]> gcc.gnu.org Git - gcc.git/blame - gcc/config/convex/convex.h
*** empty log message ***
[gcc.git] / gcc / config / convex / convex.h
CommitLineData
2042e9d2
CS
1/* Definitions of target machine for GNU compiler. Convex version.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Standard GCC variables that we reference. */
22
23extern int target_flags;
24
25/* Interface to convex.c. */
26
27extern int current_section_is_text;
28extern int const_double_low_int ();
29extern int const_double_high_int ();
30extern char *set_cmp (), *gen_cmp ();
31extern char *output_call ();
32
33/* Use the proper incantation to search Posix-compliant libraries. */
34
35#define LINK_SPEC \
36"%{!traditional:-Eposix}%{traditional:-Enoposix}\
37 -A__iob=___ap$iob\
38 -A_use_libc_sema=___ap$use_libc_sema\
39 -L /usr/lib"
40
41/* Use the matching startup files. */
42
43#define STARTFILE_SPEC \
44"%{pg:/usr/lib/crt/gcrt0.o}\
45%{!pg:%{p:/usr/lib/crt/mcrt0.o}\
46%{!p:/usr/lib/crt/crt0.o}}"
47
48/* Names to predefine in the preprocessor for this target machine. */
49
50#define CPP_PREDEFINES "-Dconvex -Dunix"
51
52/* Print subsidiary information on the compiler version in use. */
53
54#define TARGET_VERSION fprintf (stderr, " (convex)");
55
56/* Macros used in the machine description to test the flags. */
57
58/*
59 -mc1 C1 target (avoid C2-only instructions)
60 -mc2 C2 target
61 -mc32 vitesse
62 -mc34 javelin
63 -mc38 neptune
64 -margcount use standard calling sequence, with arg count word
65 -mnoargcount don't push arg count, depend on symbol table
66*/
67
68#define TARGET_C1 (target_flags & 1)
69#define TARGET_C2 (target_flags & 2)
70#define TARGET_C34 (target_flags & 4)
71#define TARGET_C38 (target_flags & 010)
555b950b 72#define TARGET_INDIRECTS (1)
2042e9d2
CS
73#define TARGET_ARGCOUNT (target_flags & 040)
74
75/* Macro to define tables used to set the flags.
76 This is a list in braces of pairs in braces,
77 each pair being { "NAME", VALUE }
78 where VALUE is the bits to set or minus the bits to clear.
79 An empty string NAME is used to identify the default VALUE. */
80
81#define TARGET_SWITCHES \
82 { { "c1", 021 }, \
83 { "c2", 022 }, \
84 { "c32", 022 }, \
85 { "c34", 006 }, \
86 { "c38", 012 }, \
87 { "noc1", -001 }, \
555b950b 88 { "noc2", -002 }, \
2042e9d2
CS
89 { "argcount", 040 }, \
90 { "noargcount", -040 }, \
91 { "", TARGET_DEFAULT }}
92
93/* Default target_flags if no switches specified. */
94
95#ifndef TARGET_DEFAULT
96#define TARGET_DEFAULT 0
97#endif
98
99/* Allow $ in identifiers. */
100
101#define DOLLARS_IN_IDENTIFIERS 2
102\f
103/* Target machine storage layout */
104
105/* Define this if most significant bit is lowest numbered
106 in instructions that operate on numbered bit-fields. */
107#define BITS_BIG_ENDIAN 1
108
109/* Define this if most significant byte of a word is the lowest numbered. */
110#define BYTES_BIG_ENDIAN 1
111
112/* Define this if most significant word of a multiword number is numbered. */
113#define WORDS_BIG_ENDIAN 1
114
b4ac57ab 115/* Number of bits in an addressable storage unit */
2042e9d2
CS
116#define BITS_PER_UNIT 8
117
118/* Width in bits of a "word", which is the contents of a machine register.
119 Note that this is not necessarily the width of data type `int';
120 if using 16-bit ints on a 68000, this would still be 32.
121 But on a machine with 16-bit registers, this would be 16. */
122#define BITS_PER_WORD 64
123
124/* Width of a word, in units (bytes). */
125#define UNITS_PER_WORD 8
126
127/* Width in bits of a pointer.
128 See also the macro `Pmode' defined below. */
129#define POINTER_SIZE 32
130
131/* Allocation boundary (in *bits*) for storing arguments in argument list. */
132#define PARM_BOUNDARY 32
133
134/* Boundary (in *bits*) on which stack pointer should be aligned. */
135#define STACK_BOUNDARY 32
136
137/* Allocation boundary (in *bits*) for the code of a function. */
138#define FUNCTION_BOUNDARY 16
139
140/* Alignment of field after `int : 0' in a structure. */
141#define EMPTY_FIELD_BOUNDARY 32
142
143/* Every structure's size must be a multiple of this. */
144#define STRUCTURE_SIZE_BOUNDARY 8
145
146/* A bitfield declared as `int' forces `int' alignment for the struct. */
147#define PCC_BITFIELD_TYPE_MATTERS 1
148
149/* No data type wants to be aligned rounder than this. */
150/* beware of doubles in structs -- 64 is incompatible with pcc */
151#define BIGGEST_ALIGNMENT 32
152
b4ac57ab 153/* Set this nonzero if move instructions will actually fail to work
2042e9d2 154 when given unaligned data. */
b4ac57ab 155#define STRICT_ALIGNMENT 0
2042e9d2
CS
156
157/* Define sizes of basic C types to conform to ordinary usage -- these
158 types depend on BITS_PER_WORD otherwise. */
159#define CHAR_TYPE_SIZE 8
160#define SHORT_TYPE_SIZE 16
161#define INT_TYPE_SIZE 32
162#define LONG_TYPE_SIZE 32
163#define LONG_LONG_TYPE_SIZE 64
164#define FLOAT_TYPE_SIZE 32
165#define DOUBLE_TYPE_SIZE 64
166#define LONG_DOUBLE_TYPE_SIZE 64
167
2042e9d2
CS
168/* Declare the standard types used by builtins to match convex stddef.h --
169 with int rather than long. */
170
171#define SIZE_TYPE "unsigned int"
172#define PTRDIFF_TYPE "int"
173\f
174/* Standard register usage. */
175
176/* Number of actual hardware registers.
