]>
Commit | Line | Data |
---|---|---|
6434da25 | 1 | /* Definitions of target machine for GNU compiler. Alliant FX version. |
8b109b37 | 2 | Copyright (C) 1989, 1993, 1994, 1995 Free Software Foundation, Inc. |
6434da25 RS |
3 | Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) |
4 | and Joe Weening (weening@gang-of-four.stanford.edu). | |
5 | ||
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
20 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | ||
23 | /* This file is based on m68k.h, simplified by removing support for | |
24 | the Sun FPA and other things not applicable to the Alliant. Some | |
25 | remnants of these features remain. */ | |
26 | ||
27 | /* Names to predefine in the preprocessor for this target machine. */ | |
28 | ||
65c42379 | 29 | #define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)" |
6434da25 RS |
30 | |
31 | /* Print subsidiary information on the compiler version in use. */ | |
32 | ||
33 | #define TARGET_VERSION fprintf (stderr, " (Alliant)"); | |
34 | ||
35 | /* Run-time compilation parameters selecting different hardware | |
36 | subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs | |
37 | are no longer supported.) The Alliant CE is 68020-compatible, and | |
38 | also has floating point, vector and concurrency instructions. | |
39 | ||
40 | Although the IP doesn't have floating point, it emulates it in the | |
41 | operating system. Using this generally is faster than running code | |
42 | compiled with -msoft-float, because the soft-float code still uses | |
43 | (simulated) FP registers and ends up emulating several fmove{s,d} | |
44 | instructions per call. So I don't recommend using soft-float for | |
45 | any Alliant code. -- JSW | |
46 | */ | |
47 | ||
48 | extern int target_flags; | |
49 | ||
50 | /* Macros used in the machine description to test the flags. */ | |
51 | ||
52 | /* Compile for a 68020 (not a 68000 or 68010). */ | |
53 | #define TARGET_68020 (target_flags & 1) | |
54 | /* Compile CE insns for floating point (not library calls). */ | |
55 | #define TARGET_CE (target_flags & 2) | |
56 | /* Compile using 68020 bitfield insns. */ | |
57 | #define TARGET_BITFIELD (target_flags & 4) | |
58 | /* Compile with 16-bit `int'. */ | |
59 | #define TARGET_SHORT (target_flags & 040) | |
60 | ||
61 | /* Default 3 means compile 68020 and CE instructions. We don't use | |
62 | bitfield instructions because there appears to be a bug in the | |
63 | implementation of bfins on the CE. */ | |
64 | ||
65 | #define TARGET_DEFAULT 3 | |
66 | ||
67 | /* Define __HAVE_CE__ in preprocessor according to the -m flags. | |
68 | This will control the use of inline FP insns in certain macros. | |
69 | Also inform the program which CPU this is for. */ | |
70 | ||
71 | #if TARGET_DEFAULT & 02 | |
72 | ||
73 | /* -mce is the default */ | |
74 | #define CPP_SPEC \ | |
75 | "%{!msoft-float:-D__HAVE_CE__ }\ | |
76 | %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" | |
77 | ||
78 | #else | |
79 | ||
80 | /* -msoft-float is the default */ | |
81 | #define CPP_SPEC \ | |
82 | "%{mce:-D__HAVE_CE__ }\ | |
83 | %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" | |
84 | ||
85 | #endif | |
86 | ||
87 | /* Link with libg.a when debugging, for dbx's sake. */ | |
88 | ||
89 | #define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} " | |
90 | ||
91 | /* Make the linker remove temporary labels, since the Alliant assembler | |
92 | doesn't. */ | |
93 | ||
94 | #define LINK_SPEC "-X" | |
95 | ||
96 | /* Every structure or union's size must be a multiple of 2 bytes. */ | |
97 | ||
98 | #define STRUCTURE_SIZE_BOUNDARY 16 | |
99 | ||
100 | /* This is BSD, so it wants DBX format. */ | |
101 | ||
102 | #define DBX_DEBUGGING_INFO | |
103 | ||
104 | /* Macro to define tables used to set the flags. | |
105 | This is a list in braces of pairs in braces, | |
106 | each pair being { "NAME", VALUE } | |
107 | where VALUE is the bits to set or minus the bits to clear. | |
108 | An empty string NAME is used to identify the default VALUE. */ | |
109 | ||
110 | #define TARGET_SWITCHES \ | |
111 | { { "68020", 5}, \ | |
112 | { "c68020", 5}, \ | |
113 | { "bitfield", 4}, \ | |
114 | { "68000", -7}, \ | |
115 | { "c68000", -7}, \ | |
116 | { "soft-float", -2}, \ | |
117 | { "nobitfield", -4}, \ | |
118 | { "short", 040}, \ | |
119 | { "noshort", -040}, \ | |
120 | { "", TARGET_DEFAULT}} | |
121 | \f | |
122 | /* target machine storage layout */ | |
123 | ||
124 | /* Define this if most significant bit is lowest numbered | |
125 | in instructions that operate on numbered bit-fields. | |
126 | This is true for 68020 insns such as bfins and bfexts. | |
127 | We make it true always by avoiding using the single-bit insns | |
128 | except in special cases with constant bit numbers. */ | |
129 | #define BITS_BIG_ENDIAN 1 | |
130 | ||
131 | /* Define this if most significant byte of a word is the lowest numbered. */ | |
132 | /* That is true on the 68000. */ | |
133 | #define BYTES_BIG_ENDIAN 1 | |
134 | ||
135 | /* Define this if most significant word of a multiword number is the lowest | |
136 | numbered. */ | |
137 | /* For 68000 we can decide arbitrarily | |
138 | since there are no machine instructions for them. */ | |
139 | #define WORDS_BIG_ENDIAN 0 | |
140 | ||
b4ac57ab | 141 | /* number of bits in an addressable storage unit */ |
6434da25 RS |
142 | #define BITS_PER_UNIT 8 |
143 | ||
144 | /* Width in bits of a "word", which is the contents of a machine register. | |
145 | Note that this is not necessarily the width of data type `int'; | |
146 | if using 16-bit ints on a 68000, this would still be 32. | |
147 | But on a machine with 16-bit registers, this would be 16. */ | |
148 | #define BITS_PER_WORD 32 | |
149 | ||
150 | /* Width of a word, in units (bytes). */ | |
151 | #define UNITS_PER_WORD 4 | |
152 | ||
153 | /* Width in bits of a pointer. | |
154 | See also the macro `Pmode' defined below. */ | |
155 | #define POINTER_SIZE 32 | |
156 | ||
157 | /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
158 | #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32) | |
159 | ||
160 | /* Boundary (in *bits*) on which stack pointer should be aligned. */ | |
161 | #define STACK_BOUNDARY 16 | |
162 | ||
163 | /* Allocation boundary (in *bits*) for the code of a function. */ | |
164 | #define FUNCTION_BOUNDARY 16 | |
165 | ||
166 | /* Alignment of field after `int : 0' in a structure. */ | |
167 | #define EMPTY_FIELD_BOUNDARY 16 | |
168 | ||
169 | /* No data type wants to be aligned rounder than this. */ | |
170 | #define BIGGEST_ALIGNMENT 16 | |
171 | ||
b4ac57ab | 172 | /* Set this non-zero if move instructions will actually fail to work |
6434da25 | 173 | when given unaligned data. */ |
b4ac57ab | 174 | #define STRICT_ALIGNMENT 1 |
6434da25 RS |
175 | |
176 | /* Define number of bits in most basic integer type. | |
177 | (If undefined, default is BITS_PER_WORD). */ | |
178 | ||
179 | #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32) | |
180 | ||
181 | /* Define these to avoid dependence on meaning of `int'. | |
182 | Note that WCHAR_TYPE_SIZE is used in cexp.y, | |
183 | where TARGET_SHORT is not available. */ | |
184 | ||
185 | #define WCHAR_TYPE "long int" | |
186 | #define WCHAR_TYPE_SIZE 32 | |
187 | \f | |
188 | /* Standard register usage. */ | |
189 | ||
190 | /* Number of actual hardware registers. | |
191 | The hardware registers are assigned numbers for the compiler | |
192 | from 0 to just below FIRST_PSEUDO_REGISTER. | |
193 | All registers that the compiler knows about must be given numbers, | |
194 | even those that are not normally considered general registers. | |
195 | For the Alliant, we give the data registers numbers 0-7, | |
196 | the address registers numbers 010-017, | |
197 | and the floating point registers numbers 020-027. */ | |
198 | #define FIRST_PSEUDO_REGISTER 24 | |
199 | ||
200 | /* 1 for registers that have pervasive standard uses | |
201 | and are not available for the register allocator. | |
202 | On the Alliant, these are a0 (argument pointer), | |
203 | a6 (frame pointer) and a7 (stack pointer). */ | |
