]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
flags.h (flag_optimize_sibling_calls): Declare.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ddd9abd
JL
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000 Free Software Foundation, Inc.
1e6c6f11 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
1a94ca49
RK
22
23
21798cd8
RK
24/* Write out the correct language type definition for the header files.
25 Unless we have assembler language, write out the symbols for C. */
1a94ca49 26#define CPP_SPEC "\
952fc2ed
RH
27%{!undef:\
28%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
29%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
30%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
31%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
32%{mieee:-D_IEEE_FP }\
33%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
34%(cpp_cpu) %(cpp_subtarget)"
35
36#ifndef CPP_SUBTARGET_SPEC
37#define CPP_SUBTARGET_SPEC ""
38#endif
1a94ca49
RK
39
40/* Set the spec to use for signed char. The default tests the above macro
41 but DEC's compiler can't handle the conditional in a "constant"
42 operand. */
43
44#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
45
b890f297
JM
46#define WORD_SWITCH_TAKES_ARG(STR) \
47 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
48 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
49 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
50 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
51 || !strcmp (STR, "isystem"))
8877eb00 52
1a94ca49
RK
53/* Print subsidiary information on the compiler version in use. */
54#define TARGET_VERSION
55
1a94ca49
RK
56/* Run-time compilation parameters selecting different hardware subsets. */
57
f6f6a13c
RK
58/* Which processor to schedule for. The cpu attribute defines a list that
59 mirrors this list, so changes to alpha.md must be made at the same time. */
60
61enum processor_type
62 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
63 PROCESSOR_EV5, /* 21164{a,pc,} */
64 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
65
66extern enum processor_type alpha_cpu;
67
2bf6230d
RK
68enum alpha_trap_precision
69{
70 ALPHA_TP_PROG, /* No precision (default). */
71 ALPHA_TP_FUNC, /* Trap contained within originating function. */
72 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
73};
74
75enum alpha_fp_rounding_mode
76{
77 ALPHA_FPRM_NORM, /* Normal rounding mode. */
78 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
79 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
80 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
81};
82
83enum alpha_fp_trap_mode
84{
85 ALPHA_FPTM_N, /* Normal trap mode. */
86 ALPHA_FPTM_U, /* Underflow traps enabled. */
87 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
88 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
89};
90
1a94ca49
RK
91extern int target_flags;
92
2bf6230d
RK
93extern enum alpha_trap_precision alpha_tp;
94extern enum alpha_fp_rounding_mode alpha_fprm;
95extern enum alpha_fp_trap_mode alpha_fptm;
96
1a94ca49
RK
97/* This means that floating-point support exists in the target implementation
98 of the Alpha architecture. This is usually the default. */
de4abb91 99#define MASK_FP (1 << 0)
2bf6230d 100#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
101
102/* This means that floating-point registers are allowed to be used. Note
103 that Alpha implementations without FP operations are required to
104 provide the FP registers. */
105
de4abb91 106#define MASK_FPREGS (1 << 1)
2bf6230d 107#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
108
109/* This means that gas is used to process the assembler file. */
110
de4abb91 111#define MASK_GAS (1 << 2)
03f8c4cc 112#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 113
2bf6230d
RK
114/* This means that we should mark procedures as IEEE conformant. */
115
de4abb91 116#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
117#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
118
119/* This means we should be IEEE-compliant except for inexact. */
120
de4abb91 121#define MASK_IEEE (1 << 4)
2bf6230d
RK
122#define TARGET_IEEE (target_flags & MASK_IEEE)
123
124/* This means we should be fully IEEE-compliant. */
125
de4abb91 126#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
127#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
128
803fee69
RK
129/* This means we must construct all constants rather than emitting
130 them as literal data. */
131
de4abb91 132#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
133#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
134
e5958492
RK
135/* This means we handle floating points in VAX F- (float)
136 or G- (double) Format. */
137
de4abb91 138#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
139#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
140
e9a25f70
JL
141/* This means that the processor has byte and half word loads and stores
142 (the BWX extension). */
025f3281 143
de4abb91 144#define MASK_BWX (1 << 8)
e9a25f70 145#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 146
e9a25f70 147/* This means that the processor has the MAX extension. */
de4abb91 148#define MASK_MAX (1 << 9)
e9a25f70
JL
149#define TARGET_MAX (target_flags & MASK_MAX)
150
de4abb91
RH
151/* This means that the processor has the FIX extension. */
152#define MASK_FIX (1 << 10)
153#define TARGET_FIX (target_flags & MASK_FIX)
154
155/* This means that the processor has the CIX extension. */
156#define MASK_CIX (1 << 11)
157#define TARGET_CIX (target_flags & MASK_CIX)
158
e9a25f70
JL
159/* This means that the processor is an EV5, EV56, or PCA56. This is defined
160 only in TARGET_CPU_DEFAULT. */
a76c0119 161#define MASK_CPU_EV5 (1 << 28)
e9a25f70
JL
162
163/* Likewise for EV6. */
a76c0119 164#define MASK_CPU_EV6 (1 << 29)
e9a25f70
JL
165
166/* This means we support the .arch directive in the assembler. Only
167 defined in TARGET_CPU_DEFAULT. */
a76c0119 168#define MASK_SUPPORT_ARCH (1 << 30)
e9a25f70 169#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 170
9ba3994a
RH
171/* These are for target os support and cannot be changed at runtime. */
172#ifndef TARGET_WINDOWS_NT
173#define TARGET_WINDOWS_NT 0
174#endif
175#ifndef TARGET_OPEN_VMS
176#define TARGET_OPEN_VMS 0
177#endif
178
179#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
180#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
181#endif
9c0e94a5
RH
182#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
183#define TARGET_CAN_FAULT_IN_PROLOGUE 0
184#endif
5495cc55
RH
185#ifndef TARGET_HAS_XFLOATING_LIBS
186#define TARGET_HAS_XFLOATING_LIBS 0
187#endif
9ba3994a 188
1a94ca49
RK
189/* Macro to define tables used to set the flags.
190 This is a list in braces of pairs in braces,
191 each pair being { "NAME", VALUE }
192 where VALUE is the bits to set or minus the bits to clear.
193 An empty string NAME is used to identify the default VALUE. */
194
f8e52397
RH
195#define TARGET_SWITCHES \
196 { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
197 {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
198 {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
199 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
200 {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
201 {"gas", MASK_GAS, "Assume GAS"}, \
202 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
203 "Request IEEE-conformant math library routines (OSF/1)"}, \
204 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
205 "Emit IEEE-conformant code, without inexact exceptions"}, \
206 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
207 "Emit IEEE-conformant code, with inexact exceptions"}, \
208 {"build-constants", MASK_BUILD_CONSTANTS, \
209 "Do not emit complex integer constants to read-only memory"}, \
210 {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
211 {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
212 {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
213 {"no-bwx", -MASK_BWX, ""}, \
f8e52397
RH
214 {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
215 {"no-max", -MASK_MAX, ""}, \
de4abb91
RH
216 {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
217 {"no-fix", -MASK_FIX, ""}, \
218 {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
219 {"no-cix", -MASK_CIX, ""}, \
f8e52397 220 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 221
c01b5470 222#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 223
88681624
ILT
224#ifndef TARGET_CPU_DEFAULT
225#define TARGET_CPU_DEFAULT 0
226#endif
227
2bf6230d
RK
228/* This macro is similar to `TARGET_SWITCHES' but defines names of
229 command options that have values. Its definition is an initializer
230 with a subgrouping for each command option.
231
232 Each subgrouping contains a string constant, that defines the fixed
233 part of the option name, and the address of a variable. The
234 variable, type `char *', is set to the variable part of the given
235 option if the fixed part matches. The actual option name is made
236 by appending `-m' to the specified name.
237
238 Here is an example which defines `-mshort-data-NUMBER'. If the
239 given option is `-mshort-data-512', the variable `m88k_short_data'
240 will be set to the string `"512"'.
241
242 extern char *m88k_short_data;
243 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
244
df45c7ea
KG
245extern const char *alpha_cpu_string; /* For -mcpu= */
246extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
247extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
248extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
249extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 250
f8e52397
RH
251#define TARGET_OPTIONS \
252{ \
253 {"cpu=", &alpha_cpu_string, \
254 "Generate code for a given CPU"}, \
255 {"fp-rounding-mode=", &alpha_fprm_string, \
256 "Control the generated fp rounding mode"}, \
257 {"fp-trap-mode=", &alpha_fptm_string, \
258 "Control the IEEE trap mode"}, \
259 {"trap-precision=", &alpha_tp_string, \
260 "Control the precision given to fp exceptions"}, \
261 {"memory-latency=", &alpha_mlat_string, \
262 "Tune expected memory latency"}, \
2bf6230d
RK
263}
264
952fc2ed
RH
265/* Attempt to describe CPU characteristics to the preprocessor. */
266
267/* Corresponding to amask... */
268#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
269#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
de4abb91 270#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)"
952fc2ed
RH
271#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
272
273/* Corresponding to implver... */
274#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
275#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
276#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
277
278/* Common combinations. */
279#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
280#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
281#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
282#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
d8ee3e20
RH
283#define CPP_CPU_EV6_SPEC \
284 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
285#define CPP_CPU_EV67_SPEC \
286 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix) %(cpp_am_cix)"
952fc2ed
RH
287
288#ifndef CPP_CPU_DEFAULT_SPEC
289# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
d8ee3e20
RH
290# if TARGET_CPU_DEFAULT & MAX_CIX
291# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV67_SPEC
292# else
293# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
294# endif
952fc2ed
RH
295# else
296# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
297# if TARGET_CPU_DEFAULT & MASK_MAX
298# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
299# else
300# if TARGET_CPU_DEFAULT & MASK_BWX
301# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
302# else
303# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
304# endif
305# endif
306# else
307# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
308# endif
309# endif
310#endif /* CPP_CPU_DEFAULT_SPEC */
311
312#ifndef CPP_CPU_SPEC
313#define CPP_CPU_SPEC "\
314%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
315%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
316%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
317%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
318%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
319%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
d8ee3e20 320%{mcpu=ev67|mcpu=21264a:%(cpp_cpu_ev67) }\
952fc2ed
RH
321%{!mcpu*:%(cpp_cpu_default) }}"
322#endif
323
324/* This macro defines names of additional specifications to put in the
325 specs that can be used in various specifications like CC1_SPEC. Its
326 definition is an initializer with a subgrouping for each command option.
327
328 Each subgrouping contains a string constant, that defines the
329 specification name, and a string constant that used by the GNU CC driver
330 program.