177 The hardware registers are assigned numbers for the compiler
178 from 0 to just below FIRST_PSEUDO_REGISTER.
179 All registers that the compiler knows about must be given numbers,
180 even those that are not normally considered general registers. */
181#define FIRST_PSEUDO_REGISTER 16
182
183/* 1 for registers that have pervasive standard uses
184 and are not available for the register allocator.
185 For Convex, these are AP, FP, and SP. */
186#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1}
187
188/* 1 for registers not available across function calls.
189 These must include the FIXED_REGISTERS and also any
190 registers that can be used without being saved.
191 The latter must include the registers where values are returned
192 and the register where structure-value addresses are passed.
193 Aside from that, you can include as many other registers as you like. */
194#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
195
196/* Return number of consecutive hard regs needed starting at reg REGNO
197 to hold something of mode MODE.
198 This is ordinarily the length in words of a value of mode MODE
e622cd25
CS
199 but can be less for certain modes in special long registers. */
200#define HARD_REGNO_NREGS(REGNO, MODE) \
201 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2042e9d2
CS
202
203/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
204 On Convex, S registers can hold any type, A registers any nonfloat. */
205#define HARD_REGNO_MODE_OK(REGNO, MODE) \
206 ((REGNO) < 8 || (GET_MODE_CLASS (MODE) != MODE_FLOAT && \
207 GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT && \
208 (MODE) != DImode))
209
210/* Value is 1 if it is a good idea to tie two pseudo registers
211 when one has mode MODE1 and one has mode MODE2.
212 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
213 for any hard reg, then this must be 0 for correct output. */
214#define MODES_TIEABLE_P(MODE1, MODE2) \
215 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
216 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT \
217 || (MODE1) == DImode) \
218 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
219 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT \
220 || (MODE2) == DImode))
221
222/* Specify the registers used for certain standard purposes.
223 The values of these macros are register numbers. */
224
225/* Register to use for pushing function arguments. */
226#define STACK_POINTER_REGNUM 8
227
228/* Base register for access to local variables of the function. */
229#define FRAME_POINTER_REGNUM 15
230
231/* Value should be nonzero if functions must have frame pointers.
232 Zero means the frame pointer need not be set up (and parms
233 may be accessed via the stack pointer) in functions that seem suitable.
234 This is computed in `reload', in reload1.c. */
235#define FRAME_POINTER_REQUIRED 1
236
237/* Base register for access to arguments of the function. */
238#define ARG_POINTER_REGNUM 14
239
240/* Register in which static-chain is passed to a function.
241 Use S0, not an A reg, because this rare use would otherwise prevent
242 an A reg from being available to global-alloc across calls. */
243#define STATIC_CHAIN_REGNUM 0
244
245/* Register in which address to store a structure value
246 is passed to a function. */
247#define STRUCT_VALUE_REGNUM 9
248\f
249/* Define the classes of registers for register constraints in the
250 machine description. Also define ranges of constants.
251
252 One of the classes must always be named ALL_REGS and include all hard regs.
253 If there is more than one class, another class must be named NO_REGS
254 and contain no registers.
255
256 The name GENERAL_REGS must be the name of a class (or an alias for
257 another name such as ALL_REGS). This is the class of registers
258 that is allowed by "g" or "r" in a register constraint.
259 Also, registers outside this class are allocated only when
260 instructions express preferences for them.
261
262 The classes must be numbered in nondecreasing order; that is,
263 a larger-numbered class must never be contained completely
264 in a smaller-numbered class.
265
266 For any two classes, it is very desirable that there be another
267 class that represents their union. */
268
269/* Convex has classes A (address) and S (scalar).
270 A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
271 Seems to work better to put S first, here and in the md. */
272
273enum reg_class {
274 NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, ALL_REGS, LIM_REG_CLASSES
275};
276
277#define N_REG_CLASSES (int) LIM_REG_CLASSES
278
279/* Since GENERAL_REGS is the same class as ALL_REGS,
280 don't give it a different class number; just make it an alias. */
281
282#define GENERAL_REGS ALL_REGS
283
284/* Give names of register classes as strings for dump file. */
285
286#define REG_CLASS_NAMES \
287 {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "ALL_REGS" }
288
289/* Define which registers fit in which classes.
