]> gcc.gnu.org Git - gcc.git/blame - gcc/config/i386/i386.c
flow.c: Update comment.
[gcc.git] / gcc / config / i386 / i386.c
CommitLineData
3b3c6a3f 1/* Subroutines for insn-output.c for Intel X86.
f5963e61 2 Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
2a2ab3f9
JVA
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
97aadbb9 18the Free Software Foundation, 59 Temple Place - Suite 330,
32b5b1aa 19Boston, MA 02111-1307, USA. */
2a2ab3f9 20
0b6b2900 21#include <setjmp.h>
2a2ab3f9 22#include "config.h"
bb5177ac 23#include "system.h"
2a2ab3f9
JVA
24#include "rtl.h"
25#include "regs.h"
26#include "hard-reg-set.h"
27#include "real.h"
28#include "insn-config.h"
29#include "conditions.h"
30#include "insn-flags.h"
31#include "output.h"
32#include "insn-attr.h"
33#include "tree.h"
34#include "flags.h"
a8ffcc81 35#include "except.h"
ecbc4695 36#include "function.h"
00c79232 37#include "recog.h"
ced8dd8c 38#include "expr.h"
f103890b 39#include "toplev.h"
2a2ab3f9 40
997de79c
JVA
41#ifdef EXTRA_CONSTRAINT
42/* If EXTRA_CONSTRAINT is defined, then the 'S'
43 constraint in REG_CLASS_FROM_LETTER will no longer work, and various
44 asm statements that need 'S' for class SIREG will break. */
ad5a6adc
RS
45 error EXTRA_CONSTRAINT conflicts with S constraint letter
46/* The previous line used to be #error, but some compilers barf
47 even if the conditional was untrue. */
997de79c
JVA
48#endif
49
8dfe5673
RK
50#ifndef CHECK_STACK_LIMIT
51#define CHECK_STACK_LIMIT -1
52#endif
53
e9a25f70
JL
54/* Type of an operand for ix86_{binary,unary}_operator_ok */
55enum reg_mem
32b5b1aa
SC
56{
57 reg_p,
58 mem_p,
59 imm_p
60};
61
62/* Processor costs (relative to an add) */
63struct processor_costs i386_cost = { /* 386 specific costs */
e9a25f70 64 1, /* cost of an add instruction */
32b5b1aa
SC
65 1, /* cost of a lea instruction */
66 3, /* variable shift costs */
67 2, /* constant shift costs */
68 6, /* cost of starting a multiply */
69 1, /* cost of multiply per each bit set */
70 23 /* cost of a divide/mod */
71};
72
73struct processor_costs i486_cost = { /* 486 specific costs */
74 1, /* cost of an add instruction */
75 1, /* cost of a lea instruction */
76 3, /* variable shift costs */
77 2, /* constant shift costs */
78 12, /* cost of starting a multiply */
79 1, /* cost of multiply per each bit set */
80 40 /* cost of a divide/mod */
81};
82
e5cb57e8 83struct processor_costs pentium_cost = {
32b5b1aa
SC
84 1, /* cost of an add instruction */
85 1, /* cost of a lea instruction */
856b07a1 86 4, /* variable shift costs */
e5cb57e8 87 1, /* constant shift costs */
856b07a1
SC
88 11, /* cost of starting a multiply */
89 0, /* cost of multiply per each bit set */
e5cb57e8 90 25 /* cost of a divide/mod */
32b5b1aa
SC
91};
92
856b07a1
SC
93struct processor_costs pentiumpro_cost = {
94 1, /* cost of an add instruction */
95 1, /* cost of a lea instruction */
96 3, /* variable shift costs */
97 1, /* constant shift costs */
98 4, /* cost of starting a multiply */
99 0, /* cost of multiply per each bit set */
100 17 /* cost of a divide/mod */
101};
102
a269a03c
JC
103struct processor_costs k6_cost = {
104 1, /* cost of an add instruction */
105 1, /* cost of a lea instruction */
106 1, /* variable shift costs */
107 1, /* constant shift costs */
108 2, /* cost of starting a multiply */
109 0, /* cost of multiply per each bit set */
110 18 /* cost of a divide/mod */
111};
112
32b5b1aa
SC
113struct processor_costs *ix86_cost = &pentium_cost;
114
a269a03c
JC
115/* Processor feature/optimization bitmasks. */
116#define m_386 (1<<PROCESSOR_I386)
117#define m_486 (1<<PROCESSOR_I486)
118#define m_PENT (1<<PROCESSOR_PENTIUM)
119#define m_PPRO (1<<PROCESSOR_PENTIUMPRO)
120#define m_K6 (1<<PROCESSOR_K6)
121
122const int x86_use_leave = m_386 | m_K6;
123const int x86_push_memory = m_386 | m_K6;
124const int x86_zero_extend_with_and = m_486 | m_PENT;
125const int x86_movx = m_386 | m_PPRO | m_K6;
126const int x86_double_with_add = ~m_386;
127const int x86_use_bit_test = m_386;
128const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO;
129const int x86_use_q_reg = m_PENT | m_PPRO | m_K6;
130const int x86_use_any_reg = m_486;
131const int x86_cmove = m_PPRO;
132const int x86_deep_branch = m_PPRO| m_K6;
133
f64cecad 134#define AT_BP(mode) (gen_rtx_MEM ((mode), frame_pointer_rtx))
2a2ab3f9
JVA
135
136extern FILE *asm_out_file;
137extern char *strcat ();
138
e9a25f70
JL
139static void ix86_epilogue PROTO((int));
140static void ix86_prologue PROTO((int));
141
2a2ab3f9
JVA
142char *singlemove_string ();
143char *output_move_const_single ();
c572e5ba 144char *output_fp_cc0_set ();
2a2ab3f9 145
35b63115
RS
146char *hi_reg_name[] = HI_REGISTER_NAMES;
147char *qi_reg_name[] = QI_REGISTER_NAMES;
148char *qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
4c0d89b5
RS
149
150/* Array of the smallest class containing reg number REGNO, indexed by
151 REGNO. Used by REGNO_REG_CLASS in i386.h. */
152
153enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
154{
155 /* ax, dx, cx, bx */
ab408a86 156 AREG, DREG, CREG, BREG,
4c0d89b5
RS
157 /* si, di, bp, sp */
158 SIREG, DIREG, INDEX_REGS, GENERAL_REGS,
159 /* FP registers */
160 FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
79325812 161 FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
4c0d89b5
RS
162 /* arg pointer */
163 INDEX_REGS
164};
c572e5ba
JVA
165
166/* Test and compare insns in i386.md store the information needed to
167 generate branch and scc insns here. */
168
f5316dfe
MM
169struct rtx_def *i386_compare_op0 = NULL_RTX;
170struct rtx_def *i386_compare_op1 = NULL_RTX;
c572e5ba 171struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
f5316dfe 172
c8c5cb99
SC
173/* which cpu are we scheduling for */
174enum processor_type ix86_cpu;
175
176/* which instruction set architecture to use. */
c942177e 177int ix86_arch;
c8c5cb99
SC
178
179/* Strings to hold which cpu and instruction set architecture to use. */
180char *ix86_cpu_string; /* for -mcpu=<xxx> */
c942177e 181char *ix86_arch_string; /* for -march=<xxx> */
c8c5cb99 182
f5316dfe 183/* Register allocation order */
b08de47e 184char *i386_reg_alloc_order;
f5316dfe
MM
185static char regs_allocated[FIRST_PSEUDO_REGISTER];
186
b08de47e 187/* # of registers to use to pass arguments. */
e9a25f70
JL
188char *i386_regparm_string;
189
190/* i386_regparm_string as a number */
191int i386_regparm;
192
193/* Alignment to use for loops and jumps: */
194
195/* Power of two alignment for loops. */
196char *i386_align_loops_string;
197
198/* Power of two alignment for non-loop jumps. */
199char *i386_align_jumps_string;
200
201/* Values 1-5: see jump.c */
202int i386_branch_cost;
203char *i386_branch_cost_string;
204
205/* Power of two alignment for functions. */
206int i386_align_funcs;
207char *i386_align_funcs_string;
b08de47e 208
e9a25f70
JL
209/* Power of two alignment for loops. */
210int i386_align_loops;
b08de47e 211
e9a25f70
JL
212/* Power of two alignment for non-loop jumps. */
213int i386_align_jumps;
b08de47e 214
f5316dfe
MM
215/* Sometimes certain combinations of command options do not make
216 sense on a particular target machine. You can define a macro
217 `OVERRIDE_OPTIONS' to take account of this. This macro, if
218 defined, is executed once just after all the command options have
219 been parsed.
220
221 Don't use this macro to turn on various extra optimizations for
222 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
223
224void
225override_options ()
226{
00c79232 227 int ch, i, j;
b08de47e 228 int def_align;
f5316dfe 229
c8c5cb99
SC
230 static struct ptt
231 {
232 char *name; /* Canonical processor name. */
233 enum processor_type processor; /* Processor type enum value. */
32b5b1aa 234 struct processor_costs *cost; /* Processor costs */
c8c5cb99
SC
235 int target_enable; /* Target flags to enable. */
236 int target_disable; /* Target flags to disable. */
237 } processor_target_table[]
c942177e 238 = {{PROCESSOR_I386_STRING, PROCESSOR_I386, &i386_cost, 0, 0},
32b5b1aa
SC
239 {PROCESSOR_I486_STRING, PROCESSOR_I486, &i486_cost, 0, 0},
240 {PROCESSOR_I586_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
241 {PROCESSOR_PENTIUM_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
e9a25f70
JL
242 {PROCESSOR_I686_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost,
243 0, 0},
244 {PROCESSOR_PENTIUMPRO_STRING, PROCESSOR_PENTIUMPRO,
a269a03c
JC
245 &pentiumpro_cost, 0, 0},
246 {PROCESSOR_K6_STRING, PROCESSOR_K6, &k6_cost, 0, 0}};
c8c5cb99
SC
247
248 int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);
249
f5316dfe
MM
250#ifdef SUBTARGET_OVERRIDE_OPTIONS
251 SUBTARGET_OVERRIDE_OPTIONS;
252#endif
253
e9a25f70 254 /* Validate registers in register allocation order. */
f5316dfe
MM
255 if (i386_reg_alloc_order)
256 {
257 for (i = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
258 {
00c79232 259 int regno = 0;
79325812 260
f5316dfe
MM
261 switch (ch)
262 {
263 case 'a': regno = 0; break;
264 case 'd': regno = 1; break;
265 case 'c': regno = 2; break;
266 case 'b': regno = 3; break;
267 case 'S': regno = 4; break;
268 case 'D': regno = 5; break;
269 case 'B': regno = 6; break;
270
271 default: fatal ("Register '%c' is unknown", ch);
272 }
273
274 if (regs_allocated[regno])
e9a25f70 275 fatal ("Register '%c' already specified in allocation order", ch);
f5316dfe
MM
276
277 regs_allocated[regno] = 1;
278 }
279 }
b08de47e 280
e9a25f70 281 if (ix86_arch_string == 0)
7cae778a 282 {
c942177e 283 ix86_arch_string = PROCESSOR_PENTIUM_STRING;
e9a25f70 284 if (ix86_cpu_string == 0)
7cae778a
SC
285 ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
286 }
79325812 287
c8c5cb99 288 for (i = 0; i < ptt_size; i++)
c942177e 289 if (! strcmp (ix86_arch_string, processor_target_table[i].name))
c8c5cb99 290 {
c942177e 291 ix86_arch = processor_target_table[i].processor;
e9a25f70 292 if (ix86_cpu_string == 0)
77a989d1 293 ix86_cpu_string = processor_target_table[i].name;
c8c5cb99
SC
294 break;
295 }
296
297 if (i == ptt_size)
298 {
c942177e 299 error ("bad value (%s) for -march= switch", ix86_arch_string);
4f74d15b 300 ix86_arch_string = PROCESSOR_PENTIUM_STRING;
c942177e 301 ix86_arch = PROCESSOR_DEFAULT;
c8c5cb99
SC
302 }
303
e9a25f70
JL
304 if (ix86_cpu_string == 0)
305 ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
4f74d15b 306
c8c5cb99
SC
307 for (j = 0; j < ptt_size; j++)
308 if (! strcmp (ix86_cpu_string, processor_target_table[j].name))
309 {
310 ix86_cpu = processor_target_table[j].processor;
856b07a1 311 ix86_cost = processor_target_table[j].cost;
a269a03c 312 if (i > j && (int) ix86_arch >= (int) PROCESSOR_K6)
e9a25f70
JL
313 error ("-mcpu=%s does not support -march=%s",
314 ix86_cpu_string, ix86_arch_string);
c8c5cb99
SC
315
316 target_flags |= processor_target_table[j].target_enable;
317 target_flags &= ~processor_target_table[j].target_disable;
318 break;
319 }
320
321 if (j == ptt_size)
322 {
323 error ("bad value (%s) for -mcpu= switch", ix86_cpu_string);
324 ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
325 ix86_cpu = PROCESSOR_DEFAULT;
326 }
e9a25f70
JL
327
328 /* Validate -mregparm= value. */
b08de47e
MM
329 if (i386_regparm_string)
330 {
331 i386_regparm = atoi (i386_regparm_string);
332 if (i386_regparm < 0 || i386_regparm > REGPARM_MAX)
e9a25f70
JL
333 fatal ("-mregparm=%d is not between 0 and %d",
334 i386_regparm, REGPARM_MAX);
b08de47e
MM
335 }
336
e9a25f70
JL
337 /* The 486 suffers more from non-aligned cache line fills, and the
338 larger code size results in a larger cache foot-print and more misses.
339 The 486 has a 16 byte cache line, pentium and pentiumpro have a 32 byte
340 cache line. */
d4e2f547 341 def_align = (TARGET_486) ? 4 : 2;
b08de47e 342
e9a25f70 343 /* Validate -malign-loops= value, or provide default. */
b08de47e
MM
344 if (i386_align_loops_string)
345 {
346 i386_align_loops = atoi (i386_align_loops_string);
347 if (i386_align_loops < 0 || i386_align_loops > MAX_CODE_ALIGN)
348 fatal ("-malign-loops=%d is not between 0 and %d",
349 i386_align_loops, MAX_CODE_ALIGN);
350 }
351 else
9e423e6d
JW
352#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
353 i386_align_loops = 4;
354#else
0da8af8f 355 i386_align_loops = 2;
9e423e6d 356#endif
b08de47e 357
e9a25f70 358 /* Validate -malign-jumps= value, or provide default. */
b08de47e
MM
359 if (i386_align_jumps_string)
360 {
361 i386_align_jumps = atoi (i386_align_jumps_string);
362 if (i386_align_jumps < 0 || i386_align_jumps > MAX_CODE_ALIGN)
363 fatal ("-malign-jumps=%d is not between 0 and %d",
364 i386_align_jumps, MAX_CODE_ALIGN);
365 }
366 else
9e423e6d
JW
367#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
368 i386_align_jumps = 4;
369#else
b08de47e 370 i386_align_jumps = def_align;
9e423e6d 371#endif
b08de47e 372
e9a25f70 373 /* Validate -malign-functions= value, or provide default. */
b08de47e
MM
374 if (i386_align_funcs_string)
375 {
376 i386_align_funcs = atoi (i386_align_funcs_string);
377 if (i386_align_funcs < 0 || i386_align_funcs > MAX_CODE_ALIGN)
378 fatal ("-malign-functions=%d is not between 0 and %d",
379 i386_align_funcs, MAX_CODE_ALIGN);
380 }
381 else
382 i386_align_funcs = def_align;
77a989d1 383
e9a25f70 384 /* Validate -mbranch-cost= value, or provide default. */
804a8ee0
SC
385 if (i386_branch_cost_string)
386 {
387 i386_branch_cost = atoi (i386_branch_cost_string);
388 if (i386_branch_cost < 0 || i386_branch_cost > 5)
389 fatal ("-mbranch-cost=%d is not between 0 and 5",
390 i386_branch_cost);
391 }
392 else
4f74d15b 393 i386_branch_cost = 1;
804a8ee0 394
e9a25f70
JL
395 /* Keep nonleaf frame pointers. */
396 if (TARGET_OMIT_LEAF_FRAME_POINTER)
77a989d1 397 flag_omit_frame_pointer = 1;
f5316dfe
MM
398}
399\f
400/* A C statement (sans semicolon) to choose the order in which to
401 allocate hard registers for pseudo-registers local to a basic
402 block.
403
404 Store the desired register order in the array `reg_alloc_order'.
405 Element 0 should be the register to allocate first; element 1, the
406 next register; and so on.
407
408 The macro body should not assume anything about the contents of
409 `reg_alloc_order' before execution of the macro.
410
411 On most machines, it is not necessary to define this macro. */
412
413void
414order_regs_for_local_alloc ()
415{
00c79232 416 int i, ch, order;
f5316dfe 417
e9a25f70
JL
418 /* User specified the register allocation order. */
419
f5316dfe
MM
420 if (i386_reg_alloc_order)
421 {
422 for (i = order = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
423 {
00c79232 424 int regno = 0;
79325812 425
f5316dfe
MM
426 switch (ch)
427 {
428 case 'a': regno = 0; break;
429 case 'd': regno = 1; break;
430 case 'c': regno = 2; break;
431 case 'b': regno = 3; break;
432 case 'S': regno = 4; break;
433 case 'D': regno = 5; break;
434 case 'B': regno = 6; break;
435 }
436
437 reg_alloc_order[order++] = regno;
438 }
439
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 {
e9a25f70 442 if (! regs_allocated[i])
f5316dfe
MM
443 reg_alloc_order[order++] = i;
444 }
445 }
446
e9a25f70 447 /* If user did not specify a register allocation order, use natural order. */
f5316dfe
MM
448 else
449 {
450 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
451 reg_alloc_order[i] = i;
f5316dfe
MM
452 }
453}
32b5b1aa
SC
454\f
455void
c6aded7c 456optimization_options (level, size)
32b5b1aa 457 int level;
bb5177ac 458 int size ATTRIBUTE_UNUSED;
32b5b1aa 459{
e9a25f70
JL
460 /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to
461 make the problem with not enough registers even worse. */
32b5b1aa
SC
462#ifdef INSN_SCHEDULING
463 if (level > 1)
464 flag_schedule_insns = 0;
465#endif
466}
b08de47e 467\f
5bc7cd8e
SC
468/* Sign-extend a 16-bit constant */
469
470struct rtx_def *
471i386_sext16_if_const (op)
472 struct rtx_def *op;
473{
474 if (GET_CODE (op) == CONST_INT)
475 {
476 HOST_WIDE_INT val = INTVAL (op);
477 HOST_WIDE_INT sext_val;
478 if (val & 0x8000)
479 sext_val = val | ~0xffff;
480 else
481 sext_val = val & 0xffff;
482 if (sext_val != val)
483 op = GEN_INT (sext_val);
484 }
485 return op;
486}
487\f
488/* Return nonzero if the rtx is aligned */
489
490static int
491i386_aligned_reg_p (regno)
492 int regno;
493{
494 return (regno == STACK_POINTER_REGNUM
e9a25f70 495 || (! flag_omit_frame_pointer && regno == FRAME_POINTER_REGNUM));
5bc7cd8e
SC
496}
497
498int
499i386_aligned_p (op)
500 rtx op;
501{
e9a25f70 502 /* Registers and immediate operands are always "aligned". */
5bc7cd8e
SC
503 if (GET_CODE (op) != MEM)
504 return 1;
505
e9a25f70 506 /* Don't even try to do any aligned optimizations with volatiles. */
5bc7cd8e
SC
507 if (MEM_VOLATILE_P (op))
508 return 0;
509
e9a25f70 510 /* Get address of memory operand. */
5bc7cd8e
SC
511 op = XEXP (op, 0);
512
513 switch (GET_CODE (op))
514 {
515 case CONST_INT:
e9a25f70
JL
516 if (INTVAL (op) & 3)
517 break;
518 return 1;
5bc7cd8e 519
e9a25f70 520 /* Match "reg + offset" */
5bc7cd8e 521 case PLUS:
e9a25f70
JL
522 if (GET_CODE (XEXP (op, 1)) != CONST_INT)
523 break;
524 if (INTVAL (XEXP (op, 1)) & 3)
525 break;
526
527 op = XEXP (op, 0);
528 if (GET_CODE (op) != REG)
529 break;
530
531 /* ... fall through ... */
532
5bc7cd8e 533 case REG:
e9a25f70 534 return i386_aligned_reg_p (REGNO (op));
79325812 535
00c79232 536 default:
53949fac 537 break;
5bc7cd8e 538 }
e9a25f70 539
5bc7cd8e
SC
540 return 0;
541}
542\f
543/* Return nonzero if INSN looks like it won't compute useful cc bits
544 as a side effect. This information is only a hint. */
545
546int
547i386_cc_probably_useless_p (insn)
548 rtx insn;
549{
e9a25f70 550 return ! next_cc0_user (insn);
5bc7cd8e
SC
551}
552\f
b08de47e
MM
553/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
554 attribute for DECL. The attributes in ATTRIBUTES have previously been
555 assigned to DECL. */
556
557int
558i386_valid_decl_attribute_p (decl, attributes, identifier, args)
bb5177ac
RL
559 tree decl ATTRIBUTE_UNUSED;
560 tree attributes ATTRIBUTE_UNUSED;
561 tree identifier ATTRIBUTE_UNUSED;
562 tree args ATTRIBUTE_UNUSED;
b08de47e
MM
563{
564 return 0;
565}
566
567/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
568 attribute for TYPE. The attributes in ATTRIBUTES have previously been
569 assigned to TYPE. */
570
571int
572i386_valid_type_attribute_p (type, attributes, identifier, args)
573 tree type;
bb5177ac 574 tree attributes ATTRIBUTE_UNUSED;
b08de47e
MM
575 tree identifier;
576 tree args;
577{
578 if (TREE_CODE (type) != FUNCTION_TYPE
ac478ac0 579 && TREE_CODE (type) != METHOD_TYPE
b08de47e
MM
580 && TREE_CODE (type) != FIELD_DECL
581 && TREE_CODE (type) != TYPE_DECL)
582 return 0;
583
584 /* Stdcall attribute says callee is responsible for popping arguments
585 if they are not variable. */
586 if (is_attribute_p ("stdcall", identifier))
587 return (args == NULL_TREE);
588
e9a25f70 589 /* Cdecl attribute says the callee is a normal C declaration. */
b08de47e
MM
590 if (is_attribute_p ("cdecl", identifier))
591 return (args == NULL_TREE);
592
593 /* Regparm attribute specifies how many integer arguments are to be
e9a25f70 594 passed in registers. */
b08de47e
MM
595 if (is_attribute_p ("regparm", identifier))
596 {
597 tree cst;
598
e9a25f70 599 if (! args || TREE_CODE (args) != TREE_LIST
b08de47e
MM
600 || TREE_CHAIN (args) != NULL_TREE
601 || TREE_VALUE (args) == NULL_TREE)
602 return 0;
603
604 cst = TREE_VALUE (args);
605 if (TREE_CODE (cst) != INTEGER_CST)
606 return 0;
607
608 if (TREE_INT_CST_HIGH (cst) != 0
609 || TREE_INT_CST_LOW (cst) < 0
610 || TREE_INT_CST_LOW (cst) > REGPARM_MAX)
611 return 0;
612
613 return 1;
614 }
615
616 return 0;
617}
618
619/* Return 0 if the attributes for two types are incompatible, 1 if they
620 are compatible, and 2 if they are nearly compatible (which causes a
621 warning to be generated). */
622
623int
624i386_comp_type_attributes (type1, type2)
bb5177ac
RL
625 tree type1 ATTRIBUTE_UNUSED;
626 tree type2 ATTRIBUTE_UNUSED;
b08de47e
MM
627{
628 return 1;
629}
630
631\f
632/* Value is the number of bytes of arguments automatically
633 popped when returning from a subroutine call.
634 FUNDECL is the declaration node of the function (as a tree),
635 FUNTYPE is the data type of the function (as a tree),
636 or for a library call it is an identifier node for the subroutine name.
637 SIZE is the number of bytes of arguments passed on the stack.
638
639 On the 80386, the RTD insn may be used to pop them if the number
640 of args is fixed, but if the number is variable then the caller
641 must pop them all. RTD can't be used for library calls now
642 because the library is compiled with the Unix compiler.
643 Use of RTD is a selectable option, since it is incompatible with
644 standard Unix calling sequences. If the option is not selected,
645 the caller must always pop the args.
646
647 The attribute stdcall is equivalent to RTD on a per module basis. */
648
649int
650i386_return_pops_args (fundecl, funtype, size)
651 tree fundecl;
652 tree funtype;
653 int size;
79325812 654{
3345ee7d 655 int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE);
b08de47e 656
e9a25f70
JL
657 /* Cdecl functions override -mrtd, and never pop the stack. */
658 if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
79325812 659
e9a25f70 660 /* Stdcall functions will pop the stack if not variable args. */
698cdd84
SC
661 if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
662 rtd = 1;
79325812 663
698cdd84
SC
664 if (rtd
665 && (TYPE_ARG_TYPES (funtype) == NULL_TREE
e9a25f70
JL
666 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype)))
667 == void_type_node)))
698cdd84
SC
668 return size;
669 }
79325812 670
e9a25f70 671 /* Lose any fake structure return argument. */
698cdd84
SC
672 if (aggregate_value_p (TREE_TYPE (funtype)))
673 return GET_MODE_SIZE (Pmode);
79325812 674
2614aac6 675 return 0;
b08de47e
MM
676}
677
678\f
679/* Argument support functions. */
680
681/* Initialize a variable CUM of type CUMULATIVE_ARGS
682 for a call to a function whose data type is FNTYPE.
