]> gcc.gnu.org Git - gcc.git/blame - gcc/config/dsp16xx/dsp16xx.h
Fix typos in comments.
[gcc.git] / gcc / config / dsp16xx / dsp16xx.h
CommitLineData
946730d0 1/* Definitions of target machine for GNU compiler. AT&T DSP1600.
8b109b37 2 Copyright (C) 1994, 1995 Free Software Foundation, Inc.
946730d0
RK
3 Contributed by Michael Collison (collison@world.std.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 1, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21extern char *low_reg_names[];
22extern char *text_seg_name;
23extern char *rsect_text;
24extern char *data_seg_name;
25extern char *rsect_data;
26extern char *bss_seg_name;
27extern char *rsect_bss;
28extern char *const_seg_name;
29extern char *rsect_const;
30extern char *chip_name;
31extern char *save_chip_name;
32extern struct rtx_def *dsp16xx_compare_op0, *dsp16xx_compare_op1;
33extern struct rtx_def *(*dsp16xx_compare_gen)();
34extern struct rtx_def *gen_compare_reg();
35extern struct rtx_def *dsp16xx_addhf3_libcall;
36extern struct rtx_def *dsp16xx_subhf3_libcall;
37extern struct rtx_def *dsp16xx_mulhf3_libcall;
38extern struct rtx_def *dsp16xx_divhf3_libcall;
39extern struct rtx_def *dsp16xx_cmphf3_libcall;
40extern struct rtx_def *dsp16xx_fixhfhi2_libcall;
41extern struct rtx_def *dsp16xx_floathihf2_libcall;
42extern struct rtx_def *dsp16xx_neghf2_libcall;
43extern struct rtx_def *dsp16xx_umulhi3_libcall;
44extern struct rtx_def *dsp16xx_mulhi3_libcall;
45extern struct rtx_def *dsp16xx_udivqi3_libcall;
46extern struct rtx_def *dsp16xx_udivhi3_libcall;
47extern struct rtx_def *dsp16xx_divqi3_libcall;
48extern struct rtx_def *dsp16xx_divhi3_libcall;
49extern struct rtx_def *dsp16xx_modqi3_libcall;
50extern struct rtx_def *dsp16xx_modhi3_libcall;
51extern struct rtx_def *dsp16xx_umodqi3_libcall;
52extern struct rtx_def *dsp16xx_umodhi3_libcall;
53
54extern struct rtx_def *dsp16xx_ashrhi3_libcall;
55extern struct rtx_def *dsp16xx_ashlhi3_libcall;
56extern struct rtx_def *dsp16xx_lshrhi3_libcall;
57
58
59extern int hard_regno_mode_ok ();
60extern enum reg_class dsp16xx_reg_class_from_letter ();
61extern enum reg_class dsp16xx_limit_reload_class ();
62extern int hard_regno_nregs ();
63extern int regno_reg_class ();
64extern int move_operand ();
65extern int symbolic_address_p ();
66extern int Y_address ();
67extern int call_address_operand ();
68extern void notice_update_cc();
69extern void function_prologue ();
70extern void function_epilogue ();
71extern int dsp1600_comparison_reverse ();
72extern void double_reg_from_memory ();
73extern void double_reg_to_memory ();
74extern void bss_section ();
75extern struct rtx_def *dsp16xx_function_arg ();
76extern void dsp16xx_function_arg_advance ();
77extern enum rtx_code next_cc_user_code ();
78extern enum rtx_code save_next_cc_user_code;
79extern struct rtx_def *gen_tst_reg ();
80extern char *output_block_move();
81
82/* RUN-TIME TARGET SPECIFICATION */
83#define DSP16XX 1
84
85/* Name of the AT&T assembler */
86
87#define ASM_PROG "as1600"
88
89/* Name of the AT&T linker */
90
91#define LD_PROG "ld1600"
92
93/* Define which switches take word arguments */
94#define WORD_SWITCH_TAKES_ARG(STR) \
95 (!strcmp (STR, "ifile") ? 1 : \
96 0)
97
98#ifdef CC1_SPEC
99#undef CC1_SPEC
100#endif
101#define CC1_SPEC ""
102
103/* Define this as a spec to call the AT&T assembler */
104
105#define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
106
107/* Define this as a spec to call the AT&T linker */
108
109#define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
110 %{r} %{s} %{t} %{u*} %{x}\
111 %{!A:%{!nostdlib:%S}} %{static:}\
112 %{L*} %D %o %{!nostdlib:-le1600 %L -le1600 %{!A:%E}}\n }}}}}"
113
114/* Nothing complicated here, just link with libc.a under normal
115 circumstances */
116#define LIB_SPEC "-lc"
117
118/* Specify the startup file to link with. */
119#define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
120%{mmap2:m2_crt0.o%s} \
121%{mmap3:m3_crt0.o%s} \
122%{mmap4:m4_crt0.o%s} \
123%{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
124%eA -ifile option requires a -map option}}"
125
126/* Specify the end file to link with */
127
128#define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
129%{mmap2:m2_crtn.o%s} \
130%{mmap3:m3_crtn.o%s} \
131%{mmap4:m4_crtn.o%s} \
132%{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
133%eA -ifile option requires a -map option}}"
134
135
136/* Tell gcc where to look for the startfile */
137#define STANDARD_STARTFILE_PREFIX "/d1600/lib"
138
139/* Tell gcc where to look for it's executables */
140#define STANDARD_EXEC_PREFIX "/d1600/bin"
141
142/* Command line options to the AT&T assembler */
143#define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
144
145/* Command line options for the AT&T linker */
146#define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
147%{!ifile*:%{mmap1:-ifile m1_deflt.if%s} \
148 %{mmap2:-ifile m2_deflt.if%s} \
149 %{mmap3:-ifile m3_deflt.if%s} \
150 %{mmap4:-ifile m4_deflt.if%s} \
151 %{!mmap*:-ifile m4_deflt.if%s}} \
152%{ifile*} %{!r:-a}"
153
154/* Names to predefine in the preprocessor for this target machine. */
155#ifdef __MSDOS__
156#define CPP_PREDEFINES "-Ddsp1600 -DDSP1600 -DMSDOS"
157#else
158#define CPP_PREDEFINES "-Ddsp1600 -DDSP1600 -Ddsp1610 -DDSP1610"
159#endif
160
161/* Run-time compilation parameters selecting different hardware subsets. */
162
163extern int target_flags;
164
165/* Macros used in the machine description to test the flags. */
166
167#define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
168#define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
169#define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
170#define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
171#define MASK_OPTIMIZE_MEMORY 0x00000010 /* Optimize to conserve memory */
172#define MASK_OPTIMIZE_SPEED 0x00000020 /* Optimize for speed */
173#define MASK_MAP1 0x00000040 /* Link with map1 */
174#define MASK_MAP2 0x00000080 /* Link with map2 */
175#define MASK_MAP3 0x00000100 /* Link with map3 */
176#define MASK_MAP4 0x00000200 /* Link with map4 */
177#define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
178#define MASK_INIT 0x00000800 /* Have the linker generate tables to
179 initialize data at startup */
180#define MASK_INLINE_MULT 0x00001000 /* Inline 32 bit multiplies */
181#define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
182
183/* Compile passing first two args in regs 0 and 1.
184 This exists only to test compiler features that will
185 be needed for RISC chips. It is not usable
186 and is not intended to be usable on this cpu. */
187#define TARGET_REGPARM (target_flags & MASK_REGPARM)
188
189/* The call is on the same 4k page, so instead of loading
190 the 'pt' register and branching, we can branch directly */
191
192#define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
193
194/* The jump is on the same 4k page, so instead of loading
195 the 'pt' register and branching, we can branch directly */
196
197#define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
198
199/* Generate shift instructions to use the 1610 Bit Manipulation
200 Unit. */
201#define TARGET_BMU (target_flags & MASK_BMU)
202
ddd5a7c1 203/* Optimize to conserve memory */
946730d0
RK
204#define TARGET_OPTIMIZE_MEMORY (target_flags & MASK_OPTIMIZE_MEMORY)
205
206/* Optimize for maximum speed */
207#define TARGET_OPTIMIZE_SPEED (target_flags & MASK_OPTIMIZE_SPEED)
208
209#define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
210
211/* Direct the linker to output extra info for initialized data */
212#define TARGET_MASK_INIT (target_flags & MASK_INIT)
213
214#define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
215
216/* Reserve the ybase registers *(0) - *(31) */
217#define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
218
219/* Macro to define tables used to set the flags.
220 This is a list in braces of pairs in braces,
221 each pair being { "NAME", VALUE }
222 where VALUE is the bits to set or minus the bits to clear.
