]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
flow.c (debug_flow_info): Add prototype.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
ca7cdae3 2 Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
952fc2ed
RH
26%{!undef:\
27%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
28%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
29%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
30%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
31%{mieee:-D_IEEE_FP }\
32%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
33%(cpp_cpu) %(cpp_subtarget)"
34
35#ifndef CPP_SUBTARGET_SPEC
36#define CPP_SUBTARGET_SPEC ""
37#endif
1a94ca49
RK
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
b890f297
JM
45#define WORD_SWITCH_TAKES_ARG(STR) \
46 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
47 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
48 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
49 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
50 || !strcmp (STR, "isystem"))
8877eb00 51
1a94ca49
RK
52/* Print subsidiary information on the compiler version in use. */
53#define TARGET_VERSION
54
1a94ca49
RK
55/* Run-time compilation parameters selecting different hardware subsets. */
56
f6f6a13c
RK
57/* Which processor to schedule for. The cpu attribute defines a list that
58 mirrors this list, so changes to alpha.md must be made at the same time. */
59
60enum processor_type
61 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
62 PROCESSOR_EV5, /* 21164{a,pc,} */
63 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
64
65extern enum processor_type alpha_cpu;
66
2bf6230d
RK
67enum alpha_trap_precision
68{
69 ALPHA_TP_PROG, /* No precision (default). */
70 ALPHA_TP_FUNC, /* Trap contained within originating function. */
71 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
72};
73
74enum alpha_fp_rounding_mode
75{
76 ALPHA_FPRM_NORM, /* Normal rounding mode. */
77 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
78 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
79 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
80};
81
82enum alpha_fp_trap_mode
83{
84 ALPHA_FPTM_N, /* Normal trap mode. */
85 ALPHA_FPTM_U, /* Underflow traps enabled. */
86 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
87 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
88};
89
1a94ca49
RK
90extern int target_flags;
91
2bf6230d
RK
92extern enum alpha_trap_precision alpha_tp;
93extern enum alpha_fp_rounding_mode alpha_fprm;
94extern enum alpha_fp_trap_mode alpha_fptm;
95
1a94ca49
RK
96/* This means that floating-point support exists in the target implementation
97 of the Alpha architecture. This is usually the default. */
de4abb91 98#define MASK_FP (1 << 0)
2bf6230d 99#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
100
101/* This means that floating-point registers are allowed to be used. Note
102 that Alpha implementations without FP operations are required to
103 provide the FP registers. */
104
de4abb91 105#define MASK_FPREGS (1 << 1)
2bf6230d 106#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
107
108/* This means that gas is used to process the assembler file. */
109
de4abb91 110#define MASK_GAS (1 << 2)
03f8c4cc 111#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 112
2bf6230d
RK
113/* This means that we should mark procedures as IEEE conformant. */
114
de4abb91 115#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
116#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
117
118/* This means we should be IEEE-compliant except for inexact. */
119
de4abb91 120#define MASK_IEEE (1 << 4)
2bf6230d
RK
121#define TARGET_IEEE (target_flags & MASK_IEEE)
122
123/* This means we should be fully IEEE-compliant. */
124
de4abb91 125#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
126#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
127
803fee69
RK
128/* This means we must construct all constants rather than emitting
129 them as literal data. */
130
de4abb91 131#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
132#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
133
e5958492
RK
134/* This means we handle floating points in VAX F- (float)
135 or G- (double) Format. */
136
de4abb91 137#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
138#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
139
e9a25f70
JL
140/* This means that the processor has byte and half word loads and stores
141 (the BWX extension). */
025f3281 142
de4abb91 143#define MASK_BWX (1 << 8)
e9a25f70 144#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 145
e9a25f70 146/* This means that the processor has the MAX extension. */
de4abb91 147#define MASK_MAX (1 << 9)
e9a25f70
JL
148#define TARGET_MAX (target_flags & MASK_MAX)
149
de4abb91
RH
150/* This means that the processor has the FIX extension. */
151#define MASK_FIX (1 << 10)
152#define TARGET_FIX (target_flags & MASK_FIX)
153
154/* This means that the processor has the CIX extension. */
155#define MASK_CIX (1 << 11)
156#define TARGET_CIX (target_flags & MASK_CIX)
157
e9a25f70
JL
158/* This means that the processor is an EV5, EV56, or PCA56. This is defined
159 only in TARGET_CPU_DEFAULT. */
a76c0119 160#define MASK_CPU_EV5 (1 << 28)
e9a25f70
JL
161
162/* Likewise for EV6. */
a76c0119 163#define MASK_CPU_EV6 (1 << 29)
e9a25f70
JL
164
165/* This means we support the .arch directive in the assembler. Only
166 defined in TARGET_CPU_DEFAULT. */
a76c0119 167#define MASK_SUPPORT_ARCH (1 << 30)
e9a25f70 168#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 169
9ba3994a
RH
170/* These are for target os support and cannot be changed at runtime. */
171#ifndef TARGET_WINDOWS_NT
172#define TARGET_WINDOWS_NT 0
173#endif
174#ifndef TARGET_OPEN_VMS
175#define TARGET_OPEN_VMS 0
176#endif
177
178#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
179#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
180#endif
9c0e94a5
RH
181#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
182#define TARGET_CAN_FAULT_IN_PROLOGUE 0
183#endif
9ba3994a 184
1a94ca49
RK
185/* Macro to define tables used to set the flags.
186 This is a list in braces of pairs in braces,
187 each pair being { "NAME", VALUE }
188 where VALUE is the bits to set or minus the bits to clear.
189 An empty string NAME is used to identify the default VALUE. */
190
f8e52397
RH
191#define TARGET_SWITCHES \
192 { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
193 {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
194 {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
195 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
196 {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
197 {"gas", MASK_GAS, "Assume GAS"}, \
198 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
199 "Request IEEE-conformant math library routines (OSF/1)"}, \
200 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
201 "Emit IEEE-conformant code, without inexact exceptions"}, \
202 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
203 "Emit IEEE-conformant code, with inexact exceptions"}, \
204 {"build-constants", MASK_BUILD_CONSTANTS, \
205 "Do not emit complex integer constants to read-only memory"}, \
206 {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
207 {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
208 {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
209 {"no-bwx", -MASK_BWX, ""}, \
f8e52397
RH
210 {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
211 {"no-max", -MASK_MAX, ""}, \
de4abb91
RH
212 {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
213 {"no-fix", -MASK_FIX, ""}, \
214 {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
215 {"no-cix", -MASK_CIX, ""}, \
f8e52397 216 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 217
c01b5470 218#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 219
88681624
ILT
220#ifndef TARGET_CPU_DEFAULT
221#define TARGET_CPU_DEFAULT 0
222#endif
223
2bf6230d
RK
224/* This macro is similar to `TARGET_SWITCHES' but defines names of
225 command options that have values. Its definition is an initializer
226 with a subgrouping for each command option.
227
228 Each subgrouping contains a string constant, that defines the fixed
229 part of the option name, and the address of a variable. The
230 variable, type `char *', is set to the variable part of the given
231 option if the fixed part matches. The actual option name is made
232 by appending `-m' to the specified name.
233
234 Here is an example which defines `-mshort-data-NUMBER'. If the
235 given option is `-mshort-data-512', the variable `m88k_short_data'
236 will be set to the string `"512"'.
237
238 extern char *m88k_short_data;
239 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
240
df45c7ea
KG
241extern const char *alpha_cpu_string; /* For -mcpu= */
242extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
243extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
244extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
245extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 246
f8e52397
RH
247#define TARGET_OPTIONS \
248{ \
249 {"cpu=", &alpha_cpu_string, \
250 "Generate code for a given CPU"}, \
251 {"fp-rounding-mode=", &alpha_fprm_string, \
252 "Control the generated fp rounding mode"}, \
253 {"fp-trap-mode=", &alpha_fptm_string, \
254 "Control the IEEE trap mode"}, \
255 {"trap-precision=", &alpha_tp_string, \
256 "Control the precision given to fp exceptions"}, \
257 {"memory-latency=", &alpha_mlat_string, \
258 "Tune expected memory latency"}, \
2bf6230d
RK
259}
260
952fc2ed
RH
261/* Attempt to describe CPU characteristics to the preprocessor. */
262
263/* Corresponding to amask... */
264#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
265#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
de4abb91 266#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)"
952fc2ed
RH
267#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
268
269/* Corresponding to implver... */
270#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
271#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
272#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
273
274/* Common combinations. */
275#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
276#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
277#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
278#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
de4abb91 279#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
952fc2ed
RH
280
281#ifndef CPP_CPU_DEFAULT_SPEC
282# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
283# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
284# else
285# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
286# if TARGET_CPU_DEFAULT & MASK_MAX
287# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
288# else
289# if TARGET_CPU_DEFAULT & MASK_BWX
290# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
291# else
292# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
293# endif
294# endif
295# else
296# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
297# endif
298# endif
299#endif /* CPP_CPU_DEFAULT_SPEC */
300
301#ifndef CPP_CPU_SPEC
302#define CPP_CPU_SPEC "\
303%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
304%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
305%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
306%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
307%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
308%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
309%{!mcpu*:%(cpp_cpu_default) }}"
310#endif
311
312/* This macro defines names of additional specifications to put in the
313 specs that can be used in various specifications like CC1_SPEC. Its
314 definition is an initializer with a subgrouping for each command option.
315
316 Each subgrouping contains a string constant, that defines the
317 specification name, and a string constant that used by the GNU CC driver
318 program.
319
320 Do not define this macro if it does not need to do anything. */
321
322#ifndef SUBTARGET_EXTRA_SPECS
323#define SUBTARGET_EXTRA_SPECS
324#endif
325
829245be
KG
326#define EXTRA_SPECS \
327 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
328 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 329 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
330 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
331 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
332 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
333 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
334 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
335 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
336 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
337 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
338 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
339 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
340 { "cpp_cpu", CPP_CPU_SPEC }, \
341 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
342 SUBTARGET_EXTRA_SPECS
343
344
2bf6230d
RK
345/* Sometimes certain combinations of command options do not make sense
346 on a particular target machine. You can define a macro
347 `OVERRIDE_OPTIONS' to take account of this. This macro, if
348 defined, is executed once just after all the command options have
349 been parsed.
350
351 On the Alpha, it is used to translate target-option strings into
352 numeric values. */
353
2bf6230d
RK
354#define OVERRIDE_OPTIONS override_options ()
355
356
1a94ca49
RK
357/* Define this macro to change register usage conditional on target flags.