683 For a library call, FNTYPE is 0. */
684
685void
686init_cumulative_args (cum, fntype, libname)
e9a25f70 687 CUMULATIVE_ARGS *cum; /* Argument info to initialize */
b08de47e
MM
688 tree fntype; /* tree ptr for function decl */
689 rtx libname; /* SYMBOL_REF of library name or 0 */
690{
691 static CUMULATIVE_ARGS zero_cum;
692 tree param, next_param;
693
694 if (TARGET_DEBUG_ARG)
695 {
696 fprintf (stderr, "\ninit_cumulative_args (");
697 if (fntype)
e9a25f70
JL
698 fprintf (stderr, "fntype code = %s, ret code = %s",
699 tree_code_name[(int) TREE_CODE (fntype)],
700 tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]);
b08de47e
MM
701 else
702 fprintf (stderr, "no fntype");
703
704 if (libname)
705 fprintf (stderr, ", libname = %s", XSTR (libname, 0));
706 }
707
708 *cum = zero_cum;
709
710 /* Set up the number of registers to use for passing arguments. */
711 cum->nregs = i386_regparm;
712 if (fntype)
713 {
714 tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
e9a25f70 715
b08de47e
MM
716 if (attr)
717 cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
718 }
719
720 /* Determine if this function has variable arguments. This is
721 indicated by the last argument being 'void_type_mode' if there
722 are no variable arguments. If there are variable arguments, then
723 we won't pass anything in registers */
724
725 if (cum->nregs)
726 {
727 for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
e9a25f70 728 param != 0; param = next_param)
b08de47e
MM
729 {
730 next_param = TREE_CHAIN (param);
e9a25f70 731 if (next_param == 0 && TREE_VALUE (param) != void_type_node)
b08de47e
MM
732 cum->nregs = 0;
733 }
734 }
735
736 if (TARGET_DEBUG_ARG)
737 fprintf (stderr, ", nregs=%d )\n", cum->nregs);
738
739 return;
740}
741
742/* Update the data in CUM to advance over an argument
743 of mode MODE and data type TYPE.
744 (TYPE is null for libcalls where that information may not be available.) */
745
746void
747function_arg_advance (cum, mode, type, named)
748 CUMULATIVE_ARGS *cum; /* current arg information */
749 enum machine_mode mode; /* current arg mode */
750 tree type; /* type of the argument or 0 if lib support */
751 int named; /* whether or not the argument was named */
752{
e9a25f70
JL
753 int bytes
754 = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
b08de47e
MM
755 int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
756
757 if (TARGET_DEBUG_ARG)
758 fprintf (stderr,
e9a25f70 759 "function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n",
b08de47e
MM
760 words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
761
762 cum->words += words;
763 cum->nregs -= words;
764 cum->regno += words;
765
766 if (cum->nregs <= 0)
767 {
768 cum->nregs = 0;
769 cum->regno = 0;
770 }
771
772 return;
773}
774
775/* Define where to put the arguments to a function.
776 Value is zero to push the argument on the stack,
777 or a hard register in which to store the argument.
778
779 MODE is the argument's machine mode.
780 TYPE is the data type of the argument (as a tree).
781 This is null for libcalls where that information may
782 not be available.
783 CUM is a variable of type CUMULATIVE_ARGS which gives info about
784 the preceding args and about the function being called.
785 NAMED is nonzero if this argument is a named parameter
786 (otherwise it is an extra parameter matching an ellipsis). */
787
788struct rtx_def *
789function_arg (cum, mode, type, named)
790 CUMULATIVE_ARGS *cum; /* current arg information */
791 enum machine_mode mode; /* current arg mode */
792 tree type; /* type of the argument or 0 if lib support */
793 int named; /* != 0 for normal args, == 0 for ... args */
794{
795 rtx ret = NULL_RTX;
e9a25f70
JL
796 int bytes
797 = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
b08de47e
MM
798 int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
799
800 switch (mode)
801 {
e9a25f70
JL
802 /* For now, pass fp/complex values on the stack. */
803 default:
b08de47e
MM
804 break;
805
806 case BLKmode:
807 case DImode:
808 case SImode:
809 case HImode:
810 case QImode:
811 if (words <= cum->nregs)
f64cecad 812 ret = gen_rtx_REG (mode, cum->regno);
b08de47e
MM
813 break;
814 }
815
816 if (TARGET_DEBUG_ARG)
817 {
818 fprintf (stderr,
e9a25f70 819 "function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d",
b08de47e
MM
820 words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
821
822 if (ret)
823 fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]);
824 else
825 fprintf (stderr, ", stack");
826
827 fprintf (stderr, " )\n");
828 }
829
830 return ret;
831}
832
833/* For an arg passed partly in registers and partly in memory,
834 this is the number of registers used.
835 For args passed entirely in registers or entirely in memory, zero. */
836
837int
838function_arg_partial_nregs (cum, mode, type, named)
bb5177ac
RL
839 CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; /* current arg information */
840 enum machine_mode mode ATTRIBUTE_UNUSED; /* current arg mode */
841 tree type ATTRIBUTE_UNUSED; /* type of the argument or 0 if lib support */
842 int named ATTRIBUTE_UNUSED; /* != 0 for normal args, == 0 for ... args */
b08de47e
MM
843{
844 return 0;
845}
2a2ab3f9
JVA
846\f
847/* Output an insn whose source is a 386 integer register. SRC is the
848 rtx for the register, and TEMPLATE is the op-code template. SRC may
849 be either SImode or DImode.
850
851 The template will be output with operands[0] as SRC, and operands[1]
852 as a pointer to the top of the 386 stack. So a call from floatsidf2
853 would look like this:
854
855 output_op_from_reg (operands[1], AS1 (fild%z0,%1));
856
857 where %z0 corresponds to the caller's operands[1], and is used to
858 emit the proper size suffix.
859
860 ??? Extend this to handle HImode - a 387 can load and store HImode
861 values directly. */
862
863void
864output_op_from_reg (src, template)
865 rtx src;
866 char *template;
867{
868 rtx xops[4];
5f1ec3e6 869 int size = GET_MODE_SIZE (GET_MODE (src));
2a2ab3f9
JVA
870
871 xops[0] = src;
872 xops[1] = AT_SP (Pmode);
5f1ec3e6 873 xops[2] = GEN_INT (size);
2a2ab3f9
JVA
874 xops[3] = stack_pointer_rtx;
875
5f1ec3e6 876 if (size > UNITS_PER_WORD)
2a2ab3f9 877 {
5f1ec3e6 878 rtx high;
e9a25f70 879
5f1ec3e6
JVA
880 if (size > 2 * UNITS_PER_WORD)
881 {
f64cecad 882 high = gen_rtx_REG (SImode, REGNO (src) + 2);
5f1ec3e6
JVA
883 output_asm_insn (AS1 (push%L0,%0), &high);
884 }
e9a25f70 885
f64cecad 886 high = gen_rtx_REG (SImode, REGNO (src) + 1);
2a2ab3f9
JVA
887 output_asm_insn (AS1 (push%L0,%0), &high);
888 }
2a2ab3f9 889
e9a25f70 890 output_asm_insn (AS1 (push%L0,%0), &src);
2a2ab3f9 891 output_asm_insn (template, xops);
2a2ab3f9
JVA
892 output_asm_insn (AS2 (add%L3,%2,%3), xops);
893}
894\f
895/* Output an insn to pop an value from the 387 top-of-stack to 386
896 register DEST. The 387 register stack is popped if DIES is true. If
897 the mode of DEST is an integer mode, a `fist' integer store is done,
898 otherwise a `fst' float store is done. */
899
900void
c27d9c3b 901output_to_reg (dest, dies, scratch_mem)
2a2ab3f9
JVA
902 rtx dest;
903 int dies;
c27d9c3b 904 rtx scratch_mem;
2a2ab3f9
JVA
905{
906 rtx xops[4];
5f1ec3e6 907 int size = GET_MODE_SIZE (GET_MODE (dest));
2a2ab3f9 908
c27d9c3b
SC
909 if (! scratch_mem)
910 xops[0] = AT_SP (Pmode);
911 else
912 xops[0] = scratch_mem;
e9a25f70 913
2a2ab3f9 914 xops[1] = stack_pointer_rtx;
5f1ec3e6 915 xops[2] = GEN_INT (size);
2a2ab3f9
JVA
916 xops[3] = dest;
917
c27d9c3b
SC
918 if (! scratch_mem)
919 output_asm_insn (AS2 (sub%L1,%2,%1), xops);
2a2ab3f9
JVA
920
921 if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
922 {
923 if (dies)
924 output_asm_insn (AS1 (fistp%z3,%y0), xops);
60aeab7f
L
925 else if (GET_MODE (xops[3]) == DImode && ! dies)
926 {
927 /* There is no DImode version of this without a stack pop, so
928 we must emulate it. It doesn't matter much what the second
929 instruction is, because the value being pushed on the FP stack
930 is not used except for the following stack popping store.
931 This case can only happen without optimization, so it doesn't
932 matter that it is inefficient. */
933 output_asm_insn (AS1 (fistp%z3,%0), xops);
934 output_asm_insn (AS1 (fild%z3,%0), xops);
935 }
2a2ab3f9
JVA
936 else
937 output_asm_insn (AS1 (fist%z3,%y0), xops);
938 }
e9a25f70 939
2a2ab3f9
JVA
940 else if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_FLOAT)
941 {
942 if (dies)
943 output_asm_insn (AS1 (fstp%z3,%y0), xops);
944 else
5f1ec3e6
JVA
945 {
946 if (GET_MODE (dest) == XFmode)
30387275
JVA
947 {
948 output_asm_insn (AS1 (fstp%z3,%y0), xops);
949 output_asm_insn (AS1 (fld%z3,%y0), xops);
950 }
5f1ec3e6
JVA
951 else
952 output_asm_insn (AS1 (fst%z3,%y0), xops);
953 }
2a2ab3f9 954 }
e9a25f70 955
2a2ab3f9
JVA
956 else
957 abort ();
958
c27d9c3b
SC
959 if (! scratch_mem)
960 output_asm_insn (AS1 (pop%L0,%0), &dest);
961 else
962 output_asm_insn (AS2 (mov%L0,%0,%3), xops);
963
2a2ab3f9 964
5f1ec3e6 965 if (size > UNITS_PER_WORD)
2a2ab3f9 966 {
f64cecad 967 dest = gen_rtx_REG (SImode, REGNO (dest) + 1);
c27d9c3b
SC
968 if (! scratch_mem)
969 output_asm_insn (AS1 (pop%L0,%0), &dest);
970 else
971 {
79325812 972 xops[0] = adj_offsettable_operand (xops[0], 4);
c27d9c3b
SC
973 xops[3] = dest;
974 output_asm_insn (AS2 (mov%L0,%0,%3), xops);
975 }
e9a25f70 976
5f1ec3e6
JVA
977 if (size > 2 * UNITS_PER_WORD)
978 {
f64cecad 979 dest = gen_rtx_REG (SImode, REGNO (dest) + 1);
c27d9c3b
SC
980 if (! scratch_mem)
981 output_asm_insn (AS1 (pop%L0,%0), &dest);
982 else
983 {
79325812 984 xops[0] = adj_offsettable_operand (xops[0], 4);
c27d9c3b
SC
985 output_asm_insn (AS2 (mov%L0,%0,%3), xops);
986 }
5f1ec3e6 987 }
2a2ab3f9
JVA
988 }
989}
990\f
991char *
992singlemove_string (operands)
993 rtx *operands;
994{
995 rtx x;
996 if (GET_CODE (operands[0]) == MEM
997 && GET_CODE (x = XEXP (operands[0], 0)) == PRE_DEC)
998 {
999 if (XEXP (x, 0) != stack_pointer_rtx)
1000 abort ();
1001 return "push%L1 %1";
1002 }
1003 else if (GET_CODE (operands[1]) == CONST_DOUBLE)
e9a25f70 1004 return output_move_const_single (operands);
2a2ab3f9
JVA
1005 else if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)
1006 return AS2 (mov%L0,%1,%0);
1007 else if (CONSTANT_P (operands[1]))
1008 return AS2 (mov%L0,%1,%0);
1009 else
1010 {
1011 output_asm_insn ("push%L1 %1", operands);
1012 return "pop%L0 %0";
1013 }
1014}
1015\f
1016/* Return a REG that occurs in ADDR with coefficient 1.
1017 ADDR can be effectively incremented by incrementing REG. */
1018
1019static rtx
1020find_addr_reg (addr)
1021 rtx addr;
1022{
1023 while (GET_CODE (addr) == PLUS)
1024 {
1025 if (GET_CODE (XEXP (addr, 0)) == REG)
1026 addr = XEXP (addr, 0);
1027 else if (GET_CODE (XEXP (addr, 1)) == REG)
1028 addr = XEXP (addr, 1);
1029 else if (CONSTANT_P (XEXP (addr, 0)))
1030 addr = XEXP (addr, 1);
1031 else if (CONSTANT_P (XEXP (addr, 1)))
1032 addr = XEXP (addr, 0);
1033 else
1034 abort ();
1035 }
e9a25f70 1036
2a2ab3f9
JVA
1037 if (GET_CODE (addr) == REG)
1038 return addr;
1039 abort ();
1040}
b840bfb0 1041\f
2a2ab3f9
JVA
1042/* Output an insn to add the constant N to the register X. */
1043
1044static void
1045asm_add (n, x)
1046 int n;
1047 rtx x;
1048{
1049 rtx xops[2];
3b3c6a3f
MM
1050 xops[0] = x;
1051
1052 if (n == -1)
1053 output_asm_insn (AS1 (dec%L0,%0), xops);
1054 else if (n == 1)
1055 output_asm_insn (AS1 (inc%L0,%0), xops);
5bc7cd8e 1056 else if (n < 0 || n == 128)
2a2ab3f9 1057 {
3b3c6a3f
MM
1058 xops[1] = GEN_INT (-n);
1059 output_asm_insn (AS2 (sub%L0,%1,%0), xops);
2a2ab3f9
JVA
1060 }
1061 else if (n > 0)
1062 {
3b3c6a3f
MM
1063 xops[1] = GEN_INT (n);
1064 output_asm_insn (AS2 (add%L0,%1,%0), xops);
2a2ab3f9
JVA
1065 }
1066}
b840bfb0 1067\f
2a2ab3f9
JVA
1068/* Output assembler code to perform a doubleword move insn
1069 with operands OPERANDS. */
1070
1071char *
1072output_move_double (operands)
1073 rtx *operands;
1074{
1075 enum {REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
1076 rtx latehalf[2];
5f1ec3e6
JVA
1077 rtx middlehalf[2];
1078 rtx xops[2];
2a2ab3f9 1079 rtx addreg0 = 0, addreg1 = 0;
85ddb399 1080 int dest_overlapped_low = 0;
57e1b65c 1081 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
5f1ec3e6
JVA
1082
1083 middlehalf[0] = 0;
1084 middlehalf[1] = 0;
2a2ab3f9
JVA
1085
1086 /* First classify both operands. */
1087
1088 if (REG_P (operands[0]))
1089 optype0 = REGOP;
1090 else if (offsettable_memref_p (operands[0]))
1091 optype0 = OFFSOP;
1092 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1093 optype0 = POPOP;
1094 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1095 optype0 = PUSHOP;
1096 else if (GET_CODE (operands[0]) == MEM)
1097 optype0 = MEMOP;
1098 else
1099 optype0 = RNDOP;
1100
1101 if (REG_P (operands[1]))
1102 optype1 = REGOP;
1103 else if (CONSTANT_P (operands[1]))
1104 optype1 = CNSTOP;
1105 else if (offsettable_memref_p (operands[1]))
1106 optype1 = OFFSOP;
1107 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1108 optype1 = POPOP;
1109 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1110 optype1 = PUSHOP;
1111 else if (GET_CODE (operands[1]) == MEM)
1112 optype1 = MEMOP;
1113 else
1114 optype1 = RNDOP;
1115
1116 /* Check for the cases that the operand constraints are not
1117 supposed to allow to happen. Abort if we get one,
1118 because generating code for these cases is painful. */
1119
1120 if (optype0 == RNDOP || optype1 == RNDOP)
1121 abort ();
1122
1123 /* If one operand is decrementing and one is incrementing
1124 decrement the former register explicitly
1125 and change that operand into ordinary indexing. */
1126
1127 if (optype0 == PUSHOP && optype1 == POPOP)
1128 {
5f1ec3e6 1129 /* ??? Can this ever happen on i386? */
2a2ab3f9 1130 operands[0] = XEXP (XEXP (operands[0], 0), 0);
5f1ec3e6
JVA
1131 asm_add (-size, operands[0]);
1132 if (GET_MODE (operands[1]) == XFmode)
f64cecad 1133 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
5f1ec3e6 1134 else if (GET_MODE (operands[0]) == DFmode)
f64cecad 1135 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
5f1ec3e6 1136 else
f64cecad 1137 operands[0] = gen_rtx_MEM (DImode, operands[0]);
2a2ab3f9
JVA
1138 optype0 = OFFSOP;
1139 }
5f1ec3e6 1140
2a2ab3f9
JVA
1141 if (optype0 == POPOP && optype1 == PUSHOP)
1142 {
5f1ec3e6 1143 /* ??? Can this ever happen on i386? */
2a2ab3f9 1144 operands[1] = XEXP (XEXP (operands[1], 0), 0);
5f1ec3e6
JVA
1145 asm_add (-size, operands[1]);
1146 if (GET_MODE (operands[1]) == XFmode)
f64cecad 1147 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
5f1ec3e6 1148 else if (GET_MODE (operands[1]) == DFmode)
f64cecad 1149 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
5f1ec3e6 1150 else
f64cecad 1151 operands[1] = gen_rtx_MEM (DImode, operands[1]);
2a2ab3f9
JVA
1152 optype1 = OFFSOP;
1153 }
1154
1155 /* If an operand is an unoffsettable memory ref, find a register
1156 we can increment temporarily to make it refer to the second word. */
1157
1158 if (optype0 == MEMOP)
1159 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1160
1161 if (optype1 == MEMOP)
1162 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1163
1164 /* Ok, we can do one word at a time.
1165 Normally we do the low-numbered word first,
1166 but if either operand is autodecrementing then we
1167 do the high-numbered word first.
