]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
rtl.def (CONSTANT_P_RTX): New.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ba3994a 2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
21798cd8 26%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 27%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
28%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
29%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
30%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
31%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
32%{mieee:-D_IEEE_FP} \
33%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
34
35/* Set the spec to use for signed char. The default tests the above macro
36 but DEC's compiler can't handle the conditional in a "constant"
37 operand. */
38
39#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
40
b890f297
JM
41#define WORD_SWITCH_TAKES_ARG(STR) \
42 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
43 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
44 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
45 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
46 || !strcmp (STR, "isystem"))
8877eb00 47
1a94ca49
RK
48/* Print subsidiary information on the compiler version in use. */
49#define TARGET_VERSION
50
1a94ca49
RK
51/* Run-time compilation parameters selecting different hardware subsets. */
52
f6f6a13c
RK
53/* Which processor to schedule for. The cpu attribute defines a list that
54 mirrors this list, so changes to alpha.md must be made at the same time. */
55
56enum processor_type
57 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
58 PROCESSOR_EV5, /* 21164{a,pc,} */
59 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
60
61extern enum processor_type alpha_cpu;
62
2bf6230d
RK
63enum alpha_trap_precision
64{
65 ALPHA_TP_PROG, /* No precision (default). */
66 ALPHA_TP_FUNC, /* Trap contained within originating function. */
67 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
68};
69
70enum alpha_fp_rounding_mode
71{
72 ALPHA_FPRM_NORM, /* Normal rounding mode. */
73 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
74 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
75 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
76};
77
78enum alpha_fp_trap_mode
79{
80 ALPHA_FPTM_N, /* Normal trap mode. */
81 ALPHA_FPTM_U, /* Underflow traps enabled. */
82 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
83 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
84};
85
1a94ca49
RK
86extern int target_flags;
87
2bf6230d
RK
88extern enum alpha_trap_precision alpha_tp;
89extern enum alpha_fp_rounding_mode alpha_fprm;
90extern enum alpha_fp_trap_mode alpha_fptm;
91
1a94ca49
RK
92/* This means that floating-point support exists in the target implementation
93 of the Alpha architecture. This is usually the default. */
94
2bf6230d
RK
95#define MASK_FP 1
96#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
97
98/* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
2bf6230d
RK
102#define MASK_FPREGS 2
103#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
104
105/* This means that gas is used to process the assembler file. */
106
107#define MASK_GAS 4
108#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 109
2bf6230d
RK
110/* This means that we should mark procedures as IEEE conformant. */
111
112#define MASK_IEEE_CONFORMANT 8
113#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115/* This means we should be IEEE-compliant except for inexact. */
116
117#define MASK_IEEE 16
118#define TARGET_IEEE (target_flags & MASK_IEEE)
119
120/* This means we should be fully IEEE-compliant. */
121
122#define MASK_IEEE_WITH_INEXACT 32
123#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
803fee69
RK
125/* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128#define MASK_BUILD_CONSTANTS 128
129#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
e5958492
RK
131/* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134#define MASK_FLOAT_VAX 512
135#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
e9a25f70
JL
137/* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
025f3281 139
e9a25f70
JL
140#define MASK_BWX 1024
141#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 142
e9a25f70
JL
143/* This means that the processor has the CIX extension. */
144#define MASK_CIX 2048
145#define TARGET_CIX (target_flags & MASK_CIX)
146
147/* This means that the processor has the MAX extension. */
148#define MASK_MAX 4096
149#define TARGET_MAX (target_flags & MASK_MAX)
150
151/* This means that the processor is an EV5, EV56, or PCA56. This is defined
152 only in TARGET_CPU_DEFAULT. */
153#define MASK_CPU_EV5 8192
154
155/* Likewise for EV6. */
156#define MASK_CPU_EV6 16384
157
158/* This means we support the .arch directive in the assembler. Only
159 defined in TARGET_CPU_DEFAULT. */
160#define MASK_SUPPORT_ARCH 32768
161#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 162
9ba3994a
RH
163/* These are for target os support and cannot be changed at runtime. */
164#ifndef TARGET_WINDOWS_NT
165#define TARGET_WINDOWS_NT 0
166#endif
167#ifndef TARGET_OPEN_VMS
168#define TARGET_OPEN_VMS 0
169#endif
170
171#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
172#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
173#endif
9c0e94a5
RH
174#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
175#define TARGET_CAN_FAULT_IN_PROLOGUE 0
176#endif
9ba3994a 177
1a94ca49
RK
178/* Macro to define tables used to set the flags.
179 This is a list in braces of pairs in braces,
180 each pair being { "NAME", VALUE }
181 where VALUE is the bits to set or minus the bits to clear.
182 An empty string NAME is used to identify the default VALUE. */
183
2bf6230d
RK
184#define TARGET_SWITCHES \
185 { {"no-soft-float", MASK_FP}, \
186 {"soft-float", - MASK_FP}, \
187 {"fp-regs", MASK_FPREGS}, \
188 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
189 {"alpha-as", -MASK_GAS}, \
190 {"gas", MASK_GAS}, \
191 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
192 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
193 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 194 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
195 {"float-vax", MASK_FLOAT_VAX}, \
196 {"float-ieee", -MASK_FLOAT_VAX}, \
e9a25f70
JL
197 {"bwx", MASK_BWX}, \
198 {"no-bwx", -MASK_BWX}, \
199 {"cix", MASK_CIX}, \
200 {"no-cix", -MASK_CIX}, \
201 {"max", MASK_MAX}, \
202 {"no-max", -MASK_MAX}, \
88681624 203 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 204
c01b5470 205#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 206
88681624
ILT
207#ifndef TARGET_CPU_DEFAULT
208#define TARGET_CPU_DEFAULT 0
209#endif
210
2bf6230d
RK
211/* This macro is similar to `TARGET_SWITCHES' but defines names of
212 command options that have values. Its definition is an initializer
213 with a subgrouping for each command option.
214
215 Each subgrouping contains a string constant, that defines the fixed
216 part of the option name, and the address of a variable. The
217 variable, type `char *', is set to the variable part of the given
218 option if the fixed part matches. The actual option name is made
219 by appending `-m' to the specified name.
220
221 Here is an example which defines `-mshort-data-NUMBER'. If the
222 given option is `-mshort-data-512', the variable `m88k_short_data'
223 will be set to the string `"512"'.
224
225 extern char *m88k_short_data;
226 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
227
bcbbac26 228extern char *alpha_cpu_string; /* For -mcpu= */
2bf6230d
RK
229extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
230extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
231extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
bcbbac26 232extern char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d
RK
233
234#define TARGET_OPTIONS \
235{ \
f6f6a13c 236 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
237 {"fp-rounding-mode=", &alpha_fprm_string}, \
238 {"fp-trap-mode=", &alpha_fptm_string}, \
239 {"trap-precision=", &alpha_tp_string}, \
bcbbac26 240 {"memory-latency=", &alpha_mlat_string}, \
2bf6230d
RK
241}
242
243/* Sometimes certain combinations of command options do not make sense
244 on a particular target machine. You can define a macro
245 `OVERRIDE_OPTIONS' to take account of this. This macro, if
246 defined, is executed once just after all the command options have
247 been parsed.
248
249 On the Alpha, it is used to translate target-option strings into
250 numeric values. */
251
252extern void override_options ();
253#define OVERRIDE_OPTIONS override_options ()
254
255
1a94ca49
RK
256/* Define this macro to change register usage conditional on target flags.
257
258 On the Alpha, we use this to disable the floating-point registers when
259 they don't exist. */
260
261#define CONDITIONAL_REGISTER_USAGE \
262 if (! TARGET_FPREGS) \
52a69200 263 for (i = 32; i < 63; i++) \
1a94ca49
RK
264 fixed_regs[i] = call_used_regs[i] = 1;
265
4f074454
RK
266/* Show we can debug even without a frame pointer. */
267#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
268\f
269/* target machine storage layout */
270
2700ac93
RS
271/* Define to enable software floating point emulation. */
272#define REAL_ARITHMETIC
273
861bb6c1
JL
274/* The following #defines are used when compiling the routines in
275 libgcc1.c. Since the Alpha calling conventions require single
276 precision floats to be passed in the floating-point registers
277 (rather than in the general registers) we have to build the
278 libgcc1.c routines in such a way that they know the actual types
279 of their formal arguments and the actual types of their return
280 values. Otherwise, gcc will generate calls to the libgcc1.c
281 routines, passing arguments in the floating-point registers,
282 but the libgcc1.c routines will expect their arguments on the
283 stack (where the Alpha calling conventions require structs &
284 unions to be passed). */
285
286#define FLOAT_VALUE_TYPE double
287#define INTIFY(FLOATVAL) (FLOATVAL)
288#define FLOATIFY(INTVAL) (INTVAL)
289#define FLOAT_ARG_TYPE double
290
1a94ca49
RK
291/* Define the size of `int'. The default is the same as the word size. */
292#define INT_TYPE_SIZE 32
293
294/* Define the size of `long long'. The default is the twice the word size. */
295#define LONG_LONG_TYPE_SIZE 64
296
297/* The two floating-point formats we support are S-floating, which is
298 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
299 and `long double' are T. */
300
301#define FLOAT_TYPE_SIZE 32
302#define DOUBLE_TYPE_SIZE 64
303#define LONG_DOUBLE_TYPE_SIZE 64
304
5258d7ae
RK
305#define WCHAR_TYPE "unsigned int"
306#define WCHAR_TYPE_SIZE 32
1a94ca49 307
13d39dbc 308/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
309 in a wider mode than that declared by the program. In such cases,
310 the value is constrained to be within the bounds of the declared
311 type, but kept valid in the wider mode. The signedness of the
312 extension may differ from that of the type.