358
359 On the Alpha, we use this to disable the floating-point registers when
360 they don't exist. */
361
362#define CONDITIONAL_REGISTER_USAGE \
363 if (! TARGET_FPREGS) \
52a69200 364 for (i = 32; i < 63; i++) \
1a94ca49
RK
365 fixed_regs[i] = call_used_regs[i] = 1;
366
4f074454
RK
367/* Show we can debug even without a frame pointer. */
368#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
369\f
370/* target machine storage layout */
371
2700ac93
RS
372/* Define to enable software floating point emulation. */
373#define REAL_ARITHMETIC
374
861bb6c1
JL
375/* The following #defines are used when compiling the routines in
376 libgcc1.c. Since the Alpha calling conventions require single
377 precision floats to be passed in the floating-point registers
378 (rather than in the general registers) we have to build the
379 libgcc1.c routines in such a way that they know the actual types
380 of their formal arguments and the actual types of their return
381 values. Otherwise, gcc will generate calls to the libgcc1.c
382 routines, passing arguments in the floating-point registers,
383 but the libgcc1.c routines will expect their arguments on the
384 stack (where the Alpha calling conventions require structs &
385 unions to be passed). */
386
387#define FLOAT_VALUE_TYPE double
388#define INTIFY(FLOATVAL) (FLOATVAL)
389#define FLOATIFY(INTVAL) (INTVAL)
390#define FLOAT_ARG_TYPE double
391
1a94ca49
RK
392/* Define the size of `int'. The default is the same as the word size. */
393#define INT_TYPE_SIZE 32
394
395/* Define the size of `long long'. The default is the twice the word size. */
396#define LONG_LONG_TYPE_SIZE 64
397
398/* The two floating-point formats we support are S-floating, which is
399 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
400 and `long double' are T. */
401
402#define FLOAT_TYPE_SIZE 32
403#define DOUBLE_TYPE_SIZE 64
404#define LONG_DOUBLE_TYPE_SIZE 64
405
5258d7ae
RK
406#define WCHAR_TYPE "unsigned int"
407#define WCHAR_TYPE_SIZE 32
1a94ca49 408
13d39dbc 409/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
410 in a wider mode than that declared by the program. In such cases,
411 the value is constrained to be within the bounds of the declared
412 type, but kept valid in the wider mode. The signedness of the
413 extension may differ from that of the type.
414
415 For Alpha, we always store objects in a full register. 32-bit objects
416 are always sign-extended, but smaller objects retain their signedness. */
417
418#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
419 if (GET_MODE_CLASS (MODE) == MODE_INT \
420 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
421 { \
422 if ((MODE) == SImode) \
423 (UNSIGNEDP) = 0; \
424 (MODE) = DImode; \
425 }
426
427/* Define this if function arguments should also be promoted using the above
428 procedure. */
429
430#define PROMOTE_FUNCTION_ARGS
431
432/* Likewise, if the function return value is promoted. */
433
434#define PROMOTE_FUNCTION_RETURN
435
436/* Define this if most significant bit is lowest numbered
437 in instructions that operate on numbered bit-fields.
438
439 There are no such instructions on the Alpha, but the documentation
440 is little endian. */
441#define BITS_BIG_ENDIAN 0
442
443/* Define this if most significant byte of a word is the lowest numbered.
444 This is false on the Alpha. */
445#define BYTES_BIG_ENDIAN 0
446
447/* Define this if most significant word of a multiword number is lowest
448 numbered.
449
450 For Alpha we can decide arbitrarily since there are no machine instructions
451 for them. Might as well be consistent with bytes. */
452#define WORDS_BIG_ENDIAN 0
453
454/* number of bits in an addressable storage unit */
455#define BITS_PER_UNIT 8
456
457/* Width in bits of a "word", which is the contents of a machine register.
458 Note that this is not necessarily the width of data type `int';
459 if using 16-bit ints on a 68000, this would still be 32.
460 But on a machine with 16-bit registers, this would be 16. */
461#define BITS_PER_WORD 64
462
463/* Width of a word, in units (bytes). */
464#define UNITS_PER_WORD 8
465
466/* Width in bits of a pointer.
467 See also the macro `Pmode' defined below. */
468#define POINTER_SIZE 64
469
470/* Allocation boundary (in *bits*) for storing arguments in argument list. */
471#define PARM_BOUNDARY 64
472
473/* Boundary (in *bits*) on which stack pointer should be aligned. */
474#define STACK_BOUNDARY 64
475
476/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 477#define FUNCTION_BOUNDARY 256
1a94ca49
RK
478
479/* Alignment of field after `int : 0' in a structure. */
480#define EMPTY_FIELD_BOUNDARY 64
481
482/* Every structure's size must be a multiple of this. */
483#define STRUCTURE_SIZE_BOUNDARY 8
484
485/* A bitfield declared as `int' forces `int' alignment for the struct. */
486#define PCC_BITFIELD_TYPE_MATTERS 1
487
65823178
RK
488/* Align loop starts for optimal branching.
489
490 ??? Kludge this and the next macro for the moment by not doing anything if
491 we don't optimize and also if we are writing ECOFF symbols to work around
492 a bug in DEC's assembler. */
1a94ca49 493
fc470718 494#define LOOP_ALIGN(LABEL) \
9c0e94a5 495 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 496
9c0e94a5
RH
497/* This is how to align an instruction for optimal branching. On
498 Alpha we'll get better performance by aligning on an octaword
1a94ca49 499 boundary. */
130d2d72 500
7d0bfbd0 501#define LABEL_ALIGN_AFTER_BARRIER(FILE) \
9c0e94a5 502 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
503
504/* No data type wants to be aligned rounder than this. */
505#define BIGGEST_ALIGNMENT 64
506
d16fe557
RK
507/* For atomic access to objects, must have at least 32-bit alignment
508 unless the machine has byte operations. */
e9a25f70 509#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 510
442b1685
RK
511/* Align all constants and variables to at least a word boundary so
512 we can pick up pieces of them faster. */
6c174fc0
RH
513/* ??? Only if block-move stuff knows about different source/destination
514 alignment. */
515#if 0
442b1685
RK
516#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
517#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 518#endif
1a94ca49
RK
519
520/* Set this non-zero if move instructions will actually fail to work
521 when given unaligned data.
522
523 Since we get an error message when we do one, call them invalid. */
524
525#define STRICT_ALIGNMENT 1
526
527/* Set this non-zero if unaligned move instructions are extremely slow.
528
529 On the Alpha, they trap. */
130d2d72
RK
530
531#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
532\f
533/* Standard register usage. */
534
535/* Number of actual hardware registers.
536 The hardware registers are assigned numbers for the compiler
537 from 0 to just below FIRST_PSEUDO_REGISTER.
538 All registers that the compiler knows about must be given numbers,
539 even those that are not normally considered general registers.
540
541 We define all 32 integer registers, even though $31 is always zero,
542 and all 32 floating-point registers, even though $f31 is also
543 always zero. We do not bother defining the FP status register and
130d2d72
RK
544 there are no other registers.
545
546 Since $31 is always zero, we will use register number 31 as the
547 argument pointer. It will never appear in the generated code
548 because we will always be eliminating it in favor of the stack
52a69200
RK
549 pointer or hardware frame pointer.
550
551 Likewise, we use $f31 for the frame pointer, which will always
552 be eliminated in favor of the hardware frame pointer or the
553 stack pointer. */
1a94ca49
RK
554
555#define FIRST_PSEUDO_REGISTER 64
556
557/* 1 for registers that have pervasive standard uses
558 and are not available for the register allocator. */
559
560#define FIXED_REGISTERS \
561 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
565
566/* 1 for registers not available across function calls.
567 These must include the FIXED_REGISTERS and also any
568 registers that can be used without being saved.
569 The latter must include the registers where values are returned
570 and the register where structure-value addresses are passed.
571 Aside from that, you can include as many other registers as you like. */
572#define CALL_USED_REGISTERS \
573 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
574 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
575 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
577
578/* List the order in which to allocate registers. Each register must be
579 listed once, even those in FIXED_REGISTERS.
580
581 We allocate in the following order:
2c4be73e 582 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
583 $f22-$f30 (likewise)
584 $f21-$f16 (likewise, but input args)
585 $f0 (nonsaved, but return value)
2c4be73e 586 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
587 $f2-$f9 (saved floating-point registers)
588 $1-$8 (nonsaved integer registers)
589 $22-$25 (likewise)
590 $28 (likewise)
591 $0 (likewise, but return value)
592 $21-$16 (likewise, but input args)
0076aa6b 593 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
594 $9-$14 (saved integer registers)
595 $26 (return PC)
596 $15 (frame pointer)
597 $29 (global pointer)
52a69200 598 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
599
600#define REG_ALLOC_ORDER \
2c4be73e 601 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
602 54, 55, 56, 57, 58, 59, 60, 61, 62, \
603 53, 52, 51, 50, 49, 48, \
2c4be73e 604 32, 33, \
1a94ca49
RK
605 34, 35, 36, 37, 38, 39, 40, 41, \
606 1, 2, 3, 4, 5, 6, 7, 8, \
607 22, 23, 24, 25, \
608 28, \
609 0, \
610 21, 20, 19, 18, 17, 16, \
611 27, \
612 9, 10, 11, 12, 13, 14, \
613 26, \
614 15, \
615 29, \
616 30, 31, 63 }
617
618/* Return number of consecutive hard regs needed starting at reg REGNO
619 to hold something of mode MODE.
620 This is ordinarily the length in words of a value of mode MODE
621 but can be less for certain modes in special long registers. */
622
623#define HARD_REGNO_NREGS(REGNO, MODE) \
624 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
625
626/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
627 On Alpha, the integer registers can hold any mode. The floating-point
628 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 629 or 8-bit values. */
1a94ca49 630
e6a8ebb4
RH
631#define HARD_REGNO_MODE_OK(REGNO, MODE) \
632 ((REGNO) >= 32 && (REGNO) <= 62 \
633 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
634 : 1)
635
636/* A C expression that is nonzero if a value of mode
637 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 638
e6a8ebb4
RH
639 This asymmetric test is true when MODE1 could be put
640 in an FP register but MODE2 could not. */
1a94ca49 641
a7adf08e 642#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
643 (HARD_REGNO_MODE_OK (32, (MODE1)) \
644 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 645 : 1)
1a94ca49
RK
646
647/* Specify the registers used for certain standard purposes.