1168
1169 In either case, set up in LATEHALF the operands to use
1170 for the high-numbered word and in some cases alter the
1171 operands in OPERANDS to be suitable for the low-numbered word. */
1172
5f1ec3e6
JVA
1173 if (size == 12)
1174 {
1175 if (optype0 == REGOP)
1176 {
f64cecad
JC
1177 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
1178 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
5f1ec3e6
JVA
1179 }
1180 else if (optype0 == OFFSOP)
1181 {
1182 middlehalf[0] = adj_offsettable_operand (operands[0], 4);
1183 latehalf[0] = adj_offsettable_operand (operands[0], 8);
1184 }
1185 else
1186 {
1187 middlehalf[0] = operands[0];
1188 latehalf[0] = operands[0];
1189 }
79325812 1190
5f1ec3e6
JVA
1191 if (optype1 == REGOP)
1192 {
f64cecad
JC
1193 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
1194 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
5f1ec3e6
JVA
1195 }
1196 else if (optype1 == OFFSOP)
1197 {
1198 middlehalf[1] = adj_offsettable_operand (operands[1], 4);
1199 latehalf[1] = adj_offsettable_operand (operands[1], 8);
1200 }
1201 else if (optype1 == CNSTOP)
1202 {
1203 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1204 {
1205 REAL_VALUE_TYPE r; long l[3];
2a2ab3f9 1206
5f1ec3e6
JVA
1207 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
1209 operands[1] = GEN_INT (l[0]);
1210 middlehalf[1] = GEN_INT (l[1]);
1211 latehalf[1] = GEN_INT (l[2]);
1212 }
1213 else if (CONSTANT_P (operands[1]))
1214 /* No non-CONST_DOUBLE constant should ever appear here. */
1215 abort ();
1216 }
1217 else
1218 {
1219 middlehalf[1] = operands[1];
1220 latehalf[1] = operands[1];
1221 }
1222 }
e9a25f70
JL
1223
1224 else
2a2ab3f9 1225 {
e9a25f70
JL
1226 /* Size is not 12. */
1227
5f1ec3e6 1228 if (optype0 == REGOP)
f64cecad 1229 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
5f1ec3e6
JVA
1230 else if (optype0 == OFFSOP)
1231 latehalf[0] = adj_offsettable_operand (operands[0], 4);
1232 else
1233 latehalf[0] = operands[0];
1234
1235 if (optype1 == REGOP)
f64cecad 1236 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
5f1ec3e6
JVA
1237 else if (optype1 == OFFSOP)
1238 latehalf[1] = adj_offsettable_operand (operands[1], 4);
1239 else if (optype1 == CNSTOP)
57e1b65c 1240 split_double (operands[1], &operands[1], &latehalf[1]);
5f1ec3e6
JVA
1241 else
1242 latehalf[1] = operands[1];
2a2ab3f9 1243 }
2a2ab3f9
JVA
1244
1245 /* If insn is effectively movd N (sp),-(sp) then we will do the
e7c2087c
RS
1246 high word first. We should use the adjusted operand 1
1247 (which is N+4 (sp) or N+8 (sp))
1248 for the low word and middle word as well,
1249 to compensate for the first decrement of sp. */
2a2ab3f9
JVA
1250 if (optype0 == PUSHOP
1251 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1252 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
e7c2087c 1253 middlehalf[1] = operands[1] = latehalf[1];
2a2ab3f9 1254
81fd0956 1255 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
85ddb399
RS
1256 if the upper part of reg N does not appear in the MEM, arrange to
1257 emit the move late-half first. Otherwise, compute the MEM address
1258 into the upper part of N and use that as a pointer to the memory
1259 operand. */
81fd0956 1260 if (optype0 == REGOP
85ddb399 1261 && (optype1 == OFFSOP || optype1 == MEMOP))
81fd0956 1262 {
85ddb399
RS
1263 if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
1264 && reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
1265 {
1266 /* If both halves of dest are used in the src memory address,
1267 compute the address into latehalf of dest. */
e9a25f70 1268 compadr:
85ddb399
RS
1269 xops[0] = latehalf[0];
1270 xops[1] = XEXP (operands[1], 0);
1271 output_asm_insn (AS2 (lea%L0,%a1,%0), xops);
e9a25f70 1272 if (GET_MODE (operands[1]) == XFmode)
5f1ec3e6 1273 {
f64cecad 1274 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
5f1ec3e6
JVA
1275 middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
1276 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1277 }
1278 else
1279 {
f64cecad 1280 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
5f1ec3e6
JVA
1281 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1282 }
1283 }
e9a25f70 1284
5f1ec3e6
JVA
1285 else if (size == 12
1286 && reg_mentioned_p (middlehalf[0], XEXP (operands[1], 0)))
1287 {
1288 /* Check for two regs used by both source and dest. */
1289 if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
1290 || reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
e9a25f70 1291 goto compadr;
5f1ec3e6
JVA
1292
1293 /* JRV says this can't happen: */
1294 if (addreg0 || addreg1)
e9a25f70 1295 abort ();
5f1ec3e6
JVA
1296
1297 /* Only the middle reg conflicts; simply put it last. */
1298 output_asm_insn (singlemove_string (operands), operands);
1299 output_asm_insn (singlemove_string (latehalf), latehalf);
1300 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1301 return "";
85ddb399 1302 }
e9a25f70 1303
85ddb399
RS
1304 else if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
1305 /* If the low half of dest is mentioned in the source memory
1306 address, the arrange to emit the move late half first. */
1307 dest_overlapped_low = 1;
81fd0956
RS
1308 }
1309
2a2ab3f9
JVA
1310 /* If one or both operands autodecrementing,
1311 do the two words, high-numbered first. */
1312
1313 /* Likewise, the first move would clobber the source of the second one,
1314 do them in the other order. This happens only for registers;
1315 such overlap can't happen in memory unless the user explicitly
1316 sets it up, and that is an undefined circumstance. */
1317
e9a25f70 1318#if 0
2a2ab3f9
JVA
1319 if (optype0 == PUSHOP || optype1 == PUSHOP
1320 || (optype0 == REGOP && optype1 == REGOP
85ddb399
RS
1321 && REGNO (operands[0]) == REGNO (latehalf[1]))
1322 || dest_overlapped_low)
e9a25f70
JL
1323#endif
1324
5f1ec3e6
JVA
1325 if (optype0 == PUSHOP || optype1 == PUSHOP
1326 || (optype0 == REGOP && optype1 == REGOP
1327 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
1328 || REGNO (operands[0]) == REGNO (latehalf[1])))
1329 || dest_overlapped_low)
2a2ab3f9
JVA
1330 {
1331 /* Make any unoffsettable addresses point at high-numbered word. */
1332 if (addreg0)
5f1ec3e6 1333 asm_add (size-4, addreg0);
2a2ab3f9 1334 if (addreg1)
5f1ec3e6 1335 asm_add (size-4, addreg1);
2a2ab3f9
JVA
1336
1337 /* Do that word. */
1338 output_asm_insn (singlemove_string (latehalf), latehalf);
1339
1340 /* Undo the adds we just did. */
1341 if (addreg0)
e9a25f70 1342 asm_add (-4, addreg0);
2a2ab3f9
JVA
1343 if (addreg1)
1344 asm_add (-4, addreg1);
1345
5f1ec3e6
JVA
1346 if (size == 12)
1347 {
e9a25f70
JL
1348 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1349 if (addreg0)
1350 asm_add (-4, addreg0);
1351 if (addreg1)
1352 asm_add (-4, addreg1);
5f1ec3e6
JVA
1353 }
1354
2a2ab3f9
JVA
1355 /* Do low-numbered word. */
1356 return singlemove_string (operands);
1357 }
1358
1359 /* Normal case: do the two words, low-numbered first. */
1360
1361 output_asm_insn (singlemove_string (operands), operands);
1362
5f1ec3e6
JVA
1363 /* Do the middle one of the three words for long double */
1364 if (size == 12)
1365 {
1366 if (addreg0)
1367 asm_add (4, addreg0);
1368 if (addreg1)
1369 asm_add (4, addreg1);
1370
1371 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1372 }
1373
2a2ab3f9
JVA
1374 /* Make any unoffsettable addresses point at high-numbered word. */
1375 if (addreg0)
1376 asm_add (4, addreg0);
1377 if (addreg1)
1378 asm_add (4, addreg1);
1379
1380 /* Do that word. */
1381 output_asm_insn (singlemove_string (latehalf), latehalf);
1382
1383 /* Undo the adds we just did. */
1384 if (addreg0)
5f1ec3e6 1385 asm_add (4-size, addreg0);
2a2ab3f9 1386 if (addreg1)
5f1ec3e6 1387 asm_add (4-size, addreg1);
2a2ab3f9
JVA
1388
1389 return "";
1390}
b840bfb0
MM
1391\f
1392#define MAX_TMPS 2 /* max temporary registers used */
1393
1394/* Output the appropriate code to move push memory on the stack */
1395
1396char *
1397output_move_pushmem (operands, insn, length, tmp_start, n_operands)
1398 rtx operands[];
1399 rtx insn;
1400 int length;
1401 int tmp_start;
1402 int n_operands;
1403{
e9a25f70
JL
1404 struct
1405 {
1406 char *load;
1407 char *push;
1408 rtx xops[2];
1409 } tmp_info[MAX_TMPS];
79325812 1410
b840bfb0
MM
1411 rtx src = operands[1];
1412 int max_tmps = 0;
1413 int offset = 0;
1414 int stack_p = reg_overlap_mentioned_p (stack_pointer_rtx, src);
1415 int stack_offset = 0;
1416 int i, num_tmps;
1417 rtx xops[1];
1418
e9a25f70 1419 if (! offsettable_memref_p (src))
b840bfb0
MM
1420 fatal_insn ("Source is not offsettable", insn);
1421
1422 if ((length & 3) != 0)
1423 fatal_insn ("Pushing non-word aligned size", insn);
1424
1425 /* Figure out which temporary registers we have available */
1426 for (i = tmp_start; i < n_operands; i++)
1427 {
1428 if (GET_CODE (operands[i]) == REG)
1429 {
1430 if (reg_overlap_mentioned_p (operands[i], src))
1431 continue;
1432
1433 tmp_info[ max_tmps++ ].xops[1] = operands[i];
1434 if (max_tmps == MAX_TMPS)
1435 break;
1436 }
1437 }
1438
1439 if (max_tmps == 0)
1440 for (offset = length - 4; offset >= 0; offset -= 4)
1441 {
1442 xops[0] = adj_offsettable_operand (src, offset + stack_offset);
1443 output_asm_insn (AS1(push%L0,%0), xops);
1444 if (stack_p)
1445 stack_offset += 4;
1446 }
1447
1448 else
1449 for (offset = length - 4; offset >= 0; )
1450 {
1451 for (num_tmps = 0; num_tmps < max_tmps && offset >= 0; num_tmps++)
1452 {
1453 tmp_info[num_tmps].load = AS2(mov%L0,%0,%1);
1454 tmp_info[num_tmps].push = AS1(push%L0,%1);
e9a25f70
JL
1455 tmp_info[num_tmps].xops[0]
1456 = adj_offsettable_operand (src, offset + stack_offset);
b840bfb0
MM
1457 offset -= 4;
1458 }
1459
1460 for (i = 0; i < num_tmps; i++)
1461 output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
1462
1463 for (i = 0; i < num_tmps; i++)
1464 output_asm_insn (tmp_info[i].push, tmp_info[i].xops);
1465
1466 if (stack_p)
1467 stack_offset += 4*num_tmps;
1468 }
1469
1470 return "";
1471}
b840bfb0 1472\f
b840bfb0
MM
1473/* Output the appropriate code to move data between two memory locations */
1474
1475char *
1476output_move_memory (operands, insn, length, tmp_start, n_operands)
1477 rtx operands[];
1478 rtx insn;
1479 int length;
1480 int tmp_start;
1481 int n_operands;
1482{
e9a25f70
JL
1483 struct
1484 {
1485 char *load;
1486 char *store;
1487 rtx xops[3];
1488 } tmp_info[MAX_TMPS];
b840bfb0
MM
1489
1490 rtx dest = operands[0];
1491 rtx src = operands[1];
1492 rtx qi_tmp = NULL_RTX;
1493 int max_tmps = 0;
1494 int offset = 0;
1495 int i, num_tmps;
1496 rtx xops[3];
1497
1498 if (GET_CODE (dest) == MEM
1499 && GET_CODE (XEXP (dest, 0)) == PRE_INC
1500 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
1501 return output_move_pushmem (operands, insn, length, tmp_start, n_operands);
1502
e9a25f70 1503 if (! offsettable_memref_p (src))
b840bfb0
MM
1504 fatal_insn ("Source is not offsettable", insn);
1505
e9a25f70 1506 if (! offsettable_memref_p (dest))
b840bfb0
MM
1507 fatal_insn ("Destination is not offsettable", insn);
1508
1509 /* Figure out which temporary registers we have available */
1510 for (i = tmp_start; i < n_operands; i++)
1511 {
1512 if (GET_CODE (operands[i]) == REG)
1513 {
e9a25f70 1514 if ((length & 1) != 0 && qi_tmp == 0 && QI_REG_P (operands[i]))
b840bfb0
MM
1515 qi_tmp = operands[i];
1516
1517 if (reg_overlap_mentioned_p (operands[i], dest))
1518 fatal_insn ("Temporary register overlaps the destination", insn);
1519
1520 if (reg_overlap_mentioned_p (operands[i], src))
1521 fatal_insn ("Temporary register overlaps the source", insn);
1522
e9a25f70 1523 tmp_info[max_tmps++].xops[2] = operands[i];
b840bfb0
MM
1524 if (max_tmps == MAX_TMPS)
1525 break;
1526 }
1527 }
1528
1529 if (max_tmps == 0)
e9a25f70
JL
1530 fatal_insn ("No scratch registers were found to do memory->memory moves",
1531 insn);
b840bfb0
MM
1532
1533 if ((length & 1) != 0)
1534 {
e9a25f70
JL
1535 if (qi_tmp == 0)
1536 fatal_insn ("No byte register found when moving odd # of bytes.",
1537 insn);
b840bfb0
MM
1538 }
1539
1540 while (length > 1)
1541 {
1542 for (num_tmps = 0; num_tmps < max_tmps; num_tmps++)
1543 {
1544 if (length >= 4)
1545 {
1546 tmp_info[num_tmps].load = AS2(mov%L0,%1,%2);
1547 tmp_info[num_tmps].store = AS2(mov%L0,%2,%0);
e9a25f70
JL
1548 tmp_info[num_tmps].xops[0]
1549 = adj_offsettable_operand (dest, offset);
1550 tmp_info[num_tmps].xops[1]
1551 = adj_offsettable_operand (src, offset);
1552
b840bfb0
MM
1553 offset += 4;
1554 length -= 4;
1555 }
e9a25f70 1556
b840bfb0
MM
1557 else if (length >= 2)
1558 {
1559 tmp_info[num_tmps].load = AS2(mov%W0,%1,%2);
1560 tmp_info[num_tmps].store = AS2(mov%W0,%2,%0);
e9a25f70
JL
1561 tmp_info[num_tmps].xops[0]
1562 = adj_offsettable_operand (dest, offset);
1563 tmp_info[num_tmps].xops[1]
1564 = adj_offsettable_operand (src, offset);
1565
b840bfb0
MM
1566 offset += 2;
1567 length -= 2;
1568 }
1569 else
1570 break;
1571 }
1572
1573 for (i = 0; i < num_tmps; i++)
1574 output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
1575
1576 for (i = 0; i < num_tmps; i++)
1577 output_asm_insn (tmp_info[i].store, tmp_info[i].xops);
1578 }
1579
1580 if (length == 1)
1581 {
1582 xops[0] = adj_offsettable_operand (dest, offset);
1583 xops[1] = adj_offsettable_operand (src, offset);
1584 xops[2] = qi_tmp;
1585 output_asm_insn (AS2(mov%B0,%1,%2), xops);
1586 output_asm_insn (AS2(mov%B0,%2,%0), xops);
1587 }
1588
1589 return "";
1590}
2a2ab3f9
JVA
1591\f
1592int
1593standard_80387_constant_p (x)
1594 rtx x;
1595{
0b6b2900
RK
1596#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1597 REAL_VALUE_TYPE d;
1598 jmp_buf handler;
1599 int is0, is1;
2a2ab3f9 1600
0b6b2900
RK
1601 if (setjmp (handler))
1602 return 0;
2a2ab3f9 1603
0b6b2900
RK
1604 set_float_handler (handler);
1605 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
8ab92e4e 1606 is0 = REAL_VALUES_EQUAL (d, dconst0) && !REAL_VALUE_MINUS_ZERO (d);
0b6b2900
RK
1607 is1 = REAL_VALUES_EQUAL (d, dconst1);
1608 set_float_handler (NULL_PTR);
1609
1610 if (is0)
2a2ab3f9
JVA
1611 return 1;
1612
0b6b2900 1613 if (is1)
2a2ab3f9
JVA
1614 return 2;
1615
1616 /* Note that on the 80387, other constants, such as pi,
1617 are much slower to load as standard constants
1618 than to load from doubles in memory! */
a269a03c 1619 /* ??? Not true on K6: all constants are equal cost. */
0b6b2900 1620#endif
2a2ab3f9
JVA
1621
1622 return 0;
1623}
1624
1625char *
1626output_move_const_single (operands)
1627 rtx *operands;
1628{
1629 if (FP_REG_P (operands[0]))
1630 {
1631 int conval = standard_80387_constant_p (operands[1]);
1632
1633 if (conval == 1)
1634 return "fldz";
1635
1636 if (conval == 2)
1637 return "fld1";
1638 }
e9a25f70 1639
2a2ab3f9
JVA
1640 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1641 {
5f1ec3e6
JVA
1642 REAL_VALUE_TYPE r; long l;
1643
1644 if (GET_MODE (operands[1]) == XFmode)
1645 abort ();
1646
1647 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1648 REAL_VALUE_TO_TARGET_SINGLE (r, l);
1649 operands[1] = GEN_INT (l);
2a2ab3f9 1650 }
e9a25f70 1651
2a2ab3f9
JVA
1652 return singlemove_string (operands);
1653}
1654\f
1655/* Returns 1 if OP is either a symbol reference or a sum of a symbol
1656 reference and a constant. */
1657
1658int
1659symbolic_operand (op, mode)
1660 register rtx op;
bb5177ac 1661 enum machine_mode mode ATTRIBUTE_UNUSED;
2a2ab3f9
JVA
1662{
1663 switch (GET_CODE (op))
1664 {
1665 case SYMBOL_REF:
1666 case LABEL_REF:
1667 return 1;
e9a25f70 1668
2a2ab3f9
JVA
1669 case CONST:
1670 op = XEXP (op, 0);
1671 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1672 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1673 && GET_CODE (XEXP (op, 1)) == CONST_INT);
e9a25f70 1674
2a2ab3f9
JVA
1675 default:
1676 return 0;
1677 }
1678}
fee2770d
RS
1679
1680/* Test for a valid operand for a call instruction.
1681 Don't allow the arg pointer register or virtual regs
1682 since they may change into reg + const, which the patterns
1683 can't handle yet. */
1684
1685int
1686call_insn_operand (op, mode)
1687 rtx op;
bb5177ac 1688 enum machine_mode mode ATTRIBUTE_UNUSED;
4f2c8ebb
RS
1689{
1690 if (GET_CODE (op) == MEM
1691 && ((CONSTANT_ADDRESS_P (XEXP (op, 0))
1692 /* This makes a difference for PIC. */
1693 && general_operand (XEXP (op, 0), Pmode))
1694 || (GET_CODE (XEXP (op, 0)) == REG
1695 && XEXP (op, 0) != arg_pointer_rtx
e9a25f70
JL
1696 && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
1697 && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
4f2c8ebb 1698 return 1;
e9a25f70 1699
4f2c8ebb
RS
1700 return 0;
1701}
1702
1703/* Like call_insn_operand but allow (mem (symbol_ref ...))
1704 even if pic. */
1705
1706int
1707expander_call_insn_operand (op, mode)
1708 rtx op;
bb5177ac 1709 enum machine_mode mode ATTRIBUTE_UNUSED;
fee2770d
RS
1710{
1711 if (GET_CODE (op) == MEM
1712 && (CONSTANT_ADDRESS_P (XEXP (op, 0))
1713 || (GET_CODE (XEXP (op, 0)) == REG
1714 && XEXP (op, 0) != arg_pointer_rtx
e9a25f70
JL
1715 && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
1716 && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
fee2770d 1717 return 1;
e9a25f70 1718
fee2770d
RS
1719 return 0;
1720}
d784886d
RK
1721
1722/* Return 1 if OP is a comparison operator that can use the condition code
1723 generated by an arithmetic operation. */
1724
1725int
1726arithmetic_comparison_operator (op, mode)
1727 register rtx op;
1728 enum machine_mode mode;
1729{
1730 enum rtx_code code;
1731
1732 if (mode != VOIDmode && mode != GET_MODE (op))
1733 return 0;
e9a25f70 1734
d784886d
RK
1735 code = GET_CODE (op);
1736 if (GET_RTX_CLASS (code) != '<')
1737 return 0;
1738
1739 return (code != GT && code != LE);
1740}
57dbca5e
BS
1741
1742int
1743ix86_logical_operator (op, mode)
1744 register rtx op;
bb5177ac 1745 enum machine_mode mode ATTRIBUTE_UNUSED;
57dbca5e
BS
1746{
1747 return GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR;
1748}
1749
2a2ab3f9
JVA
1750\f
1751/* Returns 1 if OP contains a symbol reference */
1752
1753int
1754symbolic_reference_mentioned_p (op)
1755 rtx op;
1756{
1757 register char *fmt;
1758 register int i;
1759
1760 if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
1761 return 1;
1762
1763 fmt = GET_RTX_FORMAT (GET_CODE (op));
1764 for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
1765 {
1766 if (fmt[i] == 'E')
1767 {
1768 register int j;
1769
1770 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
1771 if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
1772 return 1;
1773 }
e9a25f70 1774
2a2ab3f9
JVA
1775 else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
1776 return 1;
1777 }
1778
1779 return 0;
1780}
32b5b1aa
SC
1781\f
1782/* Attempt to expand a binary operator. Make the expansion closer to the
1783 actual machine, then just general_operand, which will allow 3 separate
1784 memory references (one output, two input) in a single insn. Return
1785 whether the insn fails, or succeeds. */
1786
1787int
1788ix86_expand_binary_operator (code, mode, operands)
1789 enum rtx_code code;
1790 enum machine_mode mode;
1791 rtx operands[];
1792{
32b5b1aa
SC
1793 int modified;
1794
1795 /* Recognize <var1> = <value> <op> <var1> for commutative operators */
1796 if (GET_RTX_CLASS (code) == 'c'
1797 && (rtx_equal_p (operands[0], operands[2])
1798 || immediate_operand (operands[1], mode)))
1799 {
1800 rtx temp = operands[1];
1801 operands[1] = operands[2];
1802 operands[2] = temp;
1803 }
1804
1805 /* If optimizing, copy to regs to improve CSE */
e9a25f70
JL
1806 if (TARGET_PSEUDO && optimize
1807 && ((reload_in_progress | reload_completed) == 0))
32b5b1aa 1808 {
e9a25f70
JL
1809 if (GET_CODE (operands[1]) == MEM
1810 && ! rtx_equal_p (operands[0], operands[1]))
32b5b1aa
SC
1811 operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
1812
1813 if (GET_CODE (operands[2]) == MEM)
1814 operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
0afeb08a
SC
1815
1816 if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
1817 {
1818 rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
e9a25f70 1819
0afeb08a
SC
1820 emit_move_insn (temp, operands[1]);
1821 operands[1] = temp;
1822 return TRUE;
79325812 1823 }
32b5b1aa
SC
1824 }
1825
1826 if (!ix86_binary_operator_ok (code, mode, operands))
1827 {
e9a25f70
JL
1828 /* If not optimizing, try to make a valid insn (optimize code
1829 previously did this above to improve chances of CSE) */
32b5b1aa 1830
e9a25f70 1831 if ((! TARGET_PSEUDO || !optimize)
32b5b1aa
SC
1832 && ((reload_in_progress | reload_completed) == 0)
1833 && (GET_CODE (operands[1]) == MEM || GET_CODE (operands[2]) == MEM))
1834 {
1835 modified = FALSE;
e9a25f70
JL
1836 if (GET_CODE (operands[1]) == MEM
1837 && ! rtx_equal_p (operands[0], operands[1]))
32b5b1aa
SC
1838 {
1839 operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
1840 modified = TRUE;
1841 }
1842
1843 if (GET_CODE (operands[2]) == MEM)
1844 {
1845 operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
1846 modified = TRUE;
1847 }
1848
0afeb08a
SC
1849 if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
1850 {
1851 rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
e9a25f70 1852
0afeb08a
SC
1853 emit_move_insn (temp, operands[1]);
1854 operands[1] = temp;
1855 return TRUE;
79325812 1856 }
0afeb08a 1857
e9a25f70 1858 if (modified && ! ix86_binary_operator_ok (code, mode, operands))
32b5b1aa
SC
1859 return FALSE;
1860 }
1861 else
1862 return FALSE;
1863 }
1864
1865 return TRUE;
1866}
1867\f
1868/* Return TRUE or FALSE depending on whether the binary operator meets the
1869 appropriate constraints. */
1870
1871int
1872ix86_binary_operator_ok (code, mode, operands)
1873 enum rtx_code code;
bb5177ac 1874 enum machine_mode mode ATTRIBUTE_UNUSED;
32b5b1aa
SC
1875 rtx operands[3];
1876{
29e8f73f
SC
1877 return (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != MEM)
1878 && (GET_CODE (operands[1]) != CONST_INT || GET_RTX_CLASS (code) == 'c');
32b5b1aa
SC
1879}
1880\f
1881/* Attempt to expand a unary operator. Make the expansion closer to the
1882 actual machine, then just general_operand, which will allow 2 separate
1883 memory references (one output, one input) in a single insn. Return
1884 whether the insn fails, or succeeds. */
1885
1886int
1887ix86_expand_unary_operator (code, mode, operands)
1888 enum rtx_code code;
1889 enum machine_mode mode;
1890 rtx operands[];
1891{
32b5b1aa
SC
1892 /* If optimizing, copy to regs to improve CSE */
1893 if (TARGET_PSEUDO
1894 && optimize
1895 && ((reload_in_progress | reload_completed) == 0)
1896 && GET_CODE (operands[1]) == MEM)
e9a25f70 1897 operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
32b5b1aa 1898
e9a25f70 1899 if (! ix86_unary_operator_ok (code, mode, operands))
32b5b1aa 1900 {
e9a25f70 1901 if ((! TARGET_PSEUDO || optimize == 0)
32b5b1aa
SC
1902 && ((reload_in_progress | reload_completed) == 0)
1903 && GET_CODE (operands[1]) == MEM)
1904 {
1905 operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
e9a25f70 1906 if (! ix86_unary_operator_ok (code, mode, operands))
32b5b1aa
SC
1907 return FALSE;
1908 }
1909 else
1910 return FALSE;
1911 }
1912
1913 return TRUE;
1914}
1915\f
1916/* Return TRUE or FALSE depending on whether the unary operator meets the
1917 appropriate constraints. */
1918
1919int
1920ix86_unary_operator_ok (code, mode, operands)
bb5177ac
RL
1921 enum rtx_code code ATTRIBUTE_UNUSED;
1922 enum machine_mode mode ATTRIBUTE_UNUSED;
1923 rtx operands[2] ATTRIBUTE_UNUSED;
32b5b1aa
SC
1924{
1925 return TRUE;
1926}
2a2ab3f9 1927\f
e5cb57e8 1928static rtx pic_label_rtx;
c942177e
SC
1929static char pic_label_name [256];
1930static int pic_label_no = 0;
e5cb57e8
SC
1931
1932/* This function generates code for -fpic that loads %ebx with
38e01259 1933 the return address of the caller and then returns. */
e9a25f70 1934
e5cb57e8
SC
1935void
1936asm_output_function_prefix (file, name)
e9a25f70 1937 FILE *file;
bb5177ac 1938 char *name ATTRIBUTE_UNUSED;
e5cb57e8
SC
1939{
1940 rtx xops[2];
1941 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
1942 || current_function_uses_const_pool);
1943 xops[0] = pic_offset_table_rtx;
1944 xops[1] = stack_pointer_rtx;
1945
e9a25f70 1946 /* Deep branch prediction favors having a return for every call. */
e5cb57e8
SC
1947 if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION)
1948 {
c942177e
SC
1949 tree prologue_node;
1950
77a989d1 1951 if (pic_label_rtx == 0)
c942177e 1952 {
e9a25f70 1953 pic_label_rtx = gen_label_rtx ();
5cb6195d 1954 ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
c942177e
SC
1955 LABEL_NAME (pic_label_rtx) = pic_label_name;
1956 }
e9a25f70 1957
c942177e
SC
1958 prologue_node = make_node (FUNCTION_DECL);
1959 DECL_RESULT (prologue_node) = 0;
e06c10eb
RL
1960
1961 /* This used to call ASM_DECLARE_FUNCTION_NAME() but since it's an
1962 internal (non-global) label that's being emitted, it didn't make
1963 sense to have .type information for local labels. This caused
1964 the SCO OpenServer 5.0.4 ELF assembler grief (why are you giving
1965 me debug info for a label that you're declaring non-global?) this
1966 was changed to call ASM_OUTPUT_LABEL() instead. */
1967
1968
1969 ASM_OUTPUT_LABEL (file, pic_label_name);
e5cb57e8
SC
1970 output_asm_insn ("movl (%1),%0", xops);
1971 output_asm_insn ("ret", xops);
1972 }
1973}
1974
e9a25f70
JL
1975/* Generate the assembly code for function entry.
