]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
alpha.h (MASK_SUPPORT_ARCH, [...]): Define such that MASK_SUPPORT_ARCH is not negative.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
ca7cdae3 2 Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
952fc2ed
RH
26%{!undef:\
27%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
28%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
29%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
30%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
31%{mieee:-D_IEEE_FP }\
32%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
33%(cpp_cpu) %(cpp_subtarget)"
34
35#ifndef CPP_SUBTARGET_SPEC
36#define CPP_SUBTARGET_SPEC ""
37#endif
1a94ca49
RK
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
b890f297
JM
45#define WORD_SWITCH_TAKES_ARG(STR) \
46 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
47 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
48 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
49 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
50 || !strcmp (STR, "isystem"))
8877eb00 51
1a94ca49
RK
52/* Print subsidiary information on the compiler version in use. */
53#define TARGET_VERSION
54
1a94ca49
RK
55/* Run-time compilation parameters selecting different hardware subsets. */
56
f6f6a13c
RK
57/* Which processor to schedule for. The cpu attribute defines a list that
58 mirrors this list, so changes to alpha.md must be made at the same time. */
59
60enum processor_type
61 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
62 PROCESSOR_EV5, /* 21164{a,pc,} */
63 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
64
65extern enum processor_type alpha_cpu;
66
2bf6230d
RK
67enum alpha_trap_precision
68{
69 ALPHA_TP_PROG, /* No precision (default). */
70 ALPHA_TP_FUNC, /* Trap contained within originating function. */
71 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
72};
73
74enum alpha_fp_rounding_mode
75{
76 ALPHA_FPRM_NORM, /* Normal rounding mode. */
77 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
78 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
79 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
80};
81
82enum alpha_fp_trap_mode
83{
84 ALPHA_FPTM_N, /* Normal trap mode. */
85 ALPHA_FPTM_U, /* Underflow traps enabled. */
86 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
87 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
88};
89
1a94ca49
RK
90extern int target_flags;
91
2bf6230d
RK
92extern enum alpha_trap_precision alpha_tp;
93extern enum alpha_fp_rounding_mode alpha_fprm;
94extern enum alpha_fp_trap_mode alpha_fptm;
95
1a94ca49
RK
96/* This means that floating-point support exists in the target implementation
97 of the Alpha architecture. This is usually the default. */
de4abb91 98#define MASK_FP (1 << 0)
2bf6230d 99#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
100
101/* This means that floating-point registers are allowed to be used. Note
102 that Alpha implementations without FP operations are required to
103 provide the FP registers. */
104
de4abb91 105#define MASK_FPREGS (1 << 1)
2bf6230d 106#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
107
108/* This means that gas is used to process the assembler file. */
109
de4abb91 110#define MASK_GAS (1 << 2)
03f8c4cc 111#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 112
2bf6230d
RK
113/* This means that we should mark procedures as IEEE conformant. */
114
de4abb91 115#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
116#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
117
118/* This means we should be IEEE-compliant except for inexact. */
119
de4abb91 120#define MASK_IEEE (1 << 4)
2bf6230d
RK
121#define TARGET_IEEE (target_flags & MASK_IEEE)
122
123/* This means we should be fully IEEE-compliant. */
124
de4abb91 125#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
126#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
127
803fee69
RK
128/* This means we must construct all constants rather than emitting
129 them as literal data. */
130
de4abb91 131#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
132#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
133
e5958492
RK
134/* This means we handle floating points in VAX F- (float)
135 or G- (double) Format. */
136
de4abb91 137#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
138#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
139
e9a25f70
JL
140/* This means that the processor has byte and half word loads and stores
141 (the BWX extension). */
025f3281 142
de4abb91 143#define MASK_BWX (1 << 8)
e9a25f70 144#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 145
e9a25f70 146/* This means that the processor has the MAX extension. */
de4abb91 147#define MASK_MAX (1 << 9)
e9a25f70
JL
148#define TARGET_MAX (target_flags & MASK_MAX)
149
de4abb91
RH
150/* This means that the processor has the FIX extension. */
151#define MASK_FIX (1 << 10)
152#define TARGET_FIX (target_flags & MASK_FIX)
153
154/* This means that the processor has the CIX extension. */
155#define MASK_CIX (1 << 11)
156#define TARGET_CIX (target_flags & MASK_CIX)
157
e9a25f70
JL
158/* This means that the processor is an EV5, EV56, or PCA56. This is defined
159 only in TARGET_CPU_DEFAULT. */
de4abb91 160#define MASK_CPU_EV5 (1 << 29)
e9a25f70
JL
161
162/* Likewise for EV6. */
de4abb91 163#define MASK_CPU_EV6 (1 << 30)
e9a25f70
JL
164
165/* This means we support the .arch directive in the assembler. Only
166 defined in TARGET_CPU_DEFAULT. */
de4abb91 167#define MASK_SUPPORT_ARCH (1 << 31)
e9a25f70 168#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 169
9ba3994a
RH
170/* These are for target os support and cannot be changed at runtime. */
171#ifndef TARGET_WINDOWS_NT
172#define TARGET_WINDOWS_NT 0
173#endif
174#ifndef TARGET_OPEN_VMS
175#define TARGET_OPEN_VMS 0
176#endif
177
178#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
179#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
180#endif
9c0e94a5
RH
181#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
182#define TARGET_CAN_FAULT_IN_PROLOGUE 0
183#endif
9ba3994a 184
1a94ca49
RK
185/* Macro to define tables used to set the flags.
186 This is a list in braces of pairs in braces,
187 each pair being { "NAME", VALUE }
188 where VALUE is the bits to set or minus the bits to clear.
189 An empty string NAME is used to identify the default VALUE. */
190
f8e52397
RH
191#define TARGET_SWITCHES \
192 { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
193 {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
194 {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
195 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
196 {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
197 {"gas", MASK_GAS, "Assume GAS"}, \
198 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
199 "Request IEEE-conformant math library routines (OSF/1)"}, \
200 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
201 "Emit IEEE-conformant code, without inexact exceptions"}, \
202 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
203 "Emit IEEE-conformant code, with inexact exceptions"}, \
204 {"build-constants", MASK_BUILD_CONSTANTS, \
205 "Do not emit complex integer constants to read-only memory"}, \
206 {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
207 {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
208 {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
209 {"no-bwx", -MASK_BWX, ""}, \
f8e52397
RH
210 {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
211 {"no-max", -MASK_MAX, ""}, \
de4abb91
RH
212 {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
213 {"no-fix", -MASK_FIX, ""}, \
214 {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
215 {"no-cix", -MASK_CIX, ""}, \
f8e52397 216 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 217
c01b5470 218#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 219
88681624
ILT
220#ifndef TARGET_CPU_DEFAULT
221#define TARGET_CPU_DEFAULT 0
222#endif
223
2bf6230d
RK
224/* This macro is similar to `TARGET_SWITCHES' but defines names of
225 command options that have values. Its definition is an initializer
226 with a subgrouping for each command option.
227
228 Each subgrouping contains a string constant, that defines the fixed
229 part of the option name, and the address of a variable. The
230 variable, type `char *', is set to the variable part of the given
231 option if the fixed part matches. The actual option name is made
232 by appending `-m' to the specified name.
233
234 Here is an example which defines `-mshort-data-NUMBER'. If the
235 given option is `-mshort-data-512', the variable `m88k_short_data'
236 will be set to the string `"512"'.
237
238 extern char *m88k_short_data;
239 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
240
df45c7ea
KG
241extern const char *alpha_cpu_string; /* For -mcpu= */
242extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
243extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
244extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
245extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 246
f8e52397
RH
247#define TARGET_OPTIONS \
248{ \
249 {"cpu=", &alpha_cpu_string, \
250 "Generate code for a given CPU"}, \
251 {"fp-rounding-mode=", &alpha_fprm_string, \
252 "Control the generated fp rounding mode"}, \
253 {"fp-trap-mode=", &alpha_fptm_string, \
254 "Control the IEEE trap mode"}, \
255 {"trap-precision=", &alpha_tp_string, \
256 "Control the precision given to fp exceptions"}, \
257 {"memory-latency=", &alpha_mlat_string, \
258 "Tune expected memory latency"}, \
2bf6230d
RK
259}
260
952fc2ed
RH
261/* Attempt to describe CPU characteristics to the preprocessor. */
262
263/* Corresponding to amask... */
264#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
265#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
de4abb91 266#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)"
952fc2ed
RH
267#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
268
269/* Corresponding to implver... */
270#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
271#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
272#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
273
274/* Common combinations. */
275#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
276#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
277#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
278#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
de4abb91 279#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
952fc2ed
RH
280
281#ifndef CPP_CPU_DEFAULT_SPEC
282# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
283# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
284# else
285# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
286# if TARGET_CPU_DEFAULT & MASK_MAX
287# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
288# else
289# if TARGET_CPU_DEFAULT & MASK_BWX
290# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
291# else
292# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
293# endif
294# endif
295# else
296# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
297# endif
298# endif
299#endif /* CPP_CPU_DEFAULT_SPEC */
300
301#ifndef CPP_CPU_SPEC
302#define CPP_CPU_SPEC "\
303%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
304%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
305%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
306%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
307%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
308%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
309%{!mcpu*:%(cpp_cpu_default) }}"
310#endif
311
312/* This macro defines names of additional specifications to put in the
313 specs that can be used in various specifications like CC1_SPEC. Its
314 definition is an initializer with a subgrouping for each command option.
315
316 Each subgrouping contains a string constant, that defines the
317 specification name, and a string constant that used by the GNU CC driver
318 program.
319
320 Do not define this macro if it does not need to do anything. */
321
322#ifndef SUBTARGET_EXTRA_SPECS
323#define SUBTARGET_EXTRA_SPECS
324#endif
325
829245be
KG
326#define EXTRA_SPECS \
327 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
328 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 329 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
330 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
331 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
332 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
333 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
334 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
335 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
336 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
337 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
338 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
339 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
340 { "cpp_cpu", CPP_CPU_SPEC }, \
341 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
342 SUBTARGET_EXTRA_SPECS
343
344
2bf6230d
RK
345/* Sometimes certain combinations of command options do not make sense
346 on a particular target machine. You can define a macro
347 `OVERRIDE_OPTIONS' to take account of this. This macro, if
348 defined, is executed once just after all the command options have
349 been parsed.
350
351 On the Alpha, it is used to translate target-option strings into
352 numeric values. */
353
354extern void override_options ();
355#define OVERRIDE_OPTIONS override_options ()
356
357
1a94ca49
RK
358/* Define this macro to change register usage conditional on target flags.
