optimize_mode_switching;
d9b40e8d
JH
3025 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3026 determine the style used. */
3027 int use_fast_prologue_epilogue;
d7394366
JH
3028 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3029 for. */
3030 int use_fast_prologue_epilogue_nregs;
fa1a0d02
JH
3031};
3032
3033#define ix86_stack_locals (cfun->machine->stack_locals)
3034#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3035#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
249e6b63 3036
1bc7c5b6
ZW
3037/* Control behavior of x86_file_start. */
3038#define X86_FILE_START_VERSION_DIRECTIVE false
3039#define X86_FILE_START_FLTUSED false
3040
c98f8742
JVA
3041/*
3042Local variables:
3043version-control: t
3044End:
3045*/
This page took 2.252348 seconds and 5 git commands to generate.