]>
Commit | Line | Data |
---|---|---|
edc03e8a | 1 | /* Definitions of target machine for GNU compiler. Clipper version. |
8b109b37 | 2 | Copyright (C) 1987, 88, 91, 93, 94, 1995 Free Software Foundation, Inc. |
edc03e8a RS |
3 | Contributed by Holger Teutsch (holger@hotbso.rhein-main.de) |
4 | ||
5 | This file is part of GNU CC. | |
6 | ||
7 | GNU CC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GNU CC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GNU CC; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | extern struct rtx_def *clipper_builtin_saveregs (); | |
9257a149 | 22 | extern int clipper_frame_size (); |
edc03e8a RS |
23 | |
24 | /* Print subsidiary information on the compiler version in use. */ | |
25 | ||
26 | #define TARGET_VERSION fprintf (stderr, " (clipper)"); | |
27 | ||
28 | /* Run-time compilation parameters selecting different hardware subsets. */ | |
29 | ||
30 | extern int target_flags; | |
31 | ||
32 | /* Macros used in the machine description to test the flags. */ | |
33 | ||
34 | /* Macro to define tables used to set the flags. | |
35 | This is a list in braces of pairs in braces, | |
36 | each pair being { "NAME", VALUE } | |
37 | where VALUE is the bits to set or minus the bits to clear. | |
38 | An empty string NAME is used to identify the default VALUE. */ | |
39 | ||
e600165c RK |
40 | #define TARGET_SWITCHES \ |
41 | { { "c400", 1 }, \ | |
42 | { "c300", -1 }, \ | |
43 | { "", TARGET_DEFAULT} } | |
44 | ||
45 | #define TARGET_C400 1 | |
46 | #define TARGET_C300 0 | |
edc03e8a RS |
47 | |
48 | /* Default target_flags if no switches specified. */ | |
49 | ||
50 | #ifndef TARGET_DEFAULT | |
e600165c | 51 | #define TARGET_DEFAULT TARGET_C300 |
edc03e8a | 52 | #endif |
9257a149 | 53 | |
4f074454 RK |
54 | /* Show that we can debug generated code without a frame pointer. */ |
55 | #define CAN_DEBUG_WITHOUT_FP | |
edc03e8a RS |
56 | \f |
57 | /* Target machine storage layout */ | |
58 | ||
59 | /* Define this if most significant bit is lowest numbered | |
60 | in instructions that operate on numbered bit-fields. */ | |
61 | ||
62 | #define BITS_BIG_ENDIAN 0 | |
63 | ||
64 | /* Define this if most significant byte of a word is the lowest numbered. */ | |
65 | ||
66 | #define BYTES_BIG_ENDIAN 0 | |
67 | ||
68 | /* Define this if most significant word of a multiword number is the lowest | |
69 | numbered. */ | |
70 | ||
71 | #define WORDS_BIG_ENDIAN 0 | |
72 | ||
73 | /* Number of bits in an addressable storage unit */ | |
74 | #define BITS_PER_UNIT 8 | |
75 | ||
76 | /* Width in bits of a "word", which is the contents of a machine register. | |
77 | Note that this is not necessarily the width of data type `int'; | |
78 | if using 16-bit ints on a 68000, this would still be 32. | |
79 | But on a machine with 16-bit registers, this would be 16. */ | |
80 | #define BITS_PER_WORD 32 | |
81 | ||
82 | /* Width of a word, in units (bytes). */ | |
83 | #define UNITS_PER_WORD 4 | |
84 | ||
85 | /* Width in bits of a pointer. | |
86 | See also the macro `Pmode' defined below. */ | |
87 | #define POINTER_SIZE 32 | |
88 | ||
89 | /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
90 | #define PARM_BOUNDARY 32 | |
91 | ||
92 | /* Largest alignment for stack parameters (if greater than PARM_BOUNDARY). */ | |
93 | #define MAX_PARM_BOUNDARY 64 | |
94 | ||
95 | /* Allocation boundary (in *bits*) for the code of a function. */ | |
96 | #define FUNCTION_BOUNDARY 128 | |
97 | ||
98 | /* Alignment of field after `int : 0' in a structure. */ | |
99 | #define EMPTY_FIELD_BOUNDARY 32 | |
100 | ||
101 | /* Every structure's size must be a multiple of this. */ | |
102 | #define STRUCTURE_SIZE_BOUNDARY 8 | |
103 | ||
104 | /* A bitfield declared as `int' forces `int' alignment for the struct. */ | |
105 | #define PCC_BITFIELD_TYPE_MATTERS 1 | |
106 | ||
107 | /* No data type wants to be aligned rounder than this. */ | |
108 | #define BIGGEST_ALIGNMENT 64 | |
109 | ||
110 | /* No structure field wants to be aligned rounder than this. */ | |
111 | #define BIGGEST_FIELD_ALIGNMENT 64 | |
112 | ||
113 | /* Make strcpy of constants fast. */ | |
114 | #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \ | |
115 | ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN)) | |
116 | ||
117 | /* Make arrays of chars word-aligned for the same reasons. */ | |
118 | #define DATA_ALIGNMENT(TYPE, ALIGN) \ | |
119 | (TREE_CODE (TYPE) == ARRAY_TYPE \ | |
120 | && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ | |
121 | && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) | |
122 | ||
123 | /* Set this nonzero if move instructions will actually fail to work | |
124 | when given unaligned data. */ | |
125 | #define STRICT_ALIGNMENT 1 | |
126 | ||
127 | /* Let's keep the stack somewhat aligned. */ | |
128 | #define STACK_BOUNDARY 64 | |
129 | ||
130 | /* Define this macro if it is advisible to hold scalars in registers | |
131 | in a wider mode than that declared by the program. In such cases, | |
132 | the value is constrained to be within the bounds of the declared | |
133 | type, but kept valid in the wider mode. The signedness of the | |
134 | extension may differ from that of the type. | |
135 | ||
136 | For Clipper, we always store objects in a full register. */ | |
137 | ||
138 | #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ | |
139 | if (GET_MODE_CLASS (MODE) == MODE_INT \ | |
140 | && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ | |
141 | { \ | |
142 | (UNSIGNEDP) = 0; \ | |
143 | (MODE) = SImode; \ | |
144 | } | |
145 | ||
146 | ||
147 | /* Define this if function arguments should also be promoted using the above | |
148 | procedure. */ | |
149 | ||
150 | /* FIXME: do we loose compatibility to acc if we define this? */ | |
151 | ||
152 | /* #define PROMOTE_FUNCTION_ARGS */ | |
153 | ||
154 | /* Likewise, if the function return value is promoted. */ | |
155 | ||
156 | /* #define PROMOTE_FUNCTION_RETURN */ | |
157 | ||
158 | \f | |
159 | /* Standard register usage. */ | |
160 | ||
161 | /* Number of actual hardware registers. | |