359
360 On the Alpha, we use this to disable the floating-point registers when
361 they don't exist. */
362
363#define CONDITIONAL_REGISTER_USAGE \
364 if (! TARGET_FPREGS) \
52a69200 365 for (i = 32; i < 63; i++) \
1a94ca49
RK
366 fixed_regs[i] = call_used_regs[i] = 1;
367
4f074454
RK
368/* Show we can debug even without a frame pointer. */
369#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
370\f
371/* target machine storage layout */
372
2700ac93
RS
373/* Define to enable software floating point emulation. */
374#define REAL_ARITHMETIC
375
861bb6c1
JL
376/* The following #defines are used when compiling the routines in
377 libgcc1.c. Since the Alpha calling conventions require single
378 precision floats to be passed in the floating-point registers
379 (rather than in the general registers) we have to build the
380 libgcc1.c routines in such a way that they know the actual types
381 of their formal arguments and the actual types of their return
382 values. Otherwise, gcc will generate calls to the libgcc1.c
383 routines, passing arguments in the floating-point registers,
384 but the libgcc1.c routines will expect their arguments on the
385 stack (where the Alpha calling conventions require structs &
386 unions to be passed). */
387
388#define FLOAT_VALUE_TYPE double
389#define INTIFY(FLOATVAL) (FLOATVAL)
390#define FLOATIFY(INTVAL) (INTVAL)
391#define FLOAT_ARG_TYPE double
392
1a94ca49
RK
393/* Define the size of `int'. The default is the same as the word size. */
394#define INT_TYPE_SIZE 32
395
396/* Define the size of `long long'. The default is the twice the word size. */
397#define LONG_LONG_TYPE_SIZE 64
398
399/* The two floating-point formats we support are S-floating, which is
400 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
401 and `long double' are T. */
402
403#define FLOAT_TYPE_SIZE 32
404#define DOUBLE_TYPE_SIZE 64
405#define LONG_DOUBLE_TYPE_SIZE 64
406
5258d7ae
RK
407#define WCHAR_TYPE "unsigned int"
408#define WCHAR_TYPE_SIZE 32
1a94ca49 409
13d39dbc 410/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
411 in a wider mode than that declared by the program. In such cases,
412 the value is constrained to be within the bounds of the declared
413 type, but kept valid in the wider mode. The signedness of the
414 extension may differ from that of the type.
415
416 For Alpha, we always store objects in a full register. 32-bit objects
417 are always sign-extended, but smaller objects retain their signedness. */
418
419#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
420 if (GET_MODE_CLASS (MODE) == MODE_INT \
421 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
422 { \
423 if ((MODE) == SImode) \
424 (UNSIGNEDP) = 0; \
425 (MODE) = DImode; \
426 }
427
428/* Define this if function arguments should also be promoted using the above
429 procedure. */
430
431#define PROMOTE_FUNCTION_ARGS
432
433/* Likewise, if the function return value is promoted. */
434
435#define PROMOTE_FUNCTION_RETURN
436
437/* Define this if most significant bit is lowest numbered
438 in instructions that operate on numbered bit-fields.
439
440 There are no such instructions on the Alpha, but the documentation
441 is little endian. */
442#define BITS_BIG_ENDIAN 0
443
444/* Define this if most significant byte of a word is the lowest numbered.
445 This is false on the Alpha. */
446#define BYTES_BIG_ENDIAN 0
447
448/* Define this if most significant word of a multiword number is lowest
449 numbered.
450
451 For Alpha we can decide arbitrarily since there are no machine instructions
452 for them. Might as well be consistent with bytes. */
453#define WORDS_BIG_ENDIAN 0
454
455/* number of bits in an addressable storage unit */
456#define BITS_PER_UNIT 8
457
458/* Width in bits of a "word", which is the contents of a machine register.
459 Note that this is not necessarily the width of data type `int';
460 if using 16-bit ints on a 68000, this would still be 32.
461 But on a machine with 16-bit registers, this would be 16. */
462#define BITS_PER_WORD 64
463
464/* Width of a word, in units (bytes). */
465#define UNITS_PER_WORD 8
466
467/* Width in bits of a pointer.
468 See also the macro `Pmode' defined below. */
469#define POINTER_SIZE 64
470
471/* Allocation boundary (in *bits*) for storing arguments in argument list. */
472#define PARM_BOUNDARY 64
473
474/* Boundary (in *bits*) on which stack pointer should be aligned. */
475#define STACK_BOUNDARY 64
476
477/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 478#define FUNCTION_BOUNDARY 256
1a94ca49
RK
479
480/* Alignment of field after `int : 0' in a structure. */
481#define EMPTY_FIELD_BOUNDARY 64
482
483/* Every structure's size must be a multiple of this. */
484#define STRUCTURE_SIZE_BOUNDARY 8
485
486/* A bitfield declared as `int' forces `int' alignment for the struct. */
487#define PCC_BITFIELD_TYPE_MATTERS 1
488
65823178
RK
489/* Align loop starts for optimal branching.
490
491 ??? Kludge this and the next macro for the moment by not doing anything if
492 we don't optimize and also if we are writing ECOFF symbols to work around
493 a bug in DEC's assembler. */
1a94ca49 494
fc470718 495#define LOOP_ALIGN(LABEL) \
9c0e94a5 496 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 497
9c0e94a5
RH
498/* This is how to align an instruction for optimal branching. On
499 Alpha we'll get better performance by aligning on an octaword
1a94ca49 500 boundary. */
130d2d72 501
7d0bfbd0 502#define LABEL_ALIGN_AFTER_BARRIER(FILE) \
9c0e94a5 503 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
504
505/* No data type wants to be aligned rounder than this. */
506#define BIGGEST_ALIGNMENT 64
507
d16fe557
RK
508/* For atomic access to objects, must have at least 32-bit alignment
509 unless the machine has byte operations. */
e9a25f70 510#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 511
442b1685
RK
512/* Align all constants and variables to at least a word boundary so
513 we can pick up pieces of them faster. */
6c174fc0
RH
514/* ??? Only if block-move stuff knows about different source/destination
515 alignment. */
516#if 0
442b1685
RK
517#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
518#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 519#endif
1a94ca49
RK
520
521/* Set this non-zero if move instructions will actually fail to work
522 when given unaligned data.
523
524 Since we get an error message when we do one, call them invalid. */
525
526#define STRICT_ALIGNMENT 1
527
528/* Set this non-zero if unaligned move instructions are extremely slow.
529
530 On the Alpha, they trap. */
130d2d72
RK
531
532#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
533\f
534/* Standard register usage. */
535
536/* Number of actual hardware registers.
537 The hardware registers are assigned numbers for the compiler
538 from 0 to just below FIRST_PSEUDO_REGISTER.
539 All registers that the compiler knows about must be given numbers,
540 even those that are not normally considered general registers.
541
542 We define all 32 integer registers, even though $31 is always zero,
543 and all 32 floating-point registers, even though $f31 is also
544 always zero. We do not bother defining the FP status register and
130d2d72
RK
545 there are no other registers.
546
547 Since $31 is always zero, we will use register number 31 as the
548 argument pointer. It will never appear in the generated code
549 because we will always be eliminating it in favor of the stack
52a69200
RK
550 pointer or hardware frame pointer.
551
552 Likewise, we use $f31 for the frame pointer, which will always
553 be eliminated in favor of the hardware frame pointer or the
554 stack pointer. */
1a94ca49
RK
555
556#define FIRST_PSEUDO_REGISTER 64
557
558/* 1 for registers that have pervasive standard uses
559 and are not available for the register allocator. */
560
561#define FIXED_REGISTERS \
562 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
566
567/* 1 for registers not available across function calls.
568 These must include the FIXED_REGISTERS and also any
569 registers that can be used without being saved.
570 The latter must include the registers where values are returned
571 and the register where structure-value addresses are passed.
572 Aside from that, you can include as many other registers as you like. */
573#define CALL_USED_REGISTERS \
574 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
576 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
578
579/* List the order in which to allocate registers. Each register must be
580 listed once, even those in FIXED_REGISTERS.
581
582 We allocate in the following order:
2c4be73e 583 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
584 $f22-$f30 (likewise)
585 $f21-$f16 (likewise, but input args)
586 $f0 (nonsaved, but return value)
2c4be73e 587 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
588 $f2-$f9 (saved floating-point registers)
589 $1-$8 (nonsaved integer registers)
590 $22-$25 (likewise)
591 $28 (likewise)
592 $0 (likewise, but return value)
593 $21-$16 (likewise, but input args)
0076aa6b 594 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
595 $9-$14 (saved integer registers)
596 $26 (return PC)
597 $15 (frame pointer)
598 $29 (global pointer)
52a69200 599 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
600
601#define REG_ALLOC_ORDER \
2c4be73e 602 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
603 54, 55, 56, 57, 58, 59, 60, 61, 62, \
604 53, 52, 51, 50, 49, 48, \
2c4be73e 605 32, 33, \
1a94ca49
RK
606 34, 35, 36, 37, 38, 39, 40, 41, \
607 1, 2, 3, 4, 5, 6, 7, 8, \
608 22, 23, 24, 25, \
609 28, \
610 0, \
611 21, 20, 19, 18, 17, 16, \
612 27, \
613 9, 10, 11, 12, 13, 14, \
614 26, \
615 15, \
616 29, \
617 30, 31, 63 }
618
619/* Return number of consecutive hard regs needed starting at reg REGNO
620 to hold something of mode MODE.
621 This is ordinarily the length in words of a value of mode MODE
622 but can be less for certain modes in special long registers. */
623
624#define HARD_REGNO_NREGS(REGNO, MODE) \
625 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
626
627/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
628 On Alpha, the integer registers can hold any mode. The floating-point
629 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 630 or 8-bit values. */
1a94ca49 631
e6a8ebb4
RH
632#define HARD_REGNO_MODE_OK(REGNO, MODE) \
633 ((REGNO) >= 32 && (REGNO) <= 62 \
634 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
635 : 1)
636
637/* A C expression that is nonzero if a value of mode
638 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 639
e6a8ebb4
RH
640 This asymmetric test is true when MODE1 could be put
641 in an FP register but MODE2 could not. */
1a94ca49 642
a7adf08e 643#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
644 (HARD_REGNO_MODE_OK (32, (MODE1)) \
645 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 646 : 1)
1a94ca49
RK
647
648/* Specify the registers used for certain standard purposes.
649 The values of these macros are register numbers. */
650
651/* Alpha pc isn't overloaded on a register that the compiler knows about. */
652/* #define PC_REGNUM */
653
654/* Register to use for pushing function arguments. */
655#define STACK_POINTER_REGNUM 30
656
657/* Base register for access to local variables of the function. */
52a69200 658#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
659
660/* Value should be nonzero if functions must have frame pointers.