204 | #define FIXED_REGISTERS \ | |
205 | {0, 0, 0, 0, 0, 0, 0, 0, \ | |
206 | 1, 0, 0, 0, 0, 0, 1, 1, \ | |
207 | 0, 0, 0, 0, 0, 0, 0, 0 } | |
208 | ||
209 | /* 1 for registers not available across function calls. | |
210 | These must include the FIXED_REGISTERS and also any | |
211 | registers that can be used without being saved. | |
212 | The latter must include the registers where values are returned | |
213 | and the register where structure-value addresses are passed. | |
214 | Aside from that, you can include as many other registers as you like. | |
215 | The Alliant calling sequence allows a function to use any register, | |
216 | so we include them all here. */ | |
217 | ||
218 | #define CALL_USED_REGISTERS \ | |
219 | {1, 1, 1, 1, 1, 1, 1, 1, \ | |
220 | 1, 1, 1, 1, 1, 1, 1, 1, \ | |
221 | 1, 1, 1, 1, 1, 1, 1, 1 } | |
222 | ||
223 | /* Return number of consecutive hard regs needed starting at reg REGNO | |
224 | to hold something of mode MODE. | |
225 | This is ordinarily the length in words of a value of mode MODE | |
226 | but can be less for certain modes in special long registers. | |
227 | ||
228 | On the Alliant, ordinary registers hold 32 bits worth; | |
229 | for the FP registers, a single register is always enough for | |
230 | any floating-point value. */ | |
231 | #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
232 | ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \ | |
233 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
234 | ||
235 | /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. | |
236 | On the Alliant, the cpu registers can hold any mode but the FP registers | |
237 | can hold only floating point. */ | |
238 | #define HARD_REGNO_MODE_OK(REGNO, MODE) \ | |
239 | ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ | |
240 | || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) | |
241 | ||
242 | /* Value is 1 if it is a good idea to tie two pseudo registers | |
243 | when one has mode MODE1 and one has mode MODE2. | |
244 | If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
245 | for any hard reg, then this must be 0 for correct output. */ | |
246 | #define MODES_TIEABLE_P(MODE1, MODE2) \ | |
247 | (((MODE1) == SFmode || (MODE1) == DFmode \ | |
248 | || (MODE1) == SCmode || (MODE1) == DCmode) \ | |
249 | == ((MODE2) == SFmode || (MODE2) == DFmode \ | |
250 | || (MODE2) == SCmode || (MODE2) == DCmode)) | |
251 | ||
252 | /* Specify the registers used for certain standard purposes. | |
253 | The values of these macros are register numbers. */ | |
254 | ||
255 | /* m68000 pc isn't overloaded on a register. */ | |
256 | /* #define PC_REGNUM */ | |
257 | ||
258 | /* Register to use for pushing function arguments. */ | |
259 | #define STACK_POINTER_REGNUM 15 | |
260 | ||
261 | /* Base register for access to local variables of the function. */ | |
262 | #define FRAME_POINTER_REGNUM 14 | |
263 | ||
264 | /* Value should be nonzero if functions must have frame pointers. | |
265 | Zero means the frame pointer need not be set up (and parms | |
266 | may be accessed via the stack pointer) in functions that seem suitable. | |
267 | This is computed in `reload', in reload1.c. */ | |
268 | /* Set for now on Alliant until we find a way to make this work with | |
269 | their calling sequence. */ | |
270 | #define FRAME_POINTER_REQUIRED 1 | |
271 | ||
272 | /* Base register for access to arguments of the function. */ | |
273 | #define ARG_POINTER_REGNUM 8 | |
274 | ||
275 | /* Register in which static-chain is passed to a function. */ | |
276 | #define STATIC_CHAIN_REGNUM 10 | |
277 | ||
278 | /* Register in which address to store a structure value | |
279 | is passed to a function. */ | |
280 | #define STRUCT_VALUE_REGNUM 9 | |
281 | \f | |
282 | /* Define the classes of registers for register constraints in the | |
283 | machine description. Also define ranges of constants. | |
284 | ||
285 | One of the classes must always be named ALL_REGS and include all hard regs. | |
286 | If there is more than one class, another class must be named NO_REGS | |
287 | and contain no registers. | |
288 | ||
289 | The name GENERAL_REGS must be the name of a class (or an alias for | |
290 | another name such as ALL_REGS). This is the class of registers | |
291 | that is allowed by "g" or "r" in a register constraint. | |
292 | Also, registers outside this class are allocated only when | |
293 | instructions express preferences for them. | |
294 | ||
295 | The classes must be numbered in nondecreasing order; that is, | |
296 | a larger-numbered class must never be contained completely | |
297 | in a smaller-numbered class. | |
298 | ||
299 | For any two classes, it is very desirable that there be another | |
300 | class that represents their union. */ | |
301 | ||
302 | /* The Alliant has three kinds of registers, so eight classes would be | |
303 | a complete set. One of them is not needed. */ | |
304 | ||
305 | enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS, | |
306 | ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; | |
307 | ||
308 | #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
309 | ||
310 | /* Give names of register classes as strings for dump file. */ | |
311 | ||
312 | #define REG_CLASS_NAMES \ | |
313 | { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \ | |
314 | "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" } | |
315 | ||
316 | /* Define which registers fit in which classes. | |
317 | This is an initializer for a vector of HARD_REG_SET | |
318 | of length N_REG_CLASSES. */ | |
319 | ||
320 | #define REG_CLASS_CONTENTS \ | |
321 | { \ | |
322 | 0, /* NO_REGS */ \ | |
323 | 0x00ff0000, /* FP_REGS */ \ | |
324 | 0x000000ff, /* DATA_REGS */ \ | |
325 | 0x00ff00ff, /* DATA_OR_FP_REGS */ \ | |
326 | 0x0000ff00, /* ADDR_REGS */ \ | |
327 | 0x0000ffff, /* GENERAL_REGS */ \ | |
328 | 0x00ffffff /* ALL_REGS */ \ | |
329 | } | |
330 | ||
331 | /* The same information, inverted: | |
332 | Return the class number of the smallest class containing | |
333 | reg number REGNO. This could be a conditional expression | |
334 | or could index an array. */ | |
335 | ||
336 | extern enum reg_class regno_reg_class[]; | |
337 | #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3]) | |
338 | ||
339 | /* The class value for index registers, and the one for base regs. */ | |
340 | ||
341 | #define INDEX_REG_CLASS GENERAL_REGS | |
342 | #define BASE_REG_CLASS ADDR_REGS | |
343 | ||
344 | /* Get reg_class from a letter such as appears in the machine description. */ | |
345 | ||
346 | #define REG_CLASS_FROM_LETTER(C) \ | |
347 | ((C) == 'a' ? ADDR_REGS : \ | |
348 | ((C) == 'd' ? DATA_REGS : \ | |
349 | ((C) == 'f' ? FP_REGS : \ | |
350 | NO_REGS))) | |
351 | ||
352 | /* The letters I, J, K, L and M in a register constraint string | |
353 | can be used to stand for particular ranges of immediate operands. | |
354 | This macro defines what the ranges are. | |
355 | C is the letter, and VALUE is a constant value. | |
356 | Return 1 if VALUE is in the range specified by C. | |
357 | ||
358 | For the 68000, `I' is used for the range 1 to 8 | |
359 | allowed as immediate shift counts and in addq. | |
360 | `J' is used for the range of signed numbers that fit in 16 bits. | |
361 | `K' is for numbers that moveq can't handle. | |
362 | `L' is for range -8 to -1, range of values that can be added with subq. */ | |
363 | ||
364 | #define CONST_OK_FOR_LETTER_P(VALUE, C) \ | |
365 | ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \ | |
366 | (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \ | |
367 | (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \ | |
368 | (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0) | |
369 | ||
370 | #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 | |
371 | ||
372 | /* Given an rtx X being reloaded into a reg required to be | |
373 | in class CLASS, return the class of reg to actually use. | |
374 | In general this is just CLASS; but on some machines | |
375 | in some cases it is preferable to use a more restrictive class. | |