1976 FILE is an stdio stream to output the code to.
1977 SIZE is an int: how many units of temporary storage to allocate. */
2a2ab3f9
JVA
1978
1979void
1980function_prologue (file, size)
bb5177ac
RL
1981 FILE *file ATTRIBUTE_UNUSED;
1982 int size ATTRIBUTE_UNUSED;
77a989d1 1983{
983f1685 1984 if (TARGET_SCHEDULE_PROLOGUE)
c942177e
SC
1985 {
1986 pic_label_rtx = 0;
1987 return;
1988 }
79325812 1989
e9a25f70
JL
1990 ix86_prologue (0);
1991}
8dfe5673 1992
e9a25f70
JL
1993/* Expand the prologue into a bunch of separate insns. */
1994
1995void
1996ix86_expand_prologue ()
1997{
1998 if (! TARGET_SCHEDULE_PROLOGUE)
1999 return;
79325812 2000
e9a25f70
JL
2001 ix86_prologue (1);
2002}
2003
2004void
2005load_pic_register (do_rtl)
2006 int do_rtl;
2007{
2008 rtx xops[4];
2009
2010 if (TARGET_DEEP_BRANCH_PREDICTION)
983f1685 2011 {
e9a25f70
JL
2012 xops[0] = pic_offset_table_rtx;
2013 if (pic_label_rtx == 0)
0021b564 2014 {
e9a25f70 2015 pic_label_rtx = gen_label_rtx ();
5cb6195d 2016 ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
e9a25f70 2017 LABEL_NAME (pic_label_rtx) = pic_label_name;
0021b564 2018 }
983f1685 2019
f64cecad 2020 xops[1] = gen_rtx_MEM (QImode,
e9a25f70
JL
2021 gen_rtx (SYMBOL_REF, Pmode,
2022 LABEL_NAME (pic_label_rtx)));
2023
2024 if (do_rtl)
0021b564 2025 {
e9a25f70 2026 emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
79325812 2027 emit_insn (gen_prologue_set_got (xops[0],
e9a25f70 2028 gen_rtx (SYMBOL_REF, Pmode,
79325812 2029 "$_GLOBAL_OFFSET_TABLE_"),
e9a25f70
JL
2030 xops[1]));
2031 }
2032 else
2033 {
5cb6195d 2034 output_asm_insn (AS1 (call,%X1), xops);
e9a25f70
JL
2035 output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_,%0", xops);
2036 pic_label_rtx = 0;
0021b564
JM
2037 }
2038 }
983f1685 2039
e9a25f70 2040 else
983f1685
SC
2041 {
2042 xops[0] = pic_offset_table_rtx;
e9a25f70 2043 xops[1] = gen_label_rtx ();
79325812 2044
e9a25f70
JL
2045 if (do_rtl)
2046 {
4f9ca067
JW
2047 /* We can't put a raw CODE_LABEL into the RTL, and we can't emit
2048 a new CODE_LABEL after reload, so we need a single pattern to
2049 emit the 3 necessary instructions. */
2050 emit_insn (gen_prologue_get_pc_and_set_got (xops[0]));
e9a25f70
JL
2051 }
2052 else
2053 {
2054 output_asm_insn (AS1 (call,%P1), xops);
79325812 2055 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
e9a25f70
JL
2056 CODE_LABEL_NUMBER (xops[1]));
2057 output_asm_insn (AS1 (pop%L0,%0), xops);
2058 output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
2059 }
79325812 2060 }
77a989d1 2061
e9a25f70
JL
2062 /* When -fpic, we must emit a scheduling barrier, so that the instruction
2063 that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
2064 moved before any instruction which implicitly uses the got. */
77a989d1 2065
e9a25f70
JL
2066 if (do_rtl)
2067 emit_insn (gen_blockage ());
2068}
2069
2070static void
2071ix86_prologue (do_rtl)
2072 int do_rtl;
2a2ab3f9
JVA
2073{
2074 register int regno;
2075 int limit;
2076 rtx xops[4];
aae75261
JVA
2077 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
2078 || current_function_uses_const_pool);
77a989d1 2079 long tsize = get_frame_size ();
469ac993 2080 rtx insn;
e9a25f70 2081 int cfa_offset = INCOMING_FRAME_SP_OFFSET, cfa_store_offset = cfa_offset;
79325812 2082
2a2ab3f9
JVA
2083 xops[0] = stack_pointer_rtx;
2084 xops[1] = frame_pointer_rtx;
77a989d1 2085 xops[2] = GEN_INT (tsize);
e9a25f70 2086
2a2ab3f9
JVA
2087 if (frame_pointer_needed)
2088 {
e9a25f70
JL
2089 if (do_rtl)
2090 {
2091 insn = emit_insn (gen_rtx (SET, VOIDmode,
f64cecad 2092 gen_rtx_MEM (SImode,
e9a25f70
JL
2093 gen_rtx (PRE_DEC, SImode,
2094 stack_pointer_rtx)),
2095 frame_pointer_rtx));
2096
2097 RTX_FRAME_RELATED_P (insn) = 1;
2098 insn = emit_move_insn (xops[1], xops[0]);
2099 RTX_FRAME_RELATED_P (insn) = 1;
2100 }
2101
2102 else
2103 {
79325812 2104 output_asm_insn ("push%L1 %1", xops);
e9a25f70
JL
2105#ifdef INCOMING_RETURN_ADDR_RTX
2106 if (dwarf2out_do_frame ())
2107 {
2108 char *l = dwarf2out_cfi_label ();
2109
2110 cfa_store_offset += 4;
2111 cfa_offset = cfa_store_offset;
2112 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
2113 dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, - cfa_store_offset);
2114 }
2115#endif
2116
79325812 2117 output_asm_insn (AS2 (mov%L0,%0,%1), xops);
e9a25f70
JL
2118#ifdef INCOMING_RETURN_ADDR_RTX
2119 if (dwarf2out_do_frame ())
2120 dwarf2out_def_cfa ("", FRAME_POINTER_REGNUM, cfa_offset);
2121#endif
2122 }
2a2ab3f9
JVA
2123 }
2124
8dfe5673
RK
2125 if (tsize == 0)
2126 ;
2127 else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT)
469ac993 2128 {
e9a25f70
JL
2129 if (do_rtl)
2130 {
2131 insn = emit_insn (gen_prologue_set_stack_ptr (xops[2]));
2132 RTX_FRAME_RELATED_P (insn) = 1;
2133 }
79325812 2134 else
e9a25f70
JL
2135 {
2136 output_asm_insn (AS2 (sub%L0,%2,%0), xops);
2137#ifdef INCOMING_RETURN_ADDR_RTX
2138 if (dwarf2out_do_frame ())
2139 {
2140 cfa_store_offset += tsize;
2141 if (! frame_pointer_needed)
2142 {
2143 cfa_offset = cfa_store_offset;
2144 dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
2145 }
2146 }
2147#endif
2148 }
469ac993 2149 }
79325812 2150 else
8dfe5673 2151 {
f64cecad 2152 xops[3] = gen_rtx_REG (SImode, 0);
e9a25f70 2153 if (do_rtl)
8dfe5673 2154 emit_move_insn (xops[3], xops[2]);
e9a25f70
JL
2155 else
2156 output_asm_insn (AS2 (mov%L0,%2,%3), xops);
2157
f64cecad 2158 xops[3] = gen_rtx_MEM (FUNCTION_MODE,
8dfe5673 2159 gen_rtx (SYMBOL_REF, Pmode, "_alloca"));
e9a25f70
JL
2160
2161 if (do_rtl)
2162 emit_call_insn (gen_rtx (CALL, VOIDmode, xops[3], const0_rtx));
2163 else
2164 output_asm_insn (AS1 (call,%P3), xops);
8dfe5673 2165 }
77a989d1 2166
2a2ab3f9
JVA
2167 /* Note If use enter it is NOT reversed args.
2168 This one is not reversed from intel!!
2169 I think enter is slower. Also sdb doesn't like it.
2170 But if you want it the code is:
2171 {
2172 xops[3] = const0_rtx;
2173 output_asm_insn ("enter %2,%3", xops);
2174 }
2175 */
e9a25f70 2176
2a2ab3f9
JVA
2177 limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
2178 for (regno = limit - 1; regno >= 0; regno--)
2179 if ((regs_ever_live[regno] && ! call_used_regs[regno])
aae75261 2180 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
2a2ab3f9 2181 {
f64cecad 2182 xops[0] = gen_rtx_REG (SImode, regno);
e9a25f70
JL
2183 if (do_rtl)
2184 {
2185 insn = emit_insn (gen_rtx (SET, VOIDmode,
f64cecad 2186 gen_rtx_MEM (SImode,
e9a25f70
JL
2187 gen_rtx (PRE_DEC, SImode,
2188 stack_pointer_rtx)),
2189 xops[0]));
2a2ab3f9 2190
e9a25f70
JL
2191 RTX_FRAME_RELATED_P (insn) = 1;
2192 }
2193 else
2194 {
2195 output_asm_insn ("push%L0 %0", xops);
2196#ifdef INCOMING_RETURN_ADDR_RTX
2197 if (dwarf2out_do_frame ())
2198 {
2199 char *l = dwarf2out_cfi_label ();
2200
2201 cfa_store_offset += 4;
2202 if (! frame_pointer_needed)
2203 {
2204 cfa_offset = cfa_store_offset;
2205 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
2206 }
2207
2208 dwarf2out_reg_save (l, regno, - cfa_store_offset);
2209 }
2210#endif
2211 }
2212 }
2a2ab3f9 2213
84530511
SC
2214#ifdef SUBTARGET_PROLOGUE
2215 SUBTARGET_PROLOGUE;
2216#endif
2217
e9a25f70
JL
2218 if (pic_reg_used)
2219 load_pic_register (do_rtl);
77a989d1 2220
e9a25f70
JL
2221 /* If we are profiling, make sure no instructions are scheduled before
2222 the call to mcount. However, if -fpic, the above call will have
2223 done that. */
2224 if ((profile_flag || profile_block_flag)
2225 && ! pic_reg_used && do_rtl)
2226 emit_insn (gen_blockage ());
77a989d1
SC
2227}
2228
2a2ab3f9
JVA
2229/* Return 1 if it is appropriate to emit `ret' instructions in the
2230 body of a function. Do this only if the epilogue is simple, needing a
2231 couple of insns. Prior to reloading, we can't tell how many registers
79325812 2232 must be saved, so return 0 then. Return 0 if there is no frame
77a989d1 2233 marker to de-allocate.
2a2ab3f9
JVA
2234
2235 If NON_SAVING_SETJMP is defined and true, then it is not possible
2236 for the epilogue to be simple, so return 0. This is a special case
77a989d1
SC
2237 since NON_SAVING_SETJMP will not cause regs_ever_live to change
2238 until final, but jump_optimize may need to know sooner if a
2239 `return' is OK. */
2a2ab3f9
JVA
2240
2241int
77a989d1 2242ix86_can_use_return_insn_p ()
2a2ab3f9
JVA
2243{
2244 int regno;
2245 int nregs = 0;
2246 int reglimit = (frame_pointer_needed
2247 ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
aae75261
JVA
2248 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
2249 || current_function_uses_const_pool);
2a2ab3f9
JVA
2250
2251#ifdef NON_SAVING_SETJMP
2252 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
2253 return 0;
2254#endif
2255
2256 if (! reload_completed)
2257 return 0;
2258
2259 for (regno = reglimit - 1; regno >= 0; regno--)
2260 if ((regs_ever_live[regno] && ! call_used_regs[regno])
aae75261 2261 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
2a2ab3f9
JVA
2262 nregs++;
2263
2264 return nregs == 0 || ! frame_pointer_needed;
2265}
2266
2267/* This function generates the assembly code for function exit.
2268 FILE is an stdio stream to output the code to.
2269 SIZE is an int: how many units of temporary storage to deallocate. */
2270
e9a25f70
JL
2271void
2272function_epilogue (file, size)
bb5177ac
RL
2273 FILE *file ATTRIBUTE_UNUSED;
2274 int size ATTRIBUTE_UNUSED;
e9a25f70
JL
2275{
2276 return;
2277}
2278
79325812 2279/* Restore function stack, frame, and registers. */
e9a25f70 2280
2a2ab3f9 2281void
77a989d1 2282ix86_expand_epilogue ()
e9a25f70
JL
2283{
2284 ix86_epilogue (1);
2285}
2286
2287static void
2288ix86_epilogue (do_rtl)
2289 int do_rtl;
2a2ab3f9
JVA
2290{
2291 register int regno;
2292 register int nregs, limit;
2293 int offset;
2294 rtx xops[3];
aae75261
JVA
2295 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
2296 || current_function_uses_const_pool);
fdb8a883 2297 int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging;
77a989d1 2298 long tsize = get_frame_size ();
2a2ab3f9
JVA
2299
2300 /* Compute the number of registers to pop */
2301
e9a25f70 2302 limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
2a2ab3f9
JVA
2303
2304 nregs = 0;
2305
2306 for (regno = limit - 1; regno >= 0; regno--)
2307 if ((regs_ever_live[regno] && ! call_used_regs[regno])
aae75261 2308 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
2a2ab3f9
JVA
2309 nregs++;
2310
fdb8a883 2311 /* sp is often unreliable so we may have to go off the frame pointer. */
2a2ab3f9 2312
e9a25f70 2313 offset = - tsize - (nregs * UNITS_PER_WORD);
2a2ab3f9
JVA
2314
2315 xops[2] = stack_pointer_rtx;
2316
00fc09e1
JW
2317 /* When -fpic, we must emit a scheduling barrier, so that the instruction
2318 that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
2319 moved before any instruction which implicitly uses the got. This
2320 includes any instruction which uses a SYMBOL_REF or a LABEL_REF.
2321
2322 Alternatively, this could be fixed by making the dependence on the
2323 PIC_OFFSET_TABLE_REGNUM explicit in the RTL. */
e9a25f70
JL
2324
2325 if (flag_pic || profile_flag || profile_block_flag)
00fc09e1
JW
2326 emit_insn (gen_blockage ());
2327
fdb8a883
JW
2328 /* If we're only restoring one register and sp is not valid then
2329 using a move instruction to restore the register since it's
2330 less work than reloading sp and popping the register. Otherwise,
2331 restore sp (if necessary) and pop the registers. */
2332
2333 if (nregs > 1 || sp_valid)
2a2ab3f9 2334 {
fdb8a883 2335 if ( !sp_valid )
2a2ab3f9 2336 {
77a989d1 2337 xops[0] = adj_offsettable_operand (AT_BP (QImode), offset);
e9a25f70
JL
2338 if (do_rtl)
2339 emit_insn (gen_movsi_lea (xops[2], XEXP (xops[0], 0)));
2340 else
2341 output_asm_insn (AS2 (lea%L2,%0,%2), xops);
2a2ab3f9
JVA
2342 }
2343
2344 for (regno = 0; regno < limit; regno++)
2345 if ((regs_ever_live[regno] && ! call_used_regs[regno])
aae75261 2346 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
2a2ab3f9 2347 {
f64cecad 2348 xops[0] = gen_rtx_REG (SImode, regno);
e9a25f70
JL
2349
2350 if (do_rtl)
2351 emit_insn (gen_pop (xops[0]));
2352 else
2353 output_asm_insn ("pop%L0 %0", xops);
2a2ab3f9
JVA
2354 }
2355 }
e9a25f70 2356
2a2ab3f9
JVA
2357 else
2358 for (regno = 0; regno < limit; regno++)
2359 if ((regs_ever_live[regno] && ! call_used_regs[regno])
aae75261 2360 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
2a2ab3f9 2361 {
f64cecad 2362 xops[0] = gen_rtx_REG (SImode, regno);
2a2ab3f9 2363 xops[1] = adj_offsettable_operand (AT_BP (Pmode), offset);
e9a25f70
JL
2364
2365 if (do_rtl)
2366 emit_move_insn (xops[0], xops[1]);
2367 else
2368 output_asm_insn (AS2 (mov%L0,%1,%0), xops);
2369
2a2ab3f9
JVA
2370 offset += 4;
2371 }
2372
2373 if (frame_pointer_needed)
2374 {
c8c5cb99 2375 /* If not an i386, mov & pop is faster than "leave". */
2a2ab3f9 2376
3f803cd9 2377 if (TARGET_USE_LEAVE)
e9a25f70
JL
2378 {
2379 if (do_rtl)
2380 emit_insn (gen_leave());
2381 else
2382 output_asm_insn ("leave", xops);
2383 }
c8c5cb99 2384 else
2a2ab3f9
JVA
2385 {
2386 xops[0] = frame_pointer_rtx;
77a989d1 2387 xops[1] = stack_pointer_rtx;
e9a25f70
JL
2388
2389 if (do_rtl)
2390 {
2391 emit_insn (gen_epilogue_set_stack_ptr());
2392 emit_insn (gen_pop (xops[0]));
2393 }
2394 else
2395 {
2396 output_asm_insn (AS2 (mov%L2,%0,%2), xops);
2397 output_asm_insn ("pop%L0 %0", xops);
2398 }
2399 }
2400 }
2401
77a989d1 2402 else if (tsize)
2a2ab3f9 2403 {
3403c6ca
UD
2404 /* Intel's docs say that for 4 or 8 bytes of stack frame one should
2405 use `pop' and not `add'. */
2406 int use_pop = tsize == 4;
e9a25f70 2407
3403c6ca
UD
2408 /* Use two pops only for the Pentium processors. */
2409 if (tsize == 8 && !TARGET_386 && !TARGET_486)
2410 {
2411 rtx retval = current_function_return_rtx;
2412
2413 xops[1] = gen_rtx_REG (SImode, 1); /* %edx */
2414
2415 /* This case is a bit more complex. Since we cannot pop into
2416 %ecx twice we need a second register. But this is only
2417 available if the return value is not of DImode in which
2418 case the %edx register is not available. */
2419 use_pop = (retval == NULL
2420 || ! reg_overlap_mentioned_p (xops[1], retval));
2421 }
2422
2423 if (use_pop)
2424 {
2425 xops[0] = gen_rtx_REG (SImode, 2); /* %ecx */
2426
2427 if (do_rtl)
2428 {
2429 /* We have to prevent the two pops here from being scheduled.
2430 GCC otherwise would try in some situation to put other
2431 instructions in between them which has a bad effect. */
2432 emit_insn (gen_blockage ());
2433 emit_insn (gen_pop (xops[0]));
2434 if (tsize == 8)
2435 emit_insn (gen_pop (xops[1]));
2436 }
2437 else
2438 {
2439 output_asm_insn ("pop%L0 %0", xops);
2440 if (tsize == 8)
2441 output_asm_insn ("pop%L1 %1", xops);
2442 }
2443 }
e9a25f70 2444 else
3403c6ca
UD
2445 {
2446 /* If there is no frame pointer, we must still release the frame. */
2447 xops[0] = GEN_INT (tsize);
2448
2449 if (do_rtl)
2450 emit_insn (gen_rtx (SET, VOIDmode, xops[2],
2451 gen_rtx (PLUS, SImode, xops[2], xops[0])));
2452 else
2453 output_asm_insn (AS2 (add%L2,%0,%2), xops);
2454 }
2a2ab3f9
JVA
2455 }
2456
68f654ec
RK
2457#ifdef FUNCTION_BLOCK_PROFILER_EXIT
2458 if (profile_block_flag == 2)
2459 {
2460 FUNCTION_BLOCK_PROFILER_EXIT(file);
2461 }
2462#endif
2463
2a2ab3f9
JVA
2464 if (current_function_pops_args && current_function_args_size)
2465 {
435defd1 2466 xops[1] = GEN_INT (current_function_pops_args);
2a2ab3f9
JVA
2467
2468 /* i386 can only pop 32K bytes (maybe 64K? Is it signed?). If
2469 asked to pop more, pop return address, do explicit add, and jump
2470 indirectly to the caller. */
2471
2472 if (current_function_pops_args >= 32768)
2473 {
2474 /* ??? Which register to use here? */
f64cecad 2475 xops[0] = gen_rtx_REG (SImode, 2);
e9a25f70
JL
2476
2477 if (do_rtl)
2478 {
2479 emit_insn (gen_pop (xops[0]));
2480 emit_insn (gen_rtx (SET, VOIDmode, xops[2],
2481 gen_rtx (PLUS, SImode, xops[1], xops[2])));
2482 emit_jump_insn (xops[0]);
2483 }
2484 else
2485 {
2486 output_asm_insn ("pop%L0 %0", xops);
2487 output_asm_insn (AS2 (add%L2,%1,%2), xops);
2488 output_asm_insn ("jmp %*%0", xops);
2489 }
2490 }
79325812 2491 else
e9a25f70
JL
2492 {
2493 if (do_rtl)
2494 emit_jump_insn (gen_return_pop_internal (xops[1]));
2495 else
2496 output_asm_insn ("ret %1", xops);
2a2ab3f9 2497 }
2a2ab3f9 2498 }
2a2ab3f9 2499 else
e9a25f70
JL
2500 {
2501 if (do_rtl)
2502 emit_jump_insn (gen_return_internal ());
2503 else
2504 output_asm_insn ("ret", xops);
2505 }
2a2ab3f9 2506}
3b3c6a3f
MM
2507\f
2508/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2509 that is a valid memory address for an instruction.
2510 The MODE argument is the machine mode for the MEM expression
2511 that wants to use this address.
2512
2513 On x86, legitimate addresses are:
2514 base movl (base),reg
2515 displacement movl disp,reg
2516 base + displacement movl disp(base),reg
2517 index + base movl (base,index),reg
2518 (index + base) + displacement movl disp(base,index),reg
2519 index*scale movl (,index,scale),reg
2520 index*scale + disp movl disp(,index,scale),reg
2521 index*scale + base movl (base,index,scale),reg
2522 (index*scale + base) + disp movl disp(base,index,scale),reg
2523
2524 In each case, scale can be 1, 2, 4, 8. */
2525
2526/* This is exactly the same as print_operand_addr, except that
2527 it recognizes addresses instead of printing them.
2528
2529 It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
2530 convert common non-canonical forms to canonical form so that they will
2531 be recognized. */
2532
2533#define ADDR_INVALID(msg,insn) \
2534do { \
2535 if (TARGET_DEBUG_ADDR) \
2536 { \
2537 fprintf (stderr, msg); \
2538 debug_rtx (insn); \
2539 } \
2540} while (0)
2541
91bb873f
RH
2542static int
2543legitimate_pic_address_disp_p (disp)
2544 register rtx disp;
2545{
2546 if (GET_CODE (disp) != CONST)
2547 return 0;
2548 disp = XEXP (disp, 0);
2549
2550 if (GET_CODE (disp) == PLUS)
2551 {
2552 if (GET_CODE (XEXP (disp, 1)) != CONST_INT)
2553 return 0;
2554 disp = XEXP (disp, 0);
2555 }
2556
2557 if (GET_CODE (disp) != UNSPEC
2558 || XVECLEN (disp, 0) != 1)
2559 return 0;
2560
2561 /* Must be @GOT or @GOTOFF. */
2562 if (XINT (disp, 1) != 6
2563 && XINT (disp, 1) != 7)
2564 return 0;
2565
2566 if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
2567 && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
2568 return 0;
2569
2570 return 1;
2571}
2572
3b3c6a3f
MM
2573int
2574legitimate_address_p (mode, addr, strict)
2575 enum machine_mode mode;
2576 register rtx addr;
2577 int strict;
2578{
2579 rtx base = NULL_RTX;
2580 rtx indx = NULL_RTX;
2581 rtx scale = NULL_RTX;
2582 rtx disp = NULL_RTX;
2583
2584 if (TARGET_DEBUG_ADDR)
2585 {
2586 fprintf (stderr,
e9a25f70 2587 "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
3b3c6a3f
MM
2588 GET_MODE_NAME (mode), strict);
2589
2590 debug_rtx (addr);
2591 }
2592
2593 if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
e9a25f70 2594 base = addr;
3b3c6a3f
MM
2595
2596 else if (GET_CODE (addr) == PLUS)
2597 {
2598 rtx op0 = XEXP (addr, 0);
2599 rtx op1 = XEXP (addr, 1);
2600 enum rtx_code code0 = GET_CODE (op0);
2601 enum rtx_code code1 = GET_CODE (op1);
2602
2603 if (code0 == REG || code0 == SUBREG)
2604 {
2605 if (code1 == REG || code1 == SUBREG)
2606 {
e9a25f70 2607 indx = op0; /* index + base */
3b3c6a3f
MM
2608 base = op1;
2609 }
2610
2611 else
2612 {
e9a25f70 2613 base = op0; /* base + displacement */
3b3c6a3f
MM
2614 disp = op1;
2615 }
2616 }
2617
2618 else if (code0 == MULT)
2619 {
2620 indx = XEXP (op0, 0);
2621 scale = XEXP (op0, 1);
2622
2623 if (code1 == REG || code1 == SUBREG)
e9a25f70 2624 base = op1; /* index*scale + base */
3b3c6a3f
MM
2625
2626 else
e9a25f70 2627 disp = op1; /* index*scale + disp */
3b3c6a3f
MM
2628 }
2629
2630 else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
2631 {
2632 indx = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */
2633 scale = XEXP (XEXP (op0, 0), 1);
2634 base = XEXP (op0, 1);
2635 disp = op1;
2636 }
2637
2638 else if (code0 == PLUS)
2639 {
e9a25f70 2640 indx = XEXP (op0, 0); /* index + base + disp */
3b3c6a3f
MM
2641 base = XEXP (op0, 1);
2642 disp = op1;
2643 }
2644
2645 else
2646 {
2647 ADDR_INVALID ("PLUS subcode is not valid.\n", op0);
2648 return FALSE;
2649 }
2650 }
2651
2652 else if (GET_CODE (addr) == MULT)
2653 {
e9a25f70 2654 indx = XEXP (addr, 0); /* index*scale */
3b3c6a3f
MM
2655 scale = XEXP (addr, 1);
2656 }
2657
2658 else
e9a25f70 2659 disp = addr; /* displacement */
3b3c6a3f 2660
91f0226f
MM
2661 /* Allow arg pointer and stack pointer as index if there is not scaling */
2662 if (base && indx && !scale
2663 && (indx == arg_pointer_rtx || indx == stack_pointer_rtx))
2664 {
2665 rtx tmp = base;
2666 base = indx;
2667 indx = tmp;
2668 }
2669
e9a25f70
JL
2670 /* Validate base register:
2671
2672 Don't allow SUBREG's here, it can lead to spill failures when the base
3d771dfd
MM
2673 is one word out of a two word structure, which is represented internally
2674 as a DImode int. */
e9a25f70 2675
3b3c6a3f
MM
2676 if (base)
2677 {
3d771dfd 2678 if (GET_CODE (base) != REG)
3b3c6a3f 2679 {
3d771dfd
MM
2680 ADDR_INVALID ("Base is not a register.\n", base);
2681 return FALSE;
3b3c6a3f
MM
2682 }
2683
e9a25f70
JL
2684 if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
2685 || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
3b3c6a3f
MM
2686 {
2687 ADDR_INVALID ("Base is not valid.\n", base);
2688 return FALSE;
2689 }
2690 }
2691
e9a25f70
JL
2692 /* Validate index register:
2693
2694 Don't allow SUBREG's here, it can lead to spill failures when the index
3d771dfd
MM
2695 is one word out of a two word structure, which is represented internally
2696 as a DImode int. */
3b3c6a3f
MM
2697 if (indx)
2698 {
3d771dfd 2699 if (GET_CODE (indx) != REG)
3b3c6a3f 2700 {
3d771dfd
MM
2701 ADDR_INVALID ("Index is not a register.\n", indx);
2702 return FALSE;
3b3c6a3f
MM
2703 }
2704
e9a25f70
JL
2705 if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (indx))
2706 || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
3b3c6a3f
MM
2707 {
2708 ADDR_INVALID ("Index is not valid.\n", indx);
2709 return FALSE;
2710 }
2711 }
2712 else if (scale)
e9a25f70 2713 abort (); /* scale w/o index invalid */
3b3c6a3f 2714
e9a25f70 2715 /* Validate scale factor: */
3b3c6a3f
MM
2716 if (scale)
2717 {
2718 HOST_WIDE_INT value;
2719
2720 if (GET_CODE (scale) != CONST_INT)
2721 {
2722 ADDR_INVALID ("Scale is not valid.\n", scale);
2723 return FALSE;
2724 }
2725
2726 value = INTVAL (scale);
2727 if (value != 1 && value != 2 && value != 4 && value != 8)
2728 {
2729 ADDR_INVALID ("Scale is not a good multiplier.\n", scale);
2730 return FALSE;
2731 }
2732 }
2733
91bb873f 2734 /* Validate displacement. */
3b3c6a3f
MM
2735 if (disp)
2736 {
91bb873f 2737 if (!CONSTANT_ADDRESS_P (disp))
3b3c6a3f
MM
2738 {
2739 ADDR_INVALID ("Displacement is not valid.\n", disp);
2740 return FALSE;
2741 }
2742
32b5b1aa 2743 else if (GET_CODE (disp) == CONST_DOUBLE)
3b3c6a3f
MM
2744 {
2745 ADDR_INVALID ("Displacement is a const_double.\n", disp);
2746 return FALSE;
2747 }
2748
91bb873f 2749 if (flag_pic && SYMBOLIC_CONST (disp))
3b3c6a3f 2750 {
91bb873f
RH
2751 if (! legitimate_pic_address_disp_p (disp))
2752 {
2753 ADDR_INVALID ("Displacement is an invalid PIC construct.\n",
2754 disp);
2755 return FALSE;
2756 }
2757
2758 if (base != pic_offset_table_rtx
2759 && (indx != pic_offset_table_rtx || scale != NULL_RTX))
2760 {
2761 ADDR_INVALID ("PIC displacement against invalid base.\n", disp);
2762 return FALSE;
2763 }
3b3c6a3f
MM
2764 }
2765
91bb873f 2766 else if (HALF_PIC_P ())
3b3c6a3f 2767 {
91bb873f
RH
2768 if (! HALF_PIC_ADDRESS_P (disp)
2769 || (base != NULL_RTX || indx != NULL_RTX))
2770 {
2771 ADDR_INVALID ("Displacement is an invalid half-pic reference.\n",
2772 disp);
2773 return FALSE;
2774 }
3b3c6a3f
MM
2775 }
2776 }
2777
2778 if (TARGET_DEBUG_ADDR)
2779 fprintf (stderr, "Address is valid.\n");
2780
2781 /* Everything looks valid, return true */
2782 return TRUE;
2783}
3b3c6a3f
MM
2784\f
2785/* Return a legitimate reference for ORIG (an address) using the
2786 register REG. If REG is 0, a new pseudo is generated.