661 Zero means the frame pointer need not be set up (and parms
662 may be accessed via the stack pointer) in functions that seem suitable.
663 This is computed in `reload', in reload1.c. */
664#define FRAME_POINTER_REQUIRED 0
665
666/* Base register for access to arguments of the function. */
130d2d72 667#define ARG_POINTER_REGNUM 31
1a94ca49 668
52a69200
RK
669/* Base register for access to local variables of function. */
670#define FRAME_POINTER_REGNUM 63
671
1a94ca49
RK
672/* Register in which static-chain is passed to a function.
673
674 For the Alpha, this is based on an example; the calling sequence
675 doesn't seem to specify this. */
676#define STATIC_CHAIN_REGNUM 1
677
678/* Register in which address to store a structure value
679 arrives in the function. On the Alpha, the address is passed
680 as a hidden argument. */
681#define STRUCT_VALUE 0
682\f
683/* Define the classes of registers for register constraints in the
684 machine description. Also define ranges of constants.
685
686 One of the classes must always be named ALL_REGS and include all hard regs.
687 If there is more than one class, another class must be named NO_REGS
688 and contain no registers.
689
690 The name GENERAL_REGS must be the name of a class (or an alias for
691 another name such as ALL_REGS). This is the class of registers
692 that is allowed by "g" or "r" in a register constraint.
693 Also, registers outside this class are allocated only when
694 instructions express preferences for them.
695
696 The classes must be numbered in nondecreasing order; that is,
697 a larger-numbered class must never be contained completely
698 in a smaller-numbered class.
699
700 For any two classes, it is very desirable that there be another
701 class that represents their union. */
702
703enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
704 LIM_REG_CLASSES };
705
706#define N_REG_CLASSES (int) LIM_REG_CLASSES
707
708/* Give names of register classes as strings for dump file. */
709
710#define REG_CLASS_NAMES \
711 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
712
713/* Define which registers fit in which classes.
714 This is an initializer for a vector of HARD_REG_SET
715 of length N_REG_CLASSES. */
716
717#define REG_CLASS_CONTENTS \
52a69200 718 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
719
720/* The same information, inverted:
721 Return the class number of the smallest class containing
722 reg number REGNO. This could be a conditional expression
723 or could index an array. */
724
52a69200
RK
725#define REGNO_REG_CLASS(REGNO) \
726 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
727
728/* The class value for index registers, and the one for base regs. */
729#define INDEX_REG_CLASS NO_REGS
730#define BASE_REG_CLASS GENERAL_REGS
731
732/* Get reg_class from a letter such as appears in the machine description. */
733
734#define REG_CLASS_FROM_LETTER(C) \
735 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
736
737/* Define this macro to change register usage conditional on target flags. */
738/* #define CONDITIONAL_REGISTER_USAGE */
739
740/* The letters I, J, K, L, M, N, O, and P in a register constraint string
741 can be used to stand for particular ranges of immediate operands.
742 This macro defines what the ranges are.
743 C is the letter, and VALUE is a constant value.
744 Return 1 if VALUE is in the range specified by C.
745
746 For Alpha:
747 `I' is used for the range of constants most insns can contain.
748 `J' is the constant zero.
749 `K' is used for the constant in an LDA insn.
750 `L' is used for the constant in a LDAH insn.
751 `M' is used for the constants that can be AND'ed with using a ZAP insn.
752 `N' is used for complemented 8-bit constants.
753 `O' is used for negated 8-bit constants.
754 `P' is used for the constants 1, 2 and 3. */
755
756#define CONST_OK_FOR_LETTER_P(VALUE, C) \
757 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
758 : (C) == 'J' ? (VALUE) == 0 \
759 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
760 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 761 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
762 : (C) == 'M' ? zap_mask (VALUE) \
763 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
764 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
765 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
766 : 0)
767
768/* Similar, but for floating or large integer constants, and defining letters
769 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
770
771 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
772 that is the operand of a ZAP insn. */
773
774#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
775 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
776 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
777 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
778 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
779 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
780 : 0)
781
e560f226
RK
782/* Optional extra constraints for this machine.
783
784 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 785 reference to an unaligned location.
9ec36da5 786
ac030a7b 787 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
788 function.
789
790 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
791
792#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 793 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
794 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
795 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
796 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226 797 : 0)
df45c7ea 798extern int normal_memory_operand ();
e560f226 799
1a94ca49
RK
800/* Given an rtx X being reloaded into a reg required to be
801 in class CLASS, return the class of reg to actually use.
802 In general this is just CLASS; but on some machines
803 in some cases it is preferable to use a more restrictive class.
804
805 On the Alpha, all constants except zero go into a floating-point
806 register via memory. */
807
808#define PREFERRED_RELOAD_CLASS(X, CLASS) \
809 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 810 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
811 : (CLASS))
812
813/* Loading and storing HImode or QImode values to and from memory
814 usually requires a scratch register. The exceptions are loading
e008606e
RK
815 QImode and HImode from an aligned address to a general register
816 unless byte instructions are permitted.
ddd5a7c1 817 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 818 FP register. */
1a94ca49
RK
819
820#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
821(((GET_CODE (IN) == MEM \
822 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
823 || (GET_CODE (IN) == SUBREG \
824 && (GET_CODE (SUBREG_REG (IN)) == MEM \
825 || (GET_CODE (SUBREG_REG (IN)) == REG \
826 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
827 && (((CLASS) == FLOAT_REGS \
828 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
829 || (((MODE) == QImode || (MODE) == HImode) \
4e46365b 830 && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \
e560f226
RK
831 ? GENERAL_REGS \
832 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
833 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
834 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
835 && (GET_MODE_SIZE (GET_MODE (IN)) \
836 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 837 : NO_REGS)
1a94ca49
RK
838
839#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
840(((GET_CODE (OUT) == MEM \
841 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
842 || (GET_CODE (OUT) == SUBREG \
843 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
844 || (GET_CODE (SUBREG_REG (OUT)) == REG \
845 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
846 && ((((MODE) == HImode || (MODE) == QImode) \
847 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
848 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
849 ? GENERAL_REGS \
850 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
851 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
852 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
853 && (GET_MODE_SIZE (GET_MODE (OUT)) \
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
855 : NO_REGS)
1a94ca49
RK
856
857/* If we are copying between general and FP registers, we need a memory
de4abb91 858 location unless the FIX extension is available. */
1a94ca49 859
e9a25f70 860#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
de4abb91 861 (! TARGET_FIX && (CLASS1) != (CLASS2))
1a94ca49 862
acd94aaf
RK
863/* Specify the mode to be used for memory when a secondary memory
864 location is needed. If MODE is floating-point, use it. Otherwise,
865 widen to a word like the default. This is needed because we always
866 store integers in FP registers in quadword format. This whole
867 area is very tricky! */
868#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
869 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 870 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
871 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
872
1a94ca49
RK
873/* Return the maximum number of consecutive registers
874 needed to represent mode MODE in a register of class CLASS. */
875
876#define CLASS_MAX_NREGS(CLASS, MODE) \
877 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
878
c31dfe4d
RK
879/* If defined, gives a class of registers that cannot be used as the
880 operand of a SUBREG that changes the size of the object. */
881
882#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
883
1a94ca49
RK
884/* Define the cost of moving between registers of various classes. Moving
885 between FLOAT_REGS and anything else except float regs is expensive.
886 In fact, we make it quite expensive because we really don't want to
887 do these moves unless it is clearly worth it. Optimizations may
888 reduce the impact of not being able to allocate a pseudo to a
889 hard register. */
890
71d9b493
RH
891#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
892 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
893 ? 2 \
de4abb91 894 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
895
896/* A C expressions returning the cost of moving data of MODE from a register to
897 or from memory.
898
899 On the Alpha, bump this up a bit. */
900
bcbbac26 901extern int alpha_memory_latency;
cbd5b9a2 902#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
903
904/* Provide the cost of a branch. Exact meaning under development. */
905#define BRANCH_COST 5
906
907/* Adjust the cost of dependencies. */
908
909#define ADJUST_COST(INSN,LINK,DEP,COST) \
910 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
911\f
912/* Stack layout; function entry, exit and calling. */
913
914/* Define this if pushing a word on the stack
915 makes the stack pointer a smaller address. */
916#define STACK_GROWS_DOWNWARD
917
918/* Define this if the nominal address of the stack frame
919 is at the high-address end of the local variables;
920 that is, each additional local variable allocated
921 goes at a more negative offset in the frame. */
130d2d72 922/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
923
924/* Offset within stack frame to start allocating local variables at.
925 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
926 first local allocated. Otherwise, it is the offset to the BEGINNING
927 of the first local allocated. */
928
52a69200 929#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
930
931/* If we generate an insn to push BYTES bytes,
932 this says how many the stack pointer really advances by.
933 On Alpha, don't define this because there are no push insns. */
934/* #define PUSH_ROUNDING(BYTES) */
935
e008606e
RK
936/* Define this to be nonzero if stack checking is built into the ABI. */
937#define STACK_CHECK_BUILTIN 1
938
1a94ca49
RK
939/* Define this if the maximum size of all the outgoing args is to be
940 accumulated and pushed during the prologue. The amount can be
941 found in the variable current_function_outgoing_args_size. */
942#define ACCUMULATE_OUTGOING_ARGS
943
944/* Offset of first parameter from the argument pointer register value. */
945
130d2d72 946#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
947
948/* Definitions for register eliminations.
949
978e8952 950 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 951 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
952 pointer register. Secondly, the argument pointer register can always be
953 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
954
955/* This is an array of structures. Each structure initializes one pair
956 of eliminable registers. The "from" register number is given first,
957 followed by "to". Eliminations of the same "from" register are listed
958 in order of preference. */
959
52a69200
RK
960#define ELIMINABLE_REGS \
961{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
962 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
963 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
964 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
965
966/* Given FROM and TO register numbers, say whether this elimination is allowed.
967 Frame pointer elimination is automatically handled.
968
130d2d72 969 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
970 eliminated are already handled. */
971
130d2d72 972#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 973
52a69200
RK
974/* Round up to a multiple of 16 bytes. */
975#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
976
1a94ca49
RK
977/* Define the offset between two registers, one to be eliminated, and the other
978 its replacement, at the start of a routine. */
979#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
980{ if ((FROM) == FRAME_POINTER_REGNUM) \
981 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
982 + alpha_sa_size ()); \
983 else if ((FROM) == ARG_POINTER_REGNUM) \
984 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
985 + alpha_sa_size () \
d772039b
RK
986 + (ALPHA_ROUND (get_frame_size () \
987 + current_function_pretend_args_size) \
988 - current_function_pretend_args_size)); \
1a94ca49
RK
989}
990
991/* Define this if stack space is still allocated for a parameter passed
992 in a register. */
993/* #define REG_PARM_STACK_SPACE */
994
995/* Value is the number of bytes of arguments automatically
996 popped when returning from a subroutine call.