313
314 For Alpha, we always store objects in a full register. 32-bit objects
315 are always sign-extended, but smaller objects retain their signedness. */
316
317#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
318 if (GET_MODE_CLASS (MODE) == MODE_INT \
319 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
320 { \
321 if ((MODE) == SImode) \
322 (UNSIGNEDP) = 0; \
323 (MODE) = DImode; \
324 }
325
326/* Define this if function arguments should also be promoted using the above
327 procedure. */
328
329#define PROMOTE_FUNCTION_ARGS
330
331/* Likewise, if the function return value is promoted. */
332
333#define PROMOTE_FUNCTION_RETURN
334
335/* Define this if most significant bit is lowest numbered
336 in instructions that operate on numbered bit-fields.
337
338 There are no such instructions on the Alpha, but the documentation
339 is little endian. */
340#define BITS_BIG_ENDIAN 0
341
342/* Define this if most significant byte of a word is the lowest numbered.
343 This is false on the Alpha. */
344#define BYTES_BIG_ENDIAN 0
345
346/* Define this if most significant word of a multiword number is lowest
347 numbered.
348
349 For Alpha we can decide arbitrarily since there are no machine instructions
350 for them. Might as well be consistent with bytes. */
351#define WORDS_BIG_ENDIAN 0
352
353/* number of bits in an addressable storage unit */
354#define BITS_PER_UNIT 8
355
356/* Width in bits of a "word", which is the contents of a machine register.
357 Note that this is not necessarily the width of data type `int';
358 if using 16-bit ints on a 68000, this would still be 32.
359 But on a machine with 16-bit registers, this would be 16. */
360#define BITS_PER_WORD 64
361
362/* Width of a word, in units (bytes). */
363#define UNITS_PER_WORD 8
364
365/* Width in bits of a pointer.
366 See also the macro `Pmode' defined below. */
367#define POINTER_SIZE 64
368
369/* Allocation boundary (in *bits*) for storing arguments in argument list. */
370#define PARM_BOUNDARY 64
371
372/* Boundary (in *bits*) on which stack pointer should be aligned. */
373#define STACK_BOUNDARY 64
374
375/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 376#define FUNCTION_BOUNDARY 256
1a94ca49
RK
377
378/* Alignment of field after `int : 0' in a structure. */
379#define EMPTY_FIELD_BOUNDARY 64
380
381/* Every structure's size must be a multiple of this. */
382#define STRUCTURE_SIZE_BOUNDARY 8
383
384/* A bitfield declared as `int' forces `int' alignment for the struct. */
385#define PCC_BITFIELD_TYPE_MATTERS 1
386
65823178
RK
387/* Align loop starts for optimal branching.
388
389 ??? Kludge this and the next macro for the moment by not doing anything if
390 we don't optimize and also if we are writing ECOFF symbols to work around
391 a bug in DEC's assembler. */
1a94ca49 392
fc470718 393#define LOOP_ALIGN(LABEL) \
9c0e94a5 394 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 395
9c0e94a5
RH
396/* This is how to align an instruction for optimal branching. On
397 Alpha we'll get better performance by aligning on an octaword
1a94ca49 398 boundary. */
130d2d72 399
fc470718 400#define ALIGN_LABEL_AFTER_BARRIER(FILE) \
9c0e94a5 401 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
402
403/* No data type wants to be aligned rounder than this. */
404#define BIGGEST_ALIGNMENT 64
405
d16fe557
RK
406/* For atomic access to objects, must have at least 32-bit alignment
407 unless the machine has byte operations. */
e9a25f70 408#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 409
442b1685
RK
410/* Align all constants and variables to at least a word boundary so
411 we can pick up pieces of them faster. */
6c174fc0
RH
412/* ??? Only if block-move stuff knows about different source/destination
413 alignment. */
414#if 0
442b1685
RK
415#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
416#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 417#endif
1a94ca49
RK
418
419/* Set this non-zero if move instructions will actually fail to work
420 when given unaligned data.
421
422 Since we get an error message when we do one, call them invalid. */
423
424#define STRICT_ALIGNMENT 1
425
426/* Set this non-zero if unaligned move instructions are extremely slow.
427
428 On the Alpha, they trap. */
130d2d72
RK
429
430#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
431\f
432/* Standard register usage. */
433
434/* Number of actual hardware registers.
435 The hardware registers are assigned numbers for the compiler
436 from 0 to just below FIRST_PSEUDO_REGISTER.
437 All registers that the compiler knows about must be given numbers,
438 even those that are not normally considered general registers.
439
440 We define all 32 integer registers, even though $31 is always zero,
441 and all 32 floating-point registers, even though $f31 is also
442 always zero. We do not bother defining the FP status register and
130d2d72
RK
443 there are no other registers.
444
445 Since $31 is always zero, we will use register number 31 as the
446 argument pointer. It will never appear in the generated code
447 because we will always be eliminating it in favor of the stack
52a69200
RK
448 pointer or hardware frame pointer.
449
450 Likewise, we use $f31 for the frame pointer, which will always
451 be eliminated in favor of the hardware frame pointer or the
452 stack pointer. */
1a94ca49
RK
453
454#define FIRST_PSEUDO_REGISTER 64
455
456/* 1 for registers that have pervasive standard uses
457 and are not available for the register allocator. */
458
459#define FIXED_REGISTERS \
460 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
461 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
464
465/* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471#define CALL_USED_REGISTERS \
472 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
473 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
474 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
476
477/* List the order in which to allocate registers. Each register must be
478 listed once, even those in FIXED_REGISTERS.
479
480 We allocate in the following order:
2c4be73e 481 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
482 $f22-$f30 (likewise)
483 $f21-$f16 (likewise, but input args)
484 $f0 (nonsaved, but return value)
2c4be73e 485 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
486 $f2-$f9 (saved floating-point registers)
487 $1-$8 (nonsaved integer registers)
488 $22-$25 (likewise)
489 $28 (likewise)
490 $0 (likewise, but return value)
491 $21-$16 (likewise, but input args)
0076aa6b 492 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
493 $9-$14 (saved integer registers)
494 $26 (return PC)
495 $15 (frame pointer)
496 $29 (global pointer)
52a69200 497 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
498
499#define REG_ALLOC_ORDER \
2c4be73e 500 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
501 54, 55, 56, 57, 58, 59, 60, 61, 62, \
502 53, 52, 51, 50, 49, 48, \
2c4be73e 503 32, 33, \
1a94ca49
RK
504 34, 35, 36, 37, 38, 39, 40, 41, \
505 1, 2, 3, 4, 5, 6, 7, 8, \
506 22, 23, 24, 25, \
507 28, \
508 0, \
509 21, 20, 19, 18, 17, 16, \
510 27, \
511 9, 10, 11, 12, 13, 14, \
512 26, \
513 15, \
514 29, \
515 30, 31, 63 }
516
517/* Return number of consecutive hard regs needed starting at reg REGNO
518 to hold something of mode MODE.
519 This is ordinarily the length in words of a value of mode MODE
520 but can be less for certain modes in special long registers. */
521
522#define HARD_REGNO_NREGS(REGNO, MODE) \
523 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
524
525/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
526 On Alpha, the integer registers can hold any mode. The floating-point
527 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
528 or 8-bit values. If we only allowed the larger integers into FP registers,
529 we'd have to say that QImode and SImode aren't tiable, which is a
530 pain. So say all registers can hold everything and see how that works. */
531
532#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
533
534/* Value is 1 if it is a good idea to tie two pseudo registers
535 when one has mode MODE1 and one has mode MODE2.
536 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
537 for any hard reg, then this must be 0 for correct output. */
538
539#define MODES_TIEABLE_P(MODE1, MODE2) 1
540
541/* Specify the registers used for certain standard purposes.
542 The values of these macros are register numbers. */
543
544/* Alpha pc isn't overloaded on a register that the compiler knows about. */
545/* #define PC_REGNUM */
546
547/* Register to use for pushing function arguments. */
548#define STACK_POINTER_REGNUM 30
549
550/* Base register for access to local variables of the function. */
52a69200 551#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
552
553/* Value should be nonzero if functions must have frame pointers.
554 Zero means the frame pointer need not be set up (and parms
555 may be accessed via the stack pointer) in functions that seem suitable.
556 This is computed in `reload', in reload1.c. */
557#define FRAME_POINTER_REQUIRED 0
558
559/* Base register for access to arguments of the function. */
130d2d72 560#define ARG_POINTER_REGNUM 31
1a94ca49 561
52a69200
RK
562/* Base register for access to local variables of function. */
563#define FRAME_POINTER_REGNUM 63
564
1a94ca49
RK
565/* Register in which static-chain is passed to a function.
566
567 For the Alpha, this is based on an example; the calling sequence
568 doesn't seem to specify this. */
569#define STATIC_CHAIN_REGNUM 1
570
571/* Register in which address to store a structure value
572 arrives in the function. On the Alpha, the address is passed
573 as a hidden argument. */
574#define STRUCT_VALUE 0
575\f
576/* Define the classes of registers for register constraints in the
577 machine description. Also define ranges of constants.
578
579 One of the classes must always be named ALL_REGS and include all hard regs.
580 If there is more than one class, another class must be named NO_REGS
581 and contain no registers.
582
583 The name GENERAL_REGS must be the name of a class (or an alias for
584 another name such as ALL_REGS). This is the class of registers
585 that is allowed by "g" or "r" in a register constraint.
586 Also, registers outside this class are allocated only when
587 instructions express preferences for them.
588
589 The classes must be numbered in nondecreasing order; that is,
590 a larger-numbered class must never be contained completely
591 in a smaller-numbered class.
592
593 For any two classes, it is very desirable that there be another
594 class that represents their union. */
595
596enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
597 LIM_REG_CLASSES };
598
599#define N_REG_CLASSES (int) LIM_REG_CLASSES
600
601/* Give names of register classes as strings for dump file. */
602
603#define REG_CLASS_NAMES \
604 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
605
606/* Define which registers fit in which classes.