648 The values of these macros are register numbers. */
649
650/* Alpha pc isn't overloaded on a register that the compiler knows about. */
651/* #define PC_REGNUM */
652
653/* Register to use for pushing function arguments. */
654#define STACK_POINTER_REGNUM 30
655
656/* Base register for access to local variables of the function. */
52a69200 657#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
658
659/* Value should be nonzero if functions must have frame pointers.
660 Zero means the frame pointer need not be set up (and parms
661 may be accessed via the stack pointer) in functions that seem suitable.
662 This is computed in `reload', in reload1.c. */
663#define FRAME_POINTER_REQUIRED 0
664
665/* Base register for access to arguments of the function. */
130d2d72 666#define ARG_POINTER_REGNUM 31
1a94ca49 667
52a69200
RK
668/* Base register for access to local variables of function. */
669#define FRAME_POINTER_REGNUM 63
670
1a94ca49
RK
671/* Register in which static-chain is passed to a function.
672
673 For the Alpha, this is based on an example; the calling sequence
674 doesn't seem to specify this. */
675#define STATIC_CHAIN_REGNUM 1
676
677/* Register in which address to store a structure value
678 arrives in the function. On the Alpha, the address is passed
679 as a hidden argument. */
680#define STRUCT_VALUE 0
681\f
682/* Define the classes of registers for register constraints in the
683 machine description. Also define ranges of constants.
684
685 One of the classes must always be named ALL_REGS and include all hard regs.
686 If there is more than one class, another class must be named NO_REGS
687 and contain no registers.
688
689 The name GENERAL_REGS must be the name of a class (or an alias for
690 another name such as ALL_REGS). This is the class of registers
691 that is allowed by "g" or "r" in a register constraint.
692 Also, registers outside this class are allocated only when
693 instructions express preferences for them.
694
695 The classes must be numbered in nondecreasing order; that is,
696 a larger-numbered class must never be contained completely
697 in a smaller-numbered class.
698
699 For any two classes, it is very desirable that there be another
700 class that represents their union. */
701
702enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
703 LIM_REG_CLASSES };
704
705#define N_REG_CLASSES (int) LIM_REG_CLASSES
706
707/* Give names of register classes as strings for dump file. */
708
709#define REG_CLASS_NAMES \
710 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
711
712/* Define which registers fit in which classes.
713 This is an initializer for a vector of HARD_REG_SET
714 of length N_REG_CLASSES. */
715
716#define REG_CLASS_CONTENTS \
52a69200 717 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
718
719/* The same information, inverted:
720 Return the class number of the smallest class containing
721 reg number REGNO. This could be a conditional expression
722 or could index an array. */
723
52a69200
RK
724#define REGNO_REG_CLASS(REGNO) \
725 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
726
727/* The class value for index registers, and the one for base regs. */
728#define INDEX_REG_CLASS NO_REGS
729#define BASE_REG_CLASS GENERAL_REGS
730
731/* Get reg_class from a letter such as appears in the machine description. */
732
733#define REG_CLASS_FROM_LETTER(C) \
734 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
735
736/* Define this macro to change register usage conditional on target flags. */
737/* #define CONDITIONAL_REGISTER_USAGE */
738
739/* The letters I, J, K, L, M, N, O, and P in a register constraint string
740 can be used to stand for particular ranges of immediate operands.
741 This macro defines what the ranges are.
742 C is the letter, and VALUE is a constant value.
743 Return 1 if VALUE is in the range specified by C.
744
745 For Alpha:
746 `I' is used for the range of constants most insns can contain.
747 `J' is the constant zero.
748 `K' is used for the constant in an LDA insn.
749 `L' is used for the constant in a LDAH insn.
750 `M' is used for the constants that can be AND'ed with using a ZAP insn.
751 `N' is used for complemented 8-bit constants.
752 `O' is used for negated 8-bit constants.
753 `P' is used for the constants 1, 2 and 3. */
754
755#define CONST_OK_FOR_LETTER_P(VALUE, C) \
756 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
757 : (C) == 'J' ? (VALUE) == 0 \
758 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
759 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 760 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
761 : (C) == 'M' ? zap_mask (VALUE) \
762 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
763 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
764 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
765 : 0)
766
767/* Similar, but for floating or large integer constants, and defining letters
768 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
769
770 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
771 that is the operand of a ZAP insn. */
772
773#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
774 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
775 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
776 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
777 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
778 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
779 : 0)
780
e560f226
RK
781/* Optional extra constraints for this machine.
782
783 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 784 reference to an unaligned location.
9ec36da5 785
ac030a7b 786 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
787 function.
788
789 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
790
791#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 792 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
793 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
794 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
795 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
796 : 0)
797
1a94ca49
RK
798/* Given an rtx X being reloaded into a reg required to be
799 in class CLASS, return the class of reg to actually use.
800 In general this is just CLASS; but on some machines
801 in some cases it is preferable to use a more restrictive class.
802
803 On the Alpha, all constants except zero go into a floating-point
804 register via memory. */
805
806#define PREFERRED_RELOAD_CLASS(X, CLASS) \
807 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 808 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
809 : (CLASS))
810
811/* Loading and storing HImode or QImode values to and from memory
812 usually requires a scratch register. The exceptions are loading
e008606e
RK
813 QImode and HImode from an aligned address to a general register
814 unless byte instructions are permitted.
ddd5a7c1 815 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 816 FP register. */
1a94ca49
RK
817
818#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
819(((GET_CODE (IN) == MEM \
820 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
821 || (GET_CODE (IN) == SUBREG \
822 && (GET_CODE (SUBREG_REG (IN)) == MEM \
823 || (GET_CODE (SUBREG_REG (IN)) == REG \
824 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
825 && (((CLASS) == FLOAT_REGS \
826 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
827 || (((MODE) == QImode || (MODE) == HImode) \
4e46365b 828 && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \
e560f226
RK
829 ? GENERAL_REGS \
830 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
831 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
832 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
833 && (GET_MODE_SIZE (GET_MODE (IN)) \
834 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 835 : NO_REGS)
1a94ca49
RK
836
837#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
838(((GET_CODE (OUT) == MEM \
839 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
840 || (GET_CODE (OUT) == SUBREG \
841 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
842 || (GET_CODE (SUBREG_REG (OUT)) == REG \
843 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
844 && ((((MODE) == HImode || (MODE) == QImode) \
845 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
846 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
847 ? GENERAL_REGS \
848 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
849 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
850 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
851 && (GET_MODE_SIZE (GET_MODE (OUT)) \
852 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
853 : NO_REGS)
1a94ca49
RK
854
855/* If we are copying between general and FP registers, we need a memory
de4abb91 856 location unless the FIX extension is available. */
1a94ca49 857
e9a25f70 858#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
de4abb91 859 (! TARGET_FIX && (CLASS1) != (CLASS2))
1a94ca49 860
acd94aaf
RK
861/* Specify the mode to be used for memory when a secondary memory
862 location is needed. If MODE is floating-point, use it. Otherwise,
863 widen to a word like the default. This is needed because we always
864 store integers in FP registers in quadword format. This whole
865 area is very tricky! */
866#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
867 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 868 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
869 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
870
1a94ca49
RK
871/* Return the maximum number of consecutive registers
872 needed to represent mode MODE in a register of class CLASS. */
873
874#define CLASS_MAX_NREGS(CLASS, MODE) \
875 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
876
c31dfe4d
RK
877/* If defined, gives a class of registers that cannot be used as the
878 operand of a SUBREG that changes the size of the object. */
879
880#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
881
1a94ca49
RK
882/* Define the cost of moving between registers of various classes. Moving
883 between FLOAT_REGS and anything else except float regs is expensive.
884 In fact, we make it quite expensive because we really don't want to
885 do these moves unless it is clearly worth it. Optimizations may
886 reduce the impact of not being able to allocate a pseudo to a
887 hard register. */
888
71d9b493
RH
889#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
890 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
891 ? 2 \
de4abb91 892 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
893
894/* A C expressions returning the cost of moving data of MODE from a register to
895 or from memory.
896
897 On the Alpha, bump this up a bit. */
898
bcbbac26 899extern int alpha_memory_latency;
cbd5b9a2 900#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
901
902/* Provide the cost of a branch. Exact meaning under development. */
903#define BRANCH_COST 5
904
905/* Adjust the cost of dependencies. */
906
907#define ADJUST_COST(INSN,LINK,DEP,COST) \
908 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
909\f
910/* Stack layout; function entry, exit and calling. */
911
912/* Define this if pushing a word on the stack
913 makes the stack pointer a smaller address. */
914#define STACK_GROWS_DOWNWARD
915
916/* Define this if the nominal address of the stack frame
917 is at the high-address end of the local variables;
918 that is, each additional local variable allocated
919 goes at a more negative offset in the frame. */
130d2d72 920/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
921
922/* Offset within stack frame to start allocating local variables at.
923 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
924 first local allocated. Otherwise, it is the offset to the BEGINNING
925 of the first local allocated. */
926
52a69200 927#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
928
929/* If we generate an insn to push BYTES bytes,
930 this says how many the stack pointer really advances by.
931 On Alpha, don't define this because there are no push insns. */
932/* #define PUSH_ROUNDING(BYTES) */
933
e008606e
RK
934/* Define this to be nonzero if stack checking is built into the ABI. */
935#define STACK_CHECK_BUILTIN 1
936
1a94ca49
RK
937/* Define this if the maximum size of all the outgoing args is to be
938 accumulated and pushed during the prologue. The amount can be
939 found in the variable current_function_outgoing_args_size. */
940#define ACCUMULATE_OUTGOING_ARGS
941
942/* Offset of first parameter from the argument pointer register value. */
943
130d2d72 944#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
945
946/* Definitions for register eliminations.
947
978e8952 948 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 949 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
950 pointer register. Secondly, the argument pointer register can always be
951 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
952
953/* This is an array of structures. Each structure initializes one pair
954 of eliminable registers. The "from" register number is given first,
955 followed by "to". Eliminations of the same "from" register are listed
956 in order of preference. */
957
52a69200
RK
958#define ELIMINABLE_REGS \
959{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
960 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
961 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
962 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
963
964/* Given FROM and TO register numbers, say whether this elimination is allowed.