290 This is an initializer for a vector of HARD_REG_SET
291 of length N_REG_CLASSES. */
292
293#define REG_CLASS_CONTENTS {0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xffff}
294
295/* The same information, inverted:
296 Return the class number of the smallest class containing
297 reg number REGNO. This could be a conditional expression
298 or could index an array. */
299
300#define REGNO_REG_CLASS(REGNO) \
301 (S_REGNO_P (REGNO) ? S_REGS : REGNO == 8 ? SP_REGS : INDEX_REGS)
302
303#define S_REGNO_P(REGNO) ((REGNO) < 8)
304#define A_REGNO_P(REGNO) ((REGNO) >= 8)
305
306#define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
307#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
308
309/* The class value for index registers, and the one for base regs. */
310
311#define INDEX_REG_CLASS INDEX_REGS
312#define BASE_REG_CLASS INDEX_REGS
313
314/* Get reg_class from a letter such as appears in the machine description. */
315/* S regs use the letter 'd' because 's' is taken. */
316
317#define REG_CLASS_FROM_LETTER(C) \
318 ((C) == 'a' ? A_REGS : (C) == 'd' ? S_REGS : NO_REGS)
319
320/* The letters I, J, K, L and M in a register constraint string
321 can be used to stand for particular ranges of immediate operands.
322 This macro defines what the ranges are.
323 C is the letter, and VALUE is a constant value.
324 Return 1 if VALUE is in the range specified by C. */
325
326/* Convex uses only I:
327 32-bit value with sign bit off, usable as immediate in DImode logical
328 instructions and, or, xor */
329
330#define CONST_OK_FOR_LETTER_P(VALUE, C) ((VALUE) >= 0)
331
332/* Similar, but for floating constants, and defining letters G and H.
333 Here VALUE is the CONST_DOUBLE rtx itself. */
334/* Convex uses only G:
335 value usable in ld.d (low word 0) or ld.l (high word all sign) */
336
337#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
338 (LD_D_P (VALUE) || LD_L_P (VALUE))
339
340#define LD_D_P(X) (const_double_low_int (X) == 0)
341
342#define LD_L_P(X) (const_double_low_int (X) >= 0 \
343 ? const_double_high_int (X) == 0 \
344 : const_double_high_int (X) == -1)
345
346/* Given an rtx X being reloaded into a reg required to be
347 in class CLASS, return the class of reg to actually use.
348 In general this is just CLASS; but on some machines
349 in some cases it is preferable to use a more restrictive class. */
350
351/* CONST_DOUBLEs (constraint 'F') are passed by LEGITIMATE_CONSTANT_P
352 without regard to their value. Constraint 'G' is used by instructions
353 that need to reject non-immediate values. The rejected values are
354 dealt with by reload -- PREFERRED_RELOAD_CLASS returns NO_REGS for
355 nonimmediate values, causing reload to put them in memory. Every insn
356 that uses 'G' must have an alternative that accepts memory. */
357
358#define PREFERRED_RELOAD_CLASS(X,CLASS) \
359 (GET_CODE (X) != CONST_DOUBLE ? (CLASS) : \
360 (GET_MODE (X) != TFmode && (LD_L_P (X) || LD_D_P (X))) ? (CLASS) : NO_REGS)
361
362/* Return the maximum number of consecutive registers
363 needed to represent mode MODE in a register of class CLASS. */
364#define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
365\f
366/* Stack layout; function entry, exit and calling. */
367
368/* Define this if pushing a word on the stack
369 makes the stack pointer a smaller address. */
370#define STACK_GROWS_DOWNWARD
371
372/* Define this if the nominal address of the stack frame
373 is at the high-address end of the local variables;
374 that is, each additional local variable allocated
375 goes at a more negative offset in the frame. */
376#define FRAME_GROWS_DOWNWARD
377
378/* Define this if should default to -fcaller-saves. */
379#define DEFAULT_CALLER_SAVES
380
381/* Offset within stack frame to start allocating local variables at.
382 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
383 first local allocated. Otherwise, it is the offset to the BEGINNING
384 of the first local allocated. */
385#define STARTING_FRAME_OFFSET 0
386
387/* If we generate an insn to push BYTES bytes,
388 this says how many the stack pointer really advances by. */
389#define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
390
391/* Offset of first parameter from the argument pointer register value. */
392#define FIRST_PARM_OFFSET(FNDECL) 0
393
394/* Value is the number of bytes of arguments automatically
395 popped when returning from a subroutine call.
396 FUNTYPE is the data type of the function (as a tree),
397 or for a library call it is an identifier node for the subroutine name.
398 SIZE is the number of bytes of arguments passed on the stack. */
399/* The standard Convex call, with arg count word, includes popping the
400 args as part of the call template. We optionally omit the arg count
401 word and let gcc combine the arg pops. */
0bd2462c 402#define RETURN_POPS_ARGS(FUNTYPE, SIZE) (TARGET_ARGCOUNT ? (SIZE) : 0)
2042e9d2
CS
403
404/* Define how to find the value returned by a function.
405 VALTYPE is the data type of the value (as a tree).
406 If the precise function being called is known, FUNC is its FUNCTION_DECL;
407 otherwise, FUNC is 0. */
408
409/* On Convex the return value is in S0 regardless. */
410
411#define FUNCTION_VALUE(VALTYPE, FUNC) \
412 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
413
414/* Define how to find the value returned by a library function
415 assuming the value has mode MODE. */
416
417/* On Convex the return value is in S0 regardless. */
418
419#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
420
421/* Define this if PCC uses the nonreentrant convention for returning
422 structure and union values. */
423
424#define PCC_STATIC_STRUCT_RETURN
425
426/* 1 if N is a possible register number for a function value.