331
332 Do not define this macro if it does not need to do anything. */
333
334#ifndef SUBTARGET_EXTRA_SPECS
335#define SUBTARGET_EXTRA_SPECS
336#endif
337
829245be
KG
338#define EXTRA_SPECS \
339 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
340 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 341 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
342 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
343 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
344 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
345 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
346 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
347 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
348 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
349 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
350 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
d8ee3e20 351 { "cpp_cpu_ev67", CPP_CPU_EV67_SPEC }, \
829245be
KG
352 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
353 { "cpp_cpu", CPP_CPU_SPEC }, \
354 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
355 SUBTARGET_EXTRA_SPECS
356
357
2bf6230d
RK
358/* Sometimes certain combinations of command options do not make sense
359 on a particular target machine. You can define a macro
360 `OVERRIDE_OPTIONS' to take account of this. This macro, if
361 defined, is executed once just after all the command options have
362 been parsed.
363
364 On the Alpha, it is used to translate target-option strings into
365 numeric values. */
366
2bf6230d
RK
367#define OVERRIDE_OPTIONS override_options ()
368
369
1a94ca49
RK
370/* Define this macro to change register usage conditional on target flags.
371
372 On the Alpha, we use this to disable the floating-point registers when
373 they don't exist. */
374
375#define CONDITIONAL_REGISTER_USAGE \
376 if (! TARGET_FPREGS) \
52a69200 377 for (i = 32; i < 63; i++) \
1a94ca49
RK
378 fixed_regs[i] = call_used_regs[i] = 1;
379
4f074454
RK
380/* Show we can debug even without a frame pointer. */
381#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
382\f
383/* target machine storage layout */
384
2700ac93
RS
385/* Define to enable software floating point emulation. */
386#define REAL_ARITHMETIC
387
861bb6c1
JL
388/* The following #defines are used when compiling the routines in
389 libgcc1.c. Since the Alpha calling conventions require single
390 precision floats to be passed in the floating-point registers
391 (rather than in the general registers) we have to build the
392 libgcc1.c routines in such a way that they know the actual types
393 of their formal arguments and the actual types of their return
394 values. Otherwise, gcc will generate calls to the libgcc1.c
395 routines, passing arguments in the floating-point registers,
396 but the libgcc1.c routines will expect their arguments on the
397 stack (where the Alpha calling conventions require structs &
398 unions to be passed). */
399
400#define FLOAT_VALUE_TYPE double
401#define INTIFY(FLOATVAL) (FLOATVAL)
402#define FLOATIFY(INTVAL) (INTVAL)
403#define FLOAT_ARG_TYPE double
404
1a94ca49
RK
405/* Define the size of `int'. The default is the same as the word size. */
406#define INT_TYPE_SIZE 32
407
408/* Define the size of `long long'. The default is the twice the word size. */
409#define LONG_LONG_TYPE_SIZE 64
410
411/* The two floating-point formats we support are S-floating, which is
412 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
413 and `long double' are T. */
414
415#define FLOAT_TYPE_SIZE 32
416#define DOUBLE_TYPE_SIZE 64
417#define LONG_DOUBLE_TYPE_SIZE 64
418
5258d7ae
RK
419#define WCHAR_TYPE "unsigned int"
420#define WCHAR_TYPE_SIZE 32
1a94ca49 421
13d39dbc 422/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
423 in a wider mode than that declared by the program. In such cases,
424 the value is constrained to be within the bounds of the declared
425 type, but kept valid in the wider mode. The signedness of the
426 extension may differ from that of the type.
427
428 For Alpha, we always store objects in a full register. 32-bit objects
429 are always sign-extended, but smaller objects retain their signedness. */
430
431#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
432 if (GET_MODE_CLASS (MODE) == MODE_INT \
433 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
434 { \
435 if ((MODE) == SImode) \
436 (UNSIGNEDP) = 0; \
437 (MODE) = DImode; \
438 }
439
440/* Define this if function arguments should also be promoted using the above
441 procedure. */
442
443#define PROMOTE_FUNCTION_ARGS
444
445/* Likewise, if the function return value is promoted. */
446
447#define PROMOTE_FUNCTION_RETURN
448
449/* Define this if most significant bit is lowest numbered
450 in instructions that operate on numbered bit-fields.
451
452 There are no such instructions on the Alpha, but the documentation
453 is little endian. */
454#define BITS_BIG_ENDIAN 0
455
456/* Define this if most significant byte of a word is the lowest numbered.
457 This is false on the Alpha. */
458#define BYTES_BIG_ENDIAN 0
459
460/* Define this if most significant word of a multiword number is lowest
461 numbered.
462
463 For Alpha we can decide arbitrarily since there are no machine instructions
464 for them. Might as well be consistent with bytes. */
465#define WORDS_BIG_ENDIAN 0
466
467/* number of bits in an addressable storage unit */
468#define BITS_PER_UNIT 8
469
470/* Width in bits of a "word", which is the contents of a machine register.
471 Note that this is not necessarily the width of data type `int';
472 if using 16-bit ints on a 68000, this would still be 32.
473 But on a machine with 16-bit registers, this would be 16. */
474#define BITS_PER_WORD 64
475
476/* Width of a word, in units (bytes). */
477#define UNITS_PER_WORD 8
478
479/* Width in bits of a pointer.
480 See also the macro `Pmode' defined below. */
481#define POINTER_SIZE 64
482
483/* Allocation boundary (in *bits*) for storing arguments in argument list. */
484#define PARM_BOUNDARY 64
485
486/* Boundary (in *bits*) on which stack pointer should be aligned. */
487#define STACK_BOUNDARY 64
488
489/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 490#define FUNCTION_BOUNDARY 256
1a94ca49
RK
491
492/* Alignment of field after `int : 0' in a structure. */
493#define EMPTY_FIELD_BOUNDARY 64
494
495/* Every structure's size must be a multiple of this. */
496#define STRUCTURE_SIZE_BOUNDARY 8
497
498/* A bitfield declared as `int' forces `int' alignment for the struct. */
499#define PCC_BITFIELD_TYPE_MATTERS 1
500
65823178
RK
501/* Align loop starts for optimal branching.
502
503 ??? Kludge this and the next macro for the moment by not doing anything if
504 we don't optimize and also if we are writing ECOFF symbols to work around
505 a bug in DEC's assembler. */
1a94ca49 506
fc470718 507#define LOOP_ALIGN(LABEL) \
9c0e94a5 508 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 509
9c0e94a5
RH
510/* This is how to align an instruction for optimal branching. On
511 Alpha we'll get better performance by aligning on an octaword
1a94ca49 512 boundary. */
130d2d72 513
7d0bfbd0 514#define LABEL_ALIGN_AFTER_BARRIER(FILE) \
9c0e94a5 515 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
516
517/* No data type wants to be aligned rounder than this. */
5495cc55 518#define BIGGEST_ALIGNMENT 128
1a94ca49 519
d16fe557
RK
520/* For atomic access to objects, must have at least 32-bit alignment
521 unless the machine has byte operations. */
13eb1f7f 522#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
d16fe557 523
442b1685
RK
524/* Align all constants and variables to at least a word boundary so
525 we can pick up pieces of them faster. */
6c174fc0
RH
526/* ??? Only if block-move stuff knows about different source/destination
527 alignment. */
528#if 0
442b1685
RK
529#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
530#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 531#endif
1a94ca49
RK
532
533/* Set this non-zero if move instructions will actually fail to work
534 when given unaligned data.
535
536 Since we get an error message when we do one, call them invalid. */
537
538#define STRICT_ALIGNMENT 1
539
540/* Set this non-zero if unaligned move instructions are extremely slow.
541
542 On the Alpha, they trap. */
130d2d72 543
e1565e65 544#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1a94ca49
RK
545\f
546/* Standard register usage. */
547
548/* Number of actual hardware registers.
549 The hardware registers are assigned numbers for the compiler
550 from 0 to just below FIRST_PSEUDO_REGISTER.
551 All registers that the compiler knows about must be given numbers,
552 even those that are not normally considered general registers.
553
554 We define all 32 integer registers, even though $31 is always zero,
555 and all 32 floating-point registers, even though $f31 is also
556 always zero. We do not bother defining the FP status register and
130d2d72
RK
557 there are no other registers.
558
559 Since $31 is always zero, we will use register number 31 as the
560 argument pointer. It will never appear in the generated code
561 because we will always be eliminating it in favor of the stack
52a69200
RK
562 pointer or hardware frame pointer.
563
564 Likewise, we use $f31 for the frame pointer, which will always
565 be eliminated in favor of the hardware frame pointer or the
566 stack pointer. */
1a94ca49
RK
567
568#define FIRST_PSEUDO_REGISTER 64
569
570/* 1 for registers that have pervasive standard uses
571 and are not available for the register allocator. */
572
573#define FIXED_REGISTERS \
574 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
575 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
576 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
577 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
578
579/* 1 for registers not available across function calls.
580 These must include the FIXED_REGISTERS and also any
581 registers that can be used without being saved.
582 The latter must include the registers where values are returned
583 and the register where structure-value addresses are passed.
584 Aside from that, you can include as many other registers as you like. */
585#define CALL_USED_REGISTERS \
586 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
587 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
588 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
589 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
590
591/* List the order in which to allocate registers. Each register must be
592 listed once, even those in FIXED_REGISTERS.
593
594 We allocate in the following order:
2c4be73e 595 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
596 $f22-$f30 (likewise)
597 $f21-$f16 (likewise, but input args)
598 $f0 (nonsaved, but return value)
2c4be73e 599 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
600 $f2-$f9 (saved floating-point registers)
601 $1-$8 (nonsaved integer registers)
602 $22-$25 (likewise)
603 $28 (likewise)
604 $0 (likewise, but return value)
605 $21-$16 (likewise, but input args)
0076aa6b 606 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
607 $9-$14 (saved integer registers)
608 $26 (return PC)
609 $15 (frame pointer)
610 $29 (global pointer)
52a69200 611 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
612
613#define REG_ALLOC_ORDER \
2c4be73e 614 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
615 54, 55, 56, 57, 58, 59, 60, 61, 62, \
616 53, 52, 51, 50, 49, 48, \
2c4be73e 617 32, 33, \
1a94ca49
RK
618 34, 35, 36, 37, 38, 39, 40, 41, \
619 1, 2, 3, 4, 5, 6, 7, 8, \
620 22, 23, 24, 25, \
621 28, \
622 0, \
623 21, 20, 19, 18, 17, 16, \
624 27, \
625 9, 10, 11, 12, 13, 14, \
626 26, \
627 15, \
628 29, \
629 30, 31, 63 }
630
631/* Return number of consecutive hard regs needed starting at reg REGNO
632 to hold something of mode MODE.