162 | The hardware registers are assigned numbers for the compiler | |
163 | from 0 to just below FIRST_PSEUDO_REGISTER. | |
164 | All registers that the compiler knows about must be given numbers, | |
165 | even those that are not normally considered general registers. */ | |
166 | #define FIRST_PSEUDO_REGISTER 32 | |
167 | ||
168 | /* 1 for registers that have pervasive standard uses | |
169 | and are not available for the register allocator. | |
170 | On the clipper, these are the FP and SP . */ | |
171 | #define FIXED_REGISTERS \ | |
172 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,\ | |
e600165c | 173 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1} /* Default: C300 */ |
edc03e8a RS |
174 | |
175 | /* 1 for registers not available across function calls. | |
176 | These must include the FIXED_REGISTERS and also any | |
177 | registers that can be used without being saved. | |
178 | The latter must include the registers where values are returned | |
179 | and the register where structure-value addresses are passed. | |
180 | Aside from that, you can include as many other registers as you like. */ | |
181 | #define CALL_USED_REGISTERS \ | |
182 | {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,\ | |
e600165c RK |
183 | 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1} /* default: C300 */ |
184 | ||
185 | /* Zero or more C statements that may conditionally modify two | |
186 | variables `fixed_regs' and `call_used_regs' (both of type `char | |
187 | []') after they have been initialized from the two preceding | |
188 | macros. A C400 has additional floating registers f8 -> f15 */ | |
56f9e259 | 189 | |
e600165c RK |
190 | #define CONDITIONAL_REGISTER_USAGE \ |
191 | if (target_flags & TARGET_C400) \ | |
192 | { int i; \ | |
193 | for (i = 24; i < 32; i++) fixed_regs[i] = call_used_regs[i] = 0; } | |
edc03e8a RS |
194 | |
195 | /* Return number of consecutive hard regs needed starting at reg REGNO | |
196 | to hold something of mode MODE. | |
197 | This is ordinarily the length in words of a value of mode MODE | |
198 | but can be less for certain modes in special long registers. | |
199 | On the clipper, fp registers are 64 bits. */ | |
200 | ||
201 | #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
202 | ((REGNO) >= 16 ? 1 \ | |
203 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
204 | ||
edc03e8a | 205 | /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
56f9e259 RS |
206 | On the clipper 0-15 may hold any mode but DImode and DFmode must be even. |
207 | Registers 16-31 hold SFmode and DFmode */ | |
edc03e8a | 208 | |
56f9e259 RS |
209 | #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
210 | ((REGNO) < 16 \ | |
211 | ? ((MODE) != DImode && (MODE) != DFmode || ((REGNO) & 1) == 0) \ | |
212 | : ((MODE) == SFmode || (MODE) == DFmode)) | |
edc03e8a RS |
213 | |
214 | /* Value is 1 if it is a good idea to tie two pseudo registers | |
215 | when one has mode MODE1 and one has mode MODE2. | |
216 | If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
217 | for any hard reg, then this must be 0 for correct output. */ | |
218 | #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2)) | |
219 | ||
220 | /* Specify the registers used for certain standard purposes. | |
221 | The values of these macros are register numbers. */ | |
222 | ||
223 | /* clipper has extra PC */ | |
224 | /* #define PC_REGNUM */ | |
225 | ||
226 | /* Register to use for pushing function arguments. */ | |
227 | #define STACK_POINTER_REGNUM 15 | |
228 | ||
229 | /* Base register for access to local variables of the function. */ | |
230 | #define FRAME_POINTER_REGNUM 14 | |
231 | ||
232 | /* Value should be nonzero if functions must have frame pointers. | |
233 | Zero means the frame pointer need not be set up (and parms | |
234 | may be accessed via the stack pointer) in functions that seem suitable. | |
235 | This is computed in `reload', in reload1.c. */ | |
9257a149 RS |
236 | #define FRAME_POINTER_REQUIRED \ |
237 | (! leaf_function_p ()) | |
edc03e8a RS |
238 | |
239 | /* Base register for access to arguments of the function. */ | |
240 | #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM | |
241 | ||
242 | /* Register in which static-chain is passed to a function. */ | |
243 | #define STATIC_CHAIN_REGNUM 2 | |
244 | ||
245 | /* Register in which address to store a structure value | |
246 | is passed to a function. */ | |
247 | #define STRUCT_VALUE_REGNUM 0 | |
248 | \f | |
249 | /* Define the classes of registers for register constraints in the | |
250 | machine description. Also define ranges of constants. | |
251 | ||
252 | One of the classes must always be named ALL_REGS and include all hard regs. | |
253 | If there is more than one class, another class must be named NO_REGS | |
254 | and contain no registers. | |
255 | ||
256 | The name GENERAL_REGS must be the name of a class (or an alias for | |
257 | another name such as ALL_REGS). This is the class of registers | |
258 | that is allowed by "g" or "r" in a register constraint. | |
259 | Also, registers outside this class are allocated only when | |
260 | instructions express preferences for them. | |
261 | ||
262 | The classes must be numbered in nondecreasing order; that is, | |
263 | a larger-numbered class must never be contained completely | |
264 | in a smaller-numbered class. | |
265 | ||
266 | For any two classes, it is very desirable that there be another | |
267 | class that represents their union. */ | |
268 | ||
269 | /* The clipper has general and FP regs. */ | |
270 | ||
271 | enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS, LIM_REG_CLASSES}; | |
272 | ||
273 | #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
274 | ||
275 | /* Give names of register classes as strings for dump file. */ | |
276 | ||
277 | #define REG_CLASS_NAMES \ | |
278 | {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" } | |
279 | ||
280 | /* Define which registers fit in which classes. | |
281 | This is an initializer for a vector of HARD_REG_SET | |
282 | of length N_REG_CLASSES. */ | |