427 On the Convex, S0 is the only register thus used. */
428
429#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
430
431/* 1 if N is a possible register number for function argument passing. */
432
433#define FUNCTION_ARG_REGNO_P(N) 0
434\f
435/* Define a data type for recording info about an argument list
436 during the scan of that argument list. This data type should
437 hold all necessary information about the function itself
438 and about the args processed so far, enough to enable macros
439 such as FUNCTION_ARG to determine where the next arg should go.
440
441 On convex, this is a single integer, which is a number of bytes
442 of arguments scanned so far. */
443
444#define CUMULATIVE_ARGS int
445
446/* Initialize a variable CUM of type CUMULATIVE_ARGS
447 for a call to a function whose data type is FNTYPE.
448 For a library call, FNTYPE is 0.
449
450 On Convex, the offset starts at 0. */
451
452#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
453 ((CUM) = 0)
454
455/* Update the data in CUM to advance over an argument
456 of mode MODE and data type TYPE.
457 (TYPE is null for libcalls where that information may not be available.) */
458
459#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
460 ((CUM) += ((MODE) != BLKmode \
461 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
462 : (int_size_in_bytes (TYPE) + 3) & ~3))
463
464/* Define where to put the arguments to a function.
465 Value is zero to push the argument on the stack,
466 or a hard register in which to store the argument.
467
468 MODE is the argument's machine mode.
469 TYPE is the data type of the argument (as a tree).
470 This is null for libcalls where that information may
471 not be available.
472 CUM is a variable of type CUMULATIVE_ARGS which gives info about
473 the preceding args and about the function being called.
474 NAMED is nonzero if this argument is a named parameter
475 (otherwise it is an extra parameter matching an ellipsis). */
476
477/* On Convex, all args are pushed. */
478
479#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
480
481/* This macro generates the assembly code for function entry.
482 FILE is a stdio stream to output the code to.
483 SIZE is an int: how many units of temporary storage to allocate.
484 Refer to the array `regs_ever_live' to determine which registers
485 to save; `regs_ever_live[I]' is nonzero if register number I
486 is ever used in the function. This macro is responsible for
487 knowing which registers should not be saved even if used. */
488
489#define FUNCTION_PROLOGUE(FILE, SIZE) \
490{ if ((SIZE) != 0) fprintf (FILE, "\tsub.w #%d,sp\n", ((SIZE) + 3) & -4);}
491
492/* Output assembler code for a block containing the constant parts
493 of a trampoline, leaving space for the variable parts. */
494
495/* On convex, the code for a trampoline is
496 ld.w #<link>,s0
497 jmp <func> */
498
499#define TRAMPOLINE_TEMPLATE(FILE) \
500{ \
501 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x11c8)); \
502 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
503 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
504 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x0140)); \
505 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
506 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
507}
508
509/* Length in units of the trampoline for entering a nested function. */
510
511#define TRAMPOLINE_SIZE 12
512
513/* Emit RTL insns to initialize the variable parts of a trampoline.
514 FNADDR is an RTX for the address of the function's pure code.
515 CXT is an RTX for the static chain value for the function. */
516
517#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
518{ \
519 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
520 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
521 emit_call_insn (gen_call (gen_rtx (MEM, QImode, \
522 gen_rtx (SYMBOL_REF, Pmode, \
523 "__enable_execute_stack")), \
524 const0_rtx)); \
525}
526
527/* Output assembler code to FILE to increment profiler label # LABELNO
528 for profiling a function entry. */
529
530#define FUNCTION_PROFILER(FILE, LABELNO) \
531 fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
532
533/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
534 the stack pointer does not matter. The value is tested only in
535 functions that have frame pointers.
536 No definition is equivalent to always zero. */
537
538#define EXIT_IGNORE_STACK 1
539
540/* This macro generates the assembly code for function exit,
541 on machines that need it. If FUNCTION_EPILOGUE is not defined
542 then individual return instructions are generated for each
543 return statement. Args are same as for FUNCTION_PROLOGUE. */
544
545/* #define FUNCTION_EPILOGUE(FILE, SIZE) */
546
547/* Store in the variable DEPTH the initial difference between the
548 frame pointer reg contents and the stack pointer reg contents,
549 as of the start of the function body. This depends on the layout
550 of the fixed parts of the stack frame and on how registers are saved. */
551#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
552{ (DEPTH) = get_frame_size (); }
553\f
554/* Addressing modes, and classification of registers for them. */
555
556/* #define HAVE_POST_INCREMENT */
557/* #define HAVE_POST_DECREMENT */
558
559/* #define HAVE_PRE_DECREMENT */
560/* #define HAVE_PRE_INCREMENT */
561
562/* Macros to check register numbers against specific register classes. */
563
564/* These assume that REGNO is a hard or pseudo reg number.
565 They give nonzero only if REGNO is a hard reg of the suitable class
566 or a pseudo reg currently allocated to a suitable hard reg.