376 | On the 68000 series, use a data reg if possible when the | |
377 | value is a constant in the range where moveq could be used | |
378 | and we ensure that QImodes are reloaded into data regs. */ | |
379 | ||
380 | #define PREFERRED_RELOAD_CLASS(X,CLASS) \ | |
381 | ((GET_CODE (X) == CONST_INT \ | |
382 | && (unsigned) (INTVAL (X) + 0x80) < 0x100 \ | |
383 | && (CLASS) != ADDR_REGS) \ | |
384 | ? DATA_REGS \ | |
385 | : GET_MODE (X) == QImode \ | |
386 | ? DATA_REGS \ | |
387 | : (CLASS)) | |
388 | ||
389 | /* Return the maximum number of consecutive registers | |
390 | needed to represent mode MODE in a register of class CLASS. */ | |
391 | /* On the 68000, this is the size of MODE in words, | |
392 | except in the FP regs, where a single reg is always enough. */ | |
393 | #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
394 | ((CLASS) == FP_REGS ? 1 \ | |
395 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
396 | ||
397 | /* Moves between fp regs and other regs are two insns. */ | |
398 | #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ | |
399 | ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ | |
400 | || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \ | |
401 | ? 4 : 2) | |
402 | \f | |
403 | /* Stack layout; function entry, exit and calling. */ | |
404 | ||
405 | /* Define this if pushing a word on the stack | |
406 | makes the stack pointer a smaller address. */ | |
407 | #define STACK_GROWS_DOWNWARD | |
408 | ||
409 | /* Define this if the nominal address of the stack frame | |
410 | is at the high-address end of the local variables; | |
411 | that is, each additional local variable allocated | |
412 | goes at a more negative offset in the frame. */ | |
413 | #define FRAME_GROWS_DOWNWARD | |
414 | ||
415 | /* The Alliant uses -fcaller-saves by default. */ | |
416 | #define DEFAULT_CALLER_SAVES | |
417 | ||
418 | /* Offset within stack frame to start allocating local variables at. | |
419 | If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
420 | first local allocated. Otherwise, it is the offset to the BEGINNING | |
421 | of the first local allocated. */ | |
422 | #define STARTING_FRAME_OFFSET -4 | |
423 | ||
424 | /* If we generate an insn to push BYTES bytes, | |
425 | this says how many the stack pointer really advances by. | |
426 | On the 68000, sp@- in a byte insn really pushes a word. */ | |
427 | #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) | |
428 | ||
429 | /* Offset of first parameter from the argument pointer register value. */ | |
430 | #define FIRST_PARM_OFFSET(FNDECL) 0 | |
431 | ||
432 | /* Value is the number of bytes of arguments automatically | |
433 | popped when returning from a subroutine call. | |
8b109b37 | 434 | FUNDECL is the declaration node of the function (as a tree), |
6434da25 RS |
435 | FUNTYPE is the data type of the function (as a tree), |
436 | or for a library call it is an identifier node for the subroutine name. | |
437 | SIZE is the number of bytes of arguments passed on the stack. | |
438 | ||
439 | On the Alliant we define this as SIZE and make the calling sequence | |
440 | (in alliant.md) pop the args. This wouldn't be necessary if we | |
441 | could add to the pending stack adjustment the size of the argument | |
442 | descriptors that are pushed after the arguments. */ | |
443 | ||
8b109b37 | 444 | #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE) |
6434da25 RS |
445 | |
446 | /* Define how to find the value returned by a function. | |
447 | VALTYPE is the data type of the value (as a tree). | |
448 | If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
449 | otherwise, FUNC is 0. */ | |
450 | ||
451 | /* On the Alliant the return value is in FP0 if real, else D0. */ | |
452 | ||
453 | #define FUNCTION_VALUE(VALTYPE, FUNC) \ | |
454 | (TREE_CODE (VALTYPE) == REAL_TYPE \ | |
455 | ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \ | |
456 | : gen_rtx (REG, TYPE_MODE (VALTYPE), 0)) | |
457 | ||
458 | /* Define how to find the value returned by a library function | |
459 | assuming the value has mode MODE. */ | |
460 | ||
461 | /* On the Alliant the return value is in FP0 if real, else D0. The | |
462 | Alliant library functions for floating-point emulation return their | |
463 | values both in FP0 and in D0/D1. But since not all libgcc functions | |
464 | return the results of these directly, we cannot assume that D0/D1 | |
465 | contain the values we expect on return from a libgcc function. */ | |
466 | ||
467 | #define LIBCALL_VALUE(MODE) \ | |
468 | (((MODE) == DFmode || (MODE) == SFmode) \ | |
469 | ? gen_rtx (REG, MODE, 16) \ | |
470 | : gen_rtx (REG, MODE, 0)) | |
471 | ||
472 | /* 1 if N is a possible register number for a function value. | |
473 | On the Alliant, D0 and FP0 are the only registers thus used. | |
474 | (No need to mention D1 when used as a pair with D0.) */ | |
475 | ||
476 | #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0) | |
477 | ||
478 | /* Define this if PCC uses the nonreentrant convention for returning | |
479 | structure and union values. */ | |
480 | ||
481 | #define PCC_STATIC_STRUCT_RETURN | |
482 | ||
483 | /* 1 if N is a possible register number for function argument passing. | |
484 | On the Alliant, no registers are used in this way. */ | |
485 | ||
486 | #define FUNCTION_ARG_REGNO_P(N) 0 | |
487 | \f | |
488 | /* Define a data type for recording info about an argument list | |
489 | during the scan of that argument list. This data type should | |
490 | hold all necessary information about the function itself | |
491 | and about the args processed so far, enough to enable macros | |
492 | such as FUNCTION_ARG to determine where the next arg should go. | |
493 | ||
494 | On the Alliant, this is a single integer, which is a number of bytes | |
495 | of arguments scanned so far. */ | |
496 | ||
497 | #define CUMULATIVE_ARGS int | |
498 | ||
499 | /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
500 | for a call to a function whose data type is FNTYPE. | |
501 | For a library call, FNTYPE is 0. | |
502 | ||
503 | On the Alliant, the offset starts at 0. */ | |
504 | ||
505 | #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ | |
506 | ((CUM) = 0) | |
507 | ||
508 | /* Update the data in CUM to advance over an argument | |
509 | of mode MODE and data type TYPE. | |
510 | (TYPE is null for libcalls where that information may not be available.) */ | |
511 | ||
512 | #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ | |
513 | ((CUM) += ((MODE) != BLKmode \ | |
514 | ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ | |
515 | : (int_size_in_bytes (TYPE) + 3) & ~3)) | |
516 | ||
517 | /* Define where to put the arguments to a function. | |
518 | Value is zero to push the argument on the stack, | |
519 | or a hard register in which to store the argument. | |
520 | ||
521 | MODE is the argument's machine mode. | |
522 | TYPE is the data type of the argument (as a tree). | |
523 | This is null for libcalls where that information may | |
524 | not be available. | |
525 | CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
526 | the preceding args and about the function being called. | |
527 | NAMED is nonzero if this argument is a named parameter | |
528 | (otherwise it is an extra parameter matching an ellipsis). */ | |
529 | ||
530 | /* On the Alliant all args are pushed. */ | |
531 | ||
532 | #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 | |
533 | ||
534 | /* For an arg passed partly in registers and partly in memory, | |
535 | this is the number of registers used. | |
536 | For args passed entirely in registers or entirely in memory, zero. */ | |
537 | ||
538 | #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 | |
539 | ||
540 | /* This macro generates the assembly code for function entry. | |
541 | FILE is a stdio stream to output the code to. | |
542 | SIZE is an int: how many units of temporary storage to allocate. | |
543 | Refer to the array `regs_ever_live' to determine which registers | |
544 | to save; `regs_ever_live[I]' is nonzero if register number I | |