2787
91bb873f 2788 There are two types of references that must be handled:
3b3c6a3f
MM
2789
2790 1. Global data references must load the address from the GOT, via
2791 the PIC reg. An insn is emitted to do this load, and the reg is
2792 returned.
2793
91bb873f
RH
2794 2. Static data references, constant pool addresses, and code labels
2795 compute the address as an offset from the GOT, whose base is in
2796 the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
2797 differentiate them from global data objects. The returned
2798 address is the PIC reg + an unspec constant.
3b3c6a3f
MM
2799
2800 GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
91bb873f 2801 reg also appears in the address. */
3b3c6a3f
MM
2802
2803rtx
2804legitimize_pic_address (orig, reg)
2805 rtx orig;
2806 rtx reg;
2807{
2808 rtx addr = orig;
2809 rtx new = orig;
91bb873f 2810 rtx base;
3b3c6a3f 2811
91bb873f
RH
2812 if (GET_CODE (addr) == LABEL_REF
2813 || (GET_CODE (addr) == SYMBOL_REF
2814 && (CONSTANT_POOL_ADDRESS_P (addr)
2815 || SYMBOL_REF_FLAG (addr))))
3b3c6a3f 2816 {
91bb873f
RH
2817 /* This symbol may be referenced via a displacement from the PIC
2818 base address (@GOTOFF). */
3b3c6a3f 2819
91bb873f
RH
2820 current_function_uses_pic_offset_table = 1;
2821 new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 7);
2822 new = gen_rtx_CONST (VOIDmode, new);
2823 new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
3b3c6a3f 2824
91bb873f
RH
2825 if (reg != 0)
2826 {
3b3c6a3f 2827 emit_move_insn (reg, new);
91bb873f 2828 new = reg;
3b3c6a3f 2829 }
3b3c6a3f 2830 }
91bb873f 2831 else if (GET_CODE (addr) == SYMBOL_REF)
3b3c6a3f 2832 {
91bb873f
RH
2833 /* This symbol must be referenced via a load from the
2834 Global Offset Table (@GOT). */
3b3c6a3f 2835
91bb873f
RH
2836 current_function_uses_pic_offset_table = 1;
2837 new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 6);
2838 new = gen_rtx_CONST (VOIDmode, new);
2839 new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
2840 new = gen_rtx_MEM (Pmode, new);
2841 RTX_UNCHANGING_P (new) = 1;
3b3c6a3f
MM
2842
2843 if (reg == 0)
2844 reg = gen_reg_rtx (Pmode);
91bb873f
RH
2845 emit_move_insn (reg, new);
2846 new = reg;
2847 }
2848 else
2849 {
2850 if (GET_CODE (addr) == CONST)
3b3c6a3f 2851 {
91bb873f
RH
2852 addr = XEXP (addr, 0);
2853 if (GET_CODE (addr) == UNSPEC)
2854 {
2855 /* Check that the unspec is one of the ones we generate? */
2856 }
2857 else if (GET_CODE (addr) != PLUS)
2858 abort();
3b3c6a3f 2859 }
91bb873f
RH
2860 if (GET_CODE (addr) == PLUS)
2861 {
2862 rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
e9a25f70 2863
91bb873f
RH
2864 /* Check first to see if this is a constant offset from a @GOTOFF
2865 symbol reference. */
2866 if ((GET_CODE (op0) == LABEL_REF
2867 || (GET_CODE (op0) == SYMBOL_REF
2868 && (CONSTANT_POOL_ADDRESS_P (op0)
2869 || SYMBOL_REF_FLAG (op0))))
2870 && GET_CODE (op1) == CONST_INT)
2871 {
2872 current_function_uses_pic_offset_table = 1;
2873 new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, op0), 7);
2874 new = gen_rtx_PLUS (VOIDmode, new, op1);
2875 new = gen_rtx_CONST (VOIDmode, new);
2876 new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
2877
2878 if (reg != 0)
2879 {
2880 emit_move_insn (reg, new);
2881 new = reg;
2882 }
2883 }
2884 else
2885 {
2886 base = legitimize_pic_address (XEXP (addr, 0), reg);
2887 new = legitimize_pic_address (XEXP (addr, 1),
2888 base == reg ? NULL_RTX : reg);
2889
2890 if (GET_CODE (new) == CONST_INT)
2891 new = plus_constant (base, INTVAL (new));
2892 else
2893 {
2894 if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
2895 {
2896 base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
2897 new = XEXP (new, 1);
2898 }
2899 new = gen_rtx_PLUS (Pmode, base, new);
2900 }
2901 }
2902 }
3b3c6a3f
MM
2903 }
2904 return new;
2905}
2906\f
3b3c6a3f
MM
2907/* Emit insns to move operands[1] into operands[0]. */
2908
2909void
2910emit_pic_move (operands, mode)
2911 rtx *operands;
bb5177ac 2912 enum machine_mode mode ATTRIBUTE_UNUSED;
3b3c6a3f
MM
2913{
2914 rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
2915
2916 if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
91bb873f 2917 operands[1] = force_reg (Pmode, operands[1]);
3b3c6a3f
MM
2918 else
2919 operands[1] = legitimize_pic_address (operands[1], temp);
2920}
3b3c6a3f
MM
2921\f
2922/* Try machine-dependent ways of modifying an illegitimate address
2923 to be legitimate. If we find one, return the new, valid address.
2924 This macro is used in only one place: `memory_address' in explow.c.
2925
2926 OLDX is the address as it was before break_out_memory_refs was called.
2927 In some cases it is useful to look at this to decide what needs to be done.
2928
2929 MODE and WIN are passed so that this macro can use
2930 GO_IF_LEGITIMATE_ADDRESS.
2931
2932 It is always safe for this macro to do nothing. It exists to recognize
2933 opportunities to optimize the output.
2934
2935 For the 80386, we handle X+REG by loading X into a register R and
2936 using R+REG. R will go in a general reg and indexing will be used.
2937 However, if REG is a broken-out memory address or multiplication,
2938 nothing needs to be done because REG can certainly go in a general reg.
2939
2940 When -fpic is used, special handling is needed for symbolic references.
2941 See comments by legitimize_pic_address in i386.c for details. */
2942
2943rtx
2944legitimize_address (x, oldx, mode)
2945 register rtx x;
bb5177ac 2946 register rtx oldx ATTRIBUTE_UNUSED;
3b3c6a3f
MM
2947 enum machine_mode mode;
2948{
2949 int changed = 0;
2950 unsigned log;
2951
2952 if (TARGET_DEBUG_ADDR)
2953 {
e9a25f70
JL
2954 fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n",
2955 GET_MODE_NAME (mode));
3b3c6a3f
MM
2956 debug_rtx (x);
2957 }
2958
2959 if (flag_pic && SYMBOLIC_CONST (x))
2960 return legitimize_pic_address (x, 0);
2961
2962 /* Canonicalize shifts by 0, 1, 2, 3 into multiply */
2963 if (GET_CODE (x) == ASHIFT
2964 && GET_CODE (XEXP (x, 1)) == CONST_INT
2965 && (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
2966 {
2967 changed = 1;
a269a03c
JC
2968 x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
2969 GEN_INT (1 << log));
3b3c6a3f
MM
2970 }
2971
2972 if (GET_CODE (x) == PLUS)
2973 {
e9a25f70
JL
2974 /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
2975
3b3c6a3f
MM
2976 if (GET_CODE (XEXP (x, 0)) == ASHIFT
2977 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2978 && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
2979 {
2980 changed = 1;
2981 XEXP (x, 0) = gen_rtx (MULT, Pmode,
2982 force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
2983 GEN_INT (1 << log));
2984 }
2985
2986 if (GET_CODE (XEXP (x, 1)) == ASHIFT
2987 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
2988 && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4)
2989 {
2990 changed = 1;
2991 XEXP (x, 1) = gen_rtx (MULT, Pmode,
2992 force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
2993 GEN_INT (1 << log));
2994 }
2995
e9a25f70 2996 /* Put multiply first if it isn't already. */
3b3c6a3f
MM
2997 if (GET_CODE (XEXP (x, 1)) == MULT)
2998 {
2999 rtx tmp = XEXP (x, 0);
3000 XEXP (x, 0) = XEXP (x, 1);
3001 XEXP (x, 1) = tmp;
3002 changed = 1;
3003 }
3004
3005 /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
3006 into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
3007 created by virtual register instantiation, register elimination, and
3008 similar optimizations. */
3009 if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
3010 {
3011 changed = 1;
3012 x = gen_rtx (PLUS, Pmode,
e9a25f70
JL
3013 gen_rtx (PLUS, Pmode, XEXP (x, 0),
3014 XEXP (XEXP (x, 1), 0)),
3b3c6a3f
MM
3015 XEXP (XEXP (x, 1), 1));
3016 }
3017
e9a25f70
JL
3018 /* Canonicalize
3019 (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
3b3c6a3f
MM
3020 into (plus (plus (mult (reg) (const)) (reg)) (const)). */
3021 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
3022 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
3023 && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
3024 && CONSTANT_P (XEXP (x, 1)))
3025 {
00c79232
ML
3026 rtx constant;
3027 rtx other = NULL_RTX;
3b3c6a3f
MM
3028
3029 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3030 {
3031 constant = XEXP (x, 1);
3032 other = XEXP (XEXP (XEXP (x, 0), 1), 1);
3033 }
3034 else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
3035 {
3036 constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
3037 other = XEXP (x, 1);
3038 }
3039 else
3040 constant = 0;
3041
3042 if (constant)
3043 {
3044 changed = 1;
3045 x = gen_rtx (PLUS, Pmode,
3046 gen_rtx (PLUS, Pmode, XEXP (XEXP (x, 0), 0),
3047 XEXP (XEXP (XEXP (x, 0), 1), 0)),
3048 plus_constant (other, INTVAL (constant)));
3049 }
3050 }
3051
3052 if (changed && legitimate_address_p (mode, x, FALSE))
3053 return x;
3054
3055 if (GET_CODE (XEXP (x, 0)) == MULT)
3056 {
3057 changed = 1;
3058 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
3059 }
3060
3061 if (GET_CODE (XEXP (x, 1)) == MULT)
3062 {
3063 changed = 1;
3064 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
3065 }
3066
3067 if (changed
3068 && GET_CODE (XEXP (x, 1)) == REG
3069 && GET_CODE (XEXP (x, 0)) == REG)
3070 return x;
3071
3072 if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
3073 {
3074 changed = 1;
3075 x = legitimize_pic_address (x, 0);
3076 }
3077
3078 if (changed && legitimate_address_p (mode, x, FALSE))
3079 return x;
3080
3081 if (GET_CODE (XEXP (x, 0)) == REG)
3082 {
3083 register rtx temp = gen_reg_rtx (Pmode);
3084 register rtx val = force_operand (XEXP (x, 1), temp);
3085 if (val != temp)
3086 emit_move_insn (temp, val);
3087
3088 XEXP (x, 1) = temp;
3089 return x;
3090 }
3091
3092 else if (GET_CODE (XEXP (x, 1)) == REG)
3093 {
3094 register rtx temp = gen_reg_rtx (Pmode);
3095 register rtx val = force_operand (XEXP (x, 0), temp);
3096 if (val != temp)
3097 emit_move_insn (temp, val);
3098
3099 XEXP (x, 0) = temp;
3100 return x;
3101 }
3102 }
3103
3104 return x;
3105}
2a2ab3f9
JVA
3106\f
3107/* Print an integer constant expression in assembler syntax. Addition
3108 and subtraction are the only arithmetic that may appear in these
3109 expressions. FILE is the stdio stream to write to, X is the rtx, and
3110 CODE is the operand print code from the output string. */
3111
3112static void
3113output_pic_addr_const (file, x, code)
3114 FILE *file;
3115 rtx x;
3116 int code;
3117{
3118 char buf[256];
3119
3120 switch (GET_CODE (x))
3121 {
3122 case PC:
3123 if (flag_pic)
3124 putc ('.', file);
3125 else
3126 abort ();
3127 break;
3128
3129 case SYMBOL_REF:
91bb873f
RH
3130 assemble_name (file, XSTR (x, 0));
3131 if (code == 'P' && ! SYMBOL_REF_FLAG (x))
3132 fputs ("@PLT", file);
2a2ab3f9
JVA
3133 break;
3134
91bb873f
RH
3135 case LABEL_REF:
3136 x = XEXP (x, 0);
3137 /* FALLTHRU */
2a2ab3f9
JVA
3138 case CODE_LABEL:
3139 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3140 assemble_name (asm_out_file, buf);
3141 break;
3142
3143 case CONST_INT:
f64cecad 3144 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
2a2ab3f9
JVA
3145 break;
3146
3147 case CONST:
3148 /* This used to output parentheses around the expression,
3149 but that does not work on the 386 (either ATT or BSD assembler). */
3150 output_pic_addr_const (file, XEXP (x, 0), code);
3151 break;
3152
3153 case CONST_DOUBLE:
3154 if (GET_MODE (x) == VOIDmode)
3155 {
3156 /* We can use %d if the number is <32 bits and positive. */
3157 if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
f64cecad
JC
3158 fprintf (file, "0x%lx%08lx",
3159 (unsigned long) CONST_DOUBLE_HIGH (x),
3160 (unsigned long) CONST_DOUBLE_LOW (x));
2a2ab3f9 3161 else
f64cecad 3162 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
2a2ab3f9
JVA
3163 }
3164 else
3165 /* We can't handle floating point constants;
3166 PRINT_OPERAND must handle them. */
3167 output_operand_lossage ("floating constant misused");
3168 break;
3169
3170 case PLUS:
e9a25f70 3171 /* Some assemblers need integer constants to appear first. */
2a2ab3f9
JVA
3172 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3173 {
2a2ab3f9 3174 output_pic_addr_const (file, XEXP (x, 0), code);
91bb873f 3175 fprintf (file, "+");
e9a25f70 3176 output_pic_addr_const (file, XEXP (x, 1), code);
2a2ab3f9 3177 }
91bb873f 3178 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2a2ab3f9 3179 {
2a2ab3f9 3180 output_pic_addr_const (file, XEXP (x, 1), code);
91bb873f 3181 fprintf (file, "+");
e9a25f70 3182 output_pic_addr_const (file, XEXP (x, 0), code);
2a2ab3f9 3183 }
91bb873f
RH
3184 else
3185 abort ();
2a2ab3f9
JVA
3186 break;
3187
3188 case MINUS:
3189 output_pic_addr_const (file, XEXP (x, 0), code);
3190 fprintf (file, "-");
3191 output_pic_addr_const (file, XEXP (x, 1), code);
3192 break;
3193
91bb873f
RH
3194 case UNSPEC:
3195 if (XVECLEN (x, 0) != 1)
3196 abort ();
3197 output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
3198 switch (XINT (x, 1))
3199 {
3200 case 6:
3201 fputs ("@GOT", file);
3202 break;
3203 case 7:
3204 fputs ("@GOTOFF", file);
3205 break;
3206 case 8:
3207 fputs ("@PLT", file);
3208 break;
3209 default:
3210 output_operand_lossage ("invalid UNSPEC as operand");
3211 break;
3212 }
3213 break;
3214
2a2ab3f9
JVA
3215 default:
3216 output_operand_lossage ("invalid expression as operand");
3217 }
3218}
3219\f
a269a03c
JC
3220static void
3221put_jump_code (code, reverse, file)
3222 enum rtx_code code;
3223 int reverse;
3224 FILE *file;
3225{
3226 int flags = cc_prev_status.flags;
3227 int ieee = (TARGET_IEEE_FP && (flags & CC_IN_80387));
3228 const char *suffix;
3229
3230 if (flags & CC_Z_IN_NOT_C)
3231 switch (code)
3232 {
3233 case EQ:
3234 fputs (reverse ? "c" : "nc", file);
3235 return;
3236
3237 case NE:
3238 fputs (reverse ? "nc" : "c", file);
3239 return;
3240
3241 default:
3242 abort ();
3243 }
3244 if (ieee)
3245 {
3246 switch (code)
3247 {
3248 case LE:
3249 suffix = reverse ? "ae" : "b";
3250 break;
3251 case GT:
3252 case LT:
3253 case GE:
3254 suffix = reverse ? "ne" : "e";
3255 break;
3256 case EQ:
3257 suffix = reverse ? "ne" : "e";
3258 break;
3259 case NE:
3260 suffix = reverse ? "e" : "ne";
3261 break;
3262 default:
3263 abort ();
3264 }
3265 fputs (suffix, file);
3266 return;
3267 }
3268 if (flags & CC_TEST_AX)
3269 abort();
3270 if ((flags & CC_NO_OVERFLOW) && (code == LE || code == GT))
3271 abort ();
3272 if (reverse)
3273 code = reverse_condition (code);
3274 switch (code)
3275 {
3276 case EQ:
3277 suffix = "e";
3278 break;
3279
3280 case NE:
3281 suffix = "ne";
3282 break;
3283
3284 case GT:
3285 suffix = flags & CC_IN_80387 ? "a" : "g";
3286 break;
3287
3288 case GTU:
3289 suffix = "a";
3290 break;
3291
3292 case LT:
3293 if (flags & CC_NO_OVERFLOW)
3294 suffix = "s";
3295 else
3296 suffix = flags & CC_IN_80387 ? "b" : "l";
3297 break;
3298
3299 case LTU:
3300 suffix = "b";
3301 break;
3302
3303 case GE:
3304 if (flags & CC_NO_OVERFLOW)
3305 suffix = "ns";
3306 else
3307 suffix = flags & CC_IN_80387 ? "ae" : "ge";
3308 break;
3309
3310 case GEU:
3311 suffix = "ae";
3312 break;
3313
3314 case LE:
3315 suffix = flags & CC_IN_80387 ? "be" : "le";
3316 break;
3317
3318 case LEU:
3319 suffix = "be";
3320 break;
3321
3322 default:
3323 abort ();
3324 }
3325 fputs (suffix, file);
3326}
3327
e9a25f70 3328/* Append the correct conditional move suffix which corresponds to CODE. */
e5cb57e8
SC
3329
3330static void
c27d9c3b 3331put_condition_code (code, reverse_cc, mode, file)
fe25fea3 3332 enum rtx_code code;
c27d9c3b 3333 int reverse_cc;
fe25fea3
SC
3334 enum mode_class mode;
3335 FILE * file;
e5cb57e8 3336{
e9a25f70
JL
3337 int ieee = (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)
3338 && ! (cc_prev_status.flags & CC_FCOMI));
c27d9c3b
SC
3339 if (reverse_cc && ! ieee)
3340 code = reverse_condition (code);
3341
fe25fea3 3342 if (mode == MODE_INT)
e9a25f70
JL
3343 switch (code)
3344 {
79325812 3345 case NE:
e9a25f70
JL
3346 if (cc_prev_status.flags & CC_Z_IN_NOT_C)
3347 fputs ("b", file);
3348 else
3349 fputs ("ne", file);
3350 return;
3351
3352 case EQ:
3353 if (cc_prev_status.flags & CC_Z_IN_NOT_C)
3354 fputs ("ae", file);
3355 else
3356 fputs ("e", file);
3357 return;
3358
3359 case GE:
b657fc39
L
3360 if (cc_prev_status.flags & CC_NO_OVERFLOW)
3361 fputs ("ns", file);
3362 else
3363 fputs ("ge", file);
e9a25f70
JL
3364 return;
3365
3366 case GT:
3367 fputs ("g", file);
3368 return;
3369
3370 case LE:
3371 fputs ("le", file);
3372 return;
3373
3374 case LT:
b657fc39
L
3375 if (cc_prev_status.flags & CC_NO_OVERFLOW)
3376 fputs ("s", file);
3377 else
3378 fputs ("l", file);
e9a25f70
JL
3379 return;
3380
3381 case GEU:
3382 fputs ("ae", file);
3383 return;
3384
3385 case GTU:
3386 fputs ("a", file);
3387 return;
3388
3389 case LEU:
3390 fputs ("be", file);
3391 return;
3392
3393 case LTU:
3394 fputs ("b", file);
3395 return;
3396
3397 default:
3398 output_operand_lossage ("Invalid %%C operand");
3399 }
3400
fe25fea3 3401 else if (mode == MODE_FLOAT)
e9a25f70
JL
3402 switch (code)
3403 {
79325812 3404 case NE:
e9a25f70
JL
3405 fputs (ieee ? (reverse_cc ? "ne" : "e") : "ne", file);
3406 return;
79325812 3407 case EQ:
e9a25f70
JL
3408 fputs (ieee ? (reverse_cc ? "ne" : "e") : "e", file);
3409 return;
79325812 3410 case GE:
e9a25f70
JL
3411 fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
3412 return;
79325812 3413 case GT:
e9a25f70
JL
3414 fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
3415 return;
79325812 3416 case LE:
e9a25f70
JL
3417 fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
3418 return;
79325812 3419 case LT:
e9a25f70
JL
3420 fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
3421 return;
79325812 3422 case GEU:
e9a25f70
JL
3423 fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
3424 return;
79325812 3425 case GTU:
e9a25f70
JL
3426 fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
3427 return;
79325812 3428 case LEU:
e9a25f70
JL
3429 fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
3430 return;
79325812 3431 case LTU:
e9a25f70
JL
3432 fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
3433 return;
3434 default:
3435 output_operand_lossage ("Invalid %%C operand");
fe25fea3 3436 }
e5cb57e8
SC
3437}
3438
2a2ab3f9 3439/* Meaning of CODE:
fe25fea3 3440 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
e5cb57e8 3441 C -- print opcode suffix for set/cmov insn.
fe25fea3
SC
3442 c -- like C, but print reversed condition
3443 F -- print opcode suffix for fcmov insn.
a269a03c
JC
3444 f -- like F, but print reversed condition
3445 D -- print the opcode suffix for a jump
3446 d -- like D, but print reversed condition
2a2ab3f9
JVA
3447 R -- print the prefix for register names.
3448 z -- print the opcode suffix for the size of the current operand.
3449 * -- print a star (in certain assembler syntax)
3450 w -- print the operand as if it's a "word" (HImode) even if it isn't.
b08de47e 3451 J -- print the appropriate jump operand.
2d49677f
SC
3452 s -- print a shift double count, followed by the assemblers argument
3453 delimiter.
fe25fea3
SC
3454 b -- print the QImode name of the register for the indicated operand.
3455 %b0 would print %al if operands[0] is reg 0.
3456 w -- likewise, print the HImode name of the register.
3457 k -- likewise, print the SImode name of the register.
3458 h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
3459 y -- print "st(0)" instead of "st" as a register.
e9a25f70 3460 P -- print as a PIC constant */
2a2ab3f9
JVA
3461
3462void
3463print_operand (file, x, code)
3464 FILE *file;
3465 rtx x;
3466 int code;
3467{
3468 if (code)
3469 {
3470 switch (code)
3471 {
3472 case '*':
3473 if (USE_STAR)
3474 putc ('*', file);
3475 return;
3476
2a2ab3f9
JVA
3477 case 'L':
3478 PUT_OP_SIZE (code, 'l', file);
3479 return;
3480
3481 case 'W':
3482 PUT_OP_SIZE (code, 'w', file);
3483 return;
3484
3485 case 'B':
3486 PUT_OP_SIZE (code, 'b', file);
3487 return;
3488
3489 case 'Q':
3490 PUT_OP_SIZE (code, 'l', file);
3491 return;
3492
3493 case 'S':
3494 PUT_OP_SIZE (code, 's', file);
3495 return;
3496
5f1ec3e6
JVA
3497 case 'T':
3498 PUT_OP_SIZE (code, 't', file);
3499 return;
3500
2a2ab3f9
JVA
3501 case 'z':
3502 /* 387 opcodes don't get size suffixes if the operands are
3503 registers. */
3504
3505 if (STACK_REG_P (x))
3506 return;
3507
3508 /* this is the size of op from size of operand */
3509 switch (GET_MODE_SIZE (GET_MODE (x)))
3510 {
3511 case 1:
3512 PUT_OP_SIZE ('B', 'b', file);
3513 return;
3514
3515 case 2:
3516 PUT_OP_SIZE ('W', 'w', file);
3517 return;
3518
3519 case 4:
3520 if (GET_MODE (x) == SFmode)
3521 {
3522 PUT_OP_SIZE ('S', 's', file);
3523 return;
3524 }
3525 else
3526 PUT_OP_SIZE ('L', 'l', file);
3527 return;
3528
5f1ec3e6
JVA
3529 case 12:
3530 PUT_OP_SIZE ('T', 't', file);
3531 return;
3532
2a2ab3f9
JVA
3533 case 8:
3534 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
56c0e8fa
JVA
3535 {
3536#ifdef GAS_MNEMONICS
3537 PUT_OP_SIZE ('Q', 'q', file);
3538 return;
3539#else
3540 PUT_OP_SIZE ('Q', 'l', file); /* Fall through */
3541#endif
3542 }
2a2ab3f9
JVA
3543
3544 PUT_OP_SIZE ('Q', 'l', file);
3545 return;
3546 }
4af3895e
JVA
3547
3548 case 'b':
3549 case 'w':
3550 case 'k':
3551 case 'h':
3552 case 'y':
3553 case 'P':
5cb6195d 3554 case 'X':
4af3895e
JVA
3555 break;
3556
b08de47e
MM
3557 case 'J':
3558 switch (GET_CODE (x))
3559 {
c645b1c9
MM
3560 /* These conditions are appropriate for testing the result
3561 of an arithmetic operation, not for a compare operation.