283 | ||
284 | #define REG_CLASS_CONTENTS {0, 0x0000ffff, 0xffff0000, 0xffffffff} | |
285 | ||
286 | /* The same information, inverted: | |
287 | Return the class number of the smallest class containing | |
288 | reg number REGNO. This could be a conditional expression | |
289 | or could index an array. */ | |
290 | ||
291 | #define REGNO_REG_CLASS(REGNO) ((REGNO) >= 16 ? FLOAT_REGS : GENERAL_REGS) | |
292 | ||
293 | /* The class value for index registers, and the one for base regs. */ | |
294 | ||
295 | #define INDEX_REG_CLASS GENERAL_REGS | |
296 | #define BASE_REG_CLASS GENERAL_REGS | |
297 | ||
298 | /* Get reg_class from a letter such as appears in the machine description. */ | |
299 | ||
300 | #define REG_CLASS_FROM_LETTER(C) \ | |
301 | ((C) == 'r' ? GENERAL_REGS : ((C) == 'f' ? FLOAT_REGS: NO_REGS)) | |
302 | ||
303 | /* The letters I, J, K, L and M in a register constraint string | |
304 | can be used to stand for particular ranges of immediate operands. | |
305 | This macro defines what the ranges are. | |
306 | C is the letter, and VALUE is a constant value. | |
307 | Return 1 if VALUE is in the range specified by C. */ | |
308 | ||
309 | #define CONST_OK_FOR_LETTER_P(VALUE, C) 0 | |
310 | ||
311 | /* Similar, but for floating constants, and defining letters G and H. | |
312 | Here VALUE is the CONST_DOUBLE rtx itself. */ | |
313 | ||
314 | #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 | |
315 | ||
316 | /* Optional extra constraints for this machine. */ | |
317 | ||
318 | /* #define EXTRA_CONSTRAINT(OP, C) */ | |
319 | ||
320 | ||
321 | /* Given an rtx X being reloaded into a reg required to be | |
322 | in class CLASS, return the class of reg to actually use. | |
323 | In general this is just CLASS; but on some machines | |
324 | in some cases it is preferable to use a more restrictive class. */ | |
325 | ||
326 | #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS) | |
327 | ||
328 | /* Return the maximum number of consecutive registers | |
329 | needed to represent mode MODE in a register of class CLASS. */ | |
330 | ||
331 | #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
332 | ((CLASS) == FLOAT_REGS \ | |
333 | ? 1 \ | |
334 | : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) | |
335 | \f | |
336 | /* Stack layout; function entry, exit and calling. */ | |
337 | ||
338 | /* Define this if pushing a word on the stack | |
339 | makes the stack pointer a smaller address. */ | |
340 | #define STACK_GROWS_DOWNWARD | |
341 | ||
342 | /* Define this if longjmp restores from saved registers | |
343 | rather than from what setjmp saved. */ | |
344 | /* #define LONGJMP_RESTORE_FROM_STACK */ | |
345 | ||
346 | /* Define this if the nominal address of the stack frame | |
347 | is at the high-address end of the local variables; | |
348 | that is, each additional local variable allocated | |
349 | goes at a more negative offset in the frame. */ | |
350 | #define FRAME_GROWS_DOWNWARD | |
351 | ||
352 | /* Offset within stack frame to start allocating local variables at. | |
353 | If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
354 | first local allocated. Otherwise, it is the offset to the BEGINNING | |
355 | of the first local allocated. */ | |
356 | #define STARTING_FRAME_OFFSET 0 | |
357 | ||
358 | /* Given an rtx for the address of a frame, | |
359 | return an rtx for the address of the word in the frame | |
360 | that holds the dynamic chain--the previous frame's address. */ | |
361 | #define DYNAMIC_CHAIN_ADDRESS(frame) (frame) | |
362 | ||
363 | /* If we generate an insn to push BYTES bytes, | |
364 | this says how many the stack pointer really advances by. */ | |
365 | ||
366 | /* #define PUSH_ROUNDING(BYTES) (BYTES) */ | |
367 | ||
368 | /* Keep the stack pointer constant throughout the function. */ | |
369 | /* we can't set this for clipper as library calls may have 3 args and we pass | |
370 | only 2 args in regs. */ | |
371 | ||
372 | /* #define ACCUMULATE_OUTGOING_ARGS */ | |
373 | ||
374 | ||
375 | /* Offset of first parameter from the argument pointer register value. | |
376 | size of PC + FP */ | |
377 | ||
378 | #define FIRST_PARM_OFFSET(FNDECL) 8 | |
379 | ||
380 | /* Value is the number of bytes of arguments automatically | |
381 | popped when returning from a subroutine call. | |
8b109b37 | 382 | FUNDECL is the declaration node of the function (as a tree), |
edc03e8a RS |
383 | FUNTYPE is the data type of the function (as a tree), |
384 | or for a library call it is an identifier node for the subroutine name. | |
385 | SIZE is the number of bytes of arguments passed on the stack. */ | |
386 | ||
8b109b37 | 387 | #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 |
edc03e8a RS |
388 | |
389 | /* Define how to find the value returned by a function. | |
390 | VALTYPE is the data type of the value (as a tree). | |
391 | If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
392 | otherwise, FUNC is 0. */ | |
393 | ||
394 | #define FUNCTION_VALUE(VALTYPE, FUNC) \ | |
395 | gen_rtx (REG, TYPE_MODE (VALTYPE), ((TYPE_MODE (VALTYPE) == SFmode ||\ | |
396 | TYPE_MODE (VALTYPE) == DFmode) ? \ | |
397 | 16 : 0)) | |
398 | ||
399 | /* Define how to find the value returned by a library function | |
400 | assuming the value has mode MODE. */ | |
401 | ||
402 | #define LIBCALL_VALUE(MODE) \ | |
403 | gen_rtx (REG, (MODE), ((MODE) == SFmode || (MODE) == DFmode ? 16 : 0)) | |
404 | ||
405 | ||
406 | /* 1 if N is a possible register number for a function value | |
407 | as seen by the caller. */ | |
408 | ||
409 | #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 16) | |
410 | ||
411 | /* 1 if N is a possible register number for function argument passing. */ | |
412 | ||
413 | #define FUNCTION_ARG_REGNO_P(N) \ | |
414 | ((N) == 0 || (N) == 1 || (N) == 16 || (N) == 17) | |
415 | ||
416 | /* Define this if PCC uses the nonreentrant convention for returning | |
4326de0b RK |
417 | structure and union values. Old Green Hills C-Clipper returns static |
418 | structs but the newer Apogee compiler passes structs as hidden arg 0. | |
