]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(STARTFILE_SPEC): Wrap startfiles in %{!shared:}.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
34fa88ab 2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
24#define CPP_PREDEFINES "\
25-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 26-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 27
21798cd8
RK
28/* Write out the correct language type definition for the header files.
29 Unless we have assembler language, write out the symbols for C. */
1a94ca49 30#define CPP_SPEC "\
21798cd8 31%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 32%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
33%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
34%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
36%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38/* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
7981384f
RK
44/* No point in running CPP on our assembler output. */
45#define ASM_SPEC "-nocpp"
46
d621c38b 47/* Right now Alpha OSF/1 doesn't seem to have debugging libraries. */
1a94ca49 48
85d159a3 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof2} -lc"
1a94ca49 50
65823178 51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are optimizing,
8877eb00
RK
52 -O1 if we are not. Pass -non_shared or -call_shared as appropriate. */
53#define LINK_SPEC \
54190234
JM
54 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} %{!static:-call_shared} \
55 -init __main"
8877eb00 56
85d159a3
RK
57#define STARTFILE_SPEC \
58 "%{pg:mcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}"
59
1a94ca49
RK
60/* Print subsidiary information on the compiler version in use. */
61#define TARGET_VERSION
62
63/* Define the location for the startup file on OSF/1 for Alpha. */
64
65#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
66
67/* Run-time compilation parameters selecting different hardware subsets. */
68
69extern int target_flags;
70
71/* This means that floating-point support exists in the target implementation
72 of the Alpha architecture. This is usually the default. */
73
74#define TARGET_FP (target_flags & 1)
75
76/* This means that floating-point registers are allowed to be used. Note
77 that Alpha implementations without FP operations are required to
78 provide the FP registers. */
79
03f8c4cc
RK
80#define TARGET_FPREGS (target_flags & 2)
81
82/* This means that gas is used to process the assembler file. */
83
84#define MASK_GAS 4
85#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
86
87/* Macro to define tables used to set the flags.
88 This is a list in braces of pairs in braces,
89 each pair being { "NAME", VALUE }
90 where VALUE is the bits to set or minus the bits to clear.
91 An empty string NAME is used to identify the default VALUE. */
92
93#define TARGET_SWITCHES \
94 { {"no-soft-float", 1}, \
95 {"soft-float", -1}, \
96 {"fp-regs", 2}, \
97 {"no-fp-regs", -3}, \
03f8c4cc
RK
98 {"alpha-as", -MASK_GAS}, \
99 {"gas", MASK_GAS}, \
88681624 100 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
101
102#define TARGET_DEFAULT 3
103
88681624
ILT
104#ifndef TARGET_CPU_DEFAULT
105#define TARGET_CPU_DEFAULT 0
106#endif
107
1a94ca49
RK
108/* Define this macro to change register usage conditional on target flags.
109
110 On the Alpha, we use this to disable the floating-point registers when
111 they don't exist. */
112
113#define CONDITIONAL_REGISTER_USAGE \
114 if (! TARGET_FPREGS) \
52a69200 115 for (i = 32; i < 63; i++) \
1a94ca49
RK
116 fixed_regs[i] = call_used_regs[i] = 1;
117
4f074454
RK
118/* Show we can debug even without a frame pointer. */
119#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
120\f
121/* target machine storage layout */
122
2700ac93
RS
123/* Define to enable software floating point emulation. */
124#define REAL_ARITHMETIC
125
1a94ca49
RK
126/* Define the size of `int'. The default is the same as the word size. */
127#define INT_TYPE_SIZE 32
128
129/* Define the size of `long long'. The default is the twice the word size. */
130#define LONG_LONG_TYPE_SIZE 64
131
132/* The two floating-point formats we support are S-floating, which is
133 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
134 and `long double' are T. */
135
136#define FLOAT_TYPE_SIZE 32
137#define DOUBLE_TYPE_SIZE 64
138#define LONG_DOUBLE_TYPE_SIZE 64
139
140#define WCHAR_TYPE "short unsigned int"
141#define WCHAR_TYPE_SIZE 16
142
13d39dbc 143/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
144 in a wider mode than that declared by the program. In such cases,
145 the value is constrained to be within the bounds of the declared
146 type, but kept valid in the wider mode. The signedness of the
147 extension may differ from that of the type.
148
149 For Alpha, we always store objects in a full register. 32-bit objects
150 are always sign-extended, but smaller objects retain their signedness. */
151
152#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
153 if (GET_MODE_CLASS (MODE) == MODE_INT \
154 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
155 { \
156 if ((MODE) == SImode) \
157 (UNSIGNEDP) = 0; \
158 (MODE) = DImode; \
159 }
160
161/* Define this if function arguments should also be promoted using the above
162 procedure. */
163
164#define PROMOTE_FUNCTION_ARGS
165
166/* Likewise, if the function return value is promoted. */
167
168#define PROMOTE_FUNCTION_RETURN
169
170/* Define this if most significant bit is lowest numbered
171 in instructions that operate on numbered bit-fields.
172
173 There are no such instructions on the Alpha, but the documentation
174 is little endian. */
175#define BITS_BIG_ENDIAN 0
176
177/* Define this if most significant byte of a word is the lowest numbered.
178 This is false on the Alpha. */
179#define BYTES_BIG_ENDIAN 0
180
181/* Define this if most significant word of a multiword number is lowest
182 numbered.
183
184 For Alpha we can decide arbitrarily since there are no machine instructions
185 for them. Might as well be consistent with bytes. */
186#define WORDS_BIG_ENDIAN 0
187
188/* number of bits in an addressable storage unit */
189#define BITS_PER_UNIT 8
190
191/* Width in bits of a "word", which is the contents of a machine register.
192 Note that this is not necessarily the width of data type `int';
193 if using 16-bit ints on a 68000, this would still be 32.
194 But on a machine with 16-bit registers, this would be 16. */
195#define BITS_PER_WORD 64
196
197/* Width of a word, in units (bytes). */
198#define UNITS_PER_WORD 8
199
200/* Width in bits of a pointer.
201 See also the macro `Pmode' defined below. */
202#define POINTER_SIZE 64
203
204/* Allocation boundary (in *bits*) for storing arguments in argument list. */
205#define PARM_BOUNDARY 64
206
207/* Boundary (in *bits*) on which stack pointer should be aligned. */
208#define STACK_BOUNDARY 64
209
210/* Allocation boundary (in *bits*) for the code of a function. */
211#define FUNCTION_BOUNDARY 64
212
213/* Alignment of field after `int : 0' in a structure. */
214#define EMPTY_FIELD_BOUNDARY 64
215
216/* Every structure's size must be a multiple of this. */
217#define STRUCTURE_SIZE_BOUNDARY 8
218
219/* A bitfield declared as `int' forces `int' alignment for the struct. */
220#define PCC_BITFIELD_TYPE_MATTERS 1
221
65823178
RK
222/* Align loop starts for optimal branching.
223
224 ??? Kludge this and the next macro for the moment by not doing anything if
225 we don't optimize and also if we are writing ECOFF symbols to work around
226 a bug in DEC's assembler. */
1a94ca49 227
130d2d72 228#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
229 if (optimize > 0 && write_symbols != SDB_DEBUG) \
230 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
231
232/* This is how to align an instruction for optimal branching.
233 On Alpha we'll get better performance by aligning on a quadword
234 boundary. */
130d2d72 235
1a94ca49 236#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
237 if (optimize > 0 && write_symbols != SDB_DEBUG) \
238 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
239
240/* No data type wants to be aligned rounder than this. */
241#define BIGGEST_ALIGNMENT 64
242
243/* Make strings word-aligned so strcpy from constants will be faster. */
244#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
245 (TREE_CODE (EXP) == STRING_CST \
246 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
247
248/* Make arrays of chars word-aligned for the same reasons. */
249#define DATA_ALIGNMENT(TYPE, ALIGN) \
250 (TREE_CODE (TYPE) == ARRAY_TYPE \
251 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
252 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
253
254/* Set this non-zero if move instructions will actually fail to work
255 when given unaligned data.