223 An empty string NAME is used to identify the default VALUE. */
224
225
226#define TARGET_SWITCHES \
227 { \
228 { "regparm", MASK_REGPARM}, \
229 { "no-regparm", -MASK_REGPARM}, \
230 { "no-near-call", -MASK_NEAR_CALL}, \
231 { "near-jump", MASK_NEAR_JUMP}, \
232 { "no-near-jump", -MASK_NEAR_JUMP}, \
233 { "bmu", MASK_BMU}, \
234 { "no-bmu", -MASK_BMU}, \
235 { "Om", MASK_OPTIMIZE_MEMORY}, \
236 { "Os", MASK_OPTIMIZE_SPEED}, \
237 { "map1", MASK_MAP1}, \
238 { "map2", MASK_MAP2}, \
239 { "map3", MASK_MAP3}, \
240 { "map4", MASK_MAP4}, \
241 { "ybase-high", MASK_YBASE_HIGH}, \
242 { "init", MASK_INIT}, \
243 { "inline-mult", MASK_INLINE_MULT}, \
244 { "reserve-ybase", MASK_RESERVE_YBASE}, \
245 { "", TARGET_DEFAULT} \
246 }
247
248/* Default target_flags if no switches are specified */
249#ifndef TARGET_DEFAULT
250#define TARGET_DEFAULT MASK_OPTIMIZE_MEMORY|MASK_REGPARM|MASK_YBASE_HIGH
251#endif
252
253/* This macro is similar to `TARGET_SWITCHES' but defines names of
254 command options that have values. Its definition is an
255 initializer with a subgrouping for each command option.
256
257 Each subgrouping contains a string constant, that defines the
258 fixed part of the option name, and the address of a variable.
259 The variable, type `char *', is set to the variable part of the
260 given option if the fixed part matches. The actual option name
261 is made by appending `-m' to the specified name.
262
263 Here is an example which defines `-mshort-data-NUMBER'. If the
264 given option is `-mshort-data-512', the variable `m88k_short_data'
265 will be set to the string `"512"'.
266
267 extern char *m88k_short_data;
268 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
269
270#define TARGET_OPTIONS \
271{ \
272 { "text=", &text_seg_name }, \
273 { "data=", &data_seg_name }, \
274 { "bss=", &bss_seg_name }, \
275 { "const=", &const_seg_name }, \
276 { "chip=", &chip_name } \
277}
278
279/* Sometimes certain combinations of command options do not make sense
280 on a particular target machine. You can define a macro
281 `OVERRIDE_OPTIONS' to take account of this. This macro, if
282 defined, is executed once just after all the command options have
283 been parsed. */
284
285#define OVERRIDE_OPTIONS override_options ()
286
287#define OPTIMIZATION_OPTIONS(LEVEL) \
288{ \
289 flag_gnu_linker = FALSE; \
290 \
291 if (LEVEL) \
292 { \
293 flag_omit_frame_pointer = TRUE; \
294 flag_thread_jumps = TRUE; \
295 } \
296 \
297 if (LEVEL >= 2) \
298 { \
299 flag_strength_reduce = TRUE; \
300 flag_cse_follow_jumps = TRUE; \
301 flag_cse_skip_blocks = TRUE; \
302 flag_expensive_optimizations = TRUE; \
303 flag_rerun_cse_after_loop = TRUE; \
304 } \
305 \
306 if (LEVEL >= 3) \
307 { \
308 flag_inline_functions = 1; \
309 } \
310}
311\f
312/* STORAGE LAYOUT */
313
314/* Define if you don't want extended real, but do want to use the
315 software floating point emulator for REAL_ARITHMETIC and
316 decimal <-> binary conversion. */
317#define REAL_ARITHMETIC
318
319/* Define this if most significant bit is lowest numbered
320 in instructions that operate on numbered bit-fields.
321 */
322#define BITS_BIG_ENDIAN 1
323
324/* Define this if most significant byte of a word is the lowest numbered.
325 We define big-endian, but since the 1600 series cannot address bytes
326 it does not matter. */
327#define BYTES_BIG_ENDIAN 1
328
329/* Define this if most significant word of a multiword number is numbered.
330 For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
331#define WORDS_BIG_ENDIAN 1
332
ddd5a7c1 333/* number of bits in an addressable storage unit */
946730d0
RK
334#define BITS_PER_UNIT 16
335
336/* Width in bits of a "word", which is the contents of a machine register.
337 Note that this is not necessarily the width of data type `int';
338 if using 16-bit ints on a 68000, this would still be 32.
339 But on a machine with 16-bit registers, this would be 16. */
340#define BITS_PER_WORD 16
341
342/* Maximum number of bits in a word. */
343#define MAX_BITS_PER_WORD 16
344
345/* Width of a word, in units (bytes). */
346#define UNITS_PER_WORD 1
347
348/* Width in bits of a pointer.
349 See also the macro `Pmode' defined below. */
350#define POINTER_SIZE 16
351
352/* Allocation boundary (in *bits*) for storing pointers in memory. */
353#define POINTER_BOUNDARY 16
354
355/* Allocation boundary (in *bits*) for storing arguments in argument list. */
356#define PARM_BOUNDARY 16
357
358/* Boundary (in *bits*) on which stack pointer should be aligned. */
359#define STACK_BOUNDARY 16
360
361/* Allocation boundary (in *bits*) for the code of a function. */
362#define FUNCTION_BOUNDARY 16
363
364/* Biggest alignment that any data type can require on this machine, in bits. */
365#define BIGGEST_ALIGNMENT 16
366
367/* Biggest alignment that any structure field can require on this machine, in bits */
368#define BIGGEST_FIELD_ALIGNMENT 16
369
370/* Alignment of field after `int : 0' in a structure. */
371#define EMPTY_FIELD_BOUNDARY 16
372
373/* Number of bits which any structure or union's size must be a multiple of. Each structure
374 or union's size is rounded up to a multiple of this */
375#define STRUCTURE_SIZE_BOUNDARY 16
376
377/* Define this if move instructions will actually fail to work
378 when given unaligned data. */
379#define STRICT_ALIGNMENT 1
380
381/* An integer expression for the size in bits of the largest integer machine mode that
382 should actually be used. All integer machine modes of this size or smaller can be
383 used for structures and unions with the appropriate sizes. */
384#define MAX_FIXED_MODE_SIZE 32
385\f
386/* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
387
388#define CHAR_TYPE_SIZE 16
389#define SHORT_TYPE_SIZE 16
390#define INT_TYPE_SIZE 16
391#define LONG_TYPE_SIZE 32
392#define LONG_LONG_TYPE_SIZE 32
393#define FLOAT_TYPE_SIZE 32
394#define DOUBLE_TYPE_SIZE 32
395#define LONG_DOUBLE_TYPE_SIZE 32
396
397/* An expression whose value is 1 or 0, according to whether the type char should be
398 signed or unsigned by default. */
399
400#define DEFAULT_SIGNED_CHAR 1
401
402/* A C expression to determine whether to give an enum type only as many bytes
403 as it takes to represent the range of possible values of that type. A nonzero
404 value means to do that; a zero value means all enum types should be allocated
405 like int. */
406
407#define DEFAULT_SHORT_ENUMS 0
408
409/* A C expression for a string describing the name of the data type to use for
410 size values. */
411
412#define SIZE_TYPE "long unsigned int"
413
414/* A C expression for a string describing the name of the datat type to use for the
415 result of subtracting two pointers */
416
417#define PTRDIFF_TYPE "long int"
418
419#define TARGET_BELL '\a'
420#define TARGET_BS '\b'
421#define TARGET_TAB '\t'
422#define TARGET_NEWLINE '\n'
423#define TARGET_VT '\v'
424#define TARGET_FF '\f'
425#define TARGET_CR '\r'
426
427\f
428/* REGISTER USAGE. */
429
430#define ALL_16_BIT_REGISTERS 1
431
432/* Number of actual hardware registers.
433 The hardware registers are assigned numbers for the compiler
434 from 0 to FIRST_PSEUDO_REGISTER-1 */
435
436#define FIRST_PSEUDO_REGISTER REG_YBASE31 + 1
437
438/* 1 for registers that have pervasive standard uses
439 and are not available for the register allocator.