419 | Structs etc are always passed in memory */ | |
edc03e8a | 420 | |
4326de0b | 421 | /* #define PCC_STATIC_STRUCT_RETURN */ |
edc03e8a RS |
422 | |
423 | \f | |
424 | /* Define a data type for recording info about an argument list | |
425 | during the scan of that argument list. This data type should | |
426 | hold all necessary information about the function itself | |
427 | and about the args processed so far, enough to enable macros | |
428 | such as FUNCTION_ARG to determine where the next arg should go. | |
429 | ||
430 | Clipper uses 2 register 'slots' that pass arguments in r0/r1 or f0/f1. | |
431 | An argument that must be passed in memory (struct... ) leaves that slot | |
432 | free. | |
433 | We pass 'long long' only in registers when both slots are free. | |
434 | Returned structs must be allocated by the caller, the address is passed | |
435 | in r0. | |
436 | ||
437 | struct ss {..} | |
438 | ||
439 | fun (i,j,k) i in r0, j in r1, k on stack | |
440 | fun (s,j,k) s on stack, j in r1, k on stack | |
441 | fun (i,s,k) i in r0, s on stack, k on stack | |
442 | s1 = fun (i,s,k) &s1 in r0, i in r1, s on stack, k on stack | |
443 | ||
444 | We must keep enough information for varargs/stdargs. | |
445 | ||
446 | _clipper_cum_args is a struct of 2 integers, with | |
447 | num = slots used | |
448 | size = size of all stack args = offset to next arg without alignment | |
449 | ||
450 | If we use stdarg.h, size points to the first unnamed arg, | |
451 | see va-clipper.h */ | |
452 | ||
453 | struct _clipper_cum_args { int num; int size; }; | |
454 | ||
455 | #define CUMULATIVE_ARGS struct _clipper_cum_args | |
456 | ||
457 | /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
458 | for a call to a function whose data type is FNTYPE. | |
459 | For a library call, FNTYPE is 0. | |
460 | ||
461 | clipper passes the address of a struct in r0, set num = 1 in this case */ | |
462 | ||
463 | #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ | |
76c30596 | 464 | ((CUM).num = ((FNTYPE) != 0 && aggregate_value_p (TREE_TYPE (FNTYPE))), \ |
edc03e8a RS |
465 | (CUM).size = 0) |
466 | ||
467 | /* internal helper : size of an argument */ | |
468 | ||
469 | #define CLIPPER_ARG_SIZE(MODE, TYPE) \ | |
01791153 RK |
470 | (((MODE) != BLKmode \ |
471 | ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ | |
472 | : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) \ | |
473 | * UNITS_PER_WORD) | |
edc03e8a RS |
474 | |
475 | /* Update the data in CUM to advance over an argument | |
476 | of mode MODE and data type TYPE. | |
477 | (TYPE is null for libcalls where that information may not be available.) */ | |
478 | ||
56f9e259 RS |
479 | #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
480 | do \ | |
481 | { \ | |
482 | int reg = 0; \ | |
483 | \ | |
484 | if ((CUM).num < 2 \ | |
485 | && (GET_MODE_CLASS(MODE)==MODE_INT || GET_MODE_CLASS(MODE)==MODE_FLOAT) \ | |
486 | && (GET_MODE_SIZE (MODE) <= 8) \ | |
941df33c | 487 | && ((TYPE) == NULL || !AGGREGATE_TYPE_P(TYPE)) \ |
56f9e259 RS |
488 | && ((MODE) != DImode || (CUM).num == 0)) \ |
489 | { \ | |
490 | reg = 1; \ | |
491 | if ((MODE) == DImode) \ | |
492 | (CUM).num = 1; \ | |
493 | } \ | |
494 | \ | |
495 | (CUM).num++; \ | |
496 | \ | |
497 | if (! reg) \ | |
498 | { \ | |
499 | int align = FUNCTION_ARG_BOUNDARY (MODE, TYPE) / BITS_PER_UNIT; \ | |
500 | (CUM).size += align - 1; \ | |
01791153 | 501 | (CUM).size &= ~(align - 1); \ |
56f9e259 RS |
502 | (CUM).size += CLIPPER_ARG_SIZE (MODE, TYPE); \ |
503 | } \ | |
edc03e8a RS |
504 | } while (0) |
505 | ||
506 | /* Define where to put the arguments to a function. | |
507 | Value is zero to push the argument on the stack, | |
508 | or a hard register in which to store the argument. | |
509 | ||
510 | MODE is the argument's machine mode. | |
511 | TYPE is the data type of the argument (as a tree). | |
512 | This is null for libcalls where that information may | |
513 | not be available. | |
514 | CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
515 | the preceding args and about the function being called. | |
516 | NAMED is nonzero if this argument is a named parameter | |
56f9e259 | 517 | (otherwise it is an extra parameter matching an ellipsis). |
edc03e8a | 518 | |
56f9e259 RS |
519 | 2 args may go into regs. These must be MODE_INT or MODE_FLOAT but only |
520 | if they really fit into ONE register. The exception is a DImode arg | |
521 | that occupies both register slots. */ | |
edc03e8a | 522 | |
56f9e259 RS |
523 | #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
524 | (((CUM).num < 2 \ | |
525 | && (GET_MODE_CLASS(MODE)==MODE_INT || GET_MODE_CLASS(MODE)==MODE_FLOAT) \ | |
526 | && (GET_MODE_SIZE (MODE) <= 8) \ | |
941df33c | 527 | && ((TYPE) == NULL || !AGGREGATE_TYPE_P(TYPE)) \ |
56f9e259 RS |
528 | && ((MODE) != DImode || (CUM).num == 0)) \ |
529 | ? gen_rtx (REG, (MODE), \ | |
530 | GET_MODE_CLASS(MODE) == MODE_FLOAT ? (CUM).num+16 : (CUM).num) \ | |
531 | : 0) | |
edc03e8a RS |
532 | |
533 | /* If defined, a C expression that gives the alignment boundary, in bits, | |
534 | of an argument with the specified mode and type. If it is not defined, | |
535 | `PARM_BOUNDARY' is used for all arguments. */ | |
536 | ||
537 | #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ | |
538 | (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_SIZE (MODE)) <= PARM_BOUNDARY \ | |
539 | ? PARM_BOUNDARY : 2 * PARM_BOUNDARY) | |
540 | ||
541 | /* For an arg passed partly in registers and partly in memory, | |
542 | this is the number of registers used. | |
56f9e259 RS |
543 | For args passed entirely in registers or entirely in memory, zero. |
544 | Clipper never passed args partially in regs/mem. */ | |
edc03e8a | 545 | |
56f9e259 | 546 | /* #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 */ |
edc03e8a RS |
547 | |
548 | /* Generate necessary RTL for __builtin_saveregs(). | |
549 | ARGLIST is the argument list; see expr.c. */ | |
edc03e8a | 550 | |
56f9e259 | 551 | #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) clipper_builtin_saveregs (ARGLIST) |
