]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
final.c (no_asm_to_stream): New.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ddd9abd 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
cf011243 3 2000, 2001 Free Software Foundation, Inc.
1e6c6f11 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
1a94ca49
RK
22
23
887af1f2
RO
24/* For C++ we need to ensure that __LANGUAGE_C_PLUS_PLUS is defined independent
25 of the source file extension. */
26#define CPLUSPLUS_CPP_SPEC "\
27-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus \
28%(cpp) \
29"
30
21798cd8
RK
31/* Write out the correct language type definition for the header files.
32 Unless we have assembler language, write out the symbols for C. */
1a94ca49 33#define CPP_SPEC "\
952fc2ed
RH
34%{!undef:\
35%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
952fc2ed 36%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
887af1f2 37%{!.S:%{!.cc:%{!.cxx:%{!.cpp:%{!.cp:%{!.c++:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}}}}\
952fc2ed
RH
38%{mieee:-D_IEEE_FP }\
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
40%(cpp_cpu) %(cpp_subtarget)"
41
42#ifndef CPP_SUBTARGET_SPEC
43#define CPP_SUBTARGET_SPEC ""
44#endif
1a94ca49
RK
45
46/* Set the spec to use for signed char. The default tests the above macro
47 but DEC's compiler can't handle the conditional in a "constant"
48 operand. */
49
50#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
51
b890f297 52#define WORD_SWITCH_TAKES_ARG(STR) \
2efe55c1 53 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
8877eb00 54
1a94ca49
RK
55/* Print subsidiary information on the compiler version in use. */
56#define TARGET_VERSION
57
1a94ca49
RK
58/* Run-time compilation parameters selecting different hardware subsets. */
59
f6f6a13c
RK
60/* Which processor to schedule for. The cpu attribute defines a list that
61 mirrors this list, so changes to alpha.md must be made at the same time. */
62
63enum processor_type
64 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
65 PROCESSOR_EV5, /* 21164{a,pc,} */
66 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
67
68extern enum processor_type alpha_cpu;
69
2bf6230d
RK
70enum alpha_trap_precision
71{
72 ALPHA_TP_PROG, /* No precision (default). */
73 ALPHA_TP_FUNC, /* Trap contained within originating function. */
74 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
75};
76
77enum alpha_fp_rounding_mode
78{
79 ALPHA_FPRM_NORM, /* Normal rounding mode. */
80 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
81 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
82 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
83};
84
85enum alpha_fp_trap_mode
86{
87 ALPHA_FPTM_N, /* Normal trap mode. */
88 ALPHA_FPTM_U, /* Underflow traps enabled. */
89 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
90 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
91};
92
1a94ca49
RK
93extern int target_flags;
94
2bf6230d
RK
95extern enum alpha_trap_precision alpha_tp;
96extern enum alpha_fp_rounding_mode alpha_fprm;
97extern enum alpha_fp_trap_mode alpha_fptm;
98
1a94ca49
RK
99/* This means that floating-point support exists in the target implementation
100 of the Alpha architecture. This is usually the default. */
de4abb91 101#define MASK_FP (1 << 0)
2bf6230d 102#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
103
104/* This means that floating-point registers are allowed to be used. Note
105 that Alpha implementations without FP operations are required to
106 provide the FP registers. */
107
de4abb91 108#define MASK_FPREGS (1 << 1)
2bf6230d 109#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
110
111/* This means that gas is used to process the assembler file. */
112
de4abb91 113#define MASK_GAS (1 << 2)
03f8c4cc 114#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 115
2bf6230d
RK
116/* This means that we should mark procedures as IEEE conformant. */
117
de4abb91 118#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
119#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
120
121/* This means we should be IEEE-compliant except for inexact. */
122
de4abb91 123#define MASK_IEEE (1 << 4)
2bf6230d
RK
124#define TARGET_IEEE (target_flags & MASK_IEEE)
125
126/* This means we should be fully IEEE-compliant. */
127
de4abb91 128#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
129#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
130
803fee69
RK
131/* This means we must construct all constants rather than emitting
132 them as literal data. */
133
de4abb91 134#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
135#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
136
e5958492
RK
137/* This means we handle floating points in VAX F- (float)
138 or G- (double) Format. */
139
de4abb91 140#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
141#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
142
e9a25f70
JL
143/* This means that the processor has byte and half word loads and stores
144 (the BWX extension). */
025f3281 145
de4abb91 146#define MASK_BWX (1 << 8)
e9a25f70 147#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 148
e9a25f70 149/* This means that the processor has the MAX extension. */
de4abb91 150#define MASK_MAX (1 << 9)
e9a25f70
JL
151#define TARGET_MAX (target_flags & MASK_MAX)
152
de4abb91
RH
153/* This means that the processor has the FIX extension. */
154#define MASK_FIX (1 << 10)
155#define TARGET_FIX (target_flags & MASK_FIX)
156
157/* This means that the processor has the CIX extension. */
158#define MASK_CIX (1 << 11)
159#define TARGET_CIX (target_flags & MASK_CIX)
160
a3b815cb
JJ
161/* This means that the processor is an EV5, EV56, or PCA56.
162 Unlike alpha_cpu this is not affected by -mtune= setting. */
a76c0119 163#define MASK_CPU_EV5 (1 << 28)
a3b815cb 164#define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
e9a25f70
JL
165
166/* Likewise for EV6. */
a76c0119 167#define MASK_CPU_EV6 (1 << 29)
a3b815cb 168#define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
e9a25f70
JL
169
170/* This means we support the .arch directive in the assembler. Only
171 defined in TARGET_CPU_DEFAULT. */
a76c0119 172#define MASK_SUPPORT_ARCH (1 << 30)
e9a25f70 173#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 174
9ba3994a
RH
175/* These are for target os support and cannot be changed at runtime. */
176#ifndef TARGET_WINDOWS_NT
177#define TARGET_WINDOWS_NT 0
178#endif
179#ifndef TARGET_OPEN_VMS
180#define TARGET_OPEN_VMS 0
181#endif
182
183#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
184#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
185#endif
9c0e94a5
RH
186#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
187#define TARGET_CAN_FAULT_IN_PROLOGUE 0
188#endif
5495cc55
RH
189#ifndef TARGET_HAS_XFLOATING_LIBS
190#define TARGET_HAS_XFLOATING_LIBS 0
191#endif
4f1c5cce
RH
192#ifndef TARGET_PROFILING_NEEDS_GP
193#define TARGET_PROFILING_NEEDS_GP 0
194#endif
ccb83cbc
RH
195#ifndef TARGET_LD_BUGGY_LDGP
196#define TARGET_LD_BUGGY_LDGP 0
197#endif
9ba3994a 198
1a94ca49
RK
199/* Macro to define tables used to set the flags.
200 This is a list in braces of pairs in braces,
201 each pair being { "NAME", VALUE }
202 where VALUE is the bits to set or minus the bits to clear.
203 An empty string NAME is used to identify the default VALUE. */
204
f8e52397 205#define TARGET_SWITCHES \
047142d3
PT
206 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
207 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
208 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
209 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
210 N_("Do not use fp registers")}, \
211 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
212 {"gas", MASK_GAS, N_("Assume GAS")}, \
f8e52397 213 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
047142d3 214 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
f8e52397 215 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
047142d3 216 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
f8e52397 217 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
047142d3 218 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
f8e52397 219 {"build-constants", MASK_BUILD_CONSTANTS, \
047142d3
PT
220 N_("Do not emit complex integer constants to read-only memory")}, \
221 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
222 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
223 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
f8e52397 224 {"no-bwx", -MASK_BWX, ""}, \
047142d3
PT
225 {"max", MASK_MAX, \
226 N_("Emit code for the motion video ISA extension")}, \
f8e52397 227 {"no-max", -MASK_MAX, ""}, \
047142d3
PT
228 {"fix", MASK_FIX, \
229 N_("Emit code for the fp move and sqrt ISA extension")}, \
de4abb91 230 {"no-fix", -MASK_FIX, ""}, \
047142d3 231 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
de4abb91 232 {"no-cix", -MASK_CIX, ""}, \
f8e52397 233 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 234
c01b5470 235#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 236
88681624
ILT
237#ifndef TARGET_CPU_DEFAULT
238#define TARGET_CPU_DEFAULT 0
239#endif
240
2bf6230d
RK
241/* This macro is similar to `TARGET_SWITCHES' but defines names of
242 command options that have values. Its definition is an initializer
243 with a subgrouping for each command option.
244
245 Each subgrouping contains a string constant, that defines the fixed
246 part of the option name, and the address of a variable. The
247 variable, type `char *', is set to the variable part of the given
248 option if the fixed part matches. The actual option name is made
249 by appending `-m' to the specified name.
250
251 Here is an example which defines `-mshort-data-NUMBER'. If the
252 given option is `-mshort-data-512', the variable `m88k_short_data'
253 will be set to the string `"512"'.
254
255 extern char *m88k_short_data;
256 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
257
df45c7ea 258extern const char *alpha_cpu_string; /* For -mcpu= */
a3b815cb 259extern const char *alpha_tune_string; /* For -mtune= */
df45c7ea
KG
260extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
261extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
262extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
263extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 264
f8e52397
RH
265#define TARGET_OPTIONS \
266{ \
267 {"cpu=", &alpha_cpu_string, \
a3b815cb
JJ
268 N_("Use features of and schedule given CPU")}, \
269 {"tune=", &alpha_tune_string, \
270 N_("Schedule given CPU")}, \
f8e52397 271 {"fp-rounding-mode=", &alpha_fprm_string, \
047142d3 272 N_("Control the generated fp rounding mode")}, \
f8e52397 273 {"fp-trap-mode=", &alpha_fptm_string, \
047142d3 274 N_("Control the IEEE trap mode")}, \
f8e52397 275 {"trap-precision=", &alpha_tp_string, \
047142d3 276 N_("Control the precision given to fp exceptions")}, \
f8e52397 277 {"memory-latency=", &alpha_mlat_string, \
047142d3 278 N_("Tune expected memory latency")}, \
2bf6230d
RK
279}
280
952fc2ed
RH
281/* Attempt to describe CPU characteristics to the preprocessor. */
282
283/* Corresponding to amask... */
2b57e919
NB
284#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu=bwx"
285#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu=max"
286#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu=fix"
287#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu=cix"
952fc2ed
RH
288
289/* Corresponding to implver... */
2b57e919
NB
290#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu=ev4"
291#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu=ev5"
292#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu=ev6"
952fc2ed
RH
293
294/* Common combinations. */
295#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
296#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
297#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
298#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
d8ee3e20
RH
299#define CPP_CPU_EV6_SPEC \
300 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
301#define CPP_CPU_EV67_SPEC \
302 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix) %(cpp_am_cix)"
952fc2ed
RH
303
304#ifndef CPP_CPU_DEFAULT_SPEC
305# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
8f4773ea 306# if TARGET_CPU_DEFAULT & MASK_CIX
d8ee3e20
RH
307# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV67_SPEC
308# else
309# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
310# endif
952fc2ed
RH
311# else
312# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
313# if TARGET_CPU_DEFAULT & MASK_MAX
314# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
315# else
316# if TARGET_CPU_DEFAULT & MASK_BWX
317# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
318# else
319# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
320# endif
321# endif
322# else
323# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
324# endif
325# endif
326#endif /* CPP_CPU_DEFAULT_SPEC */
327
328#ifndef CPP_CPU_SPEC
329#define CPP_CPU_SPEC "\
2b57e919 330%{!undef:-Acpu=alpha -Amachine=alpha -D__alpha -D__alpha__ \
952fc2ed
RH
331%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
332%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
333%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
334%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
335%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
d8ee3e20 336%{mcpu=ev67|mcpu=21264a:%(cpp_cpu_ev67) }\
952fc2ed
RH
337%{!mcpu*:%(cpp_cpu_default) }}"
338#endif
339
340/* This macro defines names of additional specifications to put in the
341 specs that can be used in various specifications like CC1_SPEC. Its
342 definition is an initializer with a subgrouping for each command option.