440
441 The registers are layed out as follows:
442
443 {a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
444 {r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
445 {pt} - X Space Address Arithmetic Unit
446 {ar0,ar1,ar2,ar3} - Bit Manipulation UNit
447 {pr} - Return Address Register
448
449 We reserve r2 for the Stack Pointer.
450 We specify r3 for the Frame Pointer but allow the compiler
451 to omit it when possible since we have so few pointer registers. */
452
453#define REG_A0 0
454#define REG_A0L 1
455#define REG_A1 2
456#define REG_A1L 3
457#define REG_X 4
458#define REG_Y 5
459#define REG_YL 6
460#define REG_PROD 7
461#define REG_PRODL 8
462#define REG_R0 9
463#define REG_R1 10
464#define REG_R2 11
465#define REG_R3 12
466#define REG_J 13
467#define REG_K 14
468#define REG_YBASE 15
469#define REG_PT 16
470#define REG_AR0 17
471#define REG_AR1 18
472#define REG_AR2 19
473#define REG_AR3 20
474#define REG_C0 21
475#define REG_C1 22
476#define REG_C2 23
477#define REG_PR 24
478#define REG_RB 25
479#define REG_YBASE0 26
480#define REG_YBASE1 27
481#define REG_YBASE2 28
482#define REG_YBASE3 29
483#define REG_YBASE4 30
484#define REG_YBASE5 31
485#define REG_YBASE6 32
486#define REG_YBASE7 33
487#define REG_YBASE8 34
488#define REG_YBASE9 35
489#define REG_YBASE10 36
490#define REG_YBASE11 37
491#define REG_YBASE12 38
492#define REG_YBASE13 39
493#define REG_YBASE14 40
494#define REG_YBASE15 41
495#define REG_YBASE16 42
496#define REG_YBASE17 43
497#define REG_YBASE18 44
498#define REG_YBASE19 45
499#define REG_YBASE20 46
500#define REG_YBASE21 47
501#define REG_YBASE22 48
502#define REG_YBASE23 49
503#define REG_YBASE24 50
504#define REG_YBASE25 51
505#define REG_YBASE26 52
506#define REG_YBASE27 53
507#define REG_YBASE28 54
508#define REG_YBASE29 55
509#define REG_YBASE30 56
510#define REG_YBASE31 57
511
512/* Do we have a accumulator register? */
513#define IS_ACCUM_REG(REGNO) ((REGNO) >= REG_A0 && (REGNO) <= REG_A1L)
514#define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
515
516/* Do we have a virtual ybase register */
517#define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
518
519#define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
520
521#define FIXED_REGISTERS \
522{0, 0, 0, 0, 0, 0, 0, 0, 0, \
523 0, 0, 0, 1, 0, 0, 1, \
524 1, \
525 0, 0, 0, 0, \
526 1, 1, 1, \
527 0, 0, \
528 0, 0, 0, 0, 0, 0, 0, 0, \
529 0, 0, 0, 0, 0, 0, 0, 0, \
530 0, 0, 0, 0, 0, 0, 0, 0, \
531 0, 0, 0, 0, 0, 0, 0, 0}
532
533/* 1 for registers not available across function calls.
534 These must include the FIXED_REGISTERS and also any
535 registers that can be used without being saved.
536 The latter must include the registers where values are returned
537 and the register where structure-value addresses are passed.
538 On the 1610 'a0' holds return values from functions. 'r0' holds
539 structure-value addresses.
540
541 In addition we don't save either j, k, ybase or any of the
542 bit manipulation registers. */
543
544
545#define CALL_USED_REGISTERS \
546{1, 1, 1, 1, 0, 1, 1, 1, 1, \
547 1, 0, 0, 1, 1, 1, 1, \
548 1, \
549 0, 0, 1, 1, \
550 1, 1, 1, \
551 0, 1, \
552 0, 0, 0, 0, 0, 0, 0, 0, \
553 0, 0, 0, 0, 0, 0, 0, 0, \
554 0, 0, 0, 0, 0, 0, 0, 0, \
555 0, 0, 0, 0, 0, 0, 0, 0}
556
557/* List the order in which to allocate registers. Each register must be
558 listed once, even those in FIXED_REGISTERS.
559
560 We allocate in the following order:
561 */
562
563#define REG_ALLOC_ORDER \
564{ REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
565 REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
566 REG_RB, REG_A0, REG_A1, REG_A0L, \
567 REG_A1L, REG_AR2, REG_AR3, \
568 REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
569 REG_C1, REG_C2, REG_R3, \
570 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
571 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
572 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
573 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
574 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
575 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
576 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
577 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
578
579/* Zero or more C statements that may conditionally modify two
580 variables `fixed_regs' and `call_used_regs' (both of type `char
581 []') after they have been initialized from the two preceding
582 macros.
583
584 This is necessary in case the fixed or call-clobbered registers
585 depend on target flags.
586
587 You need not define this macro if it has no work to do.
588
589 If the usage of an entire class of registers depends on the target
590 flags, you may indicate this to GCC by using this macro to modify
591 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
592 the classes which should not be used by GCC. Also define the macro
593 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
594 letter for a class that shouldn't be used.
595
596 (However, if this class is not included in `GENERAL_REGS' and all
597 of the insn patterns whose constraints permit this class are
598 controlled by target switches, then GCC will automatically avoid
599 using these registers when the target switches are opposed to
600 them.) If the user tells us there is no BMU, we can't use
ddd5a7c1 601 ar0-ar3 for register allocation */
946730d0
RK
602
603#define CONDITIONAL_REGISTER_USAGE \
604do \
605 { \
606 if (!TARGET_BMU) \
607 { \
608 int regno; \
609 \
610 for (regno = REG_AR0; regno <= REG_AR3; regno++) \
611 fixed_regs[regno] = call_used_regs[regno] = 1; \
612 } \
613 if (TARGET_RESERVE_YBASE) \
614 { \
615 int regno; \
616 \
617 for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
618 fixed_regs[regno] = call_used_regs[regno] = 1; \
619 } \
620 } \
621while (0)
622
623/* Determine which register classes are very likely used by spill registers.
624 local-alloc.c won't allocate pseudos that have these classes as their
625 preferred class unless they are "preferred or nothing". */
626
627#define CLASS_LIKELY_SPILLED_P(CLASS) \
628 ((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
629
630/* Return number of consecutive hard regs needed starting at reg REGNO
631 to hold something of mode MODE.
632 This is ordinarily the length in words of a value of mode MODE
633 but can be less for certain modes in special long registers. */
634
635#define HARD_REGNO_NREGS(REGNO, MODE) \
636 (GET_MODE_SIZE(MODE))
637
638/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
639
640#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
641
642/* Value is 1 if it is a good idea to tie two pseudo registers
643 when one has mode MODE1 and one has mode MODE2.
644 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
645 for any hard reg, then this must be 0 for correct output. */
646#define MODES_TIEABLE_P(MODE1, MODE2) \
647 (((MODE1) == (MODE2)) || \
648 (GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
649 == (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
650
651/* Specify the registers used for certain standard purposes.
652 The values of these macros are register numbers. */
653
654/* DSP1600 pc isn't overloaded on a register. */
655/* #define PC_REGNUM */
656
657/* Register to use for pushing function arguments.
658 This is r3 in our case */
659#define STACK_POINTER_REGNUM REG_R3
660
661/* Base register for access to local variables of the function.
662 This is r2 in our case */
663#define FRAME_POINTER_REGNUM REG_R2
664
665/* We can debug without the frame pointer */
666#define CAN_DEBUG_WITHOUT_FP 1
667
668/* The 1610 saves the return address in this register */
669#define RETURN_ADDRESS_REGNUM REG_PR
670
671/* Base register for access to arguments of the function. */
672#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
673
674/* Register in which static-chain is passed to a function. */
675
676#define STATIC_CHAIN_REGNUM 4
677
678/* Register in which address to store a structure value
679 is passed to a function. This is 'r0' in our case */
680#define STRUCT_VALUE_REGNUM REG_R0
681\f
682/* Define the classes of registers for register constraints in the
683 machine description. Also define ranges of constants.
684
685 One of the classes must always be named ALL_REGS and include all hard regs.
686 If there is more than one class, another class must be named NO_REGS
687 and contain no registers.
688
689 The name GENERAL_REGS must be the name of a class (or an alias for
690 another name such as ALL_REGS). This is the class of registers
691 that is allowed by "g" or "r" in a register constraint.
692 Also, registers outside this class are allocated only when
693 instructions express preferences for them.
694
695 The classes must be numbered in nondecreasing order; that is,
696 a larger-numbered class must never be contained completely
697 in a smaller-numbered class.