567 Since they use reg_renumber, they are safe only once reg_renumber
568 has been allocated, which happens in local-alloc.c. */
569
570#define REGNO_OK_FOR_INDEX_P(regno) \
571 ((((regno) ^ 010) < 8 || ((reg_renumber[regno] ^ 010) & -8) == 0) \
572 && regno != 8)
573
574#define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
575\f
576/* Maximum number of registers that can appear in a valid memory address. */
577
578#define MAX_REGS_PER_ADDRESS 1
579
580/* 1 if X is an rtx for a constant that is a valid address. */
581
582#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
583
584/* Nonzero if the constant value X is a legitimate general operand.
585 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
586
587/* For convex, any single-word constant is ok; the only contexts
588 allowing general_operand of mode DI or DF are movdi and movdf. */
589
590#define LEGITIMATE_CONSTANT_P(X) \
591 (GET_CODE (X) != CONST_DOUBLE ? 1 : (LD_D_P (X) || LD_L_P (X)))
592
593/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
594 and check its validity for a certain class.
595 We have two alternate definitions for each of them.
596 The usual definition accepts all pseudo regs; the other rejects
597 them unless they have been allocated suitable hard regs.
598 The symbol REG_OK_STRICT causes the latter definition to be used.
599
600 Most source files want to accept pseudo regs in the hope that
601 they will get allocated to the class that the insn wants them to be in.
602 Source files for reload pass need to be strict.
603 After reload, it makes no difference, since pseudo regs have
604 been eliminated by then. */
605
606#ifndef REG_OK_STRICT
607
608/* Nonzero if X is a hard reg that can be used as an index
609 or if it is a pseudo reg. */
d31d3db4
RS
610#define REG_OK_FOR_INDEX_P(X) \
611 (REGNO (X) > 8 \
612 && REGNO (X) != VIRTUAL_STACK_VARS_REGNUM \
613 && REGNO (X) != VIRTUAL_STACK_DYNAMIC_REGNUM \
614 && REGNO (X) != VIRTUAL_OUTGOING_ARGS_REGNUM)
2042e9d2
CS
615/* Nonzero if X is a hard reg that can be used as a base reg
616 or if it is a pseudo reg. */
d31d3db4 617#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2042e9d2
CS
618
619#else
620
621/* Nonzero if X is a hard reg that can be used as an index. */
622#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
623/* Nonzero if X is a hard reg that can be used as a base reg. */
624#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
625
626#endif
627\f
628/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
629 that is a valid memory address for an instruction.
630 The MODE argument is the machine mode for the MEM expression
631 that wants to use this address.
632
633 For Convex, valid addresses are
634 indirectable or (MEM indirectable)
635 where indirectable is
636 const, reg, (PLUS reg const)
637
638 On C3-series processors, we avoid indirection since it's substantially
639 slower. */
640
641/* 1 if X is an address that we could indirect through. */
642#define INDIRECTABLE_ADDRESS_P(X) \
643 (CONSTANT_ADDRESS_P (X) \
644 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
645 || (GET_CODE (X) == PLUS \
646 && GET_CODE (XEXP (X, 0)) == REG \
647 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
648 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
649 || (GET_CODE (X) == PLUS \
650 && GET_CODE (XEXP (X, 1)) == REG \
651 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
652 && CONSTANT_ADDRESS_P (XEXP (X, 0))))
653
654/* Go to ADDR if X is a valid address. */
655#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
656{ register rtx xfoob = (X); \
657 if (INDIRECTABLE_ADDRESS_P (xfoob)) \
658 goto ADDR; \
659 xfoob = XEXP (X, 0); \
660 if (GET_CODE (X) == MEM \
661 && TARGET_INDIRECTS \
662 && INDIRECTABLE_ADDRESS_P (xfoob)) \
663 goto ADDR; \
664 if (GET_CODE (X) == PRE_DEC && REG_P (xfoob) \
665 && REGNO (xfoob) == STACK_POINTER_REGNUM) \
666 goto ADDR; }
667\f
668/* Try machine-dependent ways of modifying an illegitimate address
669 to be legitimate. If we find one, return the new, valid address.
670 This macro is used in only one place: `memory_address' in explow.c.
671
672 OLDX is the address as it was before break_out_memory_refs was called.
673 In some cases it is useful to look at this to decide what needs to be done.
674
675 MODE and WIN are passed so that this macro can use
676 GO_IF_LEGITIMATE_ADDRESS.
677
678 It is always safe for this macro to do nothing. It exists to recognize
679 opportunities to optimize the output.
680
681 For Convex, nothing needs to be done. */
682
683#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
684
685/* Go to LABEL if ADDR (a legitimate address expression)
686 has an effect that depends on the machine mode it is used for. */
687
688#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
689\f
690/* Specify the machine mode that this machine uses
691 for the index in the tablejump instruction. */
692#define CASE_VECTOR_MODE SImode
693
694/* Define this if the case instruction expects the table
695 to contain offsets from the address of the table.
