]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
Makefile.in (BASE_FLAGS_TO_PASS): Add gcc_version_trigger.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ba3994a 2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
21798cd8 26%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 27%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
28%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
29%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
30%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
31%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
32%{mieee:-D_IEEE_FP} \
33%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
34
35/* Set the spec to use for signed char. The default tests the above macro
36 but DEC's compiler can't handle the conditional in a "constant"
37 operand. */
38
39#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
40
b890f297
JM
41#define WORD_SWITCH_TAKES_ARG(STR) \
42 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
43 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
44 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
45 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
46 || !strcmp (STR, "isystem"))
8877eb00 47
1a94ca49
RK
48/* Print subsidiary information on the compiler version in use. */
49#define TARGET_VERSION
50
1a94ca49
RK
51/* Run-time compilation parameters selecting different hardware subsets. */
52
f6f6a13c
RK
53/* Which processor to schedule for. The cpu attribute defines a list that
54 mirrors this list, so changes to alpha.md must be made at the same time. */
55
56enum processor_type
57 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
58 PROCESSOR_EV5, /* 21164{a,pc,} */
59 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
60
61extern enum processor_type alpha_cpu;
62
2bf6230d
RK
63enum alpha_trap_precision
64{
65 ALPHA_TP_PROG, /* No precision (default). */
66 ALPHA_TP_FUNC, /* Trap contained within originating function. */
67 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
68};
69
70enum alpha_fp_rounding_mode
71{
72 ALPHA_FPRM_NORM, /* Normal rounding mode. */
73 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
74 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
75 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
76};
77
78enum alpha_fp_trap_mode
79{
80 ALPHA_FPTM_N, /* Normal trap mode. */
81 ALPHA_FPTM_U, /* Underflow traps enabled. */
82 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
83 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
84};
85
1a94ca49
RK
86extern int target_flags;
87
2bf6230d
RK
88extern enum alpha_trap_precision alpha_tp;
89extern enum alpha_fp_rounding_mode alpha_fprm;
90extern enum alpha_fp_trap_mode alpha_fptm;
91
1a94ca49
RK
92/* This means that floating-point support exists in the target implementation
93 of the Alpha architecture. This is usually the default. */
94
2bf6230d
RK
95#define MASK_FP 1
96#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
97
98/* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
2bf6230d
RK
102#define MASK_FPREGS 2
103#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
104
105/* This means that gas is used to process the assembler file. */
106
107#define MASK_GAS 4
108#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 109
2bf6230d
RK
110/* This means that we should mark procedures as IEEE conformant. */
111
112#define MASK_IEEE_CONFORMANT 8
113#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115/* This means we should be IEEE-compliant except for inexact. */
116
117#define MASK_IEEE 16
118#define TARGET_IEEE (target_flags & MASK_IEEE)
119
120/* This means we should be fully IEEE-compliant. */
121
122#define MASK_IEEE_WITH_INEXACT 32
123#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
803fee69
RK
125/* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128#define MASK_BUILD_CONSTANTS 128
129#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
e5958492
RK
131/* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134#define MASK_FLOAT_VAX 512
135#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
e9a25f70
JL
137/* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
025f3281 139
e9a25f70
JL
140#define MASK_BWX 1024
141#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 142
e9a25f70
JL
143/* This means that the processor has the CIX extension. */
144#define MASK_CIX 2048
145#define TARGET_CIX (target_flags & MASK_CIX)
146
147/* This means that the processor has the MAX extension. */
148#define MASK_MAX 4096
149#define TARGET_MAX (target_flags & MASK_MAX)
150
151/* This means that the processor is an EV5, EV56, or PCA56. This is defined
152 only in TARGET_CPU_DEFAULT. */
153#define MASK_CPU_EV5 8192
154
155/* Likewise for EV6. */
156#define MASK_CPU_EV6 16384
157
158/* This means we support the .arch directive in the assembler. Only
159 defined in TARGET_CPU_DEFAULT. */
160#define MASK_SUPPORT_ARCH 32768
161#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 162
9ba3994a
RH
163/* These are for target os support and cannot be changed at runtime. */
164#ifndef TARGET_WINDOWS_NT
165#define TARGET_WINDOWS_NT 0
166#endif
167#ifndef TARGET_OPEN_VMS
168#define TARGET_OPEN_VMS 0
169#endif
170
171#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
172#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
173#endif
9c0e94a5
RH
174#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
175#define TARGET_CAN_FAULT_IN_PROLOGUE 0
176#endif
9ba3994a 177
1a94ca49
RK
178/* Macro to define tables used to set the flags.
179 This is a list in braces of pairs in braces,
180 each pair being { "NAME", VALUE }
181 where VALUE is the bits to set or minus the bits to clear.
182 An empty string NAME is used to identify the default VALUE. */
183
2bf6230d
RK
184#define TARGET_SWITCHES \
185 { {"no-soft-float", MASK_FP}, \
186 {"soft-float", - MASK_FP}, \
187 {"fp-regs", MASK_FPREGS}, \
188 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
189 {"alpha-as", -MASK_GAS}, \
190 {"gas", MASK_GAS}, \
191 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
192 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
193 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 194 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
195 {"float-vax", MASK_FLOAT_VAX}, \
196 {"float-ieee", -MASK_FLOAT_VAX}, \
e9a25f70
JL
197 {"bwx", MASK_BWX}, \
198 {"no-bwx", -MASK_BWX}, \
199 {"cix", MASK_CIX}, \
200 {"no-cix", -MASK_CIX}, \
201 {"max", MASK_MAX}, \
202 {"no-max", -MASK_MAX}, \
88681624 203 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 204
c01b5470 205#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 206
88681624
ILT
207#ifndef TARGET_CPU_DEFAULT
208#define TARGET_CPU_DEFAULT 0
209#endif
210
2bf6230d
RK
211/* This macro is similar to `TARGET_SWITCHES' but defines names of
212 command options that have values. Its definition is an initializer
213 with a subgrouping for each command option.
214
215 Each subgrouping contains a string constant, that defines the fixed
216 part of the option name, and the address of a variable. The
217 variable, type `char *', is set to the variable part of the given
218 option if the fixed part matches. The actual option name is made
219 by appending `-m' to the specified name.
220
221 Here is an example which defines `-mshort-data-NUMBER'. If the
222 given option is `-mshort-data-512', the variable `m88k_short_data'
223 will be set to the string `"512"'.
224
225 extern char *m88k_short_data;
226 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
227
bcbbac26 228extern char *alpha_cpu_string; /* For -mcpu= */
2bf6230d
RK
229extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
230extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
231extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
bcbbac26 232extern char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d
RK
233
234#define TARGET_OPTIONS \
235{ \
f6f6a13c 236 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
237 {"fp-rounding-mode=", &alpha_fprm_string}, \
238 {"fp-trap-mode=", &alpha_fptm_string}, \
239 {"trap-precision=", &alpha_tp_string}, \
bcbbac26 240 {"memory-latency=", &alpha_mlat_string}, \
2bf6230d
RK
241}
242
243/* Sometimes certain combinations of command options do not make sense
244 on a particular target machine. You can define a macro
245 `OVERRIDE_OPTIONS' to take account of this. This macro, if
246 defined, is executed once just after all the command options have
247 been parsed.
248
249 On the Alpha, it is used to translate target-option strings into
250 numeric values. */
251
252extern void override_options ();
253#define OVERRIDE_OPTIONS override_options ()
254
255
1a94ca49
RK
256/* Define this macro to change register usage conditional on target flags.
257
258 On the Alpha, we use this to disable the floating-point registers when
259 they don't exist. */
260
261#define CONDITIONAL_REGISTER_USAGE \
262 if (! TARGET_FPREGS) \
52a69200 263 for (i = 32; i < 63; i++) \
1a94ca49
RK
264 fixed_regs[i] = call_used_regs[i] = 1;
265
4f074454
RK
266/* Show we can debug even without a frame pointer. */
267#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
268\f
269/* target machine storage layout */
270
2700ac93
RS
271/* Define to enable software floating point emulation. */
272#define REAL_ARITHMETIC
273
861bb6c1
JL
274/* The following #defines are used when compiling the routines in
275 libgcc1.c. Since the Alpha calling conventions require single
276 precision floats to be passed in the floating-point registers
277 (rather than in the general registers) we have to build the
278 libgcc1.c routines in such a way that they know the actual types
279 of their formal arguments and the actual types of their return
280 values. Otherwise, gcc will generate calls to the libgcc1.c
281 routines, passing arguments in the floating-point registers,
282 but the libgcc1.c routines will expect their arguments on the
283 stack (where the Alpha calling conventions require structs &
284 unions to be passed). */
285
286#define FLOAT_VALUE_TYPE double
287#define INTIFY(FLOATVAL) (FLOATVAL)
288#define FLOATIFY(INTVAL) (INTVAL)
289#define FLOAT_ARG_TYPE double
290
1a94ca49
RK
291/* Define the size of `int'. The default is the same as the word size. */
292#define INT_TYPE_SIZE 32
293
294/* Define the size of `long long'. The default is the twice the word size. */
295#define LONG_LONG_TYPE_SIZE 64
296
297/* The two floating-point formats we support are S-floating, which is
298 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
299 and `long double' are T. */
300
301#define FLOAT_TYPE_SIZE 32
302#define DOUBLE_TYPE_SIZE 64
303#define LONG_DOUBLE_TYPE_SIZE 64
304
5258d7ae
RK
305#define WCHAR_TYPE "unsigned int"
306#define WCHAR_TYPE_SIZE 32
1a94ca49 307
13d39dbc 308/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
309 in a wider mode than that declared by the program. In such cases,
310 the value is constrained to be within the bounds of the declared
311 type, but kept valid in the wider mode. The signedness of the
312 extension may differ from that of the type.
