]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(check_float_value): New function.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
5258d7ae 2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
38%{mieee:-D_IEEE_FP} \
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
40
41/* Set the spec to use for signed char. The default tests the above macro
42 but DEC's compiler can't handle the conditional in a "constant"
43 operand. */
44
45#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
46
1c6c2b05 47/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 48
1c6c2b05 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
d37df6cc 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
57 %{rpath*}"
58
59#define WORD_SWITCH_TAKES_ARG(STR) \
60 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
61 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
62 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
63 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
64 || !strcmp (STR, "isystem"))
8877eb00 65
85d159a3 66#define STARTFILE_SPEC \
1c6c2b05 67 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 68
1a94ca49
RK
69/* Print subsidiary information on the compiler version in use. */
70#define TARGET_VERSION
71
0076aa6b
RK
72/* Default this to not be compiling for Windows/NT. */
73#ifndef WINDOWS_NT
74#define WINDOWS_NT 0
75#endif
76
1a94ca49
RK
77/* Define the location for the startup file on OSF/1 for Alpha. */
78
79#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
80
81/* Run-time compilation parameters selecting different hardware subsets. */
82
2bf6230d
RK
83enum alpha_trap_precision
84{
85 ALPHA_TP_PROG, /* No precision (default). */
86 ALPHA_TP_FUNC, /* Trap contained within originating function. */
87 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
88};
89
90enum alpha_fp_rounding_mode
91{
92 ALPHA_FPRM_NORM, /* Normal rounding mode. */
93 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
94 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
95 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
96};
97
98enum alpha_fp_trap_mode
99{
100 ALPHA_FPTM_N, /* Normal trap mode. */
101 ALPHA_FPTM_U, /* Underflow traps enabled. */
102 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
103 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
104};
105
1a94ca49
RK
106extern int target_flags;
107
2bf6230d
RK
108extern enum alpha_trap_precision alpha_tp;
109extern enum alpha_fp_rounding_mode alpha_fprm;
110extern enum alpha_fp_trap_mode alpha_fptm;
111
1a94ca49
RK
112/* This means that floating-point support exists in the target implementation
113 of the Alpha architecture. This is usually the default. */
114
2bf6230d
RK
115#define MASK_FP 1
116#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
117
118/* This means that floating-point registers are allowed to be used. Note
119 that Alpha implementations without FP operations are required to
120 provide the FP registers. */
121
2bf6230d
RK
122#define MASK_FPREGS 2
123#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
124
125/* This means that gas is used to process the assembler file. */
126
127#define MASK_GAS 4
128#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 129
2bf6230d
RK
130/* This means that we should mark procedures as IEEE conformant. */
131
132#define MASK_IEEE_CONFORMANT 8
133#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
134
135/* This means we should be IEEE-compliant except for inexact. */
136
137#define MASK_IEEE 16
138#define TARGET_IEEE (target_flags & MASK_IEEE)
139
140/* This means we should be fully IEEE-compliant. */
141
142#define MASK_IEEE_WITH_INEXACT 32
143#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
144
1a94ca49
RK
145/* Macro to define tables used to set the flags.
146 This is a list in braces of pairs in braces,
147 each pair being { "NAME", VALUE }
148 where VALUE is the bits to set or minus the bits to clear.
149 An empty string NAME is used to identify the default VALUE. */
150
2bf6230d
RK
151#define TARGET_SWITCHES \
152 { {"no-soft-float", MASK_FP}, \
153 {"soft-float", - MASK_FP}, \
154 {"fp-regs", MASK_FPREGS}, \
155 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
156 {"alpha-as", -MASK_GAS}, \
157 {"gas", MASK_GAS}, \
158 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
159 {"ieee", MASK_IEEE}, \
160 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT}, \
88681624 161 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
162
163#define TARGET_DEFAULT 3
164
88681624
ILT
165#ifndef TARGET_CPU_DEFAULT
166#define TARGET_CPU_DEFAULT 0
167#endif
168
2bf6230d
RK
169/* This macro is similar to `TARGET_SWITCHES' but defines names of
170 command options that have values. Its definition is an initializer
171 with a subgrouping for each command option.
172
173 Each subgrouping contains a string constant, that defines the fixed
174 part of the option name, and the address of a variable. The
175 variable, type `char *', is set to the variable part of the given
176 option if the fixed part matches. The actual option name is made
177 by appending `-m' to the specified name.
178
179 Here is an example which defines `-mshort-data-NUMBER'. If the
180 given option is `-mshort-data-512', the variable `m88k_short_data'
181 will be set to the string `"512"'.