633 This is ordinarily the length in words of a value of mode MODE
634 but can be less for certain modes in special long registers. */
635
636#define HARD_REGNO_NREGS(REGNO, MODE) \
637 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
638
639/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
640 On Alpha, the integer registers can hold any mode. The floating-point
641 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 642 or 8-bit values. */
1a94ca49 643
e6a8ebb4
RH
644#define HARD_REGNO_MODE_OK(REGNO, MODE) \
645 ((REGNO) >= 32 && (REGNO) <= 62 \
646 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
647 : 1)
648
649/* A C expression that is nonzero if a value of mode
650 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 651
e6a8ebb4
RH
652 This asymmetric test is true when MODE1 could be put
653 in an FP register but MODE2 could not. */
1a94ca49 654
a7adf08e 655#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
656 (HARD_REGNO_MODE_OK (32, (MODE1)) \
657 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 658 : 1)
1a94ca49
RK
659
660/* Specify the registers used for certain standard purposes.
661 The values of these macros are register numbers. */
662
663/* Alpha pc isn't overloaded on a register that the compiler knows about. */
664/* #define PC_REGNUM */
665
666/* Register to use for pushing function arguments. */
667#define STACK_POINTER_REGNUM 30
668
669/* Base register for access to local variables of the function. */
52a69200 670#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
671
672/* Value should be nonzero if functions must have frame pointers.
673 Zero means the frame pointer need not be set up (and parms
674 may be accessed via the stack pointer) in functions that seem suitable.
675 This is computed in `reload', in reload1.c. */
676#define FRAME_POINTER_REQUIRED 0
677
678/* Base register for access to arguments of the function. */
130d2d72 679#define ARG_POINTER_REGNUM 31
1a94ca49 680
52a69200
RK
681/* Base register for access to local variables of function. */
682#define FRAME_POINTER_REGNUM 63
683
1a94ca49
RK
684/* Register in which static-chain is passed to a function.
685
686 For the Alpha, this is based on an example; the calling sequence
687 doesn't seem to specify this. */
688#define STATIC_CHAIN_REGNUM 1
689
690/* Register in which address to store a structure value
691 arrives in the function. On the Alpha, the address is passed
692 as a hidden argument. */
693#define STRUCT_VALUE 0
694\f
695/* Define the classes of registers for register constraints in the
696 machine description. Also define ranges of constants.
697
698 One of the classes must always be named ALL_REGS and include all hard regs.
699 If there is more than one class, another class must be named NO_REGS
700 and contain no registers.
701
702 The name GENERAL_REGS must be the name of a class (or an alias for
703 another name such as ALL_REGS). This is the class of registers
704 that is allowed by "g" or "r" in a register constraint.
705 Also, registers outside this class are allocated only when
706 instructions express preferences for them.
707
708 The classes must be numbered in nondecreasing order; that is,
709 a larger-numbered class must never be contained completely
710 in a smaller-numbered class.
711
712 For any two classes, it is very desirable that there be another
713 class that represents their union. */
714
715enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
716 LIM_REG_CLASSES };
717
718#define N_REG_CLASSES (int) LIM_REG_CLASSES
719
720/* Give names of register classes as strings for dump file. */
721
722#define REG_CLASS_NAMES \
723 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
724
725/* Define which registers fit in which classes.
726 This is an initializer for a vector of HARD_REG_SET
727 of length N_REG_CLASSES. */
728
729#define REG_CLASS_CONTENTS \
52a69200 730 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
731
732/* The same information, inverted:
733 Return the class number of the smallest class containing
734 reg number REGNO. This could be a conditional expression
735 or could index an array. */
736
52a69200
RK
737#define REGNO_REG_CLASS(REGNO) \
738 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
739
740/* The class value for index registers, and the one for base regs. */
741#define INDEX_REG_CLASS NO_REGS
742#define BASE_REG_CLASS GENERAL_REGS
743
744/* Get reg_class from a letter such as appears in the machine description. */
745
746#define REG_CLASS_FROM_LETTER(C) \
747 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
748
749/* Define this macro to change register usage conditional on target flags. */
750/* #define CONDITIONAL_REGISTER_USAGE */
751
752/* The letters I, J, K, L, M, N, O, and P in a register constraint string
753 can be used to stand for particular ranges of immediate operands.
754 This macro defines what the ranges are.
755 C is the letter, and VALUE is a constant value.
756 Return 1 if VALUE is in the range specified by C.
757
758 For Alpha:
759 `I' is used for the range of constants most insns can contain.
760 `J' is the constant zero.
761 `K' is used for the constant in an LDA insn.
762 `L' is used for the constant in a LDAH insn.
763 `M' is used for the constants that can be AND'ed with using a ZAP insn.
764 `N' is used for complemented 8-bit constants.
765 `O' is used for negated 8-bit constants.
766 `P' is used for the constants 1, 2 and 3. */
767
768#define CONST_OK_FOR_LETTER_P(VALUE, C) \
769 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
770 : (C) == 'J' ? (VALUE) == 0 \
771 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
772 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 773 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
774 : (C) == 'M' ? zap_mask (VALUE) \
775 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
776 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
777 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
778 : 0)
779
780/* Similar, but for floating or large integer constants, and defining letters
781 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
782
783 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
784 that is the operand of a ZAP insn. */
785
786#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
787 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
788 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
789 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
790 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
791 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
792 : 0)
793
e560f226
RK
794/* Optional extra constraints for this machine.
795
796 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 797 reference to an unaligned location.
9ec36da5 798
ac030a7b 799 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
800 function.
801
802 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
803
804#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 805 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
806 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
807 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
808 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
809 : 0)
810
1a94ca49
RK
811/* Given an rtx X being reloaded into a reg required to be
812 in class CLASS, return the class of reg to actually use.
813 In general this is just CLASS; but on some machines
814 in some cases it is preferable to use a more restrictive class.
815
816 On the Alpha, all constants except zero go into a floating-point
817 register via memory. */
818
819#define PREFERRED_RELOAD_CLASS(X, CLASS) \
820 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 821 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
822 : (CLASS))
823
824/* Loading and storing HImode or QImode values to and from memory
825 usually requires a scratch register. The exceptions are loading
e008606e
RK
826 QImode and HImode from an aligned address to a general register
827 unless byte instructions are permitted.
ddd5a7c1 828 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 829 FP register. */
1a94ca49 830
3611aef0
RH
831#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
832 secondary_reload_class((CLASS), (MODE), (IN), 1)
833
834#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
835 secondary_reload_class((CLASS), (MODE), (OUT), 0)
1a94ca49
RK
836
837/* If we are copying between general and FP registers, we need a memory
de4abb91 838 location unless the FIX extension is available. */
1a94ca49 839
e9a25f70 840#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
de4abb91 841 (! TARGET_FIX && (CLASS1) != (CLASS2))
1a94ca49 842
acd94aaf
RK
843/* Specify the mode to be used for memory when a secondary memory
844 location is needed. If MODE is floating-point, use it. Otherwise,
845 widen to a word like the default. This is needed because we always
846 store integers in FP registers in quadword format. This whole
847 area is very tricky! */
848#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
849 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 850 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
851 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
852
1a94ca49
RK
853/* Return the maximum number of consecutive registers
854 needed to represent mode MODE in a register of class CLASS. */
855
856#define CLASS_MAX_NREGS(CLASS, MODE) \
857 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
858
c31dfe4d
RK
859/* If defined, gives a class of registers that cannot be used as the
860 operand of a SUBREG that changes the size of the object. */
861
862#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
863
1a94ca49
RK
864/* Define the cost of moving between registers of various classes. Moving
865 between FLOAT_REGS and anything else except float regs is expensive.
866 In fact, we make it quite expensive because we really don't want to
867 do these moves unless it is clearly worth it. Optimizations may
868 reduce the impact of not being able to allocate a pseudo to a
869 hard register. */
870
71d9b493
RH
871#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
872 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
873 ? 2 \
de4abb91 874 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
875
876/* A C expressions returning the cost of moving data of MODE from a register to
877 or from memory.
878
879 On the Alpha, bump this up a bit. */
880
bcbbac26 881extern int alpha_memory_latency;
cbd5b9a2 882#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
883
884/* Provide the cost of a branch. Exact meaning under development. */
885#define BRANCH_COST 5
886
887/* Adjust the cost of dependencies. */
888
889#define ADJUST_COST(INSN,LINK,DEP,COST) \
890 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
891\f
892/* Stack layout; function entry, exit and calling. */
893
894/* Define this if pushing a word on the stack
895 makes the stack pointer a smaller address. */
896#define STACK_GROWS_DOWNWARD
897
898/* Define this if the nominal address of the stack frame
899 is at the high-address end of the local variables;
900 that is, each additional local variable allocated
901 goes at a more negative offset in the frame. */
130d2d72 902/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
903
904/* Offset within stack frame to start allocating local variables at.
905 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
906 first local allocated. Otherwise, it is the offset to the BEGINNING
907 of the first local allocated. */
908
52a69200 909#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
910
911/* If we generate an insn to push BYTES bytes,
912 this says how many the stack pointer really advances by.
913 On Alpha, don't define this because there are no push insns. */
914/* #define PUSH_ROUNDING(BYTES) */
915
e008606e
RK
916/* Define this to be nonzero if stack checking is built into the ABI. */
917#define STACK_CHECK_BUILTIN 1
918
1a94ca49
RK
919/* Define this if the maximum size of all the outgoing args is to be
920 accumulated and pushed during the prologue. The amount can be
921 found in the variable current_function_outgoing_args_size. */
922#define ACCUMULATE_OUTGOING_ARGS
923
924/* Offset of first parameter from the argument pointer register value. */
925
130d2d72 926#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
927
928/* Definitions for register eliminations.
929
978e8952 930 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 931 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
932 pointer register. Secondly, the argument pointer register can always be
933 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
934
935/* This is an array of structures. Each structure initializes one pair
936 of eliminable registers. The "from" register number is given first,
937 followed by "to". Eliminations of the same "from" register are listed
938 in order of preference. */
939
52a69200
RK
940#define ELIMINABLE_REGS \
941{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
942 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
943 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
944 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
945
946/* Given FROM and TO register numbers, say whether this elimination is allowed.
947 Frame pointer elimination is automatically handled.
948
130d2d72 949 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
950 eliminated are already handled. */
951
130d2d72 952#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 953
52a69200
RK
954/* Round up to a multiple of 16 bytes. */
955#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
956
1a94ca49
RK
957/* Define the offset between two registers, one to be eliminated, and the other
958 its replacement, at the start of a routine. */
959#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
960{ if ((FROM) == FRAME_POINTER_REGNUM) \
961 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
962 + alpha_sa_size ()); \
963 else if ((FROM) == ARG_POINTER_REGNUM) \
964 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
965 + alpha_sa_size () \
d772039b
RK
966 + (ALPHA_ROUND (get_frame_size () \
967 + current_function_pretend_args_size) \
968 - current_function_pretend_args_size)); \
c8d8ed65
RK
969 else \
970 abort (); \
1a94ca49
RK
971}
972
973/* Define this if stack space is still allocated for a parameter passed
974 in a register. */
975/* #define REG_PARM_STACK_SPACE */
976
977/* Value is the number of bytes of arguments automatically
978 popped when returning from a subroutine call.