256
257 Since we get an error message when we do one, call them invalid. */
258
259#define STRICT_ALIGNMENT 1
260
261/* Set this non-zero if unaligned move instructions are extremely slow.
262
263 On the Alpha, they trap. */
130d2d72
RK
264
265#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
266\f
267/* Standard register usage. */
268
269/* Number of actual hardware registers.
270 The hardware registers are assigned numbers for the compiler
271 from 0 to just below FIRST_PSEUDO_REGISTER.
272 All registers that the compiler knows about must be given numbers,
273 even those that are not normally considered general registers.
274
275 We define all 32 integer registers, even though $31 is always zero,
276 and all 32 floating-point registers, even though $f31 is also
277 always zero. We do not bother defining the FP status register and
130d2d72
RK
278 there are no other registers.
279
280 Since $31 is always zero, we will use register number 31 as the
281 argument pointer. It will never appear in the generated code
282 because we will always be eliminating it in favor of the stack
52a69200
RK
283 pointer or hardware frame pointer.
284
285 Likewise, we use $f31 for the frame pointer, which will always
286 be eliminated in favor of the hardware frame pointer or the
287 stack pointer. */
1a94ca49
RK
288
289#define FIRST_PSEUDO_REGISTER 64
290
291/* 1 for registers that have pervasive standard uses
292 and are not available for the register allocator. */
293
294#define FIXED_REGISTERS \
295 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
296 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
298 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
299
300/* 1 for registers not available across function calls.
301 These must include the FIXED_REGISTERS and also any
302 registers that can be used without being saved.
303 The latter must include the registers where values are returned
304 and the register where structure-value addresses are passed.
305 Aside from that, you can include as many other registers as you like. */
306#define CALL_USED_REGISTERS \
307 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
308 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
309 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
310 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
311
312/* List the order in which to allocate registers. Each register must be
313 listed once, even those in FIXED_REGISTERS.
314
315 We allocate in the following order:
316 $f1 (nonsaved floating-point register)
317 $f10-$f15 (likewise)
318 $f22-$f30 (likewise)
319 $f21-$f16 (likewise, but input args)
320 $f0 (nonsaved, but return value)
321 $f2-$f9 (saved floating-point registers)
322 $1-$8 (nonsaved integer registers)
323 $22-$25 (likewise)
324 $28 (likewise)
325 $0 (likewise, but return value)
326 $21-$16 (likewise, but input args)
327 $27 (procedure value)
328 $9-$14 (saved integer registers)
329 $26 (return PC)
330 $15 (frame pointer)
331 $29 (global pointer)
52a69200 332 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
333
334#define REG_ALLOC_ORDER \
335 {33, \
da01bc2c 336 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
337 54, 55, 56, 57, 58, 59, 60, 61, 62, \
338 53, 52, 51, 50, 49, 48, \
339 32, \
340 34, 35, 36, 37, 38, 39, 40, 41, \
341 1, 2, 3, 4, 5, 6, 7, 8, \
342 22, 23, 24, 25, \
343 28, \
344 0, \
345 21, 20, 19, 18, 17, 16, \
346 27, \
347 9, 10, 11, 12, 13, 14, \
348 26, \
349 15, \
350 29, \
351 30, 31, 63 }
352
353/* Return number of consecutive hard regs needed starting at reg REGNO
354 to hold something of mode MODE.
355 This is ordinarily the length in words of a value of mode MODE
356 but can be less for certain modes in special long registers. */
357
358#define HARD_REGNO_NREGS(REGNO, MODE) \
359 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
360
361/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
362 On Alpha, the integer registers can hold any mode. The floating-point
363 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
364 or 8-bit values. If we only allowed the larger integers into FP registers,
365 we'd have to say that QImode and SImode aren't tiable, which is a
366 pain. So say all registers can hold everything and see how that works. */
367
368#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
369
370/* Value is 1 if it is a good idea to tie two pseudo registers
371 when one has mode MODE1 and one has mode MODE2.
372 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
373 for any hard reg, then this must be 0 for correct output. */
374
375#define MODES_TIEABLE_P(MODE1, MODE2) 1
376
377/* Specify the registers used for certain standard purposes.
378 The values of these macros are register numbers. */
379
380/* Alpha pc isn't overloaded on a register that the compiler knows about. */
381/* #define PC_REGNUM */
382
383/* Register to use for pushing function arguments. */
384#define STACK_POINTER_REGNUM 30
385
386/* Base register for access to local variables of the function. */
52a69200 387#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
388
389/* Value should be nonzero if functions must have frame pointers.
390 Zero means the frame pointer need not be set up (and parms
391 may be accessed via the stack pointer) in functions that seem suitable.
392 This is computed in `reload', in reload1.c. */
393#define FRAME_POINTER_REQUIRED 0
394
395/* Base register for access to arguments of the function. */
130d2d72 396#define ARG_POINTER_REGNUM 31
1a94ca49 397
52a69200
RK
398/* Base register for access to local variables of function. */
399#define FRAME_POINTER_REGNUM 63
400
1a94ca49
RK
401/* Register in which static-chain is passed to a function.
402
403 For the Alpha, this is based on an example; the calling sequence
404 doesn't seem to specify this. */
405#define STATIC_CHAIN_REGNUM 1
406
407/* Register in which address to store a structure value
408 arrives in the function. On the Alpha, the address is passed
409 as a hidden argument. */
410#define STRUCT_VALUE 0
411\f
412/* Define the classes of registers for register constraints in the
413 machine description. Also define ranges of constants.
414
415 One of the classes must always be named ALL_REGS and include all hard regs.
416 If there is more than one class, another class must be named NO_REGS
417 and contain no registers.
418
419 The name GENERAL_REGS must be the name of a class (or an alias for
420 another name such as ALL_REGS). This is the class of registers
421 that is allowed by "g" or "r" in a register constraint.
422 Also, registers outside this class are allocated only when
423 instructions express preferences for them.
424
425 The classes must be numbered in nondecreasing order; that is,
426 a larger-numbered class must never be contained completely
427 in a smaller-numbered class.
428
429 For any two classes, it is very desirable that there be another
430 class that represents their union. */
431
432enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
433 LIM_REG_CLASSES };
434
435#define N_REG_CLASSES (int) LIM_REG_CLASSES
436
437/* Give names of register classes as strings for dump file. */
438
439#define REG_CLASS_NAMES \
440 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
441
442/* Define which registers fit in which classes.
443 This is an initializer for a vector of HARD_REG_SET
444 of length N_REG_CLASSES. */
445
446#define REG_CLASS_CONTENTS \
52a69200 447 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
448
449/* The same information, inverted:
450 Return the class number of the smallest class containing
451 reg number REGNO. This could be a conditional expression
452 or could index an array. */
453
52a69200
RK
454#define REGNO_REG_CLASS(REGNO) \
455 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
456
457/* The class value for index registers, and the one for base regs. */
458#define INDEX_REG_CLASS NO_REGS
459#define BASE_REG_CLASS GENERAL_REGS
460
461/* Get reg_class from a letter such as appears in the machine description. */
462
463#define REG_CLASS_FROM_LETTER(C) \
464 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
465
466/* Define this macro to change register usage conditional on target flags. */
467/* #define CONDITIONAL_REGISTER_USAGE */
468
469/* The letters I, J, K, L, M, N, O, and P in a register constraint string
470 can be used to stand for particular ranges of immediate operands.
471 This macro defines what the ranges are.
472 C is the letter, and VALUE is a constant value.
473 Return 1 if VALUE is in the range specified by C.
474
475 For Alpha:
476 `I' is used for the range of constants most insns can contain.
477 `J' is the constant zero.
478 `K' is used for the constant in an LDA insn.
479 `L' is used for the constant in a LDAH insn.
480 `M' is used for the constants that can be AND'ed with using a ZAP insn.
481 `N' is used for complemented 8-bit constants.
482 `O' is used for negated 8-bit constants.