607 This is an initializer for a vector of HARD_REG_SET
608 of length N_REG_CLASSES. */
609
610#define REG_CLASS_CONTENTS \
52a69200 611 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
612
613/* The same information, inverted:
614 Return the class number of the smallest class containing
615 reg number REGNO. This could be a conditional expression
616 or could index an array. */
617
52a69200
RK
618#define REGNO_REG_CLASS(REGNO) \
619 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
620
621/* The class value for index registers, and the one for base regs. */
622#define INDEX_REG_CLASS NO_REGS
623#define BASE_REG_CLASS GENERAL_REGS
624
625/* Get reg_class from a letter such as appears in the machine description. */
626
627#define REG_CLASS_FROM_LETTER(C) \
628 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
629
630/* Define this macro to change register usage conditional on target flags. */
631/* #define CONDITIONAL_REGISTER_USAGE */
632
633/* The letters I, J, K, L, M, N, O, and P in a register constraint string
634 can be used to stand for particular ranges of immediate operands.
635 This macro defines what the ranges are.
636 C is the letter, and VALUE is a constant value.
637 Return 1 if VALUE is in the range specified by C.
638
639 For Alpha:
640 `I' is used for the range of constants most insns can contain.
641 `J' is the constant zero.
642 `K' is used for the constant in an LDA insn.
643 `L' is used for the constant in a LDAH insn.
644 `M' is used for the constants that can be AND'ed with using a ZAP insn.
645 `N' is used for complemented 8-bit constants.
646 `O' is used for negated 8-bit constants.
647 `P' is used for the constants 1, 2 and 3. */
648
649#define CONST_OK_FOR_LETTER_P(VALUE, C) \
650 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
651 : (C) == 'J' ? (VALUE) == 0 \
652 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
653 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 654 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
655 : (C) == 'M' ? zap_mask (VALUE) \
656 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
657 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
658 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
659 : 0)
660
661/* Similar, but for floating or large integer constants, and defining letters
662 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
663
664 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
665 that is the operand of a ZAP insn. */
666
667#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
668 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
669 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
670 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
671 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
672 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
673 : 0)
674
e560f226
RK
675/* Optional extra constraints for this machine.
676
677 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 678 reference to an unaligned location.
9ec36da5 679
ac030a7b 680 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
681 function.
682
683 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
684
685#define EXTRA_CONSTRAINT(OP, C) \
9ec36da5
JL
686 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
687 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
688 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
689 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
690 : 0)
691
1a94ca49
RK
692/* Given an rtx X being reloaded into a reg required to be
693 in class CLASS, return the class of reg to actually use.
694 In general this is just CLASS; but on some machines
695 in some cases it is preferable to use a more restrictive class.
696
697 On the Alpha, all constants except zero go into a floating-point
698 register via memory. */
699
700#define PREFERRED_RELOAD_CLASS(X, CLASS) \
701 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 702 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
703 : (CLASS))
704
705/* Loading and storing HImode or QImode values to and from memory
706 usually requires a scratch register. The exceptions are loading
e008606e
RK
707 QImode and HImode from an aligned address to a general register
708 unless byte instructions are permitted.
ddd5a7c1 709 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 710 FP register. */
1a94ca49
RK
711
712#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
713(((GET_CODE (IN) == MEM \
714 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
715 || (GET_CODE (IN) == SUBREG \
716 && (GET_CODE (SUBREG_REG (IN)) == MEM \
717 || (GET_CODE (SUBREG_REG (IN)) == REG \
718 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
719 && (((CLASS) == FLOAT_REGS \
720 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
721 || (((MODE) == QImode || (MODE) == HImode) \
e9a25f70 722 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
723 ? GENERAL_REGS \
724 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
725 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
726 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
727 && (GET_MODE_SIZE (GET_MODE (IN)) \
728 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 729 : NO_REGS)
1a94ca49
RK
730
731#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
732(((GET_CODE (OUT) == MEM \
733 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
734 || (GET_CODE (OUT) == SUBREG \
735 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
736 || (GET_CODE (SUBREG_REG (OUT)) == REG \
737 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
738 && ((((MODE) == HImode || (MODE) == QImode) \
739 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
740 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
741 ? GENERAL_REGS \
742 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
743 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
744 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
745 && (GET_MODE_SIZE (GET_MODE (OUT)) \
746 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
747 : NO_REGS)
1a94ca49
RK
748
749/* If we are copying between general and FP registers, we need a memory
e9a25f70 750 location unless the CIX extension is available. */
1a94ca49 751
e9a25f70
JL
752#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
753 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 754
acd94aaf
RK
755/* Specify the mode to be used for memory when a secondary memory
756 location is needed. If MODE is floating-point, use it. Otherwise,
757 widen to a word like the default. This is needed because we always
758 store integers in FP registers in quadword format. This whole
759 area is very tricky! */
760#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
761 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 762 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
763 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
764
1a94ca49
RK
765/* Return the maximum number of consecutive registers
766 needed to represent mode MODE in a register of class CLASS. */
767
768#define CLASS_MAX_NREGS(CLASS, MODE) \
769 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
770
c31dfe4d
RK
771/* If defined, gives a class of registers that cannot be used as the
772 operand of a SUBREG that changes the size of the object. */
773
774#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
775
1a94ca49
RK
776/* Define the cost of moving between registers of various classes. Moving
777 between FLOAT_REGS and anything else except float regs is expensive.
778 In fact, we make it quite expensive because we really don't want to
779 do these moves unless it is clearly worth it. Optimizations may
780 reduce the impact of not being able to allocate a pseudo to a
781 hard register. */
782
71d9b493
RH
783#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
784 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
785 ? 2 \
786 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
787
788/* A C expressions returning the cost of moving data of MODE from a register to
789 or from memory.
790
791 On the Alpha, bump this up a bit. */
792
bcbbac26 793extern int alpha_memory_latency;
cbd5b9a2 794#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
795
796/* Provide the cost of a branch. Exact meaning under development. */
797#define BRANCH_COST 5
798
799/* Adjust the cost of dependencies. */
800
801#define ADJUST_COST(INSN,LINK,DEP,COST) \
802 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
803\f
804/* Stack layout; function entry, exit and calling. */
805
806/* Define this if pushing a word on the stack
807 makes the stack pointer a smaller address. */
808#define STACK_GROWS_DOWNWARD
809
810/* Define this if the nominal address of the stack frame
811 is at the high-address end of the local variables;
812 that is, each additional local variable allocated
813 goes at a more negative offset in the frame. */
130d2d72 814/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
815
816/* Offset within stack frame to start allocating local variables at.
817 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
818 first local allocated. Otherwise, it is the offset to the BEGINNING
819 of the first local allocated. */
820
52a69200 821#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
822
823/* If we generate an insn to push BYTES bytes,
824 this says how many the stack pointer really advances by.
825 On Alpha, don't define this because there are no push insns. */
826/* #define PUSH_ROUNDING(BYTES) */
827
e008606e
RK
828/* Define this to be nonzero if stack checking is built into the ABI. */
829#define STACK_CHECK_BUILTIN 1
830
1a94ca49
RK
831/* Define this if the maximum size of all the outgoing args is to be
832 accumulated and pushed during the prologue. The amount can be
833 found in the variable current_function_outgoing_args_size. */
834#define ACCUMULATE_OUTGOING_ARGS
835
836/* Offset of first parameter from the argument pointer register value. */
837
130d2d72 838#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
839
840/* Definitions for register eliminations.
841
978e8952 842 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 843 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
844 pointer register. Secondly, the argument pointer register can always be
845 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
846
847/* This is an array of structures. Each structure initializes one pair
848 of eliminable registers. The "from" register number is given first,
849 followed by "to". Eliminations of the same "from" register are listed
850 in order of preference. */
851
52a69200
RK
852#define ELIMINABLE_REGS \
853{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
854 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
855 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
856 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
857
858/* Given FROM and TO register numbers, say whether this elimination is allowed.
859 Frame pointer elimination is automatically handled.
860
130d2d72 861 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
862 eliminated are already handled. */
863
130d2d72 864#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 865
52a69200
RK
866/* Round up to a multiple of 16 bytes. */
867#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
868
1a94ca49
RK
869/* Define the offset between two registers, one to be eliminated, and the other
870 its replacement, at the start of a routine. */
871#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
872{ if ((FROM) == FRAME_POINTER_REGNUM) \
873 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
874 + alpha_sa_size ()); \
875 else if ((FROM) == ARG_POINTER_REGNUM) \
876 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
877 + alpha_sa_size () \
d772039b
RK
878 + (ALPHA_ROUND (get_frame_size () \
879 + current_function_pretend_args_size) \
880 - current_function_pretend_args_size)); \
1a94ca49
RK
881}
882
883/* Define this if stack space is still allocated for a parameter passed
884 in a register. */
885/* #define REG_PARM_STACK_SPACE */
886
887/* Value is the number of bytes of arguments automatically
888 popped when returning from a subroutine call.
8b109b37 889 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
890 FUNTYPE is the data type of the function (as a tree),
891 or for a library call it is an identifier node for the subroutine name.
892 SIZE is the number of bytes of arguments passed on the stack. */
893
8b109b37 894#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
895
896/* Define how to find the value returned by a function.
897 VALTYPE is the data type of the value (as a tree).
898 If the precise function being called is known, FUNC is its FUNCTION_DECL;
899 otherwise, FUNC is 0.
900
901 On Alpha the value is found in $0 for integer functions and
902 $f0 for floating-point functions. */
903
904#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492 905 gen_rtx (REG, \
956d6950
JL
906 ((INTEGRAL_TYPE_P (VALTYPE) \
907 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
908 || POINTER_TYPE_P (VALTYPE)) \
e5958492
RK
909 ? word_mode : TYPE_MODE (VALTYPE), \
910 ((TARGET_FPREGS \
911 && (TREE_CODE (VALTYPE) == REAL_TYPE \
912 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
913 ? 32 : 0))
1a94ca49
RK
914
915/* Define how to find the value returned by a library function
916 assuming the value has mode MODE. */
917
918#define LIBCALL_VALUE(MODE) \
e5958492
RK
919 gen_rtx (REG, MODE, \
920 (TARGET_FPREGS \
921 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
922 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
923 ? 32 : 0))
1a94ca49 924
130d2d72
RK
925/* The definition of this macro implies that there are cases where
926 a scalar value cannot be returned in registers.