343
344 Each subgrouping contains a string constant, that defines the
345 specification name, and a string constant that used by the GNU CC driver
346 program.
347
348 Do not define this macro if it does not need to do anything. */
349
350#ifndef SUBTARGET_EXTRA_SPECS
351#define SUBTARGET_EXTRA_SPECS
352#endif
353
829245be
KG
354#define EXTRA_SPECS \
355 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
356 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 357 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
358 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
359 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
360 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
361 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
362 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
363 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
364 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
365 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
366 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
d8ee3e20 367 { "cpp_cpu_ev67", CPP_CPU_EV67_SPEC }, \
829245be
KG
368 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
369 { "cpp_cpu", CPP_CPU_SPEC }, \
370 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
371 SUBTARGET_EXTRA_SPECS
372
373
2bf6230d
RK
374/* Sometimes certain combinations of command options do not make sense
375 on a particular target machine. You can define a macro
376 `OVERRIDE_OPTIONS' to take account of this. This macro, if
377 defined, is executed once just after all the command options have
378 been parsed.
379
380 On the Alpha, it is used to translate target-option strings into
381 numeric values. */
382
2bf6230d
RK
383#define OVERRIDE_OPTIONS override_options ()
384
385
1a94ca49
RK
386/* Define this macro to change register usage conditional on target flags.
387
388 On the Alpha, we use this to disable the floating-point registers when
389 they don't exist. */
390
391#define CONDITIONAL_REGISTER_USAGE \
392 if (! TARGET_FPREGS) \
52a69200 393 for (i = 32; i < 63; i++) \
1a94ca49
RK
394 fixed_regs[i] = call_used_regs[i] = 1;
395
4f074454
RK
396/* Show we can debug even without a frame pointer. */
397#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
398\f
399/* target machine storage layout */
400
2700ac93
RS
401/* Define to enable software floating point emulation. */
402#define REAL_ARITHMETIC
403
1a94ca49
RK
404/* Define the size of `int'. The default is the same as the word size. */
405#define INT_TYPE_SIZE 32
406
407/* Define the size of `long long'. The default is the twice the word size. */
408#define LONG_LONG_TYPE_SIZE 64
409
410/* The two floating-point formats we support are S-floating, which is
411 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
412 and `long double' are T. */
413
414#define FLOAT_TYPE_SIZE 32
415#define DOUBLE_TYPE_SIZE 64
416#define LONG_DOUBLE_TYPE_SIZE 64
417
5258d7ae
RK
418#define WCHAR_TYPE "unsigned int"
419#define WCHAR_TYPE_SIZE 32
1a94ca49 420
13d39dbc 421/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
422 in a wider mode than that declared by the program. In such cases,
423 the value is constrained to be within the bounds of the declared
424 type, but kept valid in the wider mode. The signedness of the
425 extension may differ from that of the type.
426
427 For Alpha, we always store objects in a full register. 32-bit objects
428 are always sign-extended, but smaller objects retain their signedness. */
429
430#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
431 if (GET_MODE_CLASS (MODE) == MODE_INT \
432 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
433 { \
434 if ((MODE) == SImode) \
435 (UNSIGNEDP) = 0; \
436 (MODE) = DImode; \
437 }
438
439/* Define this if function arguments should also be promoted using the above
440 procedure. */
441
442#define PROMOTE_FUNCTION_ARGS
443
444/* Likewise, if the function return value is promoted. */
445
446#define PROMOTE_FUNCTION_RETURN
447
448/* Define this if most significant bit is lowest numbered
449 in instructions that operate on numbered bit-fields.
450
451 There are no such instructions on the Alpha, but the documentation
452 is little endian. */
453#define BITS_BIG_ENDIAN 0
454
455/* Define this if most significant byte of a word is the lowest numbered.
456 This is false on the Alpha. */
457#define BYTES_BIG_ENDIAN 0
458
459/* Define this if most significant word of a multiword number is lowest
460 numbered.
461
462 For Alpha we can decide arbitrarily since there are no machine instructions
463 for them. Might as well be consistent with bytes. */
464#define WORDS_BIG_ENDIAN 0
465
466/* number of bits in an addressable storage unit */
467#define BITS_PER_UNIT 8
468
469/* Width in bits of a "word", which is the contents of a machine register.
470 Note that this is not necessarily the width of data type `int';
471 if using 16-bit ints on a 68000, this would still be 32.
472 But on a machine with 16-bit registers, this would be 16. */
473#define BITS_PER_WORD 64
474
475/* Width of a word, in units (bytes). */
476#define UNITS_PER_WORD 8
477
478/* Width in bits of a pointer.
479 See also the macro `Pmode' defined below. */
480#define POINTER_SIZE 64
481
482/* Allocation boundary (in *bits*) for storing arguments in argument list. */
483#define PARM_BOUNDARY 64
484
485/* Boundary (in *bits*) on which stack pointer should be aligned. */
486#define STACK_BOUNDARY 64
487
488/* Allocation boundary (in *bits*) for the code of a function. */
c176c051 489#define FUNCTION_BOUNDARY 32
1a94ca49
RK
490
491/* Alignment of field after `int : 0' in a structure. */
492#define EMPTY_FIELD_BOUNDARY 64
493
494/* Every structure's size must be a multiple of this. */
495#define STRUCTURE_SIZE_BOUNDARY 8
496
497/* A bitfield declared as `int' forces `int' alignment for the struct. */
498#define PCC_BITFIELD_TYPE_MATTERS 1
499
1a94ca49 500/* No data type wants to be aligned rounder than this. */
5495cc55 501#define BIGGEST_ALIGNMENT 128
1a94ca49 502
d16fe557
RK
503/* For atomic access to objects, must have at least 32-bit alignment
504 unless the machine has byte operations. */
13eb1f7f 505#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
d16fe557 506
442b1685
RK
507/* Align all constants and variables to at least a word boundary so
508 we can pick up pieces of them faster. */
6c174fc0
RH
509/* ??? Only if block-move stuff knows about different source/destination
510 alignment. */
511#if 0
442b1685
RK
512#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
513#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 514#endif
1a94ca49
RK
515
516/* Set this non-zero if move instructions will actually fail to work
517 when given unaligned data.
518
519 Since we get an error message when we do one, call them invalid. */
520
521#define STRICT_ALIGNMENT 1
522
523/* Set this non-zero if unaligned move instructions are extremely slow.
524
525 On the Alpha, they trap. */
130d2d72 526
e1565e65 527#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1a94ca49
RK
528\f
529/* Standard register usage. */
530
531/* Number of actual hardware registers.
532 The hardware registers are assigned numbers for the compiler
533 from 0 to just below FIRST_PSEUDO_REGISTER.
534 All registers that the compiler knows about must be given numbers,
535 even those that are not normally considered general registers.
536
537 We define all 32 integer registers, even though $31 is always zero,
538 and all 32 floating-point registers, even though $f31 is also
539 always zero. We do not bother defining the FP status register and
130d2d72
RK
540 there are no other registers.
541
542 Since $31 is always zero, we will use register number 31 as the
543 argument pointer. It will never appear in the generated code
544 because we will always be eliminating it in favor of the stack
52a69200
RK
545 pointer or hardware frame pointer.
546
547 Likewise, we use $f31 for the frame pointer, which will always
548 be eliminated in favor of the hardware frame pointer or the
549 stack pointer. */
1a94ca49
RK
550
551#define FIRST_PSEUDO_REGISTER 64
552
553/* 1 for registers that have pervasive standard uses
554 and are not available for the register allocator. */
555
556#define FIXED_REGISTERS \
557 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
558 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
559 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
561
562/* 1 for registers not available across function calls.
563 These must include the FIXED_REGISTERS and also any
564 registers that can be used without being saved.
565 The latter must include the registers where values are returned
566 and the register where structure-value addresses are passed.
567 Aside from that, you can include as many other registers as you like. */
568#define CALL_USED_REGISTERS \
569 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
571 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
573
574/* List the order in which to allocate registers. Each register must be
575 listed once, even those in FIXED_REGISTERS.
576
577 We allocate in the following order:
2c4be73e 578 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
579 $f22-$f30 (likewise)
580 $f21-$f16 (likewise, but input args)
581 $f0 (nonsaved, but return value)
2c4be73e 582 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
583 $f2-$f9 (saved floating-point registers)
584 $1-$8 (nonsaved integer registers)
585 $22-$25 (likewise)
586 $28 (likewise)
587 $0 (likewise, but return value)
588 $21-$16 (likewise, but input args)
0076aa6b 589 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
590 $9-$14 (saved integer registers)
591 $26 (return PC)
592 $15 (frame pointer)
593 $29 (global pointer)
52a69200 594 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
595
596#define REG_ALLOC_ORDER \
2c4be73e 597 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
598 54, 55, 56, 57, 58, 59, 60, 61, 62, \
599 53, 52, 51, 50, 49, 48, \
2c4be73e 600 32, 33, \
1a94ca49
RK
601 34, 35, 36, 37, 38, 39, 40, 41, \
602 1, 2, 3, 4, 5, 6, 7, 8, \
603 22, 23, 24, 25, \
604 28, \
605 0, \
606 21, 20, 19, 18, 17, 16, \
607 27, \
608 9, 10, 11, 12, 13, 14, \
609 26, \
610 15, \
611 29, \
612 30, 31, 63 }
613
614/* Return number of consecutive hard regs needed starting at reg REGNO
615 to hold something of mode MODE.