313
314 For Alpha, we always store objects in a full register. 32-bit objects
315 are always sign-extended, but smaller objects retain their signedness. */
316
317#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
318 if (GET_MODE_CLASS (MODE) == MODE_INT \
319 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
320 { \
321 if ((MODE) == SImode) \
322 (UNSIGNEDP) = 0; \
323 (MODE) = DImode; \
324 }
325
326/* Define this if function arguments should also be promoted using the above
327 procedure. */
328
329#define PROMOTE_FUNCTION_ARGS
330
331/* Likewise, if the function return value is promoted. */
332
333#define PROMOTE_FUNCTION_RETURN
334
335/* Define this if most significant bit is lowest numbered
336 in instructions that operate on numbered bit-fields.
337
338 There are no such instructions on the Alpha, but the documentation
339 is little endian. */
340#define BITS_BIG_ENDIAN 0
341
342/* Define this if most significant byte of a word is the lowest numbered.
343 This is false on the Alpha. */
344#define BYTES_BIG_ENDIAN 0
345
346/* Define this if most significant word of a multiword number is lowest
347 numbered.
348
349 For Alpha we can decide arbitrarily since there are no machine instructions
350 for them. Might as well be consistent with bytes. */
351#define WORDS_BIG_ENDIAN 0
352
353/* number of bits in an addressable storage unit */
354#define BITS_PER_UNIT 8
355
356/* Width in bits of a "word", which is the contents of a machine register.
357 Note that this is not necessarily the width of data type `int';
358 if using 16-bit ints on a 68000, this would still be 32.
359 But on a machine with 16-bit registers, this would be 16. */
360#define BITS_PER_WORD 64
361
362/* Width of a word, in units (bytes). */
363#define UNITS_PER_WORD 8
364
365/* Width in bits of a pointer.
366 See also the macro `Pmode' defined below. */
367#define POINTER_SIZE 64
368
369/* Allocation boundary (in *bits*) for storing arguments in argument list. */
370#define PARM_BOUNDARY 64
371
372/* Boundary (in *bits*) on which stack pointer should be aligned. */
373#define STACK_BOUNDARY 64
374
375/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 376#define FUNCTION_BOUNDARY 256
1a94ca49
RK
377
378/* Alignment of field after `int : 0' in a structure. */
379#define EMPTY_FIELD_BOUNDARY 64
380
381/* Every structure's size must be a multiple of this. */
382#define STRUCTURE_SIZE_BOUNDARY 8
383
384/* A bitfield declared as `int' forces `int' alignment for the struct. */
385#define PCC_BITFIELD_TYPE_MATTERS 1
386
65823178
RK
387/* Align loop starts for optimal branching.
388
389 ??? Kludge this and the next macro for the moment by not doing anything if
390 we don't optimize and also if we are writing ECOFF symbols to work around
391 a bug in DEC's assembler. */
1a94ca49 392
fc470718 393#define LOOP_ALIGN(LABEL) \
9c0e94a5 394 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 395
9c0e94a5
RH
396/* This is how to align an instruction for optimal branching. On
397 Alpha we'll get better performance by aligning on an octaword
1a94ca49 398 boundary. */
130d2d72 399
fc470718 400#define ALIGN_LABEL_AFTER_BARRIER(FILE) \
9c0e94a5 401 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
402
403/* No data type wants to be aligned rounder than this. */
404#define BIGGEST_ALIGNMENT 64
405
d16fe557
RK
406/* For atomic access to objects, must have at least 32-bit alignment
407 unless the machine has byte operations. */
e9a25f70 408#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 409
442b1685
RK
410/* Align all constants and variables to at least a word boundary so
411 we can pick up pieces of them faster. */
6c174fc0
RH
412/* ??? Only if block-move stuff knows about different source/destination
413 alignment. */
414#if 0
442b1685
RK
415#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
416#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 417#endif
1a94ca49
RK
418
419/* Set this non-zero if move instructions will actually fail to work
420 when given unaligned data.
421
422 Since we get an error message when we do one, call them invalid. */
423
424#define STRICT_ALIGNMENT 1
425
426/* Set this non-zero if unaligned move instructions are extremely slow.
427
428 On the Alpha, they trap. */
130d2d72
RK
429
430#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
431\f
432/* Standard register usage. */
433
434/* Number of actual hardware registers.
435 The hardware registers are assigned numbers for the compiler
436 from 0 to just below FIRST_PSEUDO_REGISTER.
437 All registers that the compiler knows about must be given numbers,
438 even those that are not normally considered general registers.
439
440 We define all 32 integer registers, even though $31 is always zero,
441 and all 32 floating-point registers, even though $f31 is also
442 always zero. We do not bother defining the FP status register and
130d2d72
RK
443 there are no other registers.
444
445 Since $31 is always zero, we will use register number 31 as the
446 argument pointer. It will never appear in the generated code
447 because we will always be eliminating it in favor of the stack
52a69200
RK
448 pointer or hardware frame pointer.
449
450 Likewise, we use $f31 for the frame pointer, which will always
451 be eliminated in favor of the hardware frame pointer or the
452 stack pointer. */
1a94ca49
RK
453
454#define FIRST_PSEUDO_REGISTER 64
455
456/* 1 for registers that have pervasive standard uses
457 and are not available for the register allocator. */
458
459#define FIXED_REGISTERS \
460 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
461 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
464
465/* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471#define CALL_USED_REGISTERS \
472 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
473 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
474 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
476
477/* List the order in which to allocate registers. Each register must be
478 listed once, even those in FIXED_REGISTERS.
479
480 We allocate in the following order:
2c4be73e 481 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
482 $f22-$f30 (likewise)
483 $f21-$f16 (likewise, but input args)
484 $f0 (nonsaved, but return value)
2c4be73e 485 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
486 $f2-$f9 (saved floating-point registers)
487 $1-$8 (nonsaved integer registers)
488 $22-$25 (likewise)
489 $28 (likewise)
490 $0 (likewise, but return value)
491 $21-$16 (likewise, but input args)
0076aa6b 492 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
493 $9-$14 (saved integer registers)
494 $26 (return PC)
495 $15 (frame pointer)
496 $29 (global pointer)
52a69200 497 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
498
499#define REG_ALLOC_ORDER \
2c4be73e 500 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
501 54, 55, 56, 57, 58, 59, 60, 61, 62, \
502 53, 52, 51, 50, 49, 48, \
2c4be73e 503 32, 33, \
1a94ca49
RK
504 34, 35, 36, 37, 38, 39, 40, 41, \
505 1, 2, 3, 4, 5, 6, 7, 8, \
506 22, 23, 24, 25, \
507 28, \
508 0, \
509 21, 20, 19, 18, 17, 16, \
510 27, \
511 9, 10, 11, 12, 13, 14, \
512 26, \
513 15, \
514 29, \
515 30, 31, 63 }
516
517/* Return number of consecutive hard regs needed starting at reg REGNO
518 to hold something of mode MODE.
519 This is ordinarily the length in words of a value of mode MODE
520 but can be less for certain modes in special long registers. */
521
522#define HARD_REGNO_NREGS(REGNO, MODE) \
523 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
524
525/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
526 On Alpha, the integer registers can hold any mode. The floating-point
527 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
528 or 8-bit values. If we only allowed the larger integers into FP registers,
529 we'd have to say that QImode and SImode aren't tiable, which is a
530 pain. So say all registers can hold everything and see how that works. */
531
532#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
533
534/* Value is 1 if it is a good idea to tie two pseudo registers
535 when one has mode MODE1 and one has mode MODE2.
536 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
537 for any hard reg, then this must be 0 for correct output. */
538
539#define MODES_TIEABLE_P(MODE1, MODE2) 1
540
541/* Specify the registers used for certain standard purposes.
542 The values of these macros are register numbers. */
543
544/* Alpha pc isn't overloaded on a register that the compiler knows about. */
545/* #define PC_REGNUM */
546
547/* Register to use for pushing function arguments. */
548#define STACK_POINTER_REGNUM 30
549
550/* Base register for access to local variables of the function. */
52a69200 551#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
552
553/* Value should be nonzero if functions must have frame pointers.
554 Zero means the frame pointer need not be set up (and parms
555 may be accessed via the stack pointer) in functions that seem suitable.
556 This is computed in `reload', in reload1.c. */
557#define FRAME_POINTER_REQUIRED 0
558
559/* Base register for access to arguments of the function. */
130d2d72 560#define ARG_POINTER_REGNUM 31
1a94ca49 561
52a69200
RK
562/* Base register for access to local variables of function. */
563#define FRAME_POINTER_REGNUM 63
564
1a94ca49
RK
565/* Register in which static-chain is passed to a function.
566
567 For the Alpha, this is based on an example; the calling sequence
568 doesn't seem to specify this. */
569#define STATIC_CHAIN_REGNUM 1
570
571/* Register in which address to store a structure value
572 arrives in the function. On the Alpha, the address is passed
573 as a hidden argument. */
574#define STRUCT_VALUE 0
575\f
576/* Define the classes of registers for register constraints in the
577 machine description. Also define ranges of constants.
578
579 One of the classes must always be named ALL_REGS and include all hard regs.
580 If there is more than one class, another class must be named NO_REGS
581 and contain no registers.
582
583 The name GENERAL_REGS must be the name of a class (or an alias for
584 another name such as ALL_REGS). This is the class of registers
585 that is allowed by "g" or "r" in a register constraint.
586 Also, registers outside this class are allocated only when
587 instructions express preferences for them.
588
589 The classes must be numbered in nondecreasing order; that is,
590 a larger-numbered class must never be contained completely
591 in a smaller-numbered class.
592
593 For any two classes, it is very desirable that there be another
594 class that represents their union. */
595
596enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
597 LIM_REG_CLASSES };
598
599#define N_REG_CLASSES (int) LIM_REG_CLASSES
600
601/* Give names of register classes as strings for dump file. */
602
603#define REG_CLASS_NAMES \
604 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
605
606/* Define which registers fit in which classes.
