]> gcc.gnu.org Git - gcc.git/blame - gcc/config/frv/frv.h
tm.texi.in (OVERRIDE_OPTIONS): Remove documentation.
[gcc.git] / gcc / config / frv / frv.h
CommitLineData
36a05131 1/* Target macros for the FRV port of GCC.
c28350ab
AS
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3 2010
8ac411c7 4 Free Software Foundation, Inc.
36a05131
BS
5 Contributed by Red Hat Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
2f83c7d6 11 by the Free Software Foundation; either version 3, or (at your
36a05131
BS
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 You should have received a copy of the GNU General Public License
2f83c7d6
NC
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
36a05131
BS
22
23#ifndef __FRV_H__
24#define __FRV_H__
25
36a05131
BS
26/* Frv general purpose macros. */
27/* Align an address. */
28#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29
30/* Return true if a value is inside a range. */
31#define IN_RANGE_P(VALUE, LOW, HIGH) \
32 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
33 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
34
35\f
36/* Driver configuration. */
37
38/* A C expression which determines whether the option `-CHAR' takes arguments.
39 The value should be the number of arguments that option takes-zero, for many
40 options.
41
42 By default, this macro is defined to handle the standard options properly.
43 You need not define it unless you wish to add additional options which take
44 arguments.
45
46 Defined in svr4.h. */
47#undef SWITCH_TAKES_ARG
48#define SWITCH_TAKES_ARG(CHAR) \
49 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
50
51/* A C expression which determines whether the option `-NAME' takes arguments.
52 The value should be the number of arguments that option takes-zero, for many
53 options. This macro rather than `SWITCH_TAKES_ARG' is used for
54 multi-character option names.
55
56 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
57 handles the standard options properly. You need not define
58 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
59 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
60 then check for additional options.
61
62 Defined in svr4.h. */
63#undef WORD_SWITCH_TAKES_ARG
64
34208acf
AO
65/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
66 FDPIC which multilib to use depends on whether FDPIC is in use or
67 not. The trick we use is to introduce -multilib-library-pic as a
68 pseudo-flag that selects the library-pic multilib, and map fpic
69 and fPIC to it only if fdpic is not selected. Also, if fdpic is
70 selected and no PIC/PIE options are present, we imply -fPIE.
71 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
72 speed, or if we have -On with n>=3, enable inlining of PLTs. As
73 for -mgprel-ro, we want to enable it by default, but not for -fpic or
74 -fpie. */
75
76#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
77"%{mno-pack:\
78 %{!mhard-float:-msoft-float}\
79 %{!mmedia:-mno-media}}\
80 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
81 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
82 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
83 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
84 %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
85 %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
86"
87#ifndef SUBTARGET_DRIVER_SELF_SPECS
88# define SUBTARGET_DRIVER_SELF_SPECS
89#endif
90
7ec022b2 91/* A C string constant that tells the GCC driver program options to pass to
36a05131 92 the assembler. It can also specify how to translate options you give to GNU
7ec022b2 93 CC into options for GCC to pass to the assembler. See the file `sun3.h'
36a05131
BS
94 for an example of this.
95
96 Do not define this macro if it does not need to do anything.
97
98 Defined in svr4.h. */
99#undef ASM_SPEC
100#define ASM_SPEC "\
101%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
102%{mtomcat-stats} \
103%{!mno-eflags: \
104 %{mcpu=*} \
105 %{mgpr-*} %{mfpr-*} \
106 %{msoft-float} %{mhard-float} \
107 %{mdword} %{mno-dword} \
108 %{mdouble} %{mno-double} \
109 %{mmedia} %{mno-media} \
110 %{mmuladd} %{mno-muladd} \
111 %{mpack} %{mno-pack} \
afbe7e61 112 %{mno-fdpic:-mnopic} %{mfdpic} \
24a4dd31 113 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
36a05131
BS
114
115/* Another C string constant used much like `LINK_SPEC'. The difference
116 between the two is that `STARTFILE_SPEC' is used at the very beginning of
117 the command given to the linker.
118
119 If this macro is not defined, a default is provided that loads the standard
120 C startup file from the usual place. See `gcc.c'.
121
122 Defined in svr4.h. */
123#undef STARTFILE_SPEC
124#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
125
126/* Another C string constant used much like `LINK_SPEC'. The difference
127 between the two is that `ENDFILE_SPEC' is used at the very end of the
128 command given to the linker.
129
130 Do not define this macro if it does not need to do anything.
131
132 Defined in svr4.h. */
133#undef ENDFILE_SPEC
134#define ENDFILE_SPEC "frvend%O%s"
135
36a05131
BS
136
137#define MASK_DEFAULT_FRV \
138 (MASK_MEDIA \
139 | MASK_DOUBLE \
140 | MASK_MULADD \
141 | MASK_DWORD \
142 | MASK_PACK)
143
144#define MASK_DEFAULT_FR500 \
145 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
146
c557edf4
RS
147#define MASK_DEFAULT_FR550 \
148 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
149
150#define MASK_DEFAULT_FR450 \
151 (MASK_GPR_32 \
152 | MASK_FPR_32 \
153 | MASK_MEDIA \
154 | MASK_SOFT_FLOAT \
155 | MASK_DWORD \
156 | MASK_PACK)
157
36a05131
BS
158#define MASK_DEFAULT_FR400 \
159 (MASK_GPR_32 \
160 | MASK_FPR_32 \
161 | MASK_MEDIA \
162 | MASK_ACC_4 \
163 | MASK_SOFT_FLOAT \
164 | MASK_DWORD \
165 | MASK_PACK)
166
167#define MASK_DEFAULT_SIMPLE \
168 (MASK_GPR_32 | MASK_SOFT_FLOAT)
169
7ec022b2
KC
170/* A C string constant that tells the GCC driver program options to pass to
171 `cc1'. It can also specify how to translate options you give to GCC into
172 options for GCC to pass to the `cc1'.
36a05131
BS
173
174 Do not define this macro if it does not need to do anything. */
175/* For ABI compliance, we need to put bss data into the normal data section. */
176#define CC1_SPEC "%{G*}"
177
7ec022b2
KC
178/* A C string constant that tells the GCC driver program options to pass to
179 the linker. It can also specify how to translate options you give to GCC
180 into options for GCC to pass to the linker.
36a05131
BS
181
182 Do not define this macro if it does not need to do anything.
183
184 Defined in svr4.h. */
185/* Override the svr4.h version with one that dispenses without the svr4
186 shared library options, notably -G. */
187#undef LINK_SPEC
188#define LINK_SPEC "\
189%{h*} %{v:-V} \
3f94bdec 190%{b} \
34208acf 191%{mfdpic:-melf32frvfd -z text} \
36a05131
BS
192%{static:-dn -Bstatic} \
193%{shared:-Bdynamic} \
194%{symbolic:-Bsymbolic} \
195%{G*} \
196%{YP,*} \
197%{Qy:} %{!Qn:-Qy}"
198
199/* Another C string constant used much like `LINK_SPEC'. The difference
200 between the two is that `LIB_SPEC' is used at the end of the command given
201 to the linker.
202
203 If this macro is not defined, a default is provided that loads the standard
204 C library from the usual place. See `gcc.c'.
205
206 Defined in svr4.h. */
207
208#undef LIB_SPEC
209#define LIB_SPEC "--start-group -lc -lsim --end-group"
210
c557edf4 211#ifndef CPU_TYPE
36a05131
BS
212#define CPU_TYPE FRV_CPU_FR500
213#endif
214
36a05131
BS
215/* Run-time target specifications */
216
c557edf4
RS
217#define TARGET_CPU_CPP_BUILTINS() \
218 do \
219 { \
220 int issue_rate; \
221 \
222 builtin_define ("__frv__"); \
223 builtin_assert ("machine=frv"); \
224 \
225 issue_rate = frv_issue_rate (); \
226 if (issue_rate > 1) \
227 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
228 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
229 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
230 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
231 \
232 switch (frv_cpu_type) \
233 { \
234 case FRV_CPU_GENERIC: \
235 builtin_define ("__CPU_GENERIC__"); \
236 break; \
237 case FRV_CPU_FR550: \
238 builtin_define ("__CPU_FR550__"); \
239 break; \
240 case FRV_CPU_FR500: \
241 case FRV_CPU_TOMCAT: \
242 builtin_define ("__CPU_FR500__"); \
243 break; \
244 case FRV_CPU_FR450: \
245 builtin_define ("__CPU_FR450__"); \
246 break; \
247 case FRV_CPU_FR405: \
248 builtin_define ("__CPU_FR405__"); \
249 break; \
250 case FRV_CPU_FR400: \
251 builtin_define ("__CPU_FR400__"); \
252 break; \
253 case FRV_CPU_FR300: \
254 case FRV_CPU_SIMPLE: \
255 builtin_define ("__CPU_FR300__"); \
256 break; \
257 } \
258 \
259 if (TARGET_HARD_FLOAT) \
260 builtin_define ("__FRV_HARD_FLOAT__"); \
261 if (TARGET_DWORD) \
262 builtin_define ("__FRV_DWORD__"); \
263 if (TARGET_FDPIC) \
264 builtin_define ("__FRV_FDPIC__"); \
265 if (flag_leading_underscore > 0) \
266 builtin_define ("__FRV_UNDERSCORE__"); \
267 } \
cc956ba2 268 while (0)
36a05131
BS
269
270\f
36a05131
BS
271#define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
272
273#define NUM_GPRS (TARGET_GPR_32? 32 : 64)
274#define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
275#define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
276
c557edf4
RS
277/* X is a valid accumulator number if (X & ACC_MASK) == X. */
278#define ACC_MASK \
279 (!TARGET_MEDIA ? 0 \
280 : TARGET_ACC_4 ? 3 \
281 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
282 : 7)
283
36a05131
BS
284/* Macros to identify the blend of media instructions available. Revision 1
285 is the one found on the FR500. Revision 2 includes the changes made for
286 the FR400.
287
288 Treat the generic processor as a revision 1 machine for now, for
289 compatibility with earlier releases. */
290
291#define TARGET_MEDIA_REV1 \
292 (TARGET_MEDIA \
293 && (frv_cpu_type == FRV_CPU_GENERIC \
294 || frv_cpu_type == FRV_CPU_FR500))
295
296#define TARGET_MEDIA_REV2 \
c557edf4
RS
297 (TARGET_MEDIA \
298 && (frv_cpu_type == FRV_CPU_FR400 \
299 || frv_cpu_type == FRV_CPU_FR405 \
300 || frv_cpu_type == FRV_CPU_FR450 \
301 || frv_cpu_type == FRV_CPU_FR550))
302
303#define TARGET_MEDIA_FR450 \
304 (frv_cpu_type == FRV_CPU_FR450)
305
306#define TARGET_FR500_FR550_BUILTINS \
307 (frv_cpu_type == FRV_CPU_FR500 \
308 || frv_cpu_type == FRV_CPU_FR550)
309
310#define TARGET_FR405_BUILTINS \
311 (frv_cpu_type == FRV_CPU_FR405 \
312 || frv_cpu_type == FRV_CPU_FR450)
36a05131 313
bef8809e
AH
314#ifndef HAVE_AS_TLS
315#define HAVE_AS_TLS 0
316#endif
317
36a05131
BS
318/* This macro is a C statement to print on `stderr' a string describing the
319 particular machine description choice. Every machine description should
320 define `TARGET_VERSION'. For example:
321
322 #ifdef MOTOROLA
323 #define TARGET_VERSION \
324 fprintf (stderr, " (68k, Motorola syntax)");
325 #else
326 #define TARGET_VERSION \
327 fprintf (stderr, " (68k, MIT syntax)");
328 #endif */
329#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
330
36a05131
BS
331/* Some machines may desire to change what optimizations are performed for
332 various optimization levels. This macro, if defined, is executed once just
333 after the optimization level is determined and before the remainder of the
334 command options have been parsed. Values set in this macro are used as the
335 default values for the other command line options.