edc03e8a RS |
552 | |
553 | /* This macro generates the assembly code for function entry. | |
554 | FILE is a stdio stream to output the code to. | |
555 | SIZE is an int: how many units of temporary storage to allocate. | |
556 | Refer to the array `regs_ever_live' to determine which registers | |
557 | to save; `regs_ever_live[I]' is nonzero if register number I | |
558 | is ever used in the function. This macro is responsible for | |
559 | knowing which registers should not be saved even if used. */ | |
560 | ||
561 | #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue (FILE,SIZE) | |
562 | ||
563 | /* Output assembler code to FILE to increment profiler label # LABELNO | |
564 | for profiling a function entry. */ | |
565 | ||
566 | #define FUNCTION_PROFILER(FILE, LABELNO) /* FIXME */ | |
567 | ||
568 | /* Output assembler code to FILE to initialize this source file's | |
569 | basic block profiling info, if that has not already been done. */ | |
570 | ||
571 | #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) /* FIXME */ | |
572 | ||
573 | /* Output assembler code to FILE to increment the entry-count for | |
574 | the BLOCKNO'th basic block in this source file. */ | |
575 | ||
576 | #define BLOCK_PROFILER(FILE, BLOCKNO) /* FIXME */ | |
577 | ||
578 | /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, | |
579 | the stack pointer does not matter. The value is tested only in | |
580 | functions that have frame pointers. | |
581 | No definition is equivalent to always zero. */ | |
582 | ||
583 | #define EXIT_IGNORE_STACK 1 | |
584 | ||
585 | /* This macro generates the assembly code for function exit, | |
586 | on machines that need it. If FUNCTION_EPILOGUE is not defined | |
587 | then individual return instructions are generated for each | |
588 | return statement. Args are same as for FUNCTION_PROLOGUE. */ | |
589 | ||
590 | #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue(FILE,SIZE) | |
591 | ||
592 | /* Store in the variable DEPTH the initial difference between the | |
593 | frame pointer reg contents and the stack pointer reg contents, | |
594 | as of the start of the function body. This depends on the layout | |
9257a149 | 595 | of the fixed parts of the stack frame and on how registers are saved. */ |
edc03e8a | 596 | |
9257a149 RS |
597 | #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ |
598 | DEPTH = clipper_frame_size (get_frame_size ()) | |
edc03e8a | 599 | |
edc03e8a RS |
600 | |
601 | /* Output assembler code for a block containing the constant parts | |
602 | of a trampoline, leaving space for the variable parts. */ | |
603 | ||
604 | #define TRAMPOLINE_TEMPLATE(FILE) \ | |
605 | { \ | |
941df33c | 606 | fputs ("\t.word 0x459F,0x0004\t# call sp,.+4\n", FILE); \ |
edc03e8a RS |
607 | fputs ("\tmovw (sp),r3\n", FILE); \ |
608 | fputs ("\taddq $4,sp\n", FILE); \ | |
941df33c RK |
609 | fputs ("\tloadw 20(r3),r2\n", FILE); \ |
610 | fputs ("\tloadw 24(r3),r3\n", FILE); \ | |
edc03e8a | 611 | fputs ("\tb (r3)\n", FILE); \ |
941df33c | 612 | fputs ("\t.long 0,0\n", FILE); \ |
edc03e8a RS |
613 | } |
614 | ||
615 | /* Length in units of the trampoline for entering a nested function. */ | |
616 | ||
941df33c | 617 | #define TRAMPOLINE_SIZE 32 |
edc03e8a RS |
618 | |
619 | /* Alignment required for a trampoline. 128 is used to find the | |
620 | beginning of a line in the instruction cache and to allow for | |
621 | instruction cache lines of up to 128 bytes. */ | |
622 | ||
623 | #define TRAMPOLINE_ALIGNMENT 128 | |
624 | ||
625 | /* Section in which to place the trampoline. */ | |
626 | ||
627 | #define TRAMPOLINE_SECTION text_section | |
628 | ||
629 | /* Emit RTL insns to initialize the variable parts of a trampoline. | |
630 | FNADDR is an RTX for the address of the function's pure code. | |
631 | CXT is an RTX for the static chain value for the function. */ | |
632 | ||
633 | #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ | |
634 | { \ | |
941df33c RK |
635 | emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 24)), CXT); \ |
636 | emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 28)), FNADDR); \ | |
edc03e8a RS |
637 | } |
638 | \f | |
639 | /* Addressing modes, and classification of registers for them. */ | |
640 | ||
641 | /* #define HAVE_POST_DECREMENT */ | |
642 | ||
643 | /* #define HAVE_PRE_INCREMENT */ | |
644 | ||
645 | /* Macros to check register numbers against specific register classes. */ | |
646 | ||
647 | /* These assume that REGNO is a hard or pseudo reg number. | |
648 | They give nonzero only if REGNO is a hard reg of the suitable class | |
649 | or a pseudo reg currently allocated to a suitable hard reg. | |
650 | Since they use reg_renumber, they are safe only once reg_renumber | |
651 | has been allocated, which happens in local-alloc.c. */ | |
652 | ||
653 | #define REGNO_OK_FOR_INDEX_P(regno) \ | |
654 | ((regno) < 16 || (unsigned)reg_renumber[regno] < 16) | |
655 | #define REGNO_OK_FOR_BASE_P(regno) \ | |
656 | ((regno) < 16 || (unsigned)reg_renumber[regno] < 16) | |
657 | \f | |
658 | /* Maximum number of registers that can appear in a valid memory address. */ | |
659 | ||
660 | #define MAX_REGS_PER_ADDRESS 2 | |
661 | ||
662 | /* 1 if X is an rtx for a constant that is a valid address. */ | |
663 | ||
57dc9016 BK |
664 | #define CONSTANT_ADDRESS_P(X) \ |
665 | (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ | |
666 | || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ | |
667 | || GET_CODE (X) == HIGH) | |
edc03e8a RS |
668 | |
669 | /* Nonzero if the constant value X is a legitimate general operand. | |
670 | It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ | |
671 | ||
672 | #define LEGITIMATE_CONSTANT_P(X) 1 | |
673 | ||
674 | /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
675 | and check its validity for a certain class. | |
676 | We have two alternate definitions for each of them. | |
677 | The usual definition accepts all pseudo regs; the other rejects | |
678 | them unless they have been allocated suitable hard regs. | |