698
699 For any two classes, it is very desirable that there be another
700 class that represents their union. */
701
702
703enum reg_class
704{
705 NO_REGS,
706 A0H_REG,
707 A0L_REG,
708 A0_REG,
709 A1H_REG,
710 ACCUM_HIGH_REGS,
711 A1L_REG,
712 ACCUM_LOW_REGS,
713 A1_REG,
714 ACCUM_REGS,
715 X_REG,
716 X_OR_ACCUM_LOW_REGS,
717 X_OR_ACCUM_REGS,
718 YH_REG,
719 YH_OR_ACCUM_HIGH_REGS,
720 X_OR_YH_REGS,
721 YL_REG,
722 YL_OR_ACCUM_LOW_REGS,
723 X_OR_YL_REGS,
724 X_OR_Y_REGS,
725 Y_REG,
726 ACCUM_OR_Y_REGS,
727 PH_REG,
728 X_OR_PH_REGS,
729 PL_REG,
730 PL_OR_ACCUM_LOW_REGS,
731 X_OR_PL_REGS,
732 YL_OR_PL_OR_ACCUM_LOW_REGS,
733 P_REG,
734 ACCUM_OR_P_REGS,
735 YL_OR_P_REGS,
736 ACCUM_LOW_OR_YL_OR_P_REGS,
737 Y_OR_P_REGS,
738 ACCUM_Y_OR_P_REGS,
739 NO_FRAME_Y_ADDR_REGS,
740 Y_ADDR_REGS,
741 ACCUM_LOW_OR_Y_ADDR_REGS,
742 ACCUM_OR_Y_ADDR_REGS,
743 X_OR_Y_ADDR_REGS,
744 Y_OR_Y_ADDR_REGS,
745 P_OR_Y_ADDR_REGS,
746 NON_HIGH_YBASE_ELIGIBLE_REGS,
747 YBASE_ELIGIBLE_REGS,
748 J_REG,
749 J_OR_DAU_16_BIT_REGS,
750 BMU_REGS,
751 NOHIGH_NON_ADDR_REGS,
752 NON_ADDR_REGS,
753 SLOW_MEM_LOAD_REGS,
754 NOHIGH_NON_YBASE_REGS,
755 NO_ACCUM_NON_YBASE_REGS,
756 NON_YBASE_REGS,
757 YBASE_VIRT_REGS,
758 ACCUM_LOW_OR_YBASE_REGS,
759 ACCUM_OR_YBASE_REGS,
760 X_OR_YBASE_REGS,
761 Y_OR_YBASE_REGS,
762 ACCUM_LOW_YL_PL_OR_YBASE_REGS,
763 P_OR_YBASE_REGS,
764 ACCUM_Y_P_OR_YBASE_REGS,
765 Y_ADDR_OR_YBASE_REGS,
766 YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
767 YBASE_OR_YBASE_ELIGIBLE_REGS,
768 NO_HIGH_ALL_REGS,
769 ALL_REGS,
770 LIM_REG_CLASSES
771};
772
773/* GENERAL_REGS must be the name of a register class */
774#define GENERAL_REGS ALL_REGS
775
776#define N_REG_CLASSES (int) LIM_REG_CLASSES
777
778/* Give names of register classes as strings for dump file. */
779
780#define REG_CLASS_NAMES \
781{ \
782 "NO_REGS", \
783 "A0H_REG", \
784 "A0L_REG", \
785 "A0_REG", \
786 "A1H_REG", \
787 "ACCUM_HIGH_REGS", \
788 "A1L_REG", \
789 "ACCUM_LOW_REGS", \
790 "A1_REG", \
791 "ACCUM_REGS", \
792 "X_REG", \
793 "X_OR_ACCUM_LOW_REGS", \
794 "X_OR_ACCUM_REGS", \
795 "YH_REG", \
796 "YH_OR_ACCUM_HIGH_REGS", \
797 "X_OR_YH_REGS", \
798 "YL_REG", \
799 "YL_OR_ACCUM_LOW_REGS", \
800 "X_OR_YL_REGS", \
801 "X_OR_Y_REGS", \
802 "Y_REG", \
803 "ACCUM_OR_Y_REGS", \
804 "PH_REG", \
805 "X_OR_PH_REGS", \
806 "PL_REG", \
807 "PL_OR_ACCUM_LOW_REGS", \
808 "X_OR_PL_REGS", \
809 "PL_OR_YL_OR_ACCUM_LOW_REGS", \
810 "P_REG", \
811 "ACCUM_OR_P_REGS", \
812 "YL_OR_P_REGS", \
813 "ACCUM_LOW_OR_YL_OR_P_REGS", \
814 "Y_OR_P_REGS", \
815 "ACCUM_Y_OR_P_REGS", \
816 "NO_FRAME_Y_ADDR_REGS", \
817 "Y_ADDR_REGS", \
818 "ACCUM_LOW_OR_Y_ADDR_REGS", \
819 "ACCUM_OR_Y_ADDR_REGS", \
820 "X_OR_Y_ADDR_REGS", \
821 "Y_OR_Y_ADDR_REGS", \
822 "P_OR_Y_ADDR_REGS", \
823 "NON_HIGH_YBASE_ELIGIBLE_REGS", \
824 "YBASE_ELIGIBLE_REGS", \
825 "J_REG", \
826 "J_OR_DAU_16_BIT_REGS", \
827 "BMU_REGS", \
828 "NOHIGH_NON_ADDR_REGS", \
829 "NON_ADDR_REGS", \
830 "SLOW_MEM_LOAD_REGS", \
831 "NOHIGH_NON_YBASE_REGS", \
832 "NO_ACCUM_NON_YBASE_REGS", \
833 "NON_YBASE_REGS", \
834 "YBASE_VIRT_REGS", \
835 "ACCUM_LOW_OR_YBASE_REGS", \
836 "ACCUM_OR_YBASE_REGS", \
837 "X_OR_YBASE_REGS", \
838 "Y_OR_YBASE_REGS", \
839 "ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
840 "P_OR_YBASE_REGS", \
841 "ACCUM_Y_P_OR_YBASE_REGS", \
842 "Y_ADDR_OR_YBASE_REGS", \
843 "YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
844 "YBASE_OR_YBASE_ELIGIBLE_REGS", \
845 "NO_HIGH_ALL_REGS", \
846 "ALL_REGS" \
847}
848
849/* Define which registers fit in which classes.
850 This is an initializer for a vector of HARD_REG_SET
851 of length N_REG_CLASSES. */
852
853#define REG_CLASS_CONTENTS \
854{ \
855 {0x00000000, 0x00000000}, /* no reg */ \
856 {0x00000001, 0x00000000}, /* a0h */ \
857 {0x00000002, 0x00000000}, /* a0l */ \
858 {0x00000003, 0x00000000}, /* a0h:a0l */ \
859 {0x00000004, 0x00000000}, /* a1h */ \
860 {0x00000005, 0x00000000}, /* accum high */ \
861 {0x00000008, 0x00000000}, /* a1l */ \
862 {0x0000000A, 0x00000000}, /* accum low */ \
863 {0x0000000c, 0x00000000}, /* a1h:a1l */ \
864 {0x0000000f, 0x00000000}, /* accum regs */ \
865 {0x00000010, 0x00000000}, /* x reg */ \
866 {0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
867 {0x0000001f, 0x00000000}, /* x & accum regs */ \
868 {0x00000020, 0x00000000}, /* y high */ \
869 {0x00000025, 0x00000000}, /* yh, accum high */ \
870 {0x00000030, 0x00000000}, /* x & yh */ \
871 {0x00000040, 0x00000000}, /* y low */ \
872 {0x0000004A, 0x00000000}, /* y low, accum_low */ \
873 {0x00000050, 0x00000000}, /* x & yl */ \
874 {0x00000060, 0x00000000}, /* yl:yh */ \
875 {0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
876 {0x0000006F, 0x00000000}, /* accum, y */ \
877 {0x00000080, 0x00000000}, /* p high */ \
878 {0x00000090, 0x00000000}, /* x & ph */ \
879 {0x00000100, 0x00000000}, /* p low */ \
880 {0x0000010A, 0x00000000}, /* p_low and accum_low */ \
881 {0x00000110, 0x00000000}, /* x & pl */ \
882 {0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
883 {0x00000180, 0x00000000}, /* pl:ph */ \
884 {0x0000018F, 0x00000000}, /* accum, p */ \
885 {0x000001C0, 0x00000000}, /* pl:ph and yl */ \
886 {0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
887 {0x000001E0, 0x00000000}, /* y or p */ \
888 {0x000001EF, 0x00000000}, /* accum, y or p */ \
889 {0x00000E00, 0x00000000}, /* r0-r2 */ \
890 {0x00001E00, 0x00000000}, /* r0-r3 */ \
891 {0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
892 {0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
893 {0x00001E10, 0x00000000}, /* x,r0-r3 */ \
894 {0x00001E60, 0x00000000}, /* y,r0-r3 */ \
895 {0x00001F80, 0x00000000}, /* p,r0-r3 */ \
896 {0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
897 {0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
898 {0x00002000, 0x00000000}, /* j */ \
899 {0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
900 {0x001E0000, 0x00000000}, /* ar0-ar3 */ \
901 {0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
902 {0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
903 {0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
904 {0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
905 {0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
906 {0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
907 {0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
908 {0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
909 {0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
910 {0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
911 {0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
912 {0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
913 {0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
914 {0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
915 {0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
916 {0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
917 {0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
918 {0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
919 {0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
920}
921
922
923/* The same information, inverted:
924 Return the class number of the smallest class containing
925 reg number REGNO. This could be a conditional expression
926 or could index an array. */
927
928#define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
929
930/* The class value for index registers, and the one for base regs. */
931
932#define INDEX_REG_CLASS NO_REGS
933#define BASE_REG_CLASS Y_ADDR_REGS
934
935/* Get reg_class from a letter such as appears in the machine description. */
936
937#define REG_CLASS_FROM_LETTER(C) \
938 dsp16xx_reg_class_from_letter(C)
939
940#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
941 secondary_reload_class(CLASS, MODE, X)
942
943/* When defined, the compiler allows registers explicitly used in the
944 rtl to be used as spill registers but prevents the compiler from
945 extending the lifetime of these registers. */
946
947#define SMALL_REGISTER_CLASSES
948
949/* Macros to check register numbers against specific register classes. */
950
951/* These assume that REGNO is a hard or pseudo reg number.
952 They give nonzero only if REGNO is a hard reg of the suitable class
953 or a pseudo reg currently allocated to a suitable hard reg.
954 Since they use reg_renumber, they are safe only once reg_renumber
955 has been allocated, which happens in local-alloc.c. */
956
957/* A C expression which is nonzero if register REGNO is suitable for use
958 as a base register in operand addresses. It may be either a suitable
959 hard register or a pseudo register that has been allocated such a
960 hard register.
961
962 On the 1610 the Y address pointers can be used as a base registers */
963#define REGNO_OK_FOR_BASE_P(REGNO) \
964(((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
965 && (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
966
967#define REGNO_OK_FOR_YBASE_P(REGNO) \
968 (((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
969
970#define REGNO_OK_FOR_INDEX_P(REGNO) 0
971
972#ifdef ALL_16_BIT_REGISTERS
973#define IS_32_BIT_REG(REGNO) 0
974#else
975#define IS_32_BIT_REG(REGNO) \
976 ((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
977#endif
978
979/* Given an rtx X being reloaded into a reg required to be
980 in class CLASS, return the class of reg to actually use.