3562 Cases GE, LT assume CC_NO_OVERFLOW true. All cases assume
3563 CC_Z_IN_NOT_C false and not floating point. */
b08de47e
MM
3564 case NE: fputs ("jne", file); return;
3565 case EQ: fputs ("je", file); return;
c645b1c9 3566 case GE: fputs ("jns", file); return;
c645b1c9 3567 case LT: fputs ("js", file); return;
d784886d
RK
3568 case GEU: fputs ("jmp", file); return;
3569 case GTU: fputs ("jne", file); return;
3570 case LEU: fputs ("je", file); return;
3571 case LTU: fputs ("#branch never", file); return;
79325812 3572
d784886d 3573 /* no matching branches for GT nor LE */
79325812 3574
00c79232
ML
3575 default:
3576 abort ();
b08de47e 3577 }
b08de47e 3578
2d49677f
SC
3579 case 's':
3580 if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT)
3581 {
3582 PRINT_OPERAND (file, x, 0);
3583 fputs (AS2C (,) + 1, file);
3584 }
e9a25f70 3585
2d49677f
SC
3586 return;
3587
a269a03c
JC
3588 case 'D':
3589 put_jump_code (GET_CODE (x), 0, file);
3590 return;
3591
3592 case 'd':
3593 put_jump_code (GET_CODE (x), 1, file);
3594 return;
3595
1853aadd
RK
3596 /* This is used by the conditional move instructions. */
3597 case 'C':
c27d9c3b 3598 put_condition_code (GET_CODE (x), 0, MODE_INT, file);
1853aadd 3599 return;
fe25fea3 3600
e9a25f70 3601 /* Like above, but reverse condition */
fe25fea3 3602 case 'c':
c27d9c3b 3603 put_condition_code (GET_CODE (x), 1, MODE_INT, file); return;
fe25fea3
SC
3604
3605 case 'F':
c27d9c3b 3606 put_condition_code (GET_CODE (x), 0, MODE_FLOAT, file);
fe25fea3
SC
3607 return;
3608
e9a25f70 3609 /* Like above, but reverse condition */
fe25fea3 3610 case 'f':
c27d9c3b 3611 put_condition_code (GET_CODE (x), 1, MODE_FLOAT, file);
1853aadd 3612 return;
e5cb57e8 3613
4af3895e 3614 default:
68daafd4
JVA
3615 {
3616 char str[50];
3617
3618 sprintf (str, "invalid operand code `%c'", code);
3619 output_operand_lossage (str);
3620 }
2a2ab3f9
JVA
3621 }
3622 }
e9a25f70 3623
2a2ab3f9
JVA
3624 if (GET_CODE (x) == REG)
3625 {
3626 PRINT_REG (x, code, file);
3627 }
e9a25f70 3628
2a2ab3f9
JVA
3629 else if (GET_CODE (x) == MEM)
3630 {
3631 PRINT_PTR (x, file);
3632 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
3633 {
3634 if (flag_pic)
3635 output_pic_addr_const (file, XEXP (x, 0), code);
3636 else
3637 output_addr_const (file, XEXP (x, 0));
3638 }
3639 else
3640 output_address (XEXP (x, 0));
3641 }
e9a25f70 3642
2a2ab3f9
JVA
3643 else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
3644 {
e9a25f70
JL
3645 REAL_VALUE_TYPE r;
3646 long l;
3647
5f1ec3e6
JVA
3648 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
3649 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4af3895e 3650 PRINT_IMMED_PREFIX (file);
52267fcb 3651 fprintf (file, "0x%lx", l);
5f1ec3e6 3652 }
e9a25f70 3653
5f1ec3e6
JVA
3654 /* These float cases don't actually occur as immediate operands. */
3655 else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
3656 {
e9a25f70
JL
3657 REAL_VALUE_TYPE r;
3658 char dstr[30];
3659
5f1ec3e6
JVA
3660 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
3661 REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
3662 fprintf (file, "%s", dstr);
2a2ab3f9 3663 }
e9a25f70 3664
5f1ec3e6 3665 else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
2a2ab3f9 3666 {
e9a25f70
JL
3667 REAL_VALUE_TYPE r;
3668 char dstr[30];
3669
5f1ec3e6
JVA
3670 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
3671 REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
3672 fprintf (file, "%s", dstr);
2a2ab3f9 3673 }
79325812 3674 else
2a2ab3f9 3675 {
4af3895e 3676 if (code != 'P')
2a2ab3f9 3677 {
695dac07 3678 if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
2a2ab3f9
JVA
3679 PRINT_IMMED_PREFIX (file);
3680 else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
3681 || GET_CODE (x) == LABEL_REF)
3682 PRINT_OFFSET_PREFIX (file);
3683 }
3684 if (flag_pic)
3685 output_pic_addr_const (file, x, code);
3686 else
3687 output_addr_const (file, x);
3688 }
3689}
3690\f
3691/* Print a memory operand whose address is ADDR. */
3692
3693void
3694print_operand_address (file, addr)
3695 FILE *file;
3696 register rtx addr;
3697{
3698 register rtx reg1, reg2, breg, ireg;
3699 rtx offset;
3700
3701 switch (GET_CODE (addr))
3702 {
3703 case REG:
3704 ADDR_BEG (file);
3705 fprintf (file, "%se", RP);
3706 fputs (hi_reg_name[REGNO (addr)], file);
3707 ADDR_END (file);
3708 break;
3709
3710 case PLUS:
3711 reg1 = 0;
3712 reg2 = 0;
3713 ireg = 0;
3714 breg = 0;
3715 offset = 0;
3716 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
3717 {
3718 offset = XEXP (addr, 0);
3719 addr = XEXP (addr, 1);
3720 }
3721 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
3722 {
3723 offset = XEXP (addr, 1);
3724 addr = XEXP (addr, 0);
3725 }
e9a25f70
JL
3726
3727 if (GET_CODE (addr) != PLUS)
3728 ;
2a2ab3f9 3729 else if (GET_CODE (XEXP (addr, 0)) == MULT)
e9a25f70 3730 reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
2a2ab3f9 3731 else if (GET_CODE (XEXP (addr, 1)) == MULT)
e9a25f70 3732 reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
2a2ab3f9 3733 else if (GET_CODE (XEXP (addr, 0)) == REG)
e9a25f70 3734 reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
2a2ab3f9 3735 else if (GET_CODE (XEXP (addr, 1)) == REG)
e9a25f70
JL
3736 reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
3737
2a2ab3f9
JVA
3738 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
3739 {
e9a25f70
JL
3740 if (reg1 == 0)
3741 reg1 = addr;
3742 else
3743 reg2 = addr;
3744
2a2ab3f9
JVA
3745 addr = 0;
3746 }
e9a25f70 3747
2a2ab3f9
JVA
3748 if (offset != 0)
3749 {
e9a25f70
JL
3750 if (addr != 0)
3751 abort ();
2a2ab3f9
JVA
3752 addr = offset;
3753 }
e9a25f70 3754
2a2ab3f9
JVA
3755 if ((reg1 && GET_CODE (reg1) == MULT)
3756 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
3757 {
3758 breg = reg2;
3759 ireg = reg1;
3760 }
3761 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
3762 {
3763 breg = reg1;
3764 ireg = reg2;
3765 }
3766
3767 if (ireg != 0 || breg != 0)
3768 {
3769 int scale = 1;
3770
3771 if (addr != 0)
3772 {
c399861d
MM
3773 if (flag_pic)
3774 output_pic_addr_const (file, addr, 0);
c399861d 3775 else if (GET_CODE (addr) == LABEL_REF)
2a2ab3f9
JVA
3776 output_asm_label (addr);
3777 else
c399861d 3778 output_addr_const (file, addr);
2a2ab3f9
JVA
3779 }
3780
3781 if (ireg != 0 && GET_CODE (ireg) == MULT)
3782 {
3783 scale = INTVAL (XEXP (ireg, 1));
3784 ireg = XEXP (ireg, 0);
3785 }
3786
3787 /* The stack pointer can only appear as a base register,
3788 never an index register, so exchange the regs if it is wrong. */
3789
3790 if (scale == 1 && ireg && REGNO (ireg) == STACK_POINTER_REGNUM)
3791 {
3792 rtx tmp;
3793
3794 tmp = breg;
3795 breg = ireg;
3796 ireg = tmp;
3797 }
3798
3799 /* output breg+ireg*scale */
3800 PRINT_B_I_S (breg, ireg, scale, file);
3801 break;
3802 }
3803
3804 case MULT:
3805 {
3806 int scale;
e9a25f70 3807
2a2ab3f9
JVA
3808 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
3809 {
3810 scale = INTVAL (XEXP (addr, 0));
3811 ireg = XEXP (addr, 1);
3812 }
3813 else
3814 {
3815 scale = INTVAL (XEXP (addr, 1));
3816 ireg = XEXP (addr, 0);
3817 }
e9a25f70 3818
2a2ab3f9 3819 output_addr_const (file, const0_rtx);
e9a25f70 3820 PRINT_B_I_S (NULL_RTX, ireg, scale, file);
2a2ab3f9
JVA
3821 }
3822 break;
3823
3824 default:
3825 if (GET_CODE (addr) == CONST_INT
3826 && INTVAL (addr) < 0x8000
3827 && INTVAL (addr) >= -0x8000)
f64cecad 3828 fprintf (file, "%d", (int) INTVAL (addr));
2a2ab3f9
JVA
3829 else
3830 {
3831 if (flag_pic)
3832 output_pic_addr_const (file, addr, 0);
3833 else
3834 output_addr_const (file, addr);
3835 }
3836 }
3837}
3838\f
3839/* Set the cc_status for the results of an insn whose pattern is EXP.
3840 On the 80386, we assume that only test and compare insns, as well
5cb6195d 3841 as SI, HI, & DI mode ADD, SUB, NEG, AND, IOR, XOR, BSF, ASHIFT,
2a2ab3f9 3842 ASHIFTRT, and LSHIFTRT instructions set the condition codes usefully.
4c0d89b5
RS
3843 Also, we assume that jumps, moves and sCOND don't affect the condition
3844 codes. All else clobbers the condition codes, by assumption.
3845
3846 We assume that ALL integer add, minus, etc. instructions effect the
3847 condition codes. This MUST be consistent with i386.md.
2a2ab3f9 3848
4c0d89b5
RS
3849 We don't record any float test or compare - the redundant test &
3850 compare check in final.c does not handle stack-like regs correctly. */
2a2ab3f9
JVA
3851
3852void
3853notice_update_cc (exp)
3854 rtx exp;
3855{
3856 if (GET_CODE (exp) == SET)
3857 {
3858 /* Jumps do not alter the cc's. */
3859 if (SET_DEST (exp) == pc_rtx)
3860 return;
e9a25f70 3861
2a2ab3f9
JVA
3862 /* Moving register or memory into a register:
3863 it doesn't alter the cc's, but it might invalidate
3864 the RTX's which we remember the cc's came from.
3865 (Note that moving a constant 0 or 1 MAY set the cc's). */
3866 if (REG_P (SET_DEST (exp))
4c0d89b5 3867 && (REG_P (SET_SRC (exp)) || GET_CODE (SET_SRC (exp)) == MEM
9c8c5afb
JW
3868 || GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'
3869 || (GET_CODE (SET_SRC (exp)) == IF_THEN_ELSE
3870 && GET_MODE_CLASS (GET_MODE (SET_DEST (exp))) == MODE_INT)))
2a2ab3f9
JVA
3871 {
3872 if (cc_status.value1
3873 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
3874 cc_status.value1 = 0;
e9a25f70 3875
2a2ab3f9
JVA
3876 if (cc_status.value2
3877 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
3878 cc_status.value2 = 0;
e9a25f70 3879
2a2ab3f9
JVA
3880 return;
3881 }
e9a25f70 3882
2a2ab3f9
JVA
3883 /* Moving register into memory doesn't alter the cc's.
3884 It may invalidate the RTX's which we remember the cc's came from. */
4c0d89b5
RS
3885 if (GET_CODE (SET_DEST (exp)) == MEM
3886 && (REG_P (SET_SRC (exp))
3887 || GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
2a2ab3f9 3888 {
e9a25f70
JL
3889 if (cc_status.value1
3890 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
2a2ab3f9 3891 cc_status.value1 = 0;
e9a25f70
JL
3892 if (cc_status.value2
3893 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
2a2ab3f9 3894 cc_status.value2 = 0;
e9a25f70 3895
2a2ab3f9
JVA
3896 return;
3897 }
e9a25f70 3898
2a2ab3f9
JVA
3899 /* Function calls clobber the cc's. */
3900 else if (GET_CODE (SET_SRC (exp)) == CALL)
3901 {
3902 CC_STATUS_INIT;
3903 return;
3904 }
e9a25f70 3905
2a2ab3f9
JVA
3906 /* Tests and compares set the cc's in predictable ways. */
3907 else if (SET_DEST (exp) == cc0_rtx)
3908 {
3909 CC_STATUS_INIT;
3910 cc_status.value1 = SET_SRC (exp);
3911 return;
3912 }
e9a25f70 3913
2a2ab3f9
JVA
3914 /* Certain instructions effect the condition codes. */
3915 else if (GET_MODE (SET_SRC (exp)) == SImode
3916 || GET_MODE (SET_SRC (exp)) == HImode
3917 || GET_MODE (SET_SRC (exp)) == QImode)
3918 switch (GET_CODE (SET_SRC (exp)))
3919 {
e9a25f70 3920 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2a2ab3f9
JVA
3921 /* Shifts on the 386 don't set the condition codes if the
3922 shift count is zero. */
3923 if (GET_CODE (XEXP (SET_SRC (exp), 1)) != CONST_INT)
3924 {
3925 CC_STATUS_INIT;
3926 break;
3927 }
e9a25f70 3928
2a2ab3f9
JVA
3929 /* We assume that the CONST_INT is non-zero (this rtx would
3930 have been deleted if it were zero. */
3931
3932 case PLUS: case MINUS: case NEG:
3933 case AND: case IOR: case XOR:
3934 cc_status.flags = CC_NO_OVERFLOW;
3935 cc_status.value1 = SET_SRC (exp);
3936 cc_status.value2 = SET_DEST (exp);
3937 break;
3938
ce193852
RH
3939 /* This is the bsf pattern used by ffs. */
3940 case UNSPEC:
3941 if (XINT (SET_SRC (exp), 1) == 5)
3942 {
3943 /* Only the Z flag is defined after bsf. */
3944 cc_status.flags
3945 = CC_NOT_POSITIVE | CC_NOT_NEGATIVE | CC_NO_OVERFLOW;
3946 cc_status.value1 = XVECEXP (SET_SRC (exp), 0, 0);
9d932d43 3947 cc_status.value2 = 0;
ce193852
RH
3948 break;
3949 }
3950 /* FALLTHRU */
3951
2a2ab3f9
JVA
3952 default:
3953 CC_STATUS_INIT;
3954 }
3955 else
3956 {
3957 CC_STATUS_INIT;
3958 }
3959 }
3960 else if (GET_CODE (exp) == PARALLEL
3961 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
3962 {
3963 if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
3964 return;
3965 if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
e9a25f70 3966
2a2ab3f9
JVA
3967 {
3968 CC_STATUS_INIT;
a8620236
SC
3969 if (stack_regs_mentioned_p (SET_SRC (XVECEXP (exp, 0, 0))))
3970 {
3971 cc_status.flags |= CC_IN_80387;
d6cc54f6 3972 if (0 && TARGET_CMOVE && stack_regs_mentioned_p
a8620236
SC
3973 (XEXP (SET_SRC (XVECEXP (exp, 0, 0)), 1)))
3974 cc_status.flags |= CC_FCOMI;
3975 }
2247a58c 3976 else
4c0d89b5 3977 cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
2a2ab3f9
JVA
3978 return;
3979 }
e9a25f70 3980
2a2ab3f9
JVA
3981 CC_STATUS_INIT;
3982 }
3983 else
3984 {
3985 CC_STATUS_INIT;
3986 }
3987}
3988\f
3989/* Split one or more DImode RTL references into pairs of SImode
3990 references. The RTL can be REG, offsettable MEM, integer constant, or
3991 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3992 split and "num" is its length. lo_half and hi_half are output arrays
3993 that parallel "operands". */
3994
3995void
3996split_di (operands, num, lo_half, hi_half)
3997 rtx operands[];
3998 int num;
3999 rtx lo_half[], hi_half[];
4000{
4001 while (num--)
4002 {
57dbca5e 4003 rtx op = operands[num];
a269a03c
JC
4004 if (! reload_completed)
4005 {
4006 lo_half[num] = gen_lowpart (SImode, op);
4007 hi_half[num] = gen_highpart (SImode, op);
4008 }
4009 else if (GET_CODE (op) == REG)
2a2ab3f9 4010 {
57dbca5e
BS
4011 lo_half[num] = gen_rtx_REG (SImode, REGNO (op));
4012 hi_half[num] = gen_rtx_REG (SImode, REGNO (op) + 1);
2a2ab3f9 4013 }
57dbca5e
BS
4014 else if (CONSTANT_P (op))
4015 split_double (op, &lo_half[num], &hi_half[num]);
4016 else if (offsettable_memref_p (op))
2a2ab3f9 4017 {
57dbca5e
BS
4018 rtx lo_addr = XEXP (op, 0);
4019 rtx hi_addr = XEXP (adj_offsettable_operand (op, 4), 0);
4020 lo_half[num] = change_address (op, SImode, lo_addr);
4021 hi_half[num] = change_address (op, SImode, hi_addr);
2a2ab3f9
JVA
4022 }
4023 else
4024 abort();
4025 }
4026}
4027\f
4028/* Return 1 if this is a valid binary operation on a 387.
4029 OP is the expression matched, and MODE is its mode. */
4030
4031int
4032binary_387_op (op, mode)
4033 register rtx op;
4034 enum machine_mode mode;
4035{
4036 if (mode != VOIDmode && mode != GET_MODE (op))
4037 return 0;
4038
4039 switch (GET_CODE (op))
4040 {
4041 case PLUS:
4042 case MINUS:
4043 case MULT:
4044 case DIV:
4045 return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT;
4046
4047 default:
4048 return 0;
4049 }
4050}
3b3c6a3f 4051\f
2a2ab3f9
JVA
4052/* Return 1 if this is a valid shift or rotate operation on a 386.
4053 OP is the expression matched, and MODE is its mode. */
4054
4055int
4056shift_op (op, mode)
4057 register rtx op;
4058 enum machine_mode mode;
4059{
4060 rtx operand = XEXP (op, 0);
4061
4062 if (mode != VOIDmode && mode != GET_MODE (op))
4063 return 0;
4064
4065 if (GET_MODE (operand) != GET_MODE (op)
4066 || GET_MODE_CLASS (GET_MODE (op)) != MODE_INT)
4067 return 0;
4068
4069 return (GET_CODE (op) == ASHIFT
4070 || GET_CODE (op) == ASHIFTRT
4071 || GET_CODE (op) == LSHIFTRT
4072 || GET_CODE (op) == ROTATE
4073 || GET_CODE (op) == ROTATERT);
4074}
ac2afb64
JVA
4075
4076/* Return 1 if OP is COMPARE rtx with mode VOIDmode.
4077 MODE is not used. */
4078
4079int
4080VOIDmode_compare_op (op, mode)
4081 register rtx op;
bb5177ac 4082 enum machine_mode mode ATTRIBUTE_UNUSED;
ac2afb64
JVA
4083{
4084 return GET_CODE (op) == COMPARE && GET_MODE (op) == VOIDmode;
4085}
2a2ab3f9
JVA
4086\f
4087/* Output code to perform a 387 binary operation in INSN, one of PLUS,
4088 MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
4089 is the expression of the binary operation. The output may either be
4090 emitted here, or returned to the caller, like all output_* functions.
4091
4092 There is no guarantee that the operands are the same mode, as they
4093 might be within FLOAT or FLOAT_EXTEND expressions. */
4094
4095char *
4096output_387_binary_op (insn, operands)
4097 rtx insn;
4098 rtx *operands;
4099{
4100 rtx temp;
4101 char *base_op;
4102 static char buf[100];
4103
4104 switch (GET_CODE (operands[3]))
4105 {
4106 case PLUS:
4107 if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
4108 || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
4109 base_op = "fiadd";
4110 else
4111 base_op = "fadd";
4112 break;
4113
4114 case MINUS:
4115 if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
4116 || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
4117 base_op = "fisub";
4118 else
4119 base_op = "fsub";
4120 break;
4121
4122 case MULT:
4123 if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
4124 || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
4125 base_op = "fimul";
4126 else
4127 base_op = "fmul";
4128 break;
4129
4130 case DIV:
4131 if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
4132 || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
4133 base_op = "fidiv";
4134 else
4135 base_op = "fdiv";
4136 break;
4137
4138 default:
4139 abort ();
4140 }
4141
4142 strcpy (buf, base_op);
4143
4144 switch (GET_CODE (operands[3]))
4145 {
4146 case MULT:
4147 case PLUS:
4148 if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
4149 {
4150 temp = operands[2];
4151 operands[2] = operands[1];
4152 operands[1] = temp;
4153 }
4154
4155 if (GET_CODE (operands[2]) == MEM)
4156 return strcat (buf, AS1 (%z2,%2));
4157
4158 if (NON_STACK_REG_P (operands[1]))
4159 {
4160 output_op_from_reg (operands[1], strcat (buf, AS1 (%z0,%1)));
e9a25f70 4161 return "";
2a2ab3f9 4162 }
e9a25f70 4163
2a2ab3f9
JVA
4164 else if (NON_STACK_REG_P (operands[2]))
4165 {
4166 output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
e9a25f70 4167 return "";
2a2ab3f9
JVA
4168 }
4169
4170 if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
6b28fd63
JL
4171 {
4172 if (STACK_TOP_P (operands[0]))
4173 return strcat (buf, AS2 (p,%0,%2));
4174 else
4175 return strcat (buf, AS2 (p,%2,%0));
4176 }
2a2ab3f9
JVA
4177
4178 if (STACK_TOP_P (operands[0]))
3f6d0a8c 4179 return strcat (buf, AS2C (%y2,%0));
2a2ab3f9 4180 else
3f6d0a8c 4181 return strcat (buf, AS2C (%2,%0));
2a2ab3f9
JVA
4182
4183 case MINUS:
4184 case DIV:
4185 if (GET_CODE (operands[1]) == MEM)
4186 return strcat (buf, AS1 (r%z1,%1));
4187
4188 if (GET_CODE (operands[2]) == MEM)
4189 return strcat (buf, AS1 (%z2,%2));
4190
4191 if (NON_STACK_REG_P (operands[1]))
4192 {
4193 output_op_from_reg (operands[1], strcat (buf, AS1 (r%z0,%1)));
e9a25f70 4194 return "";
2a2ab3f9 4195 }
e9a25f70 4196
2a2ab3f9
JVA
4197 else if (NON_STACK_REG_P (operands[2]))
4198 {
4199 output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
e9a25f70 4200 return "";
2a2ab3f9
JVA
4201 }
4202
4203 if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
4204 abort ();
4205
4206 if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
6b28fd63
JL
4207 {
4208 if (STACK_TOP_P (operands[0]))
4209 return strcat (buf, AS2 (p,%0,%2));
4210 else
4211 return strcat (buf, AS2 (rp,%2,%0));
4212 }
2a2ab3f9
JVA
4213
4214 if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
6b28fd63
JL
4215 {
4216 if (STACK_TOP_P (operands[0]))
4217 return strcat (buf, AS2 (rp,%0,%1));
4218 else
4219 return strcat (buf, AS2 (p,%1,%0));
4220 }
2a2ab3f9
JVA
4221
4222 if (STACK_TOP_P (operands[0]))
4223 {
4224 if (STACK_TOP_P (operands[1]))
3f6d0a8c 4225 return strcat (buf, AS2C (%y2,%0));
2a2ab3f9
JVA
4226 else
4227 return strcat (buf, AS2 (r,%y1,%0));
4228 }
4229 else if (STACK_TOP_P (operands[1]))
3f6d0a8c 4230 return strcat (buf, AS2C (%1,%0));
2a2ab3f9
JVA
4231 else
4232 return strcat (buf, AS2 (r,%2,%0));
4233
4234 default:
4235 abort ();
4236 }
4237}
4238\f
4239/* Output code for INSN to convert a float to a signed int. OPERANDS
4240 are the insn operands. The output may be SFmode or DFmode and the
4241 input operand may be SImode or DImode. As a special case, make sure
4242 that the 387 stack top dies if the output mode is DImode, because the
4243 hardware requires this. */
4244
4245char *
4246output_fix_trunc (insn, operands)
4247 rtx insn;
4248 rtx *operands;
4249{
4250 int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
305f097e 4251 rtx xops[2];
2a2ab3f9 4252
2e14a41b 4253 if (! STACK_TOP_P (operands[1]))
2a2ab3f9
JVA
4254 abort ();
4255
305f097e
JVA
4256 xops[0] = GEN_INT (12);
4257 xops[1] = operands[4];
4258
4259 output_asm_insn (AS1 (fnstc%W2,%2), operands);
4260 output_asm_insn (AS2 (mov%L2,%2,%4), operands);
4261 output_asm_insn (AS2 (mov%B1,%0,%h1), xops);
4262 output_asm_insn (AS2 (mov%L4,%4,%3), operands);
4263 output_asm_insn (AS1 (fldc%W3,%3), operands);
2a2ab3f9
JVA
4264
4265 if (NON_STACK_REG_P (operands[0]))
c27d9c3b 4266 output_to_reg (operands[0], stack_top_dies, operands[3]);
e9a25f70 4267
2a2ab3f9
JVA
4268 else if (GET_CODE (operands[0]) == MEM)
4269 {
2a2ab3f9
JVA
4270 if (stack_top_dies)
4271 output_asm_insn (AS1 (fistp%z0,%0), operands);
2e14a41b
JW
4272 else if (GET_MODE (operands[0]) == DImode && ! stack_top_dies)
4273 {
4274 /* There is no DImode version of this without a stack pop, so
4275 we must emulate it. It doesn't matter much what the second
4276 instruction is, because the value being pushed on the FP stack
4277 is not used except for the following stack popping store.