679 | The symbol REG_OK_STRICT causes the latter definition to be used. | |
680 | ||
681 | Most source files want to accept pseudo regs in the hope that | |
682 | they will get allocated to the class that the insn wants them to be in. | |
683 | Source files for reload pass need to be strict. | |
684 | After reload, it makes no difference, since pseudo regs have | |
685 | been eliminated by then. */ | |
686 | ||
687 | /* clipper doesn't have true indexing */ | |
688 | ||
689 | #ifndef REG_OK_STRICT | |
690 | ||
691 | /* Nonzero if X is a hard reg that can be used as an index | |
692 | or if it is a pseudo reg. */ | |
693 | ||
694 | #define REG_OK_FOR_INDEX_P(X) \ | |
695 | (REGNO (X) < 16 || REGNO(X) >= FIRST_PSEUDO_REGISTER) | |
696 | ||
697 | /* Nonzero if X is a hard reg that can be used as a base reg | |
698 | or if it is a pseudo reg. */ | |
699 | ||
700 | #define REG_OK_FOR_BASE_P(X) \ | |
701 | (REGNO (X) < 16 || REGNO(X) >= FIRST_PSEUDO_REGISTER) | |
702 | ||
703 | #else | |
704 | ||
705 | /* Nonzero if X is a hard reg that can be used as an index. */ | |
706 | #define REG_OK_FOR_INDEX_P(X) (REGNO(X) < 16) | |
707 | ||
708 | /* Nonzero if X is a hard reg that can be used as a base reg. */ | |
709 | #define REG_OK_FOR_BASE_P(X) (REGNO(X) < 16) | |
710 | ||
711 | #endif | |
712 | \f | |
713 | /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
714 | that is a valid memory address for an instruction. | |
715 | The MODE argument is the machine mode for the MEM expression | |
716 | that wants to use this address. | |
717 | ||
718 | The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, | |
719 | except for CONSTANT_ADDRESS_P which is actually machine-independent. */ | |
720 | ||
721 | /* Non-zero if X is an address which can be indirected. */ | |
722 | ||
723 | #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) 0 | |
724 | ||
725 | #define INDIRECTABLE_ADDRESS_P(X) \ | |
726 | (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) | |
727 | ||
728 | /* Go to ADDR if X is a valid address not using indexing. | |
729 | (This much is the easy part.) */ | |
730 | ||
731 | #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ | |
732 | { if (CONSTANT_ADDRESS_P (X)) goto ADDR; \ | |
733 | if (INDIRECTABLE_ADDRESS_P (X)) goto ADDR; } | |
734 | ||
735 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
736 | { register rtx xfoo = (X); \ | |
737 | GO_IF_NONINDEXED_ADDRESS (xfoo, ADDR); \ | |
738 | if (GET_CODE (xfoo) == PLUS) \ | |
739 | { register rtx xfoo0, xfoo1; \ | |
740 | xfoo0 = XEXP (xfoo, 0); \ | |
741 | xfoo1 = XEXP (xfoo, 1); \ | |
742 | /* handle reg + reg -> [r1](r0) */ \ | |
743 | if (INDIRECTABLE_ADDRESS_P (xfoo0) && INDIRECTABLE_ADDRESS_P (xfoo1)) \ | |
744 | goto ADDR; \ | |
745 | /* Handle <symbol>(reg) -> xxx(r0) */ \ | |
746 | if (INDIRECTABLE_ADDRESS_P (xfoo0) && CONSTANT_ADDRESS_P (xfoo1)) \ | |
747 | goto ADDR; \ | |
748 | if (INDIRECTABLE_ADDRESS_P (xfoo1) && CONSTANT_ADDRESS_P (xfoo0)) \ | |
749 | goto ADDR; }} | |
750 | ||
751 | \f | |
752 | /* Try machine-dependent ways of modifying an illegitimate address | |
753 | to be legitimate. If we find one, return the new, valid address. | |
754 | This macro is used in only one place: `memory_address' in explow.c. | |
755 | ||
756 | OLDX is the address as it was before break_out_memory_refs was called. | |
757 | In some cases it is useful to look at this to decide what needs to be done. | |
758 | ||
759 | MODE and WIN are passed so that this macro can use | |
760 | GO_IF_LEGITIMATE_ADDRESS. | |
761 | ||
762 | It is always safe for this macro to do nothing. It exists to recognize | |
763 | opportunities to optimize the output. | |
764 | ||
765 | For the clipper, nothing needs to be done. */ | |
766 | ||
767 | #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {} | |
768 | ||
769 | /* Go to LABEL if ADDR (a legitimate address expression) | |
770 | has an effect that depends on the machine mode it is used for. */ | |
771 | ||
772 | #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} | |
773 | ||
774 | \f | |
775 | /* Specify the machine mode that this machine uses | |
776 | for the index in the tablejump instruction. */ | |
777 | #define CASE_VECTOR_MODE SImode | |
778 | ||
779 | /* Define this if the case instruction expects the table | |
780 | to contain offsets from the address of the table. | |
781 | Do not define this if the table should contain absolute addresses. */ | |
782 | /* #define CASE_VECTOR_PC_RELATIVE */ | |
783 | ||
784 | /* Define this if the case instruction drops through after the table | |
785 | when the index is out of range. Don't define it if the case insn | |
786 | jumps to the default label instead. */ | |
787 | /* #define CASE_DROPS_THROUGH */ | |
788 | ||
9a63901f RK |
789 | /* Define if operations between registers always perform the operation |
790 | on the full register even if a narrower mode is specified. */ | |
791 | #define WORD_REGISTER_OPERATIONS | |
792 | ||
793 | /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD | |
794 | will either zero-extend or sign-extend. The value of this macro should | |
795 | be the code that says which one of the two operations is implicitly | |
796 | done, NIL if none. */ | |
797 | #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND | |
edc03e8a RS |
798 | |
799 | /* Specify the tree operation to be used to convert reals to integers. */ | |
800 | #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR | |
801 | ||
802 | /* This is the kind of divide that is easiest to do in the general case. */ | |
803 | #define EASY_DIV_EXPR TRUNC_DIV_EXPR | |
804 | ||
805 | /* Define this as 1 if `char' should by default be signed; else as 0. */ | |
806 | #define DEFAULT_SIGNED_CHAR 1 | |
807 | ||
808 | /* This flag, if defined, says the same insns that convert to a signed fixnum | |
809 | also convert validly to an unsigned one. */ | |
810 | #define FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
811 | ||
812 | /* Max number of bytes we can move from memory to memory | |
813 | in one reasonably fast instruction. */ | |
814 | #define MOVE_MAX 4 | |