483 `P' is used for the constants 1, 2 and 3. */
484
485#define CONST_OK_FOR_LETTER_P(VALUE, C) \
486 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
487 : (C) == 'J' ? (VALUE) == 0 \
488 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
489 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
490 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
491 : (C) == 'M' ? zap_mask (VALUE) \
492 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
493 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
494 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
495 : 0)
496
497/* Similar, but for floating or large integer constants, and defining letters
498 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
499
500 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
501 that is the operand of a ZAP insn. */
502
503#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
504 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
505 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
506 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
507 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
508 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
509 : 0)
510
e560f226
RK
511/* Optional extra constraints for this machine.
512
513 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
514 reference to an unaligned location.
515 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
516 function. */
e560f226
RK
517
518#define EXTRA_CONSTRAINT(OP, C) \
519 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 520 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
521 : 0)
522
1a94ca49
RK
523/* Given an rtx X being reloaded into a reg required to be
524 in class CLASS, return the class of reg to actually use.
525 In general this is just CLASS; but on some machines
526 in some cases it is preferable to use a more restrictive class.
527
528 On the Alpha, all constants except zero go into a floating-point
529 register via memory. */
530
531#define PREFERRED_RELOAD_CLASS(X, CLASS) \
532 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
533 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
534 : (CLASS))
535
536/* Loading and storing HImode or QImode values to and from memory
537 usually requires a scratch register. The exceptions are loading
e560f226
RK
538 QImode and HImode from an aligned address to a general register.
539 We also cannot load an unaligned address into an FP register. */
1a94ca49
RK
540
541#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
542(((GET_CODE (IN) == MEM \
543 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
544 || (GET_CODE (IN) == SUBREG \
545 && (GET_CODE (SUBREG_REG (IN)) == MEM \
546 || (GET_CODE (SUBREG_REG (IN)) == REG \
547 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
548 && (((CLASS) == FLOAT_REGS \
549 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
550 || (((MODE) == QImode || (MODE) == HImode) \
551 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
552 ? GENERAL_REGS \
553 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
554 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
555 : NO_REGS)
1a94ca49
RK
556
557#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
558(((GET_CODE (OUT) == MEM \
559 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
560 || (GET_CODE (OUT) == SUBREG \
561 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
562 || (GET_CODE (SUBREG_REG (OUT)) == REG \
563 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
564 && (((MODE) == HImode || (MODE) == QImode \
565 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
566 ? GENERAL_REGS \
567 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
568 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
569 : NO_REGS)
1a94ca49
RK
570
571/* If we are copying between general and FP registers, we need a memory
572 location. */
573
574#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
575
acd94aaf
RK
576/* Specify the mode to be used for memory when a secondary memory
577 location is needed. If MODE is floating-point, use it. Otherwise,
578 widen to a word like the default. This is needed because we always
579 store integers in FP registers in quadword format. This whole
580 area is very tricky! */
581#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
582 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
583 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
584
1a94ca49
RK
585/* Return the maximum number of consecutive registers
586 needed to represent mode MODE in a register of class CLASS. */
587
588#define CLASS_MAX_NREGS(CLASS, MODE) \
589 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
590
c31dfe4d
RK
591/* If defined, gives a class of registers that cannot be used as the
592 operand of a SUBREG that changes the size of the object. */
593
594#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
595
1a94ca49
RK
596/* Define the cost of moving between registers of various classes. Moving
597 between FLOAT_REGS and anything else except float regs is expensive.
598 In fact, we make it quite expensive because we really don't want to
599 do these moves unless it is clearly worth it. Optimizations may
600 reduce the impact of not being able to allocate a pseudo to a
601 hard register. */
602
603#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
604 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
605
606/* A C expressions returning the cost of moving data of MODE from a register to
607 or from memory.
608
609 On the Alpha, bump this up a bit. */
610
611#define MEMORY_MOVE_COST(MODE) 6
612
613/* Provide the cost of a branch. Exact meaning under development. */
614#define BRANCH_COST 5
615
616/* Adjust the cost of dependencies. */
617
618#define ADJUST_COST(INSN,LINK,DEP,COST) \
619 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
620\f
621/* Stack layout; function entry, exit and calling. */
622
623/* Define this if pushing a word on the stack
624 makes the stack pointer a smaller address. */
625#define STACK_GROWS_DOWNWARD
626
627/* Define this if the nominal address of the stack frame
628 is at the high-address end of the local variables;
629 that is, each additional local variable allocated
630 goes at a more negative offset in the frame. */
130d2d72 631/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
632
633/* Offset within stack frame to start allocating local variables at.
634 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
635 first local allocated. Otherwise, it is the offset to the BEGINNING
636 of the first local allocated. */
637
52a69200 638#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
639
640/* If we generate an insn to push BYTES bytes,
641 this says how many the stack pointer really advances by.
642 On Alpha, don't define this because there are no push insns. */
643/* #define PUSH_ROUNDING(BYTES) */
644
645/* Define this if the maximum size of all the outgoing args is to be
646 accumulated and pushed during the prologue. The amount can be
647 found in the variable current_function_outgoing_args_size. */
648#define ACCUMULATE_OUTGOING_ARGS
649
650/* Offset of first parameter from the argument pointer register value. */
651
130d2d72 652#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
653
654/* Definitions for register eliminations.
655
978e8952 656 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 657 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
658 pointer register. Secondly, the argument pointer register can always be
659 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
660
661/* This is an array of structures. Each structure initializes one pair
662 of eliminable registers. The "from" register number is given first,
663 followed by "to". Eliminations of the same "from" register are listed
664 in order of preference. */
665
52a69200
RK
666#define ELIMINABLE_REGS \
667{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
668 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
669 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
670 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
671
672/* Given FROM and TO register numbers, say whether this elimination is allowed.
673 Frame pointer elimination is automatically handled.
674
130d2d72 675 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
676 eliminated are already handled. */
677
130d2d72 678#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 679
52a69200
RK
680/* Round up to a multiple of 16 bytes. */
681#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
682
1a94ca49
RK
683/* Define the offset between two registers, one to be eliminated, and the other
684 its replacement, at the start of a routine. */
685#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
686{ if ((FROM) == FRAME_POINTER_REGNUM) \
687 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
688 + alpha_sa_size ()); \
689 else if ((FROM) == ARG_POINTER_REGNUM) \
690 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
691 + alpha_sa_size () \
d772039b
RK
692 + (ALPHA_ROUND (get_frame_size () \
693 + current_function_pretend_args_size) \
694 - current_function_pretend_args_size)); \
1a94ca49
RK
695}
696
697/* Define this if stack space is still allocated for a parameter passed
698 in a register. */
699/* #define REG_PARM_STACK_SPACE */
700
701/* Value is the number of bytes of arguments automatically
702 popped when returning from a subroutine call.
703 FUNTYPE is the data type of the function (as a tree),
704 or for a library call it is an identifier node for the subroutine name.
705 SIZE is the number of bytes of arguments passed on the stack. */
706
707#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
708
709/* Define how to find the value returned by a function.
710 VALTYPE is the data type of the value (as a tree).
711 If the precise function being called is known, FUNC is its FUNCTION_DECL;
712 otherwise, FUNC is 0.
713
714 On Alpha the value is found in $0 for integer functions and
715 $f0 for floating-point functions. */
716
717#define FUNCTION_VALUE(VALTYPE, FUNC) \
718 gen_rtx (REG, \
719 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
720 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
721 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
722 || TREE_CODE (VALTYPE) == CHAR_TYPE \
723 || TREE_CODE (VALTYPE) == POINTER_TYPE \
724 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
725 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
726 ? word_mode : TYPE_MODE (VALTYPE), \
727 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
728
729/* Define how to find the value returned by a library function
730 assuming the value has mode MODE. */
731
732#define LIBCALL_VALUE(MODE) \
733 gen_rtx (REG, MODE, \
734 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
735
130d2d72
RK
736/* The definition of this macro implies that there are cases where
737 a scalar value cannot be returned in registers.
738
739 For the Alpha, any structure or union type is returned in memory, as
740 are integers whose size is larger than 64 bits. */
741
742#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 743 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
744 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
745
1a94ca49
RK
746/* 1 if N is a possible register number for a function value
747 as seen by the caller. */
748
749#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
750
751/* 1 if N is a possible register number for function argument passing.