182
183 extern char *m88k_short_data;
184 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
185
186extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
187extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
188extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
189
190#define TARGET_OPTIONS \
191{ \
192 {"fp-rounding-mode=", &alpha_fprm_string}, \
193 {"fp-trap-mode=", &alpha_fptm_string}, \
194 {"trap-precision=", &alpha_tp_string}, \
195}
196
197/* Sometimes certain combinations of command options do not make sense
198 on a particular target machine. You can define a macro
199 `OVERRIDE_OPTIONS' to take account of this. This macro, if
200 defined, is executed once just after all the command options have
201 been parsed.
202
203 On the Alpha, it is used to translate target-option strings into
204 numeric values. */
205
206extern void override_options ();
207#define OVERRIDE_OPTIONS override_options ()
208
209
1a94ca49
RK
210/* Define this macro to change register usage conditional on target flags.
211
212 On the Alpha, we use this to disable the floating-point registers when
213 they don't exist. */
214
215#define CONDITIONAL_REGISTER_USAGE \
216 if (! TARGET_FPREGS) \
52a69200 217 for (i = 32; i < 63; i++) \
1a94ca49
RK
218 fixed_regs[i] = call_used_regs[i] = 1;
219
4f074454
RK
220/* Show we can debug even without a frame pointer. */
221#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
222\f
223/* target machine storage layout */
224
2700ac93
RS
225/* Define to enable software floating point emulation. */
226#define REAL_ARITHMETIC
227
1a94ca49
RK
228/* Define the size of `int'. The default is the same as the word size. */
229#define INT_TYPE_SIZE 32
230
231/* Define the size of `long long'. The default is the twice the word size. */
232#define LONG_LONG_TYPE_SIZE 64
233
234/* The two floating-point formats we support are S-floating, which is
235 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
236 and `long double' are T. */
237
238#define FLOAT_TYPE_SIZE 32
239#define DOUBLE_TYPE_SIZE 64
240#define LONG_DOUBLE_TYPE_SIZE 64
241
5258d7ae
RK
242#define WCHAR_TYPE "unsigned int"
243#define WCHAR_TYPE_SIZE 32
1a94ca49 244
13d39dbc 245/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
246 in a wider mode than that declared by the program. In such cases,
247 the value is constrained to be within the bounds of the declared
248 type, but kept valid in the wider mode. The signedness of the
249 extension may differ from that of the type.
250
251 For Alpha, we always store objects in a full register. 32-bit objects
252 are always sign-extended, but smaller objects retain their signedness. */
253
254#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
255 if (GET_MODE_CLASS (MODE) == MODE_INT \
256 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
257 { \
258 if ((MODE) == SImode) \
259 (UNSIGNEDP) = 0; \
260 (MODE) = DImode; \
261 }
262
263/* Define this if function arguments should also be promoted using the above
264 procedure. */
265
266#define PROMOTE_FUNCTION_ARGS
267
268/* Likewise, if the function return value is promoted. */
269
270#define PROMOTE_FUNCTION_RETURN
271
272/* Define this if most significant bit is lowest numbered
273 in instructions that operate on numbered bit-fields.
274
275 There are no such instructions on the Alpha, but the documentation
276 is little endian. */
277#define BITS_BIG_ENDIAN 0
278
279/* Define this if most significant byte of a word is the lowest numbered.
280 This is false on the Alpha. */
281#define BYTES_BIG_ENDIAN 0
282
283/* Define this if most significant word of a multiword number is lowest
284 numbered.
285
286 For Alpha we can decide arbitrarily since there are no machine instructions
287 for them. Might as well be consistent with bytes. */
288#define WORDS_BIG_ENDIAN 0
289
290/* number of bits in an addressable storage unit */
291#define BITS_PER_UNIT 8
292
293/* Width in bits of a "word", which is the contents of a machine register.
294 Note that this is not necessarily the width of data type `int';
295 if using 16-bit ints on a 68000, this would still be 32.
296 But on a machine with 16-bit registers, this would be 16. */
297#define BITS_PER_WORD 64
298
299/* Width of a word, in units (bytes). */
300#define UNITS_PER_WORD 8
301
302/* Width in bits of a pointer.