616 This is ordinarily the length in words of a value of mode MODE
617 but can be less for certain modes in special long registers. */
618
619#define HARD_REGNO_NREGS(REGNO, MODE) \
620 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
621
622/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
623 On Alpha, the integer registers can hold any mode. The floating-point
624 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 625 or 8-bit values. */
1a94ca49 626
e6a8ebb4
RH
627#define HARD_REGNO_MODE_OK(REGNO, MODE) \
628 ((REGNO) >= 32 && (REGNO) <= 62 \
629 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
630 : 1)
631
632/* A C expression that is nonzero if a value of mode
633 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 634
e6a8ebb4
RH
635 This asymmetric test is true when MODE1 could be put
636 in an FP register but MODE2 could not. */
1a94ca49 637
a7adf08e 638#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
639 (HARD_REGNO_MODE_OK (32, (MODE1)) \
640 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 641 : 1)
1a94ca49
RK
642
643/* Specify the registers used for certain standard purposes.
644 The values of these macros are register numbers. */
645
646/* Alpha pc isn't overloaded on a register that the compiler knows about. */
647/* #define PC_REGNUM */
648
649/* Register to use for pushing function arguments. */
650#define STACK_POINTER_REGNUM 30
651
652/* Base register for access to local variables of the function. */
52a69200 653#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
654
655/* Value should be nonzero if functions must have frame pointers.
656 Zero means the frame pointer need not be set up (and parms
657 may be accessed via the stack pointer) in functions that seem suitable.
658 This is computed in `reload', in reload1.c. */
659#define FRAME_POINTER_REQUIRED 0
660
661/* Base register for access to arguments of the function. */
130d2d72 662#define ARG_POINTER_REGNUM 31
1a94ca49 663
52a69200
RK
664/* Base register for access to local variables of function. */
665#define FRAME_POINTER_REGNUM 63
666
1a94ca49
RK
667/* Register in which static-chain is passed to a function.
668
669 For the Alpha, this is based on an example; the calling sequence
670 doesn't seem to specify this. */
671#define STATIC_CHAIN_REGNUM 1
672
673/* Register in which address to store a structure value
674 arrives in the function. On the Alpha, the address is passed
675 as a hidden argument. */
676#define STRUCT_VALUE 0
677\f
678/* Define the classes of registers for register constraints in the
679 machine description. Also define ranges of constants.
680
681 One of the classes must always be named ALL_REGS and include all hard regs.
682 If there is more than one class, another class must be named NO_REGS
683 and contain no registers.
684
685 The name GENERAL_REGS must be the name of a class (or an alias for
686 another name such as ALL_REGS). This is the class of registers
687 that is allowed by "g" or "r" in a register constraint.
688 Also, registers outside this class are allocated only when
689 instructions express preferences for them.
690
691 The classes must be numbered in nondecreasing order; that is,
692 a larger-numbered class must never be contained completely
693 in a smaller-numbered class.
694
695 For any two classes, it is very desirable that there be another
696 class that represents their union. */
697
93c89ab3 698enum reg_class { NO_REGS, PV_REG, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
1a94ca49
RK
699 LIM_REG_CLASSES };
700
701#define N_REG_CLASSES (int) LIM_REG_CLASSES
702
703/* Give names of register classes as strings for dump file. */
704
705#define REG_CLASS_NAMES \
93c89ab3 706 {"NO_REGS", "PV_REG", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
1a94ca49
RK
707
708/* Define which registers fit in which classes.
709 This is an initializer for a vector of HARD_REG_SET
710 of length N_REG_CLASSES. */
711
712#define REG_CLASS_CONTENTS \
93c89ab3 713 { {0, 0}, {0x08000000, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
714
715/* The same information, inverted:
716 Return the class number of the smallest class containing
717 reg number REGNO. This could be a conditional expression
718 or could index an array. */
719
93c89ab3
RH
720#define REGNO_REG_CLASS(REGNO) \
721 ((REGNO) == 27 ? PV_REG \
722 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
723 : GENERAL_REGS)
1a94ca49
RK
724
725/* The class value for index registers, and the one for base regs. */
726#define INDEX_REG_CLASS NO_REGS
727#define BASE_REG_CLASS GENERAL_REGS
728
729/* Get reg_class from a letter such as appears in the machine description. */
730
731#define REG_CLASS_FROM_LETTER(C) \
93c89ab3 732 ((C) == 'c' ? PV_REG : (C) == 'f' ? FLOAT_REGS : NO_REGS)
1a94ca49
RK
733
734/* Define this macro to change register usage conditional on target flags. */
735/* #define CONDITIONAL_REGISTER_USAGE */
736
737/* The letters I, J, K, L, M, N, O, and P in a register constraint string
738 can be used to stand for particular ranges of immediate operands.
739 This macro defines what the ranges are.
740 C is the letter, and VALUE is a constant value.
741 Return 1 if VALUE is in the range specified by C.
742
743 For Alpha:
744 `I' is used for the range of constants most insns can contain.
745 `J' is the constant zero.
746 `K' is used for the constant in an LDA insn.
747 `L' is used for the constant in a LDAH insn.
748 `M' is used for the constants that can be AND'ed with using a ZAP insn.
749 `N' is used for complemented 8-bit constants.
750 `O' is used for negated 8-bit constants.
751 `P' is used for the constants 1, 2 and 3. */
752
753#define CONST_OK_FOR_LETTER_P(VALUE, C) \
754 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
755 : (C) == 'J' ? (VALUE) == 0 \
756 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
757 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 758 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
759 : (C) == 'M' ? zap_mask (VALUE) \
760 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
761 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
762 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
763 : 0)
764
765/* Similar, but for floating or large integer constants, and defining letters
766 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
767
768 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
769 that is the operand of a ZAP insn. */
770
771#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
772 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
773 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
774 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
775 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
776 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
777 : 0)
778
e560f226
RK
779/* Optional extra constraints for this machine.
780
781 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 782 reference to an unaligned location.
9ec36da5 783
ac030a7b 784 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
785 function.
786
787 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
788
789#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 790 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
791 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
792 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
793 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
794 : 0)
795
1a94ca49
RK
796/* Given an rtx X being reloaded into a reg required to be
797 in class CLASS, return the class of reg to actually use.
798 In general this is just CLASS; but on some machines
799 in some cases it is preferable to use a more restrictive class.
800
801 On the Alpha, all constants except zero go into a floating-point
802 register via memory. */
803
804#define PREFERRED_RELOAD_CLASS(X, CLASS) \
805 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 806 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
807 : (CLASS))
808
809/* Loading and storing HImode or QImode values to and from memory
810 usually requires a scratch register. The exceptions are loading
e008606e
RK
811 QImode and HImode from an aligned address to a general register
812 unless byte instructions are permitted.
ddd5a7c1 813 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 814 FP register. */
1a94ca49 815
3611aef0
RH
816#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
817 secondary_reload_class((CLASS), (MODE), (IN), 1)
818
819#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
820 secondary_reload_class((CLASS), (MODE), (OUT), 0)
1a94ca49
RK
821
822/* If we are copying between general and FP registers, we need a memory
de4abb91 823 location unless the FIX extension is available. */
1a94ca49 824
e9a25f70 825#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
de4abb91 826 (! TARGET_FIX && (CLASS1) != (CLASS2))
1a94ca49 827
acd94aaf
RK
828/* Specify the mode to be used for memory when a secondary memory
829 location is needed. If MODE is floating-point, use it. Otherwise,
830 widen to a word like the default. This is needed because we always
831 store integers in FP registers in quadword format. This whole
832 area is very tricky! */
833#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
834 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 835 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
836 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
837
1a94ca49
RK
838/* Return the maximum number of consecutive registers
839 needed to represent mode MODE in a register of class CLASS. */
840
841#define CLASS_MAX_NREGS(CLASS, MODE) \
842 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
843
c31dfe4d 844/* If defined, gives a class of registers that cannot be used as the
02188693 845 operand of a SUBREG that changes the mode of the object illegally. */
c31dfe4d 846
02188693
RH
847#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
848
849/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
850
851#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
852 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
c31dfe4d 853
1a94ca49
RK
854/* Define the cost of moving between registers of various classes. Moving
855 between FLOAT_REGS and anything else except float regs is expensive.
856 In fact, we make it quite expensive because we really don't want to
857 do these moves unless it is clearly worth it. Optimizations may
858 reduce the impact of not being able to allocate a pseudo to a
859 hard register. */
860
cf011243 861#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
71d9b493
RH
862 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
863 ? 2 \
de4abb91 864 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
865
866/* A C expressions returning the cost of moving data of MODE from a register to
867 or from memory.
868
869 On the Alpha, bump this up a bit. */
870
bcbbac26 871extern int alpha_memory_latency;
cbd5b9a2 872#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
873
874/* Provide the cost of a branch. Exact meaning under development. */
875#define BRANCH_COST 5
876
877/* Adjust the cost of dependencies. */
878
879#define ADJUST_COST(INSN,LINK,DEP,COST) \
880 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
881\f
882/* Stack layout; function entry, exit and calling. */
883
884/* Define this if pushing a word on the stack
885 makes the stack pointer a smaller address. */
886#define STACK_GROWS_DOWNWARD
887
888/* Define this if the nominal address of the stack frame
889 is at the high-address end of the local variables;
890 that is, each additional local variable allocated
891 goes at a more negative offset in the frame. */
130d2d72 892/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
893
894/* Offset within stack frame to start allocating local variables at.
895 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
896 first local allocated. Otherwise, it is the offset to the BEGINNING
897 of the first local allocated. */
898
52a69200 899#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
900
901/* If we generate an insn to push BYTES bytes,
902 this says how many the stack pointer really advances by.
903 On Alpha, don't define this because there are no push insns. */
904/* #define PUSH_ROUNDING(BYTES) */
905
e008606e
RK
906/* Define this to be nonzero if stack checking is built into the ABI. */
907#define STACK_CHECK_BUILTIN 1
908
1a94ca49
RK
909/* Define this if the maximum size of all the outgoing args is to be
910 accumulated and pushed during the prologue. The amount can be
911 found in the variable current_function_outgoing_args_size. */
f73ad30e 912#define ACCUMULATE_OUTGOING_ARGS 1
1a94ca49
RK
913
914/* Offset of first parameter from the argument pointer register value. */
915
130d2d72 916#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
917
918/* Definitions for register eliminations.
919
978e8952 920 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 921 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
922 pointer register. Secondly, the argument pointer register can always be
923 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
924
925/* This is an array of structures. Each structure initializes one pair
926 of eliminable registers. The "from" register number is given first,
927 followed by "to". Eliminations of the same "from" register are listed
928 in order of preference. */
929
52a69200
RK
930#define ELIMINABLE_REGS \
931{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
932 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
933 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
934 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
935
936/* Given FROM and TO register numbers, say whether this elimination is allowed.
