]>
Commit | Line | Data |
---|---|---|
8b109b37 RK |
1 | /* Definitions of target machine for GNU compiler for Intel X86 |
2 | (386, 486, Pentium). | |
3 | Copyright (C) 1988, 1992, 1994, 1995 Free Software Foundation, Inc. | |
c98f8742 JVA |
4 | |
5 | This file is part of GNU CC. | |
6 | ||
7 | GNU CC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GNU CC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GNU CC; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | ||
22 | /* The purpose of this file is to define the characteristics of the i386, | |
b4ac57ab | 23 | independent of assembler syntax or operating system. |
c98f8742 JVA |
24 | |
25 | Three other files build on this one to describe a specific assembler syntax: | |
26 | bsd386.h, att386.h, and sun386.h. | |
27 | ||
28 | The actual tm.h file for a particular system should include | |
29 | this file, and then the file for the appropriate assembler syntax. | |
30 | ||
31 | Many macros that specify assembler syntax are omitted entirely from | |
32 | this file because they really belong in the files for particular | |
33 | assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE, | |
34 | PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, | |
35 | PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */ | |
36 | ||
37 | /* Names to predefine in the preprocessor for this target machine. */ | |
38 | ||
39 | #define I386 1 | |
40 | ||
95393dfd CH |
41 | /* Stubs for half-pic support if not OSF/1 reference platform. */ |
42 | ||
43 | #ifndef HALF_PIC_P | |
44 | #define HALF_PIC_P() 0 | |
45 | #define HALF_PIC_NUMBER_PTRS 0 | |
46 | #define HALF_PIC_NUMBER_REFS 0 | |
47 | #define HALF_PIC_ENCODE(DECL) | |
48 | #define HALF_PIC_DECLARE(NAME) | |
49 | #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.") | |
50 | #define HALF_PIC_ADDRESS_P(X) 0 | |
51 | #define HALF_PIC_PTR(X) X | |
52 | #define HALF_PIC_FINISH(STREAM) | |
53 | #endif | |
54 | ||
c98f8742 JVA |
55 | /* Run-time compilation parameters selecting different hardware subsets. */ |
56 | ||
57 | extern int target_flags; | |
58 | ||
59 | /* Macros used in the machine description to test the flags. */ | |
60 | ||
35b528be RS |
61 | /* configure can arrage to make this 2, to force a 486. */ |
62 | #ifndef TARGET_CPU_DEFAULT | |
63 | #define TARGET_CPU_DEFAULT 0 | |
64 | #endif | |
65 | ||
3b3c6a3f MM |
66 | /* Masks for the -m switches */ |
67 | #define MASK_80387 000000000001 /* Hardware floating point */ | |
68 | #define MASK_486 000000000002 /* 80486 specific */ | |
69 | #define MASK_NOTUSED 000000000004 /* bit not currently used */ | |
70 | #define MASK_RTD 000000000010 /* Use ret that pops args */ | |
71 | #define MASK_REGPARM 000000000020 /* Pass args in eax, edx */ | |
72 | #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */ | |
73 | #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */ | |
74 | #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */ | |
75 | #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */ | |
76 | ||
77 | /* Temporary codegen switches */ | |
78 | #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */ | |
79 | #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */ | |
80 | #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */ | |
81 | ||
82 | /* Use the floating point instructions */ | |
83 | #define TARGET_80387 (target_flags & MASK_80387) | |
84 | ||
c98f8742 JVA |
85 | /* Compile using ret insn that pops args. |
86 | This will not work unless you use prototypes at least | |
87 | for all functions that can take varying numbers of args. */ | |
3b3c6a3f MM |
88 | #define TARGET_RTD (target_flags & MASK_RTD) |
89 | ||
c98f8742 JVA |
90 | /* Compile passing first two args in regs 0 and 1. |
91 | This exists only to test compiler features that will | |
92 | be needed for RISC chips. It is not usable | |
93 | and is not intended to be usable on this cpu. */ | |
3b3c6a3f | 94 | #define TARGET_REGPARM (target_flags & MASK_RTD) |
c98f8742 | 95 | |
d7cd15e9 RS |
96 | /* Put uninitialized locals into bss, not data. |
97 | Meaningful only on svr3. */ | |
3b3c6a3f | 98 | #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB) |
d7cd15e9 | 99 | |
c572e5ba JVA |
100 | /* Use IEEE floating point comparisons. These handle correctly the cases |
101 | where the result of a comparison is unordered. Normally SIGFPE is | |
102 | generated in such cases, in which case this isn't needed. */ | |
3b3c6a3f | 103 | #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP) |
c572e5ba | 104 | |
8c2bf92a JVA |
105 | /* Functions that return a floating point value may return that value |
106 | in the 387 FPU or in 386 integer registers. If set, this flag causes | |
107 | the 387 to be used, which is compatible with most calling conventions. */ | |
3b3c6a3f | 108 | #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS) |
8c2bf92a | 109 | |
099800e3 RK |
110 | /* Disable generation of FP sin, cos and sqrt operations for 387. |
111 | This is because FreeBSD lacks these in the math-emulator-code */ | |
3b3c6a3f MM |
112 | #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387) |
113 | ||
114 | /* Temporary switches for tuning code generation */ | |
115 | ||
116 | /* Disable 32x32->64 bit multiplies that are used for long long multiplies | |
117 | and division by constants, but sometimes cause reload problems. */ | |
118 | #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY) | |
119 | #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY) | |
120 | ||
121 | /* Debug GO_IF_LEGITIMATE_ADDRESS */ | |
122 | #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR) | |
123 | ||
124 | /* Hack macros for tuning code generation */ | |
125 | #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */ | |
126 | ||
127 | /* Specific hardware switches */ | |
128 | #define TARGET_486 (target_flags & MASK_486) /* 80486DX, 80486SX, 80486DX[24] */ | |
129 | #define TARGET_386 (!TARGET_486) /* 80386 */ | |
130 | ||
131 | #define TARGET_SWITCHES \ | |
132 | { { "80387", MASK_80387 }, \ | |
133 | { "no-80387", -MASK_80387 }, \ | |
134 | { "hard-float", MASK_80387 }, \ | |
135 | { "soft-float", -MASK_80387 }, \ | |
136 | { "no-soft-float", MASK_80387 }, \ | |
137 | { "386", -MASK_486 }, \ | |
138 | { "no-386", MASK_486 }, \ | |
139 | { "486", MASK_486 }, \ | |
140 | { "no-486", -MASK_486 }, \ | |
141 | { "rtd", MASK_RTD }, \ | |
142 | { "no-rtd", -MASK_RTD }, \ | |
143 | { "regparm", MASK_REGPARM }, \ | |
144 | { "no-regparm", -MASK_REGPARM }, \ | |
145 | { "svr3-shlib", MASK_SVR3_SHLIB }, \ | |
146 | { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \ | |
147 | { "ieee-fp", MASK_IEEE_FP }, \ | |
148 | { "no-ieee-fp", -MASK_IEEE_FP }, \ | |
149 | { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \ | |
150 | { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \ | |
151 | { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \ | |
152 | { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \ | |
153 | { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \ | |
154 | { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \ | |
155 | { "debug-addr", MASK_DEBUG_ADDR }, \ | |
156 | { "no-debug-addr", -MASK_DEBUG_ADDR }, \ | |
157 | { "move", -MASK_NO_MOVE }, \ | |
158 | { "no-move", MASK_NO_MOVE }, \ | |
159 | SUBTARGET_SWITCHES \ | |
160 | { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}} | |
95393dfd | 161 | |
f5316dfe MM |
162 | /* This macro is similar to `TARGET_SWITCHES' but defines names of |
163 | command options that have values. Its definition is an | |
164 | initializer with a subgrouping for each command option. | |
165 | ||
166 | Each subgrouping contains a string constant, that defines the | |
167 | fixed part of the option name, and the address of a variable. The | |
168 | variable, type `char *', is set to the variable part of the given | |
169 | option if the fixed part matches. The actual option name is made | |
170 | by appending `-m' to the specified name. */ | |
171 | #define TARGET_OPTIONS \ | |
172 | { { "reg-alloc=", &i386_reg_alloc_order }, \ | |
173 | SUBTARGET_OPTIONS } | |
174 | ||
175 | /* Sometimes certain combinations of command options do not make | |
176 | sense on a particular target machine. You can define a macro | |
177 | `OVERRIDE_OPTIONS' to take account of this. This macro, if | |
178 | defined, is executed once just after all the command options have | |
179 | been parsed. | |
180 | ||
181 | Don't use this macro to turn on various extra optimizations for | |
182 | `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ | |
183 | ||
184 | #define OVERRIDE_OPTIONS override_options () | |
185 | ||
186 | /* These are meant to be redefined in the host dependent files */ | |
95393dfd | 187 | #define SUBTARGET_SWITCHES |
f5316dfe | 188 | #define SUBTARGET_OPTIONS |
95393dfd | 189 | |
c98f8742 JVA |
190 | \f |
191 | /* target machine storage layout */ | |
192 | ||
0038aea6 JVA |
193 | /* Define for XFmode extended real floating point support. |
194 | This will automatically cause REAL_ARITHMETIC to be defined. */ | |
195 | #define LONG_DOUBLE_TYPE_SIZE 96 | |
196 | ||
197 | /* Define if you don't want extended real, but do want to use the | |
198 | software floating point emulator for REAL_ARITHMETIC and | |
199 | decimal <-> binary conversion. */ | |
200 | /* #define REAL_ARITHMETIC */ | |
201 | ||
c98f8742 JVA |
202 | /* Define this if most significant byte of a word is the lowest numbered. */ |
203 | /* That is true on the 80386. */ | |
204 | ||
205 | #define BITS_BIG_ENDIAN 0 | |
206 | ||
207 | /* Define this if most significant byte of a word is the lowest numbered. */ | |
208 | /* That is not true on the 80386. */ | |
209 | #define BYTES_BIG_ENDIAN 0 | |
210 | ||
211 | /* Define this if most significant word of a multiword number is the lowest | |
212 | numbered. */ | |
213 | /* Not true for 80386 */ | |
214 | #define WORDS_BIG_ENDIAN 0 | |
215 | ||
b4ac57ab | 216 | /* number of bits in an addressable storage unit */ |
c98f8742 JVA |
217 | #define BITS_PER_UNIT 8 |
218 | ||
219 | /* Width in bits of a "word", which is the contents of a machine register. | |
220 | Note that this is not necessarily the width of data type `int'; | |
221 | if using 16-bit ints on a 80386, this would still be 32. | |
222 | But on a machine with 16-bit registers, this would be 16. */ | |
223 | #define BITS_PER_WORD 32 | |
224 | ||
225 | /* Width of a word, in units (bytes). */ | |
226 | #define UNITS_PER_WORD 4 | |
227 | ||
228 | /* Width in bits of a pointer. | |
229 | See also the macro `Pmode' defined below. */ | |
230 | #define POINTER_SIZE 32 | |
231 | ||
232 | /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
233 | #define PARM_BOUNDARY 32 | |
234 | ||
235 | /* Boundary (in *bits*) on which stack pointer should be aligned. */ | |
236 | #define STACK_BOUNDARY 32 | |