8b109b37 997 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
998 FUNTYPE is the data type of the function (as a tree),
999 or for a library call it is an identifier node for the subroutine name.
1000 SIZE is the number of bytes of arguments passed on the stack. */
1001
8b109b37 1002#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
1003
1004/* Define how to find the value returned by a function.
1005 VALTYPE is the data type of the value (as a tree).
1006 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1007 otherwise, FUNC is 0.
1008
1009 On Alpha the value is found in $0 for integer functions and
1010 $f0 for floating-point functions. */
1011
4c020733
RH
1012#define FUNCTION_VALUE(VALTYPE, FUNC) \
1013 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
1014 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1015 || POINTER_TYPE_P (VALTYPE)) \
1016 ? word_mode : TYPE_MODE (VALTYPE), \
1017 ((TARGET_FPREGS \
1018 && (TREE_CODE (VALTYPE) == REAL_TYPE \
1019 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
1020 ? 32 : 0))
1a94ca49
RK
1021
1022/* Define how to find the value returned by a library function
1023 assuming the value has mode MODE. */
1024
4c020733
RH
1025#define LIBCALL_VALUE(MODE) \
1026 gen_rtx_REG (MODE, \
1027 (TARGET_FPREGS \
1028 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1029 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1030 ? 32 : 0))
1a94ca49 1031
130d2d72
RK
1032/* The definition of this macro implies that there are cases where
1033 a scalar value cannot be returned in registers.
1034
1035 For the Alpha, any structure or union type is returned in memory, as
1036 are integers whose size is larger than 64 bits. */
1037
1038#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1039 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
1040 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1041
1a94ca49
RK
1042/* 1 if N is a possible register number for a function value
1043 as seen by the caller. */
1044
e5958492
RK
1045#define FUNCTION_VALUE_REGNO_P(N) \
1046 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1047
1048/* 1 if N is a possible register number for function argument passing.
1049 On Alpha, these are $16-$21 and $f16-$f21. */
1050
1051#define FUNCTION_ARG_REGNO_P(N) \
1052 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1053\f
1054/* Define a data type for recording info about an argument list
1055 during the scan of that argument list. This data type should
1056 hold all necessary information about the function itself
1057 and about the args processed so far, enough to enable macros
1058 such as FUNCTION_ARG to determine where the next arg should go.
1059
1060 On Alpha, this is a single integer, which is a number of words
1061 of arguments scanned so far.
1062 Thus 6 or more means all following args should go on the stack. */
1063
1064#define CUMULATIVE_ARGS int
1065
1066/* Initialize a variable CUM of type CUMULATIVE_ARGS
1067 for a call to a function whose data type is FNTYPE.
1068 For a library call, FNTYPE is 0. */
1069
2c7ee1a6 1070#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1071
1072/* Define intermediate macro to compute the size (in registers) of an argument
1073 for the Alpha. */
1074
1075#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1076((MODE) != BLKmode \
1077 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1078 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1079
1080/* Update the data in CUM to advance over an argument
1081 of mode MODE and data type TYPE.
1082 (TYPE is null for libcalls where that information may not be available.) */
1083
1084#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1085 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1086 (CUM) = 6; \
1087 else \
1088 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1089
1090/* Determine where to put an argument to a function.
1091 Value is zero to push the argument on the stack,
1092 or a hard register in which to store the argument.
1093
1094 MODE is the argument's machine mode.
1095 TYPE is the data type of the argument (as a tree).
1096 This is null for libcalls where that information may
1097 not be available.
1098 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1099 the preceding args and about the function being called.
1100 NAMED is nonzero if this argument is a named parameter
1101 (otherwise it is an extra parameter matching an ellipsis).
1102
1103 On Alpha the first 6 words of args are normally in registers
1104 and the rest are pushed. */
1105
1106#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1107((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1108 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
1109 (CUM) + 16 + ((TARGET_FPREGS \
1110 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1111 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1112 * 32)) \
1113 : 0)
1a94ca49 1114
1a94ca49
RK
1115/* Specify the padding direction of arguments.
1116
1117 On the Alpha, we must pad upwards in order to be able to pass args in
1118 registers. */
1119
1120#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1121
1122/* For an arg passed partly in registers and partly in memory,
1123 this is the number of registers used.
1124 For args passed entirely in registers or entirely in memory, zero. */
1125
1126#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1127((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1128 ? 6 - (CUM) : 0)
1129
130d2d72
RK
1130/* Perform any needed actions needed for a function that is receiving a
1131 variable number of arguments.
1132
1133 CUM is as above.
1134
1135 MODE and TYPE are the mode and type of the current parameter.
1136
1137 PRETEND_SIZE is a variable that should be set to the amount of stack
1138 that must be pushed by the prolog to pretend that our caller pushed
1139 it.
1140
1141 Normally, this macro will push all remaining incoming registers on the
1142 stack and set PRETEND_SIZE to the length of the registers pushed.
1143
1144 On the Alpha, we allocate space for all 12 arg registers, but only
1145 push those that are remaining.
1146
1147 However, if NO registers need to be saved, don't allocate any space.
1148 This is not only because we won't need the space, but because AP includes
1149 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1150 ap-relative addresses already made.
1151
1152 If we are not to use the floating-point registers, save the integer
1153 registers where we would put the floating-point registers. This is
1154 not the most efficient way to implement varargs with just one register
1155 class, but it isn't worth doing anything more efficient in this rare
1156 case. */
1157
130d2d72
RK
1158
1159#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1160{ if ((CUM) < 6) \
1161 { \
1162 if (! (NO_RTL)) \
1163 { \
1164 move_block_from_reg \
1165 (16 + CUM, \
1166 gen_rtx (MEM, BLKmode, \
1167 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1168 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1169 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1170 move_block_from_reg \
7a92339b 1171 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1172 gen_rtx (MEM, BLKmode, \
1173 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1174 (CUM) * UNITS_PER_WORD)), \
02892e06 1175 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1176 emit_insn (gen_blockage ()); \
130d2d72
RK
1177 } \
1178 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1179 } \
1180}
1181
c8e9adec
RK
1182/* Try to output insns to set TARGET equal to the constant C if it can be
1183 done in less than N insns. Do all computations in MODE. Returns the place
1184 where the output has been placed if it can be done and the insns have been
1185 emitted. If it would take more than N insns, zero is returned and no
1186 insns and emitted. */
1187extern struct rtx_def *alpha_emit_set_const ();
803fee69 1188extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1189extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1190extern struct rtx_def *alpha_emit_conditional_move ();
1191
1a94ca49
RK
1192/* Generate necessary RTL for __builtin_saveregs().
1193 ARGLIST is the argument list; see expr.c. */
1194extern struct rtx_def *alpha_builtin_saveregs ();
1195#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1196
1197/* Define the information needed to generate branch and scc insns. This is
1198 stored from the compare operation. Note that we can't use "rtx" here
1199 since it hasn't been defined! */
1200
1201extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1202extern int alpha_compare_fp_p;
1203
71038426
RH
1204/* Define the information needed to modify the epilogue for EH. */
1205
1206extern struct rtx_def *alpha_eh_epilogue_sp_ofs;
1207
e5958492 1208/* Make (or fake) .linkage entry for function call.
e5958492
RK
1209 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1210extern void alpha_need_linkage ();
1211
bcbbac26
RH
1212/* This macro defines the start of an assembly comment. */
1213
1214#define ASM_COMMENT_START " #"
1215
acd92049 1216/* This macro produces the initial definition of a function. */
1a94ca49 1217
acd92049
RH
1218#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1219 alpha_start_function(FILE,NAME,DECL);
1220extern void alpha_start_function ();
1a94ca49 1221
acd92049 1222/* This macro closes up a function definition for the assembler. */
9c0e94a5 1223
acd92049
RH
1224#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1225 alpha_end_function(FILE,NAME,DECL)
1226extern void alpha_end_function ();
1227
9c0e94a5
RH
1228/* This macro notes the end of the prologue. */
1229
1230#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
3c303f52 1231extern void output_end_prologue ();
1a94ca49 1232
acd92049
RH
1233/* Output any profiling code before the prologue. */
1234
1235#define PROFILE_BEFORE_PROLOGUE 1
1236
1a94ca49 1237/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1238 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1239 by simply passing -pg to the assembler and linker. */
85d159a3 1240
e0fb9029 1241#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1242
1243/* Output assembler code to FILE to initialize this source file's
1244 basic block profiling info, if that has not already been done.
1245 This assumes that __bb_init_func doesn't garble a1-a5. */
1246
1247#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1248 do { \
1249 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1250 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1251 fputs ("\tldq $26,0($16)\n", (FILE)); \
1252 fputs ("\tbne $26,1f\n", (FILE)); \
1253 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1254 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1255 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1256 fputs ("1:\n", (FILE)); \
85d159a3
RK
1257 ASM_OUTPUT_REG_POP (FILE, 16); \
1258 } while (0);
1259
1260/* Output assembler code to FILE to increment the entry-count for
1261 the BLOCKNO'th basic block in this source file. */
1262
1263#define BLOCK_PROFILER(FILE, BLOCKNO) \
1264 do { \
1265 int blockn = (BLOCKNO); \
a62eb16f 1266 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1267 fputs ("\tstq $26,0($30)\n", (FILE)); \
1268 fputs ("\tstq $27,8($30)\n", (FILE)); \
1269 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1270 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1271 fputs ("\taddq $27,1,$27\n", (FILE)); \
1272 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1273 fputs ("\tldq $26,0($30)\n", (FILE)); \
1274 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1275 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1276 } while (0)
1a94ca49 1277
1a94ca49
RK
1278
1279/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1280 the stack pointer does not matter. The value is tested only in
1281 functions that have frame pointers.
1282 No definition is equivalent to always zero. */
1283
1284#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1285\f
1286/* Output assembler code for a block containing the constant parts
1287 of a trampoline, leaving space for the variable parts.
1288
1289 The trampoline should set the static chain pointer to value placed
7981384f
RK
1290 into the trampoline and should branch to the specified routine.