937 Frame pointer elimination is automatically handled.
938
130d2d72 939 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
940 eliminated are already handled. */
941
130d2d72 942#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 943
52a69200
RK
944/* Round up to a multiple of 16 bytes. */
945#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
946
1a94ca49
RK
947/* Define the offset between two registers, one to be eliminated, and the other
948 its replacement, at the start of a routine. */
949#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
950{ if ((FROM) == FRAME_POINTER_REGNUM) \
951 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
952 + alpha_sa_size ()); \
953 else if ((FROM) == ARG_POINTER_REGNUM) \
954 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
955 + alpha_sa_size () \
d772039b
RK
956 + (ALPHA_ROUND (get_frame_size () \
957 + current_function_pretend_args_size) \
958 - current_function_pretend_args_size)); \
c8d8ed65
RK
959 else \
960 abort (); \
1a94ca49
RK
961}
962
963/* Define this if stack space is still allocated for a parameter passed
964 in a register. */
965/* #define REG_PARM_STACK_SPACE */
966
967/* Value is the number of bytes of arguments automatically
968 popped when returning from a subroutine call.
8b109b37 969 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
970 FUNTYPE is the data type of the function (as a tree),
971 or for a library call it is an identifier node for the subroutine name.
972 SIZE is the number of bytes of arguments passed on the stack. */
973
8b109b37 974#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
975
976/* Define how to find the value returned by a function.
977 VALTYPE is the data type of the value (as a tree).
978 If the precise function being called is known, FUNC is its FUNCTION_DECL;
979 otherwise, FUNC is 0.
980
981 On Alpha the value is found in $0 for integer functions and
982 $f0 for floating-point functions. */
983
c5c76735 984#define FUNCTION_VALUE(VALTYPE, FUNC) \
4c020733 985 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
c5c76735
JL
986 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
987 || POINTER_TYPE_P (VALTYPE)) \
4c020733
RH
988 ? word_mode : TYPE_MODE (VALTYPE), \
989 ((TARGET_FPREGS \
c5c76735 990 && (TREE_CODE (VALTYPE) == REAL_TYPE \
4c020733 991 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
c5c76735 992 ? 32 : 0))
1a94ca49
RK
993
994/* Define how to find the value returned by a library function
995 assuming the value has mode MODE. */
996
c5c76735 997#define LIBCALL_VALUE(MODE) \
4c020733 998 gen_rtx_REG (MODE, \
c5c76735
JL
999 (TARGET_FPREGS \
1000 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
4c020733 1001 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
c5c76735 1002 ? 32 : 0))
1a94ca49 1003
130d2d72
RK
1004/* The definition of this macro implies that there are cases where
1005 a scalar value cannot be returned in registers.
1006
1007 For the Alpha, any structure or union type is returned in memory, as
1008 are integers whose size is larger than 64 bits. */
1009
1010#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1011 (TYPE_MODE (TYPE) == BLKmode \
5495cc55
RH
1012 || TYPE_MODE (TYPE) == TFmode \
1013 || TYPE_MODE (TYPE) == TCmode \
130d2d72
RK
1014 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1015
1a94ca49
RK
1016/* 1 if N is a possible register number for a function value
1017 as seen by the caller. */
1018
e5958492
RK
1019#define FUNCTION_VALUE_REGNO_P(N) \
1020 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1021
1022/* 1 if N is a possible register number for function argument passing.
1023 On Alpha, these are $16-$21 and $f16-$f21. */
1024
1025#define FUNCTION_ARG_REGNO_P(N) \
1026 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1027\f
1028/* Define a data type for recording info about an argument list
1029 during the scan of that argument list. This data type should
1030 hold all necessary information about the function itself
1031 and about the args processed so far, enough to enable macros
1032 such as FUNCTION_ARG to determine where the next arg should go.
1033
1034 On Alpha, this is a single integer, which is a number of words
1035 of arguments scanned so far.
1036 Thus 6 or more means all following args should go on the stack. */
1037
1038#define CUMULATIVE_ARGS int
1039
1040/* Initialize a variable CUM of type CUMULATIVE_ARGS
1041 for a call to a function whose data type is FNTYPE.
1042 For a library call, FNTYPE is 0. */
1043
2c7ee1a6 1044#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1045
1046/* Define intermediate macro to compute the size (in registers) of an argument
1047 for the Alpha. */
1048
1049#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
5495cc55
RH
1050 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1051 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1052 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1a94ca49
RK
1053
1054/* Update the data in CUM to advance over an argument
1055 of mode MODE and data type TYPE.
1056 (TYPE is null for libcalls where that information may not be available.) */
1057
1058#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1059 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1060 (CUM) = 6; \
1061 else \
1062 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1063
1064/* Determine where to put an argument to a function.
1065 Value is zero to push the argument on the stack,
1066 or a hard register in which to store the argument.
1067
1068 MODE is the argument's machine mode.
1069 TYPE is the data type of the argument (as a tree).
1070 This is null for libcalls where that information may
1071 not be available.
1072 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1073 the preceding args and about the function being called.
1074 NAMED is nonzero if this argument is a named parameter
1075 (otherwise it is an extra parameter matching an ellipsis).
1076
1077 On Alpha the first 6 words of args are normally in registers
1078 and the rest are pushed. */
1079
1080#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
5495cc55
RH
1081 function_arg((CUM), (MODE), (TYPE), (NAMED))
1082
1083/* A C expression that indicates when an argument must be passed by
1084 reference. If nonzero for an argument, a copy of that argument is
1085 made in memory and a pointer to the argument is passed instead of
1086 the argument itself. The pointer is passed in whatever way is
1087 appropriate for passing a pointer to that type. */
1088
1089#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1090 ((MODE) == TFmode || (MODE) == TCmode)
1a94ca49 1091
1a94ca49
RK
1092/* Specify the padding direction of arguments.
1093
1094 On the Alpha, we must pad upwards in order to be able to pass args in
1095 registers. */
1096
1097#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1098
1099/* For an arg passed partly in registers and partly in memory,
1100 this is the number of registers used.
1101 For args passed entirely in registers or entirely in memory, zero. */
1102
1103#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1104((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1105 ? 6 - (CUM) : 0)
1106
130d2d72
RK
1107/* Perform any needed actions needed for a function that is receiving a
1108 variable number of arguments.
1109
1110 CUM is as above.
1111
1112 MODE and TYPE are the mode and type of the current parameter.
1113
1114 PRETEND_SIZE is a variable that should be set to the amount of stack
1115 that must be pushed by the prolog to pretend that our caller pushed
1116 it.
1117
1118 Normally, this macro will push all remaining incoming registers on the
1119 stack and set PRETEND_SIZE to the length of the registers pushed.
1120
1121 On the Alpha, we allocate space for all 12 arg registers, but only
1122 push those that are remaining.
1123
1124 However, if NO registers need to be saved, don't allocate any space.
1125 This is not only because we won't need the space, but because AP includes
1126 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1127 ap-relative addresses already made.
1128
1129 If we are not to use the floating-point registers, save the integer
1130 registers where we would put the floating-point registers. This is
1131 not the most efficient way to implement varargs with just one register
1132 class, but it isn't worth doing anything more efficient in this rare
1133 case. */
1134
130d2d72
RK
1135#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1136{ if ((CUM) < 6) \
1137 { \
1138 if (! (NO_RTL)) \
1139 { \
63966b3b
RH
1140 rtx tmp; int set = get_varargs_alias_set (); \
1141 tmp = gen_rtx_MEM (BLKmode, \
1142 plus_constant (virtual_incoming_args_rtx, \
1143 ((CUM) + 6)* UNITS_PER_WORD)); \
1144 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1145 move_block_from_reg \
63966b3b 1146 (16 + CUM, tmp, \
02892e06 1147 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
63966b3b
RH
1148 \
1149 tmp = gen_rtx_MEM (BLKmode, \
1150 plus_constant (virtual_incoming_args_rtx, \
1151 (CUM) * UNITS_PER_WORD)); \
1152 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1153 move_block_from_reg \
63966b3b 1154 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
02892e06 1155 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1156 } \
1157 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1158 } \
1159}
1160
7d89dda5
RH
1161/* We do not allow indirect calls to be optimized into sibling calls, nor
1162 can we allow a call to a function in a different compilation unit to
1163 be optimized into a sibcall. Except if the function is known not to
1164 return, in which case our caller doesn't care what the gp is. */
1165#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1166 (DECL \
1167 && ((TREE_ASM_WRITTEN (DECL) && !flag_pic) \
9a1ba437 1168 || ! TREE_PUBLIC (DECL)))
7d89dda5 1169
c8e9adec
RK
1170/* Try to output insns to set TARGET equal to the constant C if it can be
1171 done in less than N insns. Do all computations in MODE. Returns the place
1172 where the output has been placed if it can be done and the insns have been
1173 emitted. If it would take more than N insns, zero is returned and no
1174 insns and emitted. */
92e40a7a 1175
1a94ca49
RK
1176/* Define the information needed to generate branch and scc insns. This is
1177 stored from the compare operation. Note that we can't use "rtx" here
1178 since it hasn't been defined! */
1179
6db21c7f
RH
1180struct alpha_compare
1181{
1182 struct rtx_def *op0, *op1;
1183 int fp_p;
1184};
1185
1186extern struct alpha_compare alpha_compare;
1a94ca49 1187
e5958492 1188/* Make (or fake) .linkage entry for function call.
e5958492 1189 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
e5958492 1190
bcbbac26
RH
1191/* This macro defines the start of an assembly comment. */
1192
1193#define ASM_COMMENT_START " #"
1194
acd92049 1195/* This macro produces the initial definition of a function. */
1a94ca49 1196
acd92049
RH
1197#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1198 alpha_start_function(FILE,NAME,DECL);
1a94ca49 1199
acd92049 1200/* This macro closes up a function definition for the assembler. */
9c0e94a5 1201
acd92049
RH
1202#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1203 alpha_end_function(FILE,NAME,DECL)
acd92049 1204
acd92049
RH
1205/* Output any profiling code before the prologue. */
1206
1207#define PROFILE_BEFORE_PROLOGUE 1
1208
1a94ca49 1209/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1210 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1211 by simply passing -pg to the assembler and linker. */
85d159a3 1212
e0fb9029 1213#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1214
1215/* Output assembler code to FILE to initialize this source file's
1216 basic block profiling info, if that has not already been done.
1217 This assumes that __bb_init_func doesn't garble a1-a5. */
1218
1219#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1220 do { \
1221 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1222 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1223 fputs ("\tldq $26,0($16)\n", (FILE)); \
1224 fputs ("\tbne $26,1f\n", (FILE)); \
1225 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1226 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1227 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1228 fputs ("1:\n", (FILE)); \
85d159a3
RK
1229 ASM_OUTPUT_REG_POP (FILE, 16); \
1230 } while (0);
1231
1232/* Output assembler code to FILE to increment the entry-count for
1233 the BLOCKNO'th basic block in this source file. */
1234
1235#define BLOCK_PROFILER(FILE, BLOCKNO) \
1236 do { \
1237 int blockn = (BLOCKNO); \
a62eb16f 1238 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1239 fputs ("\tstq $26,0($30)\n", (FILE)); \
1240 fputs ("\tstq $27,8($30)\n", (FILE)); \
1241 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1242 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1243 fputs ("\taddq $27,1,$27\n", (FILE)); \
1244 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1245 fputs ("\tldq $26,0($30)\n", (FILE)); \
1246 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1247 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1248 } while (0)
1a94ca49 1249
1a94ca49
RK
1250
1251/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1252 the stack pointer does not matter. The value is tested only in
1253 functions that have frame pointers.