607 This is an initializer for a vector of HARD_REG_SET
608 of length N_REG_CLASSES. */
609
610#define REG_CLASS_CONTENTS \
52a69200 611 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
612
613/* The same information, inverted:
614 Return the class number of the smallest class containing
615 reg number REGNO. This could be a conditional expression
616 or could index an array. */
617
52a69200
RK
618#define REGNO_REG_CLASS(REGNO) \
619 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
620
621/* The class value for index registers, and the one for base regs. */
622#define INDEX_REG_CLASS NO_REGS
623#define BASE_REG_CLASS GENERAL_REGS
624
625/* Get reg_class from a letter such as appears in the machine description. */
626
627#define REG_CLASS_FROM_LETTER(C) \
628 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
629
630/* Define this macro to change register usage conditional on target flags. */
631/* #define CONDITIONAL_REGISTER_USAGE */
632
633/* The letters I, J, K, L, M, N, O, and P in a register constraint string
634 can be used to stand for particular ranges of immediate operands.
635 This macro defines what the ranges are.
636 C is the letter, and VALUE is a constant value.
637 Return 1 if VALUE is in the range specified by C.
638
639 For Alpha:
640 `I' is used for the range of constants most insns can contain.
641 `J' is the constant zero.
642 `K' is used for the constant in an LDA insn.
643 `L' is used for the constant in a LDAH insn.
644 `M' is used for the constants that can be AND'ed with using a ZAP insn.
645 `N' is used for complemented 8-bit constants.
646 `O' is used for negated 8-bit constants.
647 `P' is used for the constants 1, 2 and 3. */
648
649#define CONST_OK_FOR_LETTER_P(VALUE, C) \
650 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
651 : (C) == 'J' ? (VALUE) == 0 \
652 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
653 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 654 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
655 : (C) == 'M' ? zap_mask (VALUE) \
656 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
657 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
658 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
659 : 0)
660
661/* Similar, but for floating or large integer constants, and defining letters
662 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
663
664 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
665 that is the operand of a ZAP insn. */
666
667#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
668 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
669 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
670 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
671 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
672 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
673 : 0)
674
e560f226
RK
675/* Optional extra constraints for this machine.
676
677 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
678 reference to an unaligned location.
679 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
680 function. */
e560f226
RK
681
682#define EXTRA_CONSTRAINT(OP, C) \
683 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 684 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
685 : 0)
686
1a94ca49
RK
687/* Given an rtx X being reloaded into a reg required to be
688 in class CLASS, return the class of reg to actually use.
689 In general this is just CLASS; but on some machines
690 in some cases it is preferable to use a more restrictive class.
691
692 On the Alpha, all constants except zero go into a floating-point
693 register via memory. */
694
695#define PREFERRED_RELOAD_CLASS(X, CLASS) \
696 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 697 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
698 : (CLASS))
699
700/* Loading and storing HImode or QImode values to and from memory
701 usually requires a scratch register. The exceptions are loading
e008606e
RK
702 QImode and HImode from an aligned address to a general register
703 unless byte instructions are permitted.
ddd5a7c1 704 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 705 FP register. */
1a94ca49
RK
706
707#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
708(((GET_CODE (IN) == MEM \
709 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
710 || (GET_CODE (IN) == SUBREG \
711 && (GET_CODE (SUBREG_REG (IN)) == MEM \
712 || (GET_CODE (SUBREG_REG (IN)) == REG \
713 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
714 && (((CLASS) == FLOAT_REGS \
715 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
716 || (((MODE) == QImode || (MODE) == HImode) \
e9a25f70 717 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
718 ? GENERAL_REGS \
719 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
720 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
721 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
722 && (GET_MODE_SIZE (GET_MODE (IN)) \
723 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 724 : NO_REGS)
1a94ca49
RK
725
726#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
727(((GET_CODE (OUT) == MEM \
728 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
729 || (GET_CODE (OUT) == SUBREG \
730 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
731 || (GET_CODE (SUBREG_REG (OUT)) == REG \
732 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
733 && ((((MODE) == HImode || (MODE) == QImode) \
734 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
735 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
736 ? GENERAL_REGS \
737 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
738 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
739 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
740 && (GET_MODE_SIZE (GET_MODE (OUT)) \
741 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
742 : NO_REGS)
1a94ca49
RK
743
744/* If we are copying between general and FP registers, we need a memory
e9a25f70 745 location unless the CIX extension is available. */
1a94ca49 746
e9a25f70
JL
747#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
748 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 749
acd94aaf
RK
750/* Specify the mode to be used for memory when a secondary memory
751 location is needed. If MODE is floating-point, use it. Otherwise,
752 widen to a word like the default. This is needed because we always
753 store integers in FP registers in quadword format. This whole
754 area is very tricky! */
755#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
756 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 757 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
758 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
759
1a94ca49
RK
760/* Return the maximum number of consecutive registers
761 needed to represent mode MODE in a register of class CLASS. */
762
763#define CLASS_MAX_NREGS(CLASS, MODE) \
764 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
765
c31dfe4d
RK
766/* If defined, gives a class of registers that cannot be used as the
767 operand of a SUBREG that changes the size of the object. */
768
769#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
770
1a94ca49
RK
771/* Define the cost of moving between registers of various classes. Moving
772 between FLOAT_REGS and anything else except float regs is expensive.
773 In fact, we make it quite expensive because we really don't want to
774 do these moves unless it is clearly worth it. Optimizations may
775 reduce the impact of not being able to allocate a pseudo to a
776 hard register. */
777
71d9b493
RH
778#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
779 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
780 ? 2 \
781 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
782
783/* A C expressions returning the cost of moving data of MODE from a register to
784 or from memory.
785
786 On the Alpha, bump this up a bit. */
787
bcbbac26 788extern int alpha_memory_latency;
cbd5b9a2 789#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
790
791/* Provide the cost of a branch. Exact meaning under development. */
792#define BRANCH_COST 5
793
794/* Adjust the cost of dependencies. */
795
796#define ADJUST_COST(INSN,LINK,DEP,COST) \
797 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
798\f
799/* Stack layout; function entry, exit and calling. */
800
801/* Define this if pushing a word on the stack
802 makes the stack pointer a smaller address. */
803#define STACK_GROWS_DOWNWARD
804
805/* Define this if the nominal address of the stack frame
806 is at the high-address end of the local variables;
807 that is, each additional local variable allocated
808 goes at a more negative offset in the frame. */
130d2d72 809/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
810
811/* Offset within stack frame to start allocating local variables at.
812 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
813 first local allocated. Otherwise, it is the offset to the BEGINNING
814 of the first local allocated. */
815
52a69200 816#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
817
818/* If we generate an insn to push BYTES bytes,
819 this says how many the stack pointer really advances by.
820 On Alpha, don't define this because there are no push insns. */
821/* #define PUSH_ROUNDING(BYTES) */
822
e008606e
RK
823/* Define this to be nonzero if stack checking is built into the ABI. */
824#define STACK_CHECK_BUILTIN 1
825
1a94ca49
RK
826/* Define this if the maximum size of all the outgoing args is to be
827 accumulated and pushed during the prologue. The amount can be
828 found in the variable current_function_outgoing_args_size. */
829#define ACCUMULATE_OUTGOING_ARGS
830
831/* Offset of first parameter from the argument pointer register value. */
832
130d2d72 833#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
834
835/* Definitions for register eliminations.
836
978e8952 837 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 838 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
839 pointer register. Secondly, the argument pointer register can always be
840 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
841
842/* This is an array of structures. Each structure initializes one pair
843 of eliminable registers. The "from" register number is given first,
844 followed by "to". Eliminations of the same "from" register are listed
845 in order of preference. */
846
52a69200
RK
847#define ELIMINABLE_REGS \
848{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
849 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
850 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
851 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
852
853/* Given FROM and TO register numbers, say whether this elimination is allowed.
854 Frame pointer elimination is automatically handled.
855
130d2d72 856 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
857 eliminated are already handled. */
858
130d2d72 859#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 860
52a69200
RK
861/* Round up to a multiple of 16 bytes. */
862#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
863
1a94ca49
RK
864/* Define the offset between two registers, one to be eliminated, and the other
865 its replacement, at the start of a routine. */
866#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
867{ if ((FROM) == FRAME_POINTER_REGNUM) \
868 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
869 + alpha_sa_size ()); \
870 else if ((FROM) == ARG_POINTER_REGNUM) \
871 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
872 + alpha_sa_size () \
d772039b
RK
873 + (ALPHA_ROUND (get_frame_size () \
874 + current_function_pretend_args_size) \
875 - current_function_pretend_args_size)); \
1a94ca49
RK
876}
877
878/* Define this if stack space is still allocated for a parameter passed
879 in a register. */
880/* #define REG_PARM_STACK_SPACE */
881
882/* Value is the number of bytes of arguments automatically
883 popped when returning from a subroutine call.
8b109b37 884 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
885 FUNTYPE is the data type of the function (as a tree),
886 or for a library call it is an identifier node for the subroutine name.
887 SIZE is the number of bytes of arguments passed on the stack. */
888
8b109b37 889#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
890
891/* Define how to find the value returned by a function.
892 VALTYPE is the data type of the value (as a tree).
893 If the precise function being called is known, FUNC is its FUNCTION_DECL;
894 otherwise, FUNC is 0.
895
896 On Alpha the value is found in $0 for integer functions and
897 $f0 for floating-point functions. */
898
899#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492 900 gen_rtx (REG, \
956d6950
JL
901 ((INTEGRAL_TYPE_P (VALTYPE) \
902 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
903 || POINTER_TYPE_P (VALTYPE)) \
e5958492
RK
904 ? word_mode : TYPE_MODE (VALTYPE), \
905 ((TARGET_FPREGS \
906 && (TREE_CODE (VALTYPE) == REAL_TYPE \
907 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
908 ? 32 : 0))
1a94ca49
RK
909
910/* Define how to find the value returned by a library function
911 assuming the value has mode MODE. */
912
913#define LIBCALL_VALUE(MODE) \
e5958492
RK
914 gen_rtx (REG, MODE, \
915 (TARGET_FPREGS \
916 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
917 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
918 ? 32 : 0))
1a94ca49 919
130d2d72
RK
920/* The definition of this macro implies that there are cases where
921 a scalar value cannot be returned in registers.