927
928 For the Alpha, any structure or union type is returned in memory, as
929 are integers whose size is larger than 64 bits. */
930
931#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 932 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
933 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
934
1a94ca49
RK
935/* 1 if N is a possible register number for a function value
936 as seen by the caller. */
937
e5958492
RK
938#define FUNCTION_VALUE_REGNO_P(N) \
939 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
940
941/* 1 if N is a possible register number for function argument passing.
942 On Alpha, these are $16-$21 and $f16-$f21. */
943
944#define FUNCTION_ARG_REGNO_P(N) \
945 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
946\f
947/* Define a data type for recording info about an argument list
948 during the scan of that argument list. This data type should
949 hold all necessary information about the function itself
950 and about the args processed so far, enough to enable macros
951 such as FUNCTION_ARG to determine where the next arg should go.
952
953 On Alpha, this is a single integer, which is a number of words
954 of arguments scanned so far.
955 Thus 6 or more means all following args should go on the stack. */
956
957#define CUMULATIVE_ARGS int
958
959/* Initialize a variable CUM of type CUMULATIVE_ARGS
960 for a call to a function whose data type is FNTYPE.
961 For a library call, FNTYPE is 0. */
962
2c7ee1a6 963#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
964
965/* Define intermediate macro to compute the size (in registers) of an argument
966 for the Alpha. */
967
968#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
969((MODE) != BLKmode \
970 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
971 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
972
973/* Update the data in CUM to advance over an argument
974 of mode MODE and data type TYPE.
975 (TYPE is null for libcalls where that information may not be available.) */
976
977#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
978 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
979 (CUM) = 6; \
980 else \
981 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
982
983/* Determine where to put an argument to a function.
984 Value is zero to push the argument on the stack,
985 or a hard register in which to store the argument.
986
987 MODE is the argument's machine mode.
988 TYPE is the data type of the argument (as a tree).
989 This is null for libcalls where that information may
990 not be available.
991 CUM is a variable of type CUMULATIVE_ARGS which gives info about
992 the preceding args and about the function being called.
993 NAMED is nonzero if this argument is a named parameter
994 (otherwise it is an extra parameter matching an ellipsis).
995
996 On Alpha the first 6 words of args are normally in registers
997 and the rest are pushed. */
998
999#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1000((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1001 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
1002 (CUM) + 16 + ((TARGET_FPREGS \
1003 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1004 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1005 * 32)) \
1006 : 0)
1a94ca49 1007
1a94ca49
RK
1008/* Specify the padding direction of arguments.
1009
1010 On the Alpha, we must pad upwards in order to be able to pass args in
1011 registers. */
1012
1013#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1014
1015/* For an arg passed partly in registers and partly in memory,
1016 this is the number of registers used.
1017 For args passed entirely in registers or entirely in memory, zero. */
1018
1019#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1020((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1021 ? 6 - (CUM) : 0)
1022
130d2d72
RK
1023/* Perform any needed actions needed for a function that is receiving a
1024 variable number of arguments.
1025
1026 CUM is as above.
1027
1028 MODE and TYPE are the mode and type of the current parameter.
1029
1030 PRETEND_SIZE is a variable that should be set to the amount of stack
1031 that must be pushed by the prolog to pretend that our caller pushed
1032 it.
1033
1034 Normally, this macro will push all remaining incoming registers on the
1035 stack and set PRETEND_SIZE to the length of the registers pushed.
1036
1037 On the Alpha, we allocate space for all 12 arg registers, but only
1038 push those that are remaining.
1039
1040 However, if NO registers need to be saved, don't allocate any space.
1041 This is not only because we won't need the space, but because AP includes
1042 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1043 ap-relative addresses already made.
1044
1045 If we are not to use the floating-point registers, save the integer
1046 registers where we would put the floating-point registers. This is
1047 not the most efficient way to implement varargs with just one register
1048 class, but it isn't worth doing anything more efficient in this rare
1049 case. */
1050
130d2d72
RK
1051
1052#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1053{ if ((CUM) < 6) \
1054 { \
1055 if (! (NO_RTL)) \
1056 { \
1057 move_block_from_reg \
1058 (16 + CUM, \
1059 gen_rtx (MEM, BLKmode, \
1060 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1061 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1062 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1063 move_block_from_reg \
7a92339b 1064 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1065 gen_rtx (MEM, BLKmode, \
1066 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1067 (CUM) * UNITS_PER_WORD)), \
02892e06 1068 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1069 emit_insn (gen_blockage ()); \
130d2d72
RK
1070 } \
1071 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1072 } \
1073}
1074
c8e9adec
RK
1075/* Try to output insns to set TARGET equal to the constant C if it can be
1076 done in less than N insns. Do all computations in MODE. Returns the place
1077 where the output has been placed if it can be done and the insns have been
1078 emitted. If it would take more than N insns, zero is returned and no
1079 insns and emitted. */
1080extern struct rtx_def *alpha_emit_set_const ();
803fee69 1081extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1082extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1083extern struct rtx_def *alpha_emit_conditional_move ();
1084
1a94ca49
RK
1085/* Generate necessary RTL for __builtin_saveregs().
1086 ARGLIST is the argument list; see expr.c. */
1087extern struct rtx_def *alpha_builtin_saveregs ();
1088#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1089
1090/* Define the information needed to generate branch and scc insns. This is
1091 stored from the compare operation. Note that we can't use "rtx" here
1092 since it hasn't been defined! */
1093
1094extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1095extern int alpha_compare_fp_p;
1096
e5958492 1097/* Make (or fake) .linkage entry for function call.
e5958492
RK
1098 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1099extern void alpha_need_linkage ();
1100
bcbbac26
RH
1101/* This macro defines the start of an assembly comment. */
1102
1103#define ASM_COMMENT_START " #"
1104
acd92049 1105/* This macro produces the initial definition of a function. */
1a94ca49 1106
acd92049
RH
1107#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1108 alpha_start_function(FILE,NAME,DECL);
1109extern void alpha_start_function ();
1a94ca49 1110
acd92049 1111/* This macro closes up a function definition for the assembler. */
9c0e94a5 1112
acd92049
RH
1113#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1114 alpha_end_function(FILE,NAME,DECL)
1115extern void alpha_end_function ();
1116
9c0e94a5
RH
1117/* This macro notes the end of the prologue. */
1118
1119#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
3c303f52 1120extern void output_end_prologue ();
1a94ca49 1121
acd92049
RH
1122/* Output any profiling code before the prologue. */
1123
1124#define PROFILE_BEFORE_PROLOGUE 1
1125
1a94ca49 1126/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1127 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1128 by simply passing -pg to the assembler and linker. */
85d159a3 1129
e0fb9029 1130#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1131
1132/* Output assembler code to FILE to initialize this source file's
1133 basic block profiling info, if that has not already been done.
1134 This assumes that __bb_init_func doesn't garble a1-a5. */
1135
1136#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1137 do { \
1138 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1139 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1140 fputs ("\tldq $26,0($16)\n", (FILE)); \
1141 fputs ("\tbne $26,1f\n", (FILE)); \
1142 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1143 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1144 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1145 fputs ("1:\n", (FILE)); \
85d159a3
RK
1146 ASM_OUTPUT_REG_POP (FILE, 16); \
1147 } while (0);
1148
1149/* Output assembler code to FILE to increment the entry-count for
1150 the BLOCKNO'th basic block in this source file. */
1151
1152#define BLOCK_PROFILER(FILE, BLOCKNO) \
1153 do { \
1154 int blockn = (BLOCKNO); \
a62eb16f 1155 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1156 fputs ("\tstq $26,0($30)\n", (FILE)); \
1157 fputs ("\tstq $27,8($30)\n", (FILE)); \
1158 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1159 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1160 fputs ("\taddq $27,1,$27\n", (FILE)); \
1161 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1162 fputs ("\tldq $26,0($30)\n", (FILE)); \
1163 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1164 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1165 } while (0)
1a94ca49 1166
1a94ca49
RK
1167
1168/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1169 the stack pointer does not matter. The value is tested only in
1170 functions that have frame pointers.
1171 No definition is equivalent to always zero. */
1172
1173#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1174\f
1175/* Output assembler code for a block containing the constant parts
1176 of a trampoline, leaving space for the variable parts.
1177
1178 The trampoline should set the static chain pointer to value placed
7981384f
RK
1179 into the trampoline and should branch to the specified routine.
1180 Note that $27 has been set to the address of the trampoline, so we can
1181 use it for addressability of the two data items. Trampolines are always
1182 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1183
1184#define TRAMPOLINE_TEMPLATE(FILE) \
1185{ \
7981384f 1186 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1187 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1188 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1189 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1190 fprintf (FILE, "\t.quad 0,0\n"); \
1191}
1192
3a523eeb
RS
1193/* Section in which to place the trampoline. On Alpha, instructions
1194 may only be placed in a text segment. */
1195
1196#define TRAMPOLINE_SECTION text_section
1197
1a94ca49
RK
1198/* Length in units of the trampoline for entering a nested function. */
1199
7981384f 1200#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1201
1202/* Emit RTL insns to initialize the variable parts of a trampoline.
1203 FNADDR is an RTX for the address of the function's pure code.
1204 CXT is an RTX for the static chain value for the function. We assume
1205 here that a function will be called many more times than its address
1206 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1207 to initialize the "hint" field in the JMP insn. Note that the hint
1208 field is PC (new) + 4 * bits 13:0. */
1a94ca49 1209
9ec36da5
JL
1210#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1211 alpha_initialize_trampoline (TRAMP, FNADDR, CXT)
7981384f
RK
1212
1213/* Attempt to turn on access permissions for the stack. */
1214
1215#define TRANSFER_FROM_TRAMPOLINE \
7981384f
RK
1216void \
1217__enable_execute_stack (addr) \
1218 void *addr; \
1219{ \
1220 long size = getpagesize (); \
1221 long mask = ~(size-1); \
1222 char *page = (char *) (((long) addr) & mask); \
1223 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1224 \
1225 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1226 if (mprotect (page, end - page, 7) < 0) \
1227 perror ("mprotect of trampoline code"); \
1a94ca49 1228}
675f0e7c
RK
1229
1230/* A C expression whose value is RTL representing the value of the return
1231 address for the frame COUNT steps up from the current frame.