545 | is ever used in the function. This macro is responsible for | |
546 | knowing which registers should not be saved even if used. | |
547 | The Alliant uses caller-saves, so this macro is very simple. */ | |
548 | ||
549 | #define FUNCTION_PROLOGUE(FILE, SIZE) \ | |
550 | { int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \ | |
551 | if (frame_pointer_needed) \ | |
552 | { \ | |
553 | if (fsize < 0x8000) \ | |
554 | fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \ | |
555 | else if (TARGET_68020) \ | |
556 | fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \ | |
557 | else \ | |
558 | fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \ | |
559 | fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }} | |
560 | ||
561 | /* Output assembler code to FILE to increment profiler label # LABELNO | |
562 | for profiling a function entry. */ | |
563 | ||
564 | #define FUNCTION_PROFILER(FILE, LABELNO) \ | |
565 | fprintf (FILE, "\tjbsr __mcount_\n") | |
566 | ||
567 | /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, | |
568 | the stack pointer does not matter. The value is tested only in | |
569 | functions that have frame pointers. | |
570 | No definition is equivalent to always zero. */ | |
571 | ||
572 | #define EXIT_IGNORE_STACK 1 | |
573 | ||
574 | /* This macro generates the assembly code for function exit, | |
575 | on machines that need it. If FUNCTION_EPILOGUE is not defined | |
576 | then individual return instructions are generated for each | |
577 | return statement. Args are same as for FUNCTION_PROLOGUE. | |
578 | ||
579 | The function epilogue should not depend on the current stack pointer! | |
580 | It should use the frame pointer only. This is mandatory because | |
581 | of alloca; we also take advantage of it to omit stack adjustments | |
582 | before returning. */ | |
583 | ||
584 | #define FUNCTION_EPILOGUE(FILE, SIZE) \ | |
585 | { if (frame_pointer_needed) \ | |
586 | fprintf (FILE, "\tunlk a6\n"); \ | |
587 | fprintf (FILE, "\trts\n"); } | |
588 | ||
589 | /* Store in the variable DEPTH the initial difference between the | |
590 | frame pointer reg contents and the stack pointer reg contents, | |
591 | as of the start of the function body. This depends on the layout | |
592 | of the fixed parts of the stack frame and on how registers are saved. */ | |
593 | ||
594 | #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ | |
595 | { \ | |
596 | int regno; \ | |
597 | int offset = -4; \ | |
598 | for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \ | |
599 | if (regs_ever_live[regno] && ! call_used_regs[regno]) \ | |
600 | offset += 12; \ | |
601 | for (regno = 0; regno < 16; regno++) \ | |
602 | if (regs_ever_live[regno] && ! call_used_regs[regno]) \ | |
603 | offset += 4; \ | |
604 | (DEPTH) = offset - ((get_frame_size () + 3) & -4); \ | |
605 | } | |
606 | \f | |
607 | /* Addressing modes, and classification of registers for them. */ | |
608 | ||
609 | #define HAVE_POST_INCREMENT | |
610 | /* #define HAVE_POST_DECREMENT */ | |
611 | ||
612 | #define HAVE_PRE_DECREMENT | |
613 | /* #define HAVE_PRE_INCREMENT */ | |
614 | ||
615 | /* Macros to check register numbers against specific register classes. */ | |
616 | ||
617 | /* These assume that REGNO is a hard or pseudo reg number. | |
618 | They give nonzero only if REGNO is a hard reg of the suitable class | |
619 | or a pseudo reg currently allocated to a suitable hard reg. | |
620 | Since they use reg_renumber, they are safe only once reg_renumber | |
621 | has been allocated, which happens in local-alloc.c. */ | |
622 | ||
623 | #define REGNO_OK_FOR_INDEX_P(REGNO) \ | |
624 | ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) | |
625 | #define REGNO_OK_FOR_BASE_P(REGNO) \ | |
626 | (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8) | |
627 | #define REGNO_OK_FOR_DATA_P(REGNO) \ | |
628 | ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) | |
629 | #define REGNO_OK_FOR_FP_P(REGNO) \ | |
630 | (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8) | |
631 | ||
632 | /* Now macros that check whether X is a register and also, | |
633 | strictly, whether it is in a specified class. | |
634 | ||
635 | These macros are specific to the 68000, and may be used only | |
636 | in code for printing assembler insns and in conditions for | |
637 | define_optimization. */ | |
638 | ||
639 | /* 1 if X is a data register. */ | |
640 | ||
641 | #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) | |
642 | ||
643 | /* 1 if X is an fp register. */ | |
644 | ||
645 | #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) | |
646 | ||
647 | /* 1 if X is an address register */ | |
648 | ||
649 | #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) | |
650 | \f | |
651 | /* Maximum number of registers that can appear in a valid memory address. */ | |
652 | ||
653 | #define MAX_REGS_PER_ADDRESS 2 | |
654 | ||
655 | /* Recognize any constant value that is a valid address. */ | |
656 | ||
6eff269e BK |
657 | #define CONSTANT_ADDRESS_P(X) \ |
658 | (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ | |
659 | || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ | |
660 | || GET_CODE (X) == HIGH) | |
6434da25 RS |
661 | |
662 | /* Nonzero if the constant value X is a legitimate general operand. | |
663 | It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ | |
664 | ||
665 | /* Alliant FP instructions don't take immediate operands, so this | |
666 | forces them into memory. */ | |
667 | #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE) | |
668 | ||
669 | /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
670 | and check its validity for a certain class. | |
671 | We have two alternate definitions for each of them. | |
672 | The usual definition accepts all pseudo regs; the other rejects | |
673 | them unless they have been allocated suitable hard regs. | |
674 | The symbol REG_OK_STRICT causes the latter definition to be used. | |
675 | ||
676 | Most source files want to accept pseudo regs in the hope that | |
677 | they will get allocated to the class that the insn wants them to be in. | |
678 | Source files for reload pass need to be strict. | |
679 | After reload, it makes no difference, since pseudo regs have | |
680 | been eliminated by then. */ | |
681 | ||
682 | #ifndef REG_OK_STRICT | |
683 | ||
684 | /* Nonzero if X is a hard reg that can be used as an index | |
685 | or if it is a pseudo reg. */ | |
686 | #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8) | |
687 | /* Nonzero if X is a hard reg that can be used as a base reg | |
688 | or if it is a pseudo reg. */ | |
689 | #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0) | |
690 | ||
691 | #else | |
692 | ||
693 | /* Nonzero if X is a hard reg that can be used as an index. */ | |
694 | #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) | |
695 | /* Nonzero if X is a hard reg that can be used as a base reg. */ | |
696 | #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
697 | ||
698 | #endif | |
699 | \f | |
700 | /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
701 | that is a valid memory address for an instruction. | |
702 | The MODE argument is the machine mode for the MEM expression | |
703 | that wants to use this address. | |
704 | ||
705 | The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ | |
706 | ||
707 | #define INDIRECTABLE_1_ADDRESS_P(X) \ | |
708 | (CONSTANT_ADDRESS_P (X) \ | |
709 | || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ | |
710 | || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ | |
711 | && REG_P (XEXP (X, 0)) \ | |
712 | && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ | |
713 | || (GET_CODE (X) == PLUS \ | |
714 | && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
715 | && GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
716 | && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) | |
717 | ||
718 | #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ | |
719 | { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; } | |
720 | ||
721 | #define GO_IF_INDEXABLE_BASE(X, ADDR) \ | |
722 | { if (GET_CODE (X) == LABEL_REF) goto ADDR; \ | |