922
923 For the Alpha, any structure or union type is returned in memory, as
924 are integers whose size is larger than 64 bits. */
925
926#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 927 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
928 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
929
1a94ca49
RK
930/* 1 if N is a possible register number for a function value
931 as seen by the caller. */
932
e5958492
RK
933#define FUNCTION_VALUE_REGNO_P(N) \
934 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
935
936/* 1 if N is a possible register number for function argument passing.
937 On Alpha, these are $16-$21 and $f16-$f21. */
938
939#define FUNCTION_ARG_REGNO_P(N) \
940 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
941\f
942/* Define a data type for recording info about an argument list
943 during the scan of that argument list. This data type should
944 hold all necessary information about the function itself
945 and about the args processed so far, enough to enable macros
946 such as FUNCTION_ARG to determine where the next arg should go.
947
948 On Alpha, this is a single integer, which is a number of words
949 of arguments scanned so far.
950 Thus 6 or more means all following args should go on the stack. */
951
952#define CUMULATIVE_ARGS int
953
954/* Initialize a variable CUM of type CUMULATIVE_ARGS
955 for a call to a function whose data type is FNTYPE.
956 For a library call, FNTYPE is 0. */
957
2c7ee1a6 958#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
959
960/* Define intermediate macro to compute the size (in registers) of an argument
961 for the Alpha. */
962
963#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
964((MODE) != BLKmode \
965 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
966 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
967
968/* Update the data in CUM to advance over an argument
969 of mode MODE and data type TYPE.
970 (TYPE is null for libcalls where that information may not be available.) */
971
972#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
973 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
974 (CUM) = 6; \
975 else \
976 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
977
978/* Determine where to put an argument to a function.
979 Value is zero to push the argument on the stack,
980 or a hard register in which to store the argument.
981
982 MODE is the argument's machine mode.
983 TYPE is the data type of the argument (as a tree).
984 This is null for libcalls where that information may
985 not be available.
986 CUM is a variable of type CUMULATIVE_ARGS which gives info about
987 the preceding args and about the function being called.
988 NAMED is nonzero if this argument is a named parameter
989 (otherwise it is an extra parameter matching an ellipsis).
990
991 On Alpha the first 6 words of args are normally in registers
992 and the rest are pushed. */
993
994#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
995((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
996 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
997 (CUM) + 16 + ((TARGET_FPREGS \
998 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
999 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1000 * 32)) \
1001 : 0)
1a94ca49 1002
1a94ca49
RK
1003/* Specify the padding direction of arguments.
1004
1005 On the Alpha, we must pad upwards in order to be able to pass args in
1006 registers. */
1007
1008#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1009
1010/* For an arg passed partly in registers and partly in memory,
1011 this is the number of registers used.
1012 For args passed entirely in registers or entirely in memory, zero. */
1013
1014#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1015((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1016 ? 6 - (CUM) : 0)
1017
130d2d72
RK
1018/* Perform any needed actions needed for a function that is receiving a
1019 variable number of arguments.
1020
1021 CUM is as above.
1022
1023 MODE and TYPE are the mode and type of the current parameter.
1024
1025 PRETEND_SIZE is a variable that should be set to the amount of stack
1026 that must be pushed by the prolog to pretend that our caller pushed
1027 it.
1028
1029 Normally, this macro will push all remaining incoming registers on the
1030 stack and set PRETEND_SIZE to the length of the registers pushed.
1031
1032 On the Alpha, we allocate space for all 12 arg registers, but only
1033 push those that are remaining.
1034
1035 However, if NO registers need to be saved, don't allocate any space.
1036 This is not only because we won't need the space, but because AP includes
1037 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1038 ap-relative addresses already made.
1039
1040 If we are not to use the floating-point registers, save the integer
1041 registers where we would put the floating-point registers. This is
1042 not the most efficient way to implement varargs with just one register
1043 class, but it isn't worth doing anything more efficient in this rare
1044 case. */
1045
130d2d72
RK
1046
1047#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1048{ if ((CUM) < 6) \
1049 { \
1050 if (! (NO_RTL)) \
1051 { \
1052 move_block_from_reg \
1053 (16 + CUM, \
1054 gen_rtx (MEM, BLKmode, \
1055 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1056 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1057 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1058 move_block_from_reg \
7a92339b 1059 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1060 gen_rtx (MEM, BLKmode, \
1061 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1062 (CUM) * UNITS_PER_WORD)), \
02892e06 1063 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1064 emit_insn (gen_blockage ()); \
130d2d72
RK
1065 } \
1066 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1067 } \
1068}
1069
c8e9adec
RK
1070/* Try to output insns to set TARGET equal to the constant C if it can be
1071 done in less than N insns. Do all computations in MODE. Returns the place
1072 where the output has been placed if it can be done and the insns have been
1073 emitted. If it would take more than N insns, zero is returned and no
1074 insns and emitted. */
1075extern struct rtx_def *alpha_emit_set_const ();
803fee69 1076extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1077extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1078extern struct rtx_def *alpha_emit_conditional_move ();
1079
1a94ca49
RK
1080/* Generate necessary RTL for __builtin_saveregs().
1081 ARGLIST is the argument list; see expr.c. */
1082extern struct rtx_def *alpha_builtin_saveregs ();
1083#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1084
1085/* Define the information needed to generate branch and scc insns. This is
1086 stored from the compare operation. Note that we can't use "rtx" here
1087 since it hasn't been defined! */
1088
1089extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1090extern int alpha_compare_fp_p;
1091
e5958492 1092/* Make (or fake) .linkage entry for function call.
e5958492
RK
1093 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1094extern void alpha_need_linkage ();
1095
bcbbac26
RH
1096/* This macro defines the start of an assembly comment. */
1097
1098#define ASM_COMMENT_START " #"
1099
acd92049 1100/* This macro produces the initial definition of a function. */
1a94ca49 1101
acd92049
RH
1102#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1103 alpha_start_function(FILE,NAME,DECL);
1104extern void alpha_start_function ();
1a94ca49 1105
acd92049 1106/* This macro closes up a function definition for the assembler. */
9c0e94a5 1107
acd92049
RH
1108#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1109 alpha_end_function(FILE,NAME,DECL)
1110extern void alpha_end_function ();
1111
9c0e94a5
RH
1112/* This macro notes the end of the prologue. */
1113
1114#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
1a94ca49 1115
acd92049
RH
1116/* Output any profiling code before the prologue. */
1117
1118#define PROFILE_BEFORE_PROLOGUE 1
1119
1a94ca49 1120/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1121 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1122 by simply passing -pg to the assembler and linker. */
85d159a3 1123
e0fb9029 1124#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1125
1126/* Output assembler code to FILE to initialize this source file's
1127 basic block profiling info, if that has not already been done.
1128 This assumes that __bb_init_func doesn't garble a1-a5. */
1129
1130#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1131 do { \
1132 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1133 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1134 fputs ("\tldq $26,0($16)\n", (FILE)); \
1135 fputs ("\tbne $26,1f\n", (FILE)); \
1136 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1137 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1138 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1139 fputs ("1:\n", (FILE)); \
85d159a3
RK
1140 ASM_OUTPUT_REG_POP (FILE, 16); \
1141 } while (0);
1142
1143/* Output assembler code to FILE to increment the entry-count for
1144 the BLOCKNO'th basic block in this source file. */
1145
1146#define BLOCK_PROFILER(FILE, BLOCKNO) \
1147 do { \
1148 int blockn = (BLOCKNO); \
a62eb16f 1149 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1150 fputs ("\tstq $26,0($30)\n", (FILE)); \
1151 fputs ("\tstq $27,8($30)\n", (FILE)); \
1152 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1153 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1154 fputs ("\taddq $27,1,$27\n", (FILE)); \
1155 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1156 fputs ("\tldq $26,0($30)\n", (FILE)); \
1157 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1158 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1159 } while (0)
1a94ca49 1160
1a94ca49
RK
1161
1162/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1163 the stack pointer does not matter. The value is tested only in
1164 functions that have frame pointers.
1165 No definition is equivalent to always zero. */
1166
1167#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1168\f
1169/* Output assembler code for a block containing the constant parts
1170 of a trampoline, leaving space for the variable parts.
1171
1172 The trampoline should set the static chain pointer to value placed
7981384f
RK
1173 into the trampoline and should branch to the specified routine.
1174 Note that $27 has been set to the address of the trampoline, so we can
1175 use it for addressability of the two data items. Trampolines are always
1176 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1177
1178#define TRAMPOLINE_TEMPLATE(FILE) \
1179{ \
7981384f 1180 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1181 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1182 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1183 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1184 fprintf (FILE, "\t.quad 0,0\n"); \
1185}
1186
3a523eeb
RS
1187/* Section in which to place the trampoline. On Alpha, instructions
1188 may only be placed in a text segment. */
1189
1190#define TRAMPOLINE_SECTION text_section
1191
1a94ca49
RK
1192/* Length in units of the trampoline for entering a nested function. */
1193
7981384f 1194#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1195
1196/* Emit RTL insns to initialize the variable parts of a trampoline.