4278 This case can only happen without optimization, so it doesn't
4279 matter that it is inefficient. */
4280 output_asm_insn (AS1 (fistp%z0,%0), operands);
4281 output_asm_insn (AS1 (fild%z0,%0), operands);
4282 }
2a2ab3f9
JVA
4283 else
4284 output_asm_insn (AS1 (fist%z0,%0), operands);
4285 }
4286 else
4287 abort ();
4288
305f097e 4289 return AS1 (fldc%W2,%2);
2a2ab3f9
JVA
4290}
4291\f
4292/* Output code for INSN to compare OPERANDS. The two operands might
4293 not have the same mode: one might be within a FLOAT or FLOAT_EXTEND
c572e5ba
JVA
4294 expression. If the compare is in mode CCFPEQmode, use an opcode that
4295 will not fault if a qNaN is present. */
2a2ab3f9
JVA
4296
4297char *
4298output_float_compare (insn, operands)
4299 rtx insn;
4300 rtx *operands;
4301{
4302 int stack_top_dies;
c572e5ba
JVA
4303 rtx body = XVECEXP (PATTERN (insn), 0, 0);
4304 int unordered_compare = GET_MODE (SET_SRC (body)) == CCFPEQmode;
32b5b1aa 4305 rtx tmp;
4f74d15b 4306
d6cc54f6 4307 if (0 && TARGET_CMOVE && STACK_REG_P (operands[1]))
4f74d15b
SC
4308 {
4309 cc_status.flags |= CC_FCOMI;
4310 cc_prev_status.flags &= ~CC_TEST_AX;
4311 }
4312
32b5b1aa
SC
4313 if (! STACK_TOP_P (operands[0]))
4314 {
4315 tmp = operands[0];
4316 operands[0] = operands[1];
4317 operands[1] = tmp;
4318 cc_status.flags |= CC_REVERSED;
4319 }
79325812 4320
2a2ab3f9
JVA
4321 if (! STACK_TOP_P (operands[0]))
4322 abort ();
4323
4324 stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
4325
4326 if (STACK_REG_P (operands[1])
4327 && stack_top_dies
4328 && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))
4329 && REGNO (operands[1]) != FIRST_STACK_REG)
4330 {
4331 /* If both the top of the 387 stack dies, and the other operand
4332 is also a stack register that dies, then this must be a
4333 `fcompp' float compare */
4334
c572e5ba 4335 if (unordered_compare)
e9a25f70
JL
4336 {
4337 if (cc_status.flags & CC_FCOMI)
4338 {
4339 output_asm_insn (AS2 (fucomip,%y1,%0), operands);
4340 output_asm_insn (AS1 (fstp, %y0), operands);
4341 return "";
4342 }
4343 else
4344 output_asm_insn ("fucompp", operands);
4345 }
c572e5ba 4346 else
858a9ffc 4347 {
e9a25f70
JL
4348 if (cc_status.flags & CC_FCOMI)
4349 {
4350 output_asm_insn (AS2 (fcomip, %y1,%0), operands);
4351 output_asm_insn (AS1 (fstp, %y0), operands);
4352 return "";
4353 }
4354 else
4355 output_asm_insn ("fcompp", operands);
858a9ffc 4356 }
2a2ab3f9
JVA
4357 }
4358 else
4359 {
4360 static char buf[100];
4361
c572e5ba
JVA
4362 /* Decide if this is the integer or float compare opcode, or the
4363 unordered float compare. */
2a2ab3f9 4364
c572e5ba 4365 if (unordered_compare)
4f74d15b 4366 strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fucomi" : "fucom");
c572e5ba 4367 else if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_FLOAT)
4f74d15b 4368 strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fcomi" : "fcom");
2a2ab3f9
JVA
4369 else
4370 strcpy (buf, "ficom");
4371
4372 /* Modify the opcode if the 387 stack is to be popped. */
4373
4374 if (stack_top_dies)
4375 strcat (buf, "p");
4376
4377 if (NON_STACK_REG_P (operands[1]))
4378 output_op_from_reg (operands[1], strcat (buf, AS1 (%z0,%1)));
79325812 4379 else if (cc_status.flags & CC_FCOMI)
5703bb66 4380 {
858a9ffc 4381 output_asm_insn (strcat (buf, AS2 (%z1,%y1,%0)), operands);
e9a25f70 4382 return "";
5703bb66 4383 }
2a2ab3f9
JVA
4384 else
4385 output_asm_insn (strcat (buf, AS1 (%z1,%y1)), operands);
4386 }
4387
4388 /* Now retrieve the condition code. */
4389
c572e5ba
JVA
4390 return output_fp_cc0_set (insn);
4391}
4392\f
4393/* Output opcodes to transfer the results of FP compare or test INSN
4394 from the FPU to the CPU flags. If TARGET_IEEE_FP, ensure that if the
4395 result of the compare or test is unordered, no comparison operator
4396 succeeds except NE. Return an output template, if any. */
4397
4398char *
4399output_fp_cc0_set (insn)
4400 rtx insn;
4401{
4402 rtx xops[3];
c572e5ba
JVA
4403 rtx next;
4404 enum rtx_code code;
4405
f64cecad 4406 xops[0] = gen_rtx_REG (HImode, 0);
c572e5ba
JVA
4407 output_asm_insn (AS1 (fnsts%W0,%0), xops);
4408
4409 if (! TARGET_IEEE_FP)
32b5b1aa
SC
4410 {
4411 if (!(cc_status.flags & CC_REVERSED))
4412 {
4413 next = next_cc0_user (insn);
79325812 4414
32b5b1aa
SC
4415 if (GET_CODE (next) == JUMP_INSN
4416 && GET_CODE (PATTERN (next)) == SET
4417 && SET_DEST (PATTERN (next)) == pc_rtx
4418 && GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
e9a25f70 4419 code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
32b5b1aa 4420 else if (GET_CODE (PATTERN (next)) == SET)
e9a25f70 4421 code = GET_CODE (SET_SRC (PATTERN (next)));
32b5b1aa 4422 else
e9a25f70
JL
4423 return "sahf";
4424
4425 if (code == GT || code == LT || code == EQ || code == NE
4426 || code == LE || code == GE)
4427 {
4428 /* We will test eax directly. */
32b5b1aa 4429 cc_status.flags |= CC_TEST_AX;
e9a25f70 4430 return "";
32b5b1aa
SC
4431 }
4432 }
e9a25f70 4433
32b5b1aa
SC
4434 return "sahf";
4435 }
2a2ab3f9 4436
c572e5ba 4437 next = next_cc0_user (insn);
dd9611dc
JVA
4438 if (next == NULL_RTX)
4439 abort ();
c572e5ba
JVA
4440
4441 if (GET_CODE (next) == JUMP_INSN
4442 && GET_CODE (PATTERN (next)) == SET
4443 && SET_DEST (PATTERN (next)) == pc_rtx
4444 && GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
e9a25f70 4445 code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
c572e5ba
JVA
4446 else if (GET_CODE (PATTERN (next)) == SET)
4447 {
fe25fea3
SC
4448 if (GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
4449 code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
e9a25f70
JL
4450 else
4451 code = GET_CODE (SET_SRC (PATTERN (next)));
c572e5ba 4452 }
e9a25f70 4453
4f74d15b
SC
4454 else if (GET_CODE (PATTERN (next)) == PARALLEL
4455 && GET_CODE (XVECEXP (PATTERN (next), 0, 0)) == SET)
4456 {
4457 if (GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0))) == IF_THEN_ELSE)
e9a25f70
JL
4458 code = GET_CODE (XEXP (SET_SRC (XVECEXP (PATTERN (next), 0, 0)), 0));
4459 else
4460 code = GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0)));
4f74d15b 4461 }
c572e5ba
JVA
4462 else
4463 abort ();
4464
f64cecad 4465 xops[0] = gen_rtx_REG (QImode, 0);
c572e5ba
JVA
4466
4467 switch (code)
4468 {
4469 case GT:
435defd1 4470 xops[1] = GEN_INT (0x45);
c572e5ba
JVA
4471 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4472 /* je label */
4473 break;
4474
4475 case LT:
435defd1
JVA
4476 xops[1] = GEN_INT (0x45);
4477 xops[2] = GEN_INT (0x01);
c572e5ba
JVA
4478 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4479 output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
4480 /* je label */
4481 break;
4482
4483 case GE:
435defd1 4484 xops[1] = GEN_INT (0x05);
c572e5ba
JVA
4485 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4486 /* je label */
4487 break;
4488
4489 case LE:
435defd1
JVA
4490 xops[1] = GEN_INT (0x45);
4491 xops[2] = GEN_INT (0x40);
c572e5ba
JVA
4492 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4493 output_asm_insn (AS1 (dec%B0,%h0), xops);
4494 output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
4495 /* jb label */
4496 break;
4497
4498 case EQ:
435defd1
JVA
4499 xops[1] = GEN_INT (0x45);
4500 xops[2] = GEN_INT (0x40);
c572e5ba
JVA
4501 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4502 output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
4503 /* je label */
4504 break;
4505
4506 case NE:
435defd1
JVA
4507 xops[1] = GEN_INT (0x44);
4508 xops[2] = GEN_INT (0x40);
c572e5ba
JVA
4509 output_asm_insn (AS2 (and%B0,%1,%h0), xops);
4510 output_asm_insn (AS2 (xor%B0,%2,%h0), xops);
4511 /* jne label */
4512 break;
4513
4514 case GTU:
4515 case LTU:
4516 case GEU:
4517 case LEU:
4518 default:
4519 abort ();
4520 }
e9a25f70
JL
4521
4522 return "";
2a2ab3f9 4523}
305f097e
JVA
4524\f
4525#define MAX_386_STACK_LOCALS 2
4526
4527static rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
4528
ecbc4695
RS
4529/* Define the structure for the machine field in struct function. */
4530struct machine_function
4531{
4532 rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
b94b5c16
JL
4533 rtx pic_label_rtx;
4534 char pic_label_name[256];
ecbc4695
RS
4535};
4536
4537/* Functions to save and restore i386_stack_locals.
4538 These will be called, via pointer variables,
4539 from push_function_context and pop_function_context. */
4540
4541void
4542save_386_machine_status (p)
4543 struct function *p;
4544{
b94b5c16
JL
4545 p->machine
4546 = (struct machine_function *) xmalloc (sizeof (struct machine_function));
dde866c6 4547 bcopy ((char *) i386_stack_locals, (char *) p->machine->i386_stack_locals,
ecbc4695 4548 sizeof i386_stack_locals);
b94b5c16
JL
4549 p->machine->pic_label_rtx = pic_label_rtx;
4550 bcopy (pic_label_name, p->machine->pic_label_name, 256);
ecbc4695
RS
4551}
4552
4553void
4554restore_386_machine_status (p)
4555 struct function *p;
4556{
dde866c6 4557 bcopy ((char *) p->machine->i386_stack_locals, (char *) i386_stack_locals,
ecbc4695 4558 sizeof i386_stack_locals);
b94b5c16
JL
4559 pic_label_rtx = p->machine->pic_label_rtx;
4560 bcopy (p->machine->pic_label_name, pic_label_name, 256);
ecbc4695 4561 free (p->machine);
b94b5c16 4562 p->machine = NULL;
ecbc4695
RS
4563}
4564
305f097e
JVA
4565/* Clear stack slot assignments remembered from previous functions.
4566 This is called from INIT_EXPANDERS once before RTL is emitted for each
ecbc4695 4567 function. */
305f097e
JVA
4568
4569void
4570clear_386_stack_locals ()
4571{
4572 enum machine_mode mode;
4573 int n;
4574
4575 for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE;
4576 mode = (enum machine_mode) ((int) mode + 1))
4577 for (n = 0; n < MAX_386_STACK_LOCALS; n++)
4578 i386_stack_locals[(int) mode][n] = NULL_RTX;
ecbc4695 4579
b94b5c16
JL
4580 pic_label_rtx = NULL_RTX;
4581 bzero (pic_label_name, 256);
ecbc4695
RS
4582 /* Arrange to save and restore i386_stack_locals around nested functions. */
4583 save_machine_status = save_386_machine_status;
4584 restore_machine_status = restore_386_machine_status;
305f097e
JVA
4585}
4586
4587/* Return a MEM corresponding to a stack slot with mode MODE.
4588 Allocate a new slot if necessary.
4589
4590 The RTL for a function can have several slots available: N is
4591 which slot to use. */
4592
4593rtx
4594assign_386_stack_local (mode, n)
4595 enum machine_mode mode;
4596 int n;
4597{
4598 if (n < 0 || n >= MAX_386_STACK_LOCALS)
4599 abort ();
4600
4601 if (i386_stack_locals[(int) mode][n] == NULL_RTX)
4602 i386_stack_locals[(int) mode][n]
4603 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
4604
4605 return i386_stack_locals[(int) mode][n];
4606}
32b5b1aa
SC
4607\f
4608int is_mul(op,mode)
4609 register rtx op;
bb5177ac 4610 enum machine_mode mode ATTRIBUTE_UNUSED;
32b5b1aa
SC
4611{
4612 return (GET_CODE (op) == MULT);
4613}
4614
4615int is_div(op,mode)
4616 register rtx op;
bb5177ac 4617 enum machine_mode mode ATTRIBUTE_UNUSED;
32b5b1aa
SC
4618{
4619 return (GET_CODE (op) == DIV);
4620}
32b5b1aa
SC
4621\f
4622#ifdef NOTYET
4623/* Create a new copy of an rtx.
4624 Recursively copies the operands of the rtx,
4625 except for those few rtx codes that are sharable.
4626 Doesn't share CONST */
4627
4628rtx
4629copy_all_rtx (orig)
4630 register rtx orig;
4631{
4632 register rtx copy;
4633 register int i, j;
4634 register RTX_CODE code;
4635 register char *format_ptr;
4636
4637 code = GET_CODE (orig);
4638
4639 switch (code)
4640 {
4641 case REG:
4642 case QUEUED:
4643 case CONST_INT:
4644 case CONST_DOUBLE:
4645 case SYMBOL_REF:
4646 case CODE_LABEL:
4647 case PC:
4648 case CC0:
4649 case SCRATCH:
4650 /* SCRATCH must be shared because they represent distinct values. */
4651 return orig;
4652
4653#if 0
4654 case CONST:
4655 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4656 a LABEL_REF, it isn't sharable. */
4657 if (GET_CODE (XEXP (orig, 0)) == PLUS
4658 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4659 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4660 return orig;
4661 break;
4662#endif
4663 /* A MEM with a constant address is not sharable. The problem is that
4664 the constant address may need to be reloaded. If the mem is shared,
4665 then reloading one copy of this mem will cause all copies to appear
4666 to have been reloaded. */
4667 }
4668
4669 copy = rtx_alloc (code);
4670 PUT_MODE (copy, GET_MODE (orig));
4671 copy->in_struct = orig->in_struct;
4672 copy->volatil = orig->volatil;
4673 copy->unchanging = orig->unchanging;
4674 copy->integrated = orig->integrated;
4675 /* intel1 */
4676 copy->is_spill_rtx = orig->is_spill_rtx;
79325812 4677
32b5b1aa
SC
4678 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4679
4680 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4681 {
4682 switch (*format_ptr++)
4683 {
4684 case 'e':
4685 XEXP (copy, i) = XEXP (orig, i);
4686 if (XEXP (orig, i) != NULL)
4687 XEXP (copy, i) = copy_rtx (XEXP (orig, i));
4688 break;
4689
4690 case '0':
4691 case 'u':
4692 XEXP (copy, i) = XEXP (orig, i);
4693 break;
4694
4695 case 'E':
4696 case 'V':
4697 XVEC (copy, i) = XVEC (orig, i);
4698 if (XVEC (orig, i) != NULL)
4699 {
4700 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4701 for (j = 0; j < XVECLEN (copy, i); j++)
4702 XVECEXP (copy, i, j) = copy_rtx (XVECEXP (orig, i, j));
4703 }
4704 break;
4705
4706 case 'w':
4707 XWINT (copy, i) = XWINT (orig, i);
4708 break;
4709
4710 case 'i':
4711 XINT (copy, i) = XINT (orig, i);
4712 break;
4713
4714 case 's':
4715 case 'S':
4716 XSTR (copy, i) = XSTR (orig, i);
4717 break;
4718
4719 default:
4720 abort ();
4721 }
4722 }
4723 return copy;
4724}
4725
4726\f
e9a25f70
JL
4727/* Try to rewrite a memory address to make it valid */
4728
79325812 4729void
32b5b1aa
SC
4730rewrite_address (mem_rtx)
4731 rtx mem_rtx;
4732{
4733 rtx index_rtx, base_rtx, offset_rtx, scale_rtx, ret_rtx;
4734 int scale = 1;
4735 int offset_adjust = 0;
4736 int was_only_offset = 0;
4737 rtx mem_addr = XEXP (mem_rtx, 0);
e9a25f70 4738 char *storage = oballoc (0);
32b5b1aa
SC
4739 int in_struct = 0;
4740 int is_spill_rtx = 0;
4741
4742 in_struct = MEM_IN_STRUCT_P (mem_rtx);
4743 is_spill_rtx = RTX_IS_SPILL_P (mem_rtx);
4744
e9a25f70
JL
4745 if (GET_CODE (mem_addr) == PLUS
4746 && GET_CODE (XEXP (mem_addr, 1)) == PLUS
4747 && GET_CODE (XEXP (XEXP (mem_addr, 1), 0)) == REG)
4748 {
4749 /* This part is utilized by the combiner. */
4750 ret_rtx
4751 = gen_rtx (PLUS, GET_MODE (mem_addr),
4752 gen_rtx (PLUS, GET_MODE (XEXP (mem_addr, 1)),
4753 XEXP (mem_addr, 0), XEXP (XEXP (mem_addr, 1), 0)),
4754 XEXP (XEXP (mem_addr, 1), 1));
4755
32b5b1aa
SC
4756 if (memory_address_p (GET_MODE (mem_rtx), ret_rtx))
4757 {
4758 XEXP (mem_rtx, 0) = ret_rtx;
4759 RTX_IS_SPILL_P (ret_rtx) = is_spill_rtx;
4760 return;
4761 }
e9a25f70 4762
32b5b1aa
SC
4763 obfree (storage);
4764 }
4765
79325812 4766 /* This part is utilized by loop.c.