1254 No definition is equivalent to always zero. */
1255
1256#define EXIT_IGNORE_STACK 1
c112e233
RH
1257
1258/* Define registers used by the epilogue and return instruction. */
1259
1260#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1a94ca49
RK
1261\f
1262/* Output assembler code for a block containing the constant parts
1263 of a trampoline, leaving space for the variable parts.
1264
1265 The trampoline should set the static chain pointer to value placed
7981384f
RK
1266 into the trampoline and should branch to the specified routine.
1267 Note that $27 has been set to the address of the trampoline, so we can
1268 use it for addressability of the two data items. Trampolines are always
1269 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1270
1271#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1272do { \
7981384f 1273 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1274 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1275 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1276 fprintf (FILE, "\tnop\n"); \
1a94ca49 1277 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1278} while (0)
1a94ca49 1279
3a523eeb
RS
1280/* Section in which to place the trampoline. On Alpha, instructions
1281 may only be placed in a text segment. */
1282
1283#define TRAMPOLINE_SECTION text_section
1284
1a94ca49
RK
1285/* Length in units of the trampoline for entering a nested function. */
1286
7981384f 1287#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1288
1289/* Emit RTL insns to initialize the variable parts of a trampoline.
1290 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1291 CXT is an RTX for the static chain value for the function. */
1a94ca49 1292
9ec36da5 1293#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1294 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1295
1296/* A C expression whose value is RTL representing the value of the return
1297 address for the frame COUNT steps up from the current frame.
1298 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1299 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1300
9ecc37f0 1301#define RETURN_ADDR_RTX alpha_return_addr
9ecc37f0 1302
6abc6f40
RH
1303/* Before the prologue, RA lives in $26. */
1304#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
8034da37 1305#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
4573b4de
RH
1306
1307/* Describe how we implement __builtin_eh_return. */
1308#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1309#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1310#define EH_RETURN_HANDLER_RTX \
1311 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1312 current_function_outgoing_args_size))
675f0e7c 1313\f
1a94ca49
RK
1314/* Addressing modes, and classification of registers for them. */
1315
940da324
JL
1316/* #define HAVE_POST_INCREMENT 0 */
1317/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1318
940da324
JL
1319/* #define HAVE_PRE_DECREMENT 0 */
1320/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1321
1322/* Macros to check register numbers against specific register classes. */
1323
1324/* These assume that REGNO is a hard or pseudo reg number.
1325 They give nonzero only if REGNO is a hard reg of the suitable class
1326 or a pseudo reg currently allocated to a suitable hard reg.
1327 Since they use reg_renumber, they are safe only once reg_renumber
1328 has been allocated, which happens in local-alloc.c. */
1329
1330#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1331#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1332((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1333 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1334\f
1335/* Maximum number of registers that can appear in a valid memory address. */
1336#define MAX_REGS_PER_ADDRESS 1
1337
1338/* Recognize any constant value that is a valid address. For the Alpha,
1339 there are only constants none since we want to use LDA to load any
1340 symbolic addresses into registers. */
1341
1342#define CONSTANT_ADDRESS_P(X) \
1343 (GET_CODE (X) == CONST_INT \
1344 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1345
1346/* Include all constant integers and constant doubles, but not
1347 floating-point, except for floating-point zero. */
1348
1349#define LEGITIMATE_CONSTANT_P(X) \
1350 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1351 || (X) == CONST0_RTX (GET_MODE (X)))
1352
1353/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1354 and check its validity for a certain class.
1355 We have two alternate definitions for each of them.
1356 The usual definition accepts all pseudo regs; the other rejects
1357 them unless they have been allocated suitable hard regs.
1358 The symbol REG_OK_STRICT causes the latter definition to be used.
1359
1360 Most source files want to accept pseudo regs in the hope that
1361 they will get allocated to the class that the insn wants them to be in.
1362 Source files for reload pass need to be strict.
1363 After reload, it makes no difference, since pseudo regs have
1364 been eliminated by then. */
1365
1366#ifndef REG_OK_STRICT
1367
1368/* Nonzero if X is a hard reg that can be used as an index
1369 or if it is a pseudo reg. */
1370#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1371
1a94ca49
RK
1372/* Nonzero if X is a hard reg that can be used as a base reg
1373 or if it is a pseudo reg. */
1374#define REG_OK_FOR_BASE_P(X) \
52a69200 1375 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1376
5d02b6c2
RH
1377/* ??? Nonzero if X is the frame pointer, or some virtual register
1378 that may eliminate to the frame pointer. These will be allowed to
1379 have offsets greater than 32K. This is done because register
1380 elimination offsets will change the hi/lo split, and if we split
1381 before reload, we will require additional instructions. */
1382#define REG_OK_FP_BASE_P(X) \
1383 (REGNO (X) == 31 || REGNO (X) == 63 \
1384 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1385 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1386
1a94ca49
RK
1387#else
1388
1389/* Nonzero if X is a hard reg that can be used as an index. */
1390#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1391
1a94ca49
RK
1392/* Nonzero if X is a hard reg that can be used as a base reg. */
1393#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1394
5d02b6c2
RH
1395#define REG_OK_FP_BASE_P(X) 0
1396
1a94ca49
RK
1397#endif
1398\f
1399/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1400 that is a valid memory address for an instruction.
1401 The MODE argument is the machine mode for the MEM expression
1402 that wants to use this address.
1403
1404 For Alpha, we have either a constant address or the sum of a register
1405 and a constant address, or just a register. For DImode, any of those
1406 forms can be surrounded with an AND that clear the low-order three bits;
1407 this is an "unaligned" access.
1408
1a94ca49
RK
1409 First define the basic valid address. */
1410
4c020733
RH
1411#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1412{ \
1413 rtx tmp = (X); \
1414 if (GET_CODE (tmp) == SUBREG \
1415 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1416 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1417 tmp = SUBREG_REG (tmp); \
1418 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1419 goto ADDR; \
1420 if (CONSTANT_ADDRESS_P (X)) \
1421 goto ADDR; \
1422 if (GET_CODE (X) == PLUS) \
1423 { \
1424 tmp = XEXP (X, 0); \
1425 if (GET_CODE (tmp) == SUBREG \
1426 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1427 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1428 tmp = SUBREG_REG (tmp); \
1429 if (REG_P (tmp)) \
1430 { \
1431 if (REG_OK_FP_BASE_P (tmp) \
1432 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1433 goto ADDR; \
1434 if (REG_OK_FOR_BASE_P (tmp) \
1435 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1436 goto ADDR; \
1437 } \
0c5912f4
RH
1438 else if (GET_CODE (tmp) == ADDRESSOF \
1439 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1440 goto ADDR; \
4c020733 1441 } \
1a94ca49
RK
1442}
1443
1444/* Now accept the simple address, or, for DImode only, an AND of a simple
1445 address that turns off the low three bits. */
1446
1a94ca49
RK
1447#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1448{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1449 if ((MODE) == DImode \
1450 && GET_CODE (X) == AND \
1451 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1452 && INTVAL (XEXP (X, 1)) == -8) \
1453 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1454}
1455
1456/* Try machine-dependent ways of modifying an illegitimate address
1457 to be legitimate. If we find one, return the new, valid address.
1458 This macro is used in only one place: `memory_address' in explow.c.
1459
1460 OLDX is the address as it was before break_out_memory_refs was called.
1461 In some cases it is useful to look at this to decide what needs to be done.
1462
1463 MODE and WIN are passed so that this macro can use
1464 GO_IF_LEGITIMATE_ADDRESS.
1465
1466 It is always safe for this macro to do nothing. It exists to recognize
1467 opportunities to optimize the output.
1468
1469 For the Alpha, there are three cases we handle:
1470
1471 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1472 valid offset, compute the high part of the constant and add it to the
1473 register. Then our address is (plus temp low-part-const).
1474 (2) If the address is (const (plus FOO const_int)), find the low-order
1475 part of the CONST_INT. Then load FOO plus any high-order part of the
1476 CONST_INT into a register. Our address is (plus reg low-part-const).
1477 This is done to reduce the number of GOT entries.
1478 (3) If we have a (plus reg const), emit the load as in (2), then add
1479 the two registers, and finally generate (plus reg low-part-const) as
1480 our address. */
1481
1482#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1483{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1484 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1485 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1486 { \
1487 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1488 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1489 HOST_WIDE_INT highpart = val - lowpart; \
1490 rtx high = GEN_INT (highpart); \
1491 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1492 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1493 \
1494 (X) = plus_constant (temp, lowpart); \
1495 goto WIN; \
1496 } \
1497 else if (GET_CODE (X) == CONST \
1498 && GET_CODE (XEXP (X, 0)) == PLUS \
1499 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1500 { \
1501 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1502 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1503 HOST_WIDE_INT highpart = val - lowpart; \
1504 rtx high = XEXP (XEXP (X, 0), 0); \
1505 \
1506 if (highpart) \
1507 high = plus_constant (high, highpart); \
1508 \
1509 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1510 goto WIN; \
1511 } \
1512 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1513 && GET_CODE (XEXP (X, 1)) == CONST \
1514 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1515 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1516 { \
1517 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1518 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1519 HOST_WIDE_INT highpart = val - lowpart; \
1520 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1521 \
1522 if (highpart) \
1523 high = plus_constant (high, highpart); \
1524 \
1525 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1526 force_reg (Pmode, high), \
80f251fe 1527 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1528 (X) = plus_constant (high, lowpart); \
1529 goto WIN; \
1530 } \
1531}
1532
a9a2595b
JR
1533/* Try a machine-dependent way of reloading an illegitimate address
1534 operand. If we find one, push the reload and jump to WIN. This
1535 macro is used in only one place: `find_reloads_address' in reload.c.
1536
1537 For the Alpha, we wish to handle large displacements off a base
1538 register by splitting the addend across an ldah and the mem insn.