965 Frame pointer elimination is automatically handled.
966
130d2d72 967 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
968 eliminated are already handled. */
969
130d2d72 970#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 971
52a69200
RK
972/* Round up to a multiple of 16 bytes. */
973#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
974
1a94ca49
RK
975/* Define the offset between two registers, one to be eliminated, and the other
976 its replacement, at the start of a routine. */
977#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
978{ if ((FROM) == FRAME_POINTER_REGNUM) \
979 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
980 + alpha_sa_size ()); \
981 else if ((FROM) == ARG_POINTER_REGNUM) \
982 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
983 + alpha_sa_size () \
d772039b
RK
984 + (ALPHA_ROUND (get_frame_size () \
985 + current_function_pretend_args_size) \
986 - current_function_pretend_args_size)); \
1a94ca49
RK
987}
988
989/* Define this if stack space is still allocated for a parameter passed
990 in a register. */
991/* #define REG_PARM_STACK_SPACE */
992
993/* Value is the number of bytes of arguments automatically
994 popped when returning from a subroutine call.
8b109b37 995 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
996 FUNTYPE is the data type of the function (as a tree),
997 or for a library call it is an identifier node for the subroutine name.
998 SIZE is the number of bytes of arguments passed on the stack. */
999
8b109b37 1000#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
1001
1002/* Define how to find the value returned by a function.
1003 VALTYPE is the data type of the value (as a tree).
1004 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1005 otherwise, FUNC is 0.
1006
1007 On Alpha the value is found in $0 for integer functions and
1008 $f0 for floating-point functions. */
1009
c5c76735 1010#define FUNCTION_VALUE(VALTYPE, FUNC) \
4c020733 1011 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
c5c76735
JL
1012 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1013 || POINTER_TYPE_P (VALTYPE)) \
4c020733
RH
1014 ? word_mode : TYPE_MODE (VALTYPE), \
1015 ((TARGET_FPREGS \
c5c76735 1016 && (TREE_CODE (VALTYPE) == REAL_TYPE \
4c020733 1017 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
c5c76735 1018 ? 32 : 0))
1a94ca49
RK
1019
1020/* Define how to find the value returned by a library function
1021 assuming the value has mode MODE. */
1022
c5c76735 1023#define LIBCALL_VALUE(MODE) \
4c020733 1024 gen_rtx_REG (MODE, \
c5c76735
JL
1025 (TARGET_FPREGS \
1026 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
4c020733 1027 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
c5c76735 1028 ? 32 : 0))
1a94ca49 1029
130d2d72
RK
1030/* The definition of this macro implies that there are cases where
1031 a scalar value cannot be returned in registers.
1032
1033 For the Alpha, any structure or union type is returned in memory, as
1034 are integers whose size is larger than 64 bits. */
1035
1036#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1037 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
1038 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1039
1a94ca49
RK
1040/* 1 if N is a possible register number for a function value
1041 as seen by the caller. */
1042
e5958492
RK
1043#define FUNCTION_VALUE_REGNO_P(N) \
1044 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1045
1046/* 1 if N is a possible register number for function argument passing.
1047 On Alpha, these are $16-$21 and $f16-$f21. */
1048
1049#define FUNCTION_ARG_REGNO_P(N) \
1050 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1051\f
1052/* Define a data type for recording info about an argument list
1053 during the scan of that argument list. This data type should
1054 hold all necessary information about the function itself
1055 and about the args processed so far, enough to enable macros
1056 such as FUNCTION_ARG to determine where the next arg should go.
1057
1058 On Alpha, this is a single integer, which is a number of words
1059 of arguments scanned so far.
1060 Thus 6 or more means all following args should go on the stack. */
1061
1062#define CUMULATIVE_ARGS int
1063
1064/* Initialize a variable CUM of type CUMULATIVE_ARGS
1065 for a call to a function whose data type is FNTYPE.
1066 For a library call, FNTYPE is 0. */
1067
2c7ee1a6 1068#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1069
1070/* Define intermediate macro to compute the size (in registers) of an argument
1071 for the Alpha. */
1072
1073#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1074((MODE) != BLKmode \
1075 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1076 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1077
1078/* Update the data in CUM to advance over an argument
1079 of mode MODE and data type TYPE.
1080 (TYPE is null for libcalls where that information may not be available.) */
1081
1082#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1083 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1084 (CUM) = 6; \
1085 else \
1086 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1087
1088/* Determine where to put an argument to a function.
1089 Value is zero to push the argument on the stack,
1090 or a hard register in which to store the argument.
1091
1092 MODE is the argument's machine mode.
1093 TYPE is the data type of the argument (as a tree).
1094 This is null for libcalls where that information may
1095 not be available.
1096 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1097 the preceding args and about the function being called.
1098 NAMED is nonzero if this argument is a named parameter
1099 (otherwise it is an extra parameter matching an ellipsis).
1100
1101 On Alpha the first 6 words of args are normally in registers
1102 and the rest are pushed. */
1103
1104#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1105((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
c5c76735
JL
1106 ? gen_rtx_REG ((MODE), \
1107 (CUM) + 16 \
1108 + ((TARGET_FPREGS \
1109 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1110 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1111 * 32)) \
14d4a67a 1112 : 0)
1a94ca49 1113
1a94ca49
RK
1114/* Specify the padding direction of arguments.
1115
1116 On the Alpha, we must pad upwards in order to be able to pass args in
1117 registers. */
1118
1119#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1120
1121/* For an arg passed partly in registers and partly in memory,
1122 this is the number of registers used.
1123 For args passed entirely in registers or entirely in memory, zero. */
1124
1125#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1126((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1127 ? 6 - (CUM) : 0)
1128
130d2d72
RK
1129/* Perform any needed actions needed for a function that is receiving a
1130 variable number of arguments.
1131
1132 CUM is as above.
1133
1134 MODE and TYPE are the mode and type of the current parameter.
1135
1136 PRETEND_SIZE is a variable that should be set to the amount of stack
1137 that must be pushed by the prolog to pretend that our caller pushed
1138 it.
1139
1140 Normally, this macro will push all remaining incoming registers on the
1141 stack and set PRETEND_SIZE to the length of the registers pushed.
1142
1143 On the Alpha, we allocate space for all 12 arg registers, but only
1144 push those that are remaining.
1145
1146 However, if NO registers need to be saved, don't allocate any space.
1147 This is not only because we won't need the space, but because AP includes
1148 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1149 ap-relative addresses already made.
1150
1151 If we are not to use the floating-point registers, save the integer
1152 registers where we would put the floating-point registers. This is
1153 not the most efficient way to implement varargs with just one register
1154 class, but it isn't worth doing anything more efficient in this rare
1155 case. */
1156
130d2d72
RK
1157
1158#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1159{ if ((CUM) < 6) \
1160 { \
1161 if (! (NO_RTL)) \
1162 { \
63966b3b
RH
1163 rtx tmp; int set = get_varargs_alias_set (); \
1164 tmp = gen_rtx_MEM (BLKmode, \
1165 plus_constant (virtual_incoming_args_rtx, \
1166 ((CUM) + 6)* UNITS_PER_WORD)); \
1167 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1168 move_block_from_reg \
63966b3b 1169 (16 + CUM, tmp, \
02892e06 1170 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
63966b3b
RH
1171 \
1172 tmp = gen_rtx_MEM (BLKmode, \
1173 plus_constant (virtual_incoming_args_rtx, \
1174 (CUM) * UNITS_PER_WORD)); \
1175 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1176 move_block_from_reg \
63966b3b 1177 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
02892e06 1178 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1179 } \
1180 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1181 } \
1182}
1183
c8e9adec
RK
1184/* Try to output insns to set TARGET equal to the constant C if it can be
1185 done in less than N insns. Do all computations in MODE. Returns the place
1186 where the output has been placed if it can be done and the insns have been
1187 emitted. If it would take more than N insns, zero is returned and no
1188 insns and emitted. */
92e40a7a 1189
1a94ca49
RK
1190/* Define the information needed to generate branch and scc insns. This is
1191 stored from the compare operation. Note that we can't use "rtx" here
1192 since it hasn't been defined! */
1193
6db21c7f
RH
1194struct alpha_compare
1195{
1196 struct rtx_def *op0, *op1;
1197 int fp_p;
1198};
1199
1200extern struct alpha_compare alpha_compare;
1a94ca49 1201
01439aee 1202/* Machine specific function data. */
71038426 1203
01439aee
RH
1204struct machine_function
1205{
1206 /* An offset to apply to the stack pointer when unwinding from EH. */
1207 struct rtx_def *eh_epilogue_sp_ofs;
1208
1209 /* If non-null, this rtx holds the return address for the function. */
1210 struct rtx_def *ra_rtx;
1211};
71038426 1212
e5958492 1213/* Make (or fake) .linkage entry for function call.
e5958492 1214 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
e5958492 1215
bcbbac26
RH
1216/* This macro defines the start of an assembly comment. */
1217
1218#define ASM_COMMENT_START " #"
1219
acd92049 1220/* This macro produces the initial definition of a function. */
1a94ca49 1221
acd92049
RH
1222#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1223 alpha_start_function(FILE,NAME,DECL);
1a94ca49 1224
acd92049 1225/* This macro closes up a function definition for the assembler. */
9c0e94a5 1226
acd92049
RH
1227#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1228 alpha_end_function(FILE,NAME,DECL)
acd92049 1229
9c0e94a5
RH
1230/* This macro notes the end of the prologue. */
1231
1232#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
1a94ca49 1233
acd92049
RH
1234/* Output any profiling code before the prologue. */
1235
1236#define PROFILE_BEFORE_PROLOGUE 1
1237
1a94ca49 1238/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1239 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1240 by simply passing -pg to the assembler and linker. */
85d159a3 1241
e0fb9029 1242#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1243
1244/* Output assembler code to FILE to initialize this source file's
1245 basic block profiling info, if that has not already been done.
1246 This assumes that __bb_init_func doesn't garble a1-a5. */
1247
1248#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1249 do { \
1250 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1251 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1252 fputs ("\tldq $26,0($16)\n", (FILE)); \
1253 fputs ("\tbne $26,1f\n", (FILE)); \
1254 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1255 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1256 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1257 fputs ("1:\n", (FILE)); \
85d159a3
RK
1258 ASM_OUTPUT_REG_POP (FILE, 16); \
1259 } while (0);
1260
1261/* Output assembler code to FILE to increment the entry-count for
1262 the BLOCKNO'th basic block in this source file. */
1263
1264#define BLOCK_PROFILER(FILE, BLOCKNO) \
1265 do { \
1266 int blockn = (BLOCKNO); \
a62eb16f 1267 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1268 fputs ("\tstq $26,0($30)\n", (FILE)); \
1269 fputs ("\tstq $27,8($30)\n", (FILE)); \
1270 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1271 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1272 fputs ("\taddq $27,1,$27\n", (FILE)); \
1273 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1274 fputs ("\tldq $26,0($30)\n", (FILE)); \
1275 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1276 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1277 } while (0)
1a94ca49 1278
1a94ca49
RK
1279
1280/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1281 the stack pointer does not matter. The value is tested only in
1282 functions that have frame pointers.