e9a25f70
JL
4767 If the address contains PLUS (reg,const) and this pattern is invalid
4768 in this case - try to rewrite the address to make it valid. */
4769 storage = oballoc (0);
32b5b1aa 4770 index_rtx = base_rtx = offset_rtx = NULL;
e9a25f70
JL
4771
4772 /* Find the base index and offset elements of the memory address. */
32b5b1aa
SC
4773 if (GET_CODE (mem_addr) == PLUS)
4774 {
4775 if (GET_CODE (XEXP (mem_addr, 0)) == REG)
4776 {
4777 if (GET_CODE (XEXP (mem_addr, 1)) == REG)
e9a25f70 4778 base_rtx = XEXP (mem_addr, 1), index_rtx = XEXP (mem_addr, 0);
32b5b1aa 4779 else
e9a25f70 4780 base_rtx = XEXP (mem_addr, 0), offset_rtx = XEXP (mem_addr, 1);
32b5b1aa 4781 }
e9a25f70 4782
32b5b1aa
SC
4783 else if (GET_CODE (XEXP (mem_addr, 0)) == MULT)
4784 {
4785 index_rtx = XEXP (mem_addr, 0);
4786 if (GET_CODE (XEXP (mem_addr, 1)) == REG)
e9a25f70 4787 base_rtx = XEXP (mem_addr, 1);
32b5b1aa 4788 else
e9a25f70 4789 offset_rtx = XEXP (mem_addr, 1);
32b5b1aa 4790 }
e9a25f70 4791
32b5b1aa
SC
4792 else if (GET_CODE (XEXP (mem_addr, 0)) == PLUS)
4793 {
e9a25f70
JL
4794 if (GET_CODE (XEXP (XEXP (mem_addr, 0), 0)) == PLUS
4795 && GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0)) == MULT
4796 && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 0))
4797 == REG)
4798 && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 1))
4799 == CONST_INT)
4800 && (GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1))
4801 == CONST_INT)
4802 && GET_CODE (XEXP (XEXP (mem_addr, 0), 1)) == REG
4803 && GET_CODE (XEXP (mem_addr, 1)) == SYMBOL_REF)
32b5b1aa
SC
4804 {
4805 index_rtx = XEXP (XEXP (XEXP (mem_addr, 0), 0), 0);
4806 offset_rtx = XEXP (mem_addr, 1);
4807 base_rtx = XEXP (XEXP (mem_addr, 0), 1);
4808 offset_adjust = INTVAL (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1));
4809 }
4810 else
4811 {
4812 offset_rtx = XEXP (mem_addr, 1);
4813 index_rtx = XEXP (XEXP (mem_addr, 0), 0);
4814 base_rtx = XEXP (XEXP (mem_addr, 0), 1);
4815 }
4816 }
e9a25f70 4817
32b5b1aa
SC
4818 else if (GET_CODE (XEXP (mem_addr, 0)) == CONST_INT)
4819 {
4820 was_only_offset = 1;
4821 index_rtx = NULL;
4822 base_rtx = NULL;
4823 offset_rtx = XEXP (mem_addr, 1);
4824 offset_adjust = INTVAL (XEXP (mem_addr, 0));
4825 if (offset_adjust == 0)
4826 {
4827 XEXP (mem_rtx, 0) = offset_rtx;
4828 RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
4829 return;
4830 }
4831 }
4832 else
4833 {
4834 obfree (storage);
4835 return;
4836 }
4837 }
4838 else if (GET_CODE (mem_addr) == MULT)
e9a25f70 4839 index_rtx = mem_addr;
32b5b1aa
SC
4840 else
4841 {
4842 obfree (storage);
4843 return;
4844 }
e9a25f70
JL
4845
4846 if (index_rtx != 0 && GET_CODE (index_rtx) == MULT)
32b5b1aa
SC
4847 {
4848 if (GET_CODE (XEXP (index_rtx, 1)) != CONST_INT)
4849 {
4850 obfree (storage);
4851 return;
4852 }
e9a25f70 4853
32b5b1aa
SC
4854 scale_rtx = XEXP (index_rtx, 1);
4855 scale = INTVAL (scale_rtx);
4856 index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
4857 }
e9a25f70
JL
4858
4859 /* Now find which of the elements are invalid and try to fix them. */
32b5b1aa
SC
4860 if (index_rtx && GET_CODE (index_rtx) == CONST_INT && base_rtx == NULL)
4861 {
4862 offset_adjust = INTVAL (index_rtx) * scale;
e9a25f70
JL
4863
4864 if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
4865 offset_rtx = plus_constant (offset_rtx, offset_adjust);
4866 else if (offset_rtx == 0)
4867 offset_rtx = const0_rtx;
4868
32b5b1aa
SC
4869 RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
4870 XEXP (mem_rtx, 0) = offset_rtx;
4871 return;
4872 }
e9a25f70
JL
4873
4874 if (base_rtx && GET_CODE (base_rtx) == PLUS
4875 && GET_CODE (XEXP (base_rtx, 0)) == REG
4876 && GET_CODE (XEXP (base_rtx, 1)) == CONST_INT)
32b5b1aa
SC
4877 {
4878 offset_adjust += INTVAL (XEXP (base_rtx, 1));
4879 base_rtx = copy_all_rtx (XEXP (base_rtx, 0));
4880 }
e9a25f70 4881
32b5b1aa
SC
4882 else if (base_rtx && GET_CODE (base_rtx) == CONST_INT)
4883 {
4884 offset_adjust += INTVAL (base_rtx);
4885 base_rtx = NULL;
4886 }
e9a25f70
JL
4887
4888 if (index_rtx && GET_CODE (index_rtx) == PLUS
4889 && GET_CODE (XEXP (index_rtx, 0)) == REG
4890 && GET_CODE (XEXP (index_rtx, 1)) == CONST_INT)
32b5b1aa
SC
4891 {
4892 offset_adjust += INTVAL (XEXP (index_rtx, 1)) * scale;
4893 index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
4894 }
e9a25f70 4895
32b5b1aa
SC
4896 if (index_rtx)
4897 {
e9a25f70
JL
4898 if (! LEGITIMATE_INDEX_P (index_rtx)
4899 && ! (index_rtx == stack_pointer_rtx && scale == 1
4900 && base_rtx == NULL))
32b5b1aa
SC
4901 {
4902 obfree (storage);
4903 return;
4904 }
4905 }
e9a25f70 4906
32b5b1aa
SC
4907 if (base_rtx)
4908 {
e9a25f70 4909 if (! LEGITIMATE_INDEX_P (base_rtx) && GET_CODE (base_rtx) != REG)
32b5b1aa
SC
4910 {
4911 obfree (storage);
4912 return;
4913 }
4914 }
e9a25f70 4915
32b5b1aa
SC
4916 if (offset_adjust != 0)
4917 {
e9a25f70
JL
4918 if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
4919 offset_rtx = plus_constant (offset_rtx, offset_adjust);
32b5b1aa 4920 else
e9a25f70
JL
4921 offset_rtx = const0_rtx;
4922
32b5b1aa
SC
4923 if (index_rtx)
4924 {
4925 if (base_rtx)
4926 {
4927 if (scale != 1)
4928 {
e9a25f70
JL
4929 ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx),
4930 gen_rtx (MULT, GET_MODE (index_rtx),
4931 index_rtx, scale_rtx),
4932 base_rtx);
4933
4934 if (GET_CODE (offset_rtx) != CONST_INT
4935 || INTVAL (offset_rtx) != 0)
4936 ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
4937 ret_rtx, offset_rtx);
32b5b1aa
SC
4938 }
4939 else
4940 {
e9a25f70
JL
4941 ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
4942 index_rtx, base_rtx);
4943
4944 if (GET_CODE (offset_rtx) != CONST_INT
4945 || INTVAL (offset_rtx) != 0)
4946 ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
4947 ret_rtx, offset_rtx);
32b5b1aa
SC
4948 }
4949 }
4950 else
4951 {
4952 if (scale != 1)
4953 {
e9a25f70
JL
4954 ret_rtx = gen_rtx (MULT, GET_MODE (index_rtx),
4955 index_rtx, scale_rtx);
4956
4957 if (GET_CODE (offset_rtx) != CONST_INT
4958 || INTVAL (offset_rtx) != 0)
4959 ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
4960 ret_rtx, offset_rtx);
32b5b1aa
SC
4961 }
4962 else
4963 {
e9a25f70
JL
4964 if (GET_CODE (offset_rtx) == CONST_INT
4965 && INTVAL (offset_rtx) == 0)
4966 ret_rtx = index_rtx;
32b5b1aa 4967 else
e9a25f70
JL
4968 ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
4969 index_rtx, offset_rtx);
32b5b1aa
SC
4970 }
4971 }
4972 }
4973 else
4974 {
4975 if (base_rtx)
4976 {
e9a25f70
JL
4977 if (GET_CODE (offset_rtx) == CONST_INT
4978 && INTVAL (offset_rtx) == 0)
4979 ret_rtx = base_rtx;
32b5b1aa 4980 else
e9a25f70
JL
4981 ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx), base_rtx,
4982 offset_rtx);
32b5b1aa
SC
4983 }
4984 else if (was_only_offset)
e9a25f70 4985 ret_rtx = offset_rtx;
32b5b1aa
SC
4986 else
4987 {
4988 obfree (storage);
4989 return;
4990 }
4991 }
e9a25f70 4992
32b5b1aa
SC
4993 XEXP (mem_rtx, 0) = ret_rtx;
4994 RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
4995 return;
4996 }
4997 else
4998 {
4999 obfree (storage);
5000 return;
5001 }
5002}
5003#endif /* NOTYET */
32b5b1aa 5004\f
e9a25f70
JL
5005/* Return 1 if the first insn to set cc before INSN also sets the register
5006 REG_RTX; otherwise return 0. */
32b5b1aa
SC
5007int
5008last_to_set_cc (reg_rtx, insn)
5009 rtx reg_rtx, insn;
5010{
5011 rtx prev_insn = PREV_INSN (insn);
5012
5013 while (prev_insn)
5014 {
5015 if (GET_CODE (prev_insn) == NOTE)
5016 ;
5017
5018 else if (GET_CODE (prev_insn) == INSN)
5019 {
5020 if (GET_CODE (PATTERN (prev_insn)) != SET)
5021 return (0);
5022
5023 if (rtx_equal_p (SET_DEST (PATTERN (prev_insn)), reg_rtx))
5024 {
5025 if (sets_condition_code (SET_SRC (PATTERN (prev_insn))))
5026 return (1);
5027
5028 return (0);
5029 }
5030
e9a25f70 5031 else if (! doesnt_set_condition_code (SET_SRC (PATTERN (prev_insn))))
32b5b1aa
SC
5032 return (0);
5033 }
5034
5035 else
5036 return (0);
5037
5038 prev_insn = PREV_INSN (prev_insn);
5039 }
5040
5041 return (0);
5042}
32b5b1aa
SC
5043\f
5044int
5045doesnt_set_condition_code (pat)
5046 rtx pat;
5047{
5048 switch (GET_CODE (pat))
5049 {
5050 case MEM:
5051 case REG:
e9a25f70 5052 return 1;
32b5b1aa
SC
5053
5054 default:
e9a25f70 5055 return 0;
32b5b1aa
SC
5056
5057 }
5058}
32b5b1aa
SC
5059\f
5060int
5061sets_condition_code (pat)
5062 rtx pat;
5063{
5064 switch (GET_CODE (pat))
5065 {
5066 case PLUS:
5067 case MINUS:
5068 case AND:
5069 case IOR:
5070 case XOR:
5071 case NOT:
5072 case NEG:
5073 case MULT:
5074 case DIV:
5075 case MOD:
5076 case UDIV:
5077 case UMOD:
e9a25f70 5078 return 1;
32b5b1aa
SC
5079
5080 default:
5081 return (0);
32b5b1aa
SC
5082 }
5083}
32b5b1aa
SC
5084\f
5085int
5086str_immediate_operand (op, mode)
5087 register rtx op;
bb5177ac 5088 enum machine_mode mode ATTRIBUTE_UNUSED;
32b5b1aa
SC
5089{
5090 if (GET_CODE (op) == CONST_INT && INTVAL (op) <= 32 && INTVAL (op) >= 0)
e9a25f70 5091 return 1;
32b5b1aa 5092
e9a25f70
JL
5093 return 0;
5094}
32b5b1aa
SC
5095\f
5096int
5097is_fp_insn (insn)
5098 rtx insn;
5099{
5100 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
5101 && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
5102 || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
5103 || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode))
e9a25f70 5104 return 1;
32b5b1aa 5105
e9a25f70 5106 return 0;
32b5b1aa
SC
5107}
5108
e9a25f70
JL
5109/* Return 1 if the mode of the SET_DEST of insn is floating point
5110 and it is not an fld or a move from memory to memory.
5111 Otherwise return 0 */
5112
32b5b1aa
SC
5113int
5114is_fp_dest (insn)
5115 rtx insn;
5116{
5117 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
5118 && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
5119 || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
5120 || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
5121 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
5122 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_FLOAT_REG
48d4389d 5123 && GET_CODE (SET_SRC (PATTERN (insn))) != MEM)
e9a25f70 5124 return 1;
32b5b1aa 5125
e9a25f70 5126 return 0;
32b5b1aa
SC
5127}
5128
e9a25f70
JL
5129/* Return 1 if the mode of the SET_DEST of INSN is floating point and is
5130 memory and the source is a register. */
5131
32b5b1aa
SC
5132int
5133is_fp_store (insn)
5134 rtx insn;
5135{
5136 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
5137 && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
5138 || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
5139 || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
5140 && GET_CODE (SET_DEST (PATTERN (insn))) == MEM
5141 && GET_CODE (SET_SRC (PATTERN (insn))) == REG)
e9a25f70 5142 return 1;
32b5b1aa 5143
e9a25f70 5144 return 0;
32b5b1aa 5145}
32b5b1aa 5146\f
e9a25f70
JL
5147/* Return 1 if DEP_INSN sets a register which INSN uses as a base
5148 or index to reference memory.
5149 otherwise return 0 */
32b5b1aa
SC
5150
5151int
5152agi_dependent (insn, dep_insn)
5153 rtx insn, dep_insn;
5154{
5155 if (GET_CODE (dep_insn) == INSN
5156 && GET_CODE (PATTERN (dep_insn)) == SET
5157 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG)
e9a25f70 5158 return reg_mentioned_in_mem (SET_DEST (PATTERN (dep_insn)), insn);
32b5b1aa
SC
5159
5160 if (GET_CODE (dep_insn) == INSN && GET_CODE (PATTERN (dep_insn)) == SET
5161 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == MEM
5162 && push_operand (SET_DEST (PATTERN (dep_insn)),
5163 GET_MODE (SET_DEST (PATTERN (dep_insn)))))
e9a25f70 5164 return reg_mentioned_in_mem (stack_pointer_rtx, insn);
32b5b1aa 5165
e9a25f70
JL
5166 return 0;
5167}
32b5b1aa 5168\f
e9a25f70
JL
5169/* Return 1 if reg is used in rtl as a base or index for a memory ref
5170 otherwise return 0. */
32b5b1aa
SC
5171
5172int
5173reg_mentioned_in_mem (reg, rtl)
5174 rtx reg, rtl;
5175{
5176 register char *fmt;
e9a25f70 5177 register int i, j;
32b5b1aa
SC
5178 register enum rtx_code code;
5179
5180 if (rtl == NULL)
e9a25f70 5181 return 0;
32b5b1aa
SC
5182
5183 code = GET_CODE (rtl);
5184
5185 switch (code)
5186 {
5187 case HIGH:
5188 case CONST_INT:
5189 case CONST:
5190 case CONST_DOUBLE:
5191 case SYMBOL_REF:
5192 case LABEL_REF:
5193 case PC:
5194 case CC0:
5195 case SUBREG:
e9a25f70 5196 return 0;
00c79232 5197 default:
53949fac 5198 break;
32b5b1aa
SC
5199 }
5200
5201 if (code == MEM && reg_mentioned_p (reg, rtl))
e9a25f70 5202 return 1;
32b5b1aa
SC
5203
5204 fmt = GET_RTX_FORMAT (code);
5205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5206 {
5207 if (fmt[i] == 'E')
c7271385
JL
5208 {
5209 for (j = XVECLEN (rtl, i) - 1; j >= 0; j--)
5210 if (reg_mentioned_in_mem (reg, XVECEXP (rtl, i, j)))
5211 return 1;
5212 }
32b5b1aa
SC
5213
5214 else if (fmt[i] == 'e' && reg_mentioned_in_mem (reg, XEXP (rtl, i)))
5215 return 1;
5216 }
5217
e9a25f70 5218 return 0;
32b5b1aa 5219}
3f803cd9 5220\f
956d6950 5221/* Output the appropriate insns for doing strlen if not just doing repnz; scasb
3f803cd9
SC
5222
5223 operands[0] = result, initialized with the startaddress
5224 operands[1] = alignment of the address.
5225 operands[2] = scratch register, initialized with the startaddress when
5226 not aligned, otherwise undefined
5227
5228 This is just the body. It needs the initialisations mentioned above and
5229 some address computing at the end. These things are done in i386.md. */
5230
5231char *
5232output_strlen_unroll (operands)
5233 rtx operands[];
5234{
5235 rtx xops[18];
5236
5237 xops[0] = operands[0]; /* Result */
5238 /* operands[1]; * Alignment */
5239 xops[1] = operands[2]; /* Scratch */
5240 xops[2] = GEN_INT (0);
5241 xops[3] = GEN_INT (2);
5242 xops[4] = GEN_INT (3);
5243 xops[5] = GEN_INT (4);
5244 /* xops[6] = gen_label_rtx (); * label when aligned to 3-byte */
5245 /* xops[7] = gen_label_rtx (); * label when aligned to 2-byte */
5246 xops[8] = gen_label_rtx (); /* label of main loop */
e9a25f70
JL
5247
5248 if (TARGET_USE_Q_REG && QI_REG_P (xops[1]))
3f803cd9 5249 xops[9] = gen_label_rtx (); /* pentium optimisation */
e9a25f70 5250
3f803cd9
SC
5251 xops[10] = gen_label_rtx (); /* end label 2 */
5252 xops[11] = gen_label_rtx (); /* end label 1 */
5253 xops[12] = gen_label_rtx (); /* end label */
5254 /* xops[13] * Temporary used */
5255 xops[14] = GEN_INT (0xff);
5256 xops[15] = GEN_INT (0xff00);
5257 xops[16] = GEN_INT (0xff0000);
5258 xops[17] = GEN_INT (0xff000000);
5259
e9a25f70 5260 /* Loop to check 1..3 bytes for null to get an aligned pointer. */
3f803cd9 5261
e9a25f70 5262 /* Is there a known alignment and is it less than 4? */
3f803cd9
SC
5263 if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) < 4)
5264 {
e9a25f70 5265 /* Is there a known alignment and is it not 2? */
3f803cd9
SC
5266 if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
5267 {
e9a25f70
JL
5268 xops[6] = gen_label_rtx (); /* Label when aligned to 3-byte */
5269 xops[7] = gen_label_rtx (); /* Label when aligned to 2-byte */
3f803cd9 5270
e9a25f70
JL
5271 /* Leave just the 3 lower bits.
5272 If this is a q-register, then the high part is used later
5273 therefore use andl rather than andb. */
3f803cd9 5274 output_asm_insn (AS2 (and%L1,%4,%1), xops);
e9a25f70 5275
956d6950 5276 /* Is aligned to 4-byte address when zero */
3f803cd9 5277 output_asm_insn (AS1 (je,%l8), xops);
e9a25f70
JL
5278
5279 /* Side-effect even Parity when %eax == 3 */
3f803cd9
SC
5280 output_asm_insn (AS1 (jp,%6), xops);
5281
e9a25f70 5282 /* Is it aligned to 2 bytes ? */
3f803cd9
SC
5283 if (QI_REG_P (xops[1]))
5284 output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
5285 else
5286 output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
e9a25f70 5287
3f803cd9
SC
5288 output_asm_insn (AS1 (je,%7), xops);
5289 }
5290 else
5291 {
e9a25f70
JL
5292 /* Since the alignment is 2, we have to check 2 or 0 bytes;
5293 check if is aligned to 4 - byte. */
3f803cd9 5294 output_asm_insn (AS2 (and%L1,%3,%1), xops);
e9a25f70 5295
956d6950 5296 /* Is aligned to 4-byte address when zero */
3f803cd9
SC
5297 output_asm_insn (AS1 (je,%l8), xops);
5298 }
5299
f64cecad 5300 xops[13] = gen_rtx_MEM (QImode, xops[0]);
e9a25f70
JL
5301
5302 /* Now compare the bytes; compare with the high part of a q-reg
5303 gives shorter code. */
3f803cd9
SC
5304 if (QI_REG_P (xops[1]))
5305 {
e9a25f70 5306 /* Compare the first n unaligned byte on a byte per byte basis. */
3f803cd9 5307 output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
e9a25f70
JL
5308
5309 /* When zero we reached the end. */
3f803cd9 5310 output_asm_insn (AS1 (je,%l12), xops);
e9a25f70
JL
5311
5312 /* Increment the address. */
3f803cd9
SC
5313 output_asm_insn (AS1 (inc%L0,%0), xops);
5314
e9a25f70 5315 /* Not needed with an alignment of 2 */
3f803cd9
SC
5316 if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
5317 {
e9a25f70
JL
5318 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
5319 CODE_LABEL_NUMBER (xops[7]));
3f803cd9
SC
5320 output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
5321 output_asm_insn (AS1 (je,%l12), xops);
5322 output_asm_insn (AS1 (inc%L0,%0), xops);
5323
e9a25f70
JL
5324 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
5325 CODE_LABEL_NUMBER (xops[6]));
3f803cd9 5326 }
e9a25f70 5327
3f803cd9
SC
5328 output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
5329 }
5330 else
5331 {
5332 output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
5333 output_asm_insn (AS1 (je,%l12), xops);
5334 output_asm_insn (AS1 (inc%L0,%0), xops);
5335
e9a25f70
JL
5336 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
5337 CODE_LABEL_NUMBER (xops[7]));
3f803cd9
SC
5338 output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
5339 output_asm_insn (AS1 (je,%l12), xops);
5340 output_asm_insn (AS1 (inc%L0,%0), xops);
5341
e9a25f70
JL
5342 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
5343 CODE_LABEL_NUMBER (xops[6]));
3f803cd9
SC
5344 output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
5345 }
e9a25f70 5346
3f803cd9
SC
5347 output_asm_insn (AS1 (je,%l12), xops);
5348 output_asm_insn (AS1 (inc%L0,%0), xops);
5349 }
5350
e9a25f70
JL
5351 /* Generate loop to check 4 bytes at a time. It is not a good idea to
5352 align this loop. It gives only huge programs, but does not help to
5353 speed up. */
3f803cd9
SC
5354 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[8]));
5355
f64cecad 5356 xops[13] = gen_rtx_MEM (SImode, xops[0]);
3f803cd9
SC
5357 output_asm_insn (AS2 (mov%L1,%13,%1), xops);
5358
5359 if (QI_REG_P (xops[1]))
5360 {
1853aadd
RK
5361 /* On i586 it is faster to combine the hi- and lo- part as
5362 a kind of lookahead. If anding both yields zero, then one
5363 of both *could* be zero, otherwise none of both is zero;
5364 this saves one instruction, on i486 this is slower
5365 tested with P-90, i486DX2-66, AMD486DX2-66 */
e9a25f70 5366 if (TARGET_PENTIUM)
3f803cd9
SC
5367 {
5368 output_asm_insn (AS2 (test%B1,%h1,%b1), xops);
5369 output_asm_insn (AS1 (jne,%l9), xops);
5370 }
5371
e9a25f70 5372 /* Check first byte. */
3f803cd9
SC
5373 output_asm_insn (AS2 (test%B1,%b1,%b1), xops);
5374 output_asm_insn (AS1 (je,%l12), xops);
5375
e9a25f70 5376 /* Check second byte. */
3f803cd9
SC
5377 output_asm_insn (AS2 (test%B1,%h1,%h1), xops);
5378 output_asm_insn (AS1 (je,%l11), xops);
5379
e9a25f70
JL
5380 if (TARGET_PENTIUM)
5381 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
5382 CODE_LABEL_NUMBER (xops[9]));
3f803cd9 5383 }
e9a25f70 5384
3f803cd9
SC
5385 else
5386 {
e9a25f70 5387 /* Check first byte. */
3f803cd9
SC
5388 output_asm_insn (AS2 (test%L1,%14,%1), xops);
5389 output_asm_insn (AS1 (je,%l12), xops);
5390
e9a25f70 5391 /* Check second byte. */
3f803cd9
SC
5392 output_asm_insn (AS2 (test%L1,%15,%1), xops);
5393 output_asm_insn (AS1 (je,%l11), xops);
5394 }
5395
e9a25f70 5396 /* Check third byte. */
3f803cd9
SC
5397 output_asm_insn (AS2 (test%L1,%16,%1), xops);
5398 output_asm_insn (AS1 (je,%l10), xops);
79325812 5399
e9a25f70 5400 /* Check fourth byte and increment address. */
3f803cd9
SC
5401 output_asm_insn (AS2 (add%L0,%5,%0), xops);
5402 output_asm_insn (AS2 (test%L1,%17,%1), xops);
5403 output_asm_insn (AS1 (jne,%l8), xops);
5404
e9a25f70 5405 /* Now generate fixups when the compare stops within a 4-byte word. */
3f803cd9
SC
5406 output_asm_insn (AS2 (sub%L0,%4,%0), xops);
5407
5408 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[10]));
5409 output_asm_insn (AS1 (inc%L0,%0), xops);
5410
5411 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[11]));
5412 output_asm_insn (AS1 (inc%L0,%0), xops);
5413
5414 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[12]));
5415
e9a25f70 5416 return "";
3f803cd9 5417}
b657fc39
L
5418
5419char *
5420output_fp_conditional_move (which_alternative, operands)
5421 int which_alternative;
5422 rtx operands[];
5423{
b657fc39
L
5424 switch (which_alternative)
5425 {
5426 case 0:
5427 /* r <- cond ? arg : r */
5428 output_asm_insn (AS2 (fcmov%F1,%2,%0), operands);
5429 break;
79325812 5430
b657fc39
L
5431 case 1:
5432 /* r <- cond ? r : arg */
5433 output_asm_insn (AS2 (fcmov%f1,%3,%0), operands);
5434 break;
5435
5436 case 2:
5437 /* r <- cond ? r : arg */
5438 output_asm_insn (AS2 (fcmov%F1,%2,%0), operands);
5439 output_asm_insn (AS2 (fcmov%f1,%3,%0), operands);
5440 break;
5441
5442 default:
5443 abort ();
5444 }
5445
5446 return "";
5447}
5448
5449char *
5450output_int_conditional_move (which_alternative, operands)
5451 int which_alternative;
5452 rtx operands[];
5453{
5454 int code = GET_CODE (operands[1]);
5455 enum machine_mode mode;
5456 rtx xops[4];
5457
5458 /* This is very tricky. We have to do it right. For a code segement
5459 like:
5460
5461 int foo, bar;
5462 ....
5463 foo = foo - x;
5464 if (foo >= 0)
5465 bar = y;
5466
5467 final_scan_insn () may delete the insn which sets CC. We have to
5468 tell final_scan_insn () if it should be reinserted. When CODE is
5469 GT or LE, we have to check the CC_NO_OVERFLOW bit and return
5470 NULL_PTR to tell final to reinsert the test insn because the
5471 conditional move cannot be handled properly without it. */
5472 if ((code == GT || code == LE)
5473 && (cc_prev_status.flags & CC_NO_OVERFLOW))
5474 return NULL_PTR;
5475
5476 mode = GET_MODE (operands [0]);
5477 if (mode == DImode)
5478 {
5479 xops [0] = gen_rtx_SUBREG (SImode, operands [0], 1);
5480 xops [1] = operands [1];
5481 xops [2] = gen_rtx_SUBREG (SImode, operands [2], 1);
5482 xops [3] = gen_rtx_SUBREG (SImode, operands [3], 1);
5483 }
5484
5485 switch (which_alternative)
5486 {
5487 case 0:
5488 /* r <- cond ? arg : r */
5489 output_asm_insn (AS2 (cmov%C1,%2,%0), operands);
5490 if (mode == DImode)
5491 output_asm_insn (AS2 (cmov%C1,%2,%0), xops);
5492 break;
5493
5494 case 1:
5495 /* r <- cond ? r : arg */
5496 output_asm_insn (AS2 (cmov%c1,%3,%0), operands);
5497 if (mode == DImode)
5498 output_asm_insn (AS2 (cmov%c1,%3,%0), xops);
5499 break;
5500
5501 case 2:
5502 /* rm <- cond ? arg1 : arg2 */
5503 output_asm_insn (AS2 (cmov%C1,%2,%0), operands);
5504 output_asm_insn (AS2 (cmov%c1,%3,%0), operands);
5505 if (mode == DImode)
5506 {
5507 output_asm_insn (AS2 (cmov%C1,%2,%0), xops);
5508 output_asm_insn (AS2 (cmov%c1,%3,%0), xops);
5509 }
5510 break;
5511
5512 default:
5513 abort ();
5514 }
5515
5516 return "";
5517}
a269a03c
JC
5518
5519int
5520x86_adjust_cost (insn, link, dep_insn, cost)
5521 rtx insn, link, dep_insn;
5522 int cost;
5523{
5524 rtx next_inst;
5525
5526 if (GET_CODE (dep_insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
5527 return 0;
5528
5529 if (GET_CODE (dep_insn) == INSN
5530 && GET_CODE (PATTERN (dep_insn)) == SET
5531 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG
5532 && GET_CODE (insn) == INSN
5533 && GET_CODE (PATTERN (insn)) == SET
5534 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)),
5535 SET_SRC (PATTERN (insn))))
5536 return 0; /* ??? */
5537
5538
5539 switch (ix86_cpu)
5540 {
5541 case PROCESSOR_PENTIUM:
5542 if (cost != 0 && is_fp_insn (insn) && is_fp_insn (dep_insn)
5543 && !is_fp_dest (dep_insn))
5544 return 0;
5545
5546 if (agi_dependent (insn, dep_insn))
5547 return 3;
5548
5549 if (GET_CODE (insn) == INSN
5550 && GET_CODE (PATTERN (insn)) == SET
5551 && SET_DEST (PATTERN (insn)) == cc0_rtx
5552 && (next_inst = next_nonnote_insn (insn))
5553 && GET_CODE (next_inst) == JUMP_INSN)
5554 /* compare probably paired with jump */
5555 return 0;
5556 break;
5557
5558 case PROCESSOR_K6:
5559 default:
5560 if (!is_fp_dest (dep_insn))
5561 {
5562 if(!agi_dependent (insn, dep_insn))
5563 return 0;
5564 if (TARGET_486)
5565 return 2;
5566 }
5567 else
5568 if (is_fp_store (insn) && is_fp_insn (dep_insn)
5569 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn))
5570 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))
5571 && (GET_CODE (NEXT_INSN (insn)) == INSN)
5572 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN)
5573 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE)
5574 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))))
5575 == NOTE_INSN_LOOP_END))
5576 return 3;
5577 break;
5578 }
5579
5580 return cost;
5581}
This page took 1.189905 seconds and 5 git commands to generate.