1291 Note that $27 has been set to the address of the trampoline, so we can
1292 use it for addressability of the two data items. Trampolines are always
1293 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1294
1295#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1296do { \
7981384f 1297 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1298 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1299 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1300 fprintf (FILE, "\tnop\n"); \
1a94ca49 1301 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1302} while (0)
1a94ca49 1303
3a523eeb
RS
1304/* Section in which to place the trampoline. On Alpha, instructions
1305 may only be placed in a text segment. */
1306
1307#define TRAMPOLINE_SECTION text_section
1308
1a94ca49
RK
1309/* Length in units of the trampoline for entering a nested function. */
1310
7981384f 1311#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1312
1313/* Emit RTL insns to initialize the variable parts of a trampoline.
1314 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1315 CXT is an RTX for the static chain value for the function. */
1a94ca49 1316
9ec36da5 1317#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1318 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
804a4e13 1319extern void alpha_initialize_trampoline ();
675f0e7c
RK
1320
1321/* A C expression whose value is RTL representing the value of the return
1322 address for the frame COUNT steps up from the current frame.
1323 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1324 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1325
9ecc37f0
RH
1326#define RETURN_ADDR_RTX alpha_return_addr
1327extern struct rtx_def *alpha_return_addr ();
1328
6abc6f40
RH
1329/* Before the prologue, RA lives in $26. */
1330#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1331
9ecc37f0
RH
1332/* Initialize data used by insn expanders. This is called from insn_emit,
1333 once for every function before code is generated. */
1334
1335#define INIT_EXPANDERS alpha_init_expanders ()
1336extern void alpha_init_expanders ();
675f0e7c 1337\f
1a94ca49
RK
1338/* Addressing modes, and classification of registers for them. */
1339
940da324
JL
1340/* #define HAVE_POST_INCREMENT 0 */
1341/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1342
940da324
JL
1343/* #define HAVE_PRE_DECREMENT 0 */
1344/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1345
1346/* Macros to check register numbers against specific register classes. */
1347
1348/* These assume that REGNO is a hard or pseudo reg number.
1349 They give nonzero only if REGNO is a hard reg of the suitable class
1350 or a pseudo reg currently allocated to a suitable hard reg.
1351 Since they use reg_renumber, they are safe only once reg_renumber
1352 has been allocated, which happens in local-alloc.c. */
1353
1354#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1355#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1356((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1357 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1358\f
1359/* Maximum number of registers that can appear in a valid memory address. */
1360#define MAX_REGS_PER_ADDRESS 1
1361
1362/* Recognize any constant value that is a valid address. For the Alpha,
1363 there are only constants none since we want to use LDA to load any
1364 symbolic addresses into registers. */
1365
1366#define CONSTANT_ADDRESS_P(X) \
1367 (GET_CODE (X) == CONST_INT \
1368 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1369
1370/* Include all constant integers and constant doubles, but not
1371 floating-point, except for floating-point zero. */
1372
1373#define LEGITIMATE_CONSTANT_P(X) \
1374 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1375 || (X) == CONST0_RTX (GET_MODE (X)))
1376
1377/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1378 and check its validity for a certain class.
1379 We have two alternate definitions for each of them.
1380 The usual definition accepts all pseudo regs; the other rejects
1381 them unless they have been allocated suitable hard regs.
1382 The symbol REG_OK_STRICT causes the latter definition to be used.
1383
1384 Most source files want to accept pseudo regs in the hope that
1385 they will get allocated to the class that the insn wants them to be in.
1386 Source files for reload pass need to be strict.
1387 After reload, it makes no difference, since pseudo regs have
1388 been eliminated by then. */
1389
1390#ifndef REG_OK_STRICT
1391
1392/* Nonzero if X is a hard reg that can be used as an index
1393 or if it is a pseudo reg. */
1394#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1395
1a94ca49
RK
1396/* Nonzero if X is a hard reg that can be used as a base reg
1397 or if it is a pseudo reg. */
1398#define REG_OK_FOR_BASE_P(X) \
52a69200 1399 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1400
5d02b6c2
RH
1401/* ??? Nonzero if X is the frame pointer, or some virtual register
1402 that may eliminate to the frame pointer. These will be allowed to
1403 have offsets greater than 32K. This is done because register
1404 elimination offsets will change the hi/lo split, and if we split
1405 before reload, we will require additional instructions. */
1406#define REG_OK_FP_BASE_P(X) \
1407 (REGNO (X) == 31 || REGNO (X) == 63 \
1408 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1409 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1410
1a94ca49
RK
1411#else
1412
1413/* Nonzero if X is a hard reg that can be used as an index. */
1414#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1415
1a94ca49
RK
1416/* Nonzero if X is a hard reg that can be used as a base reg. */
1417#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1418
5d02b6c2
RH
1419#define REG_OK_FP_BASE_P(X) 0
1420
1a94ca49
RK
1421#endif
1422\f
1423/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1424 that is a valid memory address for an instruction.
1425 The MODE argument is the machine mode for the MEM expression
1426 that wants to use this address.
1427
1428 For Alpha, we have either a constant address or the sum of a register
1429 and a constant address, or just a register. For DImode, any of those
1430 forms can be surrounded with an AND that clear the low-order three bits;
1431 this is an "unaligned" access.
1432
1a94ca49
RK
1433 First define the basic valid address. */
1434
4c020733
RH
1435#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1436{ \
1437 rtx tmp = (X); \
1438 if (GET_CODE (tmp) == SUBREG \
1439 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1440 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1441 tmp = SUBREG_REG (tmp); \
1442 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1443 goto ADDR; \
1444 if (CONSTANT_ADDRESS_P (X)) \
1445 goto ADDR; \
1446 if (GET_CODE (X) == PLUS) \
1447 { \
1448 tmp = XEXP (X, 0); \
1449 if (GET_CODE (tmp) == SUBREG \
1450 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1451 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1452 tmp = SUBREG_REG (tmp); \
1453 if (REG_P (tmp)) \
1454 { \
1455 if (REG_OK_FP_BASE_P (tmp) \
1456 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1457 goto ADDR; \
1458 if (REG_OK_FOR_BASE_P (tmp) \
1459 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1460 goto ADDR; \
1461 } \
1462 } \
1a94ca49
RK
1463}
1464
1465/* Now accept the simple address, or, for DImode only, an AND of a simple
1466 address that turns off the low three bits. */
1467
1a94ca49
RK
1468#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1469{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1470 if ((MODE) == DImode \
1471 && GET_CODE (X) == AND \
1472 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1473 && INTVAL (XEXP (X, 1)) == -8) \
1474 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1475}
1476
1477/* Try machine-dependent ways of modifying an illegitimate address
1478 to be legitimate. If we find one, return the new, valid address.
1479 This macro is used in only one place: `memory_address' in explow.c.
1480
1481 OLDX is the address as it was before break_out_memory_refs was called.
1482 In some cases it is useful to look at this to decide what needs to be done.
1483
1484 MODE and WIN are passed so that this macro can use
1485 GO_IF_LEGITIMATE_ADDRESS.
1486
1487 It is always safe for this macro to do nothing. It exists to recognize
1488 opportunities to optimize the output.
1489
1490 For the Alpha, there are three cases we handle:
1491
1492 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1493 valid offset, compute the high part of the constant and add it to the
1494 register. Then our address is (plus temp low-part-const).
1495 (2) If the address is (const (plus FOO const_int)), find the low-order
1496 part of the CONST_INT. Then load FOO plus any high-order part of the
1497 CONST_INT into a register. Our address is (plus reg low-part-const).
1498 This is done to reduce the number of GOT entries.
1499 (3) If we have a (plus reg const), emit the load as in (2), then add
1500 the two registers, and finally generate (plus reg low-part-const) as
1501 our address. */
1502
1503#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1504{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1505 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1506 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1507 { \
1508 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1509 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1510 HOST_WIDE_INT highpart = val - lowpart; \
1511 rtx high = GEN_INT (highpart); \
1512 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1513 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1514 \
1515 (X) = plus_constant (temp, lowpart); \
1516 goto WIN; \
1517 } \
1518 else if (GET_CODE (X) == CONST \
1519 && GET_CODE (XEXP (X, 0)) == PLUS \
1520 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1521 { \
1522 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1523 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1524 HOST_WIDE_INT highpart = val - lowpart; \
1525 rtx high = XEXP (XEXP (X, 0), 0); \
1526 \
1527 if (highpart) \
1528 high = plus_constant (high, highpart); \
1529 \
1530 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1531 goto WIN; \
1532 } \
1533 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1534 && GET_CODE (XEXP (X, 1)) == CONST \
1535 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1536 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1537 { \
1538 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1539 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1540 HOST_WIDE_INT highpart = val - lowpart; \
1541 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1542 \
1543 if (highpart) \
1544 high = plus_constant (high, highpart); \
1545 \
1546 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1547 force_reg (Pmode, high), \
80f251fe 1548 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1549 (X) = plus_constant (high, lowpart); \
1550 goto WIN; \
1551 } \
1552}
1553
a9a2595b
JR
1554/* Try a machine-dependent way of reloading an illegitimate address
1555 operand. If we find one, push the reload and jump to WIN. This
1556 macro is used in only one place: `find_reloads_address' in reload.c.
1557
1558 For the Alpha, we wish to handle large displacements off a base
1559 register by splitting the addend across an ldah and the mem insn.
1560 This cuts number of extra insns needed from 3 to 1. */
1561
1562#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1563do { \
c8ab9901
RH
1564 /* We must recognize output that we have already generated ourselves. */ \
1565 if (GET_CODE (X) == PLUS \
1566 && GET_CODE (XEXP (X, 0)) == PLUS \
1567 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1568 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1569 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1570 { \
1571 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1572 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1573 OPNUM, TYPE); \
1574 goto WIN; \
1575 } \
a9a2595b
JR
1576 if (GET_CODE (X) == PLUS \
1577 && GET_CODE (XEXP (X, 0)) == REG \
1578 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1579 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1580 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1581 { \
1582 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1583 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1584 HOST_WIDE_INT high \
1585 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1586 \
1587 /* Check for 32-bit overflow. */ \
1588 if (high + low != val) \
1589 break; \
1590 \
1591 /* Reload the high part into a base reg; leave the low part \
1592 in the mem directly. */ \
1593 \
1594 X = gen_rtx_PLUS (GET_MODE (X), \
1595 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1596 GEN_INT (high)), \
1597 GEN_INT (low)); \
1598 \
1599 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1600 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1601 OPNUM, TYPE); \
1602 goto WIN; \
1603 } \
1604} while (0)
1605
1a94ca49
RK
1606/* Go to LABEL if ADDR (a legitimate address expression)
1607 has an effect that depends on the machine mode it is used for.