723 | if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; } | |
724 | ||
725 | #define GO_IF_INDEXING(X, ADDR) \ | |
726 | { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ | |
727 | { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ | |
728 | if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ | |
729 | { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } | |
730 | ||
731 | #define GO_IF_INDEXED_ADDRESS(X, ADDR) \ | |
732 | { GO_IF_INDEXING (X, ADDR); \ | |
733 | if (GET_CODE (X) == PLUS) \ | |
734 | { if (GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
735 | && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \ | |
736 | { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \ | |
737 | if (GET_CODE (XEXP (X, 0)) == CONST_INT \ | |
738 | && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \ | |
739 | { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } } | |
740 | ||
741 | #define LEGITIMATE_INDEX_REG_P(X) \ | |
742 | ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ | |
743 | || (GET_CODE (X) == SIGN_EXTEND \ | |
744 | && GET_CODE (XEXP (X, 0)) == REG \ | |
745 | && GET_MODE (XEXP (X, 0)) == HImode \ | |
746 | && REG_OK_FOR_INDEX_P (XEXP (X, 0)))) | |
747 | ||
748 | #define LEGITIMATE_INDEX_P(X) \ | |
749 | (LEGITIMATE_INDEX_REG_P (X) \ | |
750 | || (TARGET_68020 && GET_CODE (X) == MULT \ | |
751 | && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ | |
752 | && GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
753 | && (INTVAL (XEXP (X, 1)) == 2 \ | |
754 | || INTVAL (XEXP (X, 1)) == 4 \ | |
755 | || INTVAL (XEXP (X, 1)) == 8))) | |
756 | ||
757 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
758 | { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ | |
759 | GO_IF_INDEXED_ADDRESS (X, ADDR); } | |
760 | \f | |
761 | /* Try machine-dependent ways of modifying an illegitimate address | |
762 | to be legitimate. If we find one, return the new, valid address. | |
763 | This macro is used in only one place: `memory_address' in explow.c. | |
764 | ||
765 | OLDX is the address as it was before break_out_memory_refs was called. | |
766 | In some cases it is useful to look at this to decide what needs to be done. | |
767 | ||
768 | MODE and WIN are passed so that this macro can use | |
769 | GO_IF_LEGITIMATE_ADDRESS. | |
770 | ||
771 | It is always safe for this macro to do nothing. It exists to recognize | |
772 | opportunities to optimize the output. | |
773 | ||
774 | For the 68000, we handle X+REG by loading X into a register R and | |
775 | using R+REG. R will go in an address reg and indexing will be used. | |
776 | However, if REG is a broken-out memory address or multiplication, | |
777 | nothing needs to be done because REG can certainly go in an address reg. */ | |
778 | ||
779 | #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ | |
780 | { register int ch = (X) != (OLDX); \ | |
781 | if (GET_CODE (X) == PLUS) \ | |
782 | { if (GET_CODE (XEXP (X, 0)) == MULT) \ | |
783 | ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \ | |
784 | if (GET_CODE (XEXP (X, 1)) == MULT) \ | |
785 | ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \ | |
786 | if (ch && GET_CODE (XEXP (X, 1)) == REG \ | |
787 | && GET_CODE (XEXP (X, 0)) == REG) \ | |
788 | goto WIN; \ | |
789 | if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ | |
790 | if (GET_CODE (XEXP (X, 0)) == REG \ | |
791 | || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \ | |
792 | && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ | |
793 | && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \ | |
794 | { register rtx temp = gen_reg_rtx (Pmode); \ | |
795 | register rtx val = force_operand (XEXP (X, 1), 0); \ | |
796 | emit_move_insn (temp, val); \ | |
797 | XEXP (X, 1) = temp; \ | |
798 | goto WIN; } \ | |
799 | else if (GET_CODE (XEXP (X, 1)) == REG \ | |
800 | || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \ | |
801 | && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ | |
802 | && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \ | |
803 | { register rtx temp = gen_reg_rtx (Pmode); \ | |
804 | register rtx val = force_operand (XEXP (X, 0), 0); \ | |
805 | emit_move_insn (temp, val); \ | |
806 | XEXP (X, 0) = temp; \ | |
807 | goto WIN; }}} | |
808 | ||
809 | /* Go to LABEL if ADDR (a legitimate address expression) | |
810 | has an effect that depends on the machine mode it is used for. | |
811 | On the 68000, only predecrement and postincrement address depend thus | |
812 | (the amount of decrement or increment being the length of the operand). */ | |
813 | ||
814 | #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ | |
815 | if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL | |
816 | \f | |
817 | /* Specify the machine mode that this machine uses | |
818 | for the index in the tablejump instruction. */ | |
819 | #define CASE_VECTOR_MODE HImode | |
820 | ||
821 | /* Define this if the tablejump instruction expects the table | |
822 | to contain offsets from the address of the table. | |
823 | Do not define this if the table should contain absolute addresses. */ | |
824 | #define CASE_VECTOR_PC_RELATIVE | |
825 | ||
826 | /* Specify the tree operation to be used to convert reals to integers. */ | |
827 | #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR | |
828 | ||
829 | /* This is the kind of divide that is easiest to do in the general case. */ | |
830 | #define EASY_DIV_EXPR TRUNC_DIV_EXPR | |
831 | ||
832 | /* Define this as 1 if `char' should by default be signed; else as 0. */ | |
833 | #define DEFAULT_SIGNED_CHAR 1 | |
834 | ||
835 | /* Max number of bytes we can move from memory to memory | |
836 | in one reasonably fast instruction. */ | |
837 | #define MOVE_MAX 4 | |
838 | ||
839 | /* Define this if zero-extension is slow (more than one real instruction). */ | |
840 | #define SLOW_ZERO_EXTEND | |
841 | ||
842 | /* Nonzero if access to memory by bytes is slow and undesirable. */ | |
843 | #define SLOW_BYTE_ACCESS 0 | |
844 | ||
d969caf8 RK |
845 | /* Define this to be nonzero if shift instructions ignore all but the low-order |
846 | few bits. */ | |
847 | #define SHIFT_COUNT_TRUNCATED 1 | |
6434da25 RS |
848 | |
849 | /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits | |
850 | is done just by pretending it is already truncated. */ | |
851 | #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
852 | ||
853 | /* We assume that the store-condition-codes instructions store 0 for false | |
854 | and some other value for true. This is the value stored for true. */ | |
855 | ||
856 | #define STORE_FLAG_VALUE -1 | |
857 | ||
858 | /* When a prototype says `char' or `short', really pass an `int'. */ | |
859 | #define PROMOTE_PROTOTYPES | |
860 | ||
861 | /* Specify the machine mode that pointers have. | |
862 | After generation of rtl, the compiler makes no further distinction | |
863 | between pointers and any other objects of this machine mode. */ | |
864 | #define Pmode SImode | |
865 | ||
866 | /* A function address in a call instruction | |
867 | is a byte address (for indexing purposes) | |
868 | so give the MEM rtx a byte's mode. */ | |
869 | #define FUNCTION_MODE QImode | |
870 | ||
871 | /* Compute the cost of computing a constant rtl expression RTX | |
872 | whose rtx-code is CODE. The body of this macro is a portion | |
873 | of a switch statement. If the code is computed here, | |
874 | return it with a return statement. Otherwise, break from the switch. */ | |
875 | ||
e1fde2b5 | 876 | #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
6434da25 RS |
877 | case CONST_INT: \ |
878 | /* Constant zero is super cheap due to clr instruction. */ \ | |
879 | if (RTX == const0_rtx) return 0; \ | |
880 | if ((unsigned) INTVAL (RTX) < 077) return 1; \ | |
881 | case CONST: \ | |
882 | case LABEL_REF: \ | |
883 | case SYMBOL_REF: \ | |
884 | return 3; \ | |
885 | case CONST_DOUBLE: \ | |
886 | return 5; | |
887 | ||
888 | /* Check a `double' value for validity for a particular machine mode. | |
889 | This is defined to avoid crashes outputting certain constants. */ | |