752 On Alpha, these are $16-$21 and $f16-$f21. */
753
754#define FUNCTION_ARG_REGNO_P(N) \
755 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
756\f
757/* Define a data type for recording info about an argument list
758 during the scan of that argument list. This data type should
759 hold all necessary information about the function itself
760 and about the args processed so far, enough to enable macros
761 such as FUNCTION_ARG to determine where the next arg should go.
762
763 On Alpha, this is a single integer, which is a number of words
764 of arguments scanned so far.
765 Thus 6 or more means all following args should go on the stack. */
766
767#define CUMULATIVE_ARGS int
768
769/* Initialize a variable CUM of type CUMULATIVE_ARGS
770 for a call to a function whose data type is FNTYPE.
771 For a library call, FNTYPE is 0. */
772
773#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
774
775/* Define intermediate macro to compute the size (in registers) of an argument
776 for the Alpha. */
777
778#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
779((MODE) != BLKmode \
780 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
781 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
782
783/* Update the data in CUM to advance over an argument
784 of mode MODE and data type TYPE.
785 (TYPE is null for libcalls where that information may not be available.) */
786
787#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
788 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
789 (CUM) = 6; \
790 else \
791 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
792
793/* Determine where to put an argument to a function.
794 Value is zero to push the argument on the stack,
795 or a hard register in which to store the argument.
796
797 MODE is the argument's machine mode.
798 TYPE is the data type of the argument (as a tree).
799 This is null for libcalls where that information may
800 not be available.
801 CUM is a variable of type CUMULATIVE_ARGS which gives info about
802 the preceding args and about the function being called.
803 NAMED is nonzero if this argument is a named parameter
804 (otherwise it is an extra parameter matching an ellipsis).
805
806 On Alpha the first 6 words of args are normally in registers
807 and the rest are pushed. */
808
809#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
810((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
811 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
812 (CUM) + 16 + ((TARGET_FPREGS \
813 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
814 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
815 * 32)) \
816 : 0)
1a94ca49 817
1a94ca49
RK
818/* Specify the padding direction of arguments.
819
820 On the Alpha, we must pad upwards in order to be able to pass args in
821 registers. */
822
823#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
824
825/* For an arg passed partly in registers and partly in memory,
826 this is the number of registers used.
827 For args passed entirely in registers or entirely in memory, zero. */
828
829#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
830((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
831 ? 6 - (CUM) : 0)
832
130d2d72
RK
833/* Perform any needed actions needed for a function that is receiving a
834 variable number of arguments.
835
836 CUM is as above.
837
838 MODE and TYPE are the mode and type of the current parameter.
839
840 PRETEND_SIZE is a variable that should be set to the amount of stack
841 that must be pushed by the prolog to pretend that our caller pushed
842 it.
843
844 Normally, this macro will push all remaining incoming registers on the
845 stack and set PRETEND_SIZE to the length of the registers pushed.
846
847 On the Alpha, we allocate space for all 12 arg registers, but only
848 push those that are remaining.
849
850 However, if NO registers need to be saved, don't allocate any space.
851 This is not only because we won't need the space, but because AP includes
852 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
853 ap-relative addresses already made.
854
855 If we are not to use the floating-point registers, save the integer
856 registers where we would put the floating-point registers. This is
857 not the most efficient way to implement varargs with just one register
858 class, but it isn't worth doing anything more efficient in this rare
859 case. */
860
130d2d72
RK
861
862#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
863{ if ((CUM) < 6) \
864 { \
865 if (! (NO_RTL)) \
866 { \
867 move_block_from_reg \
868 (16 + CUM, \
869 gen_rtx (MEM, BLKmode, \
870 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 871 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 872 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 873 move_block_from_reg \
7a92339b 874 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
875 gen_rtx (MEM, BLKmode, \
876 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 877 (CUM) * UNITS_PER_WORD)), \
02892e06 878 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
879 } \
880 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
881 } \
882}
883
1a94ca49
RK
884/* Generate necessary RTL for __builtin_saveregs().
885 ARGLIST is the argument list; see expr.c. */
886extern struct rtx_def *alpha_builtin_saveregs ();
887#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
888
889/* Define the information needed to generate branch and scc insns. This is
890 stored from the compare operation. Note that we can't use "rtx" here
891 since it hasn't been defined! */
892
893extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
894extern int alpha_compare_fp_p;
895
896/* This macro produces the initial definition of a function name. On the
03f8c4cc 897 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
898
899extern char *alpha_function_name;
900
901#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 902{ \
1a94ca49
RK
903 alpha_function_name = NAME; \
904}
905
906/* This macro generates the assembly code for function entry.
907 FILE is a stdio stream to output the code to.
908 SIZE is an int: how many units of temporary storage to allocate.
909 Refer to the array `regs_ever_live' to determine which registers
910 to save; `regs_ever_live[I]' is nonzero if register number I
911 is ever used in the function. This macro is responsible for
912 knowing which registers should not be saved even if used. */
913
914#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
915
916/* Output assembler code to FILE to increment profiler label # LABELNO
85d159a3
RK
917 for profiling a function entry. Profiling for gprof does not
918 require LABELNO so we don't reference it at all. This does,
919 however, mean that -p won't work. But OSF/1 doesn't support the
920 traditional prof anyways, so there is no good reason to be
921 backwards compatible. */
922
923#define FUNCTION_PROFILER(FILE, LABELNO) \
924 do { \
a62eb16f
JW
925 fputs ("\tlda $27,_mcount\n", (FILE)); \
926 fputs ("\tjsr $27,($27),_mcount\n", (FILE)); \
08b2cb48 927 fputs ("\tldgp $29,0($27)\n", (FILE)); \
85d159a3
RK
928 } while (0);
929
930
931/* Output assembler code to FILE to initialize this source file's
932 basic block profiling info, if that has not already been done.
933 This assumes that __bb_init_func doesn't garble a1-a5. */
934
935#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
936 do { \
937 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
938 fputs ("\tlda $16,$PBX32\n", (FILE)); \
939 fputs ("\tldq $26,0($16)\n", (FILE)); \
940 fputs ("\tbne $26,1f\n", (FILE)); \
941 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
942 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
943 fputs ("\tldgp $29,0($26)\n", (FILE)); \
944 fputs ("1:\n", (FILE)); \
85d159a3
RK
945 ASM_OUTPUT_REG_POP (FILE, 16); \
946 } while (0);
947
948/* Output assembler code to FILE to increment the entry-count for
949 the BLOCKNO'th basic block in this source file. */
950
951#define BLOCK_PROFILER(FILE, BLOCKNO) \
952 do { \
953 int blockn = (BLOCKNO); \
a62eb16f 954 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
955 fputs ("\tstq $26,0($30)\n", (FILE)); \
956 fputs ("\tstq $27,8($30)\n", (FILE)); \
957 fputs ("\tlda $26,$PBX34\n", (FILE)); \
958 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
959 fputs ("\taddq $27,1,$27\n", (FILE)); \
960 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
961 fputs ("\tldq $26,0($30)\n", (FILE)); \
962 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 963 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 964 } while (0)
1a94ca49 965
1a94ca49
RK
966
967/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
968 the stack pointer does not matter. The value is tested only in
969 functions that have frame pointers.
970 No definition is equivalent to always zero. */
971
972#define EXIT_IGNORE_STACK 1
973
974/* This macro generates the assembly code for function exit,
975 on machines that need it. If FUNCTION_EPILOGUE is not defined
976 then individual return instructions are generated for each
977 return statement. Args are same as for FUNCTION_PROLOGUE.
978
979 The function epilogue should not depend on the current stack pointer!
980 It should use the frame pointer only. This is mandatory because
981 of alloca; we also take advantage of it to omit stack adjustments
982 before returning. */
983
984#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
985
986\f
987/* Output assembler code for a block containing the constant parts
988 of a trampoline, leaving space for the variable parts.
989
990 The trampoline should set the static chain pointer to value placed
7981384f
RK
991 into the trampoline and should branch to the specified routine.