1539 This cuts number of extra insns needed from 3 to 1. */
1540
1541#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1542do { \
c8ab9901
RH
1543 /* We must recognize output that we have already generated ourselves. */ \
1544 if (GET_CODE (X) == PLUS \
1545 && GET_CODE (XEXP (X, 0)) == PLUS \
1546 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1547 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1548 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1549 { \
df4ae160 1550 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
c8ab9901
RH
1551 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1552 OPNUM, TYPE); \
1553 goto WIN; \
1554 } \
a9a2595b
JR
1555 if (GET_CODE (X) == PLUS \
1556 && GET_CODE (XEXP (X, 0)) == REG \
1557 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1558 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1559 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1560 { \
1561 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1562 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1563 HOST_WIDE_INT high \
1564 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1565 \
1566 /* Check for 32-bit overflow. */ \
1567 if (high + low != val) \
1568 break; \
1569 \
1570 /* Reload the high part into a base reg; leave the low part \
1571 in the mem directly. */ \
1572 \
1573 X = gen_rtx_PLUS (GET_MODE (X), \
1574 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1575 GEN_INT (high)), \
1576 GEN_INT (low)); \
1577 \
df4ae160 1578 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
a9a2595b
JR
1579 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1580 OPNUM, TYPE); \
1581 goto WIN; \
1582 } \
1583} while (0)
1584
1a94ca49
RK
1585/* Go to LABEL if ADDR (a legitimate address expression)
1586 has an effect that depends on the machine mode it is used for.
1587 On the Alpha this is true only for the unaligned modes. We can
1588 simplify this test since we know that the address must be valid. */
1589
1590#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1591{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1592
1593/* Compute the cost of an address. For the Alpha, all valid addresses are
1594 the same cost. */
1595
1596#define ADDRESS_COST(X) 0
1597
2ea844d3
RH
1598/* Machine-dependent reorg pass. */
1599#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1600\f
1601/* Specify the machine mode that this machine uses
1602 for the index in the tablejump instruction. */
1603#define CASE_VECTOR_MODE SImode
1604
18543a22
ILT
1605/* Define as C expression which evaluates to nonzero if the tablejump
1606 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1607 table.
b0435cf4 1608
3aa9d5b6 1609 Do not define this if the table should contain absolute addresses.
260ced47
RK
1610 On the Alpha, the table is really GP-relative, not relative to the PC
1611 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1612 but we should try to find some better way sometime. */
18543a22 1613#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1614
1615/* Specify the tree operation to be used to convert reals to integers. */
1616#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1617
1618/* This is the kind of divide that is easiest to do in the general case. */
1619#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1620
1621/* Define this as 1 if `char' should by default be signed; else as 0. */
1622#define DEFAULT_SIGNED_CHAR 1
1623
1624/* This flag, if defined, says the same insns that convert to a signed fixnum
1625 also convert validly to an unsigned one.
1626
1627 We actually lie a bit here as overflow conditions are different. But
1628 they aren't being checked anyway. */
1629
1630#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1631
1632/* Max number of bytes we can move to or from memory
1633 in one reasonably fast instruction. */
1634
1635#define MOVE_MAX 8
1636
7e24ffc9
HPN
1637/* If a memory-to-memory move would take MOVE_RATIO or more simple
1638 move-instruction pairs, we will do a movstr or libcall instead.
1639
1640 Without byte/word accesses, we want no more than four instructions;
1641 with, several single byte accesses are better. */
6c174fc0
RH
1642
1643#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1644
1a94ca49
RK
1645/* Largest number of bytes of an object that can be placed in a register.
1646 On the Alpha we have plenty of registers, so use TImode. */
1647#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1648
1649/* Nonzero if access to memory by bytes is no faster than for words.
1650 Also non-zero if doing byte operations (specifically shifts) in registers
1651 is undesirable.
1652
1653 On the Alpha, we want to not use the byte operation and instead use
1654 masking operations to access fields; these will save instructions. */
1655
1656#define SLOW_BYTE_ACCESS 1
1657
9a63901f
RK
1658/* Define if operations between registers always perform the operation
1659 on the full register even if a narrower mode is specified. */
1660#define WORD_REGISTER_OPERATIONS
1661
1662/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1663 will either zero-extend or sign-extend. The value of this macro should
1664 be the code that says which one of the two operations is implicitly
1665 done, NIL if none. */
b7747781 1666#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1667
225211e2
RK
1668/* Define if loading short immediate values into registers sign extends. */
1669#define SHORT_IMMEDIATES_SIGN_EXTEND
1670
1a94ca49
RK
1671/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1672 is done just by pretending it is already truncated. */
1673#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1674
1675/* We assume that the store-condition-codes instructions store 0 for false
1676 and some other value for true. This is the value stored for true. */
1677
1678#define STORE_FLAG_VALUE 1
1679
1680/* Define the value returned by a floating-point comparison instruction. */
1681
12530dbe
RH
1682#define FLOAT_STORE_FLAG_VALUE(MODE) \
1683 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1a94ca49 1684
35bb77fd
RK
1685/* Canonicalize a comparison from one we don't have to one we do have. */
1686
1687#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1688 do { \
1689 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1690 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1691 { \
1692 rtx tem = (OP0); \
1693 (OP0) = (OP1); \
1694 (OP1) = tem; \
1695 (CODE) = swap_condition (CODE); \
1696 } \
1697 if (((CODE) == LT || (CODE) == LTU) \
1698 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1699 { \
1700 (CODE) = (CODE) == LT ? LE : LEU; \
1701 (OP1) = GEN_INT (255); \
1702 } \
1703 } while (0)
1704
1a94ca49
RK
1705/* Specify the machine mode that pointers have.
1706 After generation of rtl, the compiler makes no further distinction
1707 between pointers and any other objects of this machine mode. */
1708#define Pmode DImode
1709
1710/* Mode of a function address in a call instruction (for indexing purposes). */
1711
1712#define FUNCTION_MODE Pmode
1713
1714/* Define this if addresses of constant functions
1715 shouldn't be put through pseudo regs where they can be cse'd.
1716 Desirable on machines where ordinary constants are expensive
1717 but a CALL with constant address is cheap.
1718
1719 We define this on the Alpha so that gen_call and gen_call_value
1720 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1721 then copy it into a register, thus actually letting the address be
1722 cse'ed. */
1723
1724#define NO_FUNCTION_CSE
1725
d969caf8 1726/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1727 few bits. */
d969caf8 1728#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1729
71d9b493 1730/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1731#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1732
7d0bfbd0
RH
1733/* Describe the fact that MULTI instructions are multiple instructions
1734 and so to assume they don't pair with anything. */
1735#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1736 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1737 (CAN_ISSUE_MORE) = 0
1738
1a94ca49
RK
1739/* Compute the cost of computing a constant rtl expression RTX
1740 whose rtx-code is CODE. The body of this macro is a portion
1741 of a switch statement. If the code is computed here,
1742 return it with a return statement. Otherwise, break from the switch.
1743
8b7b2e36
RK
1744 If this is an 8-bit constant, return zero since it can be used
1745 nearly anywhere with no cost. If it is a valid operand for an
1746 ADD or AND, likewise return 0 if we know it will be used in that
1747 context. Otherwise, return 2 since it might be used there later.
1748 All other constants take at least two insns. */
1a94ca49
RK
1749
1750#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1751 case CONST_INT: \
06eb8e92 1752 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1753 return 0; \
1a94ca49 1754 case CONST_DOUBLE: \
5d02ee66
RH
1755 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1756 return 0; \
1757 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1758 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1759 return 0; \
1760 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1761 return 2; \
1762 else \
1763 return COSTS_N_INSNS (2); \
1a94ca49
RK
1764 case CONST: \
1765 case SYMBOL_REF: \
1766 case LABEL_REF: \
f6f6a13c
RK
1767 switch (alpha_cpu) \
1768 { \
1769 case PROCESSOR_EV4: \
1770 return COSTS_N_INSNS (3); \
1771 case PROCESSOR_EV5: \
5d02ee66 1772 case PROCESSOR_EV6: \
f6f6a13c 1773 return COSTS_N_INSNS (2); \
5d02ee66 1774 default: abort(); \
f6f6a13c 1775 }
1a94ca49
RK
1776
1777/* Provide the costs of a rtl expression. This is in the body of a
1778 switch on CODE. */
1779
1780#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1781 case PLUS: case MINUS: \
1782 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1783 switch (alpha_cpu) \
1784 { \
1785 case PROCESSOR_EV4: \
1786 return COSTS_N_INSNS (6); \
1787 case PROCESSOR_EV5: \
5d02ee66 1788 case PROCESSOR_EV6: \
f6f6a13c 1789 return COSTS_N_INSNS (4); \
5d02ee66 1790 default: abort(); \
f6f6a13c 1791 } \
b49e978e
RK
1792 else if (GET_CODE (XEXP (X, 0)) == MULT \
1793 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1794 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1795 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1796 break; \
1797 case MULT: \
f6f6a13c
RK
1798 switch (alpha_cpu) \
1799 { \
1800 case PROCESSOR_EV4: \
1801 if (FLOAT_MODE_P (GET_MODE (X))) \
1802 return COSTS_N_INSNS (6); \
1803 return COSTS_N_INSNS (23); \
1804 case PROCESSOR_EV5: \
1805 if (FLOAT_MODE_P (GET_MODE (X))) \
1806 return COSTS_N_INSNS (4); \
1807 else if (GET_MODE (X) == DImode) \
1808 return COSTS_N_INSNS (12); \
1809 else \
1810 return COSTS_N_INSNS (8); \
5d02ee66
RH
1811 case PROCESSOR_EV6: \
1812 if (FLOAT_MODE_P (GET_MODE (X))) \
1813 return COSTS_N_INSNS (4); \
1814 else \
1815 return COSTS_N_INSNS (7); \
1816 default: abort(); \
f6f6a13c 1817 } \
b49e978e
RK
1818 case ASHIFT: \
1819 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1820 && INTVAL (XEXP (X, 1)) <= 3) \
1821 break; \
1822 /* ... fall through ... */ \
5d02ee66 1823 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1824 switch (alpha_cpu) \
1825 { \
1826 case PROCESSOR_EV4: \
1827 return COSTS_N_INSNS (2); \
1828 case PROCESSOR_EV5: \
5d02ee66 1829 case PROCESSOR_EV6: \
f6f6a13c 1830 return COSTS_N_INSNS (1); \
5d02ee66
RH
1831 default: abort(); \
1832 } \
1833 case IF_THEN_ELSE: \
1834 switch (alpha_cpu) \
1835 { \
1836 case PROCESSOR_EV4: \
1837 case PROCESSOR_EV6: \
1838 return COSTS_N_INSNS (2); \
1839 case PROCESSOR_EV5: \
1840 return COSTS_N_INSNS (1); \
1841 default: abort(); \
f6f6a13c 1842 } \
3bda6d11 1843 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1844 switch (alpha_cpu) \
1845 { \
1846 case PROCESSOR_EV4: \
1847 if (GET_MODE (X) == SFmode) \
1848 return COSTS_N_INSNS (34); \
1849 else if (GET_MODE (X) == DFmode) \
1850 return COSTS_N_INSNS (63); \
1851 else \
1852 return COSTS_N_INSNS (70); \
1853 case PROCESSOR_EV5: \
1854 if (GET_MODE (X) == SFmode) \
1855 return COSTS_N_INSNS (15); \
1856 else if (GET_MODE (X) == DFmode) \
1857 return COSTS_N_INSNS (22); \
1858 else \
5d02ee66
RH
1859 return COSTS_N_INSNS (70); /* ??? */ \
1860 case PROCESSOR_EV6: \
1861 if (GET_MODE (X) == SFmode) \
1862 return COSTS_N_INSNS (12); \
1863 else if (GET_MODE (X) == DFmode) \
1864 return COSTS_N_INSNS (15); \
1865 else \
1866 return COSTS_N_INSNS (70); /* ??? */ \
1867 default: abort(); \
f6f6a13c 1868 } \
1a94ca49 1869 case MEM: \
f6f6a13c
RK
1870 switch (alpha_cpu) \
1871 { \
1872 case PROCESSOR_EV4: \
5d02ee66 1873 case PROCESSOR_EV6: \
f6f6a13c
RK
1874 return COSTS_N_INSNS (3); \
1875 case PROCESSOR_EV5: \
1876 return COSTS_N_INSNS (2); \
5d02ee66 1877 default: abort(); \
f6f6a13c
RK
1878 } \
1879 case NEG: case ABS: \
1880 if (! FLOAT_MODE_P (GET_MODE (X))) \
1881 break; \
1882 /* ... fall through ... */ \
3bda6d11
RK
1883 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1884 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1885 switch (alpha_cpu) \
1886 { \
1887 case PROCESSOR_EV4: \
1888 return COSTS_N_INSNS (6); \
1889 case PROCESSOR_EV5: \
5d02ee66 1890 case PROCESSOR_EV6: \
f6f6a13c 1891 return COSTS_N_INSNS (4); \
5d02ee66 1892 default: abort(); \
f6f6a13c 1893 }
1a94ca49
RK
1894\f
1895/* Control the assembler format that we output. */
1896
1a94ca49
RK
1897/* Output to assembler file text saying following lines
1898 may contain character constants, extra white space, comments, etc. */
1899
1900#define ASM_APP_ON ""
1901
1902/* Output to assembler file text saying following lines
1903 no longer contain unusual constructs. */
1904
1905#define ASM_APP_OFF ""
1906
93de6f51 1907#define TEXT_SECTION_ASM_OP "\t.text"
1a94ca49
RK
1908
1909/* Output before read-only data. */
1910
93de6f51 1911#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1a94ca49
RK
1912
1913/* Output before writable data. */
1914
93de6f51 1915#define DATA_SECTION_ASM_OP "\t.data"
1a94ca49
RK
1916
1917/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1918 indicate that it is for read-only data.