981 In general this is just CLASS; but on some machines
982 in some cases it is preferable to use a more restrictive class.
983 Also, we must ensure that a PLUS is reloaded either
984 into an accumulator or an address register. */
985
986#define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
987
988/* A C expression that places additional restrictions on the register
989 class to use when it is necessary to be able to hold a value of
990 mode MODE in a reload register for which class CLASS would
991 ordinarily be used.
992
993 Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
994 there are certain modes that simply can't go in certain reload
995 classes.
996
997 The value is a register class; perhaps CLASS, or perhaps another,
998 smaller class.
999
1000 Don't define this macro unless the target machine has limitations
1001 which require the macro to do something nontrivial. */
1002
1003#if 0
1004#define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
1005#endif
1006
1007/* A C expression for the maximum number of consecutive registers of class CLASS
1008 needed to hold a vlaue of mode MODE */
1009#define CLASS_MAX_NREGS(CLASS, MODE) \
1010 class_max_nregs(CLASS, MODE)
1011
1012/* The letters 'I' through 'P' in a register constraint string
1013 can be used to stand for particular ranges of immediate operands.
1014 This macro defines what the ranges are.
1015 C is the letter, and VALUE is a constant value.
1016 Return 1 if VALUE is in the range specified by C.
1017
1018 For the 16xx, the following constraints are used:
1019 'I' requires a non-negative 16-bit value.
1020 'J' requires a non-negative 9-bit value
1021 'K' requires a constant 0 operand.
1022 'L' requires 16-bit value
1023 'M' 32-bit value -- low 16-bits zero
1024 */
1025
1026#define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
1027#define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
1028#define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
1029#define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
1030
1031#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1032 ((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
1033 : (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
1034 : (C) == 'K' ? ((VALUE) == 0) \
1035 : (C) == 'L' ? ! ((VALUE) & ~0x0000ffff) \
1036 : (C) == 'M' ? ! ((VALUE) & ~0xffff0000) \
1037 : (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 || \
1038 (VALUE) == -2 || (VALUE) == 2) \
1039 : 0)
1040
1041#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
1042
1043/* Optional extra constraints for this machine */
1044#define EXTRA_CONSTRAINT(OP,C) \
1045 ((C) == 'R' ? symbolic_address_p (OP) \
1046 : 0)
1047\f
1048/* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
1049
1050/* Define this if pushing a word on the stack
1051 makes the stack pointer a smaller address. */
1052/* #define STACK_GROWS_DOWNWARD */
1053
1054/* Define this if the nominal address of the stack frame
1055 is at the high-address end of the local variables;
1056 that is, each additional local variable allocated
1057 goes at a more negative offset in the frame. */
1058/* #define FRAME_GROWS_DOWNWARD */
1059
1060#define ARGS_GROW_DOWNWARD
1061
1062/* We use post decrement on the 1600 because there isn't
1063 a pre-decrement addressing mode. This means that we
1064 assume the stack pointer always points at the next
1065 FREE location on the stack. */
1066#define STACK_PUSH_CODE POST_INC
1067
1068/* Offset within stack frame to start allocating local variables at.
1069 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1070 first local allocated. Otherwise, it is the offset to the BEGINNING
1071 of the first local allocated. */
1072#define STARTING_FRAME_OFFSET 0
1073
1074/* Offset from the stack pointer register to the first
1075 location at which outgoing arguments are placed. */
1076#define STACK_POINTER_OFFSET (0)
1077
1078struct dsp16xx_frame_info
1079{
1080 unsigned long total_size; /* # bytes that the entire frame takes up */
1081 unsigned long var_size; /* # bytes that variables take up */
1082 unsigned long args_size; /* # bytes that outgoing arguments take up */
1083 unsigned long extra_size; /* # bytes of extra gunk */
1084 unsigned int reg_size; /* # bytes needed to store regs */
1085 long fp_save_offset; /* offset from vfp to store registers */
1086 unsigned long sp_save_offset; /* offset from new sp to store registers */
1087 int initialized; /* != 0 if frame size already calculated */
1088 int num_regs; /* number of registers saved */
1089 int function_makes_calls; /* Does the function make calls */
1090};
1091
1092extern struct dsp16xx_frame_info current_frame_info;
1093
1094/* If we generate an insn to push BYTES bytes,
1095 this says how many the stack pointer really advances by. */
1096/* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
1097
1098/* If defined, the maximum amount of space required for outgoing
1099 arguments will be computed and placed into the variable
1100 'current_function_outgoing_args_size'. No space will be pushed
1101 onto the stack for each call; instead, the function prologue should
1102 increase the stack frame size by this amount.
1103
1104 It is not proper to define both 'PUSH_ROUNDING' and
1105 'ACCUMULATE_OUTGOING_ARGS'. */
1106#define ACCUMULATE_OUTGOING_ARGS
1107
1108/* Offset of first parameter from the argument pointer
1109 register value. */
1110
1111#define FIRST_PARM_OFFSET(FNDECL) (0)
1112
1113/* Value is 1 if returning from a function call automatically
1114 pops the arguments described by the number-of-args field in the call.
8b109b37 1115 FUNDECL is the declaration node of the function (as a tree),
946730d0
RK
1116 FUNTYPE is the data type of the function (as a tree),
1117 or for a library call it is an identifier node for the subroutine name. */
1118
8b109b37 1119#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
946730d0
RK
1120
1121/* Define how to find the value returned by a function.
1122 VALTYPE is the data type of the value (as a tree).
1123 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1124 otherwise, FUNC is 0. On the 1610 all function return their values
1125 in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
1126 entire register is significant. */
1127
1128#define VALUE_REGNO(MODE) (REG_Y)
1129
1130#define FUNCTION_VALUE(VALTYPE, FUNC) \
1131 gen_rtx (REG, TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
1132
1133/* Define how to find the value returned by a library function
1134 assuming the value has mode MODE. */
1135#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, VALUE_REGNO(MODE))
1136
1137/* 1 if N is a possible register number for a function value. */
1138#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
1139\f
1140
1141/* Define where to put the arguments to a function.
1142 Value is zero to push the argument on the stack,
1143 or a hard register in which to store the argument.
1144
1145 MODE is the argument's machine mode.
1146 TYPE is the data type of the argument (as a tree).
1147 This is null for libcalls where that information may
1148 not be available.
1149 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1150 the preceding args and about the function being called.
1151 NAMED is nonzero if this argument is a named parameter
1152 (otherwise it is an extra parameter matching an ellipsis). */
1153
1154/* On the 1610 all args are pushed, except if -mregparm is specified
1155 then the first two words of arguments are passed in a0, a1. */
1156#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1157 dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
1158
1159/* Define the first register to be used for argument passing */
1160#define FIRST_REG_FOR_FUNCTION_ARG REG_Y
1161
ddd5a7c1
RK
1162/* Define the profitability of saving registers around calls.
1163 NOTE: For now we turn this off because of a bug in the
946730d0
RK
1164 caller-saves code and also because i'm not sure it is helpful
1165 on the 1610. */
1166
1167#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1168
1169/* This indicates that an argument is to be passed with an invisible reference
1170 (i.e., a pointer to the object is passed).
1171
1172 On the dsp16xx, we do this if it must be passed on the stack. */
1173
1174#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1175 (MUST_PASS_IN_STACK (MODE, TYPE))
1176
1177/* For an arg passed partly in registers and partly in memory,
1178 this is the number of registers used.
1179 For args passed entirely in registers or entirely in memory, zero. */
1180
1181#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1182
1183/* Define a data type for recording info about an argument list
1184 during the scan of that argument list. This data type should
1185 hold all necessary information about the function itself
1186 and about the args processed so far, enough to enable macros
1187 such as FUNCTION_ARG to determine where the next arg should go. */
1188#define CUMULATIVE_ARGS int
1189
1190/* Initialize a variable CUM of type CUMULATIVE_ARGS
1191 for a call to a function whose data type is FNTYPE.
1192 For a library call, FNTYPE is 0. */
1193#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
1194
1195/* Update the data in CUM to advance over an argument
1196 of mode MODE and data type TYPE.
1197 (TYPE is null for libcalls where that information may not be available.) */
1198
1199#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1200 dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
1201
1202/* 1 if N is a possible register number for function argument passing. */
1203#define FUNCTION_ARG_REGNO_P(N) \
1204 ((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
1205
1206/* This macro generates the assembly code for function entry.
1207 FILE is a stdio stream to output the code to.
1208 SIZE is an int: how many units of temporary storage to allocate.
1209 Refer to the array `regs_ever_live' to determine which registers
1210 to save; `regs_ever_live[I]' is nonzero if register number I
1211 is ever used in the function. This macro is responsible for
1212 knowing which registers should not be saved even if used. */
1213
1214#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
1215
1216/* Output assembler code to FILE to increment profiler label # LABELNO
1217 for profiling a function entry. */
1218
1219#define FUNCTION_PROFILER(FILE, LABELNO) fatal("Profiling not implemented yet.")
1220
1221/* Output assembler code to FILE to initialize this source file's
1222 basic block profiling info, if that has not already been done. */
1223#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) fatal("Profiling not implemented yet.")