1197 FNADDR is an RTX for the address of the function's pure code.
1198 CXT is an RTX for the static chain value for the function. We assume
1199 here that a function will be called many more times than its address
1200 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1201 to initialize the "hint" field in the JMP insn. Note that the hint
1202 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1203
1204#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1205{ \
1206 rtx _temp, _temp1, _addr; \
1207 \
1208 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1209 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1210 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1211 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1212 \
7981384f
RK
1213 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1214 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1215 OPTAB_WIDEN); \
1216 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1217 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1218 _temp = expand_and (gen_lowpart (SImode, _temp), \
1219 GEN_INT (0x3fff), 0); \
1a94ca49 1220 \
7981384f 1221 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1222 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1223 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1224 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1225 OPTAB_WIDEN); \
1226 \
1227 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1228 \
1229 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1230 "__enable_execute_stack"), \
1231 0, VOIDmode, 1,_addr, Pmode); \
1232 \
1233 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1234 gen_rtvec (1, const0_rtx), 0)); \
1235}
1236
1237/* Attempt to turn on access permissions for the stack. */
1238
1239#define TRANSFER_FROM_TRAMPOLINE \
7981384f
RK
1240void \
1241__enable_execute_stack (addr) \
1242 void *addr; \
1243{ \
1244 long size = getpagesize (); \
1245 long mask = ~(size-1); \
1246 char *page = (char *) (((long) addr) & mask); \
1247 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1248 \
1249 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1250 if (mprotect (page, end - page, 7) < 0) \
1251 perror ("mprotect of trampoline code"); \
1a94ca49 1252}
675f0e7c
RK
1253
1254/* A C expression whose value is RTL representing the value of the return
1255 address for the frame COUNT steps up from the current frame.
1256 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
9ecc37f0 1257 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined. */
675f0e7c 1258
9ecc37f0
RH
1259#define RETURN_ADDR_RTX alpha_return_addr
1260extern struct rtx_def *alpha_return_addr ();
1261
1262/* Initialize data used by insn expanders. This is called from insn_emit,
1263 once for every function before code is generated. */
1264
1265#define INIT_EXPANDERS alpha_init_expanders ()
1266extern void alpha_init_expanders ();
675f0e7c 1267
675f0e7c 1268\f
1a94ca49
RK
1269/* Addressing modes, and classification of registers for them. */
1270
1271/* #define HAVE_POST_INCREMENT */
1272/* #define HAVE_POST_DECREMENT */
1273
1274/* #define HAVE_PRE_DECREMENT */
1275/* #define HAVE_PRE_INCREMENT */
1276
1277/* Macros to check register numbers against specific register classes. */
1278
1279/* These assume that REGNO is a hard or pseudo reg number.
1280 They give nonzero only if REGNO is a hard reg of the suitable class
1281 or a pseudo reg currently allocated to a suitable hard reg.
1282 Since they use reg_renumber, they are safe only once reg_renumber
1283 has been allocated, which happens in local-alloc.c. */
1284
1285#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1286#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1287((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1288 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1289\f
1290/* Maximum number of registers that can appear in a valid memory address. */
1291#define MAX_REGS_PER_ADDRESS 1
1292
1293/* Recognize any constant value that is a valid address. For the Alpha,
1294 there are only constants none since we want to use LDA to load any
1295 symbolic addresses into registers. */
1296
1297#define CONSTANT_ADDRESS_P(X) \
1298 (GET_CODE (X) == CONST_INT \
1299 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1300
1301/* Include all constant integers and constant doubles, but not
1302 floating-point, except for floating-point zero. */
1303
1304#define LEGITIMATE_CONSTANT_P(X) \
1305 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1306 || (X) == CONST0_RTX (GET_MODE (X)))
1307
1308/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1309 and check its validity for a certain class.
1310 We have two alternate definitions for each of them.
1311 The usual definition accepts all pseudo regs; the other rejects
1312 them unless they have been allocated suitable hard regs.
1313 The symbol REG_OK_STRICT causes the latter definition to be used.
1314
1315 Most source files want to accept pseudo regs in the hope that
1316 they will get allocated to the class that the insn wants them to be in.
1317 Source files for reload pass need to be strict.
1318 After reload, it makes no difference, since pseudo regs have
1319 been eliminated by then. */
1320
1321#ifndef REG_OK_STRICT
1322
1323/* Nonzero if X is a hard reg that can be used as an index
1324 or if it is a pseudo reg. */
1325#define REG_OK_FOR_INDEX_P(X) 0
1326/* Nonzero if X is a hard reg that can be used as a base reg
1327 or if it is a pseudo reg. */
1328#define REG_OK_FOR_BASE_P(X) \
52a69200 1329 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1330
1331#else
1332
1333/* Nonzero if X is a hard reg that can be used as an index. */
1334#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1335/* Nonzero if X is a hard reg that can be used as a base reg. */
1336#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1337
1338#endif
1339\f
1340/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1341 that is a valid memory address for an instruction.
1342 The MODE argument is the machine mode for the MEM expression
1343 that wants to use this address.
1344
1345 For Alpha, we have either a constant address or the sum of a register
1346 and a constant address, or just a register. For DImode, any of those
1347 forms can be surrounded with an AND that clear the low-order three bits;
1348 this is an "unaligned" access.
1349
1a94ca49
RK
1350 First define the basic valid address. */
1351
1352#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1353{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1354 goto ADDR; \
1355 if (CONSTANT_ADDRESS_P (X)) \
1356 goto ADDR; \
1357 if (GET_CODE (X) == PLUS \
1358 && REG_P (XEXP (X, 0)) \
1359 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1360 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1361 goto ADDR; \
1362}
1363
1364/* Now accept the simple address, or, for DImode only, an AND of a simple
1365 address that turns off the low three bits. */
1366
1a94ca49
RK
1367#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1368{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1369 if ((MODE) == DImode \
1370 && GET_CODE (X) == AND \
1371 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1372 && INTVAL (XEXP (X, 1)) == -8) \
1373 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1374}
1375
1376/* Try machine-dependent ways of modifying an illegitimate address
1377 to be legitimate. If we find one, return the new, valid address.
1378 This macro is used in only one place: `memory_address' in explow.c.
1379
1380 OLDX is the address as it was before break_out_memory_refs was called.
1381 In some cases it is useful to look at this to decide what needs to be done.
1382
1383 MODE and WIN are passed so that this macro can use
1384 GO_IF_LEGITIMATE_ADDRESS.
1385
1386 It is always safe for this macro to do nothing. It exists to recognize
1387 opportunities to optimize the output.
1388
1389 For the Alpha, there are three cases we handle:
1390
1391 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1392 valid offset, compute the high part of the constant and add it to the
1393 register. Then our address is (plus temp low-part-const).
1394 (2) If the address is (const (plus FOO const_int)), find the low-order
1395 part of the CONST_INT. Then load FOO plus any high-order part of the
1396 CONST_INT into a register. Our address is (plus reg low-part-const).
1397 This is done to reduce the number of GOT entries.
1398 (3) If we have a (plus reg const), emit the load as in (2), then add
1399 the two registers, and finally generate (plus reg low-part-const) as
1400 our address. */
1401
1402#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1403{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1404 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1405 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1406 { \
1407 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1408 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1409 HOST_WIDE_INT highpart = val - lowpart; \
1410 rtx high = GEN_INT (highpart); \
1411 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1412 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1413 \
1414 (X) = plus_constant (temp, lowpart); \
1415 goto WIN; \
1416 } \
1417 else if (GET_CODE (X) == CONST \
1418 && GET_CODE (XEXP (X, 0)) == PLUS \
1419 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1420 { \
1421 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1422 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1423 HOST_WIDE_INT highpart = val - lowpart; \
1424 rtx high = XEXP (XEXP (X, 0), 0); \
1425 \
1426 if (highpart) \
1427 high = plus_constant (high, highpart); \
1428 \
1429 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1430 goto WIN; \
1431 } \
1432 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1433 && GET_CODE (XEXP (X, 1)) == CONST \
1434 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1435 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1436 { \
1437 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1438 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1439 HOST_WIDE_INT highpart = val - lowpart; \
1440 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1441 \
1442 if (highpart) \
1443 high = plus_constant (high, highpart); \
1444 \
1445 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1446 force_reg (Pmode, high), \
80f251fe 1447 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1448 (X) = plus_constant (high, lowpart); \
1449 goto WIN; \
1450 } \
1451}
1452
a9a2595b
JR
1453/* Try a machine-dependent way of reloading an illegitimate address
1454 operand. If we find one, push the reload and jump to WIN. This
1455 macro is used in only one place: `find_reloads_address' in reload.c.
1456
1457 For the Alpha, we wish to handle large displacements off a base
1458 register by splitting the addend across an ldah and the mem insn.
1459 This cuts number of extra insns needed from 3 to 1. */
1460
1461#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1462do { \
1463 if (GET_CODE (X) == PLUS \
1464 && GET_CODE (XEXP (X, 0)) == REG \
1465 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1466 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1467 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1468 { \
1469 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1470 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1471 HOST_WIDE_INT high \
1472 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1473 \
1474 /* Check for 32-bit overflow. */ \
1475 if (high + low != val) \
1476 break; \
1477 \
1478 /* Reload the high part into a base reg; leave the low part \
1479 in the mem directly. */ \
1480 \
1481 X = gen_rtx_PLUS (GET_MODE (X), \
1482 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1483 GEN_INT (high)), \
1484 GEN_INT (low)); \
1485 \
1486 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1487 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1488 OPNUM, TYPE); \
1489 goto WIN; \
1490 } \
1491} while (0)
1492
1a94ca49
RK
1493/* Go to LABEL if ADDR (a legitimate address expression)
1494 has an effect that depends on the machine mode it is used for.
1495 On the Alpha this is true only for the unaligned modes. We can
1496 simplify this test since we know that the address must be valid. */
1497
1498#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1499{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1500
1501/* Compute the cost of an address. For the Alpha, all valid addresses are
1502 the same cost. */
1503
1504#define ADDRESS_COST(X) 0
1505
2ea844d3
RH
1506/* Machine-dependent reorg pass. */
1507#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1508\f
1509/* Specify the machine mode that this machine uses
1510 for the index in the tablejump instruction. */
1511#define CASE_VECTOR_MODE SImode
1512
18543a22
ILT
1513/* Define as C expression which evaluates to nonzero if the tablejump
1514 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1515 table.
b0435cf4 1516
3aa9d5b6 1517 Do not define this if the table should contain absolute addresses.