336
337 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
338 `-O' is specified, and 0 if neither is specified.
339
9cd10576 340 SIZE is nonzero if `-Os' is specified, 0 otherwise.
36a05131
BS
341
342 You should not use this macro to change options that are not
343 machine-specific. These should uniformly selected by the same optimization
aabcd309 344 level on all supported machines. Use this macro to enable machine-specific
36a05131
BS
345 optimizations.
346
347 *Do not examine `write_symbols' in this macro!* The debugging options are
348 *not supposed to alter the generated code. */
349#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
350
351
352/* Define this macro if debugging can be performed even without a frame
7ec022b2 353 pointer. If this macro is defined, GCC will turn on the
36a05131 354 `-fomit-frame-pointer' option whenever `-O' is specified. */
87b483a1 355/* Frv needs a specific frame layout that includes the frame pointer. */
36a05131
BS
356
357#define CAN_DEBUG_WITHOUT_FP
358
c557edf4 359#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
36a05131
BS
360\f
361/* Small Data Area Support. */
362/* Maximum size of variables that go in .sdata/.sbss.
363 The -msdata=foo switch also controls how small variables are handled. */
364#ifndef SDATA_DEFAULT_SIZE
365#define SDATA_DEFAULT_SIZE 8
366#endif
367
36a05131
BS
368
369/* Storage Layout */
370
371/* Define this macro to have the value 1 if the most significant bit in a byte
372 has the lowest number; otherwise define it to have the value zero. This
373 means that bit-field instructions count from the most significant bit. If
374 the machine has no bit-field instructions, then this must still be defined,
375 but it doesn't matter which value it is defined to. This macro need not be
376 a constant.
377
378 This macro does not affect the way structure fields are packed into bytes or
379 words; that is controlled by `BYTES_BIG_ENDIAN'. */
380#define BITS_BIG_ENDIAN 1
381
382/* Define this macro to have the value 1 if the most significant byte in a word
383 has the lowest number. This macro need not be a constant. */
384#define BYTES_BIG_ENDIAN 1
385
386/* Define this macro to have the value 1 if, in a multiword object, the most
387 significant word has the lowest number. This applies to both memory
7ec022b2 388 locations and registers; GCC fundamentally assumes that the order of
36a05131
BS
389 words in memory is the same as the order in registers. This macro need not
390 be a constant. */
391#define WORDS_BIG_ENDIAN 1
392
393/* Number of storage units in a word; normally 4. */
394#define UNITS_PER_WORD 4
395
396/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
397 which has the specified mode and signedness is to be stored in a register.
398 This macro is only called when TYPE is a scalar type.
399
400 On most RISC machines, which only have operations that operate on a full
401 register, define this macro to set M to `word_mode' if M is an integer mode
402 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
403 widened because wider-precision floating-point operations are usually more
404 expensive than their narrower counterparts.
405
406 For most machines, the macro definition does not change UNSIGNEDP. However,
407 some machines, have instructions that preferentially handle either signed or
408 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
409 loads from memory and 32-bit add instructions sign-extend the result to 64
410 bits. On such machines, set UNSIGNEDP according to which kind of extension
411 is more efficient.
412
413 Do not define this macro if it would never modify MODE. */
414#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
415 do \
416 { \
417 if (GET_MODE_CLASS (MODE) == MODE_INT \
418 && GET_MODE_SIZE (MODE) < 4) \
419 (MODE) = SImode; \
420 } \
421 while (0)
422
423/* Normal alignment required for function parameters on the stack, in bits.
424 All stack parameters receive at least this much alignment regardless of data
425 type. On most machines, this is the same as the size of an integer. */
426#define PARM_BOUNDARY 32
427
428/* Define this macro if you wish to preserve a certain alignment for the stack
429 pointer. The definition is a C expression for the desired alignment
430 (measured in bits).
431
432 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
433 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
434 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
435 unaligned while pushing arguments. */
436#define STACK_BOUNDARY 64
437
438/* Alignment required for a function entry point, in bits. */
439#define FUNCTION_BOUNDARY 128
440
441/* Biggest alignment that any data type can require on this machine,
442 in bits. */
443#define BIGGEST_ALIGNMENT 64
444
445/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
446 some reason. */
447#ifdef IN_TARGET_LIBS
448#define BIGGEST_FIELD_ALIGNMENT 64
449#else
450/* An expression for the alignment of a structure field FIELD if the
7ec022b2 451 alignment computed in the usual way is COMPUTED. GCC uses this
36a05131
BS
452 value instead of the value in `BIGGEST_ALIGNMENT' or
453 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
454#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
455 frv_adjust_field_align (FIELD, COMPUTED)
456#endif
457
458/* If defined, a C expression to compute the alignment for a static variable.
459 TYPE is the data type, and ALIGN is the alignment that the object
460 would ordinarily have. The value of this macro is used instead of that
461 alignment to align the object.
462
463 If this macro is not defined, then ALIGN is used.
464
465 One use of this macro is to increase alignment of medium-size data to make
466 it all fit in fewer cache lines. Another is to cause character arrays to be
467 word-aligned so that `strcpy' calls that copy constants to character arrays
468 can be done inline. */
469#define DATA_ALIGNMENT(TYPE, ALIGN) \
470 (TREE_CODE (TYPE) == ARRAY_TYPE \
471 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
472 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
473
474/* If defined, a C expression to compute the alignment given to a constant that
475 is being placed in memory. CONSTANT is the constant and ALIGN is the
476 alignment that the object would ordinarily have. The value of this macro is
477 used instead of that alignment to align the object.
478
479 If this macro is not defined, then ALIGN is used.
480
481 The typical use of this macro is to increase alignment for string constants
482 to be word aligned so that `strcpy' calls that copy constants can be done
483 inline. */
484#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
485 (TREE_CODE (EXP) == STRING_CST \
486 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
487
488/* Define this macro to be the value 1 if instructions will fail to work if
489 given data not on the nominal alignment. If instructions will merely go
490 slower in that case, define this macro as 0. */
491#define STRICT_ALIGNMENT 1
492
493/* Define this if you wish to imitate the way many other C compilers handle
494 alignment of bitfields and the structures that contain them.
495
43a88a8c 496 The behavior is that the type written for a bit-field (`int', `short', or
36a05131
BS
497 other integer type) imposes an alignment for the entire structure, as if the
498 structure really did contain an ordinary field of that type. In addition,
43a88a8c 499 the bit-field is placed within the structure so that it would fit within such
36a05131
BS
500 a field, not crossing a boundary for it.
501
43a88a8c 502 Thus, on most machines, a bit-field whose type is written as `int' would not
36a05131
BS
503 cross a four-byte boundary, and would force four-byte alignment for the
504 whole structure. (The alignment used may not be four bytes; it is
505 controlled by the other alignment parameters.)
506
507 If the macro is defined, its definition should be a C expression; a nonzero
508 value for the expression enables this behavior.
509
510 Note that if this macro is not defined, or its value is zero, some bitfields
511 may cross more than one alignment boundary. The compiler can support such
512 references if there are `insv', `extv', and `extzv' insns that can directly
513 reference memory.
514
515 The other known way of making bitfields work is to define
516 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
517 structure can be accessed with fullwords.
518
43a88a8c 519 Unless the machine has bit-field instructions or you define
36a05131
BS
520 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
521 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
522
7ec022b2 523 If your aim is to make GCC use the same conventions for laying out
36a05131
BS
524 bitfields as are used by another compiler, here is how to investigate what
525 the other compiler does. Compile and run this program:
526
527 struct foo1
528 {
529 char x;
530 char :0;
531 char y;
532 };
533
534 struct foo2
535 {
536 char x;
537 int :0;
538 char y;
539 };
540
541 main ()
542 {
543 printf ("Size of foo1 is %d\n",
544 sizeof (struct foo1));
545 printf ("Size of foo2 is %d\n",
546 sizeof (struct foo2));
547 exit (0);
548 }
549
550 If this prints 2 and 5, then the compiler's behavior is what you would get
551 from `PCC_BITFIELD_TYPE_MATTERS'.
552
553 Defined in svr4.h. */
554#define PCC_BITFIELD_TYPE_MATTERS 1
555
36a05131
BS
556\f
557/* Layout of Source Language Data Types. */
558
559#define CHAR_TYPE_SIZE 8
560#define SHORT_TYPE_SIZE 16
561#define INT_TYPE_SIZE 32
562#define LONG_TYPE_SIZE 32
563#define LONG_LONG_TYPE_SIZE 64
564#define FLOAT_TYPE_SIZE 32
565#define DOUBLE_TYPE_SIZE 64
566#define LONG_DOUBLE_TYPE_SIZE 64
567
568/* An expression whose value is 1 or 0, according to whether the type `char'
569 should be signed or unsigned by default. The user can always override this
570 default with the options `-fsigned-char' and `-funsigned-char'. */
571#define DEFAULT_SIGNED_CHAR 1
572
573\f
574/* General purpose registers. */
575#define GPR_FIRST 0 /* First gpr */
576#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
577#define GPR_R0 GPR_FIRST /* R0, constant 0 */
578#define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
579#define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
580 /* small data register */
34208acf
AO
581#define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
582#define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
583#define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
584#define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
585
b8a19ec4
NC
586#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
587
34208acf 588#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
36a05131
BS
589
590#define FPR_FIRST 64 /* First FP reg */
591#define FPR_LAST 127 /* Last FP reg */
592
36a05131
BS
593#define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
594
595/* We reserve the last CR and CCR in each category to be used as a reload
596 register to reload the CR/CCR registers. This is a kludge. */
597#define CC_FIRST 128 /* First ICC/FCC reg */
598#define CC_LAST 135 /* Last ICC/FCC reg */
599#define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
600#define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
601#define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
602#define FCC_FIRST (CC_FIRST) /* First FCC reg */
603#define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
604
605/* Amount to shift a value to locate a ICC or FCC register in the CCR
606 register and shift it to the bottom 4 bits. */
607#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
608
609/* Mask to isolate a single ICC/FCC value. */
610#define CC_MASK 0xf
611
612/* Masks to isolate the various bits in an ICC field. */
613#define ICC_MASK_N 0x8 /* negative */
614#define ICC_MASK_Z 0x4 /* zero */
615#define ICC_MASK_V 0x2 /* overflow */
616#define ICC_MASK_C 0x1 /* carry */
617
618/* Mask to isolate the N/Z flags in an ICC. */
619#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
620
621/* Mask to isolate the Z/C flags in an ICC. */
622#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
623
624/* Masks to isolate the various bits in a FCC field. */
625#define FCC_MASK_E 0x8 /* equal */
626#define FCC_MASK_L 0x4 /* less than */
627#define FCC_MASK_G 0x2 /* greater than */
628#define FCC_MASK_U 0x1 /* unordered */
629
630/* For CCR registers, the machine wants CR4..CR7 to be used for integer
631 code and CR0..CR3 to be used for floating point. */
632#define CR_FIRST 136 /* First CCR */
633#define CR_LAST 143 /* Last CCR */
634#define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
635#define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
636#define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
637#define ICR_TEMP ICR_LAST /* Temp integer CCR */
638#define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
639#define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
640
641/* Amount to shift a value to locate a CR register in the CCCR special purpose
642 register and shift it to the bottom 2 bits. */
643#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
644
645/* Mask to isolate a single CR value. */
646#define CR_MASK 0x3
647
648#define ACC_FIRST 144 /* First acc register */
c557edf4 649#define ACC_LAST 155 /* Last acc register */
36a05131 650
c557edf4
RS
651#define ACCG_FIRST 156 /* First accg register */
652#define ACCG_LAST 167 /* Last accg register */
36a05131 653
c557edf4 654#define AP_FIRST 168 /* fake argument pointer */
36a05131 655
c557edf4
RS
656#define SPR_FIRST 169
657#define SPR_LAST 172
36a05131
BS
658#define LR_REGNO (SPR_FIRST)
659#define LCR_REGNO (SPR_FIRST + 1)
c557edf4
RS
660#define IACC_FIRST (SPR_FIRST + 2)
661#define IACC_LAST (SPR_FIRST + 3)
36a05131
BS
662
663#define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
664#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
665#define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
666#define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
667#define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
668#define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
669#define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
670#define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
671#define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
672#define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
673#define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
674#define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
675
676#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
677#define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
678#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
679#define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
680#define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
681#define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
682#define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
683#define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
684#define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
685#define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686#define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687
688#define MAX_STACK_IMMEDIATE_OFFSET 2047
689
690\f
691/* Register Basics. */
692
693/* Number of hardware registers known to the compiler. They receive numbers 0
694 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
695 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
696#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
697
698/* The first/last register that can contain the arguments to a function. */
699#define FIRST_ARG_REGNUM (GPR_FIRST + 8)
700#define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
701
702/* Registers used by the exception handling functions. These should be
1ae58c30 703 registers that are not otherwise used by the calling sequence. */
36a05131
BS
704#define FIRST_EH_REGNUM 14
705#define LAST_EH_REGNUM 15
706
707/* Scratch registers used in the prologue, epilogue and thunks.