1224
1225/* Output assembler code to FILE to increment the entry-count for
1226 the BLOCKNO'th basic block in this source file. */
1227#define BLOCK_PROFILER(FILE, BLOCKNO) fatal("Profiling not implemented yet.")
1228
1229
1230/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1231 the stack pointer does not matter. The value is tested only in
1232 functions that have frame pointers.
1233 No definition is equivalent to always zero. */
1234
1235#define EXIT_IGNORE_STACK (0)
1236
1237#define TRAMPOLINE_TEMPLATE(FILE) fatal ("Trampolines not yet implemented");
1238
1239/* Length in units of the trampoline for entering a nested function.
1240 This is a dummy value */
1241
1242#define TRAMPOLINE_SIZE 20
1243
1244/* Emit RTL insns to initialize the variable parts of a trampoline.
1245 FNADDR is an RTX for the address of the function's pure code.
1246 CXT is an RTX for the static chain value for the function. */
1247
1248#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1249 fatal ("Trampolines not yet implemented");
1250
1251/* This macro generates the assembly code for function exit,
1252 on machines that need it. If FUNCTION_EPILOGUE is not defined
1253 then individual return instructions are generated for each
1254 return statement. Args are same as for FUNCTION_PROLOGUE.
1255
1256 The function epilogue should not depend on the current stack pointer!
1257 It should use the frame pointer only. This is mandatory because
1258 of alloca; we also take advantage of it to omit stack adjustments
1259 before returning. */
1260
1261#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
1262
1263/* A C expression which is nonzero if a function must have and use a
1264 frame pointer. If its value is nonzero the functions will have a
1265 frame pointer. */
1266#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1267
1268/* A C statement to store in the variable 'DEPTH' the difference
1269 between the frame pointer and the stack pointer values immediately
1270 after the function prologue. */
1271#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1272{ (DEPTH) = initial_frame_pointer_offset(); \
1273}
1274\f
1275/* IMPLICIT CALLS TO LIBRARY ROUTINES */
1276
1277#define ADDHF3_LIBCALL "__Emulate_addhf3"
1278#define SUBHF3_LIBCALL "__Emulate_subhf3"
1279#define MULHF3_LIBCALL "__Emulate_mulhf3"
1280#define DIVHF3_LIBCALL "__Emulate_divhf3"
1281#define CMPHF3_LIBCALL "__Emulate_cmphf3"
1282#define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
1283#define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
1284#define NEGHF2_LIBCALL "__Emulate_neghf2"
1285
1286#define UMULHI3_LIBCALL "__Emulate_umulhi3"
1287#define MULHI3_LIBCALL "__Emulate_mulhi3"
1288#define UDIVQI3_LIBCALL "__Emulate_udivqi3"
1289#define UDIVHI3_LIBCALL "__Emulate_udivhi3"
1290#define DIVQI3_LIBCALL "__Emulate_divqi3"
1291#define DIVHI3_LIBCALL "__Emulate_divhi3"
1292#define MODQI3_LIBCALL "__Emulate_modqi3"
1293#define MODHI3_LIBCALL "__Emulate_modhi3"
1294#define UMODQI3_LIBCALL "__Emulate_umodqi3"
1295#define UMODHI3_LIBCALL "__Emulate_umodhi3"
1296#define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
1297#define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
1298#define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
1299#define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
1300
1301/* Define this macro if calls to the ANSI C library functions memcpy and
1302 memset should be generated instead of the BSD function bcopy & bzero. */
1303#define TARGET_MEM_FUNCTIONS
1304
1305\f
1306/* ADDRESSING MODES */
1307
1308/* The 1610 has post-increment and decrement, but no pre-modify */
1309#define HAVE_POST_INCREMENT
1310#define HAVE_POST_DECREMENT
1311
1312/* #define HAVE_PRE_DECREMENT */
1313/* #define HAVE_PRE_INCREMENT */
1314
1315/* Recognize any constant value that is a valid address. */
1316#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1317
1318/* Maximum number of registers that can appear in a valid memory address. */
1319#define MAX_REGS_PER_ADDRESS 1
1320
1321/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1322 and check its validity for a certain class.
1323 We have two alternate definitions for each of them.
1324 The usual definition accepts all pseudo regs; the other rejects
1325 them unless they have been allocated suitable hard regs.
1326 The symbol REG_OK_STRICT causes the latter definition to be used.
1327
1328 Most source files want to accept pseudo regs in the hope that
1329 they will get allocated to the class that the insn wants them to be in.
1330 Source files for reload pass need to be strict.
1331 After reload, it makes no difference, since pseudo regs have
1332 been eliminated by then. */
1333
1334#ifndef REG_OK_STRICT
1335
1336/* Nonzero if X is a hard reg that can be used as an index
1337 or if it is a pseudo reg. */
1338#define REG_OK_FOR_INDEX_P(X) 0
1339
1340/* Nonzero if X is a hard reg that can be used as a base reg
1341 or if it is a pseudo reg. */
1342#define REG_OK_FOR_BASE_P(X) \
1343 ((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
1344 || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1345
1346/* Nonzero if X is the 'ybase' register */
1347#define REG_OK_FOR_YBASE_P(X) \
1348 (REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1349#else
1350
1351/* Nonzero if X is a hard reg that can be used as an index. */
1352#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1353
1354/* Nonzero if X is a hard reg that can be used as a base reg. */
1355#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1356
1357/* Nonzero if X is the 'ybase' register */
1358#define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
1359
1360#endif
1361\f
1362/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1363 that is a valid memory address for an instruction.
1364 The MODE argument is the machine mode for the MEM expression
1365 that wants to use this address.
1366
1367 On the 1610, the actual legitimate addresses must be N (N must fit in
1368 5 bits), *rn (register indirect), *rn++, or *rn-- */
1369
1370#define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
1371#define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
1372#define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
1373#define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
1374
1375#define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
1376#define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
1377#define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
1378
1379#define INDIRECTABLE_ADDRESS_P(X) \
1380 ((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
1381 || ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
1382 && REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
1383 || (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
1384
1385
1386#define INDEXABLE_ADDRESS_P(X,MODE) \
1387 ((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
1388 XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
1389 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
1390 (GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
1391 XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
1392 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
1393
1394#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1395{ \
1396 if (INDIRECTABLE_ADDRESS_P(X)) \
1397 goto ADDR; \
1398}
1399
1400\f
1401/* Try machine-dependent ways of modifying an illegitimate address
1402 to be legitimate. If we find one, return the new, valid address.
1403 This macro is used in only one place: `memory_address' in explow.c.
1404
1405 OLDX is the address as it was before break_out_memory_refs was called.
1406 In some cases it is useful to look at this to decide what needs to be done.
1407
1408 MODE and WIN are passed so that this macro can use
1409 GO_IF_LEGITIMATE_ADDRESS.
1410
1411 It is always safe for this macro to do nothing. It exists to recognize
1412 opportunities to optimize the output.
1413
1414 For the 1610, we need not do anything. However, if we don't,
1415 `memory_address' will try lots of things to get a valid address, most of
1416 which will result in dead code and extra pseudos. So we make the address
1417 valid here.
1418
1419 This is easy: The only valid addresses are an offset from a register
1420 and we know the address isn't valid. So just call either `force_operand'
1421 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1422
1423#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1424{ if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1425 X = XEXP (x, 0); \
1426 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1427 X = force_operand (X, 0); \
1428 else \
1429 X = force_reg (Pmode, X); \
1430 goto WIN; \
1431}
1432
1433/* Go to LABEL if ADDR (a legitimate address expression)
1434 has an effect that depends on the machine mode it is used for.
1435 On the 1610, only postdecrement and postincrement address depend thus
1436 (the amount of decrement or increment being the length of the operand). */
1437
1438#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1439 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1440
1441/* Nonzero if the constant value X is a legitimate general operand.
1442 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1443#define LEGITIMATE_CONSTANT_P(X) (1)
1444
1445\f
1446/* CONDITION CODE INFORMATION */
1447
1448/* Store in cc_status the expressions
1449 that the condition codes will describe
1450 after execution of an instruction whose pattern is EXP.
1451 Do not alter them if the instruction would not alter the cc's. */
1452
1453#define NOTICE_UPDATE_CC(EXP, INSN) \
1454 notice_update_cc( (EXP) )
1455\f
1456/* DESCRIBING RELATIVE COSTS OF OPERATIONS */
1457
1458/* Compute the cost of computing a constant rtl expression RTX
1459 whose rtx-code is CODE. The body of this macro is a portion
1460 of a switch statement. If the code is computed here,
1461 return it with a return statement. */
1462#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1463 case CONST_INT: \
1464 return 0; \
1465 case LABEL_REF: \
1466 case SYMBOL_REF: \
1467 case CONST: \
1468 return COSTS_N_INSNS (1); \
1469 \
1470 case CONST_DOUBLE: \
1471 return COSTS_N_INSNS (2);
1472
ddd5a7c1 1473/* Like CONST_COSTS but applies to nonconstant RTL expressions.