696 Do not define this if the table should contain absolute addresses. */
697/* #define CASE_VECTOR_PC_RELATIVE */
698
699/* Define this if the case instruction drops through after the table
700 when the index is out of range. Don't define it if the case insn
701 jumps to the default label instead. */
702/* #define CASE_DROPS_THROUGH */
703
704/* Specify the tree operation to be used to convert reals to integers. */
705#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
706
707/* This is the kind of divide that is easiest to do in the general case. */
708#define EASY_DIV_EXPR TRUNC_DIV_EXPR
709
710/* Define this as 1 if `char' should by default be signed; else as 0. */
711#define DEFAULT_SIGNED_CHAR 1
712
713/* This flag, if defined, says the same insns that convert to a signed fixnum
714 also convert validly to an unsigned one. */
715#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
716
717/* Max number of bytes we can move from memory to memory
718 in one reasonably fast instruction. */
719#define MOVE_MAX 8
720
721/* Define this if zero-extension is slow (more than one real instruction). */
722/* #define SLOW_ZERO_EXTEND */
723
724/* Nonzero if access to memory by bytes is slow and undesirable. */
725#define SLOW_BYTE_ACCESS 0
726
727/* Define if shifts truncate the shift count
728 which implies one can omit a sign-extension or zero-extension
729 of a shift count. */
730#define SHIFT_COUNT_TRUNCATED
731
732/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
733 is done just by pretending it is already truncated. */
734#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
735
736/* On Convex, it is as good to call a constant function address as to
737 call an address kept in a register. */
738#define NO_FUNCTION_CSE
739
740/* When a prototype says `char' or `short', really pass an `int'. */
741#define PROMOTE_PROTOTYPES
742
743/* Specify the machine mode that pointers have.
744 After generation of rtl, the compiler makes no further distinction
745 between pointers and any other objects of this machine mode. */
746#define Pmode SImode
747
748/* A function address in a call instruction
749 is a byte address (for indexing purposes)
750 so give the MEM rtx a byte's mode. */
751#define FUNCTION_MODE QImode
752
753/* Compute the cost of computing a constant rtl expression RTX
754 whose rtx-code is CODE. The body of this macro is a portion
755 of a switch statement. If the code is computed here,
756 return it with a return statement. Otherwise, break from the switch. */
757
3bb22aee 758#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2042e9d2
CS
759 case CONST: \
760 case LABEL_REF: \
761 case SYMBOL_REF: \
762 case CONST_INT: \
763 return 0; \
764 case CONST_DOUBLE: \
765 return 2;
766
767/* Provide the costs of a rtl expression. This is in the body of a
768 switch on CODE.
769 On C1 and C2, multiply is faster than shift. */
770
3bb22aee 771#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
2042e9d2
CS
772 case MULT: \
773 total = COSTS_N_INSNS (4); \
774 break; \
775 case LSHIFT: \
776 case ASHIFT: \
777 case LSHIFTRT: \
778 case ASHIFTRT: \
779 total = COSTS_N_INSNS (3); \
780 break;
781
782/* Compute the cost of an address. This is meant to approximate the size
783 and/or execution delay of an insn using that address. If the cost is
784 approximated by the RTL complexity, including CONST_COSTS above, as
785 is usually the case for CISC machines, this macro should not be defined.
786 For aggressively RISCy machines, only one insn format is allowed, so
787 this macro should be a constant. The value of this macro only matters
788 for valid addresses. */
789
790#define ADDRESS_COST(RTX) (GET_CODE (RTX) == MEM ? 3 : 1)
791
e622cd25
CS
792/* Specify the cost of a branch insn; roughly the number of extra insns that
793 should be added to avoid a branch. */
794
795#define BRANCH_COST 0
796
2042e9d2
CS
797/* Check a `double' value for validity for a particular machine mode. */
798
799#define CHECK_FLOAT_VALUE(mode, d) \
800 if ((mode) == SFmode) \
801 { \
802 if ((d) > 1.7014117331926443e+38) \
803 { error ("magnitude of constant too large for `float'"); \
804 (d) = 1.7014117331926443e+38; } \
805 else if ((d) < -1.7014117331926443e+38) \
806 { error ("magnitude of constant too large for `float'"); \
807 (d) = -1.7014117331926443e+38; } \
808 else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \
809 { warning ("`float' constant truncated to zero"); \
810 (d) = 0.0; } \
811 else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \
812 { warning ("`float' constant truncated to zero"); \
813 (d) = 0.0; } \
814 }
815\f
816/* Tell final.c how to eliminate redundant test instructions. */
817
818/* Here we define machine-dependent flags and fields in cc_status
819 (see `conditions.h'). No extra ones are needed for convex. */
820
821/* Store in cc_status the expressions
822 that the condition codes will describe
823 after execution of an instruction whose pattern is EXP.
824 Do not alter them if the instruction would not alter the cc's. */
825
826#define NOTICE_UPDATE_CC(EXP,INSN) {}
827\f
828/* Control the assembler format that we output. */
829
830/* Output at beginning of assembler file. */
831
832#define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n")
833
834/* Output to assembler file text saying following lines
835 may contain character constants, extra white space, comments, etc. */
836
837#define ASM_APP_ON ";APP\n"
838
839/* Output to assembler file text saying following lines
840 no longer contain unusual constructs. */
841
842#define ASM_APP_OFF ";NO_APP\n"
843
0bd2462c
CS
844/* Output something following the gcc2_compiled tag to keep that label from
845 hiding a real function name for tools like adb and prof. */
846
847#define ASM_IDENTIFY_GCC(FILE) \
848 fprintf (FILE, "gcc2_compiled.:\n\tds.h 0\n");
849
2042e9d2
CS
850/* Alignment with Convex's assembler goes like this:
851 .text can be .aligned up to a halfword.
852 .data and .bss can be .aligned up to a longword.
853 .lcomm is not supported, explicit declarations in .bss must be used instead.