708 OFFSET_REGNO is for loading constant addends that are too big for a
709 single instruction. TEMP_REGNO is used for transferring SPRs to and from
710 the stack, and various other activities. */
711#define OFFSET_REGNO 4
712#define TEMP_REGNO 5
713
714/* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
715 which is sometimes used to set up the frame pointer. */
716#define OLD_SP_REGNO 6
717
718/* Registers used in the epilogue. STACKADJ_REGNO stores the exception
719 handler's stack adjustment. */
720#define STACKADJ_REGNO 6
721
722/* Registers used in thunks. JMP_REGNO is used for loading the target
723 address. */
724#define JUMP_REGNO 6
725
726#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
727 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
728#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
729#define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
730
e1175f68
RS
731#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
732
36a05131
BS
733/* An initializer that says which registers are used for fixed purposes all
734 throughout the compiled code and are therefore not available for general
735 allocation. These would include the stack pointer, the frame pointer
736 (except on machines where that can be used as a general register when no
737 frame pointer is needed), the program counter on machines where that is
738 considered one of the addressable registers, and any other numbered register
739 with a standard use.
740
741 This information is expressed as a sequence of numbers, separated by commas
742 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
743 otherwise.
744
745 The table initialized from this macro, and the table initialized by the
746 following one, may be overridden at run time either automatically, by the
747 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
748 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
749
750/* gr0 -- Hard Zero
751 gr1 -- Stack Pointer
752 gr2 -- Frame Pointer
753 gr3 -- Hidden Parameter
754 gr16 -- Small Data reserved
755 gr17 -- Pic reserved
756 gr28 -- OS reserved
757 gr29 -- OS reserved
758 gr30 -- OS reserved
759 gr31 -- OS reserved
760 cr3 -- reserved to reload FCC registers.
761 cr7 -- reserved to reload ICC registers. */
762#define FIXED_REGISTERS \
763{ /* Integer Registers */ \
764 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
765 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
766 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
767 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
768 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
769 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
770 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
771 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
772 /* Float Registers */ \
773 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
774 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
775 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
776 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
777 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
778 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
779 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
780 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
781 /* Condition Code Registers */ \
782 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
783 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
784 /* Conditional execution Registers (CCR) */ \
785 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
786 /* Accumulators */ \
787 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
c557edf4
RS
788 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
789 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
790 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
36a05131 791 /* Other registers */ \
c557edf4 792 1, /* 168, AP - fake arg ptr */ \
8d8256c1 793 1, /* 169, LR - Link register*/ \
c557edf4
RS
794 0, /* 170, LCR - Loop count reg*/ \
795 1, 1 /* 171-172, iacc0 */ \
36a05131
BS
796}
797
798/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
799 general) by function calls as well as for fixed registers. This macro
800 therefore identifies the registers that are not available for general
801 allocation of values that must live across function calls.
802
803 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
804 saves it on function entry and restores it on function exit, if the register
805 is used within the function. */
806#define CALL_USED_REGISTERS \
807{ /* Integer Registers */ \
808 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
809 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
810 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
811 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
812 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
813 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
814 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
815 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
816 /* Float Registers */ \
817 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
818 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
819 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
820 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
821 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
822 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
823 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
824 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
825 /* Condition Code Registers */ \
826 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
827 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
828 /* Conditional execution Registers (CCR) */ \
829 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
830 /* Accumulators */ \
831 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
c557edf4
RS
832 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
833 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
834 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
36a05131 835 /* Other registers */ \
c557edf4
RS
836 1, /* 168, AP - fake arg ptr */ \
837 1, /* 169, LR - Link register*/ \
838 1, /* 170, LCR - Loop count reg */ \
839 1, 1 /* 171-172, iacc0 */ \
36a05131
BS
840}
841
842/* Zero or more C statements that may conditionally modify two variables
843 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
844 been initialized from the two preceding macros.
845
846 This is necessary in case the fixed or call-clobbered registers depend on
847 target flags.
848
849 You need not define this macro if it has no work to do.
850
851 If the usage of an entire class of registers depends on the target flags,
852 you may indicate this to GCC by using this macro to modify `fixed_regs' and
853 `call_used_regs' to 1 for each of the registers in the classes which should
854 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
855 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
856
857 (However, if this class is not included in `GENERAL_REGS' and all of the
858 insn patterns whose constraints permit this class are controlled by target
859 switches, then GCC will automatically avoid using these registers when the
860 target switches are opposed to them.) */
861
862#define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
863
864\f
865/* Order of allocation of registers. */
866
867/* If defined, an initializer for a vector of integers, containing the numbers
7ec022b2 868 of hard registers in the order in which GCC should prefer to use them
36a05131
BS
869 (from most preferred to least).
870
871 If this macro is not defined, registers are used lowest numbered first (all
872 else being equal).
873
874 One use of this macro is on machines where the highest numbered registers
875 must always be saved and the save-multiple-registers instruction supports
876 only sequences of consecutive registers. On such machines, define
877 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
878 allocatable register first. */
879
880/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
881 have a better chance of allocating 2 registers at a time and can use the
882 double word load/store instructions in the prologue. */
883#define REG_ALLOC_ORDER \
884{ \
885 /* volatile registers */ \
886 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
887 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
888 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
889 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
890 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
891 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
892 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
893 \
894 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
895 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
896 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
897 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
898 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
899 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
900 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
901 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
902 \
903 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
904 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
905 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
906 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
907 \
908 /* saved registers */ \
909 GPR_FIRST + 18, GPR_FIRST + 19, \
910 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
911 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
912 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
913 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
914 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
915 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
916 GPR_FIRST + 16, GPR_FIRST + 17, \
917 \
918 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
919 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
920 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
921 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
922 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
923 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
924 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
925 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
926 \
927 /* special or fixed registers */ \
928 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
929 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
930 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
931 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
c557edf4 932 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
36a05131
BS
933 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
934 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
c557edf4
RS
935 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
936 AP_FIRST, LR_REGNO, LCR_REGNO, \
937 IACC_FIRST + 0, IACC_FIRST + 1 \
36a05131
BS
938}
939
940\f
941/* How Values Fit in Registers. */
942
943/* A C expression for the number of consecutive hard registers, starting at
944 register number REGNO, required to hold a value of mode MODE.
945
946 On a machine where all registers are exactly one word, a suitable definition
947 of this macro is
948
949 #define HARD_REGNO_NREGS(REGNO, MODE) \
950 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
951 / UNITS_PER_WORD)) */
952
953/* On the FRV, make the CC modes take 3 words in the integer registers, so that
954 we can build the appropriate instructions to properly reload the values. */
955#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
956
957/* A C expression that is nonzero if it is permissible to store a value of mode
958 MODE in hard register number REGNO (or in several registers starting with
959 that one). For a machine where all registers are equivalent, a suitable
960 definition is
961
962 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
963
964 It is not necessary for this macro to check for the numbers of fixed
965 registers, because the allocation mechanism considers them to be always
966 occupied.
967
968 On some machines, double-precision values must be kept in even/odd register
969 pairs. The way to implement that is to define this macro to reject odd
970 register numbers for such modes.
971
972 The minimum requirement for a mode to be OK in a register is that the
973 `movMODE' instruction pattern support moves between the register and any
974 other hard register for which the mode is OK; and that moving a value into
975 the register and back out not alter it.
976
977 Since the same instruction used to move `SImode' will work for all narrower
978 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
979 to distinguish between these modes, provided you define patterns `movhi',
980 etc., to take advantage of this. This is useful because of the interaction
981 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
982 all integer modes to be tieable.
983
984 Many machines have special registers for floating point arithmetic. Often
985 people assume that floating point machine modes are allowed only in floating
986 point registers. This is not true. Any registers that can hold integers
987 can safely *hold* a floating point machine mode, whether or not floating
988 arithmetic can be done on it in those registers. Integer move instructions
989 can be used to move the values.
990
991 On some machines, though, the converse is true: fixed-point machine modes
992 may not go in floating registers. This is true if the floating registers
993 normalize any value stored in them, because storing a non-floating value
994 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
995 fixed-point machine modes in floating registers. But if the floating
996 registers do not automatically normalize, if you can store any bit pattern
997 in one and retrieve it unchanged without a trap, then any machine mode may
998 go in a floating register, so you can define this macro to say so.
999
1000 The primary significance of special floating registers is rather that they
1001 are the registers acceptable in floating point arithmetic instructions.
1002 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1003 writing the proper constraints for those instructions.
1004
1005 On some machines, the floating registers are especially slow to access, so
1006 that it is better to store a value in a stack frame than in such a register
1007 if floating point arithmetic is not being done. As long as the floating
1008 registers are not in class `GENERAL_REGS', they will not be used unless some
1009 pattern's constraint asks for one. */
1010#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1011
1012/* A C expression that is nonzero if it is desirable to choose register
1013 allocation so as to avoid move instructions between a value of mode MODE1
1014 and a value of mode MODE2.
1015
1016 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1017 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1018 zero. */
1019#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1020
1021/* Define this macro if the compiler should avoid copies to/from CCmode
1022 registers. You should only define this macro if support fo copying to/from
1023 CCmode is incomplete. */
1024#define AVOID_CCMODE_COPIES
1025
1026\f
1027/* Register Classes. */
1028
1029/* An enumeral type that must be defined with all the register class names as
1030 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1031 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1032 which is not a register class but rather tells how many classes there are.