260ced47
RK
1518 On the Alpha, the table is really GP-relative, not relative to the PC
1519 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1520 but we should try to find some better way sometime. */
18543a22 1521#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1522
1523/* Specify the tree operation to be used to convert reals to integers. */
1524#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1525
1526/* This is the kind of divide that is easiest to do in the general case. */
1527#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1528
1529/* Define this as 1 if `char' should by default be signed; else as 0. */
1530#define DEFAULT_SIGNED_CHAR 1
1531
1532/* This flag, if defined, says the same insns that convert to a signed fixnum
1533 also convert validly to an unsigned one.
1534
1535 We actually lie a bit here as overflow conditions are different. But
1536 they aren't being checked anyway. */
1537
1538#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1539
1540/* Max number of bytes we can move to or from memory
1541 in one reasonably fast instruction. */
1542
1543#define MOVE_MAX 8
1544
6c174fc0
RH
1545/* Controls how many units are moved by expr.c before resorting to movstr.
1546 Without byte/word accesses, we want no more than one; with, several single
1547 byte accesses are better. */
1548
1549#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1550
1a94ca49
RK
1551/* Largest number of bytes of an object that can be placed in a register.
1552 On the Alpha we have plenty of registers, so use TImode. */
1553#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1554
1555/* Nonzero if access to memory by bytes is no faster than for words.
1556 Also non-zero if doing byte operations (specifically shifts) in registers
1557 is undesirable.
1558
1559 On the Alpha, we want to not use the byte operation and instead use
1560 masking operations to access fields; these will save instructions. */
1561
1562#define SLOW_BYTE_ACCESS 1
1563
9a63901f
RK
1564/* Define if operations between registers always perform the operation
1565 on the full register even if a narrower mode is specified. */
1566#define WORD_REGISTER_OPERATIONS
1567
1568/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1569 will either zero-extend or sign-extend. The value of this macro should
1570 be the code that says which one of the two operations is implicitly
1571 done, NIL if none. */
b7747781 1572#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1573
225211e2
RK
1574/* Define if loading short immediate values into registers sign extends. */
1575#define SHORT_IMMEDIATES_SIGN_EXTEND
1576
1a94ca49
RK
1577/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1578 is done just by pretending it is already truncated. */
1579#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1580
1581/* We assume that the store-condition-codes instructions store 0 for false
1582 and some other value for true. This is the value stored for true. */
1583
1584#define STORE_FLAG_VALUE 1
1585
1586/* Define the value returned by a floating-point comparison instruction. */
1587
e9a25f70 1588#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1589
35bb77fd
RK
1590/* Canonicalize a comparison from one we don't have to one we do have. */
1591
1592#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1593 do { \
1594 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1595 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1596 { \
1597 rtx tem = (OP0); \
1598 (OP0) = (OP1); \
1599 (OP1) = tem; \
1600 (CODE) = swap_condition (CODE); \
1601 } \
1602 if (((CODE) == LT || (CODE) == LTU) \
1603 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1604 { \
1605 (CODE) = (CODE) == LT ? LE : LEU; \
1606 (OP1) = GEN_INT (255); \
1607 } \
1608 } while (0)
1609
1a94ca49
RK
1610/* Specify the machine mode that pointers have.
1611 After generation of rtl, the compiler makes no further distinction
1612 between pointers and any other objects of this machine mode. */
1613#define Pmode DImode
1614
1615/* Mode of a function address in a call instruction (for indexing purposes). */
1616
1617#define FUNCTION_MODE Pmode
1618
1619/* Define this if addresses of constant functions
1620 shouldn't be put through pseudo regs where they can be cse'd.
1621 Desirable on machines where ordinary constants are expensive
1622 but a CALL with constant address is cheap.
1623
1624 We define this on the Alpha so that gen_call and gen_call_value
1625 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1626 then copy it into a register, thus actually letting the address be
1627 cse'ed. */
1628
1629#define NO_FUNCTION_CSE
1630
d969caf8 1631/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1632 few bits. */
d969caf8 1633#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1634
d721b776
RK
1635/* Use atexit for static constructors/destructors, instead of defining
1636 our own exit function. */
1637#define HAVE_ATEXIT
1638
71d9b493 1639/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1640#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1641
1a94ca49
RK
1642/* Compute the cost of computing a constant rtl expression RTX
1643 whose rtx-code is CODE. The body of this macro is a portion
1644 of a switch statement. If the code is computed here,
1645 return it with a return statement. Otherwise, break from the switch.
1646
8b7b2e36
RK
1647 If this is an 8-bit constant, return zero since it can be used
1648 nearly anywhere with no cost. If it is a valid operand for an
1649 ADD or AND, likewise return 0 if we know it will be used in that
1650 context. Otherwise, return 2 since it might be used there later.
1651 All other constants take at least two insns. */
1a94ca49
RK
1652
1653#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1654 case CONST_INT: \
06eb8e92 1655 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1656 return 0; \
1a94ca49 1657 case CONST_DOUBLE: \
5d02ee66
RH
1658 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1659 return 0; \
1660 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1661 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1662 return 0; \
1663 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1664 return 2; \
1665 else \
1666 return COSTS_N_INSNS (2); \
1a94ca49
RK
1667 case CONST: \
1668 case SYMBOL_REF: \
1669 case LABEL_REF: \
f6f6a13c
RK
1670 switch (alpha_cpu) \
1671 { \
1672 case PROCESSOR_EV4: \
1673 return COSTS_N_INSNS (3); \
1674 case PROCESSOR_EV5: \
5d02ee66 1675 case PROCESSOR_EV6: \
f6f6a13c 1676 return COSTS_N_INSNS (2); \
5d02ee66 1677 default: abort(); \
f6f6a13c 1678 }
1a94ca49
RK
1679
1680/* Provide the costs of a rtl expression. This is in the body of a
1681 switch on CODE. */
1682
1683#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1684 case PLUS: case MINUS: \
1685 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1686 switch (alpha_cpu) \
1687 { \
1688 case PROCESSOR_EV4: \
1689 return COSTS_N_INSNS (6); \
1690 case PROCESSOR_EV5: \
5d02ee66 1691 case PROCESSOR_EV6: \
f6f6a13c 1692 return COSTS_N_INSNS (4); \
5d02ee66 1693 default: abort(); \
f6f6a13c 1694 } \
b49e978e
RK
1695 else if (GET_CODE (XEXP (X, 0)) == MULT \
1696 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1697 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1698 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1699 break; \
1700 case MULT: \
f6f6a13c
RK
1701 switch (alpha_cpu) \
1702 { \
1703 case PROCESSOR_EV4: \
1704 if (FLOAT_MODE_P (GET_MODE (X))) \
1705 return COSTS_N_INSNS (6); \
1706 return COSTS_N_INSNS (23); \
1707 case PROCESSOR_EV5: \
1708 if (FLOAT_MODE_P (GET_MODE (X))) \
1709 return COSTS_N_INSNS (4); \
1710 else if (GET_MODE (X) == DImode) \
1711 return COSTS_N_INSNS (12); \
1712 else \
1713 return COSTS_N_INSNS (8); \
5d02ee66
RH
1714 case PROCESSOR_EV6: \
1715 if (FLOAT_MODE_P (GET_MODE (X))) \
1716 return COSTS_N_INSNS (4); \
1717 else \
1718 return COSTS_N_INSNS (7); \
1719 default: abort(); \
f6f6a13c 1720 } \
b49e978e
RK
1721 case ASHIFT: \
1722 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1723 && INTVAL (XEXP (X, 1)) <= 3) \
1724 break; \
1725 /* ... fall through ... */ \
5d02ee66 1726 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1727 switch (alpha_cpu) \
1728 { \
1729 case PROCESSOR_EV4: \
1730 return COSTS_N_INSNS (2); \
1731 case PROCESSOR_EV5: \
5d02ee66 1732 case PROCESSOR_EV6: \
f6f6a13c 1733 return COSTS_N_INSNS (1); \
5d02ee66
RH
1734 default: abort(); \
1735 } \
1736 case IF_THEN_ELSE: \
1737 switch (alpha_cpu) \
1738 { \
1739 case PROCESSOR_EV4: \
1740 case PROCESSOR_EV6: \
1741 return COSTS_N_INSNS (2); \
1742 case PROCESSOR_EV5: \
1743 return COSTS_N_INSNS (1); \
1744 default: abort(); \
f6f6a13c 1745 } \
3bda6d11 1746 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1747 switch (alpha_cpu) \
1748 { \
1749 case PROCESSOR_EV4: \
1750 if (GET_MODE (X) == SFmode) \
1751 return COSTS_N_INSNS (34); \
1752 else if (GET_MODE (X) == DFmode) \
1753 return COSTS_N_INSNS (63); \
1754 else \
1755 return COSTS_N_INSNS (70); \
1756 case PROCESSOR_EV5: \
1757 if (GET_MODE (X) == SFmode) \
1758 return COSTS_N_INSNS (15); \
1759 else if (GET_MODE (X) == DFmode) \
1760 return COSTS_N_INSNS (22); \
1761 else \
5d02ee66
RH
1762 return COSTS_N_INSNS (70); /* ??? */ \
1763 case PROCESSOR_EV6: \
1764 if (GET_MODE (X) == SFmode) \
1765 return COSTS_N_INSNS (12); \
1766 else if (GET_MODE (X) == DFmode) \
1767 return COSTS_N_INSNS (15); \
1768 else \
1769 return COSTS_N_INSNS (70); /* ??? */ \
1770 default: abort(); \
f6f6a13c 1771 } \
1a94ca49 1772 case MEM: \
f6f6a13c
RK
1773 switch (alpha_cpu) \
1774 { \
1775 case PROCESSOR_EV4: \
5d02ee66 1776 case PROCESSOR_EV6: \
f6f6a13c
RK
1777 return COSTS_N_INSNS (3); \
1778 case PROCESSOR_EV5: \
1779 return COSTS_N_INSNS (2); \
5d02ee66 1780 default: abort(); \
f6f6a13c
RK
1781 } \
1782 case NEG: case ABS: \
1783 if (! FLOAT_MODE_P (GET_MODE (X))) \
1784 break; \
1785 /* ... fall through ... */ \
3bda6d11
RK
1786 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1787 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1788 switch (alpha_cpu) \
1789 { \
1790 case PROCESSOR_EV4: \
1791 return COSTS_N_INSNS (6); \
1792 case PROCESSOR_EV5: \
5d02ee66 1793 case PROCESSOR_EV6: \
f6f6a13c 1794 return COSTS_N_INSNS (4); \
5d02ee66 1795 default: abort(); \
f6f6a13c 1796 }
1a94ca49
RK
1797\f
1798/* Control the assembler format that we output. */
1799
40ef2fc5
JL
1800/* We don't emit these labels, so as to avoid getting linker errors about
1801 missing exception handling info. If we emit a gcc_compiled. label into
1802 text, and the file has no code, then the DEC assembler gives us a zero
1803 sized text section with no associated exception handling info. The
38e01259 1804 DEC linker sees this text section, and gives a warning saying that
40ef2fc5
JL
1805 the exception handling info is missing. */
1806#define ASM_IDENTIFY_GCC
1807#define ASM_IDENTIFY_LANGUAGE
1808
1a94ca49
RK
1809/* Output to assembler file text saying following lines
1810 may contain character constants, extra white space, comments, etc. */
1811
1812#define ASM_APP_ON ""
1813
1814/* Output to assembler file text saying following lines
1815 no longer contain unusual constructs. */
1816
1817#define ASM_APP_OFF ""
1818
1819#define TEXT_SECTION_ASM_OP ".text"
1820
1821/* Output before read-only data. */
1822
1823#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1824
1825/* Output before writable data. */
1826
1827#define DATA_SECTION_ASM_OP ".data"
1828
1829/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1830 indicate that it is for read-only data.