1232 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
9ecc37f0 1233 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined. */
675f0e7c 1234
9ecc37f0
RH
1235#define RETURN_ADDR_RTX alpha_return_addr
1236extern struct rtx_def *alpha_return_addr ();
1237
1238/* Initialize data used by insn expanders. This is called from insn_emit,
1239 once for every function before code is generated. */
1240
1241#define INIT_EXPANDERS alpha_init_expanders ()
1242extern void alpha_init_expanders ();
675f0e7c 1243
675f0e7c 1244\f
1a94ca49
RK
1245/* Addressing modes, and classification of registers for them. */
1246
1247/* #define HAVE_POST_INCREMENT */
1248/* #define HAVE_POST_DECREMENT */
1249
1250/* #define HAVE_PRE_DECREMENT */
1251/* #define HAVE_PRE_INCREMENT */
1252
1253/* Macros to check register numbers against specific register classes. */
1254
1255/* These assume that REGNO is a hard or pseudo reg number.
1256 They give nonzero only if REGNO is a hard reg of the suitable class
1257 or a pseudo reg currently allocated to a suitable hard reg.
1258 Since they use reg_renumber, they are safe only once reg_renumber
1259 has been allocated, which happens in local-alloc.c. */
1260
1261#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1262#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1263((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1264 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1265\f
1266/* Maximum number of registers that can appear in a valid memory address. */
1267#define MAX_REGS_PER_ADDRESS 1
1268
1269/* Recognize any constant value that is a valid address. For the Alpha,
1270 there are only constants none since we want to use LDA to load any
1271 symbolic addresses into registers. */
1272
1273#define CONSTANT_ADDRESS_P(X) \
1274 (GET_CODE (X) == CONST_INT \
1275 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1276
1277/* Include all constant integers and constant doubles, but not
1278 floating-point, except for floating-point zero. */
1279
1280#define LEGITIMATE_CONSTANT_P(X) \
1281 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1282 || (X) == CONST0_RTX (GET_MODE (X)))
1283
1284/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1285 and check its validity for a certain class.
1286 We have two alternate definitions for each of them.
1287 The usual definition accepts all pseudo regs; the other rejects
1288 them unless they have been allocated suitable hard regs.
1289 The symbol REG_OK_STRICT causes the latter definition to be used.
1290
1291 Most source files want to accept pseudo regs in the hope that
1292 they will get allocated to the class that the insn wants them to be in.
1293 Source files for reload pass need to be strict.
1294 After reload, it makes no difference, since pseudo regs have
1295 been eliminated by then. */
1296
1297#ifndef REG_OK_STRICT
1298
1299/* Nonzero if X is a hard reg that can be used as an index
1300 or if it is a pseudo reg. */
1301#define REG_OK_FOR_INDEX_P(X) 0
1302/* Nonzero if X is a hard reg that can be used as a base reg
1303 or if it is a pseudo reg. */
1304#define REG_OK_FOR_BASE_P(X) \
52a69200 1305 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1306
1307#else
1308
1309/* Nonzero if X is a hard reg that can be used as an index. */
1310#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1311/* Nonzero if X is a hard reg that can be used as a base reg. */
1312#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1313
1314#endif
1315\f
1316/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1317 that is a valid memory address for an instruction.
1318 The MODE argument is the machine mode for the MEM expression
1319 that wants to use this address.
1320
1321 For Alpha, we have either a constant address or the sum of a register
1322 and a constant address, or just a register. For DImode, any of those
1323 forms can be surrounded with an AND that clear the low-order three bits;
1324 this is an "unaligned" access.
1325
1a94ca49
RK
1326 First define the basic valid address. */
1327
1328#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1329{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1330 goto ADDR; \
1331 if (CONSTANT_ADDRESS_P (X)) \
1332 goto ADDR; \
1333 if (GET_CODE (X) == PLUS \
1334 && REG_P (XEXP (X, 0)) \
1335 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1336 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1337 goto ADDR; \
1338}
1339
1340/* Now accept the simple address, or, for DImode only, an AND of a simple
1341 address that turns off the low three bits. */
1342
1a94ca49
RK
1343#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1344{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1345 if ((MODE) == DImode \
1346 && GET_CODE (X) == AND \
1347 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1348 && INTVAL (XEXP (X, 1)) == -8) \
1349 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1350}
1351
1352/* Try machine-dependent ways of modifying an illegitimate address
1353 to be legitimate. If we find one, return the new, valid address.
1354 This macro is used in only one place: `memory_address' in explow.c.
1355
1356 OLDX is the address as it was before break_out_memory_refs was called.
1357 In some cases it is useful to look at this to decide what needs to be done.
1358
1359 MODE and WIN are passed so that this macro can use
1360 GO_IF_LEGITIMATE_ADDRESS.
1361
1362 It is always safe for this macro to do nothing. It exists to recognize
1363 opportunities to optimize the output.
1364
1365 For the Alpha, there are three cases we handle:
1366
1367 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1368 valid offset, compute the high part of the constant and add it to the
1369 register. Then our address is (plus temp low-part-const).
1370 (2) If the address is (const (plus FOO const_int)), find the low-order
1371 part of the CONST_INT. Then load FOO plus any high-order part of the
1372 CONST_INT into a register. Our address is (plus reg low-part-const).
1373 This is done to reduce the number of GOT entries.
1374 (3) If we have a (plus reg const), emit the load as in (2), then add
1375 the two registers, and finally generate (plus reg low-part-const) as
1376 our address. */
1377
1378#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1379{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1380 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1381 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1382 { \
1383 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1384 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1385 HOST_WIDE_INT highpart = val - lowpart; \
1386 rtx high = GEN_INT (highpart); \
1387 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1388 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1389 \
1390 (X) = plus_constant (temp, lowpart); \
1391 goto WIN; \
1392 } \
1393 else if (GET_CODE (X) == CONST \
1394 && GET_CODE (XEXP (X, 0)) == PLUS \
1395 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1396 { \
1397 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1398 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1399 HOST_WIDE_INT highpart = val - lowpart; \
1400 rtx high = XEXP (XEXP (X, 0), 0); \
1401 \
1402 if (highpart) \
1403 high = plus_constant (high, highpart); \
1404 \
1405 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1406 goto WIN; \
1407 } \
1408 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1409 && GET_CODE (XEXP (X, 1)) == CONST \
1410 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1411 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1412 { \
1413 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1414 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1415 HOST_WIDE_INT highpart = val - lowpart; \
1416 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1417 \
1418 if (highpart) \
1419 high = plus_constant (high, highpart); \
1420 \
1421 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1422 force_reg (Pmode, high), \
80f251fe 1423 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1424 (X) = plus_constant (high, lowpart); \
1425 goto WIN; \
1426 } \
1427}
1428
a9a2595b
JR
1429/* Try a machine-dependent way of reloading an illegitimate address
1430 operand. If we find one, push the reload and jump to WIN. This
1431 macro is used in only one place: `find_reloads_address' in reload.c.
1432
1433 For the Alpha, we wish to handle large displacements off a base
1434 register by splitting the addend across an ldah and the mem insn.
1435 This cuts number of extra insns needed from 3 to 1. */
1436
1437#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1438do { \
1439 if (GET_CODE (X) == PLUS \
1440 && GET_CODE (XEXP (X, 0)) == REG \
1441 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1442 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1443 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1444 { \
1445 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1446 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1447 HOST_WIDE_INT high \
1448 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1449 \
1450 /* Check for 32-bit overflow. */ \
1451 if (high + low != val) \
1452 break; \
1453 \
1454 /* Reload the high part into a base reg; leave the low part \
1455 in the mem directly. */ \
1456 \
1457 X = gen_rtx_PLUS (GET_MODE (X), \
1458 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1459 GEN_INT (high)), \
1460 GEN_INT (low)); \
1461 \
1462 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1463 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1464 OPNUM, TYPE); \
1465 goto WIN; \
1466 } \
1467} while (0)
1468
1a94ca49
RK
1469/* Go to LABEL if ADDR (a legitimate address expression)
1470 has an effect that depends on the machine mode it is used for.
1471 On the Alpha this is true only for the unaligned modes. We can
1472 simplify this test since we know that the address must be valid. */
1473
1474#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1475{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1476
1477/* Compute the cost of an address. For the Alpha, all valid addresses are
1478 the same cost. */
1479
1480#define ADDRESS_COST(X) 0
1481
2ea844d3
RH
1482/* Machine-dependent reorg pass. */
1483#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1484\f
1485/* Specify the machine mode that this machine uses
1486 for the index in the tablejump instruction. */
1487#define CASE_VECTOR_MODE SImode
1488
18543a22
ILT
1489/* Define as C expression which evaluates to nonzero if the tablejump
1490 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1491 table.
b0435cf4 1492
3aa9d5b6 1493 Do not define this if the table should contain absolute addresses.
260ced47
RK
1494 On the Alpha, the table is really GP-relative, not relative to the PC
1495 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1496 but we should try to find some better way sometime. */
18543a22 1497#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1498
1499/* Specify the tree operation to be used to convert reals to integers. */
1500#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1501
1502/* This is the kind of divide that is easiest to do in the general case. */
1503#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1504
1505/* Define this as 1 if `char' should by default be signed; else as 0. */
1506#define DEFAULT_SIGNED_CHAR 1
1507
1508/* This flag, if defined, says the same insns that convert to a signed fixnum
1509 also convert validly to an unsigned one.
1510
1511 We actually lie a bit here as overflow conditions are different. But
1512 they aren't being checked anyway. */
1513
1514#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1515
1516/* Max number of bytes we can move to or from memory
1517 in one reasonably fast instruction. */
1518
1519#define MOVE_MAX 8
1520
6c174fc0
RH
1521/* Controls how many units are moved by expr.c before resorting to movstr.