1033
1034 Each register class has a number, which is the value of casting the class
1035 name to type `int'. The number serves as an index in many of the tables
1036 described below. */
1037enum reg_class
1038{
1039 NO_REGS,
1040 ICC_REGS,
1041 FCC_REGS,
1042 CC_REGS,
1043 ICR_REGS,
1044 FCR_REGS,
1045 CR_REGS,
1046 LCR_REG,
1047 LR_REG,
bef8809e
AH
1048 GR8_REGS,
1049 GR9_REGS,
1050 GR89_REGS,
34208acf
AO
1051 FDPIC_REGS,
1052 FDPIC_FPTR_REGS,
1053 FDPIC_CALL_REGS,
36a05131
BS
1054 SPR_REGS,
1055 QUAD_ACC_REGS,
1056 EVEN_ACC_REGS,
1057 ACC_REGS,
1058 ACCG_REGS,
1059 QUAD_FPR_REGS,
1060 FEVEN_REGS,
1061 FPR_REGS,
1062 QUAD_REGS,
1063 EVEN_REGS,
1064 GPR_REGS,
1065 ALL_REGS,
1066 LIM_REG_CLASSES
1067};
1068
1069#define GENERAL_REGS GPR_REGS
1070
1071/* The number of distinct register classes, defined as follows:
1072
1073 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1074#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1075
1076/* An initializer containing the names of the register classes as C string
1077 constants. These names are used in writing some of the debugging dumps. */
1078#define REG_CLASS_NAMES { \
1079 "NO_REGS", \
1080 "ICC_REGS", \
1081 "FCC_REGS", \
1082 "CC_REGS", \
1083 "ICR_REGS", \
1084 "FCR_REGS", \
1085 "CR_REGS", \
1086 "LCR_REG", \
1087 "LR_REG", \
bef8809e
AH
1088 "GR8_REGS", \
1089 "GR9_REGS", \
1090 "GR89_REGS", \
34208acf
AO
1091 "FDPIC_REGS", \
1092 "FDPIC_FPTR_REGS", \
1093 "FDPIC_CALL_REGS", \
36a05131
BS
1094 "SPR_REGS", \
1095 "QUAD_ACC_REGS", \
1096 "EVEN_ACC_REGS", \
1097 "ACC_REGS", \
1098 "ACCG_REGS", \
1099 "QUAD_FPR_REGS", \
1100 "FEVEN_REGS", \
1101 "FPR_REGS", \
1102 "QUAD_REGS", \
1103 "EVEN_REGS", \
1104 "GPR_REGS", \
1105 "ALL_REGS" \
1106}
1107
1108/* An initializer containing the contents of the register classes, as integers
1109 which are bit masks. The Nth integer specifies the contents of class N.
1110 The way the integer MASK is interpreted is that register R is in the class
1111 if `MASK & (1 << R)' is 1.
1112
1113 When the machine has more than 32 registers, an integer does not suffice.
1114 Then the integers are replaced by sub-initializers, braced groupings
1115 containing several integers. Each sub-initializer must be suitable as an
1116 initializer for the type `HARD_REG_SET' which is defined in
1117 `hard-reg-set.h'. */
1118#define REG_CLASS_CONTENTS \
1119{ /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1120 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1121 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1122 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1123 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1124 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1125 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1126 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
c557edf4
RS
1127 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1128 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
bef8809e
AH
1129 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1130 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1131 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
34208acf
AO
1132 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1133 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1134 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
c557edf4
RS
1135 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1136 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1137 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1138 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1139 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
36a05131
BS
1140 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1141 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1142 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1143 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1144 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
c557edf4
RS
1145 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1146 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
36a05131
BS
1147}
1148
35f2d8ef
NC
1149/* The following macro defines cover classes for Integrated Register
1150 Allocator. Cover classes is a set of non-intersected register
1151 classes covering all hard registers used for register allocation
1152 purpose. Any move between two registers of a cover class should be
1153 cheaper than load or store of the registers. The macro value is
1154 array of register classes with LIM_REG_CLASSES used as the end
1155 marker. */
1156
1157#define IRA_COVER_CLASSES \
1158{ \
1159 GPR_REGS, FPR_REGS, ACC_REGS, ICR_REGS, FCR_REGS, ICC_REGS, FCC_REGS, \
1160 ACCG_REGS, SPR_REGS, \
1161 LIM_REG_CLASSES \
1162}
1163
36a05131
BS
1164/* A C expression whose value is a register class containing hard register
1165 REGNO. In general there is more than one such class; choose a class which
1166 is "minimal", meaning that no smaller class also contains the register. */
1167
1168extern enum reg_class regno_reg_class[];
1169#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1170
1171/* A macro whose definition is the name of the class to which a valid base
1172 register must belong. A base register is one used in an address which is
1173 the register value plus a displacement. */
1174#define BASE_REG_CLASS GPR_REGS
1175
1176/* A macro whose definition is the name of the class to which a valid index
1177 register must belong. An index register is one used in an address where its
1178 value is either multiplied by a scale factor or added to another register
1179 (as well as added to a displacement). */
1180#define INDEX_REG_CLASS GPR_REGS
1181
1182/* A C expression which defines the machine-dependent operand constraint
1183 letters for register classes. If CHAR is such a letter, the value should be
1184 the register class corresponding to it. Otherwise, the value should be
1185 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1186 will not be passed to this macro; you do not need to handle it.
1187
1188 The following letters are unavailable, due to being used as
1189 constraints:
1190 '0'..'9'
1191 '<', '>'
1192 'E', 'F', 'G', 'H'
1193 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1194 'Q', 'R', 'S', 'T', 'U'
1195 'V', 'X'
1196 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1197
1198extern enum reg_class reg_class_from_letter[];
e0c32c62 1199#define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
36a05131
BS
1200
1201/* A C expression which is nonzero if register number NUM is suitable for use
1202 as a base register in operand addresses. It may be either a suitable hard
1203 register or a pseudo register that has been allocated such a hard register. */
1204#define REGNO_OK_FOR_BASE_P(NUM) \
1205 ((NUM) < FIRST_PSEUDO_REGISTER \
1206 ? GPR_P (NUM) \
1207 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1208
1209/* A C expression which is nonzero if register number NUM is suitable for use
1210 as an index register in operand addresses. It may be either a suitable hard
1211 register or a pseudo register that has been allocated such a hard register.
1212
1213 The difference between an index register and a base register is that the
1214 index register may be scaled. If an address involves the sum of two
1215 registers, neither one of them scaled, then either one may be labeled the
1216 "base" and the other the "index"; but whichever labeling is used must fit
1217 the machine's constraints of which registers may serve in each capacity.
1218 The compiler will try both labelings, looking for one that is valid, and
1219 will reload one or both registers only if neither labeling works. */
1220#define REGNO_OK_FOR_INDEX_P(NUM) \
1221 ((NUM) < FIRST_PSEUDO_REGISTER \
1222 ? GPR_P (NUM) \
1223 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1224
1225/* A C expression that places additional restrictions on the register class to
1226 use when it is necessary to copy value X into a register in class CLASS.
1227 The value is a register class; perhaps CLASS, or perhaps another, smaller
1228 class. On many machines, the following definition is safe:
1229
1230 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1231
1232 Sometimes returning a more restrictive class makes better code. For
1233 example, on the 68000, when X is an integer constant that is in range for a
1234 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1235 as CLASS includes the data registers. Requiring a data register guarantees
1236 that a `moveq' will be used.
1237
1238 If X is a `const_double', by returning `NO_REGS' you can force X into a
1239 memory constant. This is useful on certain machines where immediate
1240 floating values cannot be loaded into certain kinds of registers.
1241
1242 This declaration must be present. */
1243#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1244
1245#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
35f2d8ef 1246 frv_secondary_reload_class (CLASS, MODE, X)
36a05131
BS
1247
1248#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
35f2d8ef 1249 frv_secondary_reload_class (CLASS, MODE, X)
36a05131 1250
36a05131
BS
1251/* A C expression for the maximum number of consecutive registers of
1252 class CLASS needed to hold a value of mode MODE.
1253
1254 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1255 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1256 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1257
1258 This macro helps control the handling of multiple-word values in
1259 the reload pass.
1260
1261 This declaration is required. */
1262#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1263
1264#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1265
2300b9dd 1266/* 6-bit signed immediate. */
36a05131 1267#define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
2300b9dd 1268/* 10-bit signed immediate. */
36a05131
BS
1269#define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1270/* Unused */
1271#define CONST_OK_FOR_K(VALUE) 0
2300b9dd 1272/* 16-bit signed immediate. */
36a05131 1273#define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
2300b9dd 1274/* 16-bit unsigned immediate. */
36a05131 1275#define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
2300b9dd 1276/* 12-bit signed immediate that is negative. */
36a05131
BS
1277#define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1278/* Zero */
1279#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
2300b9dd 1280/* 12-bit signed immediate that is negative. */
36a05131
BS
1281#define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1282
1283/* A C expression that defines the machine-dependent operand constraint letters
1284 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1285 If C is one of those letters, the expression should check that VALUE, an
1286 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1287 is not one of those letters, the value should be 0 regardless of VALUE. */
1288#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1289 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1290 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1291 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1292 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1293 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1294 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1295 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1296 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1297 : 0)
1298
1299
1300/* A C expression that defines the machine-dependent operand constraint letters
1301 (`G', `H') that specify particular ranges of `const_double' values.
1302
1303 If C is one of those letters, the expression should check that VALUE, an RTX
1304 of code `const_double', is in the appropriate range and return 1 if so, 0
1305 otherwise. If C is not one of those letters, the value should be 0
1306 regardless of VALUE.
1307
1308 `const_double' is used for all floating-point constants and for `DImode'
1309 fixed-point constants. A given letter can accept either or both kinds of
1310 values. It can use `GET_MODE' to distinguish between these kinds. */
1311
1312#define CONST_DOUBLE_OK_FOR_G(VALUE) \
1313 ((GET_MODE (VALUE) == VOIDmode \
1314 && CONST_DOUBLE_LOW (VALUE) == 0 \
1315 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1316 || ((GET_MODE (VALUE) == SFmode \
1317 || GET_MODE (VALUE) == DFmode) \
1318 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1319
1320#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1321
1322#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1323 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1324 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1325 : 0)
1326
1327/* A C expression that defines the optional machine-dependent constraint
1328 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1329 types of operands, usually memory references, for the target machine.
1330 Normally this macro will not be defined. If it is required for a particular
1331 target machine, it should return 1 if VALUE corresponds to the operand type
1332 represented by the constraint letter C. If C is not defined as an extra
1333 constraint, the value returned should be 0 regardless of VALUE.