1608 On the Alpha this is true only for the unaligned modes. We can
1609 simplify this test since we know that the address must be valid. */
1610
1611#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1612{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1613
1614/* Compute the cost of an address. For the Alpha, all valid addresses are
1615 the same cost. */
1616
1617#define ADDRESS_COST(X) 0
1618
2ea844d3
RH
1619/* Machine-dependent reorg pass. */
1620#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1621\f
1622/* Specify the machine mode that this machine uses
1623 for the index in the tablejump instruction. */
1624#define CASE_VECTOR_MODE SImode
1625
18543a22
ILT
1626/* Define as C expression which evaluates to nonzero if the tablejump
1627 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1628 table.
b0435cf4 1629
3aa9d5b6 1630 Do not define this if the table should contain absolute addresses.
260ced47
RK
1631 On the Alpha, the table is really GP-relative, not relative to the PC
1632 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1633 but we should try to find some better way sometime. */
18543a22 1634#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1635
1636/* Specify the tree operation to be used to convert reals to integers. */
1637#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1638
1639/* This is the kind of divide that is easiest to do in the general case. */
1640#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1641
1642/* Define this as 1 if `char' should by default be signed; else as 0. */
1643#define DEFAULT_SIGNED_CHAR 1
1644
1645/* This flag, if defined, says the same insns that convert to a signed fixnum
1646 also convert validly to an unsigned one.
1647
1648 We actually lie a bit here as overflow conditions are different. But
1649 they aren't being checked anyway. */
1650
1651#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1652
1653/* Max number of bytes we can move to or from memory
1654 in one reasonably fast instruction. */
1655
1656#define MOVE_MAX 8
1657
7e24ffc9
HPN
1658/* If a memory-to-memory move would take MOVE_RATIO or more simple
1659 move-instruction pairs, we will do a movstr or libcall instead.
1660
1661 Without byte/word accesses, we want no more than four instructions;
1662 with, several single byte accesses are better. */
6c174fc0
RH
1663
1664#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1665
1a94ca49
RK
1666/* Largest number of bytes of an object that can be placed in a register.
1667 On the Alpha we have plenty of registers, so use TImode. */
1668#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1669
1670/* Nonzero if access to memory by bytes is no faster than for words.
1671 Also non-zero if doing byte operations (specifically shifts) in registers
1672 is undesirable.
1673
1674 On the Alpha, we want to not use the byte operation and instead use
1675 masking operations to access fields; these will save instructions. */
1676
1677#define SLOW_BYTE_ACCESS 1
1678
9a63901f
RK
1679/* Define if operations between registers always perform the operation
1680 on the full register even if a narrower mode is specified. */
1681#define WORD_REGISTER_OPERATIONS
1682
1683/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1684 will either zero-extend or sign-extend. The value of this macro should
1685 be the code that says which one of the two operations is implicitly
1686 done, NIL if none. */
b7747781 1687#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1688
225211e2
RK
1689/* Define if loading short immediate values into registers sign extends. */
1690#define SHORT_IMMEDIATES_SIGN_EXTEND
1691
1a94ca49
RK
1692/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1693 is done just by pretending it is already truncated. */
1694#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1695
1696/* We assume that the store-condition-codes instructions store 0 for false
1697 and some other value for true. This is the value stored for true. */
1698
1699#define STORE_FLAG_VALUE 1
1700
1701/* Define the value returned by a floating-point comparison instruction. */
1702
e9a25f70 1703#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1704
35bb77fd
RK
1705/* Canonicalize a comparison from one we don't have to one we do have. */
1706
1707#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1708 do { \
1709 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1710 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1711 { \
1712 rtx tem = (OP0); \
1713 (OP0) = (OP1); \
1714 (OP1) = tem; \
1715 (CODE) = swap_condition (CODE); \
1716 } \
1717 if (((CODE) == LT || (CODE) == LTU) \
1718 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1719 { \
1720 (CODE) = (CODE) == LT ? LE : LEU; \
1721 (OP1) = GEN_INT (255); \
1722 } \
1723 } while (0)
1724
1a94ca49
RK
1725/* Specify the machine mode that pointers have.
1726 After generation of rtl, the compiler makes no further distinction
1727 between pointers and any other objects of this machine mode. */
1728#define Pmode DImode
1729
1730/* Mode of a function address in a call instruction (for indexing purposes). */
1731
1732#define FUNCTION_MODE Pmode
1733
1734/* Define this if addresses of constant functions
1735 shouldn't be put through pseudo regs where they can be cse'd.
1736 Desirable on machines where ordinary constants are expensive
1737 but a CALL with constant address is cheap.
1738
1739 We define this on the Alpha so that gen_call and gen_call_value
1740 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1741 then copy it into a register, thus actually letting the address be
1742 cse'ed. */
1743
1744#define NO_FUNCTION_CSE
1745
d969caf8 1746/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1747 few bits. */
d969caf8 1748#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1749
d721b776
RK
1750/* Use atexit for static constructors/destructors, instead of defining
1751 our own exit function. */
1752#define HAVE_ATEXIT
1753
71d9b493 1754/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1755#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1756
7d0bfbd0
RH
1757/* Describe the fact that MULTI instructions are multiple instructions
1758 and so to assume they don't pair with anything. */
1759#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1760 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1761 (CAN_ISSUE_MORE) = 0
1762
1a94ca49
RK
1763/* Compute the cost of computing a constant rtl expression RTX
1764 whose rtx-code is CODE. The body of this macro is a portion
1765 of a switch statement. If the code is computed here,
1766 return it with a return statement. Otherwise, break from the switch.
1767
8b7b2e36
RK
1768 If this is an 8-bit constant, return zero since it can be used
1769 nearly anywhere with no cost. If it is a valid operand for an
1770 ADD or AND, likewise return 0 if we know it will be used in that
1771 context. Otherwise, return 2 since it might be used there later.
1772 All other constants take at least two insns. */
1a94ca49
RK
1773
1774#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1775 case CONST_INT: \
06eb8e92 1776 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1777 return 0; \
1a94ca49 1778 case CONST_DOUBLE: \
5d02ee66
RH
1779 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1780 return 0; \
1781 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1782 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1783 return 0; \
1784 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1785 return 2; \
1786 else \
1787 return COSTS_N_INSNS (2); \
1a94ca49
RK
1788 case CONST: \
1789 case SYMBOL_REF: \
1790 case LABEL_REF: \
f6f6a13c
RK
1791 switch (alpha_cpu) \
1792 { \
1793 case PROCESSOR_EV4: \
1794 return COSTS_N_INSNS (3); \
1795 case PROCESSOR_EV5: \
5d02ee66 1796 case PROCESSOR_EV6: \
f6f6a13c 1797 return COSTS_N_INSNS (2); \
5d02ee66 1798 default: abort(); \
f6f6a13c 1799 }
1a94ca49
RK
1800
1801/* Provide the costs of a rtl expression. This is in the body of a
1802 switch on CODE. */
1803
1804#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1805 case PLUS: case MINUS: \
1806 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1807 switch (alpha_cpu) \
1808 { \
1809 case PROCESSOR_EV4: \
1810 return COSTS_N_INSNS (6); \
1811 case PROCESSOR_EV5: \
5d02ee66 1812 case PROCESSOR_EV6: \
f6f6a13c 1813 return COSTS_N_INSNS (4); \
5d02ee66 1814 default: abort(); \
f6f6a13c 1815 } \
b49e978e
RK
1816 else if (GET_CODE (XEXP (X, 0)) == MULT \
1817 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1818 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1819 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1820 break; \
1821 case MULT: \
f6f6a13c
RK
1822 switch (alpha_cpu) \
1823 { \
1824 case PROCESSOR_EV4: \
1825 if (FLOAT_MODE_P (GET_MODE (X))) \
1826 return COSTS_N_INSNS (6); \
1827 return COSTS_N_INSNS (23); \
1828 case PROCESSOR_EV5: \
1829 if (FLOAT_MODE_P (GET_MODE (X))) \
1830 return COSTS_N_INSNS (4); \
1831 else if (GET_MODE (X) == DImode) \
1832 return COSTS_N_INSNS (12); \
1833 else \
1834 return COSTS_N_INSNS (8); \
5d02ee66
RH
1835 case PROCESSOR_EV6: \
1836 if (FLOAT_MODE_P (GET_MODE (X))) \
1837 return COSTS_N_INSNS (4); \
1838 else \
1839 return COSTS_N_INSNS (7); \
1840 default: abort(); \
f6f6a13c 1841 } \
b49e978e
RK
1842 case ASHIFT: \
1843 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1844 && INTVAL (XEXP (X, 1)) <= 3) \
1845 break; \
1846 /* ... fall through ... */ \
5d02ee66 1847 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1848 switch (alpha_cpu) \
1849 { \
1850 case PROCESSOR_EV4: \
1851 return COSTS_N_INSNS (2); \
1852 case PROCESSOR_EV5: \
5d02ee66 1853 case PROCESSOR_EV6: \
f6f6a13c 1854 return COSTS_N_INSNS (1); \
5d02ee66
RH
1855 default: abort(); \
1856 } \
1857 case IF_THEN_ELSE: \
1858 switch (alpha_cpu) \
1859 { \
1860 case PROCESSOR_EV4: \
1861 case PROCESSOR_EV6: \
1862 return COSTS_N_INSNS (2); \
1863 case PROCESSOR_EV5: \
1864 return COSTS_N_INSNS (1); \
1865 default: abort(); \
f6f6a13c 1866 } \
3bda6d11 1867 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1868 switch (alpha_cpu) \
1869 { \
1870 case PROCESSOR_EV4: \
1871 if (GET_MODE (X) == SFmode) \
1872 return COSTS_N_INSNS (34); \
1873 else if (GET_MODE (X) == DFmode) \
1874 return COSTS_N_INSNS (63); \
1875 else \
1876 return COSTS_N_INSNS (70); \
1877 case PROCESSOR_EV5: \
1878 if (GET_MODE (X) == SFmode) \
1879 return COSTS_N_INSNS (15); \
1880 else if (GET_MODE (X) == DFmode) \
1881 return COSTS_N_INSNS (22); \
1882 else \
5d02ee66
RH
1883 return COSTS_N_INSNS (70); /* ??? */ \
1884 case PROCESSOR_EV6: \
1885 if (GET_MODE (X) == SFmode) \
1886 return COSTS_N_INSNS (12); \
1887 else if (GET_MODE (X) == DFmode) \
1888 return COSTS_N_INSNS (15); \
1889 else \
1890 return COSTS_N_INSNS (70); /* ??? */ \
1891 default: abort(); \
f6f6a13c 1892 } \
1a94ca49 1893 case MEM: \
f6f6a13c
RK
1894 switch (alpha_cpu) \
1895 { \
1896 case PROCESSOR_EV4: \
5d02ee66 1897 case PROCESSOR_EV6: \
f6f6a13c
RK
1898 return COSTS_N_INSNS (3); \
1899 case PROCESSOR_EV5: \
1900 return COSTS_N_INSNS (2); \
5d02ee66 1901 default: abort(); \
f6f6a13c
RK
1902 } \
1903 case NEG: case ABS: \
1904 if (! FLOAT_MODE_P (GET_MODE (X))) \
1905 break; \
1906 /* ... fall through ... */ \
3bda6d11
RK
1907 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1908 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1909 switch (alpha_cpu) \
1910 { \
1911 case PROCESSOR_EV4: \
1912 return COSTS_N_INSNS (6); \
1913 case PROCESSOR_EV5: \
5d02ee66 1914 case PROCESSOR_EV6: \
f6f6a13c 1915 return COSTS_N_INSNS (4); \
5d02ee66 1916 default: abort(); \
f6f6a13c 1917 }
1a94ca49
RK
1918\f
1919/* Control the assembler format that we output. */
1920
40ef2fc5
JL
1921/* We don't emit these labels, so as to avoid getting linker errors about
1922 missing exception handling info. If we emit a gcc_compiled. label into
1923 text, and the file has no code, then the DEC assembler gives us a zero
1924 sized text section with no associated exception handling info. The
38e01259 1925 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1926 the exception handling info is missing. */
3c303f52
KG
1927#define ASM_IDENTIFY_GCC(x)
1928#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1929
1a94ca49
RK
1930/* Output to assembler file text saying following lines
1931 may contain character constants, extra white space, comments, etc. */
1932
1933#define ASM_APP_ON ""
1934
1935/* Output to assembler file text saying following lines
1936 no longer contain unusual constructs. */
1937
1938#define ASM_APP_OFF ""
1939
1940#define TEXT_SECTION_ASM_OP ".text"
1941
1942/* Output before read-only data. */
1943
1944#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1945
1946/* Output before writable data. */
1947
1948#define DATA_SECTION_ASM_OP ".data"
1949
1950/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1951 indicate that it is for read-only data.