1522 Without byte/word accesses, we want no more than one; with, several single
1523 byte accesses are better. */
1524
1525#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1526
1a94ca49
RK
1527/* Largest number of bytes of an object that can be placed in a register.
1528 On the Alpha we have plenty of registers, so use TImode. */
1529#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1530
1531/* Nonzero if access to memory by bytes is no faster than for words.
1532 Also non-zero if doing byte operations (specifically shifts) in registers
1533 is undesirable.
1534
1535 On the Alpha, we want to not use the byte operation and instead use
1536 masking operations to access fields; these will save instructions. */
1537
1538#define SLOW_BYTE_ACCESS 1
1539
9a63901f
RK
1540/* Define if operations between registers always perform the operation
1541 on the full register even if a narrower mode is specified. */
1542#define WORD_REGISTER_OPERATIONS
1543
1544/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1545 will either zero-extend or sign-extend. The value of this macro should
1546 be the code that says which one of the two operations is implicitly
1547 done, NIL if none. */
b7747781 1548#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1549
225211e2
RK
1550/* Define if loading short immediate values into registers sign extends. */
1551#define SHORT_IMMEDIATES_SIGN_EXTEND
1552
1a94ca49
RK
1553/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1554 is done just by pretending it is already truncated. */
1555#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1556
1557/* We assume that the store-condition-codes instructions store 0 for false
1558 and some other value for true. This is the value stored for true. */
1559
1560#define STORE_FLAG_VALUE 1
1561
1562/* Define the value returned by a floating-point comparison instruction. */
1563
e9a25f70 1564#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1565
35bb77fd
RK
1566/* Canonicalize a comparison from one we don't have to one we do have. */
1567
1568#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1569 do { \
1570 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1571 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1572 { \
1573 rtx tem = (OP0); \
1574 (OP0) = (OP1); \
1575 (OP1) = tem; \
1576 (CODE) = swap_condition (CODE); \
1577 } \
1578 if (((CODE) == LT || (CODE) == LTU) \
1579 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1580 { \
1581 (CODE) = (CODE) == LT ? LE : LEU; \
1582 (OP1) = GEN_INT (255); \
1583 } \
1584 } while (0)
1585
1a94ca49
RK
1586/* Specify the machine mode that pointers have.
1587 After generation of rtl, the compiler makes no further distinction
1588 between pointers and any other objects of this machine mode. */
1589#define Pmode DImode
1590
1591/* Mode of a function address in a call instruction (for indexing purposes). */
1592
1593#define FUNCTION_MODE Pmode
1594
1595/* Define this if addresses of constant functions
1596 shouldn't be put through pseudo regs where they can be cse'd.
1597 Desirable on machines where ordinary constants are expensive
1598 but a CALL with constant address is cheap.
1599
1600 We define this on the Alpha so that gen_call and gen_call_value
1601 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1602 then copy it into a register, thus actually letting the address be
1603 cse'ed. */
1604
1605#define NO_FUNCTION_CSE
1606
d969caf8 1607/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1608 few bits. */
d969caf8 1609#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1610
d721b776
RK
1611/* Use atexit for static constructors/destructors, instead of defining
1612 our own exit function. */
1613#define HAVE_ATEXIT
1614
71d9b493 1615/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1616#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1617
1a94ca49
RK
1618/* Compute the cost of computing a constant rtl expression RTX
1619 whose rtx-code is CODE. The body of this macro is a portion
1620 of a switch statement. If the code is computed here,
1621 return it with a return statement. Otherwise, break from the switch.
1622
8b7b2e36
RK
1623 If this is an 8-bit constant, return zero since it can be used
1624 nearly anywhere with no cost. If it is a valid operand for an
1625 ADD or AND, likewise return 0 if we know it will be used in that
1626 context. Otherwise, return 2 since it might be used there later.
1627 All other constants take at least two insns. */
1a94ca49
RK
1628
1629#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1630 case CONST_INT: \
06eb8e92 1631 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1632 return 0; \
1a94ca49 1633 case CONST_DOUBLE: \
5d02ee66
RH
1634 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1635 return 0; \
1636 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1637 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1638 return 0; \
1639 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1640 return 2; \
1641 else \
1642 return COSTS_N_INSNS (2); \
1a94ca49
RK
1643 case CONST: \
1644 case SYMBOL_REF: \
1645 case LABEL_REF: \
f6f6a13c
RK
1646 switch (alpha_cpu) \
1647 { \
1648 case PROCESSOR_EV4: \
1649 return COSTS_N_INSNS (3); \
1650 case PROCESSOR_EV5: \
5d02ee66 1651 case PROCESSOR_EV6: \
f6f6a13c 1652 return COSTS_N_INSNS (2); \
5d02ee66 1653 default: abort(); \
f6f6a13c 1654 }
1a94ca49
RK
1655
1656/* Provide the costs of a rtl expression. This is in the body of a
1657 switch on CODE. */
1658
1659#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1660 case PLUS: case MINUS: \
1661 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1662 switch (alpha_cpu) \
1663 { \
1664 case PROCESSOR_EV4: \
1665 return COSTS_N_INSNS (6); \
1666 case PROCESSOR_EV5: \
5d02ee66 1667 case PROCESSOR_EV6: \
f6f6a13c 1668 return COSTS_N_INSNS (4); \
5d02ee66 1669 default: abort(); \
f6f6a13c 1670 } \
b49e978e
RK
1671 else if (GET_CODE (XEXP (X, 0)) == MULT \
1672 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1673 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1674 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1675 break; \
1676 case MULT: \
f6f6a13c
RK
1677 switch (alpha_cpu) \
1678 { \
1679 case PROCESSOR_EV4: \
1680 if (FLOAT_MODE_P (GET_MODE (X))) \
1681 return COSTS_N_INSNS (6); \
1682 return COSTS_N_INSNS (23); \
1683 case PROCESSOR_EV5: \
1684 if (FLOAT_MODE_P (GET_MODE (X))) \
1685 return COSTS_N_INSNS (4); \
1686 else if (GET_MODE (X) == DImode) \
1687 return COSTS_N_INSNS (12); \
1688 else \
1689 return COSTS_N_INSNS (8); \
5d02ee66
RH
1690 case PROCESSOR_EV6: \
1691 if (FLOAT_MODE_P (GET_MODE (X))) \
1692 return COSTS_N_INSNS (4); \
1693 else \
1694 return COSTS_N_INSNS (7); \
1695 default: abort(); \
f6f6a13c 1696 } \
b49e978e
RK
1697 case ASHIFT: \
1698 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1699 && INTVAL (XEXP (X, 1)) <= 3) \
1700 break; \
1701 /* ... fall through ... */ \
5d02ee66 1702 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1703 switch (alpha_cpu) \
1704 { \
1705 case PROCESSOR_EV4: \
1706 return COSTS_N_INSNS (2); \
1707 case PROCESSOR_EV5: \
5d02ee66 1708 case PROCESSOR_EV6: \
f6f6a13c 1709 return COSTS_N_INSNS (1); \
5d02ee66
RH
1710 default: abort(); \
1711 } \
1712 case IF_THEN_ELSE: \
1713 switch (alpha_cpu) \
1714 { \
1715 case PROCESSOR_EV4: \
1716 case PROCESSOR_EV6: \
1717 return COSTS_N_INSNS (2); \
1718 case PROCESSOR_EV5: \
1719 return COSTS_N_INSNS (1); \
1720 default: abort(); \
f6f6a13c 1721 } \
3bda6d11 1722 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1723 switch (alpha_cpu) \
1724 { \
1725 case PROCESSOR_EV4: \
1726 if (GET_MODE (X) == SFmode) \
1727 return COSTS_N_INSNS (34); \
1728 else if (GET_MODE (X) == DFmode) \
1729 return COSTS_N_INSNS (63); \
1730 else \
1731 return COSTS_N_INSNS (70); \
1732 case PROCESSOR_EV5: \
1733 if (GET_MODE (X) == SFmode) \
1734 return COSTS_N_INSNS (15); \
1735 else if (GET_MODE (X) == DFmode) \
1736 return COSTS_N_INSNS (22); \
1737 else \
5d02ee66
RH
1738 return COSTS_N_INSNS (70); /* ??? */ \
1739 case PROCESSOR_EV6: \
1740 if (GET_MODE (X) == SFmode) \
1741 return COSTS_N_INSNS (12); \
1742 else if (GET_MODE (X) == DFmode) \
1743 return COSTS_N_INSNS (15); \
1744 else \
1745 return COSTS_N_INSNS (70); /* ??? */ \
1746 default: abort(); \
f6f6a13c 1747 } \
1a94ca49 1748 case MEM: \
f6f6a13c
RK
1749 switch (alpha_cpu) \
1750 { \
1751 case PROCESSOR_EV4: \
5d02ee66 1752 case PROCESSOR_EV6: \
f6f6a13c
RK
1753 return COSTS_N_INSNS (3); \
1754 case PROCESSOR_EV5: \
1755 return COSTS_N_INSNS (2); \
5d02ee66 1756 default: abort(); \
f6f6a13c
RK
1757 } \
1758 case NEG: case ABS: \
1759 if (! FLOAT_MODE_P (GET_MODE (X))) \
1760 break; \
1761 /* ... fall through ... */ \
3bda6d11
RK
1762 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1763 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1764 switch (alpha_cpu) \
1765 { \
1766 case PROCESSOR_EV4: \
1767 return COSTS_N_INSNS (6); \
1768 case PROCESSOR_EV5: \
5d02ee66 1769 case PROCESSOR_EV6: \
f6f6a13c 1770 return COSTS_N_INSNS (4); \
5d02ee66 1771 default: abort(); \
f6f6a13c 1772 }
1a94ca49
RK
1773\f
1774/* Control the assembler format that we output. */
1775
40ef2fc5
JL
1776/* We don't emit these labels, so as to avoid getting linker errors about
1777 missing exception handling info. If we emit a gcc_compiled. label into
1778 text, and the file has no code, then the DEC assembler gives us a zero
1779 sized text section with no associated exception handling info. The
38e01259 1780 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1781 the exception handling info is missing. */
3c303f52
KG
1782#define ASM_IDENTIFY_GCC(x)
1783#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1784
1a94ca49
RK
1785/* Output to assembler file text saying following lines
1786 may contain character constants, extra white space, comments, etc. */
1787
1788#define ASM_APP_ON ""
1789
1790/* Output to assembler file text saying following lines
1791 no longer contain unusual constructs. */
1792
1793#define ASM_APP_OFF ""
1794
1795#define TEXT_SECTION_ASM_OP ".text"
1796
1797/* Output before read-only data. */
1798
1799#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1800
1801/* Output before writable data. */
1802
1803#define DATA_SECTION_ASM_OP ".data"
1804
1805/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1806 indicate that it is for read-only data.