992 Note that $27 has been set to the address of the trampoline, so we can
993 use it for addressability of the two data items. Trampolines are always
994 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
995
996#define TRAMPOLINE_TEMPLATE(FILE) \
997{ \
7981384f 998 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 999 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1000 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1001 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1002 fprintf (FILE, "\t.quad 0,0\n"); \
1003}
1004
3a523eeb
RS
1005/* Section in which to place the trampoline. On Alpha, instructions
1006 may only be placed in a text segment. */
1007
1008#define TRAMPOLINE_SECTION text_section
1009
1a94ca49
RK
1010/* Length in units of the trampoline for entering a nested function. */
1011
7981384f 1012#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1013
1014/* Emit RTL insns to initialize the variable parts of a trampoline.
1015 FNADDR is an RTX for the address of the function's pure code.
1016 CXT is an RTX for the static chain value for the function. We assume
1017 here that a function will be called many more times than its address
1018 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1019 to initialize the "hint" field in the JMP insn. Note that the hint
1020 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1021
1022#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1023{ \
1024 rtx _temp, _temp1, _addr; \
1025 \
1026 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1027 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1028 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1029 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1030 \
7981384f
RK
1031 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1032 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1033 OPTAB_WIDEN); \
1034 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1035 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1036 _temp = expand_and (gen_lowpart (SImode, _temp), \
1037 GEN_INT (0x3fff), 0); \
1a94ca49 1038 \
7981384f 1039 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1040 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1041 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1042 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1043 OPTAB_WIDEN); \
1044 \
1045 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1046 \
1047 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1048 "__enable_execute_stack"), \
1049 0, VOIDmode, 1,_addr, Pmode); \
1050 \
1051 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1052 gen_rtvec (1, const0_rtx), 0)); \
1053}
1054
1055/* Attempt to turn on access permissions for the stack. */
1056
1057#define TRANSFER_FROM_TRAMPOLINE \
1058 \
1059void \
1060__enable_execute_stack (addr) \
1061 void *addr; \
1062{ \
1063 long size = getpagesize (); \
1064 long mask = ~(size-1); \
1065 char *page = (char *) (((long) addr) & mask); \
1066 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1067 \
1068 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1069 if (mprotect (page, end - page, 7) < 0) \
1070 perror ("mprotect of trampoline code"); \
1a94ca49
RK
1071}
1072\f
1073/* Addressing modes, and classification of registers for them. */
1074
1075/* #define HAVE_POST_INCREMENT */
1076/* #define HAVE_POST_DECREMENT */
1077
1078/* #define HAVE_PRE_DECREMENT */
1079/* #define HAVE_PRE_INCREMENT */
1080
1081/* Macros to check register numbers against specific register classes. */
1082
1083/* These assume that REGNO is a hard or pseudo reg number.
1084 They give nonzero only if REGNO is a hard reg of the suitable class
1085 or a pseudo reg currently allocated to a suitable hard reg.
1086 Since they use reg_renumber, they are safe only once reg_renumber
1087 has been allocated, which happens in local-alloc.c. */
1088
1089#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1090#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1091((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1092 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1093\f
1094/* Maximum number of registers that can appear in a valid memory address. */
1095#define MAX_REGS_PER_ADDRESS 1
1096
1097/* Recognize any constant value that is a valid address. For the Alpha,
1098 there are only constants none since we want to use LDA to load any
1099 symbolic addresses into registers. */
1100
1101#define CONSTANT_ADDRESS_P(X) \
1102 (GET_CODE (X) == CONST_INT \
1103 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1104
1105/* Include all constant integers and constant doubles, but not
1106 floating-point, except for floating-point zero. */
1107
1108#define LEGITIMATE_CONSTANT_P(X) \
1109 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1110 || (X) == CONST0_RTX (GET_MODE (X)))
1111
1112/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1113 and check its validity for a certain class.
1114 We have two alternate definitions for each of them.
1115 The usual definition accepts all pseudo regs; the other rejects
1116 them unless they have been allocated suitable hard regs.
1117 The symbol REG_OK_STRICT causes the latter definition to be used.
1118
1119 Most source files want to accept pseudo regs in the hope that
1120 they will get allocated to the class that the insn wants them to be in.
1121 Source files for reload pass need to be strict.
1122 After reload, it makes no difference, since pseudo regs have
1123 been eliminated by then. */
1124
1125#ifndef REG_OK_STRICT
1126
1127/* Nonzero if X is a hard reg that can be used as an index
1128 or if it is a pseudo reg. */
1129#define REG_OK_FOR_INDEX_P(X) 0
1130/* Nonzero if X is a hard reg that can be used as a base reg
1131 or if it is a pseudo reg. */
1132#define REG_OK_FOR_BASE_P(X) \
52a69200 1133 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1134
1135#else
1136
1137/* Nonzero if X is a hard reg that can be used as an index. */
1138#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1139/* Nonzero if X is a hard reg that can be used as a base reg. */
1140#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1141
1142#endif
1143\f
1144/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1145 that is a valid memory address for an instruction.
1146 The MODE argument is the machine mode for the MEM expression
1147 that wants to use this address.
1148
1149 For Alpha, we have either a constant address or the sum of a register
1150 and a constant address, or just a register. For DImode, any of those
1151 forms can be surrounded with an AND that clear the low-order three bits;
1152 this is an "unaligned" access.
1153
1154 We also allow a SYMBOL_REF that is the name of the current function as
1155 valid address. This is for CALL_INSNs. It cannot be used in any other
1156 context.
1157
1158 First define the basic valid address. */
1159
1160#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1161{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1162 goto ADDR; \
1163 if (CONSTANT_ADDRESS_P (X)) \
1164 goto ADDR; \
1165 if (GET_CODE (X) == PLUS \
1166 && REG_P (XEXP (X, 0)) \
1167 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1168 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1169 goto ADDR; \
1170}
1171
1172/* Now accept the simple address, or, for DImode only, an AND of a simple
1173 address that turns off the low three bits. */
1174
1175extern char *current_function_name;
1176
1177#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1178{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1179 if ((MODE) == DImode \
1180 && GET_CODE (X) == AND \
1181 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1182 && INTVAL (XEXP (X, 1)) == -8) \
1183 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1184 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1185 && ! strcmp (XSTR (X, 0), current_function_name)) \
1186 goto ADDR; \
1187}
1188
1189/* Try machine-dependent ways of modifying an illegitimate address
1190 to be legitimate. If we find one, return the new, valid address.
1191 This macro is used in only one place: `memory_address' in explow.c.
1192
1193 OLDX is the address as it was before break_out_memory_refs was called.
1194 In some cases it is useful to look at this to decide what needs to be done.
1195
1196 MODE and WIN are passed so that this macro can use
1197 GO_IF_LEGITIMATE_ADDRESS.
1198
1199 It is always safe for this macro to do nothing. It exists to recognize
1200 opportunities to optimize the output.
1201
1202 For the Alpha, there are three cases we handle:
1203
1204 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1205 valid offset, compute the high part of the constant and add it to the
1206 register. Then our address is (plus temp low-part-const).
1207 (2) If the address is (const (plus FOO const_int)), find the low-order
1208 part of the CONST_INT. Then load FOO plus any high-order part of the
1209 CONST_INT into a register. Our address is (plus reg low-part-const).
1210 This is done to reduce the number of GOT entries.
1211 (3) If we have a (plus reg const), emit the load as in (2), then add
1212 the two registers, and finally generate (plus reg low-part-const) as
1213 our address. */
1214
1215#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1216{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1217 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1218 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1219 { \
1220 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1221 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1222 HOST_WIDE_INT highpart = val - lowpart; \
1223 rtx high = GEN_INT (highpart); \
1224 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1225 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1226 \
1227 (X) = plus_constant (temp, lowpart); \
1228 goto WIN; \
1229 } \
1230 else if (GET_CODE (X) == CONST \
1231 && GET_CODE (XEXP (X, 0)) == PLUS \
1232 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1233 { \
1234 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1235 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1236 HOST_WIDE_INT highpart = val - lowpart; \
1237 rtx high = XEXP (XEXP (X, 0), 0); \
1238 \
1239 if (highpart) \
1240 high = plus_constant (high, highpart); \
1241 \
1242 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1243 goto WIN; \
1244 } \
1245 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1246 && GET_CODE (XEXP (X, 1)) == CONST \
1247 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1248 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1249 { \
1250 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1251 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1252 HOST_WIDE_INT highpart = val - lowpart; \
1253 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1254 \
1255 if (highpart) \
1256 high = plus_constant (high, highpart); \
1257 \
1258 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1259 force_reg (Pmode, high), \
80f251fe 1260 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1261 (X) = plus_constant (high, lowpart); \
1262 goto WIN; \
1263 } \
1264}
1265
1266/* Go to LABEL if ADDR (a legitimate address expression)
1267 has an effect that depends on the machine mode it is used for.