8b109b37 979 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
980 FUNTYPE is the data type of the function (as a tree),
981 or for a library call it is an identifier node for the subroutine name.
982 SIZE is the number of bytes of arguments passed on the stack. */
983
8b109b37 984#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
985
986/* Define how to find the value returned by a function.
987 VALTYPE is the data type of the value (as a tree).
988 If the precise function being called is known, FUNC is its FUNCTION_DECL;
989 otherwise, FUNC is 0.
990
991 On Alpha the value is found in $0 for integer functions and
992 $f0 for floating-point functions. */
993
c5c76735 994#define FUNCTION_VALUE(VALTYPE, FUNC) \
4c020733 995 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
c5c76735
JL
996 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
997 || POINTER_TYPE_P (VALTYPE)) \
4c020733
RH
998 ? word_mode : TYPE_MODE (VALTYPE), \
999 ((TARGET_FPREGS \
c5c76735 1000 && (TREE_CODE (VALTYPE) == REAL_TYPE \
4c020733 1001 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
c5c76735 1002 ? 32 : 0))
1a94ca49
RK
1003
1004/* Define how to find the value returned by a library function
1005 assuming the value has mode MODE. */
1006
c5c76735 1007#define LIBCALL_VALUE(MODE) \
4c020733 1008 gen_rtx_REG (MODE, \
c5c76735
JL
1009 (TARGET_FPREGS \
1010 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
4c020733 1011 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
c5c76735 1012 ? 32 : 0))
1a94ca49 1013
130d2d72
RK
1014/* The definition of this macro implies that there are cases where
1015 a scalar value cannot be returned in registers.
1016
1017 For the Alpha, any structure or union type is returned in memory, as
1018 are integers whose size is larger than 64 bits. */
1019
1020#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1021 (TYPE_MODE (TYPE) == BLKmode \
5495cc55
RH
1022 || TYPE_MODE (TYPE) == TFmode \
1023 || TYPE_MODE (TYPE) == TCmode \
130d2d72
RK
1024 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1025
1a94ca49
RK
1026/* 1 if N is a possible register number for a function value
1027 as seen by the caller. */
1028
e5958492
RK
1029#define FUNCTION_VALUE_REGNO_P(N) \
1030 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1031
1032/* 1 if N is a possible register number for function argument passing.
1033 On Alpha, these are $16-$21 and $f16-$f21. */
1034
1035#define FUNCTION_ARG_REGNO_P(N) \
1036 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1037\f
1038/* Define a data type for recording info about an argument list
1039 during the scan of that argument list. This data type should
1040 hold all necessary information about the function itself
1041 and about the args processed so far, enough to enable macros
1042 such as FUNCTION_ARG to determine where the next arg should go.
1043
1044 On Alpha, this is a single integer, which is a number of words
1045 of arguments scanned so far.
1046 Thus 6 or more means all following args should go on the stack. */
1047
1048#define CUMULATIVE_ARGS int
1049
1050/* Initialize a variable CUM of type CUMULATIVE_ARGS
1051 for a call to a function whose data type is FNTYPE.
1052 For a library call, FNTYPE is 0. */
1053
2c7ee1a6 1054#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1055
1056/* Define intermediate macro to compute the size (in registers) of an argument
1057 for the Alpha. */
1058
1059#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
5495cc55
RH
1060 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1061 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1062 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1a94ca49
RK
1063
1064/* Update the data in CUM to advance over an argument
1065 of mode MODE and data type TYPE.
1066 (TYPE is null for libcalls where that information may not be available.) */
1067
1068#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1069 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1070 (CUM) = 6; \
1071 else \
1072 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1073
1074/* Determine where to put an argument to a function.
1075 Value is zero to push the argument on the stack,
1076 or a hard register in which to store the argument.
1077
1078 MODE is the argument's machine mode.
1079 TYPE is the data type of the argument (as a tree).
1080 This is null for libcalls where that information may
1081 not be available.
1082 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1083 the preceding args and about the function being called.
1084 NAMED is nonzero if this argument is a named parameter
1085 (otherwise it is an extra parameter matching an ellipsis).
1086
1087 On Alpha the first 6 words of args are normally in registers
1088 and the rest are pushed. */
1089
1090#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
5495cc55
RH
1091 function_arg((CUM), (MODE), (TYPE), (NAMED))
1092
1093/* A C expression that indicates when an argument must be passed by
1094 reference. If nonzero for an argument, a copy of that argument is
1095 made in memory and a pointer to the argument is passed instead of
1096 the argument itself. The pointer is passed in whatever way is
1097 appropriate for passing a pointer to that type. */
1098
1099#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1100 ((MODE) == TFmode || (MODE) == TCmode)
1a94ca49 1101
1a94ca49
RK
1102/* Specify the padding direction of arguments.
1103
1104 On the Alpha, we must pad upwards in order to be able to pass args in
1105 registers. */
1106
1107#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1108
1109/* For an arg passed partly in registers and partly in memory,
1110 this is the number of registers used.
1111 For args passed entirely in registers or entirely in memory, zero. */
1112
1113#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1114((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1115 ? 6 - (CUM) : 0)
1116
130d2d72
RK
1117/* Perform any needed actions needed for a function that is receiving a
1118 variable number of arguments.
1119
1120 CUM is as above.
1121
1122 MODE and TYPE are the mode and type of the current parameter.
1123
1124 PRETEND_SIZE is a variable that should be set to the amount of stack
1125 that must be pushed by the prolog to pretend that our caller pushed
1126 it.
1127
1128 Normally, this macro will push all remaining incoming registers on the
1129 stack and set PRETEND_SIZE to the length of the registers pushed.
1130
1131 On the Alpha, we allocate space for all 12 arg registers, but only
1132 push those that are remaining.
1133
1134 However, if NO registers need to be saved, don't allocate any space.
1135 This is not only because we won't need the space, but because AP includes
1136 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1137 ap-relative addresses already made.
1138
1139 If we are not to use the floating-point registers, save the integer
1140 registers where we would put the floating-point registers. This is
1141 not the most efficient way to implement varargs with just one register
1142 class, but it isn't worth doing anything more efficient in this rare
1143 case. */
1144
130d2d72
RK
1145#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1146{ if ((CUM) < 6) \
1147 { \
1148 if (! (NO_RTL)) \
1149 { \
63966b3b
RH
1150 rtx tmp; int set = get_varargs_alias_set (); \
1151 tmp = gen_rtx_MEM (BLKmode, \
1152 plus_constant (virtual_incoming_args_rtx, \
1153 ((CUM) + 6)* UNITS_PER_WORD)); \
1154 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1155 move_block_from_reg \
63966b3b 1156 (16 + CUM, tmp, \
02892e06 1157 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
63966b3b
RH
1158 \
1159 tmp = gen_rtx_MEM (BLKmode, \
1160 plus_constant (virtual_incoming_args_rtx, \
1161 (CUM) * UNITS_PER_WORD)); \
1162 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1163 move_block_from_reg \
63966b3b 1164 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
02892e06 1165 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1166 } \
1167 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1168 } \
1169}
1170
7d89dda5
RH
1171/* We do not allow indirect calls to be optimized into sibling calls, nor
1172 can we allow a call to a function in a different compilation unit to
1173 be optimized into a sibcall. Except if the function is known not to
1174 return, in which case our caller doesn't care what the gp is. */
1175#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1176 (DECL \
1177 && ((TREE_ASM_WRITTEN (DECL) && !flag_pic) \
1178 || ! TREE_PUBLIC (DECL) \
1179 || (0 && TREE_THIS_VOLATILE (DECL))))
1180
c8e9adec
RK
1181/* Try to output insns to set TARGET equal to the constant C if it can be
1182 done in less than N insns. Do all computations in MODE. Returns the place
1183 where the output has been placed if it can be done and the insns have been
1184 emitted. If it would take more than N insns, zero is returned and no
1185 insns and emitted. */
92e40a7a 1186
1a94ca49
RK
1187/* Define the information needed to generate branch and scc insns. This is
1188 stored from the compare operation. Note that we can't use "rtx" here
1189 since it hasn't been defined! */
1190
6db21c7f
RH
1191struct alpha_compare
1192{
1193 struct rtx_def *op0, *op1;
1194 int fp_p;
1195};
1196
1197extern struct alpha_compare alpha_compare;
1a94ca49 1198
01439aee 1199/* Machine specific function data. */
71038426 1200
01439aee
RH
1201struct machine_function
1202{
1203 /* An offset to apply to the stack pointer when unwinding from EH. */
1204 struct rtx_def *eh_epilogue_sp_ofs;
1205
1206 /* If non-null, this rtx holds the return address for the function. */
1207 struct rtx_def *ra_rtx;
1208};
71038426 1209
e5958492 1210/* Make (or fake) .linkage entry for function call.
e5958492 1211 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
e5958492 1212
bcbbac26
RH
1213/* This macro defines the start of an assembly comment. */
1214
1215#define ASM_COMMENT_START " #"
1216
acd92049 1217/* This macro produces the initial definition of a function. */
1a94ca49 1218
acd92049
RH
1219#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1220 alpha_start_function(FILE,NAME,DECL);
1a94ca49 1221
acd92049 1222/* This macro closes up a function definition for the assembler. */
9c0e94a5 1223
acd92049
RH
1224#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1225 alpha_end_function(FILE,NAME,DECL)
acd92049 1226
9c0e94a5
RH
1227/* This macro notes the end of the prologue. */
1228
1229#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
1a94ca49 1230
acd92049
RH
1231/* Output any profiling code before the prologue. */
1232
1233#define PROFILE_BEFORE_PROLOGUE 1
1234
1a94ca49 1235/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1236 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1237 by simply passing -pg to the assembler and linker. */
85d159a3 1238
e0fb9029 1239#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1240
1241/* Output assembler code to FILE to initialize this source file's
1242 basic block profiling info, if that has not already been done.