890 | ||
2e15b172 RK |
891 | #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ |
892 | if (OVERFLOW) \ | |
893 | (D) = 3.4028234663852890e+38; \ | |
894 | else if ((MODE) == SFmode) \ | |
6434da25 RS |
895 | { \ |
896 | if ((d) > 3.4028234663852890e+38) \ | |
2e15b172 RK |
897 | (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \ |
898 | else if ((D) < -3.4028234663852890e+38) \ | |
899 | (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \ | |
900 | else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \ | |
901 | (OVERFLOW) = 1, (D) = 0.0; \ | |
6434da25 | 902 | else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \ |
2e15b172 | 903 | (OVEFLOW) = 1, (D) = 0.0; \ |
6434da25 RS |
904 | } |
905 | \f | |
906 | /* Tell final.c how to eliminate redundant test instructions. */ | |
907 | ||
908 | /* Here we define machine-dependent flags and fields in cc_status | |
909 | (see `conditions.h'). */ | |
910 | ||
911 | /* On the Alliant, floating-point instructions do not modify the | |
912 | ordinary CC register. Only fcmp and ftest instructions modify the | |
913 | floating-point CC register. We should actually keep track of what | |
914 | both kinds of CC registers contain, but for now we only consider | |
915 | the most recent instruction that has set either register. */ | |
916 | ||
917 | /* Set if the cc value came from a floating point test, so a floating | |
918 | point conditional branch must be output. */ | |
919 | #define CC_IN_FP 04000 | |
920 | ||
921 | /* Store in cc_status the expressions | |
922 | that the condition codes will describe | |
923 | after execution of an instruction whose pattern is EXP. | |
924 | Do not alter them if the instruction would not alter the cc's. */ | |
925 | ||
926 | /* On the 68000, all the insns to store in an address register | |
927 | fail to set the cc's. However, in some cases these instructions | |
928 | can make it possibly invalid to use the saved cc's. In those | |
929 | cases we clear out some or all of the saved cc's so they won't be used. */ | |
930 | ||
931 | #define NOTICE_UPDATE_CC(EXP, INSN) \ | |
932 | { \ | |
933 | if (GET_CODE (EXP) == SET) \ | |
934 | { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \ | |
935 | { if (cc_status.value1 \ | |
936 | && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \ | |
937 | cc_status.value1 = 0; \ | |
938 | if (cc_status.value2 \ | |
939 | && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \ | |
940 | cc_status.value2 = 0; } \ | |
941 | else if (GET_CODE (SET_SRC (EXP)) == MOD \ | |
942 | || GET_CODE (SET_SRC (EXP)) == UMOD \ | |
943 | || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \ | |
944 | && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \ | |
945 | || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \ | |
946 | /* The swap insn produces cc's that don't correspond to the \ | |
947 | result. */ \ | |
948 | CC_STATUS_INIT; \ | |
949 | else if (SET_DEST (EXP) != cc0_rtx \ | |
950 | && (FP_REG_P (SET_SRC (EXP)) \ | |
951 | || GET_CODE (SET_SRC (EXP)) == FIX \ | |
952 | || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \ | |
953 | || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \ | |
954 | { CC_STATUS_INIT; } \ | |
955 | /* A pair of move insns doesn't produce a useful overall cc. */ \ | |
956 | else if (!FP_REG_P (SET_DEST (EXP)) \ | |
957 | && !FP_REG_P (SET_SRC (EXP)) \ | |
958 | && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \ | |
959 | && (GET_CODE (SET_SRC (EXP)) == REG \ | |
960 | || GET_CODE (SET_SRC (EXP)) == MEM \ | |
961 | || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\ | |
962 | { CC_STATUS_INIT; } \ | |
963 | else if (GET_CODE (SET_SRC (EXP)) == CALL) \ | |
964 | { CC_STATUS_INIT; } \ | |
965 | else if (XEXP (EXP, 0) != pc_rtx) \ | |
966 | { cc_status.flags = 0; \ | |
967 | cc_status.value1 = XEXP (EXP, 0); \ | |
968 | cc_status.value2 = XEXP (EXP, 1); } } \ | |
969 | else if (GET_CODE (EXP) == PARALLEL \ | |
970 | && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ | |
971 | { \ | |
972 | if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \ | |
973 | CC_STATUS_INIT; \ | |
974 | else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \ | |
975 | { cc_status.flags = 0; \ | |
976 | cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \ | |
977 | cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \ | |
978 | else CC_STATUS_INIT; \ | |
979 | if (cc_status.value2 != 0 \ | |
980 | && ADDRESS_REG_P (cc_status.value2) \ | |
981 | && GET_MODE (cc_status.value2) == QImode) \ | |
982 | CC_STATUS_INIT; \ | |
983 | if (cc_status.value2 != 0) \ | |
984 | switch (GET_CODE (cc_status.value2)) \ | |
985 | { case PLUS: case MINUS: case MULT: \ | |
986 | case DIV: case UDIV: case MOD: case UMOD: case NEG: \ | |
996a5f59 | 987 | case ASHIFT: case ASHIFTRT: case LSHIFTRT: \ |
6434da25 RS |
988 | case ROTATE: case ROTATERT: \ |
989 | if (GET_MODE (cc_status.value2) != VOIDmode) \ | |
990 | cc_status.flags |= CC_NO_OVERFLOW; \ | |
991 | break; \ | |
992 | case ZERO_EXTEND: \ | |
993 | /* (SET r1 (ZERO_EXTEND r2)) on this machine | |
994 | ends with a move insn moving r2 in r2's mode. | |
995 | Thus, the cc's are set for r2. | |
996 | This can set N bit spuriously. */ \ | |
997 | cc_status.flags |= CC_NOT_NEGATIVE; } \ | |
998 | if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ | |
999 | && cc_status.value2 \ | |
1000 | && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ | |
1001 | cc_status.value2 = 0; \ | |
1002 | if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \ | |
1003 | || (cc_status.value2 && FP_REG_P (cc_status.value2))) \ | |
1004 | cc_status.flags = CC_IN_FP; } | |
1005 | ||
1006 | #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ | |
1007 | { if (cc_prev_status.flags & CC_IN_FP) \ | |
1008 | return FLOAT; \ | |
1009 | if (cc_prev_status.flags & CC_NO_OVERFLOW) \ | |
1010 | return NO_OV; \ | |
1011 | return NORMAL; } | |
1012 | \f | |
1013 | /* Control the assembler format that we output. */ | |
1014 | ||
1015 | /* Output at beginning of assembler file. */ | |
1016 | ||
1017 | #define ASM_FILE_START(FILE) \ | |
1018 | fprintf (FILE, "#NO_APP\n"); | |
1019 | ||
1020 | /* Output to assembler file text saying following lines | |
1021 | may contain character constants, extra white space, comments, etc. */ | |
1022 | ||
1023 | #define ASM_APP_ON "#APP\n" | |
1024 | ||
1025 | /* Output to assembler file text saying following lines | |
1026 | no longer contain unusual constructs. */ | |
1027 | ||
1028 | #define ASM_APP_OFF "#NO_APP\n" | |
1029 | ||
1030 | /* Output before read-only data. */ | |
1031 | ||
8cf6b9ca | 1032 | #define TEXT_SECTION_ASM_OP ".text" |
6434da25 RS |
1033 | |
1034 | /* Output before writable data. */ | |
1035 | ||
8cf6b9ca | 1036 | #define DATA_SECTION_ASM_OP ".data" |
6434da25 RS |
1037 | |
1038 | /* How to refer to registers in assembler output. | |
1039 | This sequence is indexed by compiler's hard-register-number (see above). */ | |
1040 | ||
1041 | #define REGISTER_NAMES \ | |
1042 | {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ | |
1043 | "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ | |
1044 | "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" } | |
1045 | ||
1046 | /* How to renumber registers for dbx and gdb. | |
1047 | On the Sun-3, the floating point registers have numbers | |
1048 | 18 to 25, not 16 to 23 as they do in the compiler. */ | |
1049 | /* (On the Alliant, dbx isn't working yet at all. */ | |
1050 | ||
1051 | #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2) | |
1052 | ||
1053 | /* This is how to output the definition of a user-level label named NAME, | |
1054 | such as the label on a static function or variable NAME. */ | |
1055 | ||
1056 | #define ASM_OUTPUT_LABEL(FILE,NAME) \ | |
1057 | do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) | |
1058 | ||
1059 | /* This is how to output a command to make the user-level label named NAME | |
1060 | defined for reference from other files. */ | |
1061 | ||
1062 | #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ | |
1063 | do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) | |
1064 | ||
1065 | /* This is how to output a reference to a user-level label named NAME. | |
1066 | `assemble_name' uses this. */ | |
1067 | ||
1068 | #define ASM_OUTPUT_LABELREF(FILE,NAME) \ | |
1069 | fprintf (FILE, "_%s", NAME) | |
1070 | ||
1071 | /* This is how to output an internal numbered label where | |
1072 | PREFIX is the class of label and NUM is the number within the class. */ | |
1073 | ||
1074 | #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ | |
1075 | fprintf (FILE, "%s%d:\n", PREFIX, NUM) | |
1076 | ||
1077 | /* This is how to store into the string LABEL | |
1078 | the symbol_ref name of an internal numbered label where | |
1079 | PREFIX is the class of label and NUM is the number within the class. | |
1080 | This is suitable for output with `assemble_name'. */ | |
1081 | ||
1082 | #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ | |
1083 | sprintf (LABEL, "*%s%d", PREFIX, NUM) | |
1084 | ||
1085 | /* This is how to output an assembler line defining a `double' constant. */ | |
1086 | ||
1087 | #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ | |
1088 | do { union { double d; long v[2];} tem; \ | |
1089 | tem.d = (VALUE); \ | |
1090 | fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \ | |
1091 | } while (0) | |
1092 | ||
1093 | /* This is how to output an assembler line defining a `float' constant. */ | |
1094 | ||
1095 | #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ | |
1096 | do { union { float f; long l;} tem; \ | |
1097 | tem.f = (VALUE); \ | |
1098 | fprintf (FILE, "\t.long 0x%x\n", tem.l); \ | |
1099 | } while (0) | |
1100 | ||
1101 | /* This is how to output an assembler line defining an `int' constant. */ | |
1102 | ||
1103 | #define ASM_OUTPUT_INT(FILE,VALUE) \ | |
1104 | ( fprintf (FILE, "\t.long "), \ | |
1105 | output_addr_const (FILE, (VALUE)), \ | |
1106 | fprintf (FILE, "\n")) | |
1107 | ||
1108 | /* Likewise for `char' and `short' constants. */ | |
1109 | ||
1110 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
1111 | ( fprintf (FILE, "\t.word "), \ | |
1112 | output_addr_const (FILE, (VALUE)), \ | |
1113 | fprintf (FILE, "\n")) | |
1114 | ||
1115 | #define ASM_OUTPUT_CHAR(FILE,VALUE) \ | |
1116 | ( fprintf (FILE, "\t.byte "), \ | |
1117 | output_addr_const (FILE, (VALUE)), \ | |
1118 | fprintf (FILE, "\n")) | |
1119 | ||
1120 | #define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \ | |
9e269f72 | 1121 | do { int i; unsigned char *pp = (unsigned char *) (PTR); \ |
6434da25 RS |
1122 | fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \ |
1123 | for (i = 1; i < (SIZE); ++i, ++pp) { \ | |
1124 | if ((i % 8) == 0) \ | |
1125 | fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \ | |
1126 | else \ | |
1127 | fprintf((FILE), ",%d", (unsigned int) *pp); } \ | |
9e269f72 | 1128 | fprintf ((FILE), "\n"); } while (0) |
6434da25 RS |
1129 | |
1130 | /* This is how to output an assembler line for a numeric constant byte. */ | |
1131 | ||
1132 | #define ASM_OUTPUT_BYTE(FILE,VALUE) \ | |
1133 | fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) | |
1134 | ||
1135 | /* This is how to output an insn to push a register on the stack. | |
1136 | It need not be very fast code. */ | |
1137 | ||
1138 | #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ | |
1139 | fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO]) | |
1140 | ||
1141 | /* This is how to output an insn to pop a register from the stack. | |
1142 | It need not be very fast code. */ | |
1143 | ||
1144 | #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ | |
1145 | fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO]) | |
1146 | ||
1147 | /* This is how to output an element of a case-vector that is absolute. | |
1148 | (The 68000 does not use such vectors, | |
1149 | but we must define this macro anyway.) */ | |
1150 | ||
1151 | #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ | |
1152 | fprintf (FILE, "\t.long L%d\n", VALUE) | |
1153 | ||
1154 | /* This is how to output an element of a case-vector that is relative. */ | |
1155 | ||
1156 | #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ | |
1157 | fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL) | |
1158 | ||
1159 | /* This is how to output an assembler line | |
1160 | that says to advance the location counter | |
1161 | to a multiple of 2**LOG bytes. */ | |
1162 | ||
1163 | #define ASM_OUTPUT_ALIGN(FILE,LOG) \ | |
1164 | if ((LOG) == 1) \ | |
1165 | fprintf (FILE, "\t.even\n"); \ | |
1166 | else if ((LOG) != 0) \ | |
1167 | fprintf (FILE, "\t.align %dn", (LOG)); | |
1168 | ||
1169 | #define ASM_OUTPUT_SKIP(FILE,SIZE) \ | |
1170 | fprintf (FILE, "\t. = . + %u\n", (SIZE)) | |
1171 | ||
1172 | /* This says how to output an assembler line | |
1173 | to define a global common symbol. */ | |
1174 | ||
1175 | #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ | |
1176 | ( fputs ("\t.comm ", (FILE)), \ | |
1177 | assemble_name ((FILE), (NAME)), \ | |
1178 | fprintf ((FILE), ",%u\n", (ROUNDED))) | |
1179 | ||
1180 | /* This says how to output an assembler line | |
1181 | to define a local common symbol. */ | |
1182 | ||
1183 | #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ | |
1184 | ( fputs ("\t.lcomm ", (FILE)), \ | |
1185 | assemble_name ((FILE), (NAME)), \ | |
1186 | fprintf ((FILE), ",%u\n", (ROUNDED))) | |
1187 | ||
1188 | /* Store in OUTPUT a string (made with alloca) containing | |
1189 | an assembler-name for a local static variable named NAME. | |
1190 | LABELNO is an integer which is different for each call. */ | |
1191 | ||
1192 | #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ | |
1193 | ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ | |
1194 | sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) | |
1195 | ||
1196 | /* Define the parentheses used to group arithmetic operations | |
1197 | in assembler code. */ | |
1198 | ||
1199 | #define ASM_OPEN_PAREN "(" | |
1200 | #define ASM_CLOSE_PAREN ")" | |
1201 | ||
1202 | /* Define results of standard character escape sequences. */ | |
1203 | #define TARGET_BELL 007 | |
1204 | #define TARGET_BS 010 | |
1205 | #define TARGET_TAB 011 | |
1206 | #define TARGET_NEWLINE 012 | |
1207 | #define TARGET_VT 013 | |
1208 | #define TARGET_FF 014 | |
1209 | #define TARGET_CR 015 | |
1210 | ||
1211 | /* Print operand X (an rtx) in assembler syntax to file FILE. | |
1212 | CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. | |
1213 | For `%' followed by punctuation, CODE is the punctuation and X is null. | |
1214 | ||
1215 | On the Alliant, we use several CODE characters: | |
1216 | '.' for dot needed in Motorola-style opcode names. | |
1217 | '-' for an operand pushing on the stack: | |
1218 | sp@-, -(sp) or -(%sp) depending on the style of syntax. | |
1219 | '+' for an operand pushing on the stack: | |
1220 | sp@+, (sp)+ or (%sp)+ depending on the style of syntax. | |
1221 | '@' for a reference to the top word on the stack: | |
1222 | sp@, (sp) or (%sp) depending on the style of syntax. | |
1223 | '#' for an immediate operand prefix (# in MIT and Motorola syntax | |
1224 | but & in SGS syntax). | |
1225 | '!' for the cc register (used in an `and to cc' insn). | |
1226 | ||
1227 | 'b' for byte insn (no effect, on the Sun; this is for the ISI). | |
1228 | 'd' to force memory addressing to be absolute, not relative. | |
1229 | 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) | |
1230 | 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex), | |
1231 | or print pair of registers as rx:ry. */ | |
1232 | ||
1233 | #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ | |
1234 | ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \ | |
1235 | || (CODE) == '+' || (CODE) == '@' || (CODE) == '!') | |
1236 | ||
1237 | #define PRINT_OPERAND(FILE, X, CODE) \ | |
1238 | { int i; \ | |
1239 | if (CODE == '.') ; \ | |
1240 | else if (CODE == '#') fprintf (FILE, "#"); \ | |
1241 | else if (CODE == '-') fprintf (FILE, "sp@-"); \ | |
1242 | else if (CODE == '+') fprintf (FILE, "sp@+"); \ | |
1243 | else if (CODE == '@') fprintf (FILE, "sp@"); \ | |