1268 On the Alpha this is true only for the unaligned modes. We can
1269 simplify this test since we know that the address must be valid. */
1270
1271#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1272{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1273
1274/* Compute the cost of an address. For the Alpha, all valid addresses are
1275 the same cost. */
1276
1277#define ADDRESS_COST(X) 0
1278
1279/* Define this if some processing needs to be done immediately before
1280 emitting code for an insn. */
1281
1282/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1283\f
1284/* Specify the machine mode that this machine uses
1285 for the index in the tablejump instruction. */
1286#define CASE_VECTOR_MODE SImode
1287
1288/* Define this if the tablejump instruction expects the table
1289 to contain offsets from the address of the table.
260ced47
RK
1290 Do not define this if the table should contain absolute addresses.
1291 On the Alpha, the table is really GP-relative, not relative to the PC
1292 of the table, but we pretend that it is PC-relative; this should be OK,
1293 but we hsould try to find some better way sometime. */
1294#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1295
1296/* Specify the tree operation to be used to convert reals to integers. */
1297#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1298
1299/* This is the kind of divide that is easiest to do in the general case. */
1300#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1301
1302/* Define this as 1 if `char' should by default be signed; else as 0. */
1303#define DEFAULT_SIGNED_CHAR 1
1304
1305/* This flag, if defined, says the same insns that convert to a signed fixnum
1306 also convert validly to an unsigned one.
1307
1308 We actually lie a bit here as overflow conditions are different. But
1309 they aren't being checked anyway. */
1310
1311#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1312
1313/* Max number of bytes we can move to or from memory
1314 in one reasonably fast instruction. */
1315
1316#define MOVE_MAX 8
1317
1318/* Largest number of bytes of an object that can be placed in a register.
1319 On the Alpha we have plenty of registers, so use TImode. */
1320#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1321
1322/* Nonzero if access to memory by bytes is no faster than for words.
1323 Also non-zero if doing byte operations (specifically shifts) in registers
1324 is undesirable.
1325
1326 On the Alpha, we want to not use the byte operation and instead use
1327 masking operations to access fields; these will save instructions. */
1328
1329#define SLOW_BYTE_ACCESS 1
1330
9a63901f
RK
1331/* Define if operations between registers always perform the operation
1332 on the full register even if a narrower mode is specified. */
1333#define WORD_REGISTER_OPERATIONS
1334
1335/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1336 will either zero-extend or sign-extend. The value of this macro should
1337 be the code that says which one of the two operations is implicitly
1338 done, NIL if none. */
1339#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1340
225211e2
RK
1341/* Define if loading short immediate values into registers sign extends. */
1342#define SHORT_IMMEDIATES_SIGN_EXTEND
1343
1a94ca49
RK
1344/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1345 is done just by pretending it is already truncated. */
1346#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1347
1348/* We assume that the store-condition-codes instructions store 0 for false
1349 and some other value for true. This is the value stored for true. */
1350
1351#define STORE_FLAG_VALUE 1
1352
1353/* Define the value returned by a floating-point comparison instruction. */
1354
1355#define FLOAT_STORE_FLAG_VALUE 0.5
1356
35bb77fd
RK
1357/* Canonicalize a comparison from one we don't have to one we do have. */
1358
1359#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1360 do { \
1361 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1362 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1363 { \
1364 rtx tem = (OP0); \
1365 (OP0) = (OP1); \
1366 (OP1) = tem; \
1367 (CODE) = swap_condition (CODE); \
1368 } \
1369 if (((CODE) == LT || (CODE) == LTU) \
1370 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1371 { \
1372 (CODE) = (CODE) == LT ? LE : LEU; \
1373 (OP1) = GEN_INT (255); \
1374 } \
1375 } while (0)
1376
1a94ca49
RK
1377/* Specify the machine mode that pointers have.
1378 After generation of rtl, the compiler makes no further distinction
1379 between pointers and any other objects of this machine mode. */
1380#define Pmode DImode
1381
1382/* Mode of a function address in a call instruction (for indexing purposes). */
1383
1384#define FUNCTION_MODE Pmode
1385
1386/* Define this if addresses of constant functions
1387 shouldn't be put through pseudo regs where they can be cse'd.
1388 Desirable on machines where ordinary constants are expensive
1389 but a CALL with constant address is cheap.
1390
1391 We define this on the Alpha so that gen_call and gen_call_value
1392 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1393 then copy it into a register, thus actually letting the address be
1394 cse'ed. */
1395
1396#define NO_FUNCTION_CSE
1397
d969caf8 1398/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1399 few bits. */
d969caf8 1400#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1401
d721b776
RK
1402/* Use atexit for static constructors/destructors, instead of defining
1403 our own exit function. */
1404#define HAVE_ATEXIT
1405
1a94ca49
RK
1406/* Compute the cost of computing a constant rtl expression RTX
1407 whose rtx-code is CODE. The body of this macro is a portion
1408 of a switch statement. If the code is computed here,
1409 return it with a return statement. Otherwise, break from the switch.
1410
8b7b2e36
RK
1411 If this is an 8-bit constant, return zero since it can be used
1412 nearly anywhere with no cost. If it is a valid operand for an
1413 ADD or AND, likewise return 0 if we know it will be used in that
1414 context. Otherwise, return 2 since it might be used there later.
1415 All other constants take at least two insns. */
1a94ca49
RK
1416
1417#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1418 case CONST_INT: \
06eb8e92 1419 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1420 return 0; \
1a94ca49 1421 case CONST_DOUBLE: \
8b7b2e36
RK
1422 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1423 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1424 return 0; \
1425 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1426 return 2; \
1427 else \
1428 return COSTS_N_INSNS (2); \
1a94ca49
RK
1429 case CONST: \
1430 case SYMBOL_REF: \
1431 case LABEL_REF: \
8b7b2e36 1432 return COSTS_N_INSNS (3);
1a94ca49
RK
1433
1434/* Provide the costs of a rtl expression. This is in the body of a
1435 switch on CODE. */
1436
1437#define RTX_COSTS(X,CODE,OUTER_CODE) \
1438 case PLUS: \
1439 case MINUS: \
1440 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1441 return COSTS_N_INSNS (6); \
b49e978e
RK
1442 else if (GET_CODE (XEXP (X, 0)) == MULT \
1443 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1444 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1445 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1446 break; \
1447 case MULT: \
1448 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1449 return COSTS_N_INSNS (6); \
919ea6a5 1450 return COSTS_N_INSNS (23); \
b49e978e
RK
1451 case ASHIFT: \
1452 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1453 && INTVAL (XEXP (X, 1)) <= 3) \
1454 break; \
1455 /* ... fall through ... */ \
1456 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1457 return COSTS_N_INSNS (2); \
1a94ca49
RK
1458 case DIV: \
1459 case UDIV: \
1460 case MOD: \
1461 case UMOD: \
1462 if (GET_MODE (X) == SFmode) \
1463 return COSTS_N_INSNS (34); \
1464 else if (GET_MODE (X) == DFmode) \
1465 return COSTS_N_INSNS (63); \
1466 else \
1467 return COSTS_N_INSNS (70); \
1468 case MEM: \
1469 return COSTS_N_INSNS (3);
1470\f
1471/* Control the assembler format that we output. */
1472
1473/* Output at beginning of assembler file. */
1474
1475#define ASM_FILE_START(FILE) \
03f8c4cc 1476{ \
130d2d72
RK
1477 alpha_write_verstamp (FILE); \
1478 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1479 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1480 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1481 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1482}
1483
1484/* Output to assembler file text saying following lines
1485 may contain character constants, extra white space, comments, etc. */
1486
1487#define ASM_APP_ON ""
1488
1489/* Output to assembler file text saying following lines
1490 no longer contain unusual constructs. */
1491
1492#define ASM_APP_OFF ""
1493
1494#define TEXT_SECTION_ASM_OP ".text"
1495
1496/* Output before read-only data. */
1497
1498#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1499
1500/* Output before writable data. */
1501
1502#define DATA_SECTION_ASM_OP ".data"
1503
1504/* Define an extra section for read-only data, a routine to enter it, and
1505 indicate that it is for read-only data. */
1506
1507#define EXTRA_SECTIONS readonly_data
1508
1509#define EXTRA_SECTION_FUNCTIONS \
1510void \
1511literal_section () \
1512{ \
1513 if (in_section != readonly_data) \
1514 { \
1515 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1516 in_section = readonly_data; \
1517 } \
1518} \
1519
1520#define READONLY_DATA_SECTION literal_section
1521
ac030a7b
RK
1522/* If we are referencing a function that is static, make the SYMBOL_REF
1523 special. We use this to see indicate we can branch to this function
1524 without setting PV or restoring GP. */
130d2d72
RK
1525
1526#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1527 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1528 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1529
1a94ca49
RK
1530/* How to refer to registers in assembler output.