1334
1335 For example, on the ROMP, load instructions cannot have their output in r0
1336 if the memory reference contains a symbolic address. Constraint letter `Q'
1337 is defined as representing a memory address that does *not* contain a
1338 symbolic address. An alternative is specified with a `Q' constraint on the
1339 input and `r' on the output. The next alternative specifies `m' on the
1340 input and a register class that does not include r0 on the output. */
1341
34208acf 1342/* 12-bit relocations. */
36a05131 1343#define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
34208acf 1344 (got12_operand (VALUE, GET_MODE (VALUE)))
36a05131
BS
1345
1346/* Double word memory ops that take one instruction. */
1347#define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1348 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1349
1350/* SYMBOL_REF */
c557edf4
RS
1351#define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1352 (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
36a05131
BS
1353
1354/* Double word memory ops that take two instructions. */
1355#define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1356 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1357
1358/* Memory operand for conditional execution. */
1359#define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1360 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1361
1362#define EXTRA_CONSTRAINT(VALUE, C) \
1363 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1364 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1365 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1366 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1367 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1368 : 0)
1369
7034d31b
NC
1370#define EXTRA_MEMORY_CONSTRAINT(C,STR) \
1371 ((C) == 'U' || (C) == 'R' || (C) == 'T')
1372
bef8809e
AH
1373#define CONSTRAINT_LEN(C, STR) \
1374 ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1375
1376#define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1377 (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1378 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1379 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1380 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1381 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1382 REG_CLASS_FROM_LETTER ((C)))
1383
36a05131
BS
1384\f
1385/* Basic Stack Layout. */
1386
1387/* Structure to describe information about a saved range of registers */
1388
1389typedef struct frv_stack_regs {
1390 const char * name; /* name of the register ranges */
1391 int first; /* first register in the range */
1392 int last; /* last register in the range */
1393 int size_1word; /* # of bytes to be stored via 1 word stores */
1394 int size_2words; /* # of bytes to be stored via 2 word stores */
1395 unsigned char field_p; /* true if the registers are a single SPR */
1396 unsigned char dword_p; /* true if we can do dword stores */
1397 unsigned char special_p; /* true if the regs have a fixed save loc. */
1398} frv_stack_regs_t;
1399
1400/* Register ranges to look into saving. */
1401#define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1402#define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1403#define STACK_REGS_LR 2 /* LR register */
1404#define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1405#define STACK_REGS_LCR 5 /* lcr register */
1406#define STACK_REGS_STDARG 6 /* stdarg registers */
1407#define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1408#define STACK_REGS_FP 8 /* FP register */
1409#define STACK_REGS_MAX 9 /* # of register ranges */
1410
1411/* Values for save_p field. */
1412#define REG_SAVE_NO_SAVE 0 /* register not saved */
1413#define REG_SAVE_1WORD 1 /* save the register */
1414#define REG_SAVE_2WORDS 2 /* save register and register+1 */
1415
1416/* Structure used to define the frv stack. */
1417
1418typedef struct frv_stack {
1419 int total_size; /* total bytes allocated for stack */
1420 int vars_size; /* variable save area size */
1421 int parameter_size; /* outgoing parameter size */
1422 int stdarg_size; /* size of regs needed to be saved for stdarg */
1423 int regs_size; /* size of the saved registers */
1424 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
1425 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
1426 int header_size; /* size of the old FP, struct ret., LR save */
1427 int pretend_size; /* size of pretend args */
1428 int vars_offset; /* offset to save local variables from new SP*/
1429 int regs_offset; /* offset to save registers from new SP */
1430 /* register range information */
1431 frv_stack_regs_t regs[STACK_REGS_MAX];
1432 /* offset to store each register */
1433 int reg_offset[FIRST_PSEUDO_REGISTER];
1434 /* whether to save register (& reg+1) */
1435 unsigned char save_p[FIRST_PSEUDO_REGISTER];
1436} frv_stack_t;
1437
1438/* Define this macro if pushing a word onto the stack moves the stack pointer
1439 to a smaller address. */
1440#define STACK_GROWS_DOWNWARD 1
1441
a4d05547 1442/* Define this macro to nonzero if the addresses of local variable slots
f62c8a5c
JJ
1443 are at negative offsets from the frame pointer. */
1444#define FRAME_GROWS_DOWNWARD 1
36a05131
BS
1445
1446/* Offset from the frame pointer to the first local variable slot to be
1447 allocated.
1448
1449 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1450 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1451 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1452#define STARTING_FRAME_OFFSET 0
1453
1454/* Offset from the stack pointer register to the first location at which
1455 outgoing arguments are placed. If not specified, the default value of zero
1456 is used. This is the proper value for most machines.
1457
1458 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1459 location at which outgoing arguments are placed. */
1460#define STACK_POINTER_OFFSET 0
1461
1462/* Offset from the argument pointer register to the first argument's address.
1463 On some machines it may depend on the data type of the function.
1464
1465 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1466 argument's address. */
1467#define FIRST_PARM_OFFSET(FUNDECL) 0
1468
1469/* A C expression whose value is RTL representing the address in a stack frame
1470 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1471 an RTL expression for the address of the stack frame itself.
1472
1473 If you don't define this macro, the default is to return the value of
1474 FRAMEADDR--that is, the stack frame address is also the address of the stack
1475 word that points to the previous frame. */
1476#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1477
1478/* A C expression whose value is RTL representing the value of the return
1479 address for the frame COUNT steps up from the current frame, after the
1480 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1481 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1482 defined.
1483
1484 The value of the expression must always be the correct address when COUNT is
1485 zero, but may be `NULL_RTX' if there is not way to determine the return
1486 address of other frames. */
1487#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1488
36a05131
BS
1489#define RETURN_POINTER_REGNUM LR_REGNO
1490
1491/* A C expression whose value is RTL representing the location of the incoming
1492 return address at the beginning of any function, before the prologue. This
1493 RTL is either a `REG', indicating that the return value is saved in `REG',
1494 or a `MEM' representing a location in the stack.
1495
1496 You only need to define this macro if you want to support call frame
1497 debugging information like that provided by DWARF 2. */
1498#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1499
1500\f
1501/* Register That Address the Stack Frame. */
1502
1503/* The register number of the stack pointer register, which must also be a
1504 fixed register according to `FIXED_REGISTERS'. On most machines, the
1505 hardware determines which register this is. */
1506#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1507
1508/* The register number of the frame pointer register, which is used to access
1509 automatic variables in the stack frame. On some machines, the hardware
1510 determines which register this is. On other machines, you can choose any
1511 register you wish for this purpose. */
1512#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1513
1514/* The register number of the arg pointer register, which is used to access the
1515 function's argument list. On some machines, this is the same as the frame
1516 pointer register. On some machines, the hardware determines which register
1517 this is. On other machines, you can choose any register you wish for this
1518 purpose. If this is not the same register as the frame pointer register,
1519 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1520 arrange to be able to eliminate it. */
1521
1522/* On frv this is a fake register that is eliminated in
1523 terms of either the frame pointer or stack pointer. */
1524#define ARG_POINTER_REGNUM AP_FIRST
1525
1526/* Register numbers used for passing a function's static chain pointer. If
1527 register windows are used, the register number as seen by the called
1528 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1529 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1530 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1531
1532 The static chain register need not be a fixed register.
1533
1534 If the static chain is passed in memory, these macros should not be defined;
1535 instead, the next two macros should be defined. */
1536#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1537#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1538
1539\f
1540/* Eliminating the Frame Pointer and the Arg Pointer. */
1541
36a05131
BS
1542/* If defined, this macro specifies a table of register pairs used to eliminate
1543 unneeded registers that point into the stack frame. If it is not defined,
1544 the only elimination attempted by the compiler is to replace references to
1545 the frame pointer with references to the stack pointer.
1546
1547 The definition of this macro is a list of structure initializations, each of
1548 which specifies an original and replacement register.
1549
1550 On some machines, the position of the argument pointer is not known until
1551 the compilation is completed. In such a case, a separate hard register must
1552 be used for the argument pointer. This register can be eliminated by
1553 replacing it with either the frame pointer or the argument pointer,
1554 depending on whether or not the frame pointer has been eliminated.
1555
1556 In this case, you might specify:
1557 #define ELIMINABLE_REGS \
1558 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1559 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1560 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1561
1562 Note that the elimination of the argument pointer with the stack pointer is
1563 specified first since that is the preferred elimination. */
1564
1565#define ELIMINABLE_REGS \
1566{ \
1567 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1568 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1569 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1570}
1571
36a05131
BS
1572/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1573 initial difference between the specified pair of registers. This macro must
1574 be defined if `ELIMINABLE_REGS' is defined. */
1575
1576#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1577 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1578
1579\f
1580/* Passing Function Arguments on the Stack. */
1581
1582/* If defined, the maximum amount of space required for outgoing arguments will
1583 be computed and placed into the variable
38173d38 1584 `crtl->outgoing_args_size'. No space will be pushed onto the
36a05131
BS
1585 stack for each call; instead, the function prologue should increase the
1586 stack frame size by this amount.
1587
1588 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1589 proper. */
1590#define ACCUMULATE_OUTGOING_ARGS 1
1591
36a05131 1592\f
36a05131
BS
1593/* The number of register assigned to holding function arguments. */
1594
1595#define FRV_NUM_ARG_REGS 6
1596
36a05131
BS
1597#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1598 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1599
1600/* Define this macro if the target machine has "register windows", so that the
1601 register in which a function sees an arguments is not necessarily the same
1602 as the one in which the caller passed the argument.
1603
1604 For such machines, `FUNCTION_ARG' computes the register in which the caller
1605 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1606 fashion to tell the function being called where the arguments will arrive.
1607
1608 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1609 purposes. */
1610
1611#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1612 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1613
36a05131
BS
1614/* A C type for declaring a variable that is used as the first argument of
1615 `FUNCTION_ARG' and other related values. For some target machines, the type
1616 `int' suffices and can hold the number of bytes of argument so far.
1617
1618 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1619 that have been passed on the stack. The compiler has other variables to
1620 keep track of that. For target machines on which all arguments are passed
1621 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1622 however, the data structure must exist and should not be empty, so use
1623 `int'. */
1624#define CUMULATIVE_ARGS int
1625
1626/* A C statement (sans semicolon) for initializing the variable CUM for the
1627 state at the beginning of the argument list. The variable has type
1628 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1629 of the function which will receive the args, or 0 if the args are to a
1630 compiler support library function. The value of INDIRECT is nonzero when
1631 processing an indirect call, for example a call through a function pointer.
1632 The value of INDIRECT is zero for a call to an explicitly named function, a
1633 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1634 arguments for the function being compiled.
1635
1636 When processing a call to a compiler support library function, LIBNAME
1637 identifies which one. It is a `symbol_ref' rtx which contains the name of
1638 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1639 being processed. Thus, each time this macro is called, either LIBNAME or
1640 FNTYPE is nonzero, but never both of them at once. */
1641
0f6937fe 1642#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
563a317a 1643 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
36a05131
BS
1644
1645/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1646 arguments for the function being compiled. If this macro is undefined,
1647 `INIT_CUMULATIVE_ARGS' is used instead.
1648
1649 The value passed for LIBNAME is always 0, since library routines with
7ec022b2 1650 special calling conventions are never compiled with GCC. The argument
36a05131
BS
1651 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1652
1653#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
563a317a 1654 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
36a05131
BS
1655
1656/* A C statement (sans semicolon) to update the summarizer variable CUM to
1657 advance past an argument in the argument list. The values MODE, TYPE and
1658 NAMED describe that argument. Once this is done, the variable CUM is
1659 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1660
1661 This macro need not do anything if the argument in question was passed on
1662 the stack. The compiler knows how to track the amount of stack space used
1663 for arguments without any special help. */
1664#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1665 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1666
1667/* If defined, a C expression that gives the alignment boundary, in bits, of an
1668 argument with the specified mode and type. If it is not defined,
1669 `PARM_BOUNDARY' is used for all arguments. */
1670
1671#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1672 frv_function_arg_boundary (MODE, TYPE)
1673
1674/* A C expression that is nonzero if REGNO is the number of a hard register in
1675 which function arguments are sometimes passed. This does *not* include
1676 implicit arguments such as the static chain and the structure-value address.
1677 On many machines, no registers can be used for this purpose since all
1678 function arguments are pushed on the stack. */
1679#define FUNCTION_ARG_REGNO_P(REGNO) \
1680 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1681
1682\f
1683/* How Scalar Function Values are Returned. */
1684
1685/* The number of the hard register that is used to return a scalar value from a
1686 function call. */
1687#define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1688
219d92a4 1689#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
36a05131
BS
1690
1691\f
1692/* How Large Values are Returned. */
1693
56f42830 1694/* The number of the register that is used to pass the structure
8ac411c7
KH
1695 value address. */
1696#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
36a05131
BS
1697
1698\f
1699/* Function Entry and Exit. */
1700
1701/* Define this macro as a C expression that is nonzero if the return
1702 instruction or the function epilogue ignores the value of the stack pointer;
1703 in other words, if it is safe to delete an instruction to adjust the stack
1704 pointer before a return from the function.