815 | ||
816 | /* MOVE_RATIO is the number of move instructions that is better than a | |
817 | block move. Make this large on clipper, since the block move is very | |
818 | inefficient with small blocks, and the hard register needs of the | |
819 | block move require much reload work. */ | |
820 | ||
821 | #define MOVE_RATIO 20 | |
822 | ||
823 | /* Define this if zero-extension is slow (more than one real instruction). */ | |
824 | /* #define SLOW_ZERO_EXTEND */ | |
825 | ||
826 | /* Nonzero if access to memory by bytes is slow and undesirable. */ | |
827 | #define SLOW_BYTE_ACCESS 0 | |
828 | ||
829 | /* Define if shifts truncate the shift count | |
830 | which implies one can omit a sign-extension or zero-extension | |
831 | of a shift count. */ | |
832 | /* #define SHIFT_COUNT_TRUNCATED */ | |
833 | ||
834 | /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits | |
835 | is done just by pretending it is already truncated. */ | |
836 | #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
837 | ||
838 | /* Specify the machine mode that pointers have. | |
839 | After generation of rtl, the compiler makes no further distinction | |
840 | between pointers and any other objects of this machine mode. */ | |
841 | #define Pmode SImode | |
842 | ||
843 | /* A function address in a call instruction | |
844 | is a byte address (for indexing purposes) | |
845 | so give the MEM rtx a byte's mode. */ | |
846 | #define FUNCTION_MODE QImode | |
847 | ||
848 | /* This machine uses IEEE floats. */ | |
849 | ||
850 | #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT | |
851 | ||
852 | /* Check a `double' value for validity for a particular machine mode. | |
853 | This is defined to avoid crashes outputting certain constants. | |
854 | Since we output the number in hex, the assembler won't choke on it. */ | |
855 | /* #define CHECK_FLOAT_VALUE(MODE,VALUE) */ | |
856 | ||
857 | ||
858 | /* Compute the cost of computing a constant rtl expression RTX | |
859 | whose rtx-code is CODE. The body of this macro is a portion | |
860 | of a switch statement. If the code is computed here, | |
861 | return it with a return statement. Otherwise, break from the switch. */ | |
862 | ||
863 | /* On a Clipper, constants from 0..15 are cheap because they can use the | |
864 | 'quick' mode. */ | |
865 | ||
866 | #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ | |
867 | case CONST_INT: \ | |
868 | if (0 <= INTVAL (RTX) && INTVAL(RTX) <= 15 ) return 0; \ | |
869 | return 1; \ | |
870 | case CONST: \ | |
871 | case LABEL_REF: \ | |
872 | case SYMBOL_REF: \ | |
873 | return 3; \ | |
874 | case CONST_DOUBLE: \ | |
875 | return 5; | |
876 | ||
877 | /* Provide the costs of a rtl expression. This is in the body of a | |
878 | switch on CODE. */ | |
879 | ||
880 | #define RTX_COSTS(X,CODE,OUTER_CODE) \ | |
881 | case MULT: \ | |
882 | return COSTS_N_INSNS (4); \ | |
883 | case DIV: \ | |
884 | case UDIV: \ | |
885 | case MOD: \ | |
886 | case UMOD: \ | |
887 | return COSTS_N_INSNS (40); \ | |
edc03e8a RS |
888 | case ASHIFT: \ |
889 | case LSHIFTRT: \ | |
890 | case ASHIFTRT: \ | |
891 | return COSTS_N_INSNS (2); \ | |
892 | case SIGN_EXTEND: \ | |
893 | return (GET_CODE (XEXP (X,0)) == REG ? COSTS_N_INSNS (3) : 4); | |
894 | ||
895 | /* Specify the cost of a branch insn; roughly the number of extra insns that | |
896 | should be added to avoid a branch */ | |
897 | ||
898 | /* #define BRANCH_COST 0 */ | |
899 | ||
900 | \f | |
901 | /* Tell final.c how to eliminate redundant test instructions. */ | |
902 | ||
903 | /* Here we define machine-dependent flags and fields in cc_status | |
904 | (see `conditions.h'). No extra ones are needed for the clipper. */ | |
905 | ||
906 | /* Store in cc_status the expressions | |
907 | that the condition codes will describe | |
908 | after execution of an instruction whose pattern is EXP. | |
909 | Do not alter them if the instruction would not alter the cc's. */ | |
910 | ||
911 | #define NOTICE_UPDATE_CC(EXP, INSN) \ | |
912 | { \ | |
913 | enum attr_cc cc = get_attr_cc (INSN); \ | |
914 | rtx dest = SET_DEST (EXP); \ | |
915 | switch (cc) \ | |
916 | { \ | |
917 | case CC_CHANGE0: \ | |
918 | if (GET_CODE (EXP) == PARALLEL) abort(); \ | |
919 | if (cc_status.value1 && rtx_equal_p (dest, cc_status.value1) || \ | |
920 | cc_status.value2 && rtx_equal_p (dest, cc_status.value2)) \ | |
921 | CC_STATUS_INIT; \ | |
922 | break; \ | |
923 | \ | |
924 | case CC_SET1: \ | |
925 | if (GET_CODE (EXP) == PARALLEL) abort(); \ | |
926 | cc_status.flags = 0; \ | |
927 | cc_status.value1 = dest; \ | |
928 | cc_status.value2 = 0; \ | |
929 | break; \ | |
930 | \ | |
931 | case CC_SET2: \ | |
932 | if (GET_CODE (EXP) == PARALLEL) abort(); \ | |
933 | cc_status.flags = 0; \ | |
934 | cc_status.value1 = dest; \ | |
935 | cc_status.value2 = SET_SRC (EXP); \ | |
936 | break; \ | |
937 | \ | |
938 | case CC_UNCHANGED: \ | |
939 | break; \ | |
940 | \ | |
941 | case CC_CLOBBER: \ | |
942 | CC_STATUS_INIT; \ | |
943 | break; \ | |
944 | \ | |
945 | default: \ | |
946 | abort (); \ | |
947 | } \ | |
948 | } | |
949 | ||
950 | \f | |
951 | /* Control the assembler format that we output. */ | |
952 | ||
953 | /* Output at beginning of assembler file. */ | |
954 | ||
955 | #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n"); | |
956 | ||
957 | /* Output to assembler file text saying following lines | |
958 | may contain character constants, extra white space, comments, etc. */ | |
959 | ||
960 | #define ASM_APP_ON "#APP\n" | |
961 | ||
962 | /* Output to assembler file text saying following lines | |
963 | no longer contain unusual constructs. */ | |
964 | ||
965 | #define ASM_APP_OFF "#NO_APP\n" | |
966 | ||
967 | /* Output before read-only data. */ | |
968 | ||
969 | #define TEXT_SECTION_ASM_OP ".text" | |
970 | ||
971 | /* Output before writable data. */ | |
972 | ||
973 | #define DATA_SECTION_ASM_OP ".data" | |
974 | ||
975 | /* How to refer to registers in assembler output. | |
976 | This sequence is indexed by compiler's hard-register-number (see above). */ | |