854 We get alignment for word and longword .text data by conventionally
855 using .text 2 for word-aligned data and .text 3 for longword-aligned
856 data. This requires that the data's size be a multiple of its alignment,
857 which seems to be always true. */
858
859/* Output before read-only data. */
860
861#define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
862
863/* Output before writable data. */
864
865#define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
866
867/* Output before uninitialized data. */
868
869#define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
870
871/* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
872
873#define EXTRA_SECTIONS in_bss
874
875#define EXTRA_SECTION_FUNCTIONS \
876void \
877bss_section () \
878{ \
879 if (in_section != in_bss) \
880 { \
881 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
882 in_section = in_bss; \
883 } \
884}
885
886/* This is how to output an assembler line
887 that says to advance the location counter
888 to a multiple of 2**LOG bytes. */
889
890#define ASM_OUTPUT_ALIGN(FILE,LOG) \
891 if (current_section_is_text && (LOG) > 1) \
892 fprintf (FILE, ".text %d\n", LOG); \
893 else if (current_section_is_text) \
894 fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
895 else \
896 fprintf (FILE, ".align %d\n", 1 << (LOG))
897
898/* How to refer to registers in assembler output.
899 This sequence is indexed by compiler's hard-register-number (see above). */
900
901#define REGISTER_NAMES \
902{"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
903 "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp"}
904
905/* This is BSD, so it wants DBX format. */
906
907#define DBX_DEBUGGING_INFO
908
909/* How to renumber registers for dbx and gdb. */
910
911#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
912
913/* Do not break .stabs pseudos into continuations. */
914
915#define DBX_CONTIN_LENGTH 0
916
917/* This is the char to use for continuation (in case we need to turn
918 continuation back on). */
919
920#define DBX_CONTIN_CHAR '?'
921
922/* Don't use stab extensions until GDB v4 port is available for convex. */
923
924#define DEFAULT_GDB_EXTENSIONS 0
925#define DBX_NO_XREFS
926
927/* This is how to output the definition of a user-level label named NAME,
928 such as the label on a static function or variable NAME. */
929
930#define ASM_OUTPUT_LABEL(FILE,NAME) \
931 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
932
933/* This is how to output a command to make the user-level label named NAME
934 defined for reference from other files. */
935
936#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
937 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
938
939/* This is how to output a reference to a user-level label named NAME. */
940
941#define ASM_OUTPUT_LABELREF(FILE,NAME) \
942 fprintf (FILE, "_%s", NAME)
943
944/* This is how to output an internal numbered label where
945 PREFIX is the class of label and NUM is the number within the class. */
946
947#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
948 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
949
950/* Put case tables in .text 2, where they will be word-aligned */
951
952#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
953 ASM_OUTPUT_ALIGN (FILE, 2); \
954 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
955
956#define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
957 ASM_OUTPUT_ALIGN (FILE, 1)
958
959/* This is how to store into the string LABEL
960 the symbol_ref name of an internal numbered label where
961 PREFIX is the class of label and NUM is the number within the class.
962 This is suitable for output with `assemble_name'. */
963
964#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
965 sprintf (LABEL, "*%s%d", PREFIX, NUM)
966
967/* This is how to output an assembler line defining a `double' constant. */
968
969#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
970 fprintf (FILE, "\tds.d %.17e\n", (VALUE))
971
972/* This is how to output an assembler line defining a `float' constant. */
973
974#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
975 fprintf (FILE, "\tds.s %.9e\n", (VALUE))
976
977/* This is how to output an assembler line defining an `int' constant. */
978
979#define ASM_OUTPUT_INT(FILE,VALUE) \
980( fprintf (FILE, "\tds.w "), \
981 output_addr_const (FILE, (VALUE)), \
982 fprintf (FILE, "\n"))
983
984/* Likewise for a `long long int' constant. */
985
986#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
987{ \
988 if (GET_CODE (VALUE) == CONST_DOUBLE) \
989 fprintf (FILE, "\tds.w %d,%d\n", \
990 const_double_high_int (VALUE), const_double_low_int (VALUE)); \
991 else if (GET_CODE (VALUE) == CONST_INT) \
992 { \
993 int val = INTVAL (VALUE); \
994 fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
995 } \
996 else \
997 abort (); \
998}
999
1000/* Likewise for `char' and `short' constants. */
1001
1002#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1003( fprintf (FILE, "\tds.h "), \
1004 output_addr_const (FILE, (VALUE)), \
1005 fprintf (FILE, "\n"))
1006
1007#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1008( fprintf (FILE, "\tds.b "), \
1009 output_addr_const (FILE, (VALUE)), \
1010 fprintf (FILE, "\n"))
1011
1012/* This is how to output an assembler line for a numeric constant byte. */
1013
1014#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1015 fprintf (FILE, "\tds.b %#x\n", (VALUE))
1016
1017/* This is how to output a string */
1018
1019#define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
1020 int i; \
1021 fprintf ((FILE), "\tds.b \""); \
1022 for (i = 0; i < (SIZE); i++) { \
1023 register int c = (STR)[i] & 0377; \
1024 if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
1025 putc (c, (FILE)); \
1026 else \
1027 fprintf ((FILE), "\\%03o", c);} \
1028 fprintf ((FILE), "\"\n");} while (0)
1029
1030/* This is how to output an insn to push a register on the stack.