1705
1706 Note that this macro's value is relevant only for functions for which frame
1707 pointers are maintained. It is never safe to delete a final stack
1708 adjustment in a function that has no frame pointer, and the compiler knows
1709 this regardless of `EXIT_IGNORE_STACK'. */
1710#define EXIT_IGNORE_STACK 1
36a05131
BS
1711\f
1712/* Generating Code for Profiling. */
1713
1714/* A C statement or compound statement to output to FILE some assembler code to
1715 call the profiling subroutine `mcount'. Before calling, the assembler code
1716 must load the address of a counter variable into a register where `mcount'
1717 expects to find the address. The name of this variable is `LP' followed by
1718 the number LABELNO, so you would generate the name using `LP%d' in a
1719 `fprintf'.
1720
1721 The details of how the address should be passed to `mcount' are determined
7ec022b2 1722 by your operating system environment, not by GCC. To figure them out,
36a05131
BS
1723 compile a small program for profiling using the system's installed C
1724 compiler and look at the assembler code that results.
1725
1726 This declaration must be present, but it can be an abort if profiling is
1727 not implemented. */
1728
b16c1435 1729#define FUNCTION_PROFILER(FILE, LABELNO)
36a05131 1730
36a05131
BS
1731/* Trampolines for Nested Functions. */
1732
1733/* A C expression for the size in bytes of the trampoline, as an integer. */
1734#define TRAMPOLINE_SIZE frv_trampoline_size ()
1735
1736/* Alignment required for trampolines, in bits.
1737
1738 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1739 aligning trampolines. */
34208acf 1740#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
36a05131 1741
36a05131
BS
1742/* Define this macro if trampolines need a special subroutine to do their work.
1743 The macro should expand to a series of `asm' statements which will be
7ec022b2 1744 compiled with GCC. They go in a library function named
36a05131
BS
1745 `__transfer_from_trampoline'.
1746
1747 If you need to avoid executing the ordinary prologue code of a compiled C
1748 function when you jump to the subroutine, you can do so by placing a special
1749 label of your own in the assembler code. Use one `asm' statement to
1750 generate an assembler label, and another to make the label global. Then
1751 trampolines can use that label to jump directly to your special assembler
1752 code. */
1753
1754#ifdef __FRV_UNDERSCORE__
1755#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1756#else
1757#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1758#endif
1759
34208acf
AO
1760#define Twrite _write
1761
1762#if ! __FRV_FDPIC__
36a05131 1763#define TRANSFER_FROM_TRAMPOLINE \
34208acf 1764extern int Twrite (int, const void *, unsigned); \
36a05131
BS
1765 \
1766void \
f2206911 1767__trampoline_setup (short * addr, int size, int fnaddr, int sc) \
36a05131
BS
1768{ \
1769 extern short __trampoline_template[]; \
1770 short * to = addr; \
1771 short * from = &__trampoline_template[0]; \
1772 int i; \
1773 \
1774 if (size < 20) \
1775 { \
34208acf 1776 Twrite (2, "__trampoline_setup bad size\n", \
36a05131
BS
1777 sizeof ("__trampoline_setup bad size\n") - 1); \
1778 exit (-1); \
1779 } \
1780 \
1781 to[0] = from[0]; \
1782 to[1] = (short)(fnaddr); \
1783 to[2] = from[2]; \
1784 to[3] = (short)(sc); \
1785 to[4] = from[4]; \
1786 to[5] = (short)(fnaddr >> 16); \
1787 to[6] = from[6]; \
1788 to[7] = (short)(sc >> 16); \
1789 to[8] = from[8]; \
1790 to[9] = from[9]; \
1791 \
1792 for (i = 0; i < 20; i++) \
1793 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1794} \
1795 \
1796__asm__("\n" \
1797 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1798 "\t.text\n" \
1799 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1800 "\tsetlos #0, gr6\n" /* jump register */ \
1801 "\tsetlos #0, gr7\n" /* static chain */ \
1802 "\tsethi #0, gr6\n" \
1803 "\tsethi #0, gr7\n" \
1804 "\tjmpl @(gr0,gr6)\n");
34208acf
AO
1805#else
1806#define TRANSFER_FROM_TRAMPOLINE \
1807extern int Twrite (int, const void *, unsigned); \
1808 \
1809void \
1810__trampoline_setup (addr, size, fnaddr, sc) \
1811 short * addr; \
1812 int size; \
1813 int fnaddr; \
1814 int sc; \
1815{ \
1816 extern short __trampoline_template[]; \
1817 short * from = &__trampoline_template[0]; \
1818 int i; \
1819 short **desc = (short **)addr; \
1820 short * to = addr + 4; \
1821 \
1822 if (size != 32) \
1823 { \
1824 Twrite (2, "__trampoline_setup bad size\n", \
1825 sizeof ("__trampoline_setup bad size\n") - 1); \
1826 exit (-1); \
1827 } \
1828 \
1829 /* Create a function descriptor with the address of the code below
1830 and NULL as the FDPIC value. We don't need the real GOT value
1831 here, since we don't use it, so we use NULL, that is just as
1832 good. */ \
1833 desc[0] = to; \
1834 desc[1] = NULL; \
1835 size -= 8; \
1836 \
1837 to[0] = from[0]; \
1838 to[1] = (short)(fnaddr); \
1839 to[2] = from[2]; \
1840 to[3] = (short)(sc); \
1841 to[4] = from[4]; \
1842 to[5] = (short)(fnaddr >> 16); \
1843 to[6] = from[6]; \
1844 to[7] = (short)(sc >> 16); \
1845 to[8] = from[8]; \
1846 to[9] = from[9]; \
1847 to[10] = from[10]; \
1848 to[11] = from[11]; \
1849 \
1850 for (i = 0; i < size; i++) \
1851 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1852} \
1853 \
1854__asm__("\n" \
1855 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1856 "\t.text\n" \
1857 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1858 "\tsetlos #0, gr6\n" /* Jump register. */ \
1859 "\tsetlos #0, gr7\n" /* Static chain. */ \
1860 "\tsethi #0, gr6\n" \
1861 "\tsethi #0, gr7\n" \
1862 "\tldd @(gr6,gr0),gr14\n" \
1863 "\tjmpl @(gr14,gr0)\n" \
1864 );
1865#endif
36a05131 1866
36a05131
BS
1867\f
1868/* Addressing Modes. */
1869
36a05131
BS
1870/* A number, the maximum number of registers that can appear in a valid memory
1871 address. Note that it is up to you to specify a value equal to the maximum
331d9186 1872 number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. */
36a05131
BS
1873#define MAX_REGS_PER_ADDRESS 2
1874
36a05131
BS
1875/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1876 use as a base register. For hard registers, it should always accept those
1877 which the hardware permits and reject the others. Whether the macro accepts
1878 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1879 described above. This usually requires two variant definitions, of which
1880 `REG_OK_STRICT' controls the one actually used. */
1881#ifdef REG_OK_STRICT
1882#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1883#else
1884#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1885#endif
1886
1887/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1888 use as an index register.
1889
1890 The difference between an index register and a base register is that the
1891 index register may be scaled. If an address involves the sum of two
1892 registers, neither one of them scaled, then either one may be labeled the
1893 "base" and the other the "index"; but whichever labeling is used must fit
1894 the machine's constraints of which registers may serve in each capacity.
1895 The compiler will try both labelings, looking for one that is valid, and
1896 will reload one or both registers only if neither labeling works. */
1897#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1898
34208acf 1899#define FIND_BASE_TERM frv_find_base_term
36a05131 1900
36a05131
BS
1901/* A C expression that is nonzero if X is a legitimate constant for an
1902 immediate operand on the target machine. You can assume that X satisfies
1903 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
1904 definition for this macro on machines where anything `CONSTANT_P' is valid. */
1905#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
1906
1907/* The load-and-update commands allow pre-modification in addresses.
1908 The index has to be in a register. */
1909#define HAVE_PRE_MODIFY_REG 1
1910
1911\f
f1c9d07d
EC
1912/* We define extra CC modes in frv-modes.def so we need a selector. */
1913
036ff63f 1914#define SELECT_CC_MODE frv_select_cc_mode
36a05131
BS
1915
1916/* A C expression whose value is one if it is always safe to reverse a
1917 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
1918 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1919 must be zero.
1920
1921 You need not define this macro if it would always returns zero or if the
1922 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
981f6289 1923 example, here is the definition used on the SPARC, where floating-point
36a05131
BS
1924 inequality comparisons are always given `CCFPEmode':
1925
1926 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
1927
1928/* On frv, don't consider floating point comparisons to be reversible. In
87b483a1 1929 theory, fp equality comparisons can be reversible. */
036ff63f
RS
1930#define REVERSIBLE_CC_MODE(MODE) \
1931 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
36a05131
BS
1932
1933/* Frv CCR_MODE's are not reversible. */
1934#define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
1935
1936\f
1937/* Describing Relative Costs of Operations. */
1938
36a05131
BS
1939/* A C expression for the cost of a branch instruction. A value of 1 is the
1940 default; other values are interpreted relative to that. */
3a4fd356 1941#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
36a05131
BS
1942
1943/* Define this macro as a C expression which is nonzero if accessing less than
1944 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1945 word of memory, i.e., if such access require more than one instruction or if
1946 there is no difference in cost between byte and (aligned) word loads.
1947
1948 When this macro is not defined, the compiler will access a field by finding
1949 the smallest containing object; when it is defined, a fullword load will be
1950 used if alignment permits. Unless bytes accesses are faster than word
1951 accesses, using word accesses is preferable since it may eliminate
1952 subsequent memory access if subsequent accesses occur to other fields in the
1953 same word of the structure, but to different bytes. */
1954#define SLOW_BYTE_ACCESS 1
1955
36a05131
BS
1956/* Define this macro if it is as good or better to call a constant function
1957 address than to call an address kept in a register. */
1958#define NO_FUNCTION_CSE
1959
36a05131
BS
1960\f
1961/* Dividing the output into sections. */
1962
1963/* A C expression whose value is a string containing the assembler operation
1964 that should precede instructions and read-only data. Normally `".text"' is
1965 right. */
1966#define TEXT_SECTION_ASM_OP "\t.text"
1967
1968/* A C expression whose value is a string containing the assembler operation to
1969 identify the following data as writable initialized data. Normally
1970 `".data"' is right. */
1971#define DATA_SECTION_ASM_OP "\t.data"
1972
1973/* If defined, a C expression whose value is a string containing the
1974 assembler operation to identify the following data as
1975 uninitialized global data. If not defined, and neither
1976 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
1977 uninitialized global data will be output in the data section if
1978 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
1979 used. */
1980#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1981
1982/* Short Data Support */
1983#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
36a05131
BS
1984
1985/* On svr4, we *do* have support for the .init and .fini sections, and we
1986 can put stuff in there to be executed before and after `main'. We let
1987 crtstuff.c and other files know this by defining the following symbols.
1988 The definitions say how to change sections to the .init and .fini
1989 sections. This is the same for all known svr4 assemblers.