977 | ||
978 | #define REGISTER_NAMES \ | |
979 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \ | |
980 | "r9", "r10", "r11", "r12", "r13", "fp", "sp", \ | |
981 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", \ | |
982 | "f9", "f10", "f11", "f12", "f13", "f14", "f15" } | |
983 | ||
984 | /* How to renumber registers for dbx and gdb. | |
985 | Clipper needs no change in the numeration. */ | |
986 | ||
987 | #define DBX_REGISTER_NUMBER(REGNO) (REGNO) | |
988 | ||
989 | ||
990 | /* This is how to output the definition of a user-level label named NAME, | |
991 | such as the label on a static function or variable NAME. */ | |
992 | ||
993 | #define ASM_OUTPUT_LABEL(FILE,NAME) \ | |
994 | do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) | |
995 | ||
996 | /* This is how to output a command to make the user-level label named NAME | |
997 | defined for reference from other files. */ | |
998 | ||
999 | #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ | |
1000 | do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) | |
1001 | ||
1002 | /* This is how to output an assembler line defining an `int' constant. */ | |
1003 | ||
1004 | #define ASM_OUTPUT_INT(FILE,VALUE) \ | |
1005 | ( fprintf (FILE, "\t.long "), \ | |
1006 | output_addr_const (FILE, (VALUE)), \ | |
1007 | fprintf (FILE, "\n")) | |
1008 | ||
1009 | /* Likewise for `char' and `short' constants. */ | |
1010 | ||
1011 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
1012 | ( fprintf (FILE, "\t.word "), \ | |
1013 | output_addr_const (FILE, (VALUE)), \ | |
1014 | fprintf (FILE, "\n")) | |
1015 | ||
1016 | #define ASM_OUTPUT_CHAR(FILE,VALUE) \ | |
1017 | ( fprintf (FILE, "\t.byte "), \ | |
1018 | output_addr_const (FILE, (VALUE)), \ | |
1019 | fprintf (FILE, "\n")) | |
1020 | ||
1021 | /* This is how to output an assembler line for a numeric constant byte. */ | |
1022 | ||
1023 | #define ASM_OUTPUT_BYTE(FILE,VALUE) \ | |
1024 | fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) | |
1025 | ||
1026 | /* This is how to output an insn to push a register on the stack. | |
1027 | It need not be very fast code. */ | |
1028 | ||
1029 | #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ | |
1030 | fprintf (FILE, "\tsubq $8,sp\n\t%s %s,(sp)\n", \ | |
1031 | (REGNO) < 16 ? "storw" : "stord", reg_names[REGNO]) | |
1032 | ||
1033 | /* This is how to output an insn to pop a register from the stack. | |
1034 | It need not be very fast code. */ | |
1035 | ||
1036 | #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ | |
1037 | fprintf (FILE, "\t%s (sp),%s\n\t\addq $8,sp\n", \ | |
1038 | (REGNO) < 16 ? "loadw" : "loadd", reg_names[REGNO]) | |
1039 | /* This is how to output an element of a case-vector that is absolute */ | |
1040 | ||
1041 | #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ | |
1042 | fprintf (FILE, "\t.long .L%d\n", VALUE) | |
1043 | ||
1044 | /* This is how to output an element of a case-vector that is relative. */ | |
1045 | ||
1046 | #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ | |
1047 | fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL) | |
1048 | ||
1049 | /* This is how to output an assembler line | |
1050 | that says to advance the location counter by SIZE bytes. */ | |
1051 | ||
1052 | #define ASM_OUTPUT_SKIP(FILE,SIZE) \ | |
1053 | fprintf (FILE, "\t.space %u\n", (SIZE)) | |
1054 | ||
1055 | /* This says how to output an assembler line | |
1056 | to define a local common symbol. */ | |
1057 | ||
1058 | #define ASM_OUTPUT_ALIGNED_LOCAL(FILE,NAME,SIZE,ALIGN) \ | |
1059 | ( data_section (), \ | |
1060 | fputs ("\t.bss\t", (FILE)), \ | |
1061 | assemble_name ((FILE), (NAME)), \ | |
1062 | fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN)/BITS_PER_UNIT)) | |
1063 | ||
1064 | /* Store in OUTPUT a string (made with alloca) containing | |
1065 | an assembler-name for a local static variable named NAME. | |
1066 | LABELNO is an integer which is different for each call. */ | |
1067 | ||
1068 | #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ | |
1069 | ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ | |
1070 | sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) | |
1071 | ||
1072 | /* Define the parentheses used to group arithmetic operations | |
1073 | in assembler code. */ | |
1074 | ||
1075 | #define ASM_OPEN_PAREN "(" | |
1076 | #define ASM_CLOSE_PAREN ")" | |
1077 | ||
1078 | /* Define results of standard character escape sequences. */ | |
1079 | #define TARGET_BELL 007 | |
1080 | #define TARGET_BS 010 | |
1081 | #define TARGET_TAB 011 | |
1082 | #define TARGET_NEWLINE 012 | |
1083 | #define TARGET_VT 013 | |
1084 | #define TARGET_FF 014 | |
1085 | #define TARGET_CR 015 | |
1086 | ||
1087 | /* Print an instruction operand X on file FILE. | |
1088 | CODE is the code from the %-spec that requested printing this operand; | |
1089 | if `%z3' was used to print operand 3, then CODE is 'z'. | |
1090 | ||
1091 | Clipper operand formatting codes: | |
1092 | ||
1093 | letter print | |
1094 | C reverse branch condition | |
1095 | */ | |
1096 | ||
1097 | #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ | |
1098 | ((CODE) == 'C') | |
1099 | ||
1100 | #define PRINT_OPERAND(FILE, X, CODE) \ | |
1101 | { extern char *rev_cond_name (); \ | |
1102 | if (CODE == 'C') \ | |
1103 | fputs (rev_cond_name (X), FILE); \ | |
1104 | else if (GET_CODE (X) == REG) \ | |
1105 | fprintf (FILE, "%s", reg_names[REGNO (X)]); \ | |
1106 | else if (GET_CODE (X) == MEM) \ | |
1107 | output_address (XEXP (X, 0)); \ | |
1108 | else { putc ('$', FILE); output_addr_const (FILE, X); }} | |
1109 | ||
1110 | /* Print a memory operand whose address is X, on file FILE. | |
1111 | This uses a function in output-clipper.c. */ | |
1112 | ||
1113 | #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ | |
1114 | print_operand_address (FILE, ADDR) | |
1115 | ||
1116 | /* Define the codes that are matched by predicates in clipper.c */ | |
1117 | ||
1118 | #define PREDICATE_CODES \ | |
1119 | {"int_reg_operand", {SUBREG, REG}}, \ | |
1120 | {"fp_reg_operand", {SUBREG, REG}}, |