237 | ||
238 | /* Allocation boundary (in *bits*) for the code of a function. | |
239 | For i486, we get better performance by aligning to a cache | |
240 | line (i.e. 16 byte) boundary. */ | |
241 | #define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32) | |
242 | ||
243 | /* Alignment of field after `int : 0' in a structure. */ | |
244 | ||
245 | #define EMPTY_FIELD_BOUNDARY 32 | |
246 | ||
247 | /* Minimum size in bits of the largest boundary to which any | |
248 | and all fundamental data types supported by the hardware | |
249 | might need to be aligned. No data type wants to be aligned | |
250 | rounder than this. The i386 supports 64-bit floating point | |
251 | quantities, but these can be aligned on any 32-bit boundary. */ | |
252 | #define BIGGEST_ALIGNMENT 32 | |
253 | ||
b4ac57ab | 254 | /* Set this non-zero if move instructions will actually fail to work |
c98f8742 | 255 | when given unaligned data. */ |
b4ac57ab | 256 | #define STRICT_ALIGNMENT 0 |
c98f8742 JVA |
257 | |
258 | /* If bit field type is int, don't let it cross an int, | |
259 | and give entire struct the alignment of an int. */ | |
260 | /* Required on the 386 since it doesn't have bitfield insns. */ | |
261 | #define PCC_BITFIELD_TYPE_MATTERS 1 | |
262 | ||
263 | /* Align loop starts for optimal branching. */ | |
264 | #define ASM_OUTPUT_LOOP_ALIGN(FILE) \ | |
265 | ASM_OUTPUT_ALIGN (FILE, 2) | |
266 | ||
267 | /* This is how to align an instruction for optimal branching. | |
268 | On i486 we'll get better performance by aligning on a | |
269 | cache line (i.e. 16 byte) boundary. */ | |
270 | #define ASM_OUTPUT_ALIGN_CODE(FILE) \ | |
271 | ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2)) | |
272 | \f | |
273 | /* Standard register usage. */ | |
274 | ||
275 | /* This processor has special stack-like registers. See reg-stack.c | |
276 | for details. */ | |
277 | ||
278 | #define STACK_REGS | |
279 | ||
280 | /* Number of actual hardware registers. | |
281 | The hardware registers are assigned numbers for the compiler | |
282 | from 0 to just below FIRST_PSEUDO_REGISTER. | |
283 | All registers that the compiler knows about must be given numbers, | |
284 | even those that are not normally considered general registers. | |
285 | ||
286 | In the 80386 we give the 8 general purpose registers the numbers 0-7. | |
287 | We number the floating point registers 8-15. | |
288 | Note that registers 0-7 can be accessed as a short or int, | |
289 | while only 0-3 may be used with byte `mov' instructions. | |
290 | ||
291 | Reg 16 does not correspond to any hardware register, but instead | |
292 | appears in the RTL as an argument pointer prior to reload, and is | |
293 | eliminated during reloading in favor of either the stack or frame | |
294 | pointer. */ | |
295 | ||
296 | #define FIRST_PSEUDO_REGISTER 17 | |
297 | ||
298 | /* 1 for registers that have pervasive standard uses | |
299 | and are not available for the register allocator. | |
300 | On the 80386, the stack pointer is such, as is the arg pointer. */ | |
301 | #define FIXED_REGISTERS \ | |
302 | /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \ | |
303 | { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 } | |
304 | ||
305 | /* 1 for registers not available across function calls. | |
306 | These must include the FIXED_REGISTERS and also any | |
307 | registers that can be used without being saved. | |
308 | The latter must include the registers where values are returned | |
309 | and the register where structure-value addresses are passed. | |
310 | Aside from that, you can include as many other registers as you like. */ | |
311 | ||
312 | #define CALL_USED_REGISTERS \ | |
313 | /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \ | |
314 | { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } | |
315 | ||
3b3c6a3f MM |
316 | /* Order in which to allocate registers. Each register must be |
317 | listed once, even those in FIXED_REGISTERS. List frame pointer | |
318 | late and fixed registers last. Note that, in general, we prefer | |
319 | registers listed in CALL_USED_REGISTERS, keeping the others | |
320 | available for storage of persistent values. | |
321 | ||
322 | Three different versions of REG_ALLOC_ORDER have been tried: | |
323 | ||
324 | If the order is edx, ecx, eax, ... it produces a slightly faster compiler, | |
325 | but slower code on simple functions returning values in eax. | |
326 | ||
327 | If the order is eax, ecx, edx, ... it causes reload to abort when compiling | |
328 | perl 4.036 due to not being able to create a DImode register (to hold a 2 | |
329 | word union). | |
330 | ||
331 | If the order is eax, edx, ecx, ... it produces better code for simple | |
332 | functions, and a slightly slower compiler. Users complained about the code | |
333 | generated by allocating edx first, so restore the 'natural' order of things. */ | |
334 | ||
184ff798 | 335 | #define REG_ALLOC_ORDER \ |
f5316dfe MM |
336 | /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \ |
337 | { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 } | |
338 | ||
339 | /* A C statement (sans semicolon) to choose the order in which to | |
340 | allocate hard registers for pseudo-registers local to a basic | |
341 | block. | |
342 | ||
343 | Store the desired register order in the array `reg_alloc_order'. | |
344 | Element 0 should be the register to allocate first; element 1, the | |
345 | next register; and so on. | |
346 | ||
347 | The macro body should not assume anything about the contents of | |
348 | `reg_alloc_order' before execution of the macro. | |
349 | ||
350 | On most machines, it is not necessary to define this macro. */ | |
351 | ||
352 | #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc () | |
184ff798 | 353 | |
c98f8742 JVA |
354 | /* Macro to conditionally modify fixed_regs/call_used_regs. */ |
355 | #define CONDITIONAL_REGISTER_USAGE \ | |
356 | { \ | |
357 | if (flag_pic) \ | |
358 | { \ | |
359 | fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ | |
360 | call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ | |
361 | } \ | |
8c2bf92a JVA |
362 | if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \ |
363 | { \ | |
364 | int i; \ | |
365 | HARD_REG_SET x; \ | |
366 | COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \ | |
367 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \ | |
368 | if (TEST_HARD_REG_BIT (x, i)) \ | |
369 | fixed_regs[i] = call_used_regs[i] = 1; \ | |
370 | } \ | |
c98f8742 JVA |
371 | } |
372 | ||
373 | /* Return number of consecutive hard regs needed starting at reg REGNO | |
374 | to hold something of mode MODE. | |
375 | This is ordinarily the length in words of a value of mode MODE | |
376 | but can be less for certain modes in special long registers. | |
377 | ||
378 | Actually there are no two word move instructions for consecutive | |
379 | registers. And only registers 0-3 may have mov byte instructions | |
380 | applied to them. | |
381 | */ | |
382 | ||
383 | #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
384 | (FP_REGNO_P (REGNO) ? 1 \ | |
385 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
386 | ||
387 | /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. | |
388 | On the 80386, the first 4 cpu registers can hold any mode | |
389 | while the floating point registers may hold only floating point. | |
390 | Make it clear that the fp regs could not hold a 16-byte float. */ | |
391 | ||
48227a2c RS |
392 | /* The casts to int placate a compiler on a microvax, |
393 | for cross-compiler testing. */ | |
394 | ||
c98f8742 | 395 | #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
1bbe49a6 JVA |
396 | ((REGNO) < 2 ? 1 \ |
397 | : (REGNO) < 4 ? 1 \ | |
0038aea6 | 398 | : FP_REGNO_P (REGNO) \ |
48227a2c RS |
399 | ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \ |
400 | || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \ | |
401 | && GET_MODE_UNIT_SIZE (MODE) <= 12) \ | |
402 | : (int) (MODE) != (int) QImode) | |
c98f8742 JVA |
403 | |
404 | /* Value is 1 if it is a good idea to tie two pseudo registers | |
405 | when one has mode MODE1 and one has mode MODE2. | |
406 | If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
407 | for any hard reg, then this must be 0 for correct output. */ | |
408 | ||
409 | #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2)) | |
410 | ||
411 | /* A C expression returning the cost of moving data from a register of class | |
412 | CLASS1 to one of CLASS2. | |
413 | ||
414 | On the i386, copying between floating-point and fixed-point | |
415 | registers is expensive. */ | |
416 | ||
4cbb525c JVA |
417 | #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ |
418 | (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \ | |
419 | || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \ | |
420 | : 2) | |
c98f8742 JVA |
421 | |
422 | /* Specify the registers used for certain standard purposes. | |
423 | The values of these macros are register numbers. */ | |
424 | ||
425 | /* on the 386 the pc register is %eip, and is not usable as a general | |
426 | register. The ordinary mov instructions won't work */ | |
427 | /* #define PC_REGNUM */ | |
428 | ||
429 | /* Register to use for pushing function arguments. */ | |
430 | #define STACK_POINTER_REGNUM 7 | |
431 | ||
432 | /* Base register for access to local variables of the function. */ | |
433 | #define FRAME_POINTER_REGNUM 6 | |
434 | ||
435 | /* First floating point reg */ | |
436 | #define FIRST_FLOAT_REG 8 | |
437 | ||
438 | /* First & last stack-like regs */ | |
439 | #define FIRST_STACK_REG FIRST_FLOAT_REG | |
440 | #define LAST_STACK_REG (FIRST_FLOAT_REG + 7) | |
441 | ||
442 | /* Value should be nonzero if functions must have frame pointers. | |
443 | Zero means the frame pointer need not be set up (and parms | |
444 | may be accessed via the stack pointer) in functions that seem suitable. | |
445 | This is computed in `reload', in reload1.c. */ | |
446 | #define FRAME_POINTER_REQUIRED 0 | |
447 | ||
448 | /* Base register for access to arguments of the function. */ | |
449 | #define ARG_POINTER_REGNUM 16 | |
450 | ||
451 | /* Register in which static-chain is passed to a function. */ | |
452 | #define STATIC_CHAIN_REGNUM 2 | |
453 | ||
454 | /* Register to hold the addressing base for position independent | |
455 | code access to data items. */ | |
456 | #define PIC_OFFSET_TABLE_REGNUM 3 | |
457 | ||
458 | /* Register in which address to store a structure value | |
459 | arrives in the function. On the 386, the prologue | |
460 | copies this from the stack to register %eax. */ | |
461 | #define STRUCT_VALUE_INCOMING 0 | |
462 | ||
463 | /* Place in which caller passes the structure value address. | |
464 | 0 means push the value on the stack like an argument. */ | |