1952
abc95ed3 1953 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1954 eight bytes of zero. This works around a bug in DEC's assembler in
1955 some versions of OSF/1 V3.x. */
1a94ca49
RK
1956
1957#define EXTRA_SECTIONS readonly_data
1958
1959#define EXTRA_SECTION_FUNCTIONS \
1960void \
1961literal_section () \
1962{ \
1963 if (in_section != readonly_data) \
1964 { \
c0388f29
RK
1965 static int firsttime = 1; \
1966 \
1a94ca49 1967 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1968 if (firsttime) \
1969 { \
1970 firsttime = 0; \
1971 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1972 } \
1973 \
1a94ca49
RK
1974 in_section = readonly_data; \
1975 } \
1976} \
1977
1978#define READONLY_DATA_SECTION literal_section
1979
ac030a7b
RK
1980/* If we are referencing a function that is static, make the SYMBOL_REF
1981 special. We use this to see indicate we can branch to this function
1982 without setting PV or restoring GP. */
130d2d72
RK
1983
1984#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1985 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1986 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1987
1a94ca49
RK
1988/* How to refer to registers in assembler output.
1989 This sequence is indexed by compiler's hard-register-number (see above). */
1990
1991#define REGISTER_NAMES \
1992{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1993 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1994 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1995 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1996 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1997 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1998 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1999 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
2000
2001/* How to renumber registers for dbx and gdb. */
2002
2003#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2004
2005/* This is how to output the definition of a user-level label named NAME,
2006 such as the label on a static function or variable NAME. */
2007
2008#define ASM_OUTPUT_LABEL(FILE,NAME) \
2009 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2010
2011/* This is how to output a command to make the user-level label named NAME
2012 defined for reference from other files. */
2013
2014#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2015 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2016
4e0c8ad2 2017/* The prefix to add to user-visible assembler symbols. */
1a94ca49 2018
4e0c8ad2 2019#define USER_LABEL_PREFIX ""
1a94ca49
RK
2020
2021/* This is how to output an internal numbered label where
2022 PREFIX is the class of label and NUM is the number within the class. */
2023
2024#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 2025 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
2026
2027/* This is how to output a label for a jump table. Arguments are the same as
2028 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2029 passed. */
2030
2031#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2032{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2033
2034/* This is how to store into the string LABEL
2035 the symbol_ref name of an internal numbered label where
2036 PREFIX is the class of label and NUM is the number within the class.
2037 This is suitable for output with `assemble_name'. */
2038
2039#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 2040 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 2041
e247ca2a
RK
2042/* Check a floating-point value for validity for a particular machine mode. */
2043
2044#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2045 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2046
1a94ca49
RK
2047/* This is how to output an assembler line defining a `double' constant. */
2048
e99300f1
RS
2049#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2050 { \
2051 if (REAL_VALUE_ISINF (VALUE) \
2052 || REAL_VALUE_ISNAN (VALUE) \
2053 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2054 { \
2055 long t[2]; \
2056 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2057 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2058 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2059 } \
2060 else \
2061 { \
2062 char str[30]; \
2063 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 2064 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
2065 } \
2066 }
1a94ca49
RK
2067
2068/* This is how to output an assembler line defining a `float' constant. */
2069
e247ca2a
RK
2070#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2071 do { \
2072 long t; \
2073 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2074 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2075} while (0)
2700ac93 2076
1a94ca49
RK
2077/* This is how to output an assembler line defining an `int' constant. */
2078
2079#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2080( fprintf (FILE, "\t.long "), \
2081 output_addr_const (FILE, (VALUE)), \
2082 fprintf (FILE, "\n"))
1a94ca49
RK
2083
2084/* This is how to output an assembler line defining a `long' constant. */
2085
2086#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2087( fprintf (FILE, "\t.quad "), \
2088 output_addr_const (FILE, (VALUE)), \
2089 fprintf (FILE, "\n"))
2090
2091/* Likewise for `char' and `short' constants. */
2092
2093#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2094 fprintf (FILE, "\t.word %d\n", \
3c303f52 2095 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2096 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2097
2098#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2099 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2100 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2101 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2102
2103/* We use the default ASCII-output routine, except that we don't write more
2104 than 50 characters since the assembler doesn't support very long lines. */
2105
2106#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2107 do { \
2108 FILE *_hide_asm_out_file = (MYFILE); \
2109 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2110 int _hide_thissize = (MYLENGTH); \
2111 int _size_so_far = 0; \
2112 { \
2113 FILE *asm_out_file = _hide_asm_out_file; \
2114 unsigned char *p = _hide_p; \
2115 int thissize = _hide_thissize; \
2116 int i; \
2117 fprintf (asm_out_file, "\t.ascii \""); \
2118 \
2119 for (i = 0; i < thissize; i++) \
2120 { \
2121 register int c = p[i]; \
2122 \
2123 if (_size_so_far ++ > 50 && i < thissize - 4) \
2124 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2125 \
2126 if (c == '\"' || c == '\\') \
2127 putc ('\\', asm_out_file); \
2128 if (c >= ' ' && c < 0177) \
2129 putc (c, asm_out_file); \
2130 else \
2131 { \
2132 fprintf (asm_out_file, "\\%o", c); \
2133 /* After an octal-escape, if a digit follows, \
2134 terminate one string constant and start another. \
2135 The Vax assembler fails to stop reading the escape \
2136 after three digits, so this is the only way we \
2137 can get it to parse the data properly. */ \
2138 if (i < thissize - 1 \
2139 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2140 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2141 } \
2142 } \
2143 fprintf (asm_out_file, "\"\n"); \
2144 } \
2145 } \
2146 while (0)
52a69200 2147
6690d24c
RH
2148/* To get unaligned data, we have to turn off auto alignment. */
2149#define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word"
2150#define UNALIGNED_INT_ASM_OP ".align 0\n\t.long"
2151#define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad"
2152
1a94ca49
RK
2153/* This is how to output an insn to push a register on the stack.
2154 It need not be very fast code. */
2155
2156#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2157 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2158 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2159 (REGNO) & 31);
2160
2161/* This is how to output an insn to pop a register from the stack.
2162 It need not be very fast code. */
2163
2164#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2165 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2166 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2167 (REGNO) & 31);
2168
2169/* This is how to output an assembler line for a numeric constant byte. */
2170
2171#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2172 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2173
260ced47
RK
2174/* This is how to output an element of a case-vector that is absolute.
2175 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2176
260ced47 2177#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2178
260ced47 2179/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2180
33f7f353 2181#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2182 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2183 (VALUE))
1a94ca49
RK
2184
2185/* This is how to output an assembler line
2186 that says to advance the location counter
2187 to a multiple of 2**LOG bytes. */
2188
2189#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2190 if ((LOG) != 0) \
2191 fprintf (FILE, "\t.align %d\n", LOG);
2192
2193/* This is how to advance the location counter by SIZE bytes. */
2194
2195#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2196 fprintf (FILE, "\t.space %d\n", (SIZE))
2197
2198/* This says how to output an assembler line
2199 to define a global common symbol. */
2200
2201#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2202( fputs ("\t.comm ", (FILE)), \
2203 assemble_name ((FILE), (NAME)), \
2204 fprintf ((FILE), ",%d\n", (SIZE)))
2205
2206/* This says how to output an assembler line
2207 to define a local common symbol. */
2208
2209#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2210( fputs ("\t.lcomm ", (FILE)), \
2211 assemble_name ((FILE), (NAME)), \
2212 fprintf ((FILE), ",%d\n", (SIZE)))
2213
2214/* Store in OUTPUT a string (made with alloca) containing
2215 an assembler-name for a local static variable named NAME.
2216 LABELNO is an integer which is different for each call. */
2217
2218#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2219( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2220 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2221
2222/* Define the parentheses used to group arithmetic operations
2223 in assembler code. */
2224
2225#define ASM_OPEN_PAREN "("
2226#define ASM_CLOSE_PAREN ")"
2227
60593797
RH
2228/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2229 Used for C++ multiple inheritance. */
2230
2231#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2232do { \
92d4501f 2233 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2234 int reg; \
60593797 2235 \
acd92049
RH
2236 /* Mark end of prologue. */ \
2237 output_end_prologue (FILE); \
60593797
RH
2238 \
2239 /* Rely on the assembler to macro expand a large delta. */ \
54473ca7
L
2240 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2241 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797
RH
2242 \
2243 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2244 { \
2245 fprintf (FILE, "\tbr $31,$"); \
2246 assemble_name (FILE, fn_name); \
2247 fprintf (FILE, "..ng\n"); \
2248 } \
2249 else \
2250 { \
acd92049 2251 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2252 assemble_name (FILE, fn_name); \
2253 fputc ('\n', FILE); \
2254 } \
60593797 2255} while (0)
60593797 2256\f
9ec36da5 2257
1a94ca49
RK
2258/* Define results of standard character escape sequences. */
2259#define TARGET_BELL 007
2260#define TARGET_BS 010
2261#define TARGET_TAB 011
2262#define TARGET_NEWLINE 012
2263#define TARGET_VT 013
2264#define TARGET_FF 014
2265#define TARGET_CR 015
2266
2267/* Print operand X (an rtx) in assembler syntax to file FILE.