1244 | else if (CODE == '!') fprintf (FILE, "cc"); \ | |
1245 | else if ((X) == 0 ) ; \ | |
1246 | else if (GET_CODE (X) == REG) \ | |
1247 | { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \ | |
1248 | fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \ | |
1249 | else \ | |
1250 | fprintf (FILE, "%s", reg_names[REGNO (X)]); \ | |
1251 | } \ | |
1252 | else if (GET_CODE (X) == MEM) \ | |
1253 | { \ | |
1254 | output_address (XEXP (X, 0)); \ | |
1255 | if (CODE == 'd' && ! TARGET_68020 \ | |
1256 | && CONSTANT_ADDRESS_P (XEXP (X, 0)) \ | |
1257 | && !(GET_CODE (XEXP (X, 0)) == CONST_INT \ | |
1258 | && INTVAL (XEXP (X, 0)) < 0x8000 \ | |
1259 | && INTVAL (XEXP (X, 0)) >= -0x8000)) \ | |
1260 | fprintf (FILE, ":l"); \ | |
1261 | } \ | |
1262 | else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ | |
1263 | { union { double d; int i[2]; } u; \ | |
1264 | union { float f; int i; } u1; \ | |
1265 | u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ | |
1266 | u1.f = u.d; \ | |
1267 | if (CODE == 'f') \ | |
1268 | fprintf (FILE, "#0r%.9g", u1.f); \ | |
1269 | else \ | |
1270 | fprintf (FILE, "#0x%x", u1.i); } \ | |
b030b8c2 | 1271 | else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \ |
6434da25 RS |
1272 | { union { double d; int i[2]; } u; \ |
1273 | u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ | |
1274 | fprintf (FILE, "#0r%.20g", u.d); } \ | |
1275 | else { putc ('#', FILE); output_addr_const (FILE, X); }} | |
1276 | \f | |
1277 | /* Note that this contains a kludge that knows that the only reason | |
1278 | we have an address (plus (label_ref...) (reg...)) | |
1279 | is in the insn before a tablejump, and we know that m68k.md | |
1280 | generates a label LInnn: on such an insn. */ | |
1281 | #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ | |
1282 | { register rtx reg1, reg2, breg, ireg; \ | |
1283 | register rtx addr = ADDR; \ | |
1284 | static char *sz = ".BW.L...D"; \ | |
1285 | rtx offset; \ | |
1286 | switch (GET_CODE (addr)) \ | |
1287 | { \ | |
1288 | case REG: \ | |
1289 | fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \ | |
1290 | break; \ | |
1291 | case PRE_DEC: \ | |
1292 | fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \ | |
1293 | break; \ | |
1294 | case POST_INC: \ | |
1295 | fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \ | |
1296 | break; \ | |
1297 | case PLUS: \ | |
1298 | reg1 = 0; reg2 = 0; \ | |
1299 | ireg = 0; breg = 0; \ | |
1300 | offset = 0; \ | |
1301 | if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \ | |
1302 | { \ | |
1303 | offset = XEXP (addr, 0); \ | |
1304 | addr = XEXP (addr, 1); \ | |
1305 | } \ | |
1306 | else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \ | |
1307 | { \ | |
1308 | offset = XEXP (addr, 1); \ | |
1309 | addr = XEXP (addr, 0); \ | |
1310 | } \ | |
1311 | if (GET_CODE (addr) != PLUS) ; \ | |
1312 | else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \ | |
1313 | { \ | |
1314 | reg1 = XEXP (addr, 0); \ | |
1315 | addr = XEXP (addr, 1); \ | |
1316 | } \ | |
1317 | else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \ | |
1318 | { \ | |
1319 | reg1 = XEXP (addr, 1); \ | |
1320 | addr = XEXP (addr, 0); \ | |
1321 | } \ | |
1322 | else if (GET_CODE (XEXP (addr, 0)) == MULT) \ | |
1323 | { \ | |
1324 | reg1 = XEXP (addr, 0); \ | |
1325 | addr = XEXP (addr, 1); \ | |
1326 | } \ | |
1327 | else if (GET_CODE (XEXP (addr, 1)) == MULT) \ | |
1328 | { \ | |
1329 | reg1 = XEXP (addr, 1); \ | |
1330 | addr = XEXP (addr, 0); \ | |
1331 | } \ | |
1332 | else if (GET_CODE (XEXP (addr, 0)) == REG) \ | |
1333 | { \ | |
1334 | reg1 = XEXP (addr, 0); \ | |
1335 | addr = XEXP (addr, 1); \ | |
1336 | } \ | |
1337 | else if (GET_CODE (XEXP (addr, 1)) == REG) \ | |
1338 | { \ | |
1339 | reg1 = XEXP (addr, 1); \ | |
1340 | addr = XEXP (addr, 0); \ | |
1341 | } \ | |
1342 | if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \ | |
1343 | || GET_CODE (addr) == SIGN_EXTEND) \ | |
1344 | { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \ | |
1345 | /* for OLD_INDEXING \ | |
1346 | else if (GET_CODE (addr) == PLUS) \ | |
1347 | { \ | |
1348 | if (GET_CODE (XEXP (addr, 0)) == REG) \ | |
1349 | { \ | |
1350 | reg2 = XEXP (addr, 0); \ | |
1351 | addr = XEXP (addr, 1); \ | |
1352 | } \ | |
1353 | else if (GET_CODE (XEXP (addr, 1)) == REG) \ | |
1354 | { \ | |
1355 | reg2 = XEXP (addr, 1); \ | |
1356 | addr = XEXP (addr, 0); \ | |
1357 | } \ | |
1358 | } \ | |
1359 | */ \ | |
1360 | if (offset != 0) { if (addr != 0) abort (); addr = offset; } \ | |
1361 | if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \ | |
1362 | || GET_CODE (reg1) == MULT)) \ | |
1363 | || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \ | |
1364 | { breg = reg2; ireg = reg1; } \ | |
1365 | else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \ | |
1366 | { breg = reg1; ireg = reg2; } \ | |
1367 | if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \ | |
1368 | { int scale = 1; \ | |
1369 | if (GET_CODE (ireg) == MULT) \ | |
1370 | { scale = INTVAL (XEXP (ireg, 1)); \ | |
1371 | ireg = XEXP (ireg, 0); } \ | |
1372 | if (GET_CODE (ireg) == SIGN_EXTEND) \ | |
1373 | fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \ | |
1374 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1375 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1376 | reg_names[REGNO (XEXP (ireg, 0))]); \ | |
1377 | else \ | |
1378 | fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \ | |
1379 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1380 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1381 | reg_names[REGNO (ireg)]); \ | |
1382 | fprintf (FILE, ":%c", sz[scale]); \ | |
1383 | putc (']', FILE); \ | |
1384 | break; } \ | |
1385 | if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \ | |
1386 | { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ | |
1387 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1388 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1389 | reg_names[REGNO (breg)]); \ | |
1390 | break; } \ | |
1391 | if (ireg != 0 || breg != 0) \ | |
1392 | { int scale = 1; \ | |
1393 | if (breg == 0) \ | |
1394 | abort (); \ | |
1395 | if (addr && GET_CODE (addr) == LABEL_REF) abort (); \ | |
1396 | fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \ | |
1397 | if (addr != 0) { \ | |
1398 | putc( '(', FILE ); \ | |
1399 | output_addr_const (FILE, addr); \ | |
1400 | if (ireg != 0) { \ | |
1401 | if (GET_CODE(addr) == CONST_INT) { \ | |
1402 | int size_of = 1, val = INTVAL(addr); \ | |
1403 | if (val < -0x8000 || val >= 0x8000) \ | |
1404 | size_of = 4; \ | |
1405 | else if (val < -0x80 || val >= 0x80) \ | |
1406 | size_of = 2; \ | |
1407 | fprintf(FILE, ":%c", sz[size_of]); \ | |
1408 | } \ | |
1409 | else \ | |
1410 | fprintf(FILE, ":L"); } \ | |
1411 | putc( ')', FILE ); } \ | |
1412 | if (ireg != 0) { \ | |
1413 | putc ('[', FILE); \ | |
1414 | if (ireg != 0 && GET_CODE (ireg) == MULT) \ | |
1415 | { scale = INTVAL (XEXP (ireg, 1)); \ | |
1416 | ireg = XEXP (ireg, 0); } \ | |
1417 | if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \ | |
1418 | fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \ | |
1419 | else if (ireg != 0) \ | |
1420 | fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \ | |
1421 | fprintf (FILE, ":%c", sz[scale]); \ | |
1422 | putc (']', FILE); \ | |
1423 | } \ | |
1424 | break; \ | |
1425 | } \ | |
1426 | else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \ | |
1427 | { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ | |
1428 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1429 | CODE_LABEL_NUMBER (XEXP (addr, 0)), \ | |
1430 | reg_names[REGNO (reg1)]); \ | |
1431 | break; } \ | |
1432 | default: \ | |
1433 | if (GET_CODE (addr) == CONST_INT \ | |
1434 | && INTVAL (addr) < 0x8000 \ | |
1435 | && INTVAL (addr) >= -0x8000) \ | |
1436 | fprintf (FILE, "%d:W", INTVAL (addr)); \ | |
1437 | else \ | |
1438 | output_addr_const (FILE, addr); \ | |
1439 | }} | |
1440 | \f | |
1441 | /* | |
1442 | Local variables: | |
1443 | version-control: t | |
1444 | End: | |
1445 | */ | |
1446 |