1283 No definition is equivalent to always zero. */
1284
1285#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1286\f
1287/* Output assembler code for a block containing the constant parts
1288 of a trampoline, leaving space for the variable parts.
1289
1290 The trampoline should set the static chain pointer to value placed
7981384f
RK
1291 into the trampoline and should branch to the specified routine.
1292 Note that $27 has been set to the address of the trampoline, so we can
1293 use it for addressability of the two data items. Trampolines are always
1294 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1295
1296#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1297do { \
7981384f 1298 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1299 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1300 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1301 fprintf (FILE, "\tnop\n"); \
1a94ca49 1302 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1303} while (0)
1a94ca49 1304
3a523eeb
RS
1305/* Section in which to place the trampoline. On Alpha, instructions
1306 may only be placed in a text segment. */
1307
1308#define TRAMPOLINE_SECTION text_section
1309
1a94ca49
RK
1310/* Length in units of the trampoline for entering a nested function. */
1311
7981384f 1312#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1313
1314/* Emit RTL insns to initialize the variable parts of a trampoline.
1315 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1316 CXT is an RTX for the static chain value for the function. */
1a94ca49 1317
9ec36da5 1318#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1319 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1320
1321/* A C expression whose value is RTL representing the value of the return
1322 address for the frame COUNT steps up from the current frame.
1323 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1324 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1325
9ecc37f0 1326#define RETURN_ADDR_RTX alpha_return_addr
9ecc37f0 1327
6abc6f40
RH
1328/* Before the prologue, RA lives in $26. */
1329#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
675f0e7c 1330\f
1a94ca49
RK
1331/* Addressing modes, and classification of registers for them. */
1332
940da324
JL
1333/* #define HAVE_POST_INCREMENT 0 */
1334/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1335
940da324
JL
1336/* #define HAVE_PRE_DECREMENT 0 */
1337/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1338
1339/* Macros to check register numbers against specific register classes. */
1340
1341/* These assume that REGNO is a hard or pseudo reg number.
1342 They give nonzero only if REGNO is a hard reg of the suitable class
1343 or a pseudo reg currently allocated to a suitable hard reg.
1344 Since they use reg_renumber, they are safe only once reg_renumber
1345 has been allocated, which happens in local-alloc.c. */
1346
1347#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1348#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1349((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1350 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1351\f
1352/* Maximum number of registers that can appear in a valid memory address. */
1353#define MAX_REGS_PER_ADDRESS 1
1354
1355/* Recognize any constant value that is a valid address. For the Alpha,
1356 there are only constants none since we want to use LDA to load any
1357 symbolic addresses into registers. */
1358
1359#define CONSTANT_ADDRESS_P(X) \
1360 (GET_CODE (X) == CONST_INT \
1361 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1362
1363/* Include all constant integers and constant doubles, but not
1364 floating-point, except for floating-point zero. */
1365
1366#define LEGITIMATE_CONSTANT_P(X) \
1367 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1368 || (X) == CONST0_RTX (GET_MODE (X)))
1369
1370/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1371 and check its validity for a certain class.
1372 We have two alternate definitions for each of them.
1373 The usual definition accepts all pseudo regs; the other rejects
1374 them unless they have been allocated suitable hard regs.
1375 The symbol REG_OK_STRICT causes the latter definition to be used.
1376
1377 Most source files want to accept pseudo regs in the hope that
1378 they will get allocated to the class that the insn wants them to be in.
1379 Source files for reload pass need to be strict.
1380 After reload, it makes no difference, since pseudo regs have
1381 been eliminated by then. */
1382
1383#ifndef REG_OK_STRICT
1384
1385/* Nonzero if X is a hard reg that can be used as an index
1386 or if it is a pseudo reg. */
1387#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1388
1a94ca49
RK
1389/* Nonzero if X is a hard reg that can be used as a base reg
1390 or if it is a pseudo reg. */
1391#define REG_OK_FOR_BASE_P(X) \
52a69200 1392 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1393
5d02b6c2
RH
1394/* ??? Nonzero if X is the frame pointer, or some virtual register
1395 that may eliminate to the frame pointer. These will be allowed to
1396 have offsets greater than 32K. This is done because register
1397 elimination offsets will change the hi/lo split, and if we split
1398 before reload, we will require additional instructions. */
1399#define REG_OK_FP_BASE_P(X) \
1400 (REGNO (X) == 31 || REGNO (X) == 63 \
1401 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1402 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1403
1a94ca49
RK
1404#else
1405
1406/* Nonzero if X is a hard reg that can be used as an index. */
1407#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1408
1a94ca49
RK
1409/* Nonzero if X is a hard reg that can be used as a base reg. */
1410#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1411
5d02b6c2
RH
1412#define REG_OK_FP_BASE_P(X) 0
1413
1a94ca49
RK
1414#endif
1415\f
1416/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1417 that is a valid memory address for an instruction.
1418 The MODE argument is the machine mode for the MEM expression
1419 that wants to use this address.
1420
1421 For Alpha, we have either a constant address or the sum of a register
1422 and a constant address, or just a register. For DImode, any of those
1423 forms can be surrounded with an AND that clear the low-order three bits;
1424 this is an "unaligned" access.
1425
1a94ca49
RK
1426 First define the basic valid address. */
1427
4c020733
RH
1428#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1429{ \
1430 rtx tmp = (X); \
1431 if (GET_CODE (tmp) == SUBREG \
1432 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1433 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1434 tmp = SUBREG_REG (tmp); \
1435 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1436 goto ADDR; \
1437 if (CONSTANT_ADDRESS_P (X)) \
1438 goto ADDR; \
1439 if (GET_CODE (X) == PLUS) \
1440 { \
1441 tmp = XEXP (X, 0); \
1442 if (GET_CODE (tmp) == SUBREG \
1443 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1444 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1445 tmp = SUBREG_REG (tmp); \
1446 if (REG_P (tmp)) \
1447 { \
1448 if (REG_OK_FP_BASE_P (tmp) \
1449 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1450 goto ADDR; \
1451 if (REG_OK_FOR_BASE_P (tmp) \
1452 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1453 goto ADDR; \
1454 } \
0c5912f4
RH
1455 else if (GET_CODE (tmp) == ADDRESSOF \
1456 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1457 goto ADDR; \
4c020733 1458 } \
1a94ca49
RK
1459}
1460
1461/* Now accept the simple address, or, for DImode only, an AND of a simple
1462 address that turns off the low three bits. */
1463
1a94ca49
RK
1464#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1465{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1466 if ((MODE) == DImode \
1467 && GET_CODE (X) == AND \
1468 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1469 && INTVAL (XEXP (X, 1)) == -8) \
1470 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1471}
1472
1473/* Try machine-dependent ways of modifying an illegitimate address
1474 to be legitimate. If we find one, return the new, valid address.
1475 This macro is used in only one place: `memory_address' in explow.c.
1476
1477 OLDX is the address as it was before break_out_memory_refs was called.
1478 In some cases it is useful to look at this to decide what needs to be done.
1479
1480 MODE and WIN are passed so that this macro can use
1481 GO_IF_LEGITIMATE_ADDRESS.
1482
1483 It is always safe for this macro to do nothing. It exists to recognize
1484 opportunities to optimize the output.
1485
1486 For the Alpha, there are three cases we handle:
1487
1488 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1489 valid offset, compute the high part of the constant and add it to the
1490 register. Then our address is (plus temp low-part-const).
1491 (2) If the address is (const (plus FOO const_int)), find the low-order
1492 part of the CONST_INT. Then load FOO plus any high-order part of the
1493 CONST_INT into a register. Our address is (plus reg low-part-const).
1494 This is done to reduce the number of GOT entries.
1495 (3) If we have a (plus reg const), emit the load as in (2), then add
1496 the two registers, and finally generate (plus reg low-part-const) as
1497 our address. */
1498
1499#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1500{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1501 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1502 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1503 { \
1504 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1505 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1506 HOST_WIDE_INT highpart = val - lowpart; \
1507 rtx high = GEN_INT (highpart); \
1508 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1509 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1510 \
1511 (X) = plus_constant (temp, lowpart); \
1512 goto WIN; \
1513 } \
1514 else if (GET_CODE (X) == CONST \
1515 && GET_CODE (XEXP (X, 0)) == PLUS \
1516 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1517 { \
1518 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1519 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1520 HOST_WIDE_INT highpart = val - lowpart; \
1521 rtx high = XEXP (XEXP (X, 0), 0); \
1522 \
1523 if (highpart) \
1524 high = plus_constant (high, highpart); \
1525 \
1526 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1527 goto WIN; \
1528 } \
1529 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1530 && GET_CODE (XEXP (X, 1)) == CONST \
1531 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1532 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1533 { \
1534 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1535 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1536 HOST_WIDE_INT highpart = val - lowpart; \
1537 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1538 \
1539 if (highpart) \
1540 high = plus_constant (high, highpart); \
1541 \
1542 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1543 force_reg (Pmode, high), \
80f251fe 1544 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1545 (X) = plus_constant (high, lowpart); \
1546 goto WIN; \
1547 } \
1548}
1549
a9a2595b
JR
1550/* Try a machine-dependent way of reloading an illegitimate address
1551 operand. If we find one, push the reload and jump to WIN. This
1552 macro is used in only one place: `find_reloads_address' in reload.c.
1553
1554 For the Alpha, we wish to handle large displacements off a base
1555 register by splitting the addend across an ldah and the mem insn.