1807
abc95ed3 1808 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1809 eight bytes of zero. This works around a bug in DEC's assembler in
1810 some versions of OSF/1 V3.x. */
1a94ca49
RK
1811
1812#define EXTRA_SECTIONS readonly_data
1813
1814#define EXTRA_SECTION_FUNCTIONS \
1815void \
1816literal_section () \
1817{ \
1818 if (in_section != readonly_data) \
1819 { \
c0388f29
RK
1820 static int firsttime = 1; \
1821 \
1a94ca49 1822 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1823 if (firsttime) \
1824 { \
1825 firsttime = 0; \
1826 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1827 } \
1828 \
1a94ca49
RK
1829 in_section = readonly_data; \
1830 } \
1831} \
1832
1833#define READONLY_DATA_SECTION literal_section
1834
ac030a7b
RK
1835/* If we are referencing a function that is static, make the SYMBOL_REF
1836 special. We use this to see indicate we can branch to this function
1837 without setting PV or restoring GP. */
130d2d72
RK
1838
1839#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1840 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1841 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1842
1a94ca49
RK
1843/* How to refer to registers in assembler output.
1844 This sequence is indexed by compiler's hard-register-number (see above). */
1845
1846#define REGISTER_NAMES \
1847{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1848 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1849 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1850 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1851 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1852 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1853 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1854 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1855
1856/* How to renumber registers for dbx and gdb. */
1857
1858#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1859
1860/* This is how to output the definition of a user-level label named NAME,
1861 such as the label on a static function or variable NAME. */
1862
1863#define ASM_OUTPUT_LABEL(FILE,NAME) \
1864 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1865
1866/* This is how to output a command to make the user-level label named NAME
1867 defined for reference from other files. */
1868
1869#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1870 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1871
4e0c8ad2 1872/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1873
4e0c8ad2 1874#define USER_LABEL_PREFIX ""
1a94ca49
RK
1875
1876/* This is how to output an internal numbered label where
1877 PREFIX is the class of label and NUM is the number within the class. */
1878
1879#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1880 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1881
1882/* This is how to output a label for a jump table. Arguments are the same as
1883 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1884 passed. */
1885
1886#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1887{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1888
1889/* This is how to store into the string LABEL
1890 the symbol_ref name of an internal numbered label where
1891 PREFIX is the class of label and NUM is the number within the class.
1892 This is suitable for output with `assemble_name'. */
1893
1894#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
531ea24e 1895 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1a94ca49 1896
e247ca2a
RK
1897/* Check a floating-point value for validity for a particular machine mode. */
1898
1899#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1900 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1901
1a94ca49
RK
1902/* This is how to output an assembler line defining a `double' constant. */
1903
e99300f1
RS
1904#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1905 { \
1906 if (REAL_VALUE_ISINF (VALUE) \
1907 || REAL_VALUE_ISNAN (VALUE) \
1908 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1909 { \
1910 long t[2]; \
1911 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1912 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1913 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1914 } \
1915 else \
1916 { \
1917 char str[30]; \
1918 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1919 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1920 } \
1921 }
1a94ca49
RK
1922
1923/* This is how to output an assembler line defining a `float' constant. */
1924
e247ca2a
RK
1925#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1926 do { \
1927 long t; \
1928 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1929 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1930} while (0)
2700ac93 1931
1a94ca49
RK
1932/* This is how to output an assembler line defining an `int' constant. */
1933
1934#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1935( fprintf (FILE, "\t.long "), \
1936 output_addr_const (FILE, (VALUE)), \
1937 fprintf (FILE, "\n"))
1a94ca49
RK
1938
1939/* This is how to output an assembler line defining a `long' constant. */
1940
1941#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1942( fprintf (FILE, "\t.quad "), \
1943 output_addr_const (FILE, (VALUE)), \
1944 fprintf (FILE, "\n"))
1945
1946/* Likewise for `char' and `short' constants. */
1947
1948#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1949 fprintf (FILE, "\t.word %d\n", \
3c303f52 1950 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1951 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1952
1953#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 1954 fprintf (FILE, "\t.byte %d\n", \
3c303f52 1955 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1956 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1957
1958/* We use the default ASCII-output routine, except that we don't write more
1959 than 50 characters since the assembler doesn't support very long lines. */
1960
1961#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1962 do { \
1963 FILE *_hide_asm_out_file = (MYFILE); \
1964 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1965 int _hide_thissize = (MYLENGTH); \
1966 int _size_so_far = 0; \
1967 { \
1968 FILE *asm_out_file = _hide_asm_out_file; \
1969 unsigned char *p = _hide_p; \
1970 int thissize = _hide_thissize; \
1971 int i; \
1972 fprintf (asm_out_file, "\t.ascii \""); \
1973 \
1974 for (i = 0; i < thissize; i++) \
1975 { \
1976 register int c = p[i]; \
1977 \
1978 if (_size_so_far ++ > 50 && i < thissize - 4) \
1979 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1980 \
1981 if (c == '\"' || c == '\\') \
1982 putc ('\\', asm_out_file); \
1983 if (c >= ' ' && c < 0177) \
1984 putc (c, asm_out_file); \
1985 else \
1986 { \
1987 fprintf (asm_out_file, "\\%o", c); \
1988 /* After an octal-escape, if a digit follows, \
1989 terminate one string constant and start another. \
1990 The Vax assembler fails to stop reading the escape \
1991 after three digits, so this is the only way we \
1992 can get it to parse the data properly. */ \
1993 if (i < thissize - 1 \
1994 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1995 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1996 } \
1997 } \
1998 fprintf (asm_out_file, "\"\n"); \
1999 } \
2000 } \
2001 while (0)
52a69200 2002
1a94ca49
RK
2003/* This is how to output an insn to push a register on the stack.
2004 It need not be very fast code. */
2005
2006#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2007 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2008 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2009 (REGNO) & 31);
2010
2011/* This is how to output an insn to pop a register from the stack.
2012 It need not be very fast code. */
2013
2014#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2015 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2016 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2017 (REGNO) & 31);
2018
2019/* This is how to output an assembler line for a numeric constant byte. */
2020
2021#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2022 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2023
260ced47
RK
2024/* This is how to output an element of a case-vector that is absolute.
2025 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2026
260ced47 2027#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2028
260ced47 2029/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2030
33f7f353 2031#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2032 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2033 (VALUE))
1a94ca49
RK
2034
2035/* This is how to output an assembler line
2036 that says to advance the location counter
2037 to a multiple of 2**LOG bytes. */
2038
2039#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2040 if ((LOG) != 0) \
2041 fprintf (FILE, "\t.align %d\n", LOG);
2042
2043/* This is how to advance the location counter by SIZE bytes. */
2044
2045#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2046 fprintf (FILE, "\t.space %d\n", (SIZE))
2047
2048/* This says how to output an assembler line
2049 to define a global common symbol. */
2050
2051#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2052( fputs ("\t.comm ", (FILE)), \
2053 assemble_name ((FILE), (NAME)), \
2054 fprintf ((FILE), ",%d\n", (SIZE)))
2055
2056/* This says how to output an assembler line
2057 to define a local common symbol. */
2058
2059#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2060( fputs ("\t.lcomm ", (FILE)), \
2061 assemble_name ((FILE), (NAME)), \
2062 fprintf ((FILE), ",%d\n", (SIZE)))
2063
2064/* Store in OUTPUT a string (made with alloca) containing
2065 an assembler-name for a local static variable named NAME.
2066 LABELNO is an integer which is different for each call. */
2067
2068#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2069( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2070 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2071
2072/* Define the parentheses used to group arithmetic operations
2073 in assembler code. */
2074
2075#define ASM_OPEN_PAREN "("
2076#define ASM_CLOSE_PAREN ")"
2077
60593797
RH
2078/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2079 Used for C++ multiple inheritance. */
2080
2081#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2082do { \
92d4501f 2083 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
60593797 2084 \
acd92049
RH
2085 /* Mark end of prologue. */ \
2086 output_end_prologue (FILE); \
60593797
RH
2087 \
2088 /* Rely on the assembler to macro expand a large delta. */ \
2089 fprintf (FILE, "\tlda $16,%ld($16)\n", (long)(DELTA)); \
2090 \
2091 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2092 { \
2093 fprintf (FILE, "\tbr $31,$"); \
2094 assemble_name (FILE, fn_name); \
2095 fprintf (FILE, "..ng\n"); \
2096 } \
2097 else \
2098 { \
acd92049 2099 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2100 assemble_name (FILE, fn_name); \
2101 fputc ('\n', FILE); \
2102 } \
60593797 2103} while (0)
60593797 2104\f
9ec36da5 2105
1a94ca49
RK
2106/* Define results of standard character escape sequences. */
2107#define TARGET_BELL 007
2108#define TARGET_BS 010
2109#define TARGET_TAB 011
2110#define TARGET_NEWLINE 012
2111#define TARGET_VT 013
2112#define TARGET_FF 014
2113#define TARGET_CR 015
2114
2115/* Print operand X (an rtx) in assembler syntax to file FILE.
2116 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2117 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2118
2119#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2120
2121/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2122 not be alphabetic (the characters are chosen so that
2123 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2124 using ASCII).