1831
abc95ed3 1832 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1833 eight bytes of zero. This works around a bug in DEC's assembler in
1834 some versions of OSF/1 V3.x. */
1a94ca49
RK
1835
1836#define EXTRA_SECTIONS readonly_data
1837
1838#define EXTRA_SECTION_FUNCTIONS \
1839void \
1840literal_section () \
1841{ \
1842 if (in_section != readonly_data) \
1843 { \
c0388f29
RK
1844 static int firsttime = 1; \
1845 \
1a94ca49 1846 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1847 if (firsttime) \
1848 { \
1849 firsttime = 0; \
1850 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1851 } \
1852 \
1a94ca49
RK
1853 in_section = readonly_data; \
1854 } \
1855} \
1856
1857#define READONLY_DATA_SECTION literal_section
1858
ac030a7b
RK
1859/* If we are referencing a function that is static, make the SYMBOL_REF
1860 special. We use this to see indicate we can branch to this function
1861 without setting PV or restoring GP. */
130d2d72
RK
1862
1863#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1864 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1865 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1866
1a94ca49
RK
1867/* How to refer to registers in assembler output.
1868 This sequence is indexed by compiler's hard-register-number (see above). */
1869
1870#define REGISTER_NAMES \
1871{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1872 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1873 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1874 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1875 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1876 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1877 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1878 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1879
1880/* How to renumber registers for dbx and gdb. */
1881
1882#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1883
1884/* This is how to output the definition of a user-level label named NAME,
1885 such as the label on a static function or variable NAME. */
1886
1887#define ASM_OUTPUT_LABEL(FILE,NAME) \
1888 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1889
1890/* This is how to output a command to make the user-level label named NAME
1891 defined for reference from other files. */
1892
1893#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1894 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1895
4e0c8ad2 1896/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1897
4e0c8ad2 1898#define USER_LABEL_PREFIX ""
1a94ca49
RK
1899
1900/* This is how to output an internal numbered label where
1901 PREFIX is the class of label and NUM is the number within the class. */
1902
1903#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1904 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1905
1906/* This is how to output a label for a jump table. Arguments are the same as
1907 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1908 passed. */
1909
1910#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1911{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1912
1913/* This is how to store into the string LABEL
1914 the symbol_ref name of an internal numbered label where
1915 PREFIX is the class of label and NUM is the number within the class.
1916 This is suitable for output with `assemble_name'. */
1917
1918#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
531ea24e 1919 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1a94ca49 1920
e247ca2a
RK
1921/* Check a floating-point value for validity for a particular machine mode. */
1922
1923#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1924 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1925
1a94ca49
RK
1926/* This is how to output an assembler line defining a `double' constant. */
1927
e99300f1
RS
1928#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1929 { \
1930 if (REAL_VALUE_ISINF (VALUE) \
1931 || REAL_VALUE_ISNAN (VALUE) \
1932 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1933 { \
1934 long t[2]; \
1935 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1936 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1937 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1938 } \
1939 else \
1940 { \
1941 char str[30]; \
1942 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1943 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1944 } \
1945 }
1a94ca49
RK
1946
1947/* This is how to output an assembler line defining a `float' constant. */
1948
e247ca2a
RK
1949#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1950 do { \
1951 long t; \
1952 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1953 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1954} while (0)
2700ac93 1955
1a94ca49
RK
1956/* This is how to output an assembler line defining an `int' constant. */
1957
1958#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1959( fprintf (FILE, "\t.long "), \
1960 output_addr_const (FILE, (VALUE)), \
1961 fprintf (FILE, "\n"))
1a94ca49
RK
1962
1963/* This is how to output an assembler line defining a `long' constant. */
1964
1965#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1966( fprintf (FILE, "\t.quad "), \
1967 output_addr_const (FILE, (VALUE)), \
1968 fprintf (FILE, "\n"))
1969
1970/* Likewise for `char' and `short' constants. */
1971
1972#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1973 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1974 (GET_CODE (VALUE) == CONST_INT \
1975 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1976
1977#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1978 fprintf (FILE, "\t.byte %d\n", \
1979 (GET_CODE (VALUE) == CONST_INT \
1980 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1981
1982/* We use the default ASCII-output routine, except that we don't write more
1983 than 50 characters since the assembler doesn't support very long lines. */
1984
1985#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1986 do { \
1987 FILE *_hide_asm_out_file = (MYFILE); \
1988 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1989 int _hide_thissize = (MYLENGTH); \
1990 int _size_so_far = 0; \
1991 { \
1992 FILE *asm_out_file = _hide_asm_out_file; \
1993 unsigned char *p = _hide_p; \
1994 int thissize = _hide_thissize; \
1995 int i; \
1996 fprintf (asm_out_file, "\t.ascii \""); \
1997 \
1998 for (i = 0; i < thissize; i++) \
1999 { \
2000 register int c = p[i]; \
2001 \
2002 if (_size_so_far ++ > 50 && i < thissize - 4) \
2003 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2004 \
2005 if (c == '\"' || c == '\\') \
2006 putc ('\\', asm_out_file); \
2007 if (c >= ' ' && c < 0177) \
2008 putc (c, asm_out_file); \
2009 else \
2010 { \
2011 fprintf (asm_out_file, "\\%o", c); \
2012 /* After an octal-escape, if a digit follows, \
2013 terminate one string constant and start another. \
2014 The Vax assembler fails to stop reading the escape \
2015 after three digits, so this is the only way we \
2016 can get it to parse the data properly. */ \
2017 if (i < thissize - 1 \
2018 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2019 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2020 } \
2021 } \
2022 fprintf (asm_out_file, "\"\n"); \
2023 } \
2024 } \
2025 while (0)
52a69200 2026
1a94ca49
RK
2027/* This is how to output an insn to push a register on the stack.
2028 It need not be very fast code. */
2029
2030#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2031 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2032 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2033 (REGNO) & 31);
2034
2035/* This is how to output an insn to pop a register from the stack.
2036 It need not be very fast code. */
2037
2038#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2039 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2040 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2041 (REGNO) & 31);
2042
2043/* This is how to output an assembler line for a numeric constant byte. */
2044
2045#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 2046 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 2047
260ced47
RK
2048/* This is how to output an element of a case-vector that is absolute.
2049 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2050
260ced47 2051#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2052
260ced47 2053/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2054
33f7f353 2055#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2056 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2057 (VALUE))
1a94ca49
RK
2058
2059/* This is how to output an assembler line
2060 that says to advance the location counter
2061 to a multiple of 2**LOG bytes. */
2062
2063#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2064 if ((LOG) != 0) \
2065 fprintf (FILE, "\t.align %d\n", LOG);
2066
2067/* This is how to advance the location counter by SIZE bytes. */
2068
2069#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2070 fprintf (FILE, "\t.space %d\n", (SIZE))
2071
2072/* This says how to output an assembler line
2073 to define a global common symbol. */
2074
2075#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2076( fputs ("\t.comm ", (FILE)), \
2077 assemble_name ((FILE), (NAME)), \
2078 fprintf ((FILE), ",%d\n", (SIZE)))
2079
2080/* This says how to output an assembler line
2081 to define a local common symbol. */
2082
2083#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2084( fputs ("\t.lcomm ", (FILE)), \
2085 assemble_name ((FILE), (NAME)), \
2086 fprintf ((FILE), ",%d\n", (SIZE)))
2087
2088/* Store in OUTPUT a string (made with alloca) containing
2089 an assembler-name for a local static variable named NAME.