946730d0
RK
1474 This can be used, for example to indicate how costly a multiply
1475 instruction is. */
1476#define RTX_COSTS(X,CODE,OUTER_CODE) \
1477 case MEM: \
1478 return GET_MODE (X) == QImode ? COSTS_N_INSNS (2) : \
1479 COSTS_N_INSNS (4); \
1480 case DIV: \
1481 case MOD: \
1482 return COSTS_N_INSNS (38); \
1483 case MULT: \
1484 if (GET_MODE (X) == QImode) \
1485 return COSTS_N_INSNS (2); \
1486 else \
1487 return COSTS_N_INSNS (38); \
1488 case PLUS: \
1489 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1490 { \
1491 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1492 { \
1493 int number = INTVAL(XEXP (X,1)); \
1494 if (number == 1) \
1495 return COSTS_N_INSNS (1); \
1496 if (INT_FITS_16_BITS(number)) \
1497 return COSTS_N_INSNS (2); \
1498 else \
1499 return COSTS_N_INSNS (4); \
1500 } \
1501 return COSTS_N_INSNS (1); \
1502 } \
1503 else \
1504 return COSTS_N_INSNS (38); \
1505 case MINUS: \
1506 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1507 { \
1508 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1509 { \
1510 if (INT_FITS_16_BITS(INTVAL(XEXP(X,1)))) \
1511 return COSTS_N_INSNS (2); \
1512 else \
1513 return COSTS_N_INSNS (4); \
1514 } \
1515 return COSTS_N_INSNS (1); \
1516 } \
1517 else \
1518 return COSTS_N_INSNS (38); \
1519 case AND: case IOR: case XOR: \
1520 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1521 { \
1522 if (INT_FITS_16_BITS(INTVAL(XEXP(X,1)))) \
1523 return COSTS_N_INSNS (2); \
1524 else \
1525 return COSTS_N_INSNS (4); \
1526 } \
1527 return COSTS_N_INSNS (1); \
1528 case NEG: case NOT: \
1529 return COSTS_N_INSNS (1); \
1530 case ASHIFT: \
1531 case ASHIFTRT: \
946730d0
RK
1532 case LSHIFTRT: \
1533 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1534 { \
1535 int number = INTVAL(XEXP (X,1)); \
1536 if (number == 1 || number == 4 || number == 8 || \
1537 number == 16) \
1538 return COSTS_N_INSNS (1); \
1539 else \
1540 return COSTS_N_INSNS (2); \
1541 } \
1542 return COSTS_N_INSNS (1);
1543
1544/* An expression giving the cost of an addressing mode that contains
1545 address. */
1546#define ADDRESS_COST(ADDR) dsp16xx_address_cost (ADDR)
1547
1548/* A c expression for the cost of moving data from a register in
1549 class FROM to one in class TO. The classes are expressed using
1550 the enumeration values such as GENERAL_REGS. A value of 2 is
1551 the default. */
1552#define REGISTER_MOVE_COST(FROM,TO) dsp16xx_register_move_cost (FROM, TO)
1553
1554/* A C expression for the cost of moving data of mode MODE between
1555 a register and memory. A value of 2 is the default. */
1556#define MEMORY_MOVE_COST(MODE) \
1557 (GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
1558 : 16)
1559
1560/* A C expression for the cost of a branch instruction. A value of
1561 1 is the default; */
1562#define BRANCH_COST 2
1563\f
1564
1565/* Define this because otherwise gcc will try to put the function address
1566 in any old pseudo register. We can only use pt. */
1567#define NO_FUNCTION_CSE
1568
1569/* Define this macro as a C expression which is nonzero if accessing less
1570 than a word of memory (i.e a char or short) is no faster than accessing
1571 a word of memory, i.e if such access require more than one instruction
1572 or if ther is no difference in cost between byte and (aligned) word
1573 loads. */
1574#define SLOW_BYTE_ACCESS 1
1575
1576/* Define this macro if zero-extension (of a char or short to an int) can
1577 be done faster if the destination is a register that is know to be zero. */
1578/* #define SLOW_ZERO_EXTEND */
1579
1580/* Define this macro if unaligned accesses have a cost many times greater than
1581 aligned accesses, for example if they are emulated in a trap handler */
1582/* define SLOW_UNALIGNED_ACCESS */
1583
1584/* Define this macro to inhibit strength reduction of memory addresses */
1585/* #define DONT_REDUCE_ADDR */
1586
1587\f
1588/* DIVIDING THE OUTPUT IN SECTIONS */
1589/* Output before read-only data. */
1590
1591#define DEFAULT_TEXT_SEG_NAME ".text"
1592#define TEXT_SECTION_ASM_OP rsect_text
1593
1594/* Output before constants and strings */
1595#define DEFAULT_CONST_SEG_NAME ".const"
1596#define READONLY_SECTION_ASM_OP rsect_const
1597#define READONLY_DATA_SECTION const_section
1598
1599/* Output before writable data. */
1600#define DEFAULT_DATA_SEG_NAME ".data"
1601#define DATA_SECTION_ASM_OP rsect_data
1602
1603#define DEFAULT_BSS_SEG_NAME ".bss"
1604#define BSS_SECTION_ASM_OP rsect_bss
1605
1606/* We will default to using 1610 if the user doesn't
1607 specify it. */
1608#define DEFAULT_CHIP_NAME "1610"
1609
1610/* A list of names for sections other than the standard two, which are
1611 'in_text' and 'in_data'. */
1612#define EXTRA_SECTIONS in_bss, in_const
1613
1614#define EXTRA_SECTION_FUNCTIONS \
1615void \
1616const_section () \
1617{ \
1618 if (in_section != in_const) \
1619 { \
1620 fprintf (asm_out_file, "%s\n", READONLY_SECTION_ASM_OP); \
1621 in_section = in_const; \
1622 } \
1623} \
1624void \
1625bss_section () \
1626{ \
1627 if (in_section != in_bss) { \
1628 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
1629 in_section = in_bss; \
1630 } \
1631}
1632
1633\f
1634/* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
1635
1636/* Output at beginning of assembler file. */
1637#define ASM_FILE_START(FILE) dsp16xx_file_start ()
1638
1639/* Prevent output of .gcc_compiled */
1640#define ASM_IDENTIFY_GCC(FILE)
1641
1642/* A C string constant describing how to begin a comment in the target
1643 assembler language. */
1644/* define ASM_COMMENT_START */
1645
1646/* Output to assembler file text saying following lines
1647 may contain character constants, extra white space, comments, etc. */
1648#define ASM_APP_ON ""
1649
1650/* Output to assembler file text saying following lines
1651 no longer contain unusual constructs. */
1652#define ASM_APP_OFF ""
1653\f
1654/* OUTPUT OF DATA */
1655
1656/* This is how to output an assembler line defining a `double' constant. */
1657#define ASM_OUTPUT_DOUBLE(FILE,VALUE) asm_output_float (FILE,VALUE)
1658
1659/* This is how to output an assembler line defining a `float' constant. */
1660#define ASM_OUTPUT_FLOAT(FILE,VALUE) asm_output_float (FILE, VALUE)
1661
1662/* This is how to output and assembler line defininf a 'float' constant of
1663 size HFmode. */
1664#define ASM_OUTPUT_SHORT_FLOAT(FILE,VALUE) asm_output_float (FILE, VALUE)
1665
1666/* This is how to output an assembler line defining an `char' constant. */
1667#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1668( fprintf (FILE, "\tint "), \
1669 output_addr_const (FILE, (VALUE)), \
1670 fprintf (FILE, "\n"))
1671
1672/* This is how to output an assembler line defining an `short' constant. */
1673#define ASM_OUTPUT_SHORT(FILE,EXP) asm_output_long(FILE,INTVAL(EXP))
1674
1675/* This is how to output an assembler line defining a 'int' constant. */
1676#define ASM_OUTPUT_INT(FILE, EXP) asm_output_long(FILE,INTVAL(EXP))
1677
1678/* This is how to output an assembler line for a numeric constant byte. */
1679#define ASM_OUTPUT_BYTE(FILE,VALUE) ASM_OUTPUT_CHAR(FILE,VALUE)
1680
1681/* This is how we output a 'c' character string. For the 16xx
1682 assembler we have to do it one letter at a time */
1683
1684#define ASCII_LENGTH 10
1685
1686#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1687 do { \
1688 FILE *_hide_asm_out_file = (MYFILE); \
1689 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1690 int _hide_thissize = (MYLENGTH); \
1691 { \
1692 FILE *asm_out_file = _hide_asm_out_file; \
1693 unsigned char *p = _hide_p; \
1694 int thissize = _hide_thissize; \
1695 int i; \
1696 \
1697 for (i = 0; i < thissize; i++) \
1698 { \
1699 register int c = p[i]; \
1700 \
1701 if (i % ASCII_LENGTH == 0) \
1702 fprintf (asm_out_file, "\tint "); \
1703 \
1704 if (c >= ' ' && c < 0177 && c != '\'') \
1705 { \
1706 putc ('\'', asm_out_file); \
1707 putc (c, asm_out_file); \
1708 putc ('\'', asm_out_file); \
1709 } \
1710 else \
1711 { \
1712 fprintf (asm_out_file, "%d", c); \
1713 /* After an octal-escape, if a digit follows, \
1714 terminate one string constant and start another. \
1715 The Vax assembler fails to stop reading the escape \
1716 after three digits, so this is the only way we \
1717 can get it to parse the data properly. \
1718 if (i < thissize - 1 \
1719 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1720 fprintf (asm_out_file, "\'\n\tint \'"); \
1721 */ \
1722 } \
1723 /* if: \
1724 we are not at the last char (i != thissize -1) \
1725 and (we are not at a line break multiple \
1726 but i == 0) (it will be the very first time) \
1727 then put out a comma to extend. \
1728 */ \
1729 if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
1730 fprintf(asm_out_file, ","); \
1731 if (!((i + 1) % ASCII_LENGTH)) \
1732 fprintf (asm_out_file, "\n"); \
1733 } \
1734 fprintf (asm_out_file, "\n"); \
1735 } \
1736 } \
1737 while (0)
1738
1739/* Store in OUTPUT a string (made with alloca) containing
1740 an assembler-name for a local static variable or function
1741 named NAME. LABELNO is an integer which is different for
1742 each call. */
1743
1744#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1745 do { \
1746 int len = strlen (NAME); \
1747 char *temp = (char *) alloca (len + 3); \
1748 temp[0] = 'L'; \
1749 strcpy (&temp[1], (NAME)); \
1750 temp[len + 1] = '_'; \
1751 temp[len + 2] = 0; \
1752 (OUTPUT) = (char *) alloca (strlen (NAME) + 11); \
1753 ASM_GENERATE_INTERNAL_LABEL (OUTPUT, temp, LABELNO); \
1754 } while (0)
1755
1756#define ASM_OPEN_PAREN "("