1531 This sequence is indexed by compiler's hard-register-number (see above). */
1532
1533#define REGISTER_NAMES \
1534{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1535 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1536 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1537 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1538 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1539 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1540 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1541 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1542
1543/* How to renumber registers for dbx and gdb. */
1544
1545#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1546
1547/* This is how to output the definition of a user-level label named NAME,
1548 such as the label on a static function or variable NAME. */
1549
1550#define ASM_OUTPUT_LABEL(FILE,NAME) \
1551 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1552
1553/* This is how to output a command to make the user-level label named NAME
1554 defined for reference from other files. */
1555
1556#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1557 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1558
1559/* This is how to output a reference to a user-level label named NAME.
1560 `assemble_name' uses this. */
1561
1562#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1563 fprintf (FILE, "%s", NAME)
1564
1565/* This is how to output an internal numbered label where
1566 PREFIX is the class of label and NUM is the number within the class. */
1567
1568#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1569 if ((PREFIX)[0] == 'L') \
1570 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1571 else \
1572 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1573
1574/* This is how to output a label for a jump table. Arguments are the same as
1575 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1576 passed. */
1577
1578#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1579{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1580
1581/* This is how to store into the string LABEL
1582 the symbol_ref name of an internal numbered label where
1583 PREFIX is the class of label and NUM is the number within the class.
1584 This is suitable for output with `assemble_name'. */
1585
1586#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1587 if ((PREFIX)[0] == 'L') \
1588 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1589 else \
1590 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1591
1592/* This is how to output an assembler line defining a `double' constant. */
1593
e99300f1
RS
1594#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1595 { \
1596 if (REAL_VALUE_ISINF (VALUE) \
1597 || REAL_VALUE_ISNAN (VALUE) \
1598 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1599 { \
1600 long t[2]; \
1601 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1602 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1603 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1604 } \
1605 else \
1606 { \
1607 char str[30]; \
1608 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1609 fprintf (FILE, "\t.t_floating %s\n", str); \
1610 } \
1611 }
1a94ca49
RK
1612
1613/* This is how to output an assembler line defining a `float' constant. */
1614
e99300f1
RS
1615#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1616 { \
1617 if (REAL_VALUE_ISINF (VALUE) \
1618 || REAL_VALUE_ISNAN (VALUE) \
1619 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1620 { \
1621 long t; \
1622 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1623 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1624 } \
1625 else \
1626 { \
1627 char str[30]; \
1628 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1629 fprintf (FILE, "\t.s_floating %s\n", str); \
1630 } \
1631 }
2700ac93 1632
1a94ca49
RK
1633/* This is how to output an assembler line defining an `int' constant. */
1634
1635#define ASM_OUTPUT_INT(FILE,VALUE) \
45c45e79
RK
1636 fprintf (FILE, "\t.long %d\n", \
1637 (GET_CODE (VALUE) == CONST_INT \
1638 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1a94ca49
RK
1639
1640/* This is how to output an assembler line defining a `long' constant. */
1641
1642#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1643( fprintf (FILE, "\t.quad "), \
1644 output_addr_const (FILE, (VALUE)), \
1645 fprintf (FILE, "\n"))
1646
1647/* Likewise for `char' and `short' constants. */
1648
1649#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1650 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1651 (GET_CODE (VALUE) == CONST_INT \
1652 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1653
1654#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1655 fprintf (FILE, "\t.byte %d\n", \
1656 (GET_CODE (VALUE) == CONST_INT \
1657 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1658
1659/* We use the default ASCII-output routine, except that we don't write more
1660 than 50 characters since the assembler doesn't support very long lines. */
1661
1662#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1663 do { \
1664 FILE *_hide_asm_out_file = (MYFILE); \
1665 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1666 int _hide_thissize = (MYLENGTH); \
1667 int _size_so_far = 0; \
1668 { \
1669 FILE *asm_out_file = _hide_asm_out_file; \
1670 unsigned char *p = _hide_p; \
1671 int thissize = _hide_thissize; \
1672 int i; \
1673 fprintf (asm_out_file, "\t.ascii \""); \
1674 \
1675 for (i = 0; i < thissize; i++) \
1676 { \
1677 register int c = p[i]; \
1678 \
1679 if (_size_so_far ++ > 50 && i < thissize - 4) \
1680 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1681 \
1682 if (c == '\"' || c == '\\') \
1683 putc ('\\', asm_out_file); \
1684 if (c >= ' ' && c < 0177) \
1685 putc (c, asm_out_file); \
1686 else \
1687 { \
1688 fprintf (asm_out_file, "\\%o", c); \
1689 /* After an octal-escape, if a digit follows, \
1690 terminate one string constant and start another. \
1691 The Vax assembler fails to stop reading the escape \
1692 after three digits, so this is the only way we \
1693 can get it to parse the data properly. */ \
1694 if (i < thissize - 1 \
1695 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1696 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1697 } \
1698 } \
1699 fprintf (asm_out_file, "\"\n"); \
1700 } \
1701 } \
1702 while (0)
52a69200 1703
1a94ca49
RK
1704/* This is how to output an insn to push a register on the stack.
1705 It need not be very fast code. */
1706
1707#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1708 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1709 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1710 (REGNO) & 31);
1711
1712/* This is how to output an insn to pop a register from the stack.
1713 It need not be very fast code. */
1714
1715#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1716 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1717 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1718 (REGNO) & 31);
1719
1720/* This is how to output an assembler line for a numeric constant byte. */
1721
1722#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1723 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1724
260ced47
RK
1725/* This is how to output an element of a case-vector that is absolute.
1726 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1727
260ced47 1728#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1729
260ced47 1730/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1731
260ced47
RK
1732#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1733 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1a94ca49
RK
1734
1735/* This is how to output an assembler line
1736 that says to advance the location counter
1737 to a multiple of 2**LOG bytes. */
1738
1739#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1740 if ((LOG) != 0) \
1741 fprintf (FILE, "\t.align %d\n", LOG);
1742
1743/* This is how to advance the location counter by SIZE bytes. */
1744
1745#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1746 fprintf (FILE, "\t.space %d\n", (SIZE))
1747
1748/* This says how to output an assembler line
1749 to define a global common symbol. */
1750
1751#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1752( fputs ("\t.comm ", (FILE)), \
1753 assemble_name ((FILE), (NAME)), \
1754 fprintf ((FILE), ",%d\n", (SIZE)))
1755
1756/* This says how to output an assembler line
1757 to define a local common symbol. */
1758
1759#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1760( fputs ("\t.lcomm ", (FILE)), \
1761 assemble_name ((FILE), (NAME)), \
1762 fprintf ((FILE), ",%d\n", (SIZE)))
1763
1764/* Store in OUTPUT a string (made with alloca) containing
1765 an assembler-name for a local static variable named NAME.