303 See also the macro `Pmode' defined below. */
304#define POINTER_SIZE 64
305
306/* Allocation boundary (in *bits*) for storing arguments in argument list. */
307#define PARM_BOUNDARY 64
308
309/* Boundary (in *bits*) on which stack pointer should be aligned. */
310#define STACK_BOUNDARY 64
311
312/* Allocation boundary (in *bits*) for the code of a function. */
313#define FUNCTION_BOUNDARY 64
314
315/* Alignment of field after `int : 0' in a structure. */
316#define EMPTY_FIELD_BOUNDARY 64
317
318/* Every structure's size must be a multiple of this. */
319#define STRUCTURE_SIZE_BOUNDARY 8
320
321/* A bitfield declared as `int' forces `int' alignment for the struct. */
322#define PCC_BITFIELD_TYPE_MATTERS 1
323
65823178
RK
324/* Align loop starts for optimal branching.
325
326 ??? Kludge this and the next macro for the moment by not doing anything if
327 we don't optimize and also if we are writing ECOFF symbols to work around
328 a bug in DEC's assembler. */
1a94ca49 329
130d2d72 330#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
331 if (optimize > 0 && write_symbols != SDB_DEBUG) \
332 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
333
334/* This is how to align an instruction for optimal branching.
335 On Alpha we'll get better performance by aligning on a quadword
336 boundary. */
130d2d72 337
1a94ca49 338#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
339 if (optimize > 0 && write_symbols != SDB_DEBUG) \
340 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
341
342/* No data type wants to be aligned rounder than this. */
343#define BIGGEST_ALIGNMENT 64
344
442b1685
RK
345/* Align all constants and variables to at least a word boundary so
346 we can pick up pieces of them faster. */
347#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
348#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
1a94ca49
RK
349
350/* Set this non-zero if move instructions will actually fail to work
351 when given unaligned data.
352
353 Since we get an error message when we do one, call them invalid. */
354
355#define STRICT_ALIGNMENT 1
356
357/* Set this non-zero if unaligned move instructions are extremely slow.
358
359 On the Alpha, they trap. */
130d2d72
RK
360
361#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
362\f
363/* Standard register usage. */
364
365/* Number of actual hardware registers.
366 The hardware registers are assigned numbers for the compiler
367 from 0 to just below FIRST_PSEUDO_REGISTER.
368 All registers that the compiler knows about must be given numbers,
369 even those that are not normally considered general registers.
370
371 We define all 32 integer registers, even though $31 is always zero,
372 and all 32 floating-point registers, even though $f31 is also
373 always zero. We do not bother defining the FP status register and
130d2d72
RK
374 there are no other registers.
375
376 Since $31 is always zero, we will use register number 31 as the
377 argument pointer. It will never appear in the generated code
378 because we will always be eliminating it in favor of the stack
52a69200
RK
379 pointer or hardware frame pointer.
380
381 Likewise, we use $f31 for the frame pointer, which will always
382 be eliminated in favor of the hardware frame pointer or the
383 stack pointer. */
1a94ca49
RK
384
385#define FIRST_PSEUDO_REGISTER 64
386
387/* 1 for registers that have pervasive standard uses
388 and are not available for the register allocator. */
389
390#define FIXED_REGISTERS \
391 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
392 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
393 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
394 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
395
396/* 1 for registers not available across function calls.
397 These must include the FIXED_REGISTERS and also any
398 registers that can be used without being saved.
399 The latter must include the registers where values are returned
400 and the register where structure-value addresses are passed.
401 Aside from that, you can include as many other registers as you like. */
402#define CALL_USED_REGISTERS \
403 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
404 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
405 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
406 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
407
408/* List the order in which to allocate registers. Each register must be
409 listed once, even those in FIXED_REGISTERS.
410
411 We allocate in the following order:
412 $f1 (nonsaved floating-point register)
413 $f10-$f15 (likewise)
414 $f22-$f30 (likewise)
415 $f21-$f16 (likewise, but input args)
416 $f0 (nonsaved, but return value)
417 $f2-$f9 (saved floating-point registers)
418 $1-$8 (nonsaved integer registers)
419 $22-$25 (likewise)
420 $28 (likewise)
421 $0 (likewise, but return value)
422 $21-$16 (likewise, but input args)
0076aa6b 423 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
424 $9-$14 (saved integer registers)
425 $26 (return PC)
426 $15 (frame pointer)
427 $29 (global pointer)
52a69200 428 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
429
430#define REG_ALLOC_ORDER \
431 {33, \
da01bc2c 432 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
433 54, 55, 56, 57, 58, 59, 60, 61, 62, \
434 53, 52, 51, 50, 49, 48, \
435 32, \
436 34, 35, 36, 37, 38, 39, 40, 41, \
437 1, 2, 3, 4, 5, 6, 7, 8, \
438 22, 23, 24, 25, \
439 28, \
440 0, \
441 21, 20, 19, 18, 17, 16, \
442 27, \
443 9, 10, 11, 12, 13, 14, \
444 26, \
445 15, \
446 29, \
447 30, 31, 63 }
448
449/* Return number of consecutive hard regs needed starting at reg REGNO
450 to hold something of mode MODE.