1757#define ASM_CLOSE_PAREN ")"
1758
1759\f
1760/* OUTPUT OF UNINITIALIZED VARIABLES */
1761
1762/* This says how to output an assembler line
1763 to define a global common symbol. */
1764
1765#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1766 asm_output_common (FILE, NAME, SIZE, ROUNDED);
1767
1768/* This says how to output an assembler line
1769 to define a local common symbol. */
1770
1771#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1772 asm_output_local (FILE, NAME, SIZE, ROUNDED);
1773\f
1774/* OUTPUT AND GENERATION OF LABELS */
1775
1776/* This is how to output the definition of a user-level label named NAME,
1777 such as the label on a static function or variable NAME. */
1778#define ASM_OUTPUT_LABEL(FILE,NAME) \
1779 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1780
1781/* This is how to output a command to make the user-level label named NAME
1782 defined for reference from other files. */
1783
1784#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1785 do { fputs (".global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1786
1787/* A C statement to output to the stdio stream any text necessary
1788 for declaring the name of an external symbol named name which
1789 is referenced in this compilation but not defined. */
1790
1791#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1792{ \
1793 fprintf (FILE, ".extern "); \
1794 assemble_name (FILE, NAME); \
1795 fprintf (FILE, "\n"); \
1796}
1797/* A C statement to output on stream an assembler pseudo-op to
1798 declare a library function named external. */
1799
1800#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1801{ \
1802 fprintf (FILE, ".extern "); \
1803 assemble_name (FILE, XSTR (FUN, 0)); \
1804 fprintf (FILE, "\n"); \
1805}
1806/* This is how to output a reference to a user-level label named NAME.
1807 `assemble_name' uses this. */
1808#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1809 fprintf (FILE, "_%s", NAME)
1810
1811/* This is how to output an internal numbered label where
1812 PREFIX is the class of label and NUM is the number within the class. */
1813#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1814 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1815
1816/* This is how to store into the string LABEL
1817 the symbol_ref name of an internal numbered label where
1818 PREFIX is the class of label and NUM is the number within the class.
1819 This is suitable for output with `assemble_name'. */
1820#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1821 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1822
1823\f
1824/* OUTPUT OF ASSEMBLER INSTRUCTIONS */
1825
1826/* How to refer to registers in assembler output.
1827 This sequence is indexed by compiler's hard-register-number (see above). */
1828
1829#define REGISTER_NAMES \
1830{"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
1831 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1832 "ar0", "ar1", "ar2", "ar3", \
1833 "c0", "c1", "c2", "pr", "rb", \
1834 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1835 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1836 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1837 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1838 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1839 "*(30)", "*(31)" }
1840
1841#define HIMODE_REGISTER_NAMES \
1842{"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
1843 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1844 "ar0", "ar1", "ar2", "ar3", \
1845 "c0", "c1", "c2", "pr", "rb", \
1846 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1847 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1848 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1849 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1850 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1851 "*(30)", "*(31)" }
1852
1853#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1854
1855/* Print operand X (an rtx) in assembler syntax to file FILE.
1856 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1857 For `%' followed by punctuation, CODE is the punctuation and X is null.
1858
1859 DSP1610 extensions for operand codes:
1860
1861 %H - print lower 16 bits of constant
1862 %U - print upper 16 bits of constant
1863 %w - print low half of register (e.g 'a0l')
1864 %u - print upper half of register (e.g 'a0')
1865 %b - print high half of accumulator for F3 ALU instructions
1866 %h - print constant in decimal */
1867
1868#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1869
1870
1871/* Print a memory address as an operand to reference that memory location. */
1872
1873#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1874
1875/* This is how to output an insn to push a register on the stack.
1876 It need not be very fast code since it is used only for profiling */
1877#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) fatal("Profiling not implemented yet.");
1878
1879/* This is how to output an insn to pop a register from the stack.
1880 It need not be very fast code since it is used only for profiling */
1881#define ASM_OUTPUT_REG_POP(FILE,REGNO) fatal("Profiling not implemented yet.");
1882\f
1883/* OUTPUT OF DISPATCH TABLES */
1884
1885/* This macro should be provided on machines where the addresses in a dispatch
1886 table are relative to the table's own address. */
1887#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1888 fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
1889
1890/* This macro should be provided on machines where the addresses in a dispatch
1891 table are absolute. */
1892#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1893 fprintf (FILE, "\tint L%d\n", VALUE)
1894
1895/* ASSEMBLER COMMANDS FOR ALIGNMENT */
1896
1897/* This is how to output an assembler line that says to advance
1898 the location counter to a multiple of 2**LOG bytes. We should
ddd5a7c1 1899 not have to do any alignment since the 1610 is a word machine. */
946730d0
RK
1900#define ASM_OUTPUT_ALIGN(FILE,LOG)
1901
1902/* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
1903 because it fails to put zero1 in the bytes that are skipped. */
1904#define ASM_NO_SKIP_IN_TEXT 1
1905
1906#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1907 fprintf (FILE, "\t%d * int 0\n", (SIZE))
1908
1909/* CONTROLLING DEBUGGING INFORMATION FORMAT */
1910
1911/* Define this macro if GCC should produce COFF-style debugging output
1912 for SDB in response to the '-g' option */
1913#define SDB_DEBUGGING_INFO
1914
1915/* Support generating stabs for the listing file generator */
1916#define DBX_DEBUGGING_INFO
1917
1918/* The default format when -g is given is still COFF debug info */
1919#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1920
1921#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1922\f
1923/* MISCELLANEOUS PARAMETERS */
1924
1925/* Specify the machine mode that this machine uses
1926 for the index in the tablejump instruction. */
1927#define CASE_VECTOR_MODE QImode
1928
1929/* Define this if the tablejump instruction expects the table
1930 to contain offsets from the address of the table.
1931 Do not define this if the table should contain absolute addresses. */
1932/* #define CASE_VECTOR_PC_RELATIVE */
1933
1934/* Specify the tree operation to be used to convert reals to integers. */
1935#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1936
1937/* This is the kind of divide that is easiest to do in the general case. */
1938#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1939
946730d0
RK
1940/* Max number of bytes we can move from memory to memory
1941 in one reasonably fast instruction. */
1942#define MOVE_MAX 1
1943
1944/* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
1945 or bitwise 'and' instruction that truncates the count of a shift operation
1946 to a width equal to the number of bits needed to represent the size of the
ddd5a7c1
RK
1947 object being shifted. Do not define this macro unless the truncation applies
1948 to both shift operations and bit-field operations (if any). */
946730d0
RK
1949/* #define SHIFT_COUNT_TRUNCATED */
1950
1951/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1952 is done just by pretending it is already truncated. */
1953#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1954
1955/* When a prototype says `char' or `short', really pass an `int'. */
1956#define PROMOTE_PROTOTYPES
1957
1958/* An alias for the machine mode used for pointers */
1959#define Pmode QImode
1960
1961/* A function address in a call instruction
1962 is a byte address (for indexing purposes)
1963 so give the MEM rtx a byte's mode. */
1964#define FUNCTION_MODE QImode
1965
1966#if !defined(__DATE__)
1967#define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
1968#else
1969#define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
1970#endif
1971
1972#define VERSION_INFO1 "AT&T DSP16xx C Cross Compiler, version 1.2.0"
1973
1974
1975/* Define this as 1 if `char' should by default be signed; else as 0. */
1976#define DEFAULT_SIGNED_CHAR 1
1977
1978/* If this macro is defined, GNU CC gathers statistics about the number and
1979 kind of tree node it allocates during each run. The option '-fstats' will
1980 tell the compiler to print these statistics about the sizes of it obstacks. */
1981#define GATHER_STATISTICS
1982
1983/* Define this so gcc does not output a call to __main, since we
1984 are not currently supporting c++. */
1985#define INIT_SECTION_ASM_OP 1
This page took 0.246797 seconds and 5 git commands to generate.