1031 It need not be very fast code. */
1032
1033#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1034 fprintf (FILE, "\tpsh.%c %s\n", \
1035 S_REGNO_P (REGNO) ? 'l' : 'w', \
1036 reg_names[REGNO])
1037
1038/* This is how to output an insn to pop a register from the stack.
1039 It need not be very fast code. */
1040
1041#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1042 fprintf (FILE, "\tpop.%c %s\n", \
1043 S_REGNO_P (REGNO) ? 'l' : 'w', \
1044 reg_names[REGNO])
1045
1046/* This is how to output an element of a case-vector that is absolute. */
1047
1048#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1049 fprintf (FILE, "\tds.w L%d\n", VALUE)
1050
1051/* This is how to output an element of a case-vector that is relative.
1052 (not used on Convex) */
1053
1054#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1055 fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
1056
1057/* This is how to output an assembler line
1058 that says to advance the location counter by SIZE bytes. */
1059
1060#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1061 fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
1062
1063/* This says how to output an assembler line
1064 to define a global common symbol. */
1065
1066#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1067( fputs (".comm ", (FILE)), \
1068 assemble_name ((FILE), (NAME)), \
1069 fprintf ((FILE), ",%u\n", (ROUNDED)))
1070
1071/* This says how to output an assembler line
1072 to define a local common symbol. */
1073
1074#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1075( bss_section (), \
1076 assemble_name ((FILE), (NAME)), \
1077 fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
1078
1079/* Store in OUTPUT a string (made with alloca) containing
1080 an assembler-name for a local static variable named NAME.
1081 LABELNO is an integer which is different for each call. */
1082
1083#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1084( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1085 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1086
1087/* Define the parentheses used to group arithmetic operations
1088 in assembler code. */
1089
1090#define ASM_OPEN_PAREN "("
1091#define ASM_CLOSE_PAREN ")"
1092
1093/* Define results of standard character escape sequences. */
1094#define TARGET_BELL 007
1095#define TARGET_BS 010
1096#define TARGET_TAB 011
1097#define TARGET_NEWLINE 012
1098#define TARGET_VT 013
1099#define TARGET_FF 014
1100#define TARGET_CR 015
1101
1102/* Print an instruction operand X on file FILE.
1103 CODE is the code from the %-spec that requested printing this operand;
1104 if `%z3' was used to print operand 3, then CODE is 'z'. */
1105
1106#define PRINT_OPERAND(FILE, X, CODE) \
1107{ if (GET_CODE (X) == REG) \
1108 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1109 else if (GET_CODE (X) == MEM) \
1110 output_address (XEXP (X, 0)); \
1111 else if (GET_CODE (X) == CONST_DOUBLE \
1112 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1113 { union { double d; int i[2]; } u; \
1114 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1115 fprintf (FILE, "#%.9e", u.d); } \
1116 else { putc ('#', FILE); output_addr_const (FILE, X); }}
1117
1118/* Print a memory operand whose address is X, on file FILE. */
1119
1120#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1121{ \
1122 register rtx addr = ADDR; \
1123 register rtx index = 0; \
1124 register rtx offset = 0; \
1125 \
1126 if (GET_CODE (addr) == MEM) \
1127 { \
1128 fprintf (FILE, "@"); \
1129 addr = XEXP (addr, 0); \
1130 } \
1131 \
1132 switch (GET_CODE (addr)) \
1133 { \
1134 case REG: \
1135 index = addr; \
1136 break; \
1137 \
1138 case PLUS: \
1139 index = XEXP (addr, 0); \
1140 if (REG_P (index)) \
1141 offset = XEXP (addr, 1); \
1142 else \
1143 { \
1144 offset = XEXP (addr, 0); \
1145 index = XEXP (addr, 1); \
1146 if (! REG_P (index)) abort (); \
1147 } \
1148 break; \
1149 \
1150 default: \
1151 offset = addr; \
1152 break; \
1153 } \
1154 \
1155 if (offset) \
1156 output_addr_const (FILE, offset); \
1157 \
1158 if (index) \
1159 fprintf (FILE, "(%s)", reg_names[REGNO (index)]); \
1160}
1161\f
1162/* Definitions for g++. */
1163
1164/* Do not put out GNU stabs for constructors and destructors.
1165 ld bounces them. */
1166
1167#define FASCIST_ASSEMBLER
1168
1169/* Convex user addresses are negative, so use positive numbers
1170 to mean `vtable index'. */
1171
1172#define VTABLE_USES_MASK
1173#define VINDEX_MAX ((unsigned) 0x80000000)
1174#define SET_DECL_VINDEX(DECL, INDEX) \
1175 (DECL_VINDEX (DECL) = (INDEX))
1176
c2724863 1177#if 0 /* collect2.c should no longer need these. */
2042e9d2
CS
1178/* Defs for compiling collect2.c in -pcc mode during bootstrap. */
1179
1180#ifdef COLLECT
1181
c2724863 1182#ifndef __STDC__
2042e9d2 1183
2042e9d2
CS
1184#define WTERMSIG(x) (((union wait *) &(x))->w_termsig)
1185#define WEXITSTATUS(x) (((union wait *) &(x))->w_retcode)
1186
1187#endif
1188
1189#endif /* COLLECT */
c2724863 1190#endif /* 0 */
This page took 0.190703 seconds and 5 git commands to generate.