1556 This cuts number of extra insns needed from 3 to 1. */
1557
1558#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1559do { \
c8ab9901
RH
1560 /* We must recognize output that we have already generated ourselves. */ \
1561 if (GET_CODE (X) == PLUS \
1562 && GET_CODE (XEXP (X, 0)) == PLUS \
1563 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1564 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1565 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1566 { \
1567 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1568 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1569 OPNUM, TYPE); \
1570 goto WIN; \
1571 } \
a9a2595b
JR
1572 if (GET_CODE (X) == PLUS \
1573 && GET_CODE (XEXP (X, 0)) == REG \
1574 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1575 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1576 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1577 { \
1578 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1579 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1580 HOST_WIDE_INT high \
1581 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1582 \
1583 /* Check for 32-bit overflow. */ \
1584 if (high + low != val) \
1585 break; \
1586 \
1587 /* Reload the high part into a base reg; leave the low part \
1588 in the mem directly. */ \
1589 \
1590 X = gen_rtx_PLUS (GET_MODE (X), \
1591 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1592 GEN_INT (high)), \
1593 GEN_INT (low)); \
1594 \
1595 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1596 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1597 OPNUM, TYPE); \
1598 goto WIN; \
1599 } \
1600} while (0)
1601
1a94ca49
RK
1602/* Go to LABEL if ADDR (a legitimate address expression)
1603 has an effect that depends on the machine mode it is used for.
1604 On the Alpha this is true only for the unaligned modes. We can
1605 simplify this test since we know that the address must be valid. */
1606
1607#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1608{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1609
1610/* Compute the cost of an address. For the Alpha, all valid addresses are
1611 the same cost. */
1612
1613#define ADDRESS_COST(X) 0
1614
2ea844d3
RH
1615/* Machine-dependent reorg pass. */
1616#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1617\f
1618/* Specify the machine mode that this machine uses
1619 for the index in the tablejump instruction. */
1620#define CASE_VECTOR_MODE SImode
1621
18543a22
ILT
1622/* Define as C expression which evaluates to nonzero if the tablejump
1623 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1624 table.
b0435cf4 1625
3aa9d5b6 1626 Do not define this if the table should contain absolute addresses.
260ced47
RK
1627 On the Alpha, the table is really GP-relative, not relative to the PC
1628 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1629 but we should try to find some better way sometime. */
18543a22 1630#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1631
1632/* Specify the tree operation to be used to convert reals to integers. */
1633#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1634
1635/* This is the kind of divide that is easiest to do in the general case. */
1636#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1637
1638/* Define this as 1 if `char' should by default be signed; else as 0. */
1639#define DEFAULT_SIGNED_CHAR 1
1640
1641/* This flag, if defined, says the same insns that convert to a signed fixnum
1642 also convert validly to an unsigned one.
1643
1644 We actually lie a bit here as overflow conditions are different. But
1645 they aren't being checked anyway. */
1646
1647#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1648
1649/* Max number of bytes we can move to or from memory
1650 in one reasonably fast instruction. */
1651
1652#define MOVE_MAX 8
1653
7e24ffc9
HPN
1654/* If a memory-to-memory move would take MOVE_RATIO or more simple
1655 move-instruction pairs, we will do a movstr or libcall instead.
1656
1657 Without byte/word accesses, we want no more than four instructions;
1658 with, several single byte accesses are better. */
6c174fc0
RH
1659
1660#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1661
1a94ca49
RK
1662/* Largest number of bytes of an object that can be placed in a register.
1663 On the Alpha we have plenty of registers, so use TImode. */
1664#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1665
1666/* Nonzero if access to memory by bytes is no faster than for words.
1667 Also non-zero if doing byte operations (specifically shifts) in registers
1668 is undesirable.
1669
1670 On the Alpha, we want to not use the byte operation and instead use
1671 masking operations to access fields; these will save instructions. */
1672
1673#define SLOW_BYTE_ACCESS 1
1674
9a63901f
RK
1675/* Define if operations between registers always perform the operation
1676 on the full register even if a narrower mode is specified. */
1677#define WORD_REGISTER_OPERATIONS
1678
1679/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1680 will either zero-extend or sign-extend. The value of this macro should
1681 be the code that says which one of the two operations is implicitly
1682 done, NIL if none. */
b7747781 1683#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1684
225211e2
RK
1685/* Define if loading short immediate values into registers sign extends. */
1686#define SHORT_IMMEDIATES_SIGN_EXTEND
1687
1a94ca49
RK
1688/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1689 is done just by pretending it is already truncated. */
1690#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1691
1692/* We assume that the store-condition-codes instructions store 0 for false
1693 and some other value for true. This is the value stored for true. */
1694
1695#define STORE_FLAG_VALUE 1
1696
1697/* Define the value returned by a floating-point comparison instruction. */
1698
e9a25f70 1699#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1700
35bb77fd
RK
1701/* Canonicalize a comparison from one we don't have to one we do have. */
1702
1703#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1704 do { \
1705 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1706 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1707 { \
1708 rtx tem = (OP0); \
1709 (OP0) = (OP1); \
1710 (OP1) = tem; \
1711 (CODE) = swap_condition (CODE); \
1712 } \
1713 if (((CODE) == LT || (CODE) == LTU) \
1714 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1715 { \
1716 (CODE) = (CODE) == LT ? LE : LEU; \
1717 (OP1) = GEN_INT (255); \
1718 } \
1719 } while (0)
1720
1a94ca49
RK
1721/* Specify the machine mode that pointers have.
1722 After generation of rtl, the compiler makes no further distinction
1723 between pointers and any other objects of this machine mode. */
1724#define Pmode DImode
1725
1726/* Mode of a function address in a call instruction (for indexing purposes). */
1727
1728#define FUNCTION_MODE Pmode
1729
1730/* Define this if addresses of constant functions
1731 shouldn't be put through pseudo regs where they can be cse'd.
1732 Desirable on machines where ordinary constants are expensive
1733 but a CALL with constant address is cheap.
1734
1735 We define this on the Alpha so that gen_call and gen_call_value
1736 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1737 then copy it into a register, thus actually letting the address be
1738 cse'ed. */
1739
1740#define NO_FUNCTION_CSE
1741
d969caf8 1742/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1743 few bits. */
d969caf8 1744#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1745
71d9b493 1746/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1747#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1748
7d0bfbd0
RH
1749/* Describe the fact that MULTI instructions are multiple instructions
1750 and so to assume they don't pair with anything. */
1751#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1752 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1753 (CAN_ISSUE_MORE) = 0
1754
1a94ca49
RK
1755/* Compute the cost of computing a constant rtl expression RTX
1756 whose rtx-code is CODE. The body of this macro is a portion
1757 of a switch statement. If the code is computed here,
1758 return it with a return statement. Otherwise, break from the switch.
1759
8b7b2e36
RK
1760 If this is an 8-bit constant, return zero since it can be used
1761 nearly anywhere with no cost. If it is a valid operand for an
1762 ADD or AND, likewise return 0 if we know it will be used in that
1763 context. Otherwise, return 2 since it might be used there later.
1764 All other constants take at least two insns. */
1a94ca49
RK
1765
1766#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1767 case CONST_INT: \
06eb8e92 1768 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1769 return 0; \
1a94ca49 1770 case CONST_DOUBLE: \
5d02ee66
RH
1771 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1772 return 0; \
1773 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1774 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1775 return 0; \
1776 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1777 return 2; \
1778 else \
1779 return COSTS_N_INSNS (2); \
1a94ca49
RK
1780 case CONST: \
1781 case SYMBOL_REF: \
1782 case LABEL_REF: \
f6f6a13c
RK
1783 switch (alpha_cpu) \
1784 { \
1785 case PROCESSOR_EV4: \
1786 return COSTS_N_INSNS (3); \
1787 case PROCESSOR_EV5: \
5d02ee66 1788 case PROCESSOR_EV6: \
f6f6a13c 1789 return COSTS_N_INSNS (2); \
5d02ee66 1790 default: abort(); \
f6f6a13c 1791 }
1a94ca49
RK
1792
1793/* Provide the costs of a rtl expression. This is in the body of a
1794 switch on CODE. */
1795
1796#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1797 case PLUS: case MINUS: \
1798 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1799 switch (alpha_cpu) \
1800 { \
1801 case PROCESSOR_EV4: \
1802 return COSTS_N_INSNS (6); \
1803 case PROCESSOR_EV5: \
5d02ee66 1804 case PROCESSOR_EV6: \
f6f6a13c 1805 return COSTS_N_INSNS (4); \
5d02ee66 1806 default: abort(); \
f6f6a13c 1807 } \
b49e978e
RK
1808 else if (GET_CODE (XEXP (X, 0)) == MULT \
1809 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1810 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1811 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1812 break; \
1813 case MULT: \
f6f6a13c
RK
1814 switch (alpha_cpu) \
1815 { \
1816 case PROCESSOR_EV4: \
1817 if (FLOAT_MODE_P (GET_MODE (X))) \
1818 return COSTS_N_INSNS (6); \
1819 return COSTS_N_INSNS (23); \
1820 case PROCESSOR_EV5: \
1821 if (FLOAT_MODE_P (GET_MODE (X))) \
1822 return COSTS_N_INSNS (4); \
1823 else if (GET_MODE (X) == DImode) \
1824 return COSTS_N_INSNS (12); \
1825 else \
1826 return COSTS_N_INSNS (8); \
5d02ee66
RH
1827 case PROCESSOR_EV6: \
1828 if (FLOAT_MODE_P (GET_MODE (X))) \
1829 return COSTS_N_INSNS (4); \
1830 else \
1831 return COSTS_N_INSNS (7); \
1832 default: abort(); \
f6f6a13c 1833 } \
b49e978e
RK
1834 case ASHIFT: \
1835 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1836 && INTVAL (XEXP (X, 1)) <= 3) \
1837 break; \
1838 /* ... fall through ... */ \
5d02ee66 1839 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1840 switch (alpha_cpu) \
1841 { \
1842 case PROCESSOR_EV4: \
1843 return COSTS_N_INSNS (2); \
1844 case PROCESSOR_EV5: \
5d02ee66 1845 case PROCESSOR_EV6: \
f6f6a13c 1846 return COSTS_N_INSNS (1); \
5d02ee66
RH
1847 default: abort(); \
1848 } \
1849 case IF_THEN_ELSE: \
1850 switch (alpha_cpu) \
1851 { \
1852 case PROCESSOR_EV4: \
1853 case PROCESSOR_EV6: \
1854 return COSTS_N_INSNS (2); \
1855 case PROCESSOR_EV5: \
1856 return COSTS_N_INSNS (1); \
1857 default: abort(); \
f6f6a13c 1858 } \
3bda6d11 1859 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1860 switch (alpha_cpu) \
1861 { \
1862 case PROCESSOR_EV4: \
1863 if (GET_MODE (X) == SFmode) \
1864 return COSTS_N_INSNS (34); \
1865 else if (GET_MODE (X) == DFmode) \
1866 return COSTS_N_INSNS (63); \
1867 else \
1868 return COSTS_N_INSNS (70); \
1869 case PROCESSOR_EV5: \
1870 if (GET_MODE (X) == SFmode) \
1871 return COSTS_N_INSNS (15); \
1872 else if (GET_MODE (X) == DFmode) \
1873 return COSTS_N_INSNS (22); \
1874 else \
5d02ee66
RH
1875 return COSTS_N_INSNS (70); /* ??? */ \
1876 case PROCESSOR_EV6: \
1877 if (GET_MODE (X) == SFmode) \
1878 return COSTS_N_INSNS (12); \
1879 else if (GET_MODE (X) == DFmode) \
1880 return COSTS_N_INSNS (15); \
1881 else \
1882 return COSTS_N_INSNS (70); /* ??? */ \
1883 default: abort(); \
f6f6a13c 1884 } \
1a94ca49 1885 case MEM: \
f6f6a13c
RK
1886 switch (alpha_cpu) \
1887 { \
1888 case PROCESSOR_EV4: \
5d02ee66 1889 case PROCESSOR_EV6: \
f6f6a13c
RK
1890 return COSTS_N_INSNS (3); \
1891 case PROCESSOR_EV5: \
1892 return COSTS_N_INSNS (2); \
5d02ee66 1893 default: abort(); \
f6f6a13c
RK
1894 } \
1895 case NEG: case ABS: \
1896 if (! FLOAT_MODE_P (GET_MODE (X))) \
1897 break; \
1898 /* ... fall through ... */ \
3bda6d11
RK
1899 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1900 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1901 switch (alpha_cpu) \
1902 { \
1903 case PROCESSOR_EV4: \
1904 return COSTS_N_INSNS (6); \
1905 case PROCESSOR_EV5: \
5d02ee66 1906 case PROCESSOR_EV6: \
f6f6a13c 1907 return COSTS_N_INSNS (4); \
5d02ee66 1908 default: abort(); \
f6f6a13c 1909 }
1a94ca49
RK
1910\f
1911/* Control the assembler format that we output. */
1912
40ef2fc5
JL
1913/* We don't emit these labels, so as to avoid getting linker errors about
1914 missing exception handling info. If we emit a gcc_compiled. label into
1915 text, and the file has no code, then the DEC assembler gives us a zero
1916 sized text section with no associated exception handling info. The
38e01259 1917 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1918 the exception handling info is missing. */
3c303f52
KG
1919#define ASM_IDENTIFY_GCC(x)
1920#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1921
1a94ca49
RK
1922/* Output to assembler file text saying following lines
1923 may contain character constants, extra white space, comments, etc. */
1924
1925#define ASM_APP_ON ""
1926
1927/* Output to assembler file text saying following lines
1928 no longer contain unusual constructs. */
1929
1930#define ASM_APP_OFF ""
1931
1932#define TEXT_SECTION_ASM_OP ".text"
1933
1934/* Output before read-only data. */
1935
1936#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1937
1938/* Output before writable data. */
1939
1940#define DATA_SECTION_ASM_OP ".data"
1941
1942/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1943 indicate that it is for read-only data.