465 | #define STRUCT_VALUE 0 | |
713225d4 MM |
466 | |
467 | /* A C expression which can inhibit the returning of certain function | |
468 | values in registers, based on the type of value. A nonzero value | |
469 | says to return the function value in memory, just as large | |
470 | structures are always returned. Here TYPE will be a C expression | |
471 | of type `tree', representing the data type of the value. | |
472 | ||
473 | Note that values of mode `BLKmode' must be explicitly handled by | |
474 | this macro. Also, the option `-fpcc-struct-return' takes effect | |
475 | regardless of this macro. On most systems, it is possible to | |
476 | leave the macro undefined; this causes a default definition to be | |
477 | used, whose value is the constant 1 for `BLKmode' values, and 0 | |
478 | otherwise. | |
479 | ||
480 | Do not use this macro to indicate that structures and unions | |
481 | should always be returned in memory. You should instead use | |
482 | `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */ | |
483 | ||
484 | #define RETURN_IN_MEMORY(TYPE) \ | |
485 | ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12) | |
486 | ||
c98f8742 JVA |
487 | \f |
488 | /* Define the classes of registers for register constraints in the | |
489 | machine description. Also define ranges of constants. | |
490 | ||
491 | One of the classes must always be named ALL_REGS and include all hard regs. | |
492 | If there is more than one class, another class must be named NO_REGS | |
493 | and contain no registers. | |
494 | ||
495 | The name GENERAL_REGS must be the name of a class (or an alias for | |
496 | another name such as ALL_REGS). This is the class of registers | |
497 | that is allowed by "g" or "r" in a register constraint. | |
498 | Also, registers outside this class are allocated only when | |
499 | instructions express preferences for them. | |
500 | ||
501 | The classes must be numbered in nondecreasing order; that is, | |
502 | a larger-numbered class must never be contained completely | |
503 | in a smaller-numbered class. | |
504 | ||
505 | For any two classes, it is very desirable that there be another | |
ab408a86 JVA |
506 | class that represents their union. |
507 | ||
508 | It might seem that class BREG is unnecessary, since no useful 386 | |
509 | opcode needs reg %ebx. But some systems pass args to the OS in ebx, | |
510 | and the "b" register constraint is useful in asms for syscalls. */ | |
c98f8742 JVA |
511 | |
512 | enum reg_class | |
513 | { | |
514 | NO_REGS, | |
ab408a86 | 515 | AREG, DREG, CREG, BREG, |
4b71cd6e | 516 | AD_REGS, /* %eax/%edx for DImode */ |
c98f8742 JVA |
517 | Q_REGS, /* %eax %ebx %ecx %edx */ |
518 | SIREG, DIREG, | |
519 | INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ | |
520 | GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ | |
521 | FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ | |
522 | FLOAT_REGS, | |
523 | ALL_REGS, LIM_REG_CLASSES | |
524 | }; | |
525 | ||
526 | #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
527 | ||
4cbb525c JVA |
528 | #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS)) |
529 | ||
c98f8742 JVA |
530 | /* Give names of register classes as strings for dump file. */ |
531 | ||
532 | #define REG_CLASS_NAMES \ | |
533 | { "NO_REGS", \ | |
ab408a86 | 534 | "AREG", "DREG", "CREG", "BREG", \ |
4b71cd6e | 535 | "AD_REGS", \ |
c98f8742 JVA |
536 | "Q_REGS", \ |
537 | "SIREG", "DIREG", \ | |
538 | "INDEX_REGS", \ | |
539 | "GENERAL_REGS", \ | |
540 | "FP_TOP_REG", "FP_SECOND_REG", \ | |
541 | "FLOAT_REGS", \ | |
542 | "ALL_REGS" } | |
543 | ||
544 | /* Define which registers fit in which classes. | |
545 | This is an initializer for a vector of HARD_REG_SET | |
546 | of length N_REG_CLASSES. */ | |
547 | ||
548 | #define REG_CLASS_CONTENTS \ | |
549 | { 0, \ | |
ab408a86 | 550 | 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \ |
4b71cd6e | 551 | 0x3, /* AD_REGS */ \ |
c98f8742 JVA |
552 | 0xf, /* Q_REGS */ \ |
553 | 0x10, 0x20, /* SIREG, DIREG */ \ | |
91f0226f | 554 | 0x07f, /* INDEX_REGS */ \ |
c98f8742 JVA |
555 | 0x100ff, /* GENERAL_REGS */ \ |
556 | 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \ | |
557 | 0xff00, /* FLOAT_REGS */ \ | |
558 | 0x1ffff } | |
559 | ||
560 | /* The same information, inverted: | |
561 | Return the class number of the smallest class containing | |
562 | reg number REGNO. This could be a conditional expression | |
563 | or could index an array. */ | |
564 | ||
c98f8742 JVA |
565 | #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) |
566 | ||
567 | /* When defined, the compiler allows registers explicitly used in the | |
568 | rtl to be used as spill registers but prevents the compiler from | |
569 | extending the lifetime of these registers. */ | |
570 | ||
571 | #define SMALL_REGISTER_CLASSES | |
572 | ||
573 | #define QI_REG_P(X) \ | |
574 | (REG_P (X) && REGNO (X) < 4) | |
575 | #define NON_QI_REG_P(X) \ | |
576 | (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) | |
577 | ||
578 | #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) | |
579 | #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG) | |
580 | ||
581 | #define STACK_REG_P(xop) (REG_P (xop) && \ | |
582 | REGNO (xop) >= FIRST_STACK_REG && \ | |
583 | REGNO (xop) <= LAST_STACK_REG) | |
584 | ||
585 | #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop)) | |
586 | ||
587 | #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG) | |
588 | ||
589 | /* Try to maintain the accuracy of the death notes for regs satisfying the | |
590 | following. Important for stack like regs, to know when to pop. */ | |
591 | ||
592 | /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */ | |
593 | ||
594 | /* 1 if register REGNO can magically overlap other regs. | |
595 | Note that nonzero values work only in very special circumstances. */ | |
596 | ||
597 | /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */ | |
598 | ||
599 | /* The class value for index registers, and the one for base regs. */ | |
600 | ||
601 | #define INDEX_REG_CLASS INDEX_REGS | |
602 | #define BASE_REG_CLASS GENERAL_REGS | |
603 | ||
604 | /* Get reg_class from a letter such as appears in the machine description. */ | |
605 | ||
606 | #define REG_CLASS_FROM_LETTER(C) \ | |
8c2bf92a JVA |
607 | ((C) == 'r' ? GENERAL_REGS : \ |
608 | (C) == 'q' ? Q_REGS : \ | |
609 | (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ | |
610 | ? FLOAT_REGS \ | |
611 | : NO_REGS) : \ | |
612 | (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ | |
613 | ? FP_TOP_REG \ | |
614 | : NO_REGS) : \ | |
615 | (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \ | |
616 | ? FP_SECOND_REG \ | |
617 | : NO_REGS) : \ | |
618 | (C) == 'a' ? AREG : \ | |
619 | (C) == 'b' ? BREG : \ | |
620 | (C) == 'c' ? CREG : \ | |
621 | (C) == 'd' ? DREG : \ | |
4b71cd6e | 622 | (C) == 'A' ? AD_REGS : \ |
8c2bf92a | 623 | (C) == 'D' ? DIREG : \ |
c98f8742 JVA |
624 | (C) == 'S' ? SIREG : NO_REGS) |
625 | ||
626 | /* The letters I, J, K, L and M in a register constraint string | |
627 | can be used to stand for particular ranges of immediate operands. | |
628 | This macro defines what the ranges are. | |
629 | C is the letter, and VALUE is a constant value. | |
630 | Return 1 if VALUE is in the range specified by C. | |
631 | ||
632 | I is for non-DImode shifts. | |
633 | J is for DImode shifts. | |
634 | K and L are for an `andsi' optimization. | |
635 | M is for shifts that can be executed by the "lea" opcode. | |
636 | */ | |
637 | ||
638 | #define CONST_OK_FOR_LETTER_P(VALUE, C) \ | |
639 | ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \ | |
640 | (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \ | |
641 | (C) == 'K' ? (VALUE) == 0xff : \ | |
642 | (C) == 'L' ? (VALUE) == 0xffff : \ | |
643 | (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \ | |
644 | 0) | |
645 | ||
646 | /* Similar, but for floating constants, and defining letters G and H. | |
b4ac57ab RS |
647 | Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if |
648 | TARGET_387 isn't set, because the stack register converter may need to | |
649 | load 0.0 into the function value register. */ | |
c98f8742 JVA |
650 | |
651 | #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ | |
b4ac57ab | 652 | ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0) |
c98f8742 JVA |
653 | |
654 | /* Place additional restrictions on the register class to use when it | |
4cbb525c JVA |
655 | is necessary to be able to hold a value of mode MODE in a reload |
656 | register for which class CLASS would ordinarily be used. */ | |
c98f8742 JVA |
657 | |
658 | #define LIMIT_RELOAD_CLASS(MODE, CLASS) \ | |
659 | ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \ | |
660 | ? Q_REGS : (CLASS)) | |
661 | ||
662 | /* Given an rtx X being reloaded into a reg required to be | |
663 | in class CLASS, return the class of reg to actually use. | |
664 | In general this is just CLASS; but on some machines | |
665 | in some cases it is preferable to use a more restrictive class. | |
666 | On the 80386 series, we prevent floating constants from being | |
667 | reloaded into floating registers (since no move-insn can do that) | |
668 | and we ensure that QImodes aren't reloaded into the esi or edi reg. */ | |
669 | ||
d398b3b1 | 670 | /* Put float CONST_DOUBLE in the constant pool instead of fp regs. |
c98f8742 | 671 | QImode must go into class Q_REGS. |
d398b3b1 JVA |
672 | Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and |
673 | movdf to do mem-to-mem moves through integer regs. */ | |
c98f8742 | 674 | |
7488be4e | 675 | #define PREFERRED_RELOAD_CLASS(X,CLASS) \ |
85ff473e JVA |
676 | (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \ |
677 | : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \ | |
d398b3b1 JVA |
678 | : ((CLASS) == ALL_REGS \ |
679 | && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \ | |
85ff473e JVA |
680 | : (CLASS)) |
681 | ||
682 | /* If we are copying between general and FP registers, we need a memory | |
683 | location. */ | |
684 | ||
685 | #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ | |
4cbb525c JVA |
686 | ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \ |
687 | || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) | |
c98f8742 JVA |
688 | |
689 | /* Return the maximum number of consecutive registers | |
690 | needed to represent mode MODE in a register of class CLASS. */ | |
691 | /* On the 80386, this is the size of MODE in words, | |
692 | except in the FP regs, where a single reg is always enough. */ | |
693 | #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
4cbb525c JVA |
694 | (FLOAT_CLASS_P (CLASS) ? 1 : \ |
695 | ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
f5316dfe MM |
696 | |
697 | /* A C expression whose value is nonzero if pseudos that have been | |