1919
abc95ed3 1920 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1921 eight bytes of zero. This works around a bug in DEC's assembler in
1922 some versions of OSF/1 V3.x. */
1a94ca49
RK
1923
1924#define EXTRA_SECTIONS readonly_data
1925
1926#define EXTRA_SECTION_FUNCTIONS \
1927void \
1928literal_section () \
1929{ \
1930 if (in_section != readonly_data) \
1931 { \
c0388f29
RK
1932 static int firsttime = 1; \
1933 \
1a94ca49 1934 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1935 if (firsttime) \
1936 { \
1937 firsttime = 0; \
1938 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1939 } \
1940 \
1a94ca49
RK
1941 in_section = readonly_data; \
1942 } \
1943} \
1944
1945#define READONLY_DATA_SECTION literal_section
1946
ac030a7b
RK
1947/* If we are referencing a function that is static, make the SYMBOL_REF
1948 special. We use this to see indicate we can branch to this function
1949 without setting PV or restoring GP. */
130d2d72
RK
1950
1951#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1952 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1953 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1954
1a94ca49
RK
1955/* How to refer to registers in assembler output.
1956 This sequence is indexed by compiler's hard-register-number (see above). */
1957
1958#define REGISTER_NAMES \
1959{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1960 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1961 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1962 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1963 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1964 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1965 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1966 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1967
1968/* How to renumber registers for dbx and gdb. */
1969
1970#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1971
1972/* This is how to output the definition of a user-level label named NAME,
1973 such as the label on a static function or variable NAME. */
1974
1975#define ASM_OUTPUT_LABEL(FILE,NAME) \
1976 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1977
1978/* This is how to output a command to make the user-level label named NAME
1979 defined for reference from other files. */
1980
1981#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1982 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1983
4e0c8ad2 1984/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1985
4e0c8ad2 1986#define USER_LABEL_PREFIX ""
1a94ca49
RK
1987
1988/* This is how to output an internal numbered label where
1989 PREFIX is the class of label and NUM is the number within the class. */
1990
1991#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1992 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1993
1994/* This is how to output a label for a jump table. Arguments are the same as
1995 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1996 passed. */
1997
1998#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1999{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2000
2001/* This is how to store into the string LABEL
2002 the symbol_ref name of an internal numbered label where
2003 PREFIX is the class of label and NUM is the number within the class.
2004 This is suitable for output with `assemble_name'. */
2005
2006#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 2007 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 2008
e247ca2a
RK
2009/* Check a floating-point value for validity for a particular machine mode. */
2010
2011#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2012 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2013
5495cc55
RH
2014/* This is how to output an assembler line defining a `long double'
2015 constant. */
2016
2017#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2018 do { \
2019 long t[4]; \
2020 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2021 fprintf (FILE, "\t.quad 0x%lx%08lx,0x%lx%08lx\n", \
2022 t[1] & 0xffffffff, t[0] & 0xffffffff, \
2023 t[3] & 0xffffffff, t[2] & 0xffffffff); \
2024 } while (0)
2025
1a94ca49
RK
2026/* This is how to output an assembler line defining a `double' constant. */
2027
e99300f1 2028#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
5495cc55
RH
2029 do { \
2030 long t[2]; \
2031 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2032 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2033 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2034 } while (0)
1a94ca49
RK
2035
2036/* This is how to output an assembler line defining a `float' constant. */
2037
e247ca2a
RK
2038#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2039 do { \
2040 long t; \
2041 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2042 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
5495cc55 2043 } while (0)
2700ac93 2044
1a94ca49
RK
2045/* This is how to output an assembler line defining an `int' constant. */
2046
2047#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2048( fprintf (FILE, "\t.long "), \
2049 output_addr_const (FILE, (VALUE)), \
2050 fprintf (FILE, "\n"))
1a94ca49
RK
2051
2052/* This is how to output an assembler line defining a `long' constant. */
2053
2054#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2055( fprintf (FILE, "\t.quad "), \
2056 output_addr_const (FILE, (VALUE)), \
2057 fprintf (FILE, "\n"))
2058
2059/* Likewise for `char' and `short' constants. */
2060
2061#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2062 fprintf (FILE, "\t.word %d\n", \
3c303f52 2063 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2064 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2065
2066#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2067 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2068 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2069 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2070
2071/* We use the default ASCII-output routine, except that we don't write more
2072 than 50 characters since the assembler doesn't support very long lines. */
2073
2074#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2075 do { \
2076 FILE *_hide_asm_out_file = (MYFILE); \
e03c5670 2077 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1a94ca49
RK
2078 int _hide_thissize = (MYLENGTH); \
2079 int _size_so_far = 0; \
2080 { \
2081 FILE *asm_out_file = _hide_asm_out_file; \
e03c5670 2082 const unsigned char *p = _hide_p; \
1a94ca49
RK
2083 int thissize = _hide_thissize; \
2084 int i; \
2085 fprintf (asm_out_file, "\t.ascii \""); \
2086 \
2087 for (i = 0; i < thissize; i++) \
2088 { \
2089 register int c = p[i]; \
2090 \
2091 if (_size_so_far ++ > 50 && i < thissize - 4) \
2092 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2093 \
2094 if (c == '\"' || c == '\\') \
2095 putc ('\\', asm_out_file); \
2096 if (c >= ' ' && c < 0177) \
2097 putc (c, asm_out_file); \
2098 else \
2099 { \
2100 fprintf (asm_out_file, "\\%o", c); \
2101 /* After an octal-escape, if a digit follows, \
2102 terminate one string constant and start another. \
2103 The Vax assembler fails to stop reading the escape \
2104 after three digits, so this is the only way we \
2105 can get it to parse the data properly. */ \
2106 if (i < thissize - 1 \
2107 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2108 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2109 } \
2110 } \
2111 fprintf (asm_out_file, "\"\n"); \
2112 } \
2113 } \
2114 while (0)
52a69200 2115
6690d24c 2116/* To get unaligned data, we have to turn off auto alignment. */
93de6f51
HPN
2117#define UNALIGNED_SHORT_ASM_OP "\t.align 0\n\t.word\t"
2118#define UNALIGNED_INT_ASM_OP "\t.align 0\n\t.long\t"
2119#define UNALIGNED_DOUBLE_INT_ASM_OP "\t.align 0\n\t.quad\t"
6690d24c 2120
1a94ca49
RK
2121/* This is how to output an insn to push a register on the stack.
2122 It need not be very fast code. */
2123
2124#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2125 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2126 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2127 (REGNO) & 31);
2128
2129/* This is how to output an insn to pop a register from the stack.
2130 It need not be very fast code. */
2131
2132#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2133 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2134 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2135 (REGNO) & 31);
2136
2137/* This is how to output an assembler line for a numeric constant byte. */
2138
2139#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2140 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2141
260ced47
RK
2142/* This is how to output an element of a case-vector that is absolute.
2143 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2144
260ced47 2145#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2146
260ced47 2147/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2148
33f7f353 2149#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2150 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2151 (VALUE))
1a94ca49
RK
2152
2153/* This is how to output an assembler line
2154 that says to advance the location counter
2155 to a multiple of 2**LOG bytes. */
2156
2157#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2158 if ((LOG) != 0) \
2159 fprintf (FILE, "\t.align %d\n", LOG);
2160
2161/* This is how to advance the location counter by SIZE bytes. */
2162
2163#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2164 fprintf (FILE, "\t.space %d\n", (SIZE))
2165
2166/* This says how to output an assembler line
2167 to define a global common symbol. */
2168
2169#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2170( fputs ("\t.comm ", (FILE)), \
2171 assemble_name ((FILE), (NAME)), \
2172 fprintf ((FILE), ",%d\n", (SIZE)))
2173
2174/* This says how to output an assembler line
2175 to define a local common symbol. */
2176
2177#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2178( fputs ("\t.lcomm ", (FILE)), \
2179 assemble_name ((FILE), (NAME)), \
2180 fprintf ((FILE), ",%d\n", (SIZE)))
2181
2182/* Store in OUTPUT a string (made with alloca) containing
2183 an assembler-name for a local static variable named NAME.