1944
abc95ed3 1945 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1946 eight bytes of zero. This works around a bug in DEC's assembler in
1947 some versions of OSF/1 V3.x. */
1a94ca49
RK
1948
1949#define EXTRA_SECTIONS readonly_data
1950
1951#define EXTRA_SECTION_FUNCTIONS \
1952void \
1953literal_section () \
1954{ \
1955 if (in_section != readonly_data) \
1956 { \
c0388f29
RK
1957 static int firsttime = 1; \
1958 \
1a94ca49 1959 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1960 if (firsttime) \
1961 { \
1962 firsttime = 0; \
1963 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1964 } \
1965 \
1a94ca49
RK
1966 in_section = readonly_data; \
1967 } \
1968} \
1969
1970#define READONLY_DATA_SECTION literal_section
1971
ac030a7b
RK
1972/* If we are referencing a function that is static, make the SYMBOL_REF
1973 special. We use this to see indicate we can branch to this function
1974 without setting PV or restoring GP. */
130d2d72
RK
1975
1976#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1977 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1978 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1979
1a94ca49
RK
1980/* How to refer to registers in assembler output.
1981 This sequence is indexed by compiler's hard-register-number (see above). */
1982
1983#define REGISTER_NAMES \
1984{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1985 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1986 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1987 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1988 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1989 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1990 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1991 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1992
1993/* How to renumber registers for dbx and gdb. */
1994
1995#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1996
1997/* This is how to output the definition of a user-level label named NAME,
1998 such as the label on a static function or variable NAME. */
1999
2000#define ASM_OUTPUT_LABEL(FILE,NAME) \
2001 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2002
2003/* This is how to output a command to make the user-level label named NAME
2004 defined for reference from other files. */
2005
2006#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2007 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2008
4e0c8ad2 2009/* The prefix to add to user-visible assembler symbols. */
1a94ca49 2010
4e0c8ad2 2011#define USER_LABEL_PREFIX ""
1a94ca49
RK
2012
2013/* This is how to output an internal numbered label where
2014 PREFIX is the class of label and NUM is the number within the class. */
2015
2016#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 2017 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
2018
2019/* This is how to output a label for a jump table. Arguments are the same as
2020 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2021 passed. */
2022
2023#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2024{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2025
2026/* This is how to store into the string LABEL
2027 the symbol_ref name of an internal numbered label where
2028 PREFIX is the class of label and NUM is the number within the class.
2029 This is suitable for output with `assemble_name'. */
2030
2031#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 2032 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 2033
e247ca2a
RK
2034/* Check a floating-point value for validity for a particular machine mode. */
2035
2036#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2037 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2038
1a94ca49
RK
2039/* This is how to output an assembler line defining a `double' constant. */
2040
e99300f1
RS
2041#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2042 { \
2043 if (REAL_VALUE_ISINF (VALUE) \
2044 || REAL_VALUE_ISNAN (VALUE) \
2045 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2046 { \
2047 long t[2]; \
2048 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2049 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2050 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2051 } \
2052 else \
2053 { \
2054 char str[30]; \
2055 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 2056 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
2057 } \
2058 }
1a94ca49
RK
2059
2060/* This is how to output an assembler line defining a `float' constant. */
2061
e247ca2a
RK
2062#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2063 do { \
2064 long t; \
2065 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2066 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2067} while (0)
2700ac93 2068
1a94ca49
RK
2069/* This is how to output an assembler line defining an `int' constant. */
2070
2071#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2072( fprintf (FILE, "\t.long "), \
2073 output_addr_const (FILE, (VALUE)), \
2074 fprintf (FILE, "\n"))
1a94ca49
RK
2075
2076/* This is how to output an assembler line defining a `long' constant. */
2077
2078#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2079( fprintf (FILE, "\t.quad "), \
2080 output_addr_const (FILE, (VALUE)), \
2081 fprintf (FILE, "\n"))
2082
2083/* Likewise for `char' and `short' constants. */
2084
2085#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2086 fprintf (FILE, "\t.word %d\n", \
3c303f52 2087 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2088 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2089
2090#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2091 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2092 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2093 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2094
2095/* We use the default ASCII-output routine, except that we don't write more
2096 than 50 characters since the assembler doesn't support very long lines. */
2097
2098#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2099 do { \
2100 FILE *_hide_asm_out_file = (MYFILE); \
2101 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2102 int _hide_thissize = (MYLENGTH); \
2103 int _size_so_far = 0; \
2104 { \
2105 FILE *asm_out_file = _hide_asm_out_file; \
2106 unsigned char *p = _hide_p; \
2107 int thissize = _hide_thissize; \
2108 int i; \
2109 fprintf (asm_out_file, "\t.ascii \""); \
2110 \
2111 for (i = 0; i < thissize; i++) \
2112 { \
2113 register int c = p[i]; \
2114 \
2115 if (_size_so_far ++ > 50 && i < thissize - 4) \
2116 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2117 \
2118 if (c == '\"' || c == '\\') \
2119 putc ('\\', asm_out_file); \
2120 if (c >= ' ' && c < 0177) \
2121 putc (c, asm_out_file); \
2122 else \
2123 { \
2124 fprintf (asm_out_file, "\\%o", c); \
2125 /* After an octal-escape, if a digit follows, \
2126 terminate one string constant and start another. \
2127 The Vax assembler fails to stop reading the escape \
2128 after three digits, so this is the only way we \
2129 can get it to parse the data properly. */ \
2130 if (i < thissize - 1 \
2131 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2132 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2133 } \
2134 } \
2135 fprintf (asm_out_file, "\"\n"); \
2136 } \
2137 } \
2138 while (0)
52a69200 2139
6690d24c
RH
2140/* To get unaligned data, we have to turn off auto alignment. */
2141#define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word"
2142#define UNALIGNED_INT_ASM_OP ".align 0\n\t.long"
2143#define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad"
2144
1a94ca49
RK
2145/* This is how to output an insn to push a register on the stack.
2146 It need not be very fast code. */
2147
2148#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2149 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2150 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2151 (REGNO) & 31);
2152
2153/* This is how to output an insn to pop a register from the stack.
2154 It need not be very fast code. */
2155
2156#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2157 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2158 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2159 (REGNO) & 31);
2160
2161/* This is how to output an assembler line for a numeric constant byte. */
2162
2163#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2164 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2165
260ced47
RK
2166/* This is how to output an element of a case-vector that is absolute.
2167 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2168
260ced47 2169#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2170
260ced47 2171/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2172
33f7f353 2173#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2174 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2175 (VALUE))
1a94ca49
RK
2176
2177/* This is how to output an assembler line
2178 that says to advance the location counter
2179 to a multiple of 2**LOG bytes. */
2180
2181#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2182 if ((LOG) != 0) \
2183 fprintf (FILE, "\t.align %d\n", LOG);
2184
2185/* This is how to advance the location counter by SIZE bytes. */
2186
2187#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2188 fprintf (FILE, "\t.space %d\n", (SIZE))
2189
2190/* This says how to output an assembler line
2191 to define a global common symbol. */
2192
2193#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2194( fputs ("\t.comm ", (FILE)), \
2195 assemble_name ((FILE), (NAME)), \
2196 fprintf ((FILE), ",%d\n", (SIZE)))
2197
2198/* This says how to output an assembler line
2199 to define a local common symbol. */
2200
2201#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2202( fputs ("\t.lcomm ", (FILE)), \
2203 assemble_name ((FILE), (NAME)), \
2204 fprintf ((FILE), ",%d\n", (SIZE)))
2205
2206/* Store in OUTPUT a string (made with alloca) containing
2207 an assembler-name for a local static variable named NAME.