2125
2126 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2127 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2128 mode. alpha_fprm controls which suffix is generated.
2129
2130 ' Generates trap-mode suffix for instructions that accept the
2131 su suffix only (cmpt et al).
2132
e83015a9
RH
2133 ` Generates trap-mode suffix for instructions that accept the
2134 v and sv suffix. The only instruction that needs this is cvtql.
2135
0022a940
DMT
2136 ( Generates trap-mode suffix for instructions that accept the
2137 v, sv, and svi suffix. The only instruction that needs this
2138 is cvttq.
2139
2bf6230d
RK
2140 ) Generates trap-mode suffix for instructions that accept the
2141 u, su, and sui suffix. This is the bulk of the IEEE floating
2142 point instructions (addt et al).
2143
2144 + Generates trap-mode suffix for instructions that accept the
2145 sui suffix (cvtqt and cvtqs).
e5958492
RK
2146
2147 , Generates single precision suffix for floating point
2148 instructions (s for IEEE, f for VAX)
2149
2150 - Generates double precision suffix for floating point
2151 instructions (t for IEEE, g for VAX)
2bf6230d 2152 */
1a94ca49 2153
2bf6230d 2154#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2155 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2156 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2157\f
2158/* Print a memory address as an operand to reference that memory location. */
2159
2160#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2161{ rtx addr = (ADDR); \
2162 int basereg = 31; \
2163 HOST_WIDE_INT offset = 0; \
2164 \
2165 if (GET_CODE (addr) == AND) \
2166 addr = XEXP (addr, 0); \
2167 \
2168 if (GET_CODE (addr) == REG) \
2169 basereg = REGNO (addr); \
2170 else if (GET_CODE (addr) == CONST_INT) \
2171 offset = INTVAL (addr); \
2172 else if (GET_CODE (addr) == PLUS \
2173 && GET_CODE (XEXP (addr, 0)) == REG \
2174 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2175 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2176 else \
2177 abort (); \
2178 \
3c303f52
KG
2179 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, offset); \
2180 fprintf (FILE, "($%d)", basereg); \
1a94ca49
RK
2181}
2182/* Define the codes that are matched by predicates in alpha.c. */
2183
2184#define PREDICATE_CODES \
2185 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2186 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2187 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2188 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2189 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2190 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2191 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2192 {"const48_operand", {CONST_INT}}, \
2193 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2194 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2195 {"mode_mask_operand", {CONST_INT}}, \
2196 {"mul8_operand", {CONST_INT}}, \
2197 {"mode_width_operand", {CONST_INT}}, \
2198 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2199 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
d1e03f31 2200 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1a94ca49 2201 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2202 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2203 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2204 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2205 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2206 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2207 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2208 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2209 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2210 {"aligned_memory_operand", {MEM}}, \
2211 {"unaligned_memory_operand", {MEM}}, \
442b1685 2212 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
4ed43ff8
RH
2213 {"any_memory_operand", {MEM}}, \
2214 {"hard_fp_register_operand", {SUBREG, REG}},
03f8c4cc 2215\f
34fa88ab
RK
2216/* Tell collect that the object format is ECOFF. */
2217#define OBJECT_FORMAT_COFF
2218#define EXTENDED_COFF
2219
2220/* If we use NM, pass -g to it so it only lists globals. */
2221#define NM_FLAGS "-pg"
2222
03f8c4cc
RK
2223/* Definitions for debugging. */
2224
2225#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2226#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2227#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2228
2229#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2230#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2231#endif
2232
2233
2234/* Correct the offset of automatic variables and arguments. Note that
2235 the Alpha debug format wants all automatic variables and arguments
2236 to be in terms of two different offsets from the virtual frame pointer,
2237 which is the stack pointer before any adjustment in the function.
2238 The offset for the argument pointer is fixed for the native compiler,
2239 it is either zero (for the no arguments case) or large enough to hold
2240 all argument registers.
2241 The offset for the auto pointer is the fourth argument to the .frame
2242 directive (local_offset).
2243 To stay compatible with the native tools we use the same offsets
2244 from the virtual frame pointer and adjust the debugger arg/auto offsets
2245 accordingly. These debugger offsets are set up in output_prolog. */
2246
9a0b18f2
RK
2247extern long alpha_arg_offset;
2248extern long alpha_auto_offset;
03f8c4cc
RK
2249#define DEBUGGER_AUTO_OFFSET(X) \
2250 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2251#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2252
2253
2254#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2255 alpha_output_lineno (STREAM, LINE)
2256extern void alpha_output_lineno ();
2257
2258#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2259 alpha_output_filename (STREAM, NAME)
2260extern void alpha_output_filename ();
2261
4330b0e7
JW
2262/* mips-tfile.c limits us to strings of one page. We must underestimate this
2263 number, because the real length runs past this up to the next
2264 continuation point. This is really a dbxout.c bug. */
2265#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2266
2267/* By default, turn on GDB extensions. */
2268#define DEFAULT_GDB_EXTENSIONS 1
2269
7aadc7c2
RK
2270/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2271#define NO_DBX_FUNCTION_END 1
2272
03f8c4cc
RK
2273/* If we are smuggling stabs through the ALPHA ECOFF object
2274 format, put a comment in front of the .stab<x> operation so
2275 that the ALPHA assembler does not choke. The mips-tfile program
2276 will correctly put the stab into the object file. */
2277
2278#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2279#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2280#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2281
2282/* Forward references to tags are allowed. */
2283#define SDB_ALLOW_FORWARD_REFERENCES
2284
2285/* Unknown tags are also allowed. */
2286#define SDB_ALLOW_UNKNOWN_REFERENCES
2287
2288#define PUT_SDB_DEF(a) \
2289do { \
2290 fprintf (asm_out_file, "\t%s.def\t", \
2291 (TARGET_GAS) ? "" : "#"); \
2292 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2293 fputc (';', asm_out_file); \
2294} while (0)
2295
2296#define PUT_SDB_PLAIN_DEF(a) \
2297do { \
2298 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2299 (TARGET_GAS) ? "" : "#", (a)); \
2300} while (0)
2301
2302#define PUT_SDB_TYPE(a) \
2303do { \
2304 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2305} while (0)
2306
2307/* For block start and end, we create labels, so that
2308 later we can figure out where the correct offset is.
2309 The normal .ent/.end serve well enough for functions,
2310 so those are just commented out. */
2311
2312extern int sdb_label_count; /* block start/end next label # */
2313
2314#define PUT_SDB_BLOCK_START(LINE) \
2315do { \
2316 fprintf (asm_out_file, \
2317 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2318 sdb_label_count, \
2319 (TARGET_GAS) ? "" : "#", \
2320 sdb_label_count, \
2321 (LINE)); \
2322 sdb_label_count++; \
2323} while (0)
2324
2325#define PUT_SDB_BLOCK_END(LINE) \
2326do { \
2327 fprintf (asm_out_file, \
2328 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2329 sdb_label_count, \
2330 (TARGET_GAS) ? "" : "#", \
2331 sdb_label_count, \
2332 (LINE)); \
2333 sdb_label_count++; \
2334} while (0)
2335
2336#define PUT_SDB_FUNCTION_START(LINE)
2337
2338#define PUT_SDB_FUNCTION_END(LINE)
2339
3c303f52 2340#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2341
03f8c4cc
RK
2342/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2343 mips-tdump.c to print them out.
2344
2345 These must match the corresponding definitions in gdb/mipsread.c.
2346 Unfortunately, gcc and gdb do not currently share any directories. */
2347
2348#define CODE_MASK 0x8F300
2349#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2350#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2351#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2352
2353/* Override some mips-tfile definitions. */
2354
2355#define SHASH_SIZE 511
2356#define THASH_SIZE 55
1e6c6f11
RK
2357
2358/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2359
2360#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2361
54190234
JM
2362/* The linker will stick __main into the .init section. */
2363#define HAS_INIT_SECTION
68d69835
JM
2364#define LD_INIT_SWITCH "-init"
2365#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2366
2367/* The system headers under Alpha systems are generally C++-aware. */
2368#define NO_IMPLICIT_EXTERN_C
47747e53 2369
3c303f52 2370/* Prototypes for alpha.c functions used in the md file & elsewhere. */
47747e53 2371extern struct rtx_def *get_unaligned_address ();
3c303f52
KG
2372extern void alpha_write_verstamp ();
2373extern void alpha_reorg ();
2374extern int check_float_value ();
2375extern int direct_return ();
2376extern int const48_operand ();
2377extern int add_operand ();
2378extern int and_operand ();
2379extern int unaligned_memory_operand ();
2380extern int zap_mask ();
2381extern int current_file_function_operand ();
2382extern int alpha_sa_size ();
2383extern int alpha_adjust_cost ();
2384extern void print_operand ();
2385extern int reg_or_0_operand ();
2386extern int reg_or_8bit_operand ();
2387extern int mul8_operand ();
2388extern int reg_or_6bit_operand ();
2389extern int alpha_comparison_operator ();
2390extern int alpha_swapped_comparison_operator ();
2391extern int sext_add_operand ();
2392extern int cint8_operand ();
2393extern int mode_mask_operand ();
2394extern int or_operand ();
2395extern int mode_width_operand ();
2396extern int reg_or_fp0_operand ();
2397extern int signed_comparison_operator ();
2398extern int fp0_operand ();
2399extern int some_operand ();
2400extern int input_operand ();
2401extern int divmod_operator ();
2402extern int call_operand ();
2403extern int reg_or_cint_operand ();
2404extern int hard_fp_register_operand ();
2405extern void alpha_set_memflags ();
2406extern int aligned_memory_operand ();
2407extern void get_aligned_mem ();
2408extern void alpha_expand_unaligned_load ();
2409extern void alpha_expand_unaligned_store ();
2410extern int alpha_expand_block_move ();
2411extern int alpha_expand_block_clear ();
2412extern void alpha_expand_prologue ();
2413extern void alpha_expand_epilogue ();
This page took 0.637355 seconds and 5 git commands to generate.