1766 LABELNO is an integer which is different for each call. */
1767
1768#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1769( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1770 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1771
1772/* Define the parentheses used to group arithmetic operations
1773 in assembler code. */
1774
1775#define ASM_OPEN_PAREN "("
1776#define ASM_CLOSE_PAREN ")"
1777
1778/* Define results of standard character escape sequences. */
1779#define TARGET_BELL 007
1780#define TARGET_BS 010
1781#define TARGET_TAB 011
1782#define TARGET_NEWLINE 012
1783#define TARGET_VT 013
1784#define TARGET_FF 014
1785#define TARGET_CR 015
1786
1787/* Print operand X (an rtx) in assembler syntax to file FILE.
1788 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1789 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1790
1791#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1792
1793/* Determine which codes are valid without a following integer. These must
1794 not be alphabetic. */
1795
1796#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1797\f
1798/* Print a memory address as an operand to reference that memory location. */
1799
1800#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1801{ rtx addr = (ADDR); \
1802 int basereg = 31; \
1803 HOST_WIDE_INT offset = 0; \
1804 \
1805 if (GET_CODE (addr) == AND) \
1806 addr = XEXP (addr, 0); \
1807 \
1808 if (GET_CODE (addr) == REG) \
1809 basereg = REGNO (addr); \
1810 else if (GET_CODE (addr) == CONST_INT) \
1811 offset = INTVAL (addr); \
1812 else if (GET_CODE (addr) == PLUS \
1813 && GET_CODE (XEXP (addr, 0)) == REG \
1814 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1815 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1816 else \
1817 abort (); \
1818 \
1819 fprintf (FILE, "%d($%d)", offset, basereg); \
1820}
1821/* Define the codes that are matched by predicates in alpha.c. */
1822
1823#define PREDICATE_CODES \
1824 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1825 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1826 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1827 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1828 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1829 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1830 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1831 {"const48_operand", {CONST_INT}}, \
1832 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1833 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1834 {"mode_mask_operand", {CONST_INT}}, \
1835 {"mul8_operand", {CONST_INT}}, \
1836 {"mode_width_operand", {CONST_INT}}, \
1837 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1838 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1839 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1840 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1841 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1842 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1843 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1844 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1845 SYMBOL_REF, CONST, LABEL_REF}}, \
1846 {"aligned_memory_operand", {MEM}}, \
1847 {"unaligned_memory_operand", {MEM}}, \
1848 {"any_memory_operand", {MEM}},
03f8c4cc 1849\f
34fa88ab
RK
1850/* Tell collect that the object format is ECOFF. */
1851#define OBJECT_FORMAT_COFF
1852#define EXTENDED_COFF
1853
1854/* If we use NM, pass -g to it so it only lists globals. */
1855#define NM_FLAGS "-pg"
1856
03f8c4cc
RK
1857/* Definitions for debugging. */
1858
1859#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1860#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1861#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1862
1863#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
1864#define PREFERRED_DEBUGGING_TYPE \
1865 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
1866#endif
1867
1868
1869/* Correct the offset of automatic variables and arguments. Note that
1870 the Alpha debug format wants all automatic variables and arguments
1871 to be in terms of two different offsets from the virtual frame pointer,
1872 which is the stack pointer before any adjustment in the function.
1873 The offset for the argument pointer is fixed for the native compiler,
1874 it is either zero (for the no arguments case) or large enough to hold
1875 all argument registers.
1876 The offset for the auto pointer is the fourth argument to the .frame
1877 directive (local_offset).
1878 To stay compatible with the native tools we use the same offsets
1879 from the virtual frame pointer and adjust the debugger arg/auto offsets
1880 accordingly. These debugger offsets are set up in output_prolog. */
1881
1882long alpha_arg_offset;
1883long alpha_auto_offset;
1884#define DEBUGGER_AUTO_OFFSET(X) \
1885 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1886#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1887
1888
1889#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1890 alpha_output_lineno (STREAM, LINE)
1891extern void alpha_output_lineno ();
1892
1893#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1894 alpha_output_filename (STREAM, NAME)
1895extern void alpha_output_filename ();
1896
1897
ab8b8941
RK
1898/* mips-tfile.c limits us to strings of one page. */
1899#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1900
1901/* By default, turn on GDB extensions. */
1902#define DEFAULT_GDB_EXTENSIONS 1
1903
1904/* If we are smuggling stabs through the ALPHA ECOFF object
1905 format, put a comment in front of the .stab<x> operation so
1906 that the ALPHA assembler does not choke. The mips-tfile program
1907 will correctly put the stab into the object file. */
1908
1909#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1910#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1911#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1912
1913/* Forward references to tags are allowed. */
1914#define SDB_ALLOW_FORWARD_REFERENCES
1915
1916/* Unknown tags are also allowed. */
1917#define SDB_ALLOW_UNKNOWN_REFERENCES
1918
1919#define PUT_SDB_DEF(a) \
1920do { \
1921 fprintf (asm_out_file, "\t%s.def\t", \
1922 (TARGET_GAS) ? "" : "#"); \
1923 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1924 fputc (';', asm_out_file); \
1925} while (0)
1926
1927#define PUT_SDB_PLAIN_DEF(a) \
1928do { \
1929 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1930 (TARGET_GAS) ? "" : "#", (a)); \
1931} while (0)
1932
1933#define PUT_SDB_TYPE(a) \
1934do { \
1935 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1936} while (0)
1937
1938/* For block start and end, we create labels, so that
1939 later we can figure out where the correct offset is.
1940 The normal .ent/.end serve well enough for functions,
1941 so those are just commented out. */
1942
1943extern int sdb_label_count; /* block start/end next label # */
1944
1945#define PUT_SDB_BLOCK_START(LINE) \
1946do { \
1947 fprintf (asm_out_file, \
1948 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1949 sdb_label_count, \
1950 (TARGET_GAS) ? "" : "#", \
1951 sdb_label_count, \
1952 (LINE)); \
1953 sdb_label_count++; \
1954} while (0)
1955
1956#define PUT_SDB_BLOCK_END(LINE) \
1957do { \
1958 fprintf (asm_out_file, \
1959 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1960 sdb_label_count, \
1961 (TARGET_GAS) ? "" : "#", \
1962 sdb_label_count, \
1963 (LINE)); \
1964 sdb_label_count++; \
1965} while (0)
1966
1967#define PUT_SDB_FUNCTION_START(LINE)
1968
1969#define PUT_SDB_FUNCTION_END(LINE)
1970
1971#define PUT_SDB_EPILOGUE_END(NAME)
1972
1973/* Specify to run a post-processor, mips-tfile after the assembler
1974 has run to stuff the ecoff debug information into the object file.
1975 This is needed because the Alpha assembler provides no way
1976 of specifying such information in the assembly file. */
1977
88681624 1978#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
1979
1980#define ASM_FINAL_SPEC "\
1981%{malpha-as: %{!mno-mips-tfile: \
1982 \n mips-tfile %{v*: -v} \
1983 %{K: -I %b.o~} \
1984 %{!K: %{save-temps: -I %b.o~}} \
1985 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1986 %{.s:%i} %{!.s:%g.s}}}"
1987
1988#else
1989#define ASM_FINAL_SPEC "\
1990%{!mgas: %{!mno-mips-tfile: \
1991 \n mips-tfile %{v*: -v} \
1992 %{K: -I %b.o~} \
1993 %{!K: %{save-temps: -I %b.o~}} \
1994 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1995 %{.s:%i} %{!.s:%g.s}}}"
1996
1997#endif
1998
1999/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2000 mips-tdump.c to print them out.
2001
2002 These must match the corresponding definitions in gdb/mipsread.c.
2003 Unfortunately, gcc and gdb do not currently share any directories. */
2004
2005#define CODE_MASK 0x8F300
2006#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2007#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2008#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2009
2010/* Override some mips-tfile definitions. */
2011
2012#define SHASH_SIZE 511
2013#define THASH_SIZE 55
1e6c6f11
RK
2014
2015/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2016
2017#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2018
2019/* The system headers under OSF/1 are C++-aware. */
2020#define NO_IMPLICIT_EXTERN_C
54190234
JM
2021
2022/* The linker will stick __main into the .init section. */
2023#define HAS_INIT_SECTION
This page took 0.383769 seconds and 5 git commands to generate.