2208 LABELNO is an integer which is different for each call. */
2209
2210#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2211( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2212 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2213
2214/* Define the parentheses used to group arithmetic operations
2215 in assembler code. */
2216
2217#define ASM_OPEN_PAREN "("
2218#define ASM_CLOSE_PAREN ")"
2219
60593797
RH
2220/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2221 Used for C++ multiple inheritance. */
2222
2223#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2224do { \
92d4501f 2225 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2226 int reg; \
60593797 2227 \
acd92049
RH
2228 /* Mark end of prologue. */ \
2229 output_end_prologue (FILE); \
60593797
RH
2230 \
2231 /* Rely on the assembler to macro expand a large delta. */ \
54473ca7
L
2232 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2233 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797 2234 \
b1afd7f4
KG
2235 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0), \
2236 VOIDmode)) \
60593797
RH
2237 { \
2238 fprintf (FILE, "\tbr $31,$"); \
2239 assemble_name (FILE, fn_name); \
2240 fprintf (FILE, "..ng\n"); \
2241 } \
2242 else \
2243 { \
acd92049 2244 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2245 assemble_name (FILE, fn_name); \
2246 fputc ('\n', FILE); \
2247 } \
60593797 2248} while (0)
60593797 2249\f
9ec36da5 2250
1a94ca49
RK
2251/* Define results of standard character escape sequences. */
2252#define TARGET_BELL 007
2253#define TARGET_BS 010
2254#define TARGET_TAB 011
2255#define TARGET_NEWLINE 012
2256#define TARGET_VT 013
2257#define TARGET_FF 014
2258#define TARGET_CR 015
2259
2260/* Print operand X (an rtx) in assembler syntax to file FILE.
2261 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2262 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2263
2264#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2265
2266/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2267 not be alphabetic (the characters are chosen so that
2268 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2269 using ASCII).
2270
2271 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2272 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2273 mode. alpha_fprm controls which suffix is generated.
2274
2275 ' Generates trap-mode suffix for instructions that accept the
2276 su suffix only (cmpt et al).
2277
e83015a9
RH
2278 ` Generates trap-mode suffix for instructions that accept the
2279 v and sv suffix. The only instruction that needs this is cvtql.
2280
0022a940
DMT
2281 ( Generates trap-mode suffix for instructions that accept the
2282 v, sv, and svi suffix. The only instruction that needs this
2283 is cvttq.
2284
2bf6230d
RK
2285 ) Generates trap-mode suffix for instructions that accept the
2286 u, su, and sui suffix. This is the bulk of the IEEE floating
2287 point instructions (addt et al).
2288
2289 + Generates trap-mode suffix for instructions that accept the
2290 sui suffix (cvtqt and cvtqs).
e5958492
RK
2291
2292 , Generates single precision suffix for floating point
2293 instructions (s for IEEE, f for VAX)
2294
2295 - Generates double precision suffix for floating point
2296 instructions (t for IEEE, g for VAX)
2bf6230d 2297 */
1a94ca49 2298
2bf6230d 2299#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2300 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2301 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2302\f
2303/* Print a memory address as an operand to reference that memory location. */
2304
714b019c
RH
2305#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2306 print_operand_address((FILE), (ADDR))
2307
1a94ca49
RK
2308/* Define the codes that are matched by predicates in alpha.c. */
2309
e3208d53
RH
2310#define PREDICATE_CODES \
2311 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2312 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2313 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2314 {"cint8_operand", {CONST_INT}}, \
2315 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2316 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2317 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2318 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2319 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2320 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2321 {"mode_mask_operand", {CONST_INT}}, \
2322 {"mul8_operand", {CONST_INT}}, \
2323 {"mode_width_operand", {CONST_INT}}, \
2324 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2325 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2326 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2327 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2328 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2329 {"fp0_operand", {CONST_DOUBLE}}, \
2330 {"current_file_function_operand", {SYMBOL_REF}}, \
2331 {"call_operand", {REG, SYMBOL_REF}}, \
2332 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2333 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2334 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2335 SYMBOL_REF, CONST, LABEL_REF}}, \
f711a22b 2336 {"some_ni_operand", {SUBREG, REG, MEM}}, \
e3208d53
RH
2337 {"aligned_memory_operand", {MEM}}, \
2338 {"unaligned_memory_operand", {MEM}}, \
2339 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2340 {"any_memory_operand", {MEM}}, \
40b80dad 2341 {"hard_fp_register_operand", {SUBREG, REG}}, \
67070f5c
RH
2342 {"reg_not_elim_operand", {SUBREG, REG}}, \
2343 {"reg_no_subreg_operand", {REG}},
03f8c4cc 2344\f
63966b3b
RH
2345/* Define the `__builtin_va_list' type for the ABI. */
2346#define BUILD_VA_LIST_TYPE(VALIST) \
2347 (VALIST) = alpha_build_va_list ()
2348
2349/* Implement `va_start' for varargs and stdarg. */
2350#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2351 alpha_va_start (stdarg, valist, nextarg)
2352
2353/* Implement `va_arg'. */
2354#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2355 alpha_va_arg (valist, type)
2356\f
34fa88ab
RK
2357/* Tell collect that the object format is ECOFF. */
2358#define OBJECT_FORMAT_COFF
2359#define EXTENDED_COFF
2360
2361/* If we use NM, pass -g to it so it only lists globals. */
2362#define NM_FLAGS "-pg"
2363
03f8c4cc
RK
2364/* Definitions for debugging. */
2365
2366#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2367#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2368#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2369
2370#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2371#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2372#endif
2373
2374
2375/* Correct the offset of automatic variables and arguments. Note that
2376 the Alpha debug format wants all automatic variables and arguments
2377 to be in terms of two different offsets from the virtual frame pointer,
2378 which is the stack pointer before any adjustment in the function.
2379 The offset for the argument pointer is fixed for the native compiler,
2380 it is either zero (for the no arguments case) or large enough to hold
2381 all argument registers.
2382 The offset for the auto pointer is the fourth argument to the .frame
2383 directive (local_offset).
2384 To stay compatible with the native tools we use the same offsets
2385 from the virtual frame pointer and adjust the debugger arg/auto offsets
2386 accordingly. These debugger offsets are set up in output_prolog. */
2387
9a0b18f2
RK
2388extern long alpha_arg_offset;
2389extern long alpha_auto_offset;
03f8c4cc
RK
2390#define DEBUGGER_AUTO_OFFSET(X) \
2391 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2392#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2393
2394
2395#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2396 alpha_output_lineno (STREAM, LINE)
03f8c4cc
RK
2397
2398#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2399 alpha_output_filename (STREAM, NAME)
03f8c4cc 2400
4330b0e7
JW
2401/* mips-tfile.c limits us to strings of one page. We must underestimate this
2402 number, because the real length runs past this up to the next
2403 continuation point. This is really a dbxout.c bug. */
2404#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2405
2406/* By default, turn on GDB extensions. */
2407#define DEFAULT_GDB_EXTENSIONS 1
2408
7aadc7c2
RK
2409/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2410#define NO_DBX_FUNCTION_END 1
2411
03f8c4cc
RK
2412/* If we are smuggling stabs through the ALPHA ECOFF object
2413 format, put a comment in front of the .stab<x> operation so
2414 that the ALPHA assembler does not choke. The mips-tfile program
2415 will correctly put the stab into the object file. */
2416
2417#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2418#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2419#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2420
2421/* Forward references to tags are allowed. */
2422#define SDB_ALLOW_FORWARD_REFERENCES
2423
2424/* Unknown tags are also allowed. */
2425#define SDB_ALLOW_UNKNOWN_REFERENCES
2426
2427#define PUT_SDB_DEF(a) \
2428do { \
2429 fprintf (asm_out_file, "\t%s.def\t", \
2430 (TARGET_GAS) ? "" : "#"); \
2431 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2432 fputc (';', asm_out_file); \
2433} while (0)
2434
2435#define PUT_SDB_PLAIN_DEF(a) \
2436do { \
2437 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2438 (TARGET_GAS) ? "" : "#", (a)); \
2439} while (0)
2440
2441#define PUT_SDB_TYPE(a) \
2442do { \
2443 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2444} while (0)
2445
2446/* For block start and end, we create labels, so that
2447 later we can figure out where the correct offset is.
2448 The normal .ent/.end serve well enough for functions,
2449 so those are just commented out. */
2450
2451extern int sdb_label_count; /* block start/end next label # */
2452
2453#define PUT_SDB_BLOCK_START(LINE) \
2454do { \
2455 fprintf (asm_out_file, \
2456 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2457 sdb_label_count, \
2458 (TARGET_GAS) ? "" : "#", \
2459 sdb_label_count, \
2460 (LINE)); \
2461 sdb_label_count++; \
2462} while (0)
2463
2464#define PUT_SDB_BLOCK_END(LINE) \
2465do { \
2466 fprintf (asm_out_file, \
2467 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2468 sdb_label_count, \
2469 (TARGET_GAS) ? "" : "#", \
2470 sdb_label_count, \
2471 (LINE)); \
2472 sdb_label_count++; \
2473} while (0)
2474
2475#define PUT_SDB_FUNCTION_START(LINE)
2476
2477#define PUT_SDB_FUNCTION_END(LINE)
2478
3c303f52 2479#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2480
03f8c4cc
RK
2481/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2482 mips-tdump.c to print them out.
2483
2484 These must match the corresponding definitions in gdb/mipsread.c.
2485 Unfortunately, gcc and gdb do not currently share any directories. */
2486
2487#define CODE_MASK 0x8F300
2488#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2489#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2490#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2491
2492/* Override some mips-tfile definitions. */
2493
2494#define SHASH_SIZE 511
2495#define THASH_SIZE 55
1e6c6f11
RK
2496
2497/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2498
2499#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2500
54190234
JM
2501/* The linker will stick __main into the .init section. */
2502#define HAS_INIT_SECTION
68d69835
JM
2503#define LD_INIT_SWITCH "-init"
2504#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2505
2506/* The system headers under Alpha systems are generally C++-aware. */
2507#define NO_IMPLICIT_EXTERN_C
b517dcd2
RH
2508
2509/* Generate calls to memcpy, etc., not bcopy, etc. */
2510#define TARGET_MEM_FUNCTIONS 1
This page took 0.943994 seconds and 5 git commands to generate.