698 | assigned to registers of class CLASS would likely be spilled | |
699 | because registers of CLASS are needed for spill registers. | |
700 | ||
701 | The default value of this macro returns 1 if CLASS has exactly one | |
702 | register and zero otherwise. On most machines, this default | |
703 | should be used. Only define this macro to some other expression | |
704 | if pseudo allocated by `local-alloc.c' end up in memory because | |
705 | their hard registers were needed for spill regisers. If this | |
706 | macro returns nonzero for those classes, those pseudos will only | |
707 | be allocated by `global.c', which knows how to reallocate the | |
708 | pseudo to another register. If there would not be another | |
709 | register available for reallocation, you should not change the | |
710 | definition of this macro since the only effect of such a | |
711 | definition would be to slow down register allocation. */ | |
712 | ||
713 | #define CLASS_LIKELY_SPILLED_P(CLASS) \ | |
714 | (((CLASS) == AREG) \ | |
715 | || ((CLASS) == DREG) \ | |
716 | || ((CLASS) == CREG) \ | |
717 | || ((CLASS) == BREG) \ | |
718 | || ((CLASS) == AD_REGS) \ | |
719 | || ((CLASS) == SIREG) \ | |
720 | || ((CLASS) == DIREG)) | |
721 | ||
c98f8742 JVA |
722 | \f |
723 | /* Stack layout; function entry, exit and calling. */ | |
724 | ||
725 | /* Define this if pushing a word on the stack | |
726 | makes the stack pointer a smaller address. */ | |
727 | #define STACK_GROWS_DOWNWARD | |
728 | ||
729 | /* Define this if the nominal address of the stack frame | |
730 | is at the high-address end of the local variables; | |
731 | that is, each additional local variable allocated | |
732 | goes at a more negative offset in the frame. */ | |
733 | #define FRAME_GROWS_DOWNWARD | |
734 | ||
735 | /* Offset within stack frame to start allocating local variables at. | |
736 | If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
737 | first local allocated. Otherwise, it is the offset to the BEGINNING | |
738 | of the first local allocated. */ | |
739 | #define STARTING_FRAME_OFFSET 0 | |
740 | ||
741 | /* If we generate an insn to push BYTES bytes, | |
742 | this says how many the stack pointer really advances by. | |
743 | On 386 pushw decrements by exactly 2 no matter what the position was. | |
744 | On the 386 there is no pushb; we use pushw instead, and this | |
745 | has the effect of rounding up to 2. */ | |
746 | ||
747 | #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2)) | |
748 | ||
749 | /* Offset of first parameter from the argument pointer register value. */ | |
750 | #define FIRST_PARM_OFFSET(FNDECL) 0 | |
751 | ||
752 | /* Value is the number of bytes of arguments automatically | |
753 | popped when returning from a subroutine call. | |
8b109b37 | 754 | FUNDECL is the declaration node of the function (as a tree), |
c98f8742 JVA |
755 | FUNTYPE is the data type of the function (as a tree), |
756 | or for a library call it is an identifier node for the subroutine name. | |
757 | SIZE is the number of bytes of arguments passed on the stack. | |
758 | ||
759 | On the 80386, the RTD insn may be used to pop them if the number | |
760 | of args is fixed, but if the number is variable then the caller | |
761 | must pop them all. RTD can't be used for library calls now | |
762 | because the library is compiled with the Unix compiler. | |
763 | Use of RTD is a selectable option, since it is incompatible with | |
764 | standard Unix calling sequences. If the option is not selected, | |
765 | the caller must always pop the args. */ | |
766 | ||
8b109b37 | 767 | #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \ |
c98f8742 JVA |
768 | (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0 \ |
769 | : (TARGET_RTD \ | |
770 | && (TYPE_ARG_TYPES (FUNTYPE) == 0 \ | |
771 | || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \ | |
772 | == void_type_node))) ? (SIZE) \ | |
76c30596 | 773 | : (aggregate_value_p (TREE_TYPE (FUNTYPE))) ? GET_MODE_SIZE (Pmode) : 0) |
c98f8742 | 774 | |
8c2bf92a JVA |
775 | /* Define how to find the value returned by a function. |
776 | VALTYPE is the data type of the value (as a tree). | |
777 | If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
778 | otherwise, FUNC is 0. */ | |
c98f8742 JVA |
779 | #define FUNCTION_VALUE(VALTYPE, FUNC) \ |
780 | gen_rtx (REG, TYPE_MODE (VALTYPE), \ | |
781 | VALUE_REGNO (TYPE_MODE (VALTYPE))) | |
782 | ||
783 | /* Define how to find the value returned by a library function | |
784 | assuming the value has mode MODE. */ | |
785 | ||
786 | #define LIBCALL_VALUE(MODE) \ | |
787 | gen_rtx (REG, MODE, VALUE_REGNO (MODE)) | |
788 | ||
e9125c09 TW |
789 | /* Define the size of the result block used for communication between |
790 | untyped_call and untyped_return. The block contains a DImode value | |
791 | followed by the block used by fnsave and frstor. */ | |
792 | ||
793 | #define APPLY_RESULT_SIZE (8+108) | |
794 | ||
c98f8742 JVA |
795 | /* 1 if N is a possible register number for function argument passing. |
796 | On the 80386, no registers are used in this way. | |
797 | *NOTE* -mregparm does not work. | |
798 | It exists only to test register calling conventions. */ | |
799 | ||
800 | #define FUNCTION_ARG_REGNO_P(N) 0 | |
801 | ||
802 | /* Define a data type for recording info about an argument list | |
803 | during the scan of that argument list. This data type should | |
804 | hold all necessary information about the function itself | |
805 | and about the args processed so far, enough to enable macros | |
806 | such as FUNCTION_ARG to determine where the next arg should go. | |
807 | ||
808 | On the 80386, this is a single integer, which is a number of bytes | |
809 | of arguments scanned so far. */ | |
810 | ||
811 | #define CUMULATIVE_ARGS int | |
812 | ||
813 | /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
814 | for a call to a function whose data type is FNTYPE. | |
815 | For a library call, FNTYPE is 0. | |
816 | ||
817 | On the 80386, the offset starts at 0. */ | |
818 | ||
819 | #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ | |
820 | ((CUM) = 0) | |
821 | ||
822 | /* Update the data in CUM to advance over an argument | |
823 | of mode MODE and data type TYPE. | |
824 | (TYPE is null for libcalls where that information may not be available.) */ | |
825 | ||
826 | #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ | |
827 | ((CUM) += ((MODE) != BLKmode \ | |
828 | ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ | |
829 | : (int_size_in_bytes (TYPE) + 3) & ~3)) | |
830 | ||
831 | /* Define where to put the arguments to a function. | |
832 | Value is zero to push the argument on the stack, | |
833 | or a hard register in which to store the argument. | |
834 | ||
835 | MODE is the argument's machine mode. | |
836 | TYPE is the data type of the argument (as a tree). | |
837 | This is null for libcalls where that information may | |
838 | not be available. | |
839 | CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
840 | the preceding args and about the function being called. | |
841 | NAMED is nonzero if this argument is a named parameter | |
842 | (otherwise it is an extra parameter matching an ellipsis). */ | |
843 | ||
844 | ||
845 | /* On the 80386 all args are pushed, except if -mregparm is specified | |
846 | then the first two words of arguments are passed in EAX, EDX. | |
847 | *NOTE* -mregparm does not work. | |
848 | It exists only to test register calling conventions. */ | |
849 | ||
850 | #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ | |
851 | ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0) | |
852 | ||
853 | /* For an arg passed partly in registers and partly in memory, | |
854 | this is the number of registers used. | |
855 | For args passed entirely in registers or entirely in memory, zero. */ | |
856 | ||
857 | ||
858 | #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ | |
859 | ((TARGET_REGPARM && (CUM) < 8 \ | |
860 | && 8 < ((CUM) + ((MODE) == BLKmode \ | |
861 | ? int_size_in_bytes (TYPE) \ | |
862 | : GET_MODE_SIZE (MODE)))) \ | |
863 | ? 2 - (CUM) / 4 : 0) | |
864 | ||
865 | /* This macro generates the assembly code for function entry. | |
866 | FILE is a stdio stream to output the code to. | |
867 | SIZE is an int: how many units of temporary storage to allocate. | |
868 | Refer to the array `regs_ever_live' to determine which registers | |
869 | to save; `regs_ever_live[I]' is nonzero if register number I | |
870 | is ever used in the function. This macro is responsible for | |
871 | knowing which registers should not be saved even if used. */ | |
872 | ||
873 | #define FUNCTION_PROLOGUE(FILE, SIZE) \ | |
874 | function_prologue (FILE, SIZE) | |
875 | ||
876 | /* Output assembler code to FILE to increment profiler label # LABELNO | |
877 | for profiling a function entry. */ | |
878 | ||
879 | #define FUNCTION_PROFILER(FILE, LABELNO) \ | |
880 | { \ | |
881 | if (flag_pic) \ | |
882 | { \ | |
883 | fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \ | |
884 | LPREFIX, (LABELNO)); \ | |
885 | fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \ | |
886 | } \ | |
887 | else \ | |
888 | { \ | |
889 | fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \ | |
890 | fprintf (FILE, "\tcall _mcount\n"); \ | |
891 | } \ | |
892 | } | |
893 | ||
1cf5eda8 MM |
894 | /* A C statement or compound statement to output to FILE some |
895 | assembler code to initialize basic-block profiling for the current | |
896 | object module. This code should call the subroutine | |
897 | `__bb_init_func' once per object module, passing it as its sole | |
898 | argument the address of a block allocated in the object module. | |
899 | ||
900 | The name of the block is a local symbol made with this statement: | |
901 | ||
902 | ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); | |
903 | ||
904 | Of course, since you are writing the definition of | |
905 | `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you | |
906 | can take a short cut in the definition of this macro and use the | |
907 | name that you know will result. | |
908 | ||
909 | The first word of this block is a flag which will be nonzero if the | |
910 | object module has already been initialized. So test this word | |
911 | first, and do not call `__bb_init_func' if the flag is nonzero. */ | |
912 | ||
913 | #undef FUNCTION_BLOCK_PROFILER | |
914 | #define FUNCTION_BLOCK_PROFILER(STREAM, LABELNO) \ | |
915 | do \ | |
916 | { \ | |
917 | static int num_func = 0; \ | |
8ecf187a | 918 | rtx xops[8]; \ |
1cf5eda8 MM |
919 | char block_table[80], false_label[80]; \ |
920 | \ | |
921 | ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \ | |
922 | ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \ | |
923 | \ | |
924 | xops[0] = const0_rtx; \ | |
925 | xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \ | |
926 | xops[2] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, false_label)); \ | |
927 | xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_func")); \ | |
928 | xops[4] = gen_rtx (MEM, Pmode, xops[1]); \ | |
929 | xops[5] = stack_pointer_rtx; \ | |
930 | xops[6] = GEN_INT (4); \ | |
931 | xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \ | |
1cf5eda8 MM |
932 | \ |
933 | CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \ | |
934 | CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \ | |
935 | \ | |
936 | output_asm_insn (AS2(cmp%L4,%0,%4), xops); \ | |
937 | output_asm_insn (AS1(jne,%2), xops); \ | |
938 | \ | |
939 | if (!flag_pic) \ | |
940 | output_asm_insn (AS1(push%L1,%1), xops); \ | |
941 | else \ | |
942 | { \ | |
1cf5eda8 | 943 | output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \ |
8ecf187a | 944 | output_asm_insn (AS1 (push%L7,%7), xops); \ |
1cf5eda8 MM |
945 | } \ |
946 | \ | |
947 | output_asm_insn (AS1(call,%P3), xops); \ | |
948 | output_asm_insn (AS2(add%L0,%6,%5), xops); \ | |
949 | ASM_OUTPUT_INTERNAL_LABEL (STREAM, "LPBZ", num_func); \ | |
950 | num_func++; \ | |
951 | } \ | |
952 | while (0) | |
953 | ||
954 | ||
955 | /* A C statement or compound statement to increment the count | |
956 | associated with the basic block number BLOCKNO. Basic blocks are | |
957 | numbered separately from zero within each compilation. The count | |
958 | associated with block number BLOCKNO is at index BLOCKNO in a | |
959 | vector of words; the name of this array is a local symbol made | |
960 | with this statement: | |
961 | ||
962 | ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2); | |
963 | ||
964 | Of course, since you are writing the definition of | |
965 | `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you | |
966 | can take a short cut in the definition of this macro and use the | |
967 | name that you know will result. */ | |
968 | ||
969 | #define BLOCK_PROFILER(STREAM, BLOCKNO) \ | |
970 | do \ | |
971 | { \ | |
972 | rtx xops[1], cnt_rtx; \ | |
973 | char counts[80]; \ | |
974 | \ | |
975 | ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \ | |
976 | cnt_rtx = gen_rtx (SYMBOL_REF, VOIDmode, counts); \ | |
05ca35c7 | 977 | SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \ |
1cf5eda8 | 978 | \ |
05ca35c7 MM |
979 | if (BLOCKNO) \ |
980 | cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \ | |
981 | \ | |
982 | if (flag_pic) \ | |
983 | cnt_rtx = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, cnt_rtx); \ | |
984 | \ | |
985 | xops[0] = gen_rtx (MEM, SImode, cnt_rtx); \ | |
1cf5eda8 MM |
986 | output_asm_insn (AS1(inc%L0,%0), xops); \ |
987 | } \ | |
988 | while (0) | |
989 | ||
c98f8742 JVA |
990 | /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
991 | the stack pointer does not matter. The value is tested only in | |
992 | functions that have frame pointers. | |
993 | No definition is equivalent to always zero. */ | |
994 | /* Note on the 386 it might be more efficient not to define this since | |
995 | we have to restore it ourselves from the frame pointer, in order to | |
996 | use pop */ | |
997 | ||
998 | #define EXIT_IGNORE_STACK 1 | |
999 | ||
1000 | /* This macro generates the assembly code for function exit, | |
1001 | on machines that need it. If FUNCTION_EPILOGUE is not defined | |
1002 | then individual return instructions are generated for each | |
1003 | return statement. Args are same as for FUNCTION_PROLOGUE. | |
1004 | ||
1005 | The function epilogue should not depend on the current stack pointer! | |
1006 | It should use the frame pointer only. This is mandatory because | |
1007 | of alloca; we also take advantage of it to omit stack adjustments | |
1008 | before returning. | |
1009 | ||
1010 | If the last non-note insn in the function is a BARRIER, then there | |
1011 | is no need to emit a function prologue, because control does not fall | |
1012 | off the end. This happens if the function ends in an "exit" call, or | |
1013 | if a `return' insn is emitted directly into the function. */ | |
1014 | ||
1015 | #define FUNCTION_EPILOGUE(FILE, SIZE) \ | |
1016 | do { \ | |
1017 | rtx last = get_last_insn (); \ | |
1018 | if (last && GET_CODE (last) == NOTE) \ | |
1019 | last = prev_nonnote_insn (last); \ | |
1020 | if (! last || GET_CODE (last) != BARRIER) \ | |
1021 | function_epilogue (FILE, SIZE); \ | |
1022 | } while (0) | |
1023 | ||
1024 | /* Output assembler code for a block containing the constant parts | |
1025 | of a trampoline, leaving space for the variable parts. */ | |
1026 | ||
1027 | /* On the 386, the trampoline contains three instructions: | |
1028 | mov #STATIC,ecx | |
1029 | mov #FUNCTION,eax | |
1030 | jmp @eax */ | |
8c2bf92a JVA |
1031 | #define TRAMPOLINE_TEMPLATE(FILE) \ |
1032 | { \ | |
1033 | ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \ | |
1034 | ASM_OUTPUT_SHORT (FILE, const0_rtx); \ | |
1035 | ASM_OUTPUT_SHORT (FILE, const0_rtx); \ | |
1036 | ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \ | |
1037 | ASM_OUTPUT_SHORT (FILE, const0_rtx); \ | |
1038 | ASM_OUTPUT_SHORT (FILE, const0_rtx); \ | |
1039 | ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \ | |
1040 | ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \ | |
c98f8742 JVA |
1041 | } |
1042 | ||
1043 | /* Length in units of the trampoline for entering a nested function. */ | |
1044 | ||
1045 | #define TRAMPOLINE_SIZE 12 | |
1046 | ||
1047 | /* Emit RTL insns to initialize the variable parts of a trampoline. | |
1048 | FNADDR is an RTX for the address of the function's pure code. | |
1049 | CXT is an RTX for the static chain value for the function. */ | |
1050 | ||
1051 | #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ | |
1052 | { \ | |
1053 | emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \ | |
1054 | emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \ | |
1055 | } | |
1056 | \f | |
1057 | /* Definitions for register eliminations. | |
1058 | ||
1059 | This is an array of structures. Each structure initializes one pair | |
1060 | of eliminable registers. The "from" register number is given first, | |
1061 | followed by "to". Eliminations of the same "from" register are listed | |
1062 | in order of preference. | |
1063 | ||
1064 | We have two registers that can be eliminated on the i386. First, the | |
1065 | frame pointer register can often be eliminated in favor of the stack | |
1066 | pointer register. Secondly, the argument pointer register can always be | |
1067 | eliminated; it is replaced with either the stack or frame pointer. */ | |
1068 | ||
1069 | #define ELIMINABLE_REGS \ | |
1070 | {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
1071 | { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ | |
1072 | { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} | |
1073 | ||
1074 | /* Given FROM and TO register numbers, say whether this elimination is allowed. | |
1075 | Frame pointer elimination is automatically handled. | |
1076 | ||
1077 | For the i386, if frame pointer elimination is being done, we would like to | |
1078 | convert ap into sp, not fp. | |
1079 | ||
1080 | All other eliminations are valid. */ | |
1081 | ||
1082 | #define CAN_ELIMINATE(FROM, TO) \ | |
1083 | ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ | |
1084 | ? ! frame_pointer_needed \ | |
1085 | : 1) | |
1086 | ||
1087 | /* Define the offset between two registers, one to be eliminated, and the other | |
1088 | its replacement, at the start of a routine. */ | |
1089 | ||
1090 | #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ | |
1091 | { \ | |
1092 | if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ | |
1093 | (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \ | |
1094 | else \ | |
1095 | { \ | |
1096 | int regno; \ | |
1097 | int offset = 0; \ | |
1098 | \ | |
1099 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \ | |
1100 | if ((regs_ever_live[regno] && ! call_used_regs[regno]) \ | |
1101 | || (current_function_uses_pic_offset_table \ | |
1102 | && regno == PIC_OFFSET_TABLE_REGNUM)) \ | |
1103 | offset += 4; \ | |
1104 | \ | |
1105 | (OFFSET) = offset + get_frame_size (); \ | |
1106 | \ | |
1107 | if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ | |
1108 | (OFFSET) += 4; /* Skip saved PC */ \ | |
1109 | } \ | |
1110 | } | |
1111 | \f | |
1112 | /* Addressing modes, and classification of registers for them. */ | |
1113 | ||
1114 | /* #define HAVE_POST_INCREMENT */ | |
1115 | /* #define HAVE_POST_DECREMENT */ | |
1116 | ||
1117 | /* #define HAVE_PRE_DECREMENT */ | |
1118 | /* #define HAVE_PRE_INCREMENT */ | |
1119 | ||
1120 | /* Macros to check register numbers against specific register classes. */ | |
1121 | ||
1122 | /* These assume that REGNO is a hard or pseudo reg number. | |
1123 | They give nonzero only if REGNO is a hard reg of the suitable class | |
1124 | or a pseudo reg currently allocated to a suitable hard reg. | |
1125 | Since they use reg_renumber, they are safe only once reg_renumber | |
1126 | has been allocated, which happens in local-alloc.c. */ | |
1127 | ||
1128 | #define REGNO_OK_FOR_INDEX_P(REGNO) \ | |
1129 | ((REGNO) < STACK_POINTER_REGNUM \ | |
1130 | || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM) | |
1131 | ||
1132 | #define REGNO_OK_FOR_BASE_P(REGNO) \ | |
1133 | ((REGNO) <= STACK_POINTER_REGNUM \ | |
1134 | || (REGNO) == ARG_POINTER_REGNUM \ | |
1135 | || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM) | |
1136 | ||
1137 | #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4) | |
1138 | #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5) | |
1139 | ||
1140 | /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
1141 | and check its validity for a certain class. | |
1142 | We have two alternate definitions for each of them. | |
1143 | The usual definition accepts all pseudo regs; the other rejects | |
1144 | them unless they have been allocated suitable hard regs. | |
1145 | The symbol REG_OK_STRICT causes the latter definition to be used. | |
1146 | ||
1147 | Most source files want to accept pseudo regs in the hope that | |
1148 | they will get allocated to the class that the insn wants them to be in. | |
1149 | Source files for reload pass need to be strict. | |
1150 | After reload, it makes no difference, since pseudo regs have | |
1151 | been eliminated by then. */ | |
1152 | ||
c98f8742 | 1153 | |
3b3c6a3f MM |
1154 | /* Non strict versions, pseudos are ok */ |
1155 | #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ | |
1156 | (REGNO (X) < STACK_POINTER_REGNUM \ | |
c98f8742 JVA |
1157 | || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
1158 | ||
3b3c6a3f MM |
1159 | #define REG_OK_FOR_BASE_NONSTRICT_P(X) \ |