2090 LABELNO is an integer which is different for each call. */
2091
2092#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2093( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2094 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2095
2096/* Define the parentheses used to group arithmetic operations
2097 in assembler code. */
2098
2099#define ASM_OPEN_PAREN "("
2100#define ASM_CLOSE_PAREN ")"
2101
60593797
RH
2102/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2103 Used for C++ multiple inheritance. */
2104
2105#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2106do { \
92d4501f 2107 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
60593797 2108 \
acd92049
RH
2109 /* Mark end of prologue. */ \
2110 output_end_prologue (FILE); \
60593797
RH
2111 \
2112 /* Rely on the assembler to macro expand a large delta. */ \
2113 fprintf (FILE, "\tlda $16,%ld($16)\n", (long)(DELTA)); \
2114 \
2115 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2116 { \
2117 fprintf (FILE, "\tbr $31,$"); \
2118 assemble_name (FILE, fn_name); \
2119 fprintf (FILE, "..ng\n"); \
2120 } \
2121 else \
2122 { \
acd92049 2123 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2124 assemble_name (FILE, fn_name); \
2125 fputc ('\n', FILE); \
2126 } \
60593797 2127} while (0)
60593797 2128\f
1a94ca49
RK
2129/* Define results of standard character escape sequences. */
2130#define TARGET_BELL 007
2131#define TARGET_BS 010
2132#define TARGET_TAB 011
2133#define TARGET_NEWLINE 012
2134#define TARGET_VT 013
2135#define TARGET_FF 014
2136#define TARGET_CR 015
2137
2138/* Print operand X (an rtx) in assembler syntax to file FILE.
2139 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2140 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2141
2142#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2143
2144/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2145 not be alphabetic (the characters are chosen so that
2146 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2147 using ASCII).
2148
2149 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2150 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2151 mode. alpha_fprm controls which suffix is generated.
2152
2153 ' Generates trap-mode suffix for instructions that accept the
2154 su suffix only (cmpt et al).
2155
e83015a9
RH
2156 ` Generates trap-mode suffix for instructions that accept the
2157 v and sv suffix. The only instruction that needs this is cvtql.
2158
0022a940
DMT
2159 ( Generates trap-mode suffix for instructions that accept the
2160 v, sv, and svi suffix. The only instruction that needs this
2161 is cvttq.
2162
2bf6230d
RK
2163 ) Generates trap-mode suffix for instructions that accept the
2164 u, su, and sui suffix. This is the bulk of the IEEE floating
2165 point instructions (addt et al).
2166
2167 + Generates trap-mode suffix for instructions that accept the
2168 sui suffix (cvtqt and cvtqs).
e5958492
RK
2169
2170 , Generates single precision suffix for floating point
2171 instructions (s for IEEE, f for VAX)
2172
2173 - Generates double precision suffix for floating point
2174 instructions (t for IEEE, g for VAX)
2bf6230d 2175 */
1a94ca49 2176
2bf6230d 2177#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2178 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2179 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2180\f
2181/* Print a memory address as an operand to reference that memory location. */
2182
2183#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2184{ rtx addr = (ADDR); \
2185 int basereg = 31; \
2186 HOST_WIDE_INT offset = 0; \
2187 \
2188 if (GET_CODE (addr) == AND) \
2189 addr = XEXP (addr, 0); \
2190 \
2191 if (GET_CODE (addr) == REG) \
2192 basereg = REGNO (addr); \
2193 else if (GET_CODE (addr) == CONST_INT) \
2194 offset = INTVAL (addr); \
2195 else if (GET_CODE (addr) == PLUS \
2196 && GET_CODE (XEXP (addr, 0)) == REG \
2197 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2198 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2199 else \
2200 abort (); \
2201 \
2202 fprintf (FILE, "%d($%d)", offset, basereg); \
2203}
2204/* Define the codes that are matched by predicates in alpha.c. */
2205
2206#define PREDICATE_CODES \
2207 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2208 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2209 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2210 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2211 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2212 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2213 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2214 {"const48_operand", {CONST_INT}}, \
2215 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2216 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2217 {"mode_mask_operand", {CONST_INT}}, \
2218 {"mul8_operand", {CONST_INT}}, \
2219 {"mode_width_operand", {CONST_INT}}, \
2220 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2221 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
d1e03f31 2222 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1a94ca49 2223 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2224 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2225 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2226 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2227 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2228 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2229 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2230 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2231 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2232 {"aligned_memory_operand", {MEM}}, \
2233 {"unaligned_memory_operand", {MEM}}, \
442b1685 2234 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
4ed43ff8
RH
2235 {"any_memory_operand", {MEM}}, \
2236 {"hard_fp_register_operand", {SUBREG, REG}},
03f8c4cc 2237\f
34fa88ab
RK
2238/* Tell collect that the object format is ECOFF. */
2239#define OBJECT_FORMAT_COFF
2240#define EXTENDED_COFF
2241
2242/* If we use NM, pass -g to it so it only lists globals. */
2243#define NM_FLAGS "-pg"
2244
03f8c4cc
RK
2245/* Definitions for debugging. */
2246
2247#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2248#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2249#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2250
2251#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2252#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2253#endif
2254
2255
2256/* Correct the offset of automatic variables and arguments. Note that
2257 the Alpha debug format wants all automatic variables and arguments
2258 to be in terms of two different offsets from the virtual frame pointer,
2259 which is the stack pointer before any adjustment in the function.
2260 The offset for the argument pointer is fixed for the native compiler,
2261 it is either zero (for the no arguments case) or large enough to hold
2262 all argument registers.
2263 The offset for the auto pointer is the fourth argument to the .frame
2264 directive (local_offset).
2265 To stay compatible with the native tools we use the same offsets
2266 from the virtual frame pointer and adjust the debugger arg/auto offsets
2267 accordingly. These debugger offsets are set up in output_prolog. */
2268
9a0b18f2
RK
2269extern long alpha_arg_offset;
2270extern long alpha_auto_offset;
03f8c4cc
RK
2271#define DEBUGGER_AUTO_OFFSET(X) \
2272 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2273#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2274
2275
2276#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2277 alpha_output_lineno (STREAM, LINE)
2278extern void alpha_output_lineno ();
2279
2280#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2281 alpha_output_filename (STREAM, NAME)
2282extern void alpha_output_filename ();
2283
4330b0e7
JW
2284/* mips-tfile.c limits us to strings of one page. We must underestimate this
2285 number, because the real length runs past this up to the next
2286 continuation point. This is really a dbxout.c bug. */
2287#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2288
2289/* By default, turn on GDB extensions. */
2290#define DEFAULT_GDB_EXTENSIONS 1
2291
7aadc7c2
RK
2292/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2293#define NO_DBX_FUNCTION_END 1
2294
03f8c4cc
RK
2295/* If we are smuggling stabs through the ALPHA ECOFF object
2296 format, put a comment in front of the .stab<x> operation so
2297 that the ALPHA assembler does not choke. The mips-tfile program
2298 will correctly put the stab into the object file. */
2299
2300#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2301#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2302#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2303
2304/* Forward references to tags are allowed. */
2305#define SDB_ALLOW_FORWARD_REFERENCES
2306
2307/* Unknown tags are also allowed. */
2308#define SDB_ALLOW_UNKNOWN_REFERENCES
2309
2310#define PUT_SDB_DEF(a) \
2311do { \
2312 fprintf (asm_out_file, "\t%s.def\t", \
2313 (TARGET_GAS) ? "" : "#"); \
2314 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2315 fputc (';', asm_out_file); \
2316} while (0)
2317
2318#define PUT_SDB_PLAIN_DEF(a) \
2319do { \
2320 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2321 (TARGET_GAS) ? "" : "#", (a)); \
2322} while (0)
2323
2324#define PUT_SDB_TYPE(a) \
2325do { \
2326 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2327} while (0)
2328
2329/* For block start and end, we create labels, so that
2330 later we can figure out where the correct offset is.
2331 The normal .ent/.end serve well enough for functions,
2332 so those are just commented out. */
2333
2334extern int sdb_label_count; /* block start/end next label # */
2335
2336#define PUT_SDB_BLOCK_START(LINE) \
2337do { \
2338 fprintf (asm_out_file, \
2339 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2340 sdb_label_count, \
2341 (TARGET_GAS) ? "" : "#", \
2342 sdb_label_count, \
2343 (LINE)); \
2344 sdb_label_count++; \
2345} while (0)
2346
2347#define PUT_SDB_BLOCK_END(LINE) \
2348do { \
2349 fprintf (asm_out_file, \
2350 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2351 sdb_label_count, \
2352 (TARGET_GAS) ? "" : "#", \
2353 sdb_label_count, \
2354 (LINE)); \
2355 sdb_label_count++; \
2356} while (0)
2357
2358#define PUT_SDB_FUNCTION_START(LINE)
2359
2360#define PUT_SDB_FUNCTION_END(LINE)
2361
2362#define PUT_SDB_EPILOGUE_END(NAME)
2363
03f8c4cc
RK
2364/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2365 mips-tdump.c to print them out.
2366
2367 These must match the corresponding definitions in gdb/mipsread.c.
2368 Unfortunately, gcc and gdb do not currently share any directories. */
2369
2370#define CODE_MASK 0x8F300
2371#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2372#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2373#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2374
2375/* Override some mips-tfile definitions. */
2376
2377#define SHASH_SIZE 511
2378#define THASH_SIZE 55
1e6c6f11
RK
2379
2380/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2381
2382#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2383
54190234
JM
2384/* The linker will stick __main into the .init section. */
2385#define HAS_INIT_SECTION
68d69835
JM
2386#define LD_INIT_SWITCH "-init"
2387#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2388
2389/* The system headers under Alpha systems are generally C++-aware. */
2390#define NO_IMPLICIT_EXTERN_C
47747e53
RH
2391
2392/* Prototypes for alpha.c functions used in the md file. */
2393extern struct rtx_def *get_unaligned_address ();
This page took 0.660051 seconds and 5 git commands to generate.