1243 This assumes that __bb_init_func doesn't garble a1-a5. */
1244
1245#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1246 do { \
1247 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1248 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1249 fputs ("\tldq $26,0($16)\n", (FILE)); \
1250 fputs ("\tbne $26,1f\n", (FILE)); \
1251 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1252 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1253 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1254 fputs ("1:\n", (FILE)); \
85d159a3
RK
1255 ASM_OUTPUT_REG_POP (FILE, 16); \
1256 } while (0);
1257
1258/* Output assembler code to FILE to increment the entry-count for
1259 the BLOCKNO'th basic block in this source file. */
1260
1261#define BLOCK_PROFILER(FILE, BLOCKNO) \
1262 do { \
1263 int blockn = (BLOCKNO); \
a62eb16f 1264 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1265 fputs ("\tstq $26,0($30)\n", (FILE)); \
1266 fputs ("\tstq $27,8($30)\n", (FILE)); \
1267 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1268 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1269 fputs ("\taddq $27,1,$27\n", (FILE)); \
1270 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1271 fputs ("\tldq $26,0($30)\n", (FILE)); \
1272 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1273 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1274 } while (0)
1a94ca49 1275
1a94ca49
RK
1276
1277/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1278 the stack pointer does not matter. The value is tested only in
1279 functions that have frame pointers.
1280 No definition is equivalent to always zero. */
1281
1282#define EXIT_IGNORE_STACK 1
c112e233
RH
1283
1284/* Define registers used by the epilogue and return instruction. */
1285
1286#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1a94ca49
RK
1287\f
1288/* Output assembler code for a block containing the constant parts
1289 of a trampoline, leaving space for the variable parts.
1290
1291 The trampoline should set the static chain pointer to value placed
7981384f
RK
1292 into the trampoline and should branch to the specified routine.
1293 Note that $27 has been set to the address of the trampoline, so we can
1294 use it for addressability of the two data items. Trampolines are always
1295 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1296
1297#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1298do { \
7981384f 1299 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1300 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1301 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1302 fprintf (FILE, "\tnop\n"); \
1a94ca49 1303 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1304} while (0)
1a94ca49 1305
3a523eeb
RS
1306/* Section in which to place the trampoline. On Alpha, instructions
1307 may only be placed in a text segment. */
1308
1309#define TRAMPOLINE_SECTION text_section
1310
1a94ca49
RK
1311/* Length in units of the trampoline for entering a nested function. */
1312
7981384f 1313#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1314
1315/* Emit RTL insns to initialize the variable parts of a trampoline.
1316 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1317 CXT is an RTX for the static chain value for the function. */
1a94ca49 1318
9ec36da5 1319#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1320 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1321
1322/* A C expression whose value is RTL representing the value of the return
1323 address for the frame COUNT steps up from the current frame.
1324 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1325 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1326
9ecc37f0 1327#define RETURN_ADDR_RTX alpha_return_addr
9ecc37f0 1328
6abc6f40
RH
1329/* Before the prologue, RA lives in $26. */
1330#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
8034da37 1331#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
675f0e7c 1332\f
1a94ca49
RK
1333/* Addressing modes, and classification of registers for them. */
1334
940da324
JL
1335/* #define HAVE_POST_INCREMENT 0 */
1336/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1337
940da324
JL
1338/* #define HAVE_PRE_DECREMENT 0 */
1339/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1340
1341/* Macros to check register numbers against specific register classes. */
1342
1343/* These assume that REGNO is a hard or pseudo reg number.
1344 They give nonzero only if REGNO is a hard reg of the suitable class
1345 or a pseudo reg currently allocated to a suitable hard reg.
1346 Since they use reg_renumber, they are safe only once reg_renumber
1347 has been allocated, which happens in local-alloc.c. */
1348
1349#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1350#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1351((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1352 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1353\f
1354/* Maximum number of registers that can appear in a valid memory address. */
1355#define MAX_REGS_PER_ADDRESS 1
1356
1357/* Recognize any constant value that is a valid address. For the Alpha,
1358 there are only constants none since we want to use LDA to load any
1359 symbolic addresses into registers. */
1360
1361#define CONSTANT_ADDRESS_P(X) \
1362 (GET_CODE (X) == CONST_INT \
1363 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1364
1365/* Include all constant integers and constant doubles, but not
1366 floating-point, except for floating-point zero. */
1367
1368#define LEGITIMATE_CONSTANT_P(X) \
1369 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1370 || (X) == CONST0_RTX (GET_MODE (X)))
1371
1372/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1373 and check its validity for a certain class.
1374 We have two alternate definitions for each of them.
1375 The usual definition accepts all pseudo regs; the other rejects
1376 them unless they have been allocated suitable hard regs.
1377 The symbol REG_OK_STRICT causes the latter definition to be used.
1378
1379 Most source files want to accept pseudo regs in the hope that
1380 they will get allocated to the class that the insn wants them to be in.
1381 Source files for reload pass need to be strict.
1382 After reload, it makes no difference, since pseudo regs have
1383 been eliminated by then. */
1384
1385#ifndef REG_OK_STRICT
1386
1387/* Nonzero if X is a hard reg that can be used as an index
1388 or if it is a pseudo reg. */
1389#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1390
1a94ca49
RK
1391/* Nonzero if X is a hard reg that can be used as a base reg
1392 or if it is a pseudo reg. */
1393#define REG_OK_FOR_BASE_P(X) \
52a69200 1394 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1395
5d02b6c2
RH
1396/* ??? Nonzero if X is the frame pointer, or some virtual register
1397 that may eliminate to the frame pointer. These will be allowed to
1398 have offsets greater than 32K. This is done because register
1399 elimination offsets will change the hi/lo split, and if we split
1400 before reload, we will require additional instructions. */
1401#define REG_OK_FP_BASE_P(X) \
1402 (REGNO (X) == 31 || REGNO (X) == 63 \
1403 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1404 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1405
1a94ca49
RK
1406#else
1407
1408/* Nonzero if X is a hard reg that can be used as an index. */
1409#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1410
1a94ca49
RK
1411/* Nonzero if X is a hard reg that can be used as a base reg. */
1412#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1413
5d02b6c2
RH
1414#define REG_OK_FP_BASE_P(X) 0
1415
1a94ca49
RK
1416#endif
1417\f
1418/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1419 that is a valid memory address for an instruction.
1420 The MODE argument is the machine mode for the MEM expression
1421 that wants to use this address.
1422
1423 For Alpha, we have either a constant address or the sum of a register
1424 and a constant address, or just a register. For DImode, any of those
1425 forms can be surrounded with an AND that clear the low-order three bits;
1426 this is an "unaligned" access.
1427
1a94ca49
RK
1428 First define the basic valid address. */
1429
4c020733
RH
1430#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1431{ \
1432 rtx tmp = (X); \
1433 if (GET_CODE (tmp) == SUBREG \
1434 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1435 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1436 tmp = SUBREG_REG (tmp); \
1437 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1438 goto ADDR; \
1439 if (CONSTANT_ADDRESS_P (X)) \
1440 goto ADDR; \
1441 if (GET_CODE (X) == PLUS) \
1442 { \
1443 tmp = XEXP (X, 0); \
1444 if (GET_CODE (tmp) == SUBREG \
1445 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1446 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1447 tmp = SUBREG_REG (tmp); \
1448 if (REG_P (tmp)) \
1449 { \
1450 if (REG_OK_FP_BASE_P (tmp) \
1451 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1452 goto ADDR; \
1453 if (REG_OK_FOR_BASE_P (tmp) \
1454 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1455 goto ADDR; \
1456 } \
0c5912f4
RH
1457 else if (GET_CODE (tmp) == ADDRESSOF \
1458 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1459 goto ADDR; \
4c020733 1460 } \
1a94ca49
RK
1461}
1462
1463/* Now accept the simple address, or, for DImode only, an AND of a simple
1464 address that turns off the low three bits. */
1465
1a94ca49
RK
1466#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1467{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1468 if ((MODE) == DImode \
1469 && GET_CODE (X) == AND \
1470 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1471 && INTVAL (XEXP (X, 1)) == -8) \
1472 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1473}
1474
1475/* Try machine-dependent ways of modifying an illegitimate address
1476 to be legitimate. If we find one, return the new, valid address.
1477 This macro is used in only one place: `memory_address' in explow.c.
1478
1479 OLDX is the address as it was before break_out_memory_refs was called.
1480 In some cases it is useful to look at this to decide what needs to be done.
1481
1482 MODE and WIN are passed so that this macro can use
1483 GO_IF_LEGITIMATE_ADDRESS.
1484
1485 It is always safe for this macro to do nothing. It exists to recognize
1486 opportunities to optimize the output.
1487
1488 For the Alpha, there are three cases we handle:
1489
1490 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1491 valid offset, compute the high part of the constant and add it to the
1492 register. Then our address is (plus temp low-part-const).
1493 (2) If the address is (const (plus FOO const_int)), find the low-order
1494 part of the CONST_INT. Then load FOO plus any high-order part of the
1495 CONST_INT into a register. Our address is (plus reg low-part-const).
1496 This is done to reduce the number of GOT entries.
1497 (3) If we have a (plus reg const), emit the load as in (2), then add
1498 the two registers, and finally generate (plus reg low-part-const) as
1499 our address. */
1500
1501#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1502{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1503 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1504 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1505 { \
1506 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1507 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1508 HOST_WIDE_INT highpart = val - lowpart; \
1509 rtx high = GEN_INT (highpart); \
1510 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1511 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1512 \
1513 (X) = plus_constant (temp, lowpart); \
1514 goto WIN; \
1515 } \
1516 else if (GET_CODE (X) == CONST \
1517 && GET_CODE (XEXP (X, 0)) == PLUS \
1518 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1519 { \
1520 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1521 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1522 HOST_WIDE_INT highpart = val - lowpart; \
1523 rtx high = XEXP (XEXP (X, 0), 0); \
1524 \
1525 if (highpart) \
1526 high = plus_constant (high, highpart); \
1527 \
1528 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1529 goto WIN; \
1530 } \
1531 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1532 && GET_CODE (XEXP (X, 1)) == CONST \
1533 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1534 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1535 { \
1536 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1537 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1538 HOST_WIDE_INT highpart = val - lowpart; \
1539 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1540 \
1541 if (highpart) \
1542 high = plus_constant (high, highpart); \
1543 \
1544 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1545 force_reg (Pmode, high), \
80f251fe 1546 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1547 (X) = plus_constant (high, lowpart); \
1548 goto WIN; \
1549 } \
1550}
1551
a9a2595b
JR
1552/* Try a machine-dependent way of reloading an illegitimate address
1553 operand. If we find one, push the reload and jump to WIN. This
1554 macro is used in only one place: `find_reloads_address' in reload.c.
1555
1556 For the Alpha, we wish to handle large displacements off a base
1557 register by splitting the addend across an ldah and the mem insn.