1990
1991 The standard System V.4 macros will work, but they look ugly in the
1992 assembly output, so redefine them. */
1993
1994#undef INIT_SECTION_ASM_OP
1995#undef FINI_SECTION_ASM_OP
1996#define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
1997#define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
1998
90a63880
RH
1999#undef CTORS_SECTION_ASM_OP
2000#undef DTORS_SECTION_ASM_OP
2001#define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2002#define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2003
36a05131
BS
2004/* A C expression whose value is a string containing the assembler operation to
2005 switch to the fixup section that records all initialized pointers in a -fpic
2006 program so they can be changed program startup time if the program is loaded
2007 at a different address than linked for. */
2008#define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
36a05131
BS
2009\f
2010/* Position Independent Code. */
2011
2012/* A C expression that is nonzero if X is a legitimate immediate operand on the
2013 target machine when generating position independent code. You can assume
2014 that X satisfies `CONSTANT_P', so you need not check this. You can also
2015 assume FLAG_PIC is true, so you need not check it either. You need not
2016 define this macro if all constants (including `SYMBOL_REF') can be immediate
2017 operands when generating position independent code. */
2018#define LEGITIMATE_PIC_OPERAND_P(X) \
2019 ( GET_CODE (X) == CONST_INT \
2020 || GET_CODE (X) == CONST_DOUBLE \
2021 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
6de9cd9a 2022 || got12_operand (X, VOIDmode)) \
36a05131
BS
2023
2024\f
2025/* The Overall Framework of an Assembler File. */
2026
2027/* A C string constant describing how to begin a comment in the target
2028 assembler language. The compiler assumes that the comment will end at the
2029 end of the line. */
2030#define ASM_COMMENT_START ";"
2031
2032/* A C string constant for text to be output before each `asm' statement or
2033 group of consecutive ones. Normally this is `"#APP"', which is a comment
2034 that has no effect on most assemblers but tells the GNU assembler that it
2035 must check the lines that follow for all valid assembler constructs. */
2036#define ASM_APP_ON "#APP\n"
2037
2038/* A C string constant for text to be output after each `asm' statement or
2039 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2040 GNU assembler to resume making the time-saving assumptions that are valid
2041 for ordinary compiler output. */
2042#define ASM_APP_OFF "#NO_APP\n"
2043
2044\f
2045/* Output of Data. */
2046
2047/* This is how to output a label to dwarf/dwarf2. */
2048#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2049do { \
2050 fprintf (STREAM, "\t.picptr\t"); \
2051 assemble_name (STREAM, LABEL); \
2052} while (0)
2053
2054/* Whether to emit the gas specific dwarf2 line number support. */
2055#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2056\f
2057/* Output of Uninitialized Variables. */
2058
2059/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2060 assembler definition of a local-common-label named NAME whose size is SIZE
2061 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2062 the caller wants.
2063
2064 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2065 before and after that, output the additional assembler syntax for defining
2066 the name, and a newline.
2067
2068 This macro controls how the assembler definitions of uninitialized static
2069 variables are output. */
2070#undef ASM_OUTPUT_LOCAL
2071
2072/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2073 explicit argument. If you define this macro, it is used in place of
2074 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2075 alignment of the variable. The alignment is specified as the number of
2076 bits.
2077
2078 Defined in svr4.h. */
2079#undef ASM_OUTPUT_ALIGNED_LOCAL
2080
2081/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2082extern int size_directive_output;
2083
2084/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2085 parameter - the DECL of variable to be output, if there is one.
2086 This macro can be called with DECL == NULL_TREE. If you define
2087 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2088 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2089 handling the destination of the variable. */
2090#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2091#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2092do { \
0f6e5d45 2093 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
d6b5193b 2094 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
36a05131 2095 else \
d6b5193b 2096 switch_to_section (bss_section); \
36a05131
BS
2097 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2098 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2099 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2100} while (0)
2101
2102\f
2103/* Output and Generation of Labels. */
2104
2105/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2106 assembler definition of a label named NAME. Use the expression
2107 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2108 that, output the additional assembler syntax for defining the name, and a
2109 newline. */
2110#define ASM_OUTPUT_LABEL(STREAM, NAME) \
2111do { \
2112 assemble_name (STREAM, NAME); \
2113 fputs (":\n", STREAM); \
2114} while (0)
2115
5eb99654
KG
2116/* Globalizing directive for a label. */
2117#define GLOBAL_ASM_OP "\t.globl "
36a05131 2118
36a05131
BS
2119/* A C statement to store into the string STRING a label whose name is made
2120 from the string PREFIX and the number NUM.
2121
2122 This string, when output subsequently by `assemble_name', should produce the
4977bab6 2123 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
36a05131
BS
2124 and NUM.
2125
2126 If the string begins with `*', then `assemble_name' will output the rest of
2127 the string unchanged. It is often convenient for
2128 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2129 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2130 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2131 machine description, so you should know what it does on your machine.)
2132
2133 Defined in svr4.h. */
2134#undef ASM_GENERATE_INTERNAL_LABEL
2135#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2136do { \
2137 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2138} while (0)
2139
36a05131
BS
2140\f
2141/* Macros Controlling Initialization Routines. */
2142
2143/* If defined, a C string constant for the assembler operation to identify the
7ec022b2 2144 following data as initialization code. If not defined, GCC will assume
36a05131
BS
2145 such a section does not exist. When you are using special sections for
2146 initialization and termination functions, this macro also controls how
2147 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2148
2149 Defined in svr4.h. */
2150#undef INIT_SECTION_ASM_OP
2151
2152/* If defined, `main' will call `__main' despite the presence of
2153 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2154 init section is not actually run automatically, but is still useful for
2155 collecting the lists of constructors and destructors. */
2156#define INVOKE__main
36a05131
BS
2157\f
2158/* Output of Assembler Instructions. */
2159
2160/* A C initializer containing the assembler's names for the machine registers,
2161 each one as a C string constant. This is what translates register numbers
2162 in the compiler into assembler language. */
2163#define REGISTER_NAMES \
2164{ \
2165 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2166 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2167 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2168 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2169 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2170 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2171 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2172 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2173 \
2174 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2175 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2176 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2177 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2178 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2179 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2180 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2181 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2182 \
2183 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2184 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2185 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
c557edf4 2186 "acc8", "acc9", "acc10", "acc11", \
36a05131 2187 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
c557edf4
RS
2188 "accg8", "accg9", "accg10", "accg11", \
2189 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
36a05131
BS
2190}
2191
2192/* Define this macro if you are using an unusual assembler that
2193 requires different names for the machine instructions.
2194
2195 The definition is a C statement or statements which output an
2196 assembler instruction opcode to the stdio stream STREAM. The
2197 macro-operand PTR is a variable of type `char *' which points to
2198 the opcode name in its "internal" form--the form that is written
2199 in the machine description. The definition should output the
2200 opcode name to STREAM, performing any translation you desire, and
2201 increment the variable PTR to point at the end of the opcode so
2202 that it will not be output twice.
2203
2204 In fact, your macro definition may process less than the entire
2205 opcode name, or more than the opcode name; but if you want to
2206 process text that includes `%'-sequences to substitute operands,
2207 you must take care of the substitution yourself. Just be sure to
2208 increment PTR over whatever text should not be output normally.
2209
2210 If you need to look at the operand values, they can be found as the
2211 elements of `recog_operand'.
2212
2213 If the macro definition does nothing, the instruction is output in
2214 the usual way. */
2215
2216#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2217 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2218
2219/* If defined, a C statement to be executed just prior to the output
2220 of assembler code for INSN, to modify the extracted operands so
2221 they will be output differently.
2222
2223 Here the argument OPVEC is the vector containing the operands
2224 extracted from INSN, and NOPERANDS is the number of elements of
2225 the vector which contain meaningful data for this insn. The
2226 contents of this vector are what will be used to convert the insn
2227 template into assembler code, so you can change the assembler
2228 output by changing the contents of the vector.
2229
2230 This macro is useful when various assembler syntaxes share a single
2231 file of instruction patterns; by defining this macro differently,
2232 you can cause a large class of instructions to be output
2233 differently (such as with rearranged operands). Naturally,
2234 variations in assembler syntax affecting individual insn patterns
2235 ought to be handled by writing conditional output routines in
2236 those patterns.
2237
2238 If this macro is not defined, it is equivalent to a null statement. */
2239
2240#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2241 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2242
36a05131
BS
2243/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2244 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2245 single `md' file must support multiple assembler formats. In that case, the
2246 various `tm.h' files can define these macros differently.
2247
2248 USER_LABEL_PREFIX is defined in svr4.h. */
2249#undef USER_LABEL_PREFIX
2250#define USER_LABEL_PREFIX ""
2251#define REGISTER_PREFIX ""
2252#define LOCAL_LABEL_PREFIX "."
2253#define IMMEDIATE_PREFIX "#"
2254
2255\f
2256/* Output of dispatch tables. */
2257
2258/* This macro should be provided on machines where the addresses in a dispatch
2259 table are relative to the table's own address.
2260
2261 The definition should be a C statement to output to the stdio stream STREAM
2262 an assembler pseudo-instruction to generate a difference between two labels.
2263 VALUE and REL are the numbers of two internal labels. The definitions of
4977bab6 2264 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
36a05131
BS
2265 printed in the same way here. For example,
2266
2267 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2268#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2269fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2270
2271/* This macro should be provided on machines where the addresses in a dispatch
2272 table are absolute.
2273
2274 The definition should be a C statement to output to the stdio stream STREAM
2275 an assembler pseudo-instruction to generate a reference to a label. VALUE
2276 is the number of an internal label whose definition is output using
4977bab6 2277 `(*targetm.asm_out.internal_label)'. For example,
36a05131
BS
2278
2279 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2280#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2281fprintf (STREAM, "\t.word .L%d\n", VALUE)
2282
e133c867 2283#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
36a05131
BS
2284\f
2285/* Assembler Commands for Exception Regions. */
2286
2287/* Define this macro to 0 if your target supports DWARF 2 frame unwind
2288 information, but it does not yet work with exception handling. Otherwise,
2289 if your target supports this information (if it defines
2290 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2291 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2292
2293 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2294 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2295 default.
2296
2297 If this macro is defined to anything, the DWARF 2 unwinder will be used
2298 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2299#define DWARF2_UNWIND_INFO 1
2300
2301#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2302\f
2303/* Assembler Commands for Alignment. */
2304
2305/* A C statement to output to the stdio stream STREAM an assembler instruction
2306 to advance the location counter by NBYTES bytes. Those bytes should be zero
2307 when loaded. NBYTES will be a C expression of type `int'.
2308
2309 Defined in svr4.h. */
2310#undef ASM_OUTPUT_SKIP
2311#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
58e15542 2312 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
36a05131
BS
2313
2314/* A C statement to output to the stdio stream STREAM an assembler command to
2315 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2316 will be a C expression of type `int'. */
2317#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2318 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2319
def49dc4
RS
2320/* Inside the text section, align with unpacked nops rather than zeros. */
2321#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2322 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
36a05131
BS
2323\f
2324/* Macros Affecting all Debug Formats. */
2325
2326/* A C expression that returns the DBX register number for the compiler
2327 register number REGNO. In simple cases, the value of this expression may be
2328 REGNO itself. But sometimes there are some registers that the compiler
2329 knows about and DBX does not, or vice versa. In such cases, some register
2330 may need to have one number in the compiler and another for DBX.
2331
7ec022b2 2332 If two registers have consecutive numbers inside GCC, and they can be
36a05131
BS
2333 used as a pair to hold a multiword value, then they *must* have consecutive
2334 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2335 will be unable to access such a pair, because they expect register pairs to
2336 be consecutive in their own numbering scheme.
2337
2338 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2339 preserve register pairs, then what you must do instead is redefine the
2340 actual register numbering scheme.
2341
2342 This declaration is required. */
2343#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2344
7ec022b2 2345/* A C expression that returns the type of debugging output GCC produces
36a05131 2346 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
7ec022b2 2347 for GCC to support more than one format of debugging output. Currently,
36a05131
BS
2348 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2349 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2350
2351 The value of this macro only affects the default debugging output; the user
2352 can always get a specific type of output by using `-gstabs', `-gcoff',
2353 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2354
2355 Defined in svr4.h. */
2356#undef PREFERRED_DEBUGGING_TYPE
2357#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
36a05131
BS
2358\f
2359/* Miscellaneous Parameters. */
2360
36a05131
BS
2361/* An alias for a machine mode name. This is the machine mode that elements of
2362 a jump-table should have. */
2363#define CASE_VECTOR_MODE SImode
2364
2365/* Define this macro if operations between registers with integral mode smaller
2366 than a word are always performed on the entire register. Most RISC machines
2367 have this property and most CISC machines do not. */
2368#define WORD_REGISTER_OPERATIONS
2369
2370/* Define this macro to be a C expression indicating when insns that read
2371 memory in MODE, an integral mode narrower than a word, set the bits outside
2372 of MODE to be either the sign-extension or the zero-extension of the data
2373 read. Return `SIGN_EXTEND' for values of MODE for which the insn
f822d252 2374 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
36a05131
BS
2375 modes.