1160 | (REGNO (X) <= STACK_POINTER_REGNUM \ | |
1161 | || REGNO (X) == ARG_POINTER_REGNUM \ | |
1162 | || REGNO (X) >= FIRST_PSEUDO_REGISTER) | |
c98f8742 | 1163 | |
3b3c6a3f | 1164 | #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \ |
c98f8742 JVA |
1165 | (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
1166 | ||
3b3c6a3f MM |
1167 | /* Strict versions, hard registers only */ |
1168 | #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) | |
1169 | #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
1170 | #define REG_OK_FOR_STRREG_STRICT_P(X) \ | |
c98f8742 JVA |
1171 | (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X))) |
1172 | ||
3b3c6a3f MM |
1173 | #ifndef REG_OK_STRICT |
1174 | #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X) | |
1175 | #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X) | |
1176 | #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X) | |
1177 | ||
1178 | #else | |
1179 | #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X) | |
1180 | #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X) | |
1181 | #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X) | |
c98f8742 JVA |
1182 | #endif |
1183 | ||
1184 | /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
1185 | that is a valid memory address for an instruction. | |
1186 | The MODE argument is the machine mode for the MEM expression | |
1187 | that wants to use this address. | |
1188 | ||
1189 | The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, | |
1190 | except for CONSTANT_ADDRESS_P which is usually machine-independent. | |
1191 | ||
1192 | See legitimize_pic_address in i386.c for details as to what | |
1193 | constitutes a legitimate address when -fpic is used. */ | |
1194 | ||
1195 | #define MAX_REGS_PER_ADDRESS 2 | |
1196 | ||
6eff269e BK |
1197 | #define CONSTANT_ADDRESS_P(X) \ |
1198 | (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ | |
1199 | || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ | |
1200 | || GET_CODE (X) == HIGH) | |
c98f8742 JVA |
1201 | |
1202 | /* Nonzero if the constant value X is a legitimate general operand. | |
1203 | It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ | |
1204 | ||
1205 | #define LEGITIMATE_CONSTANT_P(X) 1 | |
1206 | ||
3b3c6a3f MM |
1207 | #ifdef REG_OK_STRICT |
1208 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
1209 | { \ | |
1210 | if (legitimate_address_p (MODE, X, 1)) \ | |
1211 | goto ADDR; \ | |
1212 | } | |
c98f8742 | 1213 | |
3b3c6a3f MM |
1214 | #else |
1215 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
c98f8742 | 1216 | { \ |
3b3c6a3f | 1217 | if (legitimate_address_p (MODE, X, 0)) \ |
c98f8742 | 1218 | goto ADDR; \ |
c98f8742 JVA |
1219 | } |
1220 | ||
3b3c6a3f MM |
1221 | #endif |
1222 | ||
c98f8742 JVA |
1223 | /* Try machine-dependent ways of modifying an illegitimate address |
1224 | to be legitimate. If we find one, return the new, valid address. | |
1225 | This macro is used in only one place: `memory_address' in explow.c. | |
1226 | ||
1227 | OLDX is the address as it was before break_out_memory_refs was called. | |
1228 | In some cases it is useful to look at this to decide what needs to be done. | |
1229 | ||
1230 | MODE and WIN are passed so that this macro can use | |
1231 | GO_IF_LEGITIMATE_ADDRESS. | |
1232 | ||
1233 | It is always safe for this macro to do nothing. It exists to recognize | |
1234 | opportunities to optimize the output. | |
1235 | ||
1236 | For the 80386, we handle X+REG by loading X into a register R and | |
1237 | using R+REG. R will go in a general reg and indexing will be used. | |
1238 | However, if REG is a broken-out memory address or multiplication, | |
1239 | nothing needs to be done because REG can certainly go in a general reg. | |
1240 | ||
1241 | When -fpic is used, special handling is needed for symbolic references. | |
1242 | See comments by legitimize_pic_address in i386.c for details. */ | |
1243 | ||
3b3c6a3f MM |
1244 | #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ |
1245 | { \ | |
1246 | rtx orig_x = (X); \ | |
1247 | (X) = legitimize_address (X, OLDX, MODE); \ | |
1248 | if (memory_address_p (MODE, X)) \ | |
1249 | goto WIN; \ | |
1250 | } | |
c98f8742 JVA |
1251 | |
1252 | /* Nonzero if the constant value X is a legitimate general operand | |
1253 | when generating PIC code. It is given that flag_pic is on and | |
1254 | that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ | |
1255 | ||
1256 | #define LEGITIMATE_PIC_OPERAND_P(X) \ | |
1257 | (! SYMBOLIC_CONST (X) \ | |
1258 | || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))) | |
1259 | ||
1260 | #define SYMBOLIC_CONST(X) \ | |
1261 | (GET_CODE (X) == SYMBOL_REF \ | |
1262 | || GET_CODE (X) == LABEL_REF \ | |
1263 | || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) | |
1264 | ||
1265 | /* Go to LABEL if ADDR (a legitimate address expression) | |
1266 | has an effect that depends on the machine mode it is used for. | |
1267 | On the 80386, only postdecrement and postincrement address depend thus | |
1268 | (the amount of decrement or increment being the length of the operand). */ | |
1269 | #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ | |
1270 | if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL | |
1271 | \f | |
1272 | /* Define this macro if references to a symbol must be treated | |
1273 | differently depending on something about the variable or | |
1274 | function named by the symbol (such as what section it is in). | |
1275 | ||
b4ac57ab | 1276 | On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol |
c98f8742 JVA |
1277 | so that we may access it directly in the GOT. */ |
1278 | ||
1279 | #define ENCODE_SECTION_INFO(DECL) \ | |
1280 | do \ | |
1281 | { \ | |
1282 | if (flag_pic) \ | |
1283 | { \ | |
b4ac57ab RS |
1284 | rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ |
1285 | ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \ | |
1286 | SYMBOL_REF_FLAG (XEXP (rtl, 0)) \ | |
1287 | = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \ | |
1288 | || ! TREE_PUBLIC (DECL)); \ | |
c98f8742 JVA |
1289 | } \ |
1290 | } \ | |
1291 | while (0) | |
d398b3b1 JVA |
1292 | |
1293 | /* Initialize data used by insn expanders. This is called from | |
1294 | init_emit, once for each function, before code is generated. | |
1295 | For 386, clear stack slot assignments remembered from previous | |
1296 | functions. */ | |
1297 | ||
1298 | #define INIT_EXPANDERS clear_386_stack_locals () | |
638b724c MM |
1299 | |
1300 | /* The `FINALIZE_PIC' macro serves as a hook to emit these special | |
1301 | codes once the function is being compiled into assembly code, but | |
1302 | not before. (It is not done before, because in the case of | |
1303 | compiling an inline function, it would lead to multiple PIC | |
1304 | prologues being included in functions which used inline functions | |
1305 | and were compiled to assembly language.) */ | |
1306 | ||
1307 | #define FINALIZE_PIC \ | |
1308 | do \ | |
1309 | { \ | |
1310 | extern int current_function_uses_pic_offset_table; \ | |
1311 | \ | |
1312 | current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \ | |
1313 | } \ | |
1314 | while (0) | |
1315 | ||
c98f8742 JVA |
1316 | \f |
1317 | /* Specify the machine mode that this machine uses | |
1318 | for the index in the tablejump instruction. */ | |
1319 | #define CASE_VECTOR_MODE Pmode | |
1320 | ||
1321 | /* Define this if the tablejump instruction expects the table | |
1322 | to contain offsets from the address of the table. | |
1323 | Do not define this if the table should contain absolute addresses. */ | |
1324 | /* #define CASE_VECTOR_PC_RELATIVE */ | |
1325 | ||
1326 | /* Specify the tree operation to be used to convert reals to integers. | |
1327 | This should be changed to take advantage of fist --wfs ?? | |
1328 | */ | |
1329 | #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR | |
1330 | ||
1331 | /* This is the kind of divide that is easiest to do in the general case. */ | |
1332 | #define EASY_DIV_EXPR TRUNC_DIV_EXPR | |
1333 | ||
1334 | /* Define this as 1 if `char' should by default be signed; else as 0. */ | |
1335 | #define DEFAULT_SIGNED_CHAR 1 | |
1336 | ||
1337 | /* Max number of bytes we can move from memory to memory | |
1338 | in one reasonably fast instruction. */ | |
1339 | #define MOVE_MAX 4 | |
1340 | ||
1341 | /* MOVE_RATIO is the number of move instructions that is better than a | |
1342 | block move. Make this large on i386, since the block move is very | |
1343 | inefficient with small blocks, and the hard register needs of the | |
1344 | block move require much reload work. */ | |
1345 | #define MOVE_RATIO 5 | |
1346 | ||
1347 | /* Define this if zero-extension is slow (more than one real instruction). */ | |
1348 | /* #define SLOW_ZERO_EXTEND */ | |
1349 | ||
1350 | /* Nonzero if access to memory by bytes is slow and undesirable. */ | |
1351 | #define SLOW_BYTE_ACCESS 0 | |
1352 | ||
1353 | /* Define if shifts truncate the shift count | |
1354 | which implies one can omit a sign-extension or zero-extension | |
1355 | of a shift count. */ | |
1356 | /* One i386, shifts do truncate the count. But bit opcodes don't. */ | |
1357 | ||
1358 | /* #define SHIFT_COUNT_TRUNCATED */ | |
1359 | ||
1360 | /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits | |
1361 | is done just by pretending it is already truncated. */ | |
1362 | #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
1363 | ||
1364 | /* We assume that the store-condition-codes instructions store 0 for false | |
1365 | and some other value for true. This is the value stored for true. */ | |
1366 | ||
1367 | #define STORE_FLAG_VALUE 1 | |
1368 | ||
1369 | /* When a prototype says `char' or `short', really pass an `int'. | |
1370 | (The 386 can't easily push less than an int.) */ | |
1371 | ||
1372 | #define PROMOTE_PROTOTYPES | |
1373 | ||
1374 | /* Specify the machine mode that pointers have. | |
1375 | After generation of rtl, the compiler makes no further distinction | |
1376 | between pointers and any other objects of this machine mode. */ | |
1377 | #define Pmode SImode | |
1378 | ||
1379 | /* A function address in a call instruction | |
1380 | is a byte address (for indexing purposes) | |
1381 | so give the MEM rtx a byte's mode. */ | |
1382 | #define FUNCTION_MODE QImode | |
1383 | ||
1384 | /* Define this if addresses of constant functions | |
1385 | shouldn't be put through pseudo regs where they can be cse'd. | |
1386 | Desirable on the 386 because a CALL with a constant address is | |
1387 | not much slower than one with a register address. */ | |
1388 | #define NO_FUNCTION_CSE | |
1389 | ||
1390 | /* Provide the costs of a rtl expression. This is in the body of a | |
1391 | switch on CODE. */ | |
1392 | ||
13713781 TG |