1558 This cuts number of extra insns needed from 3 to 1. */
1559
1560#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1561do { \
c8ab9901
RH
1562 /* We must recognize output that we have already generated ourselves. */ \
1563 if (GET_CODE (X) == PLUS \
1564 && GET_CODE (XEXP (X, 0)) == PLUS \
1565 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1566 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1567 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1568 { \
1569 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1570 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1571 OPNUM, TYPE); \
1572 goto WIN; \
1573 } \
a9a2595b
JR
1574 if (GET_CODE (X) == PLUS \
1575 && GET_CODE (XEXP (X, 0)) == REG \
1576 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1577 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1578 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1579 { \
1580 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1581 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1582 HOST_WIDE_INT high \
1583 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1584 \
1585 /* Check for 32-bit overflow. */ \
1586 if (high + low != val) \
1587 break; \
1588 \
1589 /* Reload the high part into a base reg; leave the low part \
1590 in the mem directly. */ \
1591 \
1592 X = gen_rtx_PLUS (GET_MODE (X), \
1593 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1594 GEN_INT (high)), \
1595 GEN_INT (low)); \
1596 \
1597 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1598 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1599 OPNUM, TYPE); \
1600 goto WIN; \
1601 } \
1602} while (0)
1603
1a94ca49
RK
1604/* Go to LABEL if ADDR (a legitimate address expression)
1605 has an effect that depends on the machine mode it is used for.
1606 On the Alpha this is true only for the unaligned modes. We can
1607 simplify this test since we know that the address must be valid. */
1608
1609#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1610{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1611
1612/* Compute the cost of an address. For the Alpha, all valid addresses are
1613 the same cost. */
1614
1615#define ADDRESS_COST(X) 0
1616
2ea844d3
RH
1617/* Machine-dependent reorg pass. */
1618#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1619\f
1620/* Specify the machine mode that this machine uses
1621 for the index in the tablejump instruction. */
1622#define CASE_VECTOR_MODE SImode
1623
18543a22
ILT
1624/* Define as C expression which evaluates to nonzero if the tablejump
1625 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1626 table.
b0435cf4 1627
3aa9d5b6 1628 Do not define this if the table should contain absolute addresses.
260ced47
RK
1629 On the Alpha, the table is really GP-relative, not relative to the PC
1630 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1631 but we should try to find some better way sometime. */
18543a22 1632#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1633
1634/* Specify the tree operation to be used to convert reals to integers. */
1635#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1636
1637/* This is the kind of divide that is easiest to do in the general case. */
1638#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1639
1640/* Define this as 1 if `char' should by default be signed; else as 0. */
1641#define DEFAULT_SIGNED_CHAR 1
1642
1643/* This flag, if defined, says the same insns that convert to a signed fixnum
1644 also convert validly to an unsigned one.
1645
1646 We actually lie a bit here as overflow conditions are different. But
1647 they aren't being checked anyway. */
1648
1649#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1650
1651/* Max number of bytes we can move to or from memory
1652 in one reasonably fast instruction. */
1653
1654#define MOVE_MAX 8
1655
7e24ffc9
HPN
1656/* If a memory-to-memory move would take MOVE_RATIO or more simple
1657 move-instruction pairs, we will do a movstr or libcall instead.
1658
1659 Without byte/word accesses, we want no more than four instructions;
1660 with, several single byte accesses are better. */
6c174fc0
RH
1661
1662#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1663
1a94ca49
RK
1664/* Largest number of bytes of an object that can be placed in a register.
1665 On the Alpha we have plenty of registers, so use TImode. */
1666#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1667
1668/* Nonzero if access to memory by bytes is no faster than for words.
1669 Also non-zero if doing byte operations (specifically shifts) in registers
1670 is undesirable.
1671
1672 On the Alpha, we want to not use the byte operation and instead use
1673 masking operations to access fields; these will save instructions. */
1674
1675#define SLOW_BYTE_ACCESS 1
1676
9a63901f
RK
1677/* Define if operations between registers always perform the operation
1678 on the full register even if a narrower mode is specified. */
1679#define WORD_REGISTER_OPERATIONS
1680
1681/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1682 will either zero-extend or sign-extend. The value of this macro should
1683 be the code that says which one of the two operations is implicitly
1684 done, NIL if none. */
b7747781 1685#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1686
225211e2
RK
1687/* Define if loading short immediate values into registers sign extends. */
1688#define SHORT_IMMEDIATES_SIGN_EXTEND
1689
1a94ca49
RK
1690/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1691 is done just by pretending it is already truncated. */
1692#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1693
1694/* We assume that the store-condition-codes instructions store 0 for false
1695 and some other value for true. This is the value stored for true. */
1696
1697#define STORE_FLAG_VALUE 1
1698
1699/* Define the value returned by a floating-point comparison instruction. */
1700
12530dbe
RH
1701#define FLOAT_STORE_FLAG_VALUE(MODE) \
1702 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1a94ca49 1703
35bb77fd
RK
1704/* Canonicalize a comparison from one we don't have to one we do have. */
1705
1706#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1707 do { \
1708 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1709 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1710 { \
1711 rtx tem = (OP0); \
1712 (OP0) = (OP1); \
1713 (OP1) = tem; \
1714 (CODE) = swap_condition (CODE); \
1715 } \
1716 if (((CODE) == LT || (CODE) == LTU) \
1717 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1718 { \
1719 (CODE) = (CODE) == LT ? LE : LEU; \
1720 (OP1) = GEN_INT (255); \
1721 } \
1722 } while (0)
1723
1a94ca49
RK
1724/* Specify the machine mode that pointers have.
1725 After generation of rtl, the compiler makes no further distinction
1726 between pointers and any other objects of this machine mode. */
1727#define Pmode DImode
1728
1729/* Mode of a function address in a call instruction (for indexing purposes). */
1730
1731#define FUNCTION_MODE Pmode
1732
1733/* Define this if addresses of constant functions
1734 shouldn't be put through pseudo regs where they can be cse'd.
1735 Desirable on machines where ordinary constants are expensive
1736 but a CALL with constant address is cheap.
1737
1738 We define this on the Alpha so that gen_call and gen_call_value
1739 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1740 then copy it into a register, thus actually letting the address be
1741 cse'ed. */
1742
1743#define NO_FUNCTION_CSE
1744
d969caf8 1745/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1746 few bits. */
d969caf8 1747#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1748
71d9b493 1749/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1750#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1751
7d0bfbd0
RH
1752/* Describe the fact that MULTI instructions are multiple instructions
1753 and so to assume they don't pair with anything. */
1754#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1755 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1756 (CAN_ISSUE_MORE) = 0
1757
1a94ca49
RK
1758/* Compute the cost of computing a constant rtl expression RTX
1759 whose rtx-code is CODE. The body of this macro is a portion
1760 of a switch statement. If the code is computed here,
1761 return it with a return statement. Otherwise, break from the switch.
1762
8b7b2e36
RK
1763 If this is an 8-bit constant, return zero since it can be used
1764 nearly anywhere with no cost. If it is a valid operand for an
1765 ADD or AND, likewise return 0 if we know it will be used in that
1766 context. Otherwise, return 2 since it might be used there later.
1767 All other constants take at least two insns. */
1a94ca49
RK
1768
1769#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1770 case CONST_INT: \
06eb8e92 1771 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1772 return 0; \
1a94ca49 1773 case CONST_DOUBLE: \
5d02ee66
RH
1774 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1775 return 0; \
1776 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1777 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1778 return 0; \
1779 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1780 return 2; \
1781 else \
1782 return COSTS_N_INSNS (2); \
1a94ca49
RK
1783 case CONST: \
1784 case SYMBOL_REF: \
1785 case LABEL_REF: \
f6f6a13c
RK
1786 switch (alpha_cpu) \
1787 { \
1788 case PROCESSOR_EV4: \
1789 return COSTS_N_INSNS (3); \
1790 case PROCESSOR_EV5: \
5d02ee66 1791 case PROCESSOR_EV6: \
f6f6a13c 1792 return COSTS_N_INSNS (2); \
5d02ee66 1793 default: abort(); \
f6f6a13c 1794 }
1a94ca49
RK
1795
1796/* Provide the costs of a rtl expression. This is in the body of a
1797 switch on CODE. */
1798
1799#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1800 case PLUS: case MINUS: \
1801 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1802 switch (alpha_cpu) \
1803 { \
1804 case PROCESSOR_EV4: \
1805 return COSTS_N_INSNS (6); \
1806 case PROCESSOR_EV5: \
5d02ee66 1807 case PROCESSOR_EV6: \
f6f6a13c 1808 return COSTS_N_INSNS (4); \
5d02ee66 1809 default: abort(); \
f6f6a13c 1810 } \
b49e978e
RK
1811 else if (GET_CODE (XEXP (X, 0)) == MULT \
1812 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1813 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1814 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1815 break; \
1816 case MULT: \
f6f6a13c
RK
1817 switch (alpha_cpu) \
1818 { \
1819 case PROCESSOR_EV4: \
1820 if (FLOAT_MODE_P (GET_MODE (X))) \
1821 return COSTS_N_INSNS (6); \
1822 return COSTS_N_INSNS (23); \
1823 case PROCESSOR_EV5: \
1824 if (FLOAT_MODE_P (GET_MODE (X))) \
1825 return COSTS_N_INSNS (4); \
1826 else if (GET_MODE (X) == DImode) \
1827 return COSTS_N_INSNS (12); \
1828 else \
1829 return COSTS_N_INSNS (8); \
5d02ee66
RH
1830 case PROCESSOR_EV6: \
1831 if (FLOAT_MODE_P (GET_MODE (X))) \
1832 return COSTS_N_INSNS (4); \
1833 else \
1834 return COSTS_N_INSNS (7); \
1835 default: abort(); \
f6f6a13c 1836 } \
b49e978e
RK
1837 case ASHIFT: \
1838 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1839 && INTVAL (XEXP (X, 1)) <= 3) \
1840 break; \
1841 /* ... fall through ... */ \
5d02ee66 1842 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1843 switch (alpha_cpu) \
1844 { \
1845 case PROCESSOR_EV4: \
1846 return COSTS_N_INSNS (2); \
1847 case PROCESSOR_EV5: \
5d02ee66 1848 case PROCESSOR_EV6: \
f6f6a13c 1849 return COSTS_N_INSNS (1); \
5d02ee66
RH
1850 default: abort(); \
1851 } \
1852 case IF_THEN_ELSE: \
1853 switch (alpha_cpu) \
1854 { \
1855 case PROCESSOR_EV4: \
1856 case PROCESSOR_EV6: \
1857 return COSTS_N_INSNS (2); \
1858 case PROCESSOR_EV5: \
1859 return COSTS_N_INSNS (1); \
1860 default: abort(); \
f6f6a13c 1861 } \
3bda6d11 1862 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1863 switch (alpha_cpu) \
1864 { \
1865 case PROCESSOR_EV4: \
1866 if (GET_MODE (X) == SFmode) \
1867 return COSTS_N_INSNS (34); \
1868 else if (GET_MODE (X) == DFmode) \
1869 return COSTS_N_INSNS (63); \
1870 else \
1871 return COSTS_N_INSNS (70); \
1872 case PROCESSOR_EV5: \
1873 if (GET_MODE (X) == SFmode) \
1874 return COSTS_N_INSNS (15); \
1875 else if (GET_MODE (X) == DFmode) \
1876 return COSTS_N_INSNS (22); \
1877 else \
5d02ee66
RH
1878 return COSTS_N_INSNS (70); /* ??? */ \
1879 case PROCESSOR_EV6: \
1880 if (GET_MODE (X) == SFmode) \
1881 return COSTS_N_INSNS (12); \
1882 else if (GET_MODE (X) == DFmode) \
1883 return COSTS_N_INSNS (15); \
1884 else \
1885 return COSTS_N_INSNS (70); /* ??? */ \
1886 default: abort(); \
f6f6a13c 1887 } \
1a94ca49 1888 case MEM: \
f6f6a13c
RK
1889 switch (alpha_cpu) \
1890 { \
1891 case PROCESSOR_EV4: \
5d02ee66 1892 case PROCESSOR_EV6: \
f6f6a13c
RK
1893 return COSTS_N_INSNS (3); \
1894 case PROCESSOR_EV5: \
1895 return COSTS_N_INSNS (2); \
5d02ee66 1896 default: abort(); \
f6f6a13c
RK
1897 } \
1898 case NEG: case ABS: \
1899 if (! FLOAT_MODE_P (GET_MODE (X))) \
1900 break; \
1901 /* ... fall through ... */ \
3bda6d11
RK
1902 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1903 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1904 switch (alpha_cpu) \
1905 { \
1906 case PROCESSOR_EV4: \
1907 return COSTS_N_INSNS (6); \
1908 case PROCESSOR_EV5: \
5d02ee66 1909 case PROCESSOR_EV6: \
f6f6a13c 1910 return COSTS_N_INSNS (4); \
5d02ee66 1911 default: abort(); \
f6f6a13c 1912 }
1a94ca49
RK
1913\f
1914/* Control the assembler format that we output. */
1915
40ef2fc5
JL
1916/* We don't emit these labels, so as to avoid getting linker errors about
1917 missing exception handling info. If we emit a gcc_compiled. label into
1918 text, and the file has no code, then the DEC assembler gives us a zero
1919 sized text section with no associated exception handling info. The
38e01259 1920 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1921 the exception handling info is missing. */
3c303f52
KG
1922#define ASM_IDENTIFY_GCC(x)
1923#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1924
1a94ca49
RK
1925/* Output to assembler file text saying following lines
1926 may contain character constants, extra white space, comments, etc. */
1927
1928#define ASM_APP_ON ""
1929
1930/* Output to assembler file text saying following lines
1931 no longer contain unusual constructs. */
1932
1933#define ASM_APP_OFF ""
1934
1935#define TEXT_SECTION_ASM_OP ".text"
1936
1937/* Output before read-only data. */
1938
1939#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1940
1941/* Output before writable data. */
1942
1943#define DATA_SECTION_ASM_OP ".data"
1944
1945/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1946 indicate that it is for read-only data.