2268 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2269 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2270
2271#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2272
2273/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2274 not be alphabetic (the characters are chosen so that
2275 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2276 using ASCII).
2277
2278 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2279 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2280 mode. alpha_fprm controls which suffix is generated.
2281
2282 ' Generates trap-mode suffix for instructions that accept the
2283 su suffix only (cmpt et al).
2284
e83015a9
RH
2285 ` Generates trap-mode suffix for instructions that accept the
2286 v and sv suffix. The only instruction that needs this is cvtql.
2287
0022a940
DMT
2288 ( Generates trap-mode suffix for instructions that accept the
2289 v, sv, and svi suffix. The only instruction that needs this
2290 is cvttq.
2291
2bf6230d
RK
2292 ) Generates trap-mode suffix for instructions that accept the
2293 u, su, and sui suffix. This is the bulk of the IEEE floating
2294 point instructions (addt et al).
2295
2296 + Generates trap-mode suffix for instructions that accept the
2297 sui suffix (cvtqt and cvtqs).
e5958492
RK
2298
2299 , Generates single precision suffix for floating point
2300 instructions (s for IEEE, f for VAX)
2301
2302 - Generates double precision suffix for floating point
2303 instructions (t for IEEE, g for VAX)
2bf6230d 2304 */
1a94ca49 2305
2bf6230d 2306#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2307 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2308 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2309\f
2310/* Print a memory address as an operand to reference that memory location. */
2311
714b019c
RH
2312#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2313 print_operand_address((FILE), (ADDR))
2314
1a94ca49
RK
2315/* Define the codes that are matched by predicates in alpha.c. */
2316
e3208d53
RH
2317#define PREDICATE_CODES \
2318 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2319 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2320 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2321 {"cint8_operand", {CONST_INT}}, \
2322 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2323 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2324 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2325 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2326 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2327 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2328 {"mode_mask_operand", {CONST_INT}}, \
2329 {"mul8_operand", {CONST_INT}}, \
2330 {"mode_width_operand", {CONST_INT}}, \
2331 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2332 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2333 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2334 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2335 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2336 {"fp0_operand", {CONST_DOUBLE}}, \
2337 {"current_file_function_operand", {SYMBOL_REF}}, \
2338 {"call_operand", {REG, SYMBOL_REF}}, \
2339 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2340 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2341 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2342 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53
RH
2343 {"aligned_memory_operand", {MEM}}, \
2344 {"unaligned_memory_operand", {MEM}}, \
2345 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2346 {"any_memory_operand", {MEM}}, \
40b80dad 2347 {"hard_fp_register_operand", {SUBREG, REG}}, \
67070f5c
RH
2348 {"reg_not_elim_operand", {SUBREG, REG}}, \
2349 {"reg_no_subreg_operand", {REG}},
03f8c4cc 2350\f
34fa88ab
RK
2351/* Tell collect that the object format is ECOFF. */
2352#define OBJECT_FORMAT_COFF
2353#define EXTENDED_COFF
2354
2355/* If we use NM, pass -g to it so it only lists globals. */
2356#define NM_FLAGS "-pg"
2357
03f8c4cc
RK
2358/* Definitions for debugging. */
2359
2360#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2361#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2362#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2363
2364#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2365#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2366#endif
2367
2368
2369/* Correct the offset of automatic variables and arguments. Note that
2370 the Alpha debug format wants all automatic variables and arguments
2371 to be in terms of two different offsets from the virtual frame pointer,
2372 which is the stack pointer before any adjustment in the function.
2373 The offset for the argument pointer is fixed for the native compiler,
2374 it is either zero (for the no arguments case) or large enough to hold
2375 all argument registers.
2376 The offset for the auto pointer is the fourth argument to the .frame
2377 directive (local_offset).
2378 To stay compatible with the native tools we use the same offsets
2379 from the virtual frame pointer and adjust the debugger arg/auto offsets
2380 accordingly. These debugger offsets are set up in output_prolog. */
2381
9a0b18f2
RK
2382extern long alpha_arg_offset;
2383extern long alpha_auto_offset;
03f8c4cc
RK
2384#define DEBUGGER_AUTO_OFFSET(X) \
2385 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2386#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2387
2388
2389#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2390 alpha_output_lineno (STREAM, LINE)
2391extern void alpha_output_lineno ();
2392
2393#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2394 alpha_output_filename (STREAM, NAME)
2395extern void alpha_output_filename ();
2396
4330b0e7
JW
2397/* mips-tfile.c limits us to strings of one page. We must underestimate this
2398 number, because the real length runs past this up to the next
2399 continuation point. This is really a dbxout.c bug. */
2400#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2401
2402/* By default, turn on GDB extensions. */
2403#define DEFAULT_GDB_EXTENSIONS 1
2404
7aadc7c2
RK
2405/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2406#define NO_DBX_FUNCTION_END 1
2407
03f8c4cc
RK
2408/* If we are smuggling stabs through the ALPHA ECOFF object
2409 format, put a comment in front of the .stab<x> operation so
2410 that the ALPHA assembler does not choke. The mips-tfile program
2411 will correctly put the stab into the object file. */
2412
2413#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2414#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2415#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2416
2417/* Forward references to tags are allowed. */
2418#define SDB_ALLOW_FORWARD_REFERENCES
2419
2420/* Unknown tags are also allowed. */
2421#define SDB_ALLOW_UNKNOWN_REFERENCES
2422
2423#define PUT_SDB_DEF(a) \
2424do { \
2425 fprintf (asm_out_file, "\t%s.def\t", \
2426 (TARGET_GAS) ? "" : "#"); \
2427 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2428 fputc (';', asm_out_file); \
2429} while (0)
2430
2431#define PUT_SDB_PLAIN_DEF(a) \
2432do { \
2433 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2434 (TARGET_GAS) ? "" : "#", (a)); \
2435} while (0)
2436
2437#define PUT_SDB_TYPE(a) \
2438do { \
2439 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2440} while (0)
2441
2442/* For block start and end, we create labels, so that
2443 later we can figure out where the correct offset is.
2444 The normal .ent/.end serve well enough for functions,
2445 so those are just commented out. */
2446
2447extern int sdb_label_count; /* block start/end next label # */
2448
2449#define PUT_SDB_BLOCK_START(LINE) \
2450do { \
2451 fprintf (asm_out_file, \
2452 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2453 sdb_label_count, \
2454 (TARGET_GAS) ? "" : "#", \
2455 sdb_label_count, \
2456 (LINE)); \
2457 sdb_label_count++; \
2458} while (0)
2459
2460#define PUT_SDB_BLOCK_END(LINE) \
2461do { \
2462 fprintf (asm_out_file, \
2463 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2464 sdb_label_count, \
2465 (TARGET_GAS) ? "" : "#", \
2466 sdb_label_count, \
2467 (LINE)); \
2468 sdb_label_count++; \
2469} while (0)
2470
2471#define PUT_SDB_FUNCTION_START(LINE)
2472
2473#define PUT_SDB_FUNCTION_END(LINE)
2474
3c303f52 2475#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2476
03f8c4cc
RK
2477/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2478 mips-tdump.c to print them out.
2479
2480 These must match the corresponding definitions in gdb/mipsread.c.
2481 Unfortunately, gcc and gdb do not currently share any directories. */
2482
2483#define CODE_MASK 0x8F300
2484#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2485#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2486#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2487
2488/* Override some mips-tfile definitions. */
2489
2490#define SHASH_SIZE 511
2491#define THASH_SIZE 55
1e6c6f11
RK
2492
2493/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2494
2495#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2496
54190234
JM
2497/* The linker will stick __main into the .init section. */
2498#define HAS_INIT_SECTION
68d69835
JM
2499#define LD_INIT_SWITCH "-init"
2500#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2501
2502/* The system headers under Alpha systems are generally C++-aware. */
2503#define NO_IMPLICIT_EXTERN_C
47747e53 2504
3c303f52 2505/* Prototypes for alpha.c functions used in the md file & elsewhere. */
47747e53 2506extern struct rtx_def *get_unaligned_address ();
3c303f52
KG
2507extern void alpha_write_verstamp ();
2508extern void alpha_reorg ();
2509extern int check_float_value ();
2510extern int direct_return ();
2511extern int const48_operand ();
2512extern int add_operand ();
2513extern int and_operand ();
2514extern int unaligned_memory_operand ();
2515extern int zap_mask ();
2516extern int current_file_function_operand ();
2517extern int alpha_sa_size ();
2518extern int alpha_adjust_cost ();
2519extern void print_operand ();
714b019c 2520extern void print_operand_address ();
3c303f52
KG
2521extern int reg_or_0_operand ();
2522extern int reg_or_8bit_operand ();
2523extern int mul8_operand ();
2524extern int reg_or_6bit_operand ();
2525extern int alpha_comparison_operator ();
2526extern int alpha_swapped_comparison_operator ();
2527extern int sext_add_operand ();
2528extern int cint8_operand ();
2529extern int mode_mask_operand ();
2530extern int or_operand ();
2531extern int mode_width_operand ();
2532extern int reg_or_fp0_operand ();
2533extern int signed_comparison_operator ();
2534extern int fp0_operand ();
2535extern int some_operand ();
2536extern int input_operand ();
2537extern int divmod_operator ();
2538extern int call_operand ();
2539extern int reg_or_cint_operand ();
2540extern int hard_fp_register_operand ();
40b80dad 2541extern int reg_not_elim_operand ();
3c303f52
KG
2542extern void alpha_set_memflags ();
2543extern int aligned_memory_operand ();
2544extern void get_aligned_mem ();
2545extern void alpha_expand_unaligned_load ();
2546extern void alpha_expand_unaligned_store ();
2547extern int alpha_expand_block_move ();
2548extern int alpha_expand_block_clear ();
2549extern void alpha_expand_prologue ();
2550extern void alpha_expand_epilogue ();
This page took 1.735859 seconds and 5 git commands to generate.