1393 | #define RTX_COSTS(X,CODE,OUTER_CODE) \ |
1394 | case MULT: \ | |
1395 | return COSTS_N_INSNS (20); \ | |
1396 | case DIV: \ | |
1397 | case UDIV: \ | |
1398 | case MOD: \ | |
1399 | case UMOD: \ | |
1400 | return COSTS_N_INSNS (20); \ | |
1401 | case ASHIFTRT: \ | |
1402 | case LSHIFTRT: \ | |
1403 | case ASHIFT: \ | |
1404 | return (4 + rtx_cost (XEXP (X, 0), OUTER_CODE) \ | |
1405 | + rtx_cost (XEXP (X, 1), OUTER_CODE)); \ | |
1406 | case PLUS: \ | |
1407 | if (GET_CODE (XEXP (X, 0)) == MULT \ | |
1408 | && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ | |
1409 | && (INTVAL (XEXP (XEXP (X, 0), 1)) == 2 \ | |
1410 | || INTVAL (XEXP (XEXP (X, 0), 1)) == 4 \ | |
1411 | || INTVAL (XEXP (XEXP (X, 0), 1)) == 8)) \ | |
1412 | return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \ | |
1413 | + rtx_cost (XEXP (X, 1), OUTER_CODE)); \ | |
dce838e1 | 1414 | break; |
c98f8742 JVA |
1415 | |
1416 | ||
1417 | /* Compute the cost of computing a constant rtl expression RTX | |
1418 | whose rtx-code is CODE. The body of this macro is a portion | |
1419 | of a switch statement. If the code is computed here, | |
1420 | return it with a return statement. Otherwise, break from the switch. */ | |
1421 | ||
3bb22aee | 1422 | #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
c98f8742 JVA |
1423 | case CONST_INT: \ |
1424 | case CONST: \ | |
1425 | case LABEL_REF: \ | |
1426 | case SYMBOL_REF: \ | |
1427 | return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0; \ | |
1428 | case CONST_DOUBLE: \ | |
1429 | { \ | |
7488be4e JVA |
1430 | int code; \ |
1431 | if (GET_MODE (RTX) == VOIDmode) \ | |
1432 | return 2; \ | |
1433 | code = standard_80387_constant_p (RTX); \ | |
c98f8742 JVA |
1434 | return code == 1 ? 0 : \ |
1435 | code == 2 ? 1 : \ | |
1436 | 2; \ | |
3bb22aee | 1437 | } |
c98f8742 JVA |
1438 | |
1439 | /* Compute the cost of an address. This is meant to approximate the size | |
1440 | and/or execution delay of an insn using that address. If the cost is | |
1441 | approximated by the RTL complexity, including CONST_COSTS above, as | |
1442 | is usually the case for CISC machines, this macro should not be defined. | |
1443 | For aggressively RISCy machines, only one insn format is allowed, so | |
1444 | this macro should be a constant. The value of this macro only matters | |
1445 | for valid addresses. | |
1446 | ||
1447 | For i386, it is better to use a complex address than let gcc copy | |
1448 | the address into a reg and make a new pseudo. But not if the address | |
1449 | requires to two regs - that would mean more pseudos with longer | |
1450 | lifetimes. */ | |
1451 | ||
1452 | #define ADDRESS_COST(RTX) \ | |
1453 | ((CONSTANT_P (RTX) \ | |
1454 | || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \ | |
1455 | && REG_P (XEXP (RTX, 0)))) ? 0 \ | |
1456 | : REG_P (RTX) ? 1 \ | |
1457 | : 2) | |
1458 | \f | |
c572e5ba JVA |
1459 | /* Add any extra modes needed to represent the condition code. |
1460 | ||
1461 | For the i386, we need separate modes when floating-point equality | |
1462 | comparisons are being done. */ | |
1463 | ||
1464 | #define EXTRA_CC_MODES CCFPEQmode | |
1465 | ||
1466 | /* Define the names for the modes specified above. */ | |
1467 | #define EXTRA_CC_NAMES "CCFPEQ" | |
1468 | ||
1469 | /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, | |
1470 | return the mode to be used for the comparison. | |
1471 | ||
1472 | For floating-point equality comparisons, CCFPEQmode should be used. | |
1473 | VOIDmode should be used in all other cases. */ | |
1474 | ||
b565a316 | 1475 | #define SELECT_CC_MODE(OP,X,Y) \ |
c572e5ba | 1476 | (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ |
4cbb525c | 1477 | && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode) |
c572e5ba JVA |
1478 | |
1479 | /* Define the information needed to generate branch and scc insns. This is | |
1480 | stored from the compare operation. Note that we can't use "rtx" here | |
1481 | since it hasn't been defined! */ | |
1482 | ||
c572e5ba JVA |
1483 | extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)(); |
1484 | ||
c98f8742 JVA |
1485 | /* Tell final.c how to eliminate redundant test instructions. */ |
1486 | ||
1487 | /* Here we define machine-dependent flags and fields in cc_status | |
1488 | (see `conditions.h'). */ | |
1489 | ||
1490 | /* Set if the cc value is actually in the 80387, so a floating point | |
1491 | conditional branch must be output. */ | |
1492 | #define CC_IN_80387 04000 | |
1493 | ||
1494 | /* Set if the CC value was stored in a nonstandard way, so that | |
1495 | the state of equality is indicated by zero in the carry bit. */ | |
1496 | #define CC_Z_IN_NOT_C 010000 | |
1497 | ||
1498 | /* Store in cc_status the expressions | |
1499 | that the condition codes will describe | |
1500 | after execution of an instruction whose pattern is EXP. | |
1501 | Do not alter them if the instruction would not alter the cc's. */ | |
1502 | ||
1503 | #define NOTICE_UPDATE_CC(EXP, INSN) \ | |
1504 | notice_update_cc((EXP)) | |
1505 | ||
1506 | /* Output a signed jump insn. Use template NORMAL ordinarily, or | |
1507 | FLOAT following a floating point comparison. | |
1508 | Use NO_OV following an arithmetic insn that set the cc's | |
1509 | before a test insn that was deleted. | |
1510 | NO_OV may be zero, meaning final should reinsert the test insn | |
1511 | because the jump cannot be handled properly without it. */ | |
1512 | ||
1513 | #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ | |
1514 | { \ | |
1515 | if (cc_prev_status.flags & CC_IN_80387) \ | |
1516 | return FLOAT; \ | |
1517 | if (cc_prev_status.flags & CC_NO_OVERFLOW) \ | |
1518 | return NO_OV; \ | |
1519 | return NORMAL; \ | |
1520 | } | |
1521 | \f | |
1522 | /* Control the assembler format that we output, to the extent | |
1523 | this does not vary between assemblers. */ | |
1524 | ||
1525 | /* How to refer to registers in assembler output. | |
1526 | This sequence is indexed by compiler's hard-register-number (see above). */ | |
1527 | ||
1528 | /* In order to refer to the first 8 regs as 32 bit regs prefix an "e" | |
1529 | For non floating point regs, the following are the HImode names. | |
1530 | ||
1531 | For float regs, the stack top is sometimes referred to as "%st(0)" | |
9e06e321 | 1532 | instead of just "%st". PRINT_REG handles this with the "y" code. */ |
c98f8742 JVA |
1533 | |
1534 | #define HI_REGISTER_NAMES \ | |
1535 | {"ax","dx","cx","bx","si","di","bp","sp", \ | |
1536 | "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" } | |
1537 | ||
1538 | #define REGISTER_NAMES HI_REGISTER_NAMES | |
1539 | ||
1540 | /* Table of additional register names to use in user input. */ | |
1541 | ||
1542 | #define ADDITIONAL_REGISTER_NAMES \ | |
1543 | { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \ | |
1544 | "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \ | |
1545 | "al", 0, "dl", 1, "cl", 2, "bl", 3, \ | |
1546 | "ah", 0, "dh", 1, "ch", 2, "bh", 3 } | |
1547 | ||
1548 | /* Note we are omitting these since currently I don't know how | |
1549 | to get gcc to use these, since they want the same but different | |
1550 | number as al, and ax. | |
1551 | */ | |
1552 | ||
b4ac57ab | 1553 | /* note the last four are not really qi_registers, but |
c98f8742 JVA |
1554 | the md will have to never output movb into one of them |
1555 | only a movw . There is no movb into the last four regs */ | |
1556 | ||
1557 | #define QI_REGISTER_NAMES \ | |
1558 | {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",} | |
1559 | ||
1560 | /* These parallel the array above, and can be used to access bits 8:15 | |
1561 | of regs 0 through 3. */ | |
1562 | ||
1563 | #define QI_HIGH_REGISTER_NAMES \ | |
1564 | {"ah", "dh", "ch", "bh", } | |
1565 | ||
1566 | /* How to renumber registers for dbx and gdb. */ | |
1567 | ||
1568 | /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */ | |
1569 | #define DBX_REGISTER_NUMBER(n) \ | |
1570 | ((n) == 0 ? 0 : \ | |
1571 | (n) == 1 ? 2 : \ | |
1572 | (n) == 2 ? 1 : \ | |
1573 | (n) == 3 ? 3 : \ | |
1574 | (n) == 4 ? 6 : \ | |
1575 | (n) == 5 ? 7 : \ | |
1576 | (n) == 6 ? 4 : \ | |
1577 | (n) == 7 ? 5 : \ | |
1578 | (n) + 4) | |
1579 | ||
1580 | /* This is how to output the definition of a user-level label named NAME, | |
1581 | such as the label on a static function or variable NAME. */ | |
1582 | ||
1583 | #define ASM_OUTPUT_LABEL(FILE,NAME) \ | |
1584 | (assemble_name (FILE, NAME), fputs (":\n", FILE)) | |
1585 | ||
1586 | /* This is how to output an assembler line defining a `double' constant. */ | |
1587 | ||
0038aea6 JVA |
1588 | #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ |
1589 | do { long l[2]; \ | |
1590 | REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \ | |
1591 | if (sizeof (int) == sizeof (long)) \ | |
1592 | fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \ | |
1593 | else \ | |
1594 | fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \ | |
1595 | } while (0) | |
c98f8742 | 1596 | |
0038aea6 JVA |
1597 | /* This is how to output a `long double' extended real constant. */ |
1598 | ||
1599 | #undef ASM_OUTPUT_LONG_DOUBLE | |
1600 | #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \ | |
1601 | do { long l[3]; \ | |
1602 | REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \ | |
1603 | if (sizeof (int) == sizeof (long)) \ | |
1604 | fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \ | |
1605 | else \ | |
1606 | fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \ | |
1607 | } while (0) | |
c98f8742 JVA |
1608 | |
1609 | /* This is how to output an assembler line defining a `float' constant. */ | |
1610 | ||
0038aea6 JVA |
1611 | #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ |
1612 | do { long l; \ | |
1613 | REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \ | |
1614 | if (sizeof (int) == sizeof (long)) \ | |
1615 | fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \ | |
1616 | else \ | |
1617 | fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \ | |
c98f8742 JVA |
1618 | } while (0) |
1619 | ||
c98f8742 JVA |
1620 | /* Store in OUTPUT a string (made with alloca) containing |
1621 | an assembler-name for a local static variable named NAME. | |
1622 | LABELNO is an integer which is different for each call. */ | |
1623 | ||
1624 | #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ | |
1625 | ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ | |
1626 | sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) | |
1627 | ||
1628 | ||
1629 | ||
1630 | /* This is how to output an assembler line defining an `int' constant. */ | |
1631 | ||
1632 | #define ASM_OUTPUT_INT(FILE,VALUE) \ | |
1633 | ( fprintf (FILE, "%s ", ASM_LONG), \ | |
1634 | output_addr_const (FILE,(VALUE)), \ | |
1635 | putc('\n',FILE)) | |
1636 | ||