451 This is ordinarily the length in words of a value of mode MODE
452 but can be less for certain modes in special long registers. */
453
454#define HARD_REGNO_NREGS(REGNO, MODE) \
455 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
456
457/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
458 On Alpha, the integer registers can hold any mode. The floating-point
459 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
460 or 8-bit values. If we only allowed the larger integers into FP registers,
461 we'd have to say that QImode and SImode aren't tiable, which is a
462 pain. So say all registers can hold everything and see how that works. */
463
464#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
465
466/* Value is 1 if it is a good idea to tie two pseudo registers
467 when one has mode MODE1 and one has mode MODE2.
468 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
469 for any hard reg, then this must be 0 for correct output. */
470
471#define MODES_TIEABLE_P(MODE1, MODE2) 1
472
473/* Specify the registers used for certain standard purposes.
474 The values of these macros are register numbers. */
475
476/* Alpha pc isn't overloaded on a register that the compiler knows about. */
477/* #define PC_REGNUM */
478
479/* Register to use for pushing function arguments. */
480#define STACK_POINTER_REGNUM 30
481
482/* Base register for access to local variables of the function. */
52a69200 483#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
484
485/* Value should be nonzero if functions must have frame pointers.
486 Zero means the frame pointer need not be set up (and parms
487 may be accessed via the stack pointer) in functions that seem suitable.
488 This is computed in `reload', in reload1.c. */
489#define FRAME_POINTER_REQUIRED 0
490
491/* Base register for access to arguments of the function. */
130d2d72 492#define ARG_POINTER_REGNUM 31
1a94ca49 493
52a69200
RK
494/* Base register for access to local variables of function. */
495#define FRAME_POINTER_REGNUM 63
496
1a94ca49
RK
497/* Register in which static-chain is passed to a function.
498
499 For the Alpha, this is based on an example; the calling sequence
500 doesn't seem to specify this. */
501#define STATIC_CHAIN_REGNUM 1
502
503/* Register in which address to store a structure value
504 arrives in the function. On the Alpha, the address is passed
505 as a hidden argument. */
506#define STRUCT_VALUE 0
507\f
508/* Define the classes of registers for register constraints in the
509 machine description. Also define ranges of constants.
510
511 One of the classes must always be named ALL_REGS and include all hard regs.
512 If there is more than one class, another class must be named NO_REGS
513 and contain no registers.
514
515 The name GENERAL_REGS must be the name of a class (or an alias for
516 another name such as ALL_REGS). This is the class of registers
517 that is allowed by "g" or "r" in a register constraint.
518 Also, registers outside this class are allocated only when
519 instructions express preferences for them.
520
521 The classes must be numbered in nondecreasing order; that is,
522 a larger-numbered class must never be contained completely
523 in a smaller-numbered class.
524
525 For any two classes, it is very desirable that there be another
526 class that represents their union. */
527
528enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
529 LIM_REG_CLASSES };
530
531#define N_REG_CLASSES (int) LIM_REG_CLASSES
532
533/* Give names of register classes as strings for dump file. */
534
535#define REG_CLASS_NAMES \
536 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
537
538/* Define which registers fit in which classes.
539 This is an initializer for a vector of HARD_REG_SET
540 of length N_REG_CLASSES. */
541
542#define REG_CLASS_CONTENTS \
52a69200 543 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
544
545/* The same information, inverted:
546 Return the class number of the smallest class containing
547 reg number REGNO. This could be a conditional expression
548 or could index an array. */
549
52a69200
RK
550#define REGNO_REG_CLASS(REGNO) \
551 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
552
553/* The class value for index registers, and the one for base regs. */
554#define INDEX_REG_CLASS NO_REGS
555#define BASE_REG_CLASS GENERAL_REGS
556
557/* Get reg_class from a letter such as appears in the machine description. */
558
559#define REG_CLASS_FROM_LETTER(C) \
560 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
561
562/* Define this macro to change register usage conditional on target flags. */
563/* #define CONDITIONAL_REGISTER_USAGE */
564
565/* The letters I, J, K, L, M, N, O, and P in a register constraint string
566 can be used to stand for particular ranges of immediate operands.