1947
abc95ed3 1948 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1949 eight bytes of zero. This works around a bug in DEC's assembler in
1950 some versions of OSF/1 V3.x. */
1a94ca49
RK
1951
1952#define EXTRA_SECTIONS readonly_data
1953
1954#define EXTRA_SECTION_FUNCTIONS \
1955void \
1956literal_section () \
1957{ \
1958 if (in_section != readonly_data) \
1959 { \
c0388f29
RK
1960 static int firsttime = 1; \
1961 \
1a94ca49 1962 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1963 if (firsttime) \
1964 { \
1965 firsttime = 0; \
1966 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1967 } \
1968 \
1a94ca49
RK
1969 in_section = readonly_data; \
1970 } \
1971} \
1972
1973#define READONLY_DATA_SECTION literal_section
1974
ac030a7b
RK
1975/* If we are referencing a function that is static, make the SYMBOL_REF
1976 special. We use this to see indicate we can branch to this function
1977 without setting PV or restoring GP. */
130d2d72
RK
1978
1979#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1980 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1981 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1982
1a94ca49
RK
1983/* How to refer to registers in assembler output.
1984 This sequence is indexed by compiler's hard-register-number (see above). */
1985
1986#define REGISTER_NAMES \
1987{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1988 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1989 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1990 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1991 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1992 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1993 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1994 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1995
1996/* How to renumber registers for dbx and gdb. */
1997
1998#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1999
2000/* This is how to output the definition of a user-level label named NAME,
2001 such as the label on a static function or variable NAME. */
2002
2003#define ASM_OUTPUT_LABEL(FILE,NAME) \
2004 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2005
2006/* This is how to output a command to make the user-level label named NAME
2007 defined for reference from other files. */
2008
2009#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2010 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2011
4e0c8ad2 2012/* The prefix to add to user-visible assembler symbols. */
1a94ca49 2013
4e0c8ad2 2014#define USER_LABEL_PREFIX ""
1a94ca49
RK
2015
2016/* This is how to output an internal numbered label where
2017 PREFIX is the class of label and NUM is the number within the class. */
2018
2019#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 2020 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
2021
2022/* This is how to output a label for a jump table. Arguments are the same as
2023 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2024 passed. */
2025
2026#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2027{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2028
2029/* This is how to store into the string LABEL
2030 the symbol_ref name of an internal numbered label where
2031 PREFIX is the class of label and NUM is the number within the class.
2032 This is suitable for output with `assemble_name'. */
2033
2034#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 2035 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 2036
e247ca2a
RK
2037/* Check a floating-point value for validity for a particular machine mode. */
2038
2039#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2040 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2041
5495cc55
RH
2042/* This is how to output an assembler line defining a `long double'
2043 constant. */
2044
2045#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2046 do { \
2047 long t[4]; \
2048 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2049 fprintf (FILE, "\t.quad 0x%lx%08lx,0x%lx%08lx\n", \
2050 t[1] & 0xffffffff, t[0] & 0xffffffff, \
2051 t[3] & 0xffffffff, t[2] & 0xffffffff); \
2052 } while (0)
2053
1a94ca49
RK
2054/* This is how to output an assembler line defining a `double' constant. */
2055
e99300f1 2056#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
5495cc55
RH
2057 do { \
2058 long t[2]; \
2059 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2060 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2061 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2062 } while (0)
1a94ca49
RK
2063
2064/* This is how to output an assembler line defining a `float' constant. */
2065
e247ca2a
RK
2066#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2067 do { \
2068 long t; \
2069 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2070 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
5495cc55 2071 } while (0)
2700ac93 2072
1a94ca49
RK
2073/* This is how to output an assembler line defining an `int' constant. */
2074
2075#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2076( fprintf (FILE, "\t.long "), \
2077 output_addr_const (FILE, (VALUE)), \
2078 fprintf (FILE, "\n"))
1a94ca49
RK
2079
2080/* This is how to output an assembler line defining a `long' constant. */
2081
2082#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2083( fprintf (FILE, "\t.quad "), \
2084 output_addr_const (FILE, (VALUE)), \
2085 fprintf (FILE, "\n"))
2086
2087/* Likewise for `char' and `short' constants. */
2088
2089#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2090 fprintf (FILE, "\t.word %d\n", \
3c303f52 2091 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2092 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2093
2094#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2095 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2096 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2097 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2098
2099/* We use the default ASCII-output routine, except that we don't write more
2100 than 50 characters since the assembler doesn't support very long lines. */
2101
2102#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2103 do { \
2104 FILE *_hide_asm_out_file = (MYFILE); \
e03c5670 2105 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1a94ca49
RK
2106 int _hide_thissize = (MYLENGTH); \
2107 int _size_so_far = 0; \
2108 { \
2109 FILE *asm_out_file = _hide_asm_out_file; \
e03c5670 2110 const unsigned char *p = _hide_p; \
1a94ca49
RK
2111 int thissize = _hide_thissize; \
2112 int i; \
2113 fprintf (asm_out_file, "\t.ascii \""); \
2114 \
2115 for (i = 0; i < thissize; i++) \
2116 { \
2117 register int c = p[i]; \
2118 \
2119 if (_size_so_far ++ > 50 && i < thissize - 4) \
2120 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2121 \
2122 if (c == '\"' || c == '\\') \
2123 putc ('\\', asm_out_file); \
2124 if (c >= ' ' && c < 0177) \
2125 putc (c, asm_out_file); \
2126 else \
2127 { \
2128 fprintf (asm_out_file, "\\%o", c); \
2129 /* After an octal-escape, if a digit follows, \
2130 terminate one string constant and start another. \
2131 The Vax assembler fails to stop reading the escape \
2132 after three digits, so this is the only way we \
2133 can get it to parse the data properly. */ \
2134 if (i < thissize - 1 \
2135 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2136 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2137 } \
2138 } \
2139 fprintf (asm_out_file, "\"\n"); \
2140 } \
2141 } \
2142 while (0)
52a69200 2143
6690d24c
RH
2144/* To get unaligned data, we have to turn off auto alignment. */
2145#define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word"
2146#define UNALIGNED_INT_ASM_OP ".align 0\n\t.long"
2147#define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad"
2148
1a94ca49
RK
2149/* This is how to output an insn to push a register on the stack.
2150 It need not be very fast code. */
2151
2152#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2153 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2154 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2155 (REGNO) & 31);
2156
2157/* This is how to output an insn to pop a register from the stack.
2158 It need not be very fast code. */
2159
2160#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2161 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2162 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2163 (REGNO) & 31);
2164
2165/* This is how to output an assembler line for a numeric constant byte. */
2166
2167#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2168 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2169
260ced47
RK
2170/* This is how to output an element of a case-vector that is absolute.
2171 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2172
260ced47 2173#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2174
260ced47 2175/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2176
33f7f353 2177#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2178 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2179 (VALUE))
1a94ca49
RK
2180
2181/* This is how to output an assembler line
2182 that says to advance the location counter
2183 to a multiple of 2**LOG bytes. */
2184
2185#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2186 if ((LOG) != 0) \
2187 fprintf (FILE, "\t.align %d\n", LOG);
2188
2189/* This is how to advance the location counter by SIZE bytes. */
2190
2191#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2192 fprintf (FILE, "\t.space %d\n", (SIZE))
2193
2194/* This says how to output an assembler line
2195 to define a global common symbol. */
2196
2197#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2198( fputs ("\t.comm ", (FILE)), \
2199 assemble_name ((FILE), (NAME)), \
2200 fprintf ((FILE), ",%d\n", (SIZE)))
2201
2202/* This says how to output an assembler line
2203 to define a local common symbol. */
2204
2205#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2206( fputs ("\t.lcomm ", (FILE)), \
2207 assemble_name ((FILE), (NAME)), \
2208 fprintf ((FILE), ",%d\n", (SIZE)))
2209
2210/* Store in OUTPUT a string (made with alloca) containing
2211 an assembler-name for a local static variable named NAME.
2212 LABELNO is an integer which is different for each call. */
2213
2214#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2215( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2216 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2217
2218/* Define the parentheses used to group arithmetic operations
2219 in assembler code. */
2220
2221#define ASM_OPEN_PAREN "("
2222#define ASM_CLOSE_PAREN ")"
2223
60593797
RH
2224/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2225 Used for C++ multiple inheritance. */
2226
2227#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2228do { \
e03c5670 2229 const char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2230 int reg; \
60593797 2231 \
acd92049
RH
2232 /* Mark end of prologue. */ \
2233 output_end_prologue (FILE); \
60593797
RH
2234 \
2235 /* Rely on the assembler to macro expand a large delta. */ \
2eecbd3f 2236 fprintf (FILE, "\t.set at\n"); \
54473ca7
L
2237 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2238 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797 2239 \
b1afd7f4
KG
2240 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0), \
2241 VOIDmode)) \
60593797
RH
2242 { \
2243 fprintf (FILE, "\tbr $31,$"); \
2244 assemble_name (FILE, fn_name); \
2245 fprintf (FILE, "..ng\n"); \
2246 } \
2247 else \
2248 { \
acd92049 2249 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2250 assemble_name (FILE, fn_name); \
2251 fputc ('\n', FILE); \
2252 } \
2eecbd3f 2253 fprintf (FILE, "\t.set noat\n"); \
60593797 2254} while (0)
60593797 2255\f
9ec36da5 2256
1a94ca49
RK
2257/* Define results of standard character escape sequences. */
2258#define TARGET_BELL 007
2259#define TARGET_BS 010
2260#define TARGET_TAB 011
2261#define TARGET_NEWLINE 012
2262#define TARGET_VT 013
2263#define TARGET_FF 014
2264#define TARGET_CR 015
2265
2266/* Print operand X (an rtx) in assembler syntax to file FILE.
2267 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2268 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2269
2270#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2271
2272/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2273 not be alphabetic (the characters are chosen so that
2274 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2275 using ASCII).
2276
2277 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2278 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2279 mode. alpha_fprm controls which suffix is generated.
2280
2281 ' Generates trap-mode suffix for instructions that accept the
2282 su suffix only (cmpt et al).
2283
e83015a9
RH
2284 ` Generates trap-mode suffix for instructions that accept the
2285 v and sv suffix. The only instruction that needs this is cvtql.
2286
0022a940
DMT
2287 ( Generates trap-mode suffix for instructions that accept the
2288 v, sv, and svi suffix. The only instruction that needs this
2289 is cvttq.
2290
2bf6230d
RK
2291 ) Generates trap-mode suffix for instructions that accept the
2292 u, su, and sui suffix. This is the bulk of the IEEE floating
2293 point instructions (addt et al).
2294
2295 + Generates trap-mode suffix for instructions that accept the
2296 sui suffix (cvtqt and cvtqs).
e5958492
RK
2297
2298 , Generates single precision suffix for floating point
2299 instructions (s for IEEE, f for VAX)
2300
2301 - Generates double precision suffix for floating point
2302 instructions (t for IEEE, g for VAX)
2bf6230d 2303 */
1a94ca49 2304
2bf6230d 2305#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2306 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2307 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2308\f
2309/* Print a memory address as an operand to reference that memory location. */
2310
714b019c
RH
2311#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2312 print_operand_address((FILE), (ADDR))
2313
1a94ca49
RK
2314/* Define the codes that are matched by predicates in alpha.c. */
2315
e3208d53
RH
2316#define PREDICATE_CODES \
2317 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2318 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2319 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2320 {"cint8_operand", {CONST_INT}}, \
2321 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2322 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2323 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2324 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2325 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2326 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2327 {"mode_mask_operand", {CONST_INT}}, \
2328 {"mul8_operand", {CONST_INT}}, \
2329 {"mode_width_operand", {CONST_INT}}, \
2330 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2331 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2332 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2333 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1eb8759b 2334 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
e3208d53
RH
2335 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2336 {"fp0_operand", {CONST_DOUBLE}}, \
2337 {"current_file_function_operand", {SYMBOL_REF}}, \
2338 {"call_operand", {REG, SYMBOL_REF}}, \
2339 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2340 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2341 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2342 SYMBOL_REF, CONST, LABEL_REF}}, \
f711a22b 2343 {"some_ni_operand", {SUBREG, REG, MEM}}, \
e3208d53
RH
2344 {"aligned_memory_operand", {MEM}}, \
2345 {"unaligned_memory_operand", {MEM}}, \
2346 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2347 {"any_memory_operand", {MEM}}, \
40b80dad 2348 {"hard_fp_register_operand", {SUBREG, REG}}, \
67070f5c 2349 {"reg_not_elim_operand", {SUBREG, REG}}, \
3611aef0
RH
2350 {"reg_no_subreg_operand", {REG}}, \
2351 {"addition_operation", {PLUS}},
03f8c4cc 2352\f
63966b3b
RH
2353/* Define the `__builtin_va_list' type for the ABI. */
2354#define BUILD_VA_LIST_TYPE(VALIST) \
2355 (VALIST) = alpha_build_va_list ()
2356
2357/* Implement `va_start' for varargs and stdarg. */
2358#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2359 alpha_va_start (stdarg, valist, nextarg)
2360
2361/* Implement `va_arg'. */
2362#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2363 alpha_va_arg (valist, type)
2364\f
34fa88ab
RK
2365/* Tell collect that the object format is ECOFF. */
2366#define OBJECT_FORMAT_COFF
2367#define EXTENDED_COFF
2368
2369/* If we use NM, pass -g to it so it only lists globals. */
2370#define NM_FLAGS "-pg"
2371
03f8c4cc
RK
2372/* Definitions for debugging. */
2373
2374#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2375#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2376#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2377
2378#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2379#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2380#endif
2381
2382
2383/* Correct the offset of automatic variables and arguments. Note that
2384 the Alpha debug format wants all automatic variables and arguments
2385 to be in terms of two different offsets from the virtual frame pointer,
2386 which is the stack pointer before any adjustment in the function.
2387 The offset for the argument pointer is fixed for the native compiler,
2388 it is either zero (for the no arguments case) or large enough to hold
2389 all argument registers.
2390 The offset for the auto pointer is the fourth argument to the .frame
2391 directive (local_offset).
2392 To stay compatible with the native tools we use the same offsets
2393 from the virtual frame pointer and adjust the debugger arg/auto offsets
2394 accordingly. These debugger offsets are set up in output_prolog. */
2395
9a0b18f2
RK
2396extern long alpha_arg_offset;
2397extern long alpha_auto_offset;
03f8c4cc
RK
2398#define DEBUGGER_AUTO_OFFSET(X) \
2399 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2400#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2401
2402
2403#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2404 alpha_output_lineno (STREAM, LINE)
03f8c4cc
RK
2405
2406#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2407 alpha_output_filename (STREAM, NAME)
03f8c4cc 2408
4330b0e7
JW
2409/* mips-tfile.c limits us to strings of one page. We must underestimate this
2410 number, because the real length runs past this up to the next
2411 continuation point. This is really a dbxout.c bug. */
2412#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2413
2414/* By default, turn on GDB extensions. */
2415#define DEFAULT_GDB_EXTENSIONS 1
2416
7aadc7c2
RK
2417/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2418#define NO_DBX_FUNCTION_END 1
2419
03f8c4cc
RK
2420/* If we are smuggling stabs through the ALPHA ECOFF object
2421 format, put a comment in front of the .stab<x> operation so
2422 that the ALPHA assembler does not choke. The mips-tfile program
2423 will correctly put the stab into the object file. */
2424
2425#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2426#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2427#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2428
2429/* Forward references to tags are allowed. */
2430#define SDB_ALLOW_FORWARD_REFERENCES
2431
2432/* Unknown tags are also allowed. */
2433#define SDB_ALLOW_UNKNOWN_REFERENCES
2434
2435#define PUT_SDB_DEF(a) \
2436do { \
2437 fprintf (asm_out_file, "\t%s.def\t", \
2438 (TARGET_GAS) ? "" : "#"); \
2439 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2440 fputc (';', asm_out_file); \
2441} while (0)
2442
2443#define PUT_SDB_PLAIN_DEF(a) \
2444do { \
2445 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2446 (TARGET_GAS) ? "" : "#", (a)); \
2447} while (0)
2448
2449#define PUT_SDB_TYPE(a) \
2450do { \
2451 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2452} while (0)
2453
2454/* For block start and end, we create labels, so that
2455 later we can figure out where the correct offset is.
2456 The normal .ent/.end serve well enough for functions,
2457 so those are just commented out. */
2458
2459extern int sdb_label_count; /* block start/end next label # */
2460
2461#define PUT_SDB_BLOCK_START(LINE) \
2462do { \
2463 fprintf (asm_out_file, \
2464 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2465 sdb_label_count, \
2466 (TARGET_GAS) ? "" : "#", \
2467 sdb_label_count, \
2468 (LINE)); \
2469 sdb_label_count++; \
2470} while (0)
2471
2472#define PUT_SDB_BLOCK_END(LINE) \
2473do { \
2474 fprintf (asm_out_file, \
2475 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2476 sdb_label_count, \
2477 (TARGET_GAS) ? "" : "#", \
2478 sdb_label_count, \
2479 (LINE)); \
2480 sdb_label_count++; \
2481} while (0)
2482
2483#define PUT_SDB_FUNCTION_START(LINE)
2484
2485#define PUT_SDB_FUNCTION_END(LINE)
2486
3c303f52 2487#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2488
03f8c4cc
RK
2489/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2490 mips-tdump.c to print them out.
2491
2492 These must match the corresponding definitions in gdb/mipsread.c.
2493 Unfortunately, gcc and gdb do not currently share any directories. */
2494
2495#define CODE_MASK 0x8F300
2496#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2497#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2498#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2499
2500/* Override some mips-tfile definitions. */
2501
2502#define SHASH_SIZE 511
2503#define THASH_SIZE 55
1e6c6f11
RK
2504
2505/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2506
2507#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2508
54190234
JM
2509/* The linker will stick __main into the .init section. */
2510#define HAS_INIT_SECTION
68d69835
JM
2511#define LD_INIT_SWITCH "-init"
2512#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2513
2514/* The system headers under Alpha systems are generally C++-aware. */
2515#define NO_IMPLICIT_EXTERN_C
b517dcd2
RH
2516
2517/* Generate calls to memcpy, etc., not bcopy, etc. */
2518#define TARGET_MEM_FUNCTIONS 1
This page took 1.031761 seconds and 5 git commands to generate.