1637 | /* Likewise for `char' and `short' constants. */ | |
1638 | /* is this supposed to do align too?? */ | |
1639 | ||
1640 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
1641 | ( fprintf (FILE, "%s ", ASM_SHORT), \ | |
1642 | output_addr_const (FILE,(VALUE)), \ | |
1643 | putc('\n',FILE)) | |
1644 | ||
1645 | /* | |
1646 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
1647 | ( fprintf (FILE, "%s ", ASM_BYTE_OP), \ | |
1648 | output_addr_const (FILE,(VALUE)), \ | |
1649 | fputs (",", FILE), \ | |
1650 | output_addr_const (FILE,(VALUE)), \ | |
1651 | fputs (" >> 8\n",FILE)) | |
1652 | */ | |
1653 | ||
1654 | ||
1655 | #define ASM_OUTPUT_CHAR(FILE,VALUE) \ | |
1656 | ( fprintf (FILE, "%s ", ASM_BYTE_OP), \ | |
1657 | output_addr_const (FILE, (VALUE)), \ | |
1658 | putc ('\n', FILE)) | |
1659 | ||
1660 | /* This is how to output an assembler line for a numeric constant byte. */ | |
1661 | ||
1662 | #define ASM_OUTPUT_BYTE(FILE,VALUE) \ | |
1663 | fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE)) | |
1664 | ||
1665 | /* This is how to output an insn to push a register on the stack. | |
1666 | It need not be very fast code. */ | |
1667 | ||
1668 | #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ | |
1669 | fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO]) | |
1670 | ||
1671 | /* This is how to output an insn to pop a register from the stack. | |
1672 | It need not be very fast code. */ | |
1673 | ||
1674 | #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ | |
1675 | fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO]) | |
1676 | ||
1677 | /* This is how to output an element of a case-vector that is absolute. | |
1678 | */ | |
1679 | ||
1680 | #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ | |
1681 | fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE) | |
1682 | ||
1683 | /* This is how to output an element of a case-vector that is relative. | |
1684 | We don't use these on the 386 yet, because the ATT assembler can't do | |
1685 | forward reference the differences. | |
1686 | */ | |
1687 | ||
1688 | #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ | |
1689 | fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL) | |
1690 | ||
1691 | /* Define the parentheses used to group arithmetic operations | |
1692 | in assembler code. */ | |
1693 | ||
1694 | #define ASM_OPEN_PAREN "" | |
1695 | #define ASM_CLOSE_PAREN "" | |
1696 | ||
1697 | /* Define results of standard character escape sequences. */ | |
1698 | #define TARGET_BELL 007 | |
1699 | #define TARGET_BS 010 | |
1700 | #define TARGET_TAB 011 | |
1701 | #define TARGET_NEWLINE 012 | |
1702 | #define TARGET_VT 013 | |
1703 | #define TARGET_FF 014 | |
1704 | #define TARGET_CR 015 | |
74b42c8b | 1705 | \f |
c98f8742 JVA |
1706 | /* Print operand X (an rtx) in assembler syntax to file FILE. |
1707 | CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. | |
1708 | The CODE z takes the size of operand from the following digit, and | |
1709 | outputs b,w,or l respectively. | |
1710 | ||
1711 | On the 80386, we use several such letters: | |
1712 | f -- float insn (print a CONST_DOUBLE as a float rather than in hex). | |
0038aea6 | 1713 | L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. |
c98f8742 JVA |
1714 | R -- print the prefix for register names. |
1715 | z -- print the opcode suffix for the size of the current operand. | |
1716 | * -- print a star (in certain assembler syntax) | |
1717 | w -- print the operand as if it's a "word" (HImode) even if it isn't. | |
1718 | b -- print the operand as if it's a byte (QImode) even if it isn't. | |
1719 | c -- don't print special prefixes before constant operands. */ | |
1720 | ||
1721 | #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ | |
1722 | ((CODE) == '*') | |
1723 | ||
74b42c8b RS |
1724 | /* Print the name of a register based on its machine mode and number. |
1725 | If CODE is 'w', pretend the mode is HImode. | |
1726 | If CODE is 'b', pretend the mode is QImode. | |
1727 | If CODE is 'k', pretend the mode is SImode. | |
1728 | If CODE is 'h', pretend the reg is the `high' byte register. | |
1729 | If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */ | |
1730 | ||
aa3e8d2a JVA |
1731 | extern char *hi_reg_name[]; |
1732 | extern char *qi_reg_name[]; | |
1733 | extern char *qi_high_reg_name[]; | |
1734 | ||
74b42c8b | 1735 | #define PRINT_REG(X, CODE, FILE) \ |
aa3e8d2a JVA |
1736 | do { if (REGNO (X) == ARG_POINTER_REGNUM) \ |
1737 | abort (); \ | |
74b42c8b RS |
1738 | fprintf (FILE, "%s", RP); \ |
1739 | switch ((CODE == 'w' ? 2 \ | |
1740 | : CODE == 'b' ? 1 \ | |
1741 | : CODE == 'k' ? 4 \ | |
1742 | : CODE == 'y' ? 3 \ | |
1743 | : CODE == 'h' ? 0 \ | |
1744 | : GET_MODE_SIZE (GET_MODE (X)))) \ | |
1745 | { \ | |
1746 | case 3: \ | |
1747 | if (STACK_TOP_P (X)) \ | |
aa3e8d2a JVA |
1748 | { \ |
1749 | fputs ("st(0)", FILE); \ | |
1750 | break; \ | |
1751 | } \ | |
1752 | case 4: \ | |
1753 | case 8: \ | |
0038aea6 | 1754 | case 12: \ |
9e06e321 | 1755 | if (! FP_REG_P (X)) fputs ("e", FILE); \ |
74b42c8b RS |
1756 | case 2: \ |
1757 | fputs (hi_reg_name[REGNO (X)], FILE); \ | |
1758 | break; \ | |
1759 | case 1: \ | |
1760 | fputs (qi_reg_name[REGNO (X)], FILE); \ | |
1761 | break; \ | |
1762 | case 0: \ | |
1763 | fputs (qi_high_reg_name[REGNO (X)], FILE); \ | |
1764 | break; \ | |
1765 | } \ | |
1766 | } while (0) | |
1767 | ||
c98f8742 JVA |
1768 | #define PRINT_OPERAND(FILE, X, CODE) \ |
1769 | print_operand (FILE, X, CODE) | |
c98f8742 JVA |
1770 | |
1771 | #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ | |
1772 | print_operand_address (FILE, ADDR) | |
1773 | ||
aa3e8d2a JVA |
1774 | /* Print the name of a register for based on its machine mode and number. |
1775 | This macro is used to print debugging output. | |
1776 | This macro is different from PRINT_REG in that it may be used in | |
1777 | programs that are not linked with aux-output.o. */ | |
1778 | ||
1779 | #define DEBUG_PRINT_REG(X, CODE, FILE) \ | |
1780 | do { static char *hi_name[] = HI_REGISTER_NAMES; \ | |
1781 | static char *qi_name[] = QI_REGISTER_NAMES; \ | |
7488be4e | 1782 | fprintf (FILE, "%d %s", REGNO (X), RP); \ |
aa3e8d2a JVA |
1783 | if (REGNO (X) == ARG_POINTER_REGNUM) \ |
1784 | { fputs ("argp", FILE); break; } \ | |
1785 | if (STACK_TOP_P (X)) \ | |
1786 | { fputs ("st(0)", FILE); break; } \ | |
b0ceea8c RK |
1787 | if (FP_REG_P (X)) \ |
1788 | { fputs (hi_name[REGNO(X)], FILE); break; } \ | |
aa3e8d2a JVA |
1789 | switch (GET_MODE_SIZE (GET_MODE (X))) \ |
1790 | { \ | |
b0ceea8c RK |
1791 | default: \ |
1792 | fputs ("e", FILE); \ | |
aa3e8d2a JVA |
1793 | case 2: \ |
1794 | fputs (hi_name[REGNO (X)], FILE); \ | |
1795 | break; \ | |
1796 | case 1: \ | |
1797 | fputs (qi_name[REGNO (X)], FILE); \ | |
1798 | break; \ | |
1799 | } \ | |
1800 | } while (0) | |
1801 | ||
c98f8742 JVA |
1802 | /* Output the prefix for an immediate operand, or for an offset operand. */ |
1803 | #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE)) | |
1804 | #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE)) | |
1805 | ||
1806 | /* Routines in libgcc that return floats must return them in an fp reg, | |
1807 | just as other functions do which return such values. | |
1808 | These macros make that happen. */ | |
1809 | ||
1810 | #define FLOAT_VALUE_TYPE float | |
1811 | #define INTIFY(FLOATVAL) FLOATVAL | |
1812 | ||
1813 | /* Nonzero if INSN magically clobbers register REGNO. */ | |
1814 | ||
1815 | /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \ | |
1816 | (FP_REGNO_P (REGNO) \ | |
1817 | && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER)) | |
1818 | */ | |
1819 | ||
1820 | /* a letter which is not needed by the normal asm syntax, which | |
1821 | we can use for operand syntax in the extended asm */ | |
1822 | ||
1823 | #define ASM_OPERAND_LETTER '#' | |
1824 | \f | |
1825 | #define RET return "" | |
1826 | #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx)) | |
1827 | \f | |
3b3c6a3f | 1828 | /* Functions in i386.c */ |
f5316dfe MM |
1829 | extern void override_options (); |
1830 | extern void order_regs_for_local_alloc (); | |
3b3c6a3f MM |
1831 | extern void output_op_from_reg (); |
1832 | extern void output_to_reg (); | |
1833 | extern char *singlemove_string (); | |
1834 | extern char *output_move_double (); | |
b840bfb0 MM |
1835 | extern char *output_move_memory (); |
1836 | extern char *output_move_pushmem (); | |
3b3c6a3f MM |
1837 | extern int standard_80387_constant_p (); |
1838 | extern char *output_move_const_single (); | |
1839 | extern int symbolic_operand (); | |
1840 | extern int call_insn_operand (); | |
1841 | extern int expander_call_insn_operand (); | |
1842 | extern int symbolic_reference_mentioned_p (); | |
1843 | extern void emit_pic_move (); | |
1844 | extern void function_prologue (); | |
1845 | extern int simple_386_epilogue (); | |
1846 | extern void function_epilogue (); | |
1847 | extern int legitimate_address_p (); | |
1848 | extern struct rtx_def *legitimize_pic_address (); | |
1849 | extern struct rtx_def *legitimize_address (); | |
1850 | extern void print_operand (); | |
1851 | extern void print_operand_address (); | |
1852 | extern void notice_update_cc (); | |
1853 | extern void split_di (); | |
1854 | extern int binary_387_op (); | |
1855 | extern int shift_op (); | |
1856 | extern int VOIDmode_compare_op (); | |
1857 | extern char *output_387_binary_op (); | |
1858 | extern char *output_fix_trunc (); | |
1859 | extern char *output_float_compare (); | |
1860 | extern char *output_fp_cc0_set (); | |
1861 | extern void save_386_machine_status (); | |
1862 | extern void restore_386_machine_status (); | |
1863 | extern void clear_386_stack_locals (); | |
1864 | extern struct rtx_def *assign_386_stack_local (); | |
1865 | ||
f5316dfe MM |
1866 | /* Variables in i386.c */ |
1867 | extern char *i386_reg_alloc_order; /* register allocation order */ | |
1868 | extern char *hi_reg_name[]; /* names for 16 bit regs */ | |
1869 | extern char *qi_reg_name[]; /* names for 8 bit regs (low) */ | |
1870 | extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */ | |
1871 | extern enum reg_class regclass_map[]; /* smalled class containing REGNO */ | |
1872 | extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */ | |
1873 | extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */ | |
1874 | ||
3b3c6a3f | 1875 | /* External variables used */ |
f5316dfe MM |
1876 | extern int optimize; /* optimization level */ |
1877 | extern int obey_regdecls; /* TRUE if stupid register allocation */ | |
3b3c6a3f MM |
1878 | |
1879 | /* External functions used */ | |
1880 | extern struct rtx_def *force_operand (); | |
1881 | \f | |
c98f8742 JVA |
1882 | /* |
1883 | Local variables: | |
1884 | version-control: t | |
1885 | End: | |
1886 | */ |