567 This macro defines what the ranges are.
568 C is the letter, and VALUE is a constant value.
569 Return 1 if VALUE is in the range specified by C.
570
571 For Alpha:
572 `I' is used for the range of constants most insns can contain.
573 `J' is the constant zero.
574 `K' is used for the constant in an LDA insn.
575 `L' is used for the constant in a LDAH insn.
576 `M' is used for the constants that can be AND'ed with using a ZAP insn.
577 `N' is used for complemented 8-bit constants.
578 `O' is used for negated 8-bit constants.
579 `P' is used for the constants 1, 2 and 3. */
580
581#define CONST_OK_FOR_LETTER_P(VALUE, C) \
582 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
583 : (C) == 'J' ? (VALUE) == 0 \
584 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
585 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
586 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
587 && ((HOST_BITS_PER_WIDE_INT == 64 \
23334240 588 || (unsigned) (VALUE) != 0x80000000U))) \
1a94ca49
RK
589 : (C) == 'M' ? zap_mask (VALUE) \
590 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
591 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
592 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
593 : 0)
594
595/* Similar, but for floating or large integer constants, and defining letters
596 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
597
598 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
599 that is the operand of a ZAP insn. */
600
601#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
602 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
603 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
604 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
605 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
606 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
607 : 0)
608
e560f226
RK
609/* Optional extra constraints for this machine.
610
611 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
612 reference to an unaligned location.
613 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
614 function. */
e560f226
RK
615
616#define EXTRA_CONSTRAINT(OP, C) \
617 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 618 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
619 : 0)
620
1a94ca49
RK
621/* Given an rtx X being reloaded into a reg required to be
622 in class CLASS, return the class of reg to actually use.
623 In general this is just CLASS; but on some machines
624 in some cases it is preferable to use a more restrictive class.
625
626 On the Alpha, all constants except zero go into a floating-point
627 register via memory. */
628
629#define PREFERRED_RELOAD_CLASS(X, CLASS) \
630 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
631 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
632 : (CLASS))
633
634/* Loading and storing HImode or QImode values to and from memory
635 usually requires a scratch register. The exceptions are loading
e560f226 636 QImode and HImode from an aligned address to a general register.
ddd5a7c1 637 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 638 FP register. */
1a94ca49
RK
639
640#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
641(((GET_CODE (IN) == MEM \
642 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
643 || (GET_CODE (IN) == SUBREG \
644 && (GET_CODE (SUBREG_REG (IN)) == MEM \
645 || (GET_CODE (SUBREG_REG (IN)) == REG \
646 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
647 && (((CLASS) == FLOAT_REGS \
648 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
649 || (((MODE) == QImode || (MODE) == HImode) \
650 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
651 ? GENERAL_REGS \
652 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
653 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
654 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
655 && (GET_MODE_SIZE (GET_MODE (IN)) \
656 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 657 : NO_REGS)
1a94ca49
RK
658
659#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
660(((GET_CODE (OUT) == MEM \
661 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
662 || (GET_CODE (OUT) == SUBREG \
663 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
664 || (GET_CODE (SUBREG_REG (OUT)) == REG \
665 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
666 && (((MODE) == HImode || (MODE) == QImode \
667 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
668 ? GENERAL_REGS \
669 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
670 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
671 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
672 && (GET_MODE_SIZE (GET_MODE (OUT)) \
673 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
674 : NO_REGS)
1a94ca49
RK
675
676/* If we are copying between general and FP registers, we need a memory
677 location. */
678
679#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
680
acd94aaf
RK
681/* Specify the mode to be used for memory when a secondary memory
682 location is needed. If MODE is floating-point, use it. Otherwise,
683 widen to a word like the default. This is needed because we always
684 store integers in FP registers in quadword format. This whole
685 area is very tricky! */
686#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
687 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 688 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
689 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
690
1a94ca49
RK
691/* Return the maximum number of consecutive registers
692 needed to represent mode MODE in a register of class CLASS. */
693
694#define CLASS_MAX_NREGS(CLASS, MODE) \
695 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
696
c31dfe4d
RK
697/* If defined, gives a class of registers that cannot be used as the
698 operand of a SUBREG that changes the size of the object. */
699
700#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
701
1a94ca49
RK
702/* Define the cost of moving between registers of various classes. Moving
703 between FLOAT_REGS and anything else except float regs is expensive.
704 In fