]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
Disable remaining cmov support just to be safe.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ba3994a 2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
21798cd8 26%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 27%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
28%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
29%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
30%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
31%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
32%{mieee:-D_IEEE_FP} \
33%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
34
35/* Set the spec to use for signed char. The default tests the above macro
36 but DEC's compiler can't handle the conditional in a "constant"
37 operand. */
38
39#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
40
b890f297
JM
41#define WORD_SWITCH_TAKES_ARG(STR) \
42 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
43 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
44 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
45 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
46 || !strcmp (STR, "isystem"))
8877eb00 47
1a94ca49
RK
48/* Print subsidiary information on the compiler version in use. */
49#define TARGET_VERSION
50
1a94ca49
RK
51/* Run-time compilation parameters selecting different hardware subsets. */
52
f6f6a13c
RK
53/* Which processor to schedule for. The cpu attribute defines a list that
54 mirrors this list, so changes to alpha.md must be made at the same time. */
55
56enum processor_type
57 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
58 PROCESSOR_EV5, /* 21164{a,pc,} */
59 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
60
61extern enum processor_type alpha_cpu;
62
2bf6230d
RK
63enum alpha_trap_precision
64{
65 ALPHA_TP_PROG, /* No precision (default). */
66 ALPHA_TP_FUNC, /* Trap contained within originating function. */
67 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
68};
69
70enum alpha_fp_rounding_mode
71{
72 ALPHA_FPRM_NORM, /* Normal rounding mode. */
73 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
74 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
75 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
76};
77
78enum alpha_fp_trap_mode
79{
80 ALPHA_FPTM_N, /* Normal trap mode. */
81 ALPHA_FPTM_U, /* Underflow traps enabled. */
82 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
83 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
84};
85
1a94ca49
RK
86extern int target_flags;
87
2bf6230d
RK
88extern enum alpha_trap_precision alpha_tp;
89extern enum alpha_fp_rounding_mode alpha_fprm;
90extern enum alpha_fp_trap_mode alpha_fptm;
91
1a94ca49
RK
92/* This means that floating-point support exists in the target implementation
93 of the Alpha architecture. This is usually the default. */
94
2bf6230d
RK
95#define MASK_FP 1
96#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
97
98/* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
2bf6230d
RK
102#define MASK_FPREGS 2
103#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
104
105/* This means that gas is used to process the assembler file. */
106
107#define MASK_GAS 4
108#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 109
2bf6230d
RK
110/* This means that we should mark procedures as IEEE conformant. */
111
112#define MASK_IEEE_CONFORMANT 8
113#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115/* This means we should be IEEE-compliant except for inexact. */
116
117#define MASK_IEEE 16
118#define TARGET_IEEE (target_flags & MASK_IEEE)
119
120/* This means we should be fully IEEE-compliant. */
121
122#define MASK_IEEE_WITH_INEXACT 32
123#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
803fee69
RK
125/* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128#define MASK_BUILD_CONSTANTS 128
129#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
e5958492
RK
131/* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134#define MASK_FLOAT_VAX 512
135#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
e9a25f70
JL
137/* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
025f3281 139
e9a25f70
JL
140#define MASK_BWX 1024
141#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 142
e9a25f70
JL
143/* This means that the processor has the CIX extension. */
144#define MASK_CIX 2048
145#define TARGET_CIX (target_flags & MASK_CIX)
146
147/* This means that the processor has the MAX extension. */
148#define MASK_MAX 4096
149#define TARGET_MAX (target_flags & MASK_MAX)
150
151/* This means that the processor is an EV5, EV56, or PCA56. This is defined
152 only in TARGET_CPU_DEFAULT. */
153#define MASK_CPU_EV5 8192
154
155/* Likewise for EV6. */
156#define MASK_CPU_EV6 16384
157
158/* This means we support the .arch directive in the assembler. Only
159 defined in TARGET_CPU_DEFAULT. */
160#define MASK_SUPPORT_ARCH 32768
161#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 162
9ba3994a
RH
163/* These are for target os support and cannot be changed at runtime. */
164#ifndef TARGET_WINDOWS_NT
165#define TARGET_WINDOWS_NT 0
166#endif
167#ifndef TARGET_OPEN_VMS
168#define TARGET_OPEN_VMS 0
169#endif
170
171#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
172#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
173#endif
174
175
1a94ca49
RK
176/* Macro to define tables used to set the flags.
177 This is a list in braces of pairs in braces,
178 each pair being { "NAME", VALUE }
179 where VALUE is the bits to set or minus the bits to clear.
180 An empty string NAME is used to identify the default VALUE. */
181
2bf6230d
RK
182#define TARGET_SWITCHES \
183 { {"no-soft-float", MASK_FP}, \
184 {"soft-float", - MASK_FP}, \
185 {"fp-regs", MASK_FPREGS}, \
186 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
187 {"alpha-as", -MASK_GAS}, \
188 {"gas", MASK_GAS}, \
189 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
190 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
191 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 192 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
193 {"float-vax", MASK_FLOAT_VAX}, \
194 {"float-ieee", -MASK_FLOAT_VAX}, \
e9a25f70
JL
195 {"bwx", MASK_BWX}, \
196 {"no-bwx", -MASK_BWX}, \
197 {"cix", MASK_CIX}, \
198 {"no-cix", -MASK_CIX}, \
199 {"max", MASK_MAX}, \
200 {"no-max", -MASK_MAX}, \
88681624 201 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 202
c01b5470 203#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 204
88681624
ILT
205#ifndef TARGET_CPU_DEFAULT
206#define TARGET_CPU_DEFAULT 0
207#endif
208
2bf6230d
RK
209/* This macro is similar to `TARGET_SWITCHES' but defines names of
210 command options that have values. Its definition is an initializer
211 with a subgrouping for each command option.
212
213 Each subgrouping contains a string constant, that defines the fixed
214 part of the option name, and the address of a variable. The
215 variable, type `char *', is set to the variable part of the given
216 option if the fixed part matches. The actual option name is made
217 by appending `-m' to the specified name.
218
219 Here is an example which defines `-mshort-data-NUMBER'. If the
220 given option is `-mshort-data-512', the variable `m88k_short_data'
221 will be set to the string `"512"'.
222
223 extern char *m88k_short_data;
224 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
225
bcbbac26 226extern char *alpha_cpu_string; /* For -mcpu= */
2bf6230d
RK
227extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
228extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
229extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
bcbbac26 230extern char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d
RK
231
232#define TARGET_OPTIONS \
233{ \
f6f6a13c 234 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
235 {"fp-rounding-mode=", &alpha_fprm_string}, \
236 {"fp-trap-mode=", &alpha_fptm_string}, \
237 {"trap-precision=", &alpha_tp_string}, \
bcbbac26 238 {"memory-latency=", &alpha_mlat_string}, \
2bf6230d
RK
239}
240
241/* Sometimes certain combinations of command options do not make sense
242 on a particular target machine. You can define a macro
243 `OVERRIDE_OPTIONS' to take account of this. This macro, if
244 defined, is executed once just after all the command options have
245 been parsed.
246
247 On the Alpha, it is used to translate target-option strings into
248 numeric values. */
249
250extern void override_options ();
251#define OVERRIDE_OPTIONS override_options ()
252
253
1a94ca49
RK
254/* Define this macro to change register usage conditional on target flags.
255
256 On the Alpha, we use this to disable the floating-point registers when
257 they don't exist. */
258
259#define CONDITIONAL_REGISTER_USAGE \
260 if (! TARGET_FPREGS) \
52a69200 261 for (i = 32; i < 63; i++) \
1a94ca49
RK
262 fixed_regs[i] = call_used_regs[i] = 1;
263
4f074454
RK
264/* Show we can debug even without a frame pointer. */
265#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
266\f
267/* target machine storage layout */
268
2700ac93
RS
269/* Define to enable software floating point emulation. */
270#define REAL_ARITHMETIC
271
861bb6c1
JL
272/* The following #defines are used when compiling the routines in
273 libgcc1.c. Since the Alpha calling conventions require single
274 precision floats to be passed in the floating-point registers
275 (rather than in the general registers) we have to build the
276 libgcc1.c routines in such a way that they know the actual types
277 of their formal arguments and the actual types of their return
278 values. Otherwise, gcc will generate calls to the libgcc1.c
279 routines, passing arguments in the floating-point registers,
280 but the libgcc1.c routines will expect their arguments on the
281 stack (where the Alpha calling conventions require structs &
282 unions to be passed). */
283
284#define FLOAT_VALUE_TYPE double
285#define INTIFY(FLOATVAL) (FLOATVAL)
286#define FLOATIFY(INTVAL) (INTVAL)
287#define FLOAT_ARG_TYPE double
288
1a94ca49
RK
289/* Define the size of `int'. The default is the same as the word size. */
290#define INT_TYPE_SIZE 32
291
292/* Define the size of `long long'. The default is the twice the word size. */
293#define LONG_LONG_TYPE_SIZE 64
294
295/* The two floating-point formats we support are S-floating, which is
296 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
297 and `long double' are T. */
298
299#define FLOAT_TYPE_SIZE 32
300#define DOUBLE_TYPE_SIZE 64
301#define LONG_DOUBLE_TYPE_SIZE 64
302
5258d7ae
RK
303#define WCHAR_TYPE "unsigned int"
304#define WCHAR_TYPE_SIZE 32
1a94ca49 305
13d39dbc 306/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
307 in a wider mode than that declared by the program. In such cases,
308 the value is constrained to be within the bounds of the declared
309 type, but kept valid in the wider mode. The signedness of the
310 extension may differ from that of the type.
311
312 For Alpha, we always store objects in a full register. 32-bit objects
313 are always sign-extended, but smaller objects retain their signedness. */
314
315#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
316 if (GET_MODE_CLASS (MODE) == MODE_INT \
317 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
318 { \
319 if ((MODE) == SImode) \
320 (UNSIGNEDP) = 0; \
321 (MODE) = DImode; \
322 }
323
324/* Define this if function arguments should also be promoted using the above
325 procedure. */
326
327#define PROMOTE_FUNCTION_ARGS
328
329/* Likewise, if the function return value is promoted. */
330
331#define PROMOTE_FUNCTION_RETURN
332
333/* Define this if most significant bit is lowest numbered
334 in instructions that operate on numbered bit-fields.
335
336 There are no such instructions on the Alpha, but the documentation
337 is little endian. */
338#define BITS_BIG_ENDIAN 0
339
340/* Define this if most significant byte of a word is the lowest numbered.
341 This is false on the Alpha. */
342#define BYTES_BIG_ENDIAN 0
343
344/* Define this if most significant word of a multiword number is lowest
345 numbered.
346
347 For Alpha we can decide arbitrarily since there are no machine instructions
348 for them. Might as well be consistent with bytes. */
349#define WORDS_BIG_ENDIAN 0
350
351/* number of bits in an addressable storage unit */
352#define BITS_PER_UNIT 8
353
354/* Width in bits of a "word", which is the contents of a machine register.
355 Note that this is not necessarily the width of data type `int';
356 if using 16-bit ints on a 68000, this would still be 32.
357 But on a machine with 16-bit registers, this would be 16. */
358#define BITS_PER_WORD 64
359
360/* Width of a word, in units (bytes). */
361#define UNITS_PER_WORD 8
362
363/* Width in bits of a pointer.
364 See also the macro `Pmode' defined below. */
365#define POINTER_SIZE 64
366
367/* Allocation boundary (in *bits*) for storing arguments in argument list. */
368#define PARM_BOUNDARY 64
369
370/* Boundary (in *bits*) on which stack pointer should be aligned. */
371#define STACK_BOUNDARY 64
372
373/* Allocation boundary (in *bits*) for the code of a function. */
374#define FUNCTION_BOUNDARY 64
375
376/* Alignment of field after `int : 0' in a structure. */
377#define EMPTY_FIELD_BOUNDARY 64
378
379/* Every structure's size must be a multiple of this. */
380#define STRUCTURE_SIZE_BOUNDARY 8
381
382/* A bitfield declared as `int' forces `int' alignment for the struct. */
383#define PCC_BITFIELD_TYPE_MATTERS 1
384
65823178
RK
385/* Align loop starts for optimal branching.
386
387 ??? Kludge this and the next macro for the moment by not doing anything if
388 we don't optimize and also if we are writing ECOFF symbols to work around
389 a bug in DEC's assembler. */
6c174fc0
RH
390/* Aligning past 2**3 wastes insn cache lines, and doesn't buy much
391 issue-wise on average anyway. */
1a94ca49 392
fc470718
R
393#define LOOP_ALIGN(LABEL) \
394 (optimize > 0 && write_symbols != SDB_DEBUG ? 3 : 0)
1a94ca49
RK
395
396/* This is how to align an instruction for optimal branching.
397 On Alpha we'll get better performance by aligning on a quadword
398 boundary. */
6c174fc0
RH
399/* Aligning past 2**3 wastes insn cache lines, and doesn't buy much
400 issue-wise on average anyway. */
130d2d72 401
fc470718
R
402#define ALIGN_LABEL_AFTER_BARRIER(FILE) \
403 (optimize > 0 && write_symbols != SDB_DEBUG ? 3 : 0)
1a94ca49
RK
404
405/* No data type wants to be aligned rounder than this. */
406#define BIGGEST_ALIGNMENT 64
407
d16fe557
RK
408/* For atomic access to objects, must have at least 32-bit alignment
409 unless the machine has byte operations. */
e9a25f70 410#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 411
442b1685
RK
412/* Align all constants and variables to at least a word boundary so
413 we can pick up pieces of them faster. */
6c174fc0
RH
414/* ??? Only if block-move stuff knows about different source/destination
415 alignment. */
416#if 0
442b1685
RK
417#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
418#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 419#endif
1a94ca49
RK
420
421/* Set this non-zero if move instructions will actually fail to work
422 when given unaligned data.
423
424 Since we get an error message when we do one, call them invalid. */
425
426#define STRICT_ALIGNMENT 1
427
428/* Set this non-zero if unaligned move instructions are extremely slow.
429
430 On the Alpha, they trap. */
130d2d72
RK
431
432#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
433\f
434/* Standard register usage. */
435
436/* Number of actual hardware registers.
437 The hardware registers are assigned numbers for the compiler
438 from 0 to just below FIRST_PSEUDO_REGISTER.
439 All registers that the compiler knows about must be given numbers,
440 even those that are not normally considered general registers.
441
442 We define all 32 integer registers, even though $31 is always zero,
443 and all 32 floating-point registers, even though $f31 is also
444 always zero. We do not bother defining the FP status register and
130d2d72
RK
445 there are no other registers.
446
447 Since $31 is always zero, we will use register number 31 as the
448 argument pointer. It will never appear in the generated code
449 because we will always be eliminating it in favor of the stack
52a69200
RK
450 pointer or hardware frame pointer.
451
452 Likewise, we use $f31 for the frame pointer, which will always
453 be eliminated in favor of the hardware frame pointer or the
454 stack pointer. */
1a94ca49
RK
455
456#define FIRST_PSEUDO_REGISTER 64
457
458/* 1 for registers that have pervasive standard uses
459 and are not available for the register allocator. */
460
461#define FIXED_REGISTERS \
462 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
464 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
466
467/* 1 for registers not available across function calls.
468 These must include the FIXED_REGISTERS and also any
469 registers that can be used without being saved.
470 The latter must include the registers where values are returned
471 and the register where structure-value addresses are passed.
472 Aside from that, you can include as many other registers as you like. */
473#define CALL_USED_REGISTERS \
474 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
476 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
477 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
478
479/* List the order in which to allocate registers. Each register must be
480 listed once, even those in FIXED_REGISTERS.
481
482 We allocate in the following order:
2c4be73e 483 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
484 $f22-$f30 (likewise)
485 $f21-$f16 (likewise, but input args)
486 $f0 (nonsaved, but return value)
2c4be73e 487 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
488 $f2-$f9 (saved floating-point registers)
489 $1-$8 (nonsaved integer registers)
490 $22-$25 (likewise)
491 $28 (likewise)
492 $0 (likewise, but return value)
493 $21-$16 (likewise, but input args)
0076aa6b 494 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
495 $9-$14 (saved integer registers)
496 $26 (return PC)
497 $15 (frame pointer)
498 $29 (global pointer)
52a69200 499 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
500
501#define REG_ALLOC_ORDER \
2c4be73e 502 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
503 54, 55, 56, 57, 58, 59, 60, 61, 62, \
504 53, 52, 51, 50, 49, 48, \
2c4be73e 505 32, 33, \
1a94ca49
RK
506 34, 35, 36, 37, 38, 39, 40, 41, \
507 1, 2, 3, 4, 5, 6, 7, 8, \
508 22, 23, 24, 25, \
509 28, \
510 0, \
511 21, 20, 19, 18, 17, 16, \
512 27, \
513 9, 10, 11, 12, 13, 14, \
514 26, \
515 15, \
516 29, \
517 30, 31, 63 }
518
519/* Return number of consecutive hard regs needed starting at reg REGNO
520 to hold something of mode MODE.
521 This is ordinarily the length in words of a value of mode MODE
522 but can be less for certain modes in special long registers. */
523
524#define HARD_REGNO_NREGS(REGNO, MODE) \
525 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
526
527/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
528 On Alpha, the integer registers can hold any mode. The floating-point
529 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
530 or 8-bit values. If we only allowed the larger integers into FP registers,
531 we'd have to say that QImode and SImode aren't tiable, which is a
532 pain. So say all registers can hold everything and see how that works. */
533
534#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
535
536/* Value is 1 if it is a good idea to tie two pseudo registers
537 when one has mode MODE1 and one has mode MODE2.
538 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
539 for any hard reg, then this must be 0 for correct output. */
540
541#define MODES_TIEABLE_P(MODE1, MODE2) 1
542
543/* Specify the registers used for certain standard purposes.
544 The values of these macros are register numbers. */
545
546/* Alpha pc isn't overloaded on a register that the compiler knows about. */
547/* #define PC_REGNUM */
548
549/* Register to use for pushing function arguments. */
550#define STACK_POINTER_REGNUM 30
551
552/* Base register for access to local variables of the function. */
52a69200 553#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
554
555/* Value should be nonzero if functions must have frame pointers.
556 Zero means the frame pointer need not be set up (and parms
557 may be accessed via the stack pointer) in functions that seem suitable.
558 This is computed in `reload', in reload1.c. */
559#define FRAME_POINTER_REQUIRED 0
560
561/* Base register for access to arguments of the function. */
130d2d72 562#define ARG_POINTER_REGNUM 31
1a94ca49 563
52a69200
RK
564/* Base register for access to local variables of function. */
565#define FRAME_POINTER_REGNUM 63
566
1a94ca49
RK
567/* Register in which static-chain is passed to a function.
568
569 For the Alpha, this is based on an example; the calling sequence
570 doesn't seem to specify this. */
571#define STATIC_CHAIN_REGNUM 1
572
573/* Register in which address to store a structure value
574 arrives in the function. On the Alpha, the address is passed
575 as a hidden argument. */
576#define STRUCT_VALUE 0
577\f
578/* Define the classes of registers for register constraints in the
579 machine description. Also define ranges of constants.
580
581 One of the classes must always be named ALL_REGS and include all hard regs.
582 If there is more than one class, another class must be named NO_REGS
583 and contain no registers.
584
585 The name GENERAL_REGS must be the name of a class (or an alias for
586 another name such as ALL_REGS). This is the class of registers
587 that is allowed by "g" or "r" in a register constraint.
588 Also, registers outside this class are allocated only when
589 instructions express preferences for them.
590
591 The classes must be numbered in nondecreasing order; that is,
592 a larger-numbered class must never be contained completely
593 in a smaller-numbered class.
594
595 For any two classes, it is very desirable that there be another
596 class that represents their union. */
597
598enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
599 LIM_REG_CLASSES };
600
601#define N_REG_CLASSES (int) LIM_REG_CLASSES
602
603/* Give names of register classes as strings for dump file. */
604
605#define REG_CLASS_NAMES \
606 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
607
608/* Define which registers fit in which classes.
609 This is an initializer for a vector of HARD_REG_SET
610 of length N_REG_CLASSES. */
611
612#define REG_CLASS_CONTENTS \
52a69200 613 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
614
615/* The same information, inverted:
616 Return the class number of the smallest class containing
617 reg number REGNO. This could be a conditional expression
618 or could index an array. */
619
52a69200
RK
620#define REGNO_REG_CLASS(REGNO) \
621 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
622
623/* The class value for index registers, and the one for base regs. */
624#define INDEX_REG_CLASS NO_REGS
625#define BASE_REG_CLASS GENERAL_REGS
626
627/* Get reg_class from a letter such as appears in the machine description. */
628
629#define REG_CLASS_FROM_LETTER(C) \
630 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
631
632/* Define this macro to change register usage conditional on target flags. */
633/* #define CONDITIONAL_REGISTER_USAGE */
634
635/* The letters I, J, K, L, M, N, O, and P in a register constraint string
636 can be used to stand for particular ranges of immediate operands.
637 This macro defines what the ranges are.
638 C is the letter, and VALUE is a constant value.
639 Return 1 if VALUE is in the range specified by C.
640
641 For Alpha:
642 `I' is used for the range of constants most insns can contain.
643 `J' is the constant zero.
644 `K' is used for the constant in an LDA insn.
645 `L' is used for the constant in a LDAH insn.
646 `M' is used for the constants that can be AND'ed with using a ZAP insn.
647 `N' is used for complemented 8-bit constants.
648 `O' is used for negated 8-bit constants.
649 `P' is used for the constants 1, 2 and 3. */
650
651#define CONST_OK_FOR_LETTER_P(VALUE, C) \
652 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
653 : (C) == 'J' ? (VALUE) == 0 \
654 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
655 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 656 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
657 : (C) == 'M' ? zap_mask (VALUE) \
658 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
659 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
660 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
661 : 0)
662
663/* Similar, but for floating or large integer constants, and defining letters
664 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
665
666 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
667 that is the operand of a ZAP insn. */
668
669#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
670 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
671 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
672 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
673 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
674 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
675 : 0)
676
e560f226
RK
677/* Optional extra constraints for this machine.
678
679 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
680 reference to an unaligned location.
681 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
682 function. */
e560f226
RK
683
684#define EXTRA_CONSTRAINT(OP, C) \
685 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 686 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
687 : 0)
688
1a94ca49
RK
689/* Given an rtx X being reloaded into a reg required to be
690 in class CLASS, return the class of reg to actually use.
691 In general this is just CLASS; but on some machines
692 in some cases it is preferable to use a more restrictive class.
693
694 On the Alpha, all constants except zero go into a floating-point
695 register via memory. */
696
697#define PREFERRED_RELOAD_CLASS(X, CLASS) \
698 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 699 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
700 : (CLASS))
701
702/* Loading and storing HImode or QImode values to and from memory
703 usually requires a scratch register. The exceptions are loading
e008606e
RK
704 QImode and HImode from an aligned address to a general register
705 unless byte instructions are permitted.
ddd5a7c1 706 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 707 FP register. */
1a94ca49
RK
708
709#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
710(((GET_CODE (IN) == MEM \
711 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
712 || (GET_CODE (IN) == SUBREG \
713 && (GET_CODE (SUBREG_REG (IN)) == MEM \
714 || (GET_CODE (SUBREG_REG (IN)) == REG \
715 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
716 && (((CLASS) == FLOAT_REGS \
717 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
718 || (((MODE) == QImode || (MODE) == HImode) \
e9a25f70 719 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
720 ? GENERAL_REGS \
721 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
722 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
723 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
724 && (GET_MODE_SIZE (GET_MODE (IN)) \
725 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 726 : NO_REGS)
1a94ca49
RK
727
728#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
729(((GET_CODE (OUT) == MEM \
730 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
731 || (GET_CODE (OUT) == SUBREG \
732 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
733 || (GET_CODE (SUBREG_REG (OUT)) == REG \
734 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
735 && ((((MODE) == HImode || (MODE) == QImode) \
736 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
737 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
738 ? GENERAL_REGS \
739 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
740 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
741 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
742 && (GET_MODE_SIZE (GET_MODE (OUT)) \
743 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
744 : NO_REGS)
1a94ca49
RK
745
746/* If we are copying between general and FP registers, we need a memory
e9a25f70 747 location unless the CIX extension is available. */
1a94ca49 748
e9a25f70
JL
749#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
750 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 751
acd94aaf
RK
752/* Specify the mode to be used for memory when a secondary memory
753 location is needed. If MODE is floating-point, use it. Otherwise,
754 widen to a word like the default. This is needed because we always
755 store integers in FP registers in quadword format. This whole
756 area is very tricky! */
757#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
758 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 759 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
760 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
761
1a94ca49
RK
762/* Return the maximum number of consecutive registers
763 needed to represent mode MODE in a register of class CLASS. */
764
765#define CLASS_MAX_NREGS(CLASS, MODE) \
766 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
767
c31dfe4d
RK
768/* If defined, gives a class of registers that cannot be used as the
769 operand of a SUBREG that changes the size of the object. */
770
771#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
772
1a94ca49
RK
773/* Define the cost of moving between registers of various classes. Moving
774 between FLOAT_REGS and anything else except float regs is expensive.
775 In fact, we make it quite expensive because we really don't want to
776 do these moves unless it is clearly worth it. Optimizations may
777 reduce the impact of not being able to allocate a pseudo to a
778 hard register. */
779
71d9b493
RH
780#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
781 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
782 ? 2 \
783 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
784
785/* A C expressions returning the cost of moving data of MODE from a register to
786 or from memory.
787
788 On the Alpha, bump this up a bit. */
789
bcbbac26 790extern int alpha_memory_latency;
cbd5b9a2 791#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
792
793/* Provide the cost of a branch. Exact meaning under development. */
794#define BRANCH_COST 5
795
796/* Adjust the cost of dependencies. */
797
798#define ADJUST_COST(INSN,LINK,DEP,COST) \
799 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
800\f
801/* Stack layout; function entry, exit and calling. */
802
803/* Define this if pushing a word on the stack
804 makes the stack pointer a smaller address. */
805#define STACK_GROWS_DOWNWARD
806
807/* Define this if the nominal address of the stack frame
808 is at the high-address end of the local variables;
809 that is, each additional local variable allocated
810 goes at a more negative offset in the frame. */
130d2d72 811/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
812
813/* Offset within stack frame to start allocating local variables at.
814 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
815 first local allocated. Otherwise, it is the offset to the BEGINNING
816 of the first local allocated. */
817
52a69200 818#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
819
820/* If we generate an insn to push BYTES bytes,
821 this says how many the stack pointer really advances by.
822 On Alpha, don't define this because there are no push insns. */
823/* #define PUSH_ROUNDING(BYTES) */
824
e008606e
RK
825/* Define this to be nonzero if stack checking is built into the ABI. */
826#define STACK_CHECK_BUILTIN 1
827
1a94ca49
RK
828/* Define this if the maximum size of all the outgoing args is to be
829 accumulated and pushed during the prologue. The amount can be
830 found in the variable current_function_outgoing_args_size. */
831#define ACCUMULATE_OUTGOING_ARGS
832
833/* Offset of first parameter from the argument pointer register value. */
834
130d2d72 835#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
836
837/* Definitions for register eliminations.
838
978e8952 839 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 840 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
841 pointer register. Secondly, the argument pointer register can always be
842 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
843
844/* This is an array of structures. Each structure initializes one pair
845 of eliminable registers. The "from" register number is given first,
846 followed by "to". Eliminations of the same "from" register are listed
847 in order of preference. */
848
52a69200
RK
849#define ELIMINABLE_REGS \
850{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
851 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
852 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
853 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
854
855/* Given FROM and TO register numbers, say whether this elimination is allowed.
856 Frame pointer elimination is automatically handled.
857
130d2d72 858 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
859 eliminated are already handled. */
860
130d2d72 861#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 862
52a69200
RK
863/* Round up to a multiple of 16 bytes. */
864#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
865
1a94ca49
RK
866/* Define the offset between two registers, one to be eliminated, and the other
867 its replacement, at the start of a routine. */
868#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
869{ if ((FROM) == FRAME_POINTER_REGNUM) \
870 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
871 + alpha_sa_size ()); \
872 else if ((FROM) == ARG_POINTER_REGNUM) \
873 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
874 + alpha_sa_size () \
d772039b
RK
875 + (ALPHA_ROUND (get_frame_size () \
876 + current_function_pretend_args_size) \
877 - current_function_pretend_args_size)); \
1a94ca49
RK
878}
879
880/* Define this if stack space is still allocated for a parameter passed
881 in a register. */
882/* #define REG_PARM_STACK_SPACE */
883
884/* Value is the number of bytes of arguments automatically
885 popped when returning from a subroutine call.
8b109b37 886 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
887 FUNTYPE is the data type of the function (as a tree),
888 or for a library call it is an identifier node for the subroutine name.
889 SIZE is the number of bytes of arguments passed on the stack. */
890
8b109b37 891#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
892
893/* Define how to find the value returned by a function.
894 VALTYPE is the data type of the value (as a tree).
895 If the precise function being called is known, FUNC is its FUNCTION_DECL;
896 otherwise, FUNC is 0.
897
898 On Alpha the value is found in $0 for integer functions and
899 $f0 for floating-point functions. */
900
901#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492 902 gen_rtx (REG, \
956d6950
JL
903 ((INTEGRAL_TYPE_P (VALTYPE) \
904 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
905 || POINTER_TYPE_P (VALTYPE)) \
e5958492
RK
906 ? word_mode : TYPE_MODE (VALTYPE), \
907 ((TARGET_FPREGS \
908 && (TREE_CODE (VALTYPE) == REAL_TYPE \
909 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
910 ? 32 : 0))
1a94ca49
RK
911
912/* Define how to find the value returned by a library function
913 assuming the value has mode MODE. */
914
915#define LIBCALL_VALUE(MODE) \
e5958492
RK
916 gen_rtx (REG, MODE, \
917 (TARGET_FPREGS \
918 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
919 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
920 ? 32 : 0))
1a94ca49 921
130d2d72
RK
922/* The definition of this macro implies that there are cases where
923 a scalar value cannot be returned in registers.
924
925 For the Alpha, any structure or union type is returned in memory, as
926 are integers whose size is larger than 64 bits. */
927
928#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 929 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
930 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
931
1a94ca49
RK
932/* 1 if N is a possible register number for a function value
933 as seen by the caller. */
934
e5958492
RK
935#define FUNCTION_VALUE_REGNO_P(N) \
936 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
937
938/* 1 if N is a possible register number for function argument passing.
939 On Alpha, these are $16-$21 and $f16-$f21. */
940
941#define FUNCTION_ARG_REGNO_P(N) \
942 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
943\f
944/* Define a data type for recording info about an argument list
945 during the scan of that argument list. This data type should
946 hold all necessary information about the function itself
947 and about the args processed so far, enough to enable macros
948 such as FUNCTION_ARG to determine where the next arg should go.
949
950 On Alpha, this is a single integer, which is a number of words
951 of arguments scanned so far.
952 Thus 6 or more means all following args should go on the stack. */
953
954#define CUMULATIVE_ARGS int
955
956/* Initialize a variable CUM of type CUMULATIVE_ARGS
957 for a call to a function whose data type is FNTYPE.
958 For a library call, FNTYPE is 0. */
959
2c7ee1a6 960#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
961
962/* Define intermediate macro to compute the size (in registers) of an argument
963 for the Alpha. */
964
965#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
966((MODE) != BLKmode \
967 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
968 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
969
970/* Update the data in CUM to advance over an argument
971 of mode MODE and data type TYPE.
972 (TYPE is null for libcalls where that information may not be available.) */
973
974#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
975 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
976 (CUM) = 6; \
977 else \
978 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
979
980/* Determine where to put an argument to a function.
981 Value is zero to push the argument on the stack,
982 or a hard register in which to store the argument.
983
984 MODE is the argument's machine mode.
985 TYPE is the data type of the argument (as a tree).
986 This is null for libcalls where that information may
987 not be available.
988 CUM is a variable of type CUMULATIVE_ARGS which gives info about
989 the preceding args and about the function being called.
990 NAMED is nonzero if this argument is a named parameter
991 (otherwise it is an extra parameter matching an ellipsis).
992
993 On Alpha the first 6 words of args are normally in registers
994 and the rest are pushed. */
995
996#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
997((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
998 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
999 (CUM) + 16 + ((TARGET_FPREGS \
1000 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1001 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1002 * 32)) \
1003 : 0)
1a94ca49 1004
1a94ca49
RK
1005/* Specify the padding direction of arguments.
1006
1007 On the Alpha, we must pad upwards in order to be able to pass args in
1008 registers. */
1009
1010#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1011
1012/* For an arg passed partly in registers and partly in memory,
1013 this is the number of registers used.
1014 For args passed entirely in registers or entirely in memory, zero. */
1015
1016#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1017((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1018 ? 6 - (CUM) : 0)
1019
130d2d72
RK
1020/* Perform any needed actions needed for a function that is receiving a
1021 variable number of arguments.
1022
1023 CUM is as above.
1024
1025 MODE and TYPE are the mode and type of the current parameter.
1026
1027 PRETEND_SIZE is a variable that should be set to the amount of stack
1028 that must be pushed by the prolog to pretend that our caller pushed
1029 it.
1030
1031 Normally, this macro will push all remaining incoming registers on the
1032 stack and set PRETEND_SIZE to the length of the registers pushed.
1033
1034 On the Alpha, we allocate space for all 12 arg registers, but only
1035 push those that are remaining.
1036
1037 However, if NO registers need to be saved, don't allocate any space.
1038 This is not only because we won't need the space, but because AP includes
1039 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1040 ap-relative addresses already made.
1041
1042 If we are not to use the floating-point registers, save the integer
1043 registers where we would put the floating-point registers. This is
1044 not the most efficient way to implement varargs with just one register
1045 class, but it isn't worth doing anything more efficient in this rare
1046 case. */
1047
130d2d72
RK
1048
1049#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1050{ if ((CUM) < 6) \
1051 { \
1052 if (! (NO_RTL)) \
1053 { \
1054 move_block_from_reg \
1055 (16 + CUM, \
1056 gen_rtx (MEM, BLKmode, \
1057 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1058 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1059 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1060 move_block_from_reg \
7a92339b 1061 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1062 gen_rtx (MEM, BLKmode, \
1063 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1064 (CUM) * UNITS_PER_WORD)), \
02892e06 1065 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1066 emit_insn (gen_blockage ()); \
130d2d72
RK
1067 } \
1068 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1069 } \
1070}
1071
c8e9adec
RK
1072/* Try to output insns to set TARGET equal to the constant C if it can be
1073 done in less than N insns. Do all computations in MODE. Returns the place
1074 where the output has been placed if it can be done and the insns have been
1075 emitted. If it would take more than N insns, zero is returned and no
1076 insns and emitted. */
1077extern struct rtx_def *alpha_emit_set_const ();
803fee69 1078extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1079extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1080extern struct rtx_def *alpha_emit_conditional_move ();
1081
1a94ca49
RK
1082/* Generate necessary RTL for __builtin_saveregs().
1083 ARGLIST is the argument list; see expr.c. */
1084extern struct rtx_def *alpha_builtin_saveregs ();
1085#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1086
1087/* Define the information needed to generate branch and scc insns. This is
1088 stored from the compare operation. Note that we can't use "rtx" here
1089 since it hasn't been defined! */
1090
1091extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1092extern int alpha_compare_fp_p;
1093
e5958492
RK
1094/* Make (or fake) .linkage entry for function call.
1095
1096 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1097extern void alpha_need_linkage ();
1098
bcbbac26
RH
1099/* This macro defines the start of an assembly comment. */
1100
1101#define ASM_COMMENT_START " #"
1102
1a94ca49 1103/* This macro produces the initial definition of a function name. On the
03f8c4cc 1104 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
1105
1106extern char *alpha_function_name;
1107
1108#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 1109{ \
1a94ca49
RK
1110 alpha_function_name = NAME; \
1111}
1112
1113/* This macro generates the assembly code for function entry.
1114 FILE is a stdio stream to output the code to.
1115 SIZE is an int: how many units of temporary storage to allocate.
1116 Refer to the array `regs_ever_live' to determine which registers
1117 to save; `regs_ever_live[I]' is nonzero if register number I
1118 is ever used in the function. This macro is responsible for
1119 knowing which registers should not be saved even if used. */
1120
1121#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1122
1123/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1124 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1125 by simply passing -pg to the assembler and linker. */
85d159a3 1126
e0fb9029 1127#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1128
1129/* Output assembler code to FILE to initialize this source file's
1130 basic block profiling info, if that has not already been done.
1131 This assumes that __bb_init_func doesn't garble a1-a5. */
1132
1133#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1134 do { \
1135 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1136 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1137 fputs ("\tldq $26,0($16)\n", (FILE)); \
1138 fputs ("\tbne $26,1f\n", (FILE)); \
1139 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1140 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1141 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1142 fputs ("1:\n", (FILE)); \
85d159a3
RK
1143 ASM_OUTPUT_REG_POP (FILE, 16); \
1144 } while (0);
1145
1146/* Output assembler code to FILE to increment the entry-count for
1147 the BLOCKNO'th basic block in this source file. */
1148
1149#define BLOCK_PROFILER(FILE, BLOCKNO) \
1150 do { \
1151 int blockn = (BLOCKNO); \
a62eb16f 1152 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1153 fputs ("\tstq $26,0($30)\n", (FILE)); \
1154 fputs ("\tstq $27,8($30)\n", (FILE)); \
1155 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1156 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1157 fputs ("\taddq $27,1,$27\n", (FILE)); \
1158 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1159 fputs ("\tldq $26,0($30)\n", (FILE)); \
1160 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1161 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1162 } while (0)
1a94ca49 1163
1a94ca49
RK
1164
1165/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1166 the stack pointer does not matter. The value is tested only in
1167 functions that have frame pointers.
1168 No definition is equivalent to always zero. */
1169
1170#define EXIT_IGNORE_STACK 1
1171
1172/* This macro generates the assembly code for function exit,
1173 on machines that need it. If FUNCTION_EPILOGUE is not defined
1174 then individual return instructions are generated for each
1175 return statement. Args are same as for FUNCTION_PROLOGUE.
1176
1177 The function epilogue should not depend on the current stack pointer!
1178 It should use the frame pointer only. This is mandatory because
1179 of alloca; we also take advantage of it to omit stack adjustments
1180 before returning. */
1181
1182#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1183
1184\f
1185/* Output assembler code for a block containing the constant parts
1186 of a trampoline, leaving space for the variable parts.
1187
1188 The trampoline should set the static chain pointer to value placed
7981384f
RK
1189 into the trampoline and should branch to the specified routine.
1190 Note that $27 has been set to the address of the trampoline, so we can
1191 use it for addressability of the two data items. Trampolines are always
1192 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1193
1194#define TRAMPOLINE_TEMPLATE(FILE) \
1195{ \
7981384f 1196 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1197 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1198 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1199 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1200 fprintf (FILE, "\t.quad 0,0\n"); \
1201}
1202
3a523eeb
RS
1203/* Section in which to place the trampoline. On Alpha, instructions
1204 may only be placed in a text segment. */
1205
1206#define TRAMPOLINE_SECTION text_section
1207
1a94ca49
RK
1208/* Length in units of the trampoline for entering a nested function. */
1209
7981384f 1210#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1211
1212/* Emit RTL insns to initialize the variable parts of a trampoline.
1213 FNADDR is an RTX for the address of the function's pure code.
1214 CXT is an RTX for the static chain value for the function. We assume
1215 here that a function will be called many more times than its address
1216 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1217 to initialize the "hint" field in the JMP insn. Note that the hint
1218 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1219
1220#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1221{ \
1222 rtx _temp, _temp1, _addr; \
1223 \
1224 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1225 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1226 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1227 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1228 \
7981384f
RK
1229 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1230 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1231 OPTAB_WIDEN); \
1232 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1233 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1234 _temp = expand_and (gen_lowpart (SImode, _temp), \
1235 GEN_INT (0x3fff), 0); \
1a94ca49 1236 \
7981384f 1237 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1238 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1239 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1240 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1241 OPTAB_WIDEN); \
1242 \
1243 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1244 \
1245 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1246 "__enable_execute_stack"), \
1247 0, VOIDmode, 1,_addr, Pmode); \
1248 \
1249 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1250 gen_rtvec (1, const0_rtx), 0)); \
1251}
1252
1253/* Attempt to turn on access permissions for the stack. */
1254
1255#define TRANSFER_FROM_TRAMPOLINE \
1256 \
1257void \
1258__enable_execute_stack (addr) \
1259 void *addr; \
1260{ \
1261 long size = getpagesize (); \
1262 long mask = ~(size-1); \
1263 char *page = (char *) (((long) addr) & mask); \
1264 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1265 \
1266 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1267 if (mprotect (page, end - page, 7) < 0) \
1268 perror ("mprotect of trampoline code"); \
1a94ca49 1269}
675f0e7c
RK
1270
1271/* A C expression whose value is RTL representing the value of the return
1272 address for the frame COUNT steps up from the current frame.
1273 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
9ecc37f0 1274 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined. */
675f0e7c 1275
9ecc37f0
RH
1276#define RETURN_ADDR_RTX alpha_return_addr
1277extern struct rtx_def *alpha_return_addr ();
1278
1279/* Initialize data used by insn expanders. This is called from insn_emit,
1280 once for every function before code is generated. */
1281
1282#define INIT_EXPANDERS alpha_init_expanders ()
1283extern void alpha_init_expanders ();
675f0e7c 1284
675f0e7c 1285\f
1a94ca49
RK
1286/* Addressing modes, and classification of registers for them. */
1287
1288/* #define HAVE_POST_INCREMENT */
1289/* #define HAVE_POST_DECREMENT */
1290
1291/* #define HAVE_PRE_DECREMENT */
1292/* #define HAVE_PRE_INCREMENT */
1293
1294/* Macros to check register numbers against specific register classes. */
1295
1296/* These assume that REGNO is a hard or pseudo reg number.
1297 They give nonzero only if REGNO is a hard reg of the suitable class
1298 or a pseudo reg currently allocated to a suitable hard reg.
1299 Since they use reg_renumber, they are safe only once reg_renumber
1300 has been allocated, which happens in local-alloc.c. */
1301
1302#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1303#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1304((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1305 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1306\f
1307/* Maximum number of registers that can appear in a valid memory address. */
1308#define MAX_REGS_PER_ADDRESS 1
1309
1310/* Recognize any constant value that is a valid address. For the Alpha,
1311 there are only constants none since we want to use LDA to load any
1312 symbolic addresses into registers. */
1313
1314#define CONSTANT_ADDRESS_P(X) \
1315 (GET_CODE (X) == CONST_INT \
1316 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1317
1318/* Include all constant integers and constant doubles, but not
1319 floating-point, except for floating-point zero. */
1320
1321#define LEGITIMATE_CONSTANT_P(X) \
1322 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1323 || (X) == CONST0_RTX (GET_MODE (X)))
1324
1325/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1326 and check its validity for a certain class.
1327 We have two alternate definitions for each of them.
1328 The usual definition accepts all pseudo regs; the other rejects
1329 them unless they have been allocated suitable hard regs.
1330 The symbol REG_OK_STRICT causes the latter definition to be used.
1331
1332 Most source files want to accept pseudo regs in the hope that
1333 they will get allocated to the class that the insn wants them to be in.
1334 Source files for reload pass need to be strict.
1335 After reload, it makes no difference, since pseudo regs have
1336 been eliminated by then. */
1337
1338#ifndef REG_OK_STRICT
1339
1340/* Nonzero if X is a hard reg that can be used as an index
1341 or if it is a pseudo reg. */
1342#define REG_OK_FOR_INDEX_P(X) 0
1343/* Nonzero if X is a hard reg that can be used as a base reg
1344 or if it is a pseudo reg. */
1345#define REG_OK_FOR_BASE_P(X) \
52a69200 1346 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1347
1348#else
1349
1350/* Nonzero if X is a hard reg that can be used as an index. */
1351#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1352/* Nonzero if X is a hard reg that can be used as a base reg. */
1353#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1354
1355#endif
1356\f
1357/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1358 that is a valid memory address for an instruction.
1359 The MODE argument is the machine mode for the MEM expression
1360 that wants to use this address.
1361
1362 For Alpha, we have either a constant address or the sum of a register
1363 and a constant address, or just a register. For DImode, any of those
1364 forms can be surrounded with an AND that clear the low-order three bits;
1365 this is an "unaligned" access.
1366
1a94ca49
RK
1367 First define the basic valid address. */
1368
1369#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1370{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1371 goto ADDR; \
1372 if (CONSTANT_ADDRESS_P (X)) \
1373 goto ADDR; \
1374 if (GET_CODE (X) == PLUS \
1375 && REG_P (XEXP (X, 0)) \
1376 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1377 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1378 goto ADDR; \
1379}
1380
1381/* Now accept the simple address, or, for DImode only, an AND of a simple
1382 address that turns off the low three bits. */
1383
1a94ca49
RK
1384#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1385{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1386 if ((MODE) == DImode \
1387 && GET_CODE (X) == AND \
1388 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1389 && INTVAL (XEXP (X, 1)) == -8) \
1390 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1391}
1392
1393/* Try machine-dependent ways of modifying an illegitimate address
1394 to be legitimate. If we find one, return the new, valid address.
1395 This macro is used in only one place: `memory_address' in explow.c.
1396
1397 OLDX is the address as it was before break_out_memory_refs was called.
1398 In some cases it is useful to look at this to decide what needs to be done.
1399
1400 MODE and WIN are passed so that this macro can use
1401 GO_IF_LEGITIMATE_ADDRESS.
1402
1403 It is always safe for this macro to do nothing. It exists to recognize
1404 opportunities to optimize the output.
1405
1406 For the Alpha, there are three cases we handle:
1407
1408 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1409 valid offset, compute the high part of the constant and add it to the
1410 register. Then our address is (plus temp low-part-const).
1411 (2) If the address is (const (plus FOO const_int)), find the low-order
1412 part of the CONST_INT. Then load FOO plus any high-order part of the
1413 CONST_INT into a register. Our address is (plus reg low-part-const).
1414 This is done to reduce the number of GOT entries.
1415 (3) If we have a (plus reg const), emit the load as in (2), then add
1416 the two registers, and finally generate (plus reg low-part-const) as
1417 our address. */
1418
1419#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1420{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1421 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1422 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1423 { \
1424 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1425 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1426 HOST_WIDE_INT highpart = val - lowpart; \
1427 rtx high = GEN_INT (highpart); \
1428 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1429 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1430 \
1431 (X) = plus_constant (temp, lowpart); \
1432 goto WIN; \
1433 } \
1434 else if (GET_CODE (X) == CONST \
1435 && GET_CODE (XEXP (X, 0)) == PLUS \
1436 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1437 { \
1438 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1439 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1440 HOST_WIDE_INT highpart = val - lowpart; \
1441 rtx high = XEXP (XEXP (X, 0), 0); \
1442 \
1443 if (highpart) \
1444 high = plus_constant (high, highpart); \
1445 \
1446 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1447 goto WIN; \
1448 } \
1449 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1450 && GET_CODE (XEXP (X, 1)) == CONST \
1451 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1452 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1453 { \
1454 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1455 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1456 HOST_WIDE_INT highpart = val - lowpart; \
1457 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1458 \
1459 if (highpart) \
1460 high = plus_constant (high, highpart); \
1461 \
1462 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1463 force_reg (Pmode, high), \
80f251fe 1464 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1465 (X) = plus_constant (high, lowpart); \
1466 goto WIN; \
1467 } \
1468}
1469
a9a2595b
JR
1470/* Try a machine-dependent way of reloading an illegitimate address
1471 operand. If we find one, push the reload and jump to WIN. This
1472 macro is used in only one place: `find_reloads_address' in reload.c.
1473
1474 For the Alpha, we wish to handle large displacements off a base
1475 register by splitting the addend across an ldah and the mem insn.
1476 This cuts number of extra insns needed from 3 to 1. */
1477
1478#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1479do { \
1480 if (GET_CODE (X) == PLUS \
1481 && GET_CODE (XEXP (X, 0)) == REG \
1482 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1483 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1484 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1485 { \
1486 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1487 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1488 HOST_WIDE_INT high \
1489 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1490 \
1491 /* Check for 32-bit overflow. */ \
1492 if (high + low != val) \
1493 break; \
1494 \
1495 /* Reload the high part into a base reg; leave the low part \
1496 in the mem directly. */ \
1497 \
1498 X = gen_rtx_PLUS (GET_MODE (X), \
1499 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1500 GEN_INT (high)), \
1501 GEN_INT (low)); \
1502 \
1503 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1504 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1505 OPNUM, TYPE); \
1506 goto WIN; \
1507 } \
1508} while (0)
1509
1a94ca49
RK
1510/* Go to LABEL if ADDR (a legitimate address expression)
1511 has an effect that depends on the machine mode it is used for.
1512 On the Alpha this is true only for the unaligned modes. We can
1513 simplify this test since we know that the address must be valid. */
1514
1515#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1516{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1517
1518/* Compute the cost of an address. For the Alpha, all valid addresses are
1519 the same cost. */
1520
1521#define ADDRESS_COST(X) 0
1522
2ea844d3
RH
1523/* Machine-dependent reorg pass. */
1524#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1525\f
1526/* Specify the machine mode that this machine uses
1527 for the index in the tablejump instruction. */
1528#define CASE_VECTOR_MODE SImode
1529
18543a22
ILT
1530/* Define as C expression which evaluates to nonzero if the tablejump
1531 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1532 table.
b0435cf4 1533
3aa9d5b6 1534 Do not define this if the table should contain absolute addresses.
260ced47
RK
1535 On the Alpha, the table is really GP-relative, not relative to the PC
1536 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1537 but we should try to find some better way sometime. */
18543a22 1538#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1539
1540/* Specify the tree operation to be used to convert reals to integers. */
1541#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1542
1543/* This is the kind of divide that is easiest to do in the general case. */
1544#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1545
1546/* Define this as 1 if `char' should by default be signed; else as 0. */
1547#define DEFAULT_SIGNED_CHAR 1
1548
1549/* This flag, if defined, says the same insns that convert to a signed fixnum
1550 also convert validly to an unsigned one.
1551
1552 We actually lie a bit here as overflow conditions are different. But
1553 they aren't being checked anyway. */
1554
1555#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1556
1557/* Max number of bytes we can move to or from memory
1558 in one reasonably fast instruction. */
1559
1560#define MOVE_MAX 8
1561
6c174fc0
RH
1562/* Controls how many units are moved by expr.c before resorting to movstr.
1563 Without byte/word accesses, we want no more than one; with, several single
1564 byte accesses are better. */
1565
1566#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1567
1a94ca49
RK
1568/* Largest number of bytes of an object that can be placed in a register.
1569 On the Alpha we have plenty of registers, so use TImode. */
1570#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1571
1572/* Nonzero if access to memory by bytes is no faster than for words.
1573 Also non-zero if doing byte operations (specifically shifts) in registers
1574 is undesirable.
1575
1576 On the Alpha, we want to not use the byte operation and instead use
1577 masking operations to access fields; these will save instructions. */
1578
1579#define SLOW_BYTE_ACCESS 1
1580
9a63901f
RK
1581/* Define if operations between registers always perform the operation
1582 on the full register even if a narrower mode is specified. */
1583#define WORD_REGISTER_OPERATIONS
1584
1585/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1586 will either zero-extend or sign-extend. The value of this macro should
1587 be the code that says which one of the two operations is implicitly
1588 done, NIL if none. */
b7747781 1589#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1590
225211e2
RK
1591/* Define if loading short immediate values into registers sign extends. */
1592#define SHORT_IMMEDIATES_SIGN_EXTEND
1593
1a94ca49
RK
1594/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1595 is done just by pretending it is already truncated. */
1596#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1597
1598/* We assume that the store-condition-codes instructions store 0 for false
1599 and some other value for true. This is the value stored for true. */
1600
1601#define STORE_FLAG_VALUE 1
1602
1603/* Define the value returned by a floating-point comparison instruction. */
1604
e9a25f70 1605#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1606
35bb77fd
RK
1607/* Canonicalize a comparison from one we don't have to one we do have. */
1608
1609#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1610 do { \
1611 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1612 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1613 { \
1614 rtx tem = (OP0); \
1615 (OP0) = (OP1); \
1616 (OP1) = tem; \
1617 (CODE) = swap_condition (CODE); \
1618 } \
1619 if (((CODE) == LT || (CODE) == LTU) \
1620 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1621 { \
1622 (CODE) = (CODE) == LT ? LE : LEU; \
1623 (OP1) = GEN_INT (255); \
1624 } \
1625 } while (0)
1626
1a94ca49
RK
1627/* Specify the machine mode that pointers have.
1628 After generation of rtl, the compiler makes no further distinction
1629 between pointers and any other objects of this machine mode. */
1630#define Pmode DImode
1631
1632/* Mode of a function address in a call instruction (for indexing purposes). */
1633
1634#define FUNCTION_MODE Pmode
1635
1636/* Define this if addresses of constant functions
1637 shouldn't be put through pseudo regs where they can be cse'd.
1638 Desirable on machines where ordinary constants are expensive
1639 but a CALL with constant address is cheap.
1640
1641 We define this on the Alpha so that gen_call and gen_call_value
1642 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1643 then copy it into a register, thus actually letting the address be
1644 cse'ed. */
1645
1646#define NO_FUNCTION_CSE
1647
d969caf8 1648/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1649 few bits. */
d969caf8 1650#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1651
d721b776
RK
1652/* Use atexit for static constructors/destructors, instead of defining
1653 our own exit function. */
1654#define HAVE_ATEXIT
1655
71d9b493 1656/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1657#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1658
1a94ca49
RK
1659/* Compute the cost of computing a constant rtl expression RTX
1660 whose rtx-code is CODE. The body of this macro is a portion
1661 of a switch statement. If the code is computed here,
1662 return it with a return statement. Otherwise, break from the switch.
1663
8b7b2e36
RK
1664 If this is an 8-bit constant, return zero since it can be used
1665 nearly anywhere with no cost. If it is a valid operand for an
1666 ADD or AND, likewise return 0 if we know it will be used in that
1667 context. Otherwise, return 2 since it might be used there later.
1668 All other constants take at least two insns. */
1a94ca49
RK
1669
1670#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1671 case CONST_INT: \
06eb8e92 1672 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1673 return 0; \
1a94ca49 1674 case CONST_DOUBLE: \
5d02ee66
RH
1675 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1676 return 0; \
1677 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1678 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1679 return 0; \
1680 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1681 return 2; \
1682 else \
1683 return COSTS_N_INSNS (2); \
1a94ca49
RK
1684 case CONST: \
1685 case SYMBOL_REF: \
1686 case LABEL_REF: \
f6f6a13c
RK
1687 switch (alpha_cpu) \
1688 { \
1689 case PROCESSOR_EV4: \
1690 return COSTS_N_INSNS (3); \
1691 case PROCESSOR_EV5: \
5d02ee66 1692 case PROCESSOR_EV6: \
f6f6a13c 1693 return COSTS_N_INSNS (2); \
5d02ee66 1694 default: abort(); \
f6f6a13c 1695 }
1a94ca49
RK
1696
1697/* Provide the costs of a rtl expression. This is in the body of a
1698 switch on CODE. */
1699
1700#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1701 case PLUS: case MINUS: \
1702 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1703 switch (alpha_cpu) \
1704 { \
1705 case PROCESSOR_EV4: \
1706 return COSTS_N_INSNS (6); \
1707 case PROCESSOR_EV5: \
5d02ee66 1708 case PROCESSOR_EV6: \
f6f6a13c 1709 return COSTS_N_INSNS (4); \
5d02ee66 1710 default: abort(); \
f6f6a13c 1711 } \
b49e978e
RK
1712 else if (GET_CODE (XEXP (X, 0)) == MULT \
1713 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1714 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1715 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1716 break; \
1717 case MULT: \
f6f6a13c
RK
1718 switch (alpha_cpu) \
1719 { \
1720 case PROCESSOR_EV4: \
1721 if (FLOAT_MODE_P (GET_MODE (X))) \
1722 return COSTS_N_INSNS (6); \
1723 return COSTS_N_INSNS (23); \
1724 case PROCESSOR_EV5: \
1725 if (FLOAT_MODE_P (GET_MODE (X))) \
1726 return COSTS_N_INSNS (4); \
1727 else if (GET_MODE (X) == DImode) \
1728 return COSTS_N_INSNS (12); \
1729 else \
1730 return COSTS_N_INSNS (8); \
5d02ee66
RH
1731 case PROCESSOR_EV6: \
1732 if (FLOAT_MODE_P (GET_MODE (X))) \
1733 return COSTS_N_INSNS (4); \
1734 else \
1735 return COSTS_N_INSNS (7); \
1736 default: abort(); \
f6f6a13c 1737 } \
b49e978e
RK
1738 case ASHIFT: \
1739 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1740 && INTVAL (XEXP (X, 1)) <= 3) \
1741 break; \
1742 /* ... fall through ... */ \
5d02ee66 1743 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1744 switch (alpha_cpu) \
1745 { \
1746 case PROCESSOR_EV4: \
1747 return COSTS_N_INSNS (2); \
1748 case PROCESSOR_EV5: \
5d02ee66 1749 case PROCESSOR_EV6: \
f6f6a13c 1750 return COSTS_N_INSNS (1); \
5d02ee66
RH
1751 default: abort(); \
1752 } \
1753 case IF_THEN_ELSE: \
1754 switch (alpha_cpu) \
1755 { \
1756 case PROCESSOR_EV4: \
1757 case PROCESSOR_EV6: \
1758 return COSTS_N_INSNS (2); \
1759 case PROCESSOR_EV5: \
1760 return COSTS_N_INSNS (1); \
1761 default: abort(); \
f6f6a13c 1762 } \
3bda6d11 1763 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1764 switch (alpha_cpu) \
1765 { \
1766 case PROCESSOR_EV4: \
1767 if (GET_MODE (X) == SFmode) \
1768 return COSTS_N_INSNS (34); \
1769 else if (GET_MODE (X) == DFmode) \
1770 return COSTS_N_INSNS (63); \
1771 else \
1772 return COSTS_N_INSNS (70); \
1773 case PROCESSOR_EV5: \
1774 if (GET_MODE (X) == SFmode) \
1775 return COSTS_N_INSNS (15); \
1776 else if (GET_MODE (X) == DFmode) \
1777 return COSTS_N_INSNS (22); \
1778 else \
5d02ee66
RH
1779 return COSTS_N_INSNS (70); /* ??? */ \
1780 case PROCESSOR_EV6: \
1781 if (GET_MODE (X) == SFmode) \
1782 return COSTS_N_INSNS (12); \
1783 else if (GET_MODE (X) == DFmode) \
1784 return COSTS_N_INSNS (15); \
1785 else \
1786 return COSTS_N_INSNS (70); /* ??? */ \
1787 default: abort(); \
f6f6a13c 1788 } \
1a94ca49 1789 case MEM: \
f6f6a13c
RK
1790 switch (alpha_cpu) \
1791 { \
1792 case PROCESSOR_EV4: \
5d02ee66 1793 case PROCESSOR_EV6: \
f6f6a13c
RK
1794 return COSTS_N_INSNS (3); \
1795 case PROCESSOR_EV5: \
1796 return COSTS_N_INSNS (2); \
5d02ee66 1797 default: abort(); \
f6f6a13c
RK
1798 } \
1799 case NEG: case ABS: \
1800 if (! FLOAT_MODE_P (GET_MODE (X))) \
1801 break; \
1802 /* ... fall through ... */ \
3bda6d11
RK
1803 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1804 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1805 switch (alpha_cpu) \
1806 { \
1807 case PROCESSOR_EV4: \
1808 return COSTS_N_INSNS (6); \
1809 case PROCESSOR_EV5: \
5d02ee66 1810 case PROCESSOR_EV6: \
f6f6a13c 1811 return COSTS_N_INSNS (4); \
5d02ee66 1812 default: abort(); \
f6f6a13c 1813 }
1a94ca49
RK
1814\f
1815/* Control the assembler format that we output. */
1816
40ef2fc5
JL
1817/* We don't emit these labels, so as to avoid getting linker errors about
1818 missing exception handling info. If we emit a gcc_compiled. label into
1819 text, and the file has no code, then the DEC assembler gives us a zero
1820 sized text section with no associated exception handling info. The
38e01259 1821 DEC linker sees this text section, and gives a warning saying that
40ef2fc5
JL
1822 the exception handling info is missing. */
1823#define ASM_IDENTIFY_GCC
1824#define ASM_IDENTIFY_LANGUAGE
1825
1a94ca49
RK
1826/* Output to assembler file text saying following lines
1827 may contain character constants, extra white space, comments, etc. */
1828
1829#define ASM_APP_ON ""
1830
1831/* Output to assembler file text saying following lines
1832 no longer contain unusual constructs. */
1833
1834#define ASM_APP_OFF ""
1835
1836#define TEXT_SECTION_ASM_OP ".text"
1837
1838/* Output before read-only data. */
1839
1840#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1841
1842/* Output before writable data. */
1843
1844#define DATA_SECTION_ASM_OP ".data"
1845
1846/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1847 indicate that it is for read-only data.
1848
abc95ed3 1849 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1850 eight bytes of zero. This works around a bug in DEC's assembler in
1851 some versions of OSF/1 V3.x. */
1a94ca49
RK
1852
1853#define EXTRA_SECTIONS readonly_data
1854
1855#define EXTRA_SECTION_FUNCTIONS \
1856void \
1857literal_section () \
1858{ \
1859 if (in_section != readonly_data) \
1860 { \
c0388f29
RK
1861 static int firsttime = 1; \
1862 \
1a94ca49 1863 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1864 if (firsttime) \
1865 { \
1866 firsttime = 0; \
1867 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1868 } \
1869 \
1a94ca49
RK
1870 in_section = readonly_data; \
1871 } \
1872} \
1873
1874#define READONLY_DATA_SECTION literal_section
1875
ac030a7b
RK
1876/* If we are referencing a function that is static, make the SYMBOL_REF
1877 special. We use this to see indicate we can branch to this function
1878 without setting PV or restoring GP. */
130d2d72
RK
1879
1880#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1881 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1882 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1883
1a94ca49
RK
1884/* How to refer to registers in assembler output.
1885 This sequence is indexed by compiler's hard-register-number (see above). */
1886
1887#define REGISTER_NAMES \
1888{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1889 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1890 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1891 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1892 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1893 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1894 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1895 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1896
1897/* How to renumber registers for dbx and gdb. */
1898
1899#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1900
1901/* This is how to output the definition of a user-level label named NAME,
1902 such as the label on a static function or variable NAME. */
1903
1904#define ASM_OUTPUT_LABEL(FILE,NAME) \
1905 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1906
1907/* This is how to output a command to make the user-level label named NAME
1908 defined for reference from other files. */
1909
1910#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1911 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1912
4e0c8ad2 1913/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1914
4e0c8ad2 1915#define USER_LABEL_PREFIX ""
1a94ca49
RK
1916
1917/* This is how to output an internal numbered label where
1918 PREFIX is the class of label and NUM is the number within the class. */
1919
1920#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1921 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1922
1923/* This is how to output a label for a jump table. Arguments are the same as
1924 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1925 passed. */
1926
1927#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1928{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1929
1930/* This is how to store into the string LABEL
1931 the symbol_ref name of an internal numbered label where
1932 PREFIX is the class of label and NUM is the number within the class.
1933 This is suitable for output with `assemble_name'. */
1934
1935#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
531ea24e 1936 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1a94ca49 1937
e247ca2a
RK
1938/* Check a floating-point value for validity for a particular machine mode. */
1939
1940#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1941 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1942
1a94ca49
RK
1943/* This is how to output an assembler line defining a `double' constant. */
1944
e99300f1
RS
1945#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1946 { \
1947 if (REAL_VALUE_ISINF (VALUE) \
1948 || REAL_VALUE_ISNAN (VALUE) \
1949 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1950 { \
1951 long t[2]; \
1952 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1953 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1954 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1955 } \
1956 else \
1957 { \
1958 char str[30]; \
1959 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1960 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1961 } \
1962 }
1a94ca49
RK
1963
1964/* This is how to output an assembler line defining a `float' constant. */
1965
e247ca2a
RK
1966#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1967 do { \
1968 long t; \
1969 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1970 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1971} while (0)
2700ac93 1972
1a94ca49
RK
1973/* This is how to output an assembler line defining an `int' constant. */
1974
1975#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1976( fprintf (FILE, "\t.long "), \
1977 output_addr_const (FILE, (VALUE)), \
1978 fprintf (FILE, "\n"))
1a94ca49
RK
1979
1980/* This is how to output an assembler line defining a `long' constant. */
1981
1982#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1983( fprintf (FILE, "\t.quad "), \
1984 output_addr_const (FILE, (VALUE)), \
1985 fprintf (FILE, "\n"))
1986
1987/* Likewise for `char' and `short' constants. */
1988
1989#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1990 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1991 (GET_CODE (VALUE) == CONST_INT \
1992 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1993
1994#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1995 fprintf (FILE, "\t.byte %d\n", \
1996 (GET_CODE (VALUE) == CONST_INT \
1997 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1998
1999/* We use the default ASCII-output routine, except that we don't write more
2000 than 50 characters since the assembler doesn't support very long lines. */
2001
2002#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2003 do { \
2004 FILE *_hide_asm_out_file = (MYFILE); \
2005 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2006 int _hide_thissize = (MYLENGTH); \
2007 int _size_so_far = 0; \
2008 { \
2009 FILE *asm_out_file = _hide_asm_out_file; \
2010 unsigned char *p = _hide_p; \
2011 int thissize = _hide_thissize; \
2012 int i; \
2013 fprintf (asm_out_file, "\t.ascii \""); \
2014 \
2015 for (i = 0; i < thissize; i++) \
2016 { \
2017 register int c = p[i]; \
2018 \
2019 if (_size_so_far ++ > 50 && i < thissize - 4) \
2020 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2021 \
2022 if (c == '\"' || c == '\\') \
2023 putc ('\\', asm_out_file); \
2024 if (c >= ' ' && c < 0177) \
2025 putc (c, asm_out_file); \
2026 else \
2027 { \
2028 fprintf (asm_out_file, "\\%o", c); \
2029 /* After an octal-escape, if a digit follows, \
2030 terminate one string constant and start another. \
2031 The Vax assembler fails to stop reading the escape \
2032 after three digits, so this is the only way we \
2033 can get it to parse the data properly. */ \
2034 if (i < thissize - 1 \
2035 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2036 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2037 } \
2038 } \
2039 fprintf (asm_out_file, "\"\n"); \
2040 } \
2041 } \
2042 while (0)
52a69200 2043
1a94ca49
RK
2044/* This is how to output an insn to push a register on the stack.
2045 It need not be very fast code. */
2046
2047#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2048 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2049 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2050 (REGNO) & 31);
2051
2052/* This is how to output an insn to pop a register from the stack.
2053 It need not be very fast code. */
2054
2055#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2056 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2057 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2058 (REGNO) & 31);
2059
2060/* This is how to output an assembler line for a numeric constant byte. */
2061
2062#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 2063 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 2064
260ced47
RK
2065/* This is how to output an element of a case-vector that is absolute.
2066 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2067
260ced47 2068#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2069
260ced47 2070/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2071
33f7f353 2072#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2073 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2074 (VALUE))
1a94ca49
RK
2075
2076/* This is how to output an assembler line
2077 that says to advance the location counter
2078 to a multiple of 2**LOG bytes. */
2079
2080#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2081 if ((LOG) != 0) \
2082 fprintf (FILE, "\t.align %d\n", LOG);
2083
2084/* This is how to advance the location counter by SIZE bytes. */
2085
2086#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2087 fprintf (FILE, "\t.space %d\n", (SIZE))
2088
2089/* This says how to output an assembler line
2090 to define a global common symbol. */
2091
2092#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2093( fputs ("\t.comm ", (FILE)), \
2094 assemble_name ((FILE), (NAME)), \
2095 fprintf ((FILE), ",%d\n", (SIZE)))
2096
2097/* This says how to output an assembler line
2098 to define a local common symbol. */
2099
2100#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2101( fputs ("\t.lcomm ", (FILE)), \
2102 assemble_name ((FILE), (NAME)), \
2103 fprintf ((FILE), ",%d\n", (SIZE)))
2104
2105/* Store in OUTPUT a string (made with alloca) containing
2106 an assembler-name for a local static variable named NAME.
2107 LABELNO is an integer which is different for each call. */
2108
2109#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2110( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2111 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2112
2113/* Define the parentheses used to group arithmetic operations
2114 in assembler code. */
2115
2116#define ASM_OPEN_PAREN "("
2117#define ASM_CLOSE_PAREN ")"
2118
60593797
RH
2119/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2120 Used for C++ multiple inheritance. */
2121
2122#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2123do { \
2124 char *fn_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (FUNCTION)); \
2125 \
2126 fprintf (FILE, "\t.ent "); \
2127 assemble_name (FILE, alpha_function_name); \
2128 fputc ('\n', FILE); \
2129 ASM_OUTPUT_LABEL (FILE, alpha_function_name); \
2130 fprintf (FILE, "\tldgp $29,0($27)\n"); \
2131 fputc ('$', FILE); \
2132 assemble_name (FILE, alpha_function_name); \
2133 fprintf (FILE, "..ng:\n"); \
2134 fprintf (FILE, "\t.frame $30,0,$26,0\n"); \
2135 fprintf (FILE, "\t.prologue 1\n"); \
2136 \
2137 /* Rely on the assembler to macro expand a large delta. */ \
2138 fprintf (FILE, "\tlda $16,%ld($16)\n", (long)(DELTA)); \
2139 \
2140 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2141 { \
2142 fprintf (FILE, "\tbr $31,$"); \
2143 assemble_name (FILE, fn_name); \
2144 fprintf (FILE, "..ng\n"); \
2145 } \
2146 else \
2147 { \
2148 fprintf (FILE, "\tlda $27,"); \
2149 assemble_name (FILE, fn_name); \
2150 fprintf (FILE, "\n\tjmp $31,($27),"); \
2151 assemble_name (FILE, fn_name); \
2152 fputc ('\n', FILE); \
2153 } \
2154 \
2155 fprintf (FILE, "\t.end "); \
2156 assemble_name (FILE, alpha_function_name); \
2157 fputc ('\n', FILE); \
2158} while (0)
2159
2160\f
1a94ca49
RK
2161/* Define results of standard character escape sequences. */
2162#define TARGET_BELL 007
2163#define TARGET_BS 010
2164#define TARGET_TAB 011
2165#define TARGET_NEWLINE 012
2166#define TARGET_VT 013
2167#define TARGET_FF 014
2168#define TARGET_CR 015
2169
2170/* Print operand X (an rtx) in assembler syntax to file FILE.
2171 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2172 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2173
2174#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2175
2176/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2177 not be alphabetic (the characters are chosen so that
2178 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2179 using ASCII).
2180
2181 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2182 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2183 mode. alpha_fprm controls which suffix is generated.
2184
2185 ' Generates trap-mode suffix for instructions that accept the
2186 su suffix only (cmpt et al).
2187
e83015a9
RH
2188 ` Generates trap-mode suffix for instructions that accept the
2189 v and sv suffix. The only instruction that needs this is cvtql.
2190
0022a940
DMT
2191 ( Generates trap-mode suffix for instructions that accept the
2192 v, sv, and svi suffix. The only instruction that needs this
2193 is cvttq.
2194
2bf6230d
RK
2195 ) Generates trap-mode suffix for instructions that accept the
2196 u, su, and sui suffix. This is the bulk of the IEEE floating
2197 point instructions (addt et al).
2198
2199 + Generates trap-mode suffix for instructions that accept the
2200 sui suffix (cvtqt and cvtqs).
e5958492
RK
2201
2202 , Generates single precision suffix for floating point
2203 instructions (s for IEEE, f for VAX)
2204
2205 - Generates double precision suffix for floating point
2206 instructions (t for IEEE, g for VAX)
2bf6230d 2207 */
1a94ca49 2208
2bf6230d 2209#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2210 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2211 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2212\f
2213/* Print a memory address as an operand to reference that memory location. */
2214
2215#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2216{ rtx addr = (ADDR); \
2217 int basereg = 31; \
2218 HOST_WIDE_INT offset = 0; \
2219 \
2220 if (GET_CODE (addr) == AND) \
2221 addr = XEXP (addr, 0); \
2222 \
2223 if (GET_CODE (addr) == REG) \
2224 basereg = REGNO (addr); \
2225 else if (GET_CODE (addr) == CONST_INT) \
2226 offset = INTVAL (addr); \
2227 else if (GET_CODE (addr) == PLUS \
2228 && GET_CODE (XEXP (addr, 0)) == REG \
2229 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2230 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2231 else \
2232 abort (); \
2233 \
2234 fprintf (FILE, "%d($%d)", offset, basereg); \
2235}
2236/* Define the codes that are matched by predicates in alpha.c. */
2237
2238#define PREDICATE_CODES \
2239 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2240 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2241 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2242 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2243 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2244 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2245 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2246 {"const48_operand", {CONST_INT}}, \
2247 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2248 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2249 {"mode_mask_operand", {CONST_INT}}, \
2250 {"mul8_operand", {CONST_INT}}, \
2251 {"mode_width_operand", {CONST_INT}}, \
2252 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2253 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
d1e03f31 2254 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1a94ca49 2255 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2256 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2257 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2258 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2259 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2260 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2261 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2262 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2263 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2264 {"aligned_memory_operand", {MEM}}, \
2265 {"unaligned_memory_operand", {MEM}}, \
442b1685 2266 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
4ed43ff8
RH
2267 {"any_memory_operand", {MEM}}, \
2268 {"hard_fp_register_operand", {SUBREG, REG}},
03f8c4cc 2269\f
34fa88ab
RK
2270/* Tell collect that the object format is ECOFF. */
2271#define OBJECT_FORMAT_COFF
2272#define EXTENDED_COFF
2273
2274/* If we use NM, pass -g to it so it only lists globals. */
2275#define NM_FLAGS "-pg"
2276
03f8c4cc
RK
2277/* Definitions for debugging. */
2278
2279#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2280#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2281#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2282
2283#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2284#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2285#endif
2286
2287
2288/* Correct the offset of automatic variables and arguments. Note that
2289 the Alpha debug format wants all automatic variables and arguments
2290 to be in terms of two different offsets from the virtual frame pointer,
2291 which is the stack pointer before any adjustment in the function.
2292 The offset for the argument pointer is fixed for the native compiler,
2293 it is either zero (for the no arguments case) or large enough to hold
2294 all argument registers.
2295 The offset for the auto pointer is the fourth argument to the .frame
2296 directive (local_offset).
2297 To stay compatible with the native tools we use the same offsets
2298 from the virtual frame pointer and adjust the debugger arg/auto offsets
2299 accordingly. These debugger offsets are set up in output_prolog. */
2300
9a0b18f2
RK
2301extern long alpha_arg_offset;
2302extern long alpha_auto_offset;
03f8c4cc
RK
2303#define DEBUGGER_AUTO_OFFSET(X) \
2304 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2305#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2306
2307
2308#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2309 alpha_output_lineno (STREAM, LINE)
2310extern void alpha_output_lineno ();
2311
2312#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2313 alpha_output_filename (STREAM, NAME)
2314extern void alpha_output_filename ();
2315
4330b0e7
JW
2316/* mips-tfile.c limits us to strings of one page. We must underestimate this
2317 number, because the real length runs past this up to the next
2318 continuation point. This is really a dbxout.c bug. */
2319#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2320
2321/* By default, turn on GDB extensions. */
2322#define DEFAULT_GDB_EXTENSIONS 1
2323
7aadc7c2
RK
2324/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2325#define NO_DBX_FUNCTION_END 1
2326
03f8c4cc
RK
2327/* If we are smuggling stabs through the ALPHA ECOFF object
2328 format, put a comment in front of the .stab<x> operation so
2329 that the ALPHA assembler does not choke. The mips-tfile program
2330 will correctly put the stab into the object file. */
2331
2332#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2333#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2334#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2335
2336/* Forward references to tags are allowed. */
2337#define SDB_ALLOW_FORWARD_REFERENCES
2338
2339/* Unknown tags are also allowed. */
2340#define SDB_ALLOW_UNKNOWN_REFERENCES
2341
2342#define PUT_SDB_DEF(a) \
2343do { \
2344 fprintf (asm_out_file, "\t%s.def\t", \
2345 (TARGET_GAS) ? "" : "#"); \
2346 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2347 fputc (';', asm_out_file); \
2348} while (0)
2349
2350#define PUT_SDB_PLAIN_DEF(a) \
2351do { \
2352 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2353 (TARGET_GAS) ? "" : "#", (a)); \
2354} while (0)
2355
2356#define PUT_SDB_TYPE(a) \
2357do { \
2358 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2359} while (0)
2360
2361/* For block start and end, we create labels, so that
2362 later we can figure out where the correct offset is.
2363 The normal .ent/.end serve well enough for functions,
2364 so those are just commented out. */
2365
2366extern int sdb_label_count; /* block start/end next label # */
2367
2368#define PUT_SDB_BLOCK_START(LINE) \
2369do { \
2370 fprintf (asm_out_file, \
2371 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2372 sdb_label_count, \
2373 (TARGET_GAS) ? "" : "#", \
2374 sdb_label_count, \
2375 (LINE)); \
2376 sdb_label_count++; \
2377} while (0)
2378
2379#define PUT_SDB_BLOCK_END(LINE) \
2380do { \
2381 fprintf (asm_out_file, \
2382 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2383 sdb_label_count, \
2384 (TARGET_GAS) ? "" : "#", \
2385 sdb_label_count, \
2386 (LINE)); \
2387 sdb_label_count++; \
2388} while (0)
2389
2390#define PUT_SDB_FUNCTION_START(LINE)
2391
2392#define PUT_SDB_FUNCTION_END(LINE)
2393
2394#define PUT_SDB_EPILOGUE_END(NAME)
2395
03f8c4cc
RK
2396/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2397 mips-tdump.c to print them out.
2398
2399 These must match the corresponding definitions in gdb/mipsread.c.
2400 Unfortunately, gcc and gdb do not currently share any directories. */
2401
2402#define CODE_MASK 0x8F300
2403#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2404#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2405#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2406
2407/* Override some mips-tfile definitions. */
2408
2409#define SHASH_SIZE 511
2410#define THASH_SIZE 55
1e6c6f11
RK
2411
2412/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2413
2414#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2415
54190234
JM
2416/* The linker will stick __main into the .init section. */
2417#define HAS_INIT_SECTION
68d69835
JM
2418#define LD_INIT_SWITCH "-init"
2419#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2420
2421/* The system headers under Alpha systems are generally C++-aware. */
2422#define NO_IMPLICIT_EXTERN_C
47747e53
RH
2423
2424/* Prototypes for alpha.c functions used in the md file. */
2425extern struct rtx_def *get_unaligned_address ();
This page took 0.697515 seconds and 5 git commands to generate.