2184 LABELNO is an integer which is different for each call. */
2185
2186#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2187( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2188 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2189
2190/* Define the parentheses used to group arithmetic operations
2191 in assembler code. */
2192
2193#define ASM_OPEN_PAREN "("
2194#define ASM_CLOSE_PAREN ")"
2195
60593797
RH
2196/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2197 Used for C++ multiple inheritance. */
f2720858
RH
2198/* ??? This is only used with the v2 ABI, and alpha.c makes assumptions
2199 about current_function_is_thunk that are not valid with the v3 ABI. */
2200#if 0
60593797
RH
2201#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2202do { \
e03c5670 2203 const char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2204 int reg; \
60593797 2205 \
4c646291
JJ
2206 if (! TARGET_OPEN_VMS && ! TARGET_WINDOWS_NT) \
2207 fprintf (FILE, "\tldgp $29,0($27)\n"); \
2208 \
acd92049
RH
2209 /* Mark end of prologue. */ \
2210 output_end_prologue (FILE); \
60593797
RH
2211 \
2212 /* Rely on the assembler to macro expand a large delta. */ \
2eecbd3f 2213 fprintf (FILE, "\t.set at\n"); \
54473ca7
L
2214 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2215 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797 2216 \
b1afd7f4
KG
2217 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0), \
2218 VOIDmode)) \
60593797
RH
2219 { \
2220 fprintf (FILE, "\tbr $31,$"); \
2221 assemble_name (FILE, fn_name); \
2222 fprintf (FILE, "..ng\n"); \
2223 } \
2224 else \
2225 { \
acd92049 2226 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2227 assemble_name (FILE, fn_name); \
2228 fputc ('\n', FILE); \
2229 } \
2eecbd3f 2230 fprintf (FILE, "\t.set noat\n"); \
60593797 2231} while (0)
f2720858 2232#endif
60593797 2233\f
9ec36da5 2234
1a94ca49
RK
2235/* Print operand X (an rtx) in assembler syntax to file FILE.
2236 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2237 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2238
2239#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2240
2241/* Determine which codes are valid without a following integer. These must
941cc05a
RK
2242 not be alphabetic.
2243
2244 ~ Generates the name of the current function.
2bf6230d
RK
2245
2246 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2247 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2248 mode. alpha_fprm controls which suffix is generated.
2249
2250 ' Generates trap-mode suffix for instructions that accept the
2251 su suffix only (cmpt et al).
2252
e83015a9
RH
2253 ` Generates trap-mode suffix for instructions that accept the
2254 v and sv suffix. The only instruction that needs this is cvtql.
2255
0022a940
DMT
2256 ( Generates trap-mode suffix for instructions that accept the
2257 v, sv, and svi suffix. The only instruction that needs this
2258 is cvttq.
2259
2bf6230d
RK
2260 ) Generates trap-mode suffix for instructions that accept the
2261 u, su, and sui suffix. This is the bulk of the IEEE floating
2262 point instructions (addt et al).
2263
2264 + Generates trap-mode suffix for instructions that accept the
2265 sui suffix (cvtqt and cvtqs).
e5958492
RK
2266
2267 , Generates single precision suffix for floating point
2268 instructions (s for IEEE, f for VAX)
2269
2270 - Generates double precision suffix for floating point
2271 instructions (t for IEEE, g for VAX)
2bf6230d 2272 */
1a94ca49 2273
2bf6230d 2274#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9 2275 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
941cc05a
RK
2276 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-' \
2277 || (CODE) == '~')
1a94ca49
RK
2278\f
2279/* Print a memory address as an operand to reference that memory location. */
2280
714b019c
RH
2281#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2282 print_operand_address((FILE), (ADDR))
2283
1a94ca49
RK
2284/* Define the codes that are matched by predicates in alpha.c. */
2285
e3208d53
RH
2286#define PREDICATE_CODES \
2287 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2288 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2289 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2290 {"cint8_operand", {CONST_INT}}, \
2291 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2292 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2293 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2294 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2295 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2296 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2297 {"mode_mask_operand", {CONST_INT}}, \
2298 {"mul8_operand", {CONST_INT}}, \
2299 {"mode_width_operand", {CONST_INT}}, \
2300 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2301 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
8f4773ea 2302 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
e3208d53
RH
2303 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2304 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1eb8759b 2305 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
e3208d53
RH
2306 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2307 {"fp0_operand", {CONST_DOUBLE}}, \
2308 {"current_file_function_operand", {SYMBOL_REF}}, \
2309 {"call_operand", {REG, SYMBOL_REF}}, \
2310 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2311 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2312 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2313 SYMBOL_REF, CONST, LABEL_REF}}, \
f711a22b 2314 {"some_ni_operand", {SUBREG, REG, MEM}}, \
e3208d53
RH
2315 {"aligned_memory_operand", {MEM}}, \
2316 {"unaligned_memory_operand", {MEM}}, \
2317 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2318 {"any_memory_operand", {MEM}}, \
40b80dad 2319 {"hard_fp_register_operand", {SUBREG, REG}}, \
d2c6a1b6 2320 {"hard_int_register_operand", {SUBREG, REG}}, \
67070f5c 2321 {"reg_not_elim_operand", {SUBREG, REG}}, \
3611aef0
RH
2322 {"reg_no_subreg_operand", {REG}}, \
2323 {"addition_operation", {PLUS}},
03f8c4cc 2324\f
63966b3b
RH
2325/* Define the `__builtin_va_list' type for the ABI. */
2326#define BUILD_VA_LIST_TYPE(VALIST) \
2327 (VALIST) = alpha_build_va_list ()
2328
2329/* Implement `va_start' for varargs and stdarg. */
2330#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2331 alpha_va_start (stdarg, valist, nextarg)
2332
2333/* Implement `va_arg'. */
2334#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2335 alpha_va_arg (valist, type)
2336\f
34fa88ab
RK
2337/* Tell collect that the object format is ECOFF. */
2338#define OBJECT_FORMAT_COFF
2339#define EXTENDED_COFF
2340
2341/* If we use NM, pass -g to it so it only lists globals. */
2342#define NM_FLAGS "-pg"
2343
03f8c4cc
RK
2344/* Definitions for debugging. */
2345
2346#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2347#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2348#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2349
2350#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2351#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2352#endif
2353
2354
2355/* Correct the offset of automatic variables and arguments. Note that
2356 the Alpha debug format wants all automatic variables and arguments
2357 to be in terms of two different offsets from the virtual frame pointer,
2358 which is the stack pointer before any adjustment in the function.
2359 The offset for the argument pointer is fixed for the native compiler,
2360 it is either zero (for the no arguments case) or large enough to hold
2361 all argument registers.
2362 The offset for the auto pointer is the fourth argument to the .frame
2363 directive (local_offset).
2364 To stay compatible with the native tools we use the same offsets
2365 from the virtual frame pointer and adjust the debugger arg/auto offsets
2366 accordingly. These debugger offsets are set up in output_prolog. */
2367
9a0b18f2
RK
2368extern long alpha_arg_offset;
2369extern long alpha_auto_offset;
03f8c4cc
RK
2370#define DEBUGGER_AUTO_OFFSET(X) \
2371 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2372#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2373
2374
2375#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2376 alpha_output_lineno (STREAM, LINE)
03f8c4cc
RK
2377
2378#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2379 alpha_output_filename (STREAM, NAME)
03f8c4cc 2380
4330b0e7
JW
2381/* mips-tfile.c limits us to strings of one page. We must underestimate this
2382 number, because the real length runs past this up to the next
2383 continuation point. This is really a dbxout.c bug. */
2384#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2385
2386/* By default, turn on GDB extensions. */
2387#define DEFAULT_GDB_EXTENSIONS 1
2388
7aadc7c2
RK
2389/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2390#define NO_DBX_FUNCTION_END 1
2391
03f8c4cc
RK
2392/* If we are smuggling stabs through the ALPHA ECOFF object
2393 format, put a comment in front of the .stab<x> operation so
2394 that the ALPHA assembler does not choke. The mips-tfile program
2395 will correctly put the stab into the object file. */
2396
93de6f51
HPN
2397#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2398#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2399#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
03f8c4cc
RK
2400
2401/* Forward references to tags are allowed. */
2402#define SDB_ALLOW_FORWARD_REFERENCES
2403
2404/* Unknown tags are also allowed. */
2405#define SDB_ALLOW_UNKNOWN_REFERENCES
2406
2407#define PUT_SDB_DEF(a) \
2408do { \
2409 fprintf (asm_out_file, "\t%s.def\t", \
2410 (TARGET_GAS) ? "" : "#"); \
2411 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2412 fputc (';', asm_out_file); \
2413} while (0)
2414
2415#define PUT_SDB_PLAIN_DEF(a) \
2416do { \
2417 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2418 (TARGET_GAS) ? "" : "#", (a)); \
2419} while (0)
2420
2421#define PUT_SDB_TYPE(a) \
2422do { \
2423 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2424} while (0)
2425
2426/* For block start and end, we create labels, so that
2427 later we can figure out where the correct offset is.
2428 The normal .ent/.end serve well enough for functions,
2429 so those are just commented out. */
2430
2431extern int sdb_label_count; /* block start/end next label # */
2432
2433#define PUT_SDB_BLOCK_START(LINE) \
2434do { \
2435 fprintf (asm_out_file, \
2436 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2437 sdb_label_count, \
2438 (TARGET_GAS) ? "" : "#", \
2439 sdb_label_count, \
2440 (LINE)); \
2441 sdb_label_count++; \
2442} while (0)
2443
2444#define PUT_SDB_BLOCK_END(LINE) \
2445do { \
2446 fprintf (asm_out_file, \
2447 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2448 sdb_label_count, \
2449 (TARGET_GAS) ? "" : "#", \
2450 sdb_label_count, \
2451 (LINE)); \
2452 sdb_label_count++; \
2453} while (0)
2454
2455#define PUT_SDB_FUNCTION_START(LINE)
2456
2457#define PUT_SDB_FUNCTION_END(LINE)
2458
3c303f52 2459#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2460
03f8c4cc
RK
2461/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2462 mips-tdump.c to print them out.
2463
2464 These must match the corresponding definitions in gdb/mipsread.c.
2465 Unfortunately, gcc and gdb do not currently share any directories. */
2466
2467#define CODE_MASK 0x8F300
2468#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2469#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2470#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2471
2472/* Override some mips-tfile definitions. */
2473
2474#define SHASH_SIZE 511
2475#define THASH_SIZE 55
1e6c6f11
RK
2476
2477/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2478
2479#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2480
b0435cf4
RH
2481/* The system headers under Alpha systems are generally C++-aware. */
2482#define NO_IMPLICIT_EXTERN_C
b517dcd2
RH
2483
2484/* Generate calls to memcpy, etc., not bcopy, etc. */
2485#define TARGET_MEM_FUNCTIONS 1
This page took 1.119879 seconds and 5 git commands to generate.