2376
2377 This macro is not called with MODE non-integral or with a width greater than
2378 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
f822d252 2379 not define this macro if it would always return `UNKNOWN'. On machines where
36a05131
BS
2380 this macro is defined, you will normally define it as the constant
2381 `SIGN_EXTEND' or `ZERO_EXTEND'. */
2382#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2383
2384/* Define if loading short immediate values into registers sign extends. */
2385#define SHORT_IMMEDIATES_SIGN_EXTEND
2386
36a05131
BS
2387/* The maximum number of bytes that a single instruction can move quickly from
2388 memory to memory. */
2389#define MOVE_MAX 8
2390
2391/* A C expression which is nonzero if on this machine it is safe to "convert"
2392 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2393 than INPREC) by merely operating on it as if it had only OUTPREC bits.
2394
2395 On many machines, this expression can be 1.
2396
2397 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2398 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
2399 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2400 things. */
2401#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2402
2403/* An alias for the machine mode for pointers. On most machines, define this
2404 to be the integer mode corresponding to the width of a hardware pointer;
2405 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
2406 you must define this to be one of the partial integer modes, such as
2407 `PSImode'.
2408
2409 The width of `Pmode' must be at least as large as the value of
2410 `POINTER_SIZE'. If it is not equal, you must define the macro
2411 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
2412#define Pmode SImode
2413
2414/* An alias for the machine mode used for memory references to functions being
2415 called, in `call' RTL expressions. On most machines this should be
2416 `QImode'. */
2417#define FUNCTION_MODE QImode
2418
2419/* Define this macro to handle System V style pragmas: #pragma pack and
2420 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2421 defined.
2422
2423 Defined in svr4.h. */
32f0ffb3 2424#define HANDLE_SYSV_PRAGMA 1
36a05131
BS
2425
2426/* A C expression for the maximum number of instructions to execute via
2427 conditional execution instructions instead of a branch. A value of
2428 BRANCH_COST+1 is the default if the machine does not use
2429 cc0, and 1 if it does use cc0. */
2430#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2431
36a05131
BS
2432/* A C expression to modify the code described by the conditional if
2433 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2434 FALSE_EXPR for converting if-then and if-then-else code to conditional
2435 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2436 tests cannot be converted. */
2437#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
2438frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2439
2440/* A C expression to modify the code described by the conditional if
2441 information CE_INFO, for the basic block BB, possibly updating the tests in
2442 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2443 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
2444 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2445 the tests cannot be converted. */
2446#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2447frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2448
2449/* A C expression to modify the code described by the conditional if
2450 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
2451 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2452 insn cannot be converted to be executed conditionally. */
2453#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2454(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2455
2456/* A C expression to perform any final machine dependent modifications in
2457 converting code to conditional execution in the code described by the
2458 conditional if information CE_INFO. */
2459#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2460
2461/* A C expression to cancel any machine dependent modifications in converting
2462 code to conditional execution in the code described by the conditional if
2463 information CE_INFO. */
2464#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2465
2466/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
2467#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2468
36a05131
BS
2469/* The definition of the following macro results in that the 2nd jump
2470 optimization (after the 2nd insn scheduling) is minimal. It is
2471 necessary to define when start cycle marks of insns (TImode is used
2472 for this) is used for VLIW insn packing. Some jump optimizations
2473 make such marks invalid. These marks are corrected for some
2474 (minimal) optimizations. ??? Probably the macro is temporary.
2475 Final solution could making the 2nd jump optimizations before the
2476 2nd instruction scheduling or corrections of the marks for all jump
2477 optimizations. Although some jump optimizations are actually
2478 deoptimizations for VLIW (super-scalar) processors. */
2479
2480#define MINIMAL_SECOND_JUMP_OPTIMIZATION
2481
36a05131 2482
88cad84b 2483/* If the following macro is defined and nonzero and deterministic
36a05131
BS
2484 finite state automata are used for pipeline hazard recognition, the
2485 code making resource-constrained software pipelining is on. */
2486#define RCSP_SOFTWARE_PIPELINING 1
2487
88cad84b 2488/* If the following macro is defined and nonzero and deterministic
36a05131
BS
2489 finite state automata are used for pipeline hazard recognition, we
2490 will try to exchange insns in queue ready to improve the schedule.
2491 The more macro value, the more tries will be made. */
2492#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2493
2494/* The following macro is used only when value of
2495 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
2496 the more tries will be made to choose better schedule. If the
2497 macro value is zero or negative there will be no multi-pass
2498 scheduling. */
2499#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2500
36a05131
BS
2501enum frv_builtins
2502{
2503 FRV_BUILTIN_MAND,
2504 FRV_BUILTIN_MOR,
2505 FRV_BUILTIN_MXOR,
2506 FRV_BUILTIN_MNOT,
2507 FRV_BUILTIN_MAVEH,
2508 FRV_BUILTIN_MSATHS,
2509 FRV_BUILTIN_MSATHU,
2510 FRV_BUILTIN_MADDHSS,
2511 FRV_BUILTIN_MADDHUS,
2512 FRV_BUILTIN_MSUBHSS,
2513 FRV_BUILTIN_MSUBHUS,
2514 FRV_BUILTIN_MPACKH,
2515 FRV_BUILTIN_MQADDHSS,
2516 FRV_BUILTIN_MQADDHUS,
2517 FRV_BUILTIN_MQSUBHSS,
2518 FRV_BUILTIN_MQSUBHUS,
2519 FRV_BUILTIN_MUNPACKH,
2520 FRV_BUILTIN_MDPACKH,
2521 FRV_BUILTIN_MBTOH,
2522 FRV_BUILTIN_MHTOB,
2523 FRV_BUILTIN_MCOP1,
2524 FRV_BUILTIN_MCOP2,
2525 FRV_BUILTIN_MROTLI,
2526 FRV_BUILTIN_MROTRI,
2527 FRV_BUILTIN_MWCUT,
2528 FRV_BUILTIN_MSLLHI,
2529 FRV_BUILTIN_MSRLHI,
2530 FRV_BUILTIN_MSRAHI,
2531 FRV_BUILTIN_MEXPDHW,
2532 FRV_BUILTIN_MEXPDHD,
2533 FRV_BUILTIN_MMULHS,
2534 FRV_BUILTIN_MMULHU,
2535 FRV_BUILTIN_MMULXHS,
2536 FRV_BUILTIN_MMULXHU,
2537 FRV_BUILTIN_MMACHS,
2538 FRV_BUILTIN_MMACHU,
2539 FRV_BUILTIN_MMRDHS,
2540 FRV_BUILTIN_MMRDHU,
2541 FRV_BUILTIN_MQMULHS,
2542 FRV_BUILTIN_MQMULHU,
2543 FRV_BUILTIN_MQMULXHU,
2544 FRV_BUILTIN_MQMULXHS,
2545 FRV_BUILTIN_MQMACHS,
2546 FRV_BUILTIN_MQMACHU,
2547 FRV_BUILTIN_MCPXRS,
2548 FRV_BUILTIN_MCPXRU,
2549 FRV_BUILTIN_MCPXIS,
2550 FRV_BUILTIN_MCPXIU,
2551 FRV_BUILTIN_MQCPXRS,
2552 FRV_BUILTIN_MQCPXRU,
2553 FRV_BUILTIN_MQCPXIS,
2554 FRV_BUILTIN_MQCPXIU,
2555 FRV_BUILTIN_MCUT,
2556 FRV_BUILTIN_MCUTSS,
2557 FRV_BUILTIN_MWTACC,
2558 FRV_BUILTIN_MWTACCG,
2559 FRV_BUILTIN_MRDACC,
2560 FRV_BUILTIN_MRDACCG,
2561 FRV_BUILTIN_MTRAP,
2562 FRV_BUILTIN_MCLRACC,
2563 FRV_BUILTIN_MCLRACCA,
2564 FRV_BUILTIN_MDUNPACKH,
2565 FRV_BUILTIN_MBTOHE,
2566 FRV_BUILTIN_MQXMACHS,
2567 FRV_BUILTIN_MQXMACXHS,
2568 FRV_BUILTIN_MQMACXHS,
2569 FRV_BUILTIN_MADDACCS,
2570 FRV_BUILTIN_MSUBACCS,
2571 FRV_BUILTIN_MASACCS,
2572 FRV_BUILTIN_MDADDACCS,
2573 FRV_BUILTIN_MDSUBACCS,
2574 FRV_BUILTIN_MDASACCS,
2575 FRV_BUILTIN_MABSHS,
2576 FRV_BUILTIN_MDROTLI,
2577 FRV_BUILTIN_MCPLHI,
2578 FRV_BUILTIN_MCPLI,
2579 FRV_BUILTIN_MDCUTSSI,
2580 FRV_BUILTIN_MQSATHS,
c557edf4
RS
2581 FRV_BUILTIN_MQLCLRHS,
2582 FRV_BUILTIN_MQLMTHS,
2583 FRV_BUILTIN_MQSLLHI,
2584 FRV_BUILTIN_MQSRAHI,
36a05131
BS
2585 FRV_BUILTIN_MHSETLOS,
2586 FRV_BUILTIN_MHSETLOH,
2587 FRV_BUILTIN_MHSETHIS,
2588 FRV_BUILTIN_MHSETHIH,
2589 FRV_BUILTIN_MHDSETS,
c557edf4
RS
2590 FRV_BUILTIN_MHDSETH,
2591 FRV_BUILTIN_SMUL,
2592 FRV_BUILTIN_UMUL,
2593 FRV_BUILTIN_PREFETCH0,
2594 FRV_BUILTIN_PREFETCH,
2595 FRV_BUILTIN_SMASS,
2596 FRV_BUILTIN_SMSSS,
2597 FRV_BUILTIN_SMU,
2598 FRV_BUILTIN_SCUTSS,
2599 FRV_BUILTIN_ADDSS,
2600 FRV_BUILTIN_SUBSS,
2601 FRV_BUILTIN_SLASS,
2602 FRV_BUILTIN_IACCreadll,
2603 FRV_BUILTIN_IACCreadl,
2604 FRV_BUILTIN_IACCsetll,
2605 FRV_BUILTIN_IACCsetl,
c14ff86e
AH
2606 FRV_BUILTIN_SCAN,
2607 FRV_BUILTIN_READ8,
2608 FRV_BUILTIN_READ16,
2609 FRV_BUILTIN_READ32,
2610 FRV_BUILTIN_READ64,
2611 FRV_BUILTIN_WRITE8,
2612 FRV_BUILTIN_WRITE16,
2613 FRV_BUILTIN_WRITE32,
2614 FRV_BUILTIN_WRITE64
36a05131 2615};
c557edf4 2616#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
36a05131 2617
36a05131
BS
2618/* Enable prototypes on the call rtl functions. */
2619#define MD_CALL_PROTOTYPES 1
2620
c557edf4
RS
2621#define CPU_UNITS_QUERY 1
2622
34208acf
AO
2623#ifdef __FRV_FDPIC__
2624#define CRT_GET_RFIB_DATA(dbase) \
2625 ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2626#endif
2627
36a05131 2628#endif /* __FRV_H__ */
This page took 2.254974 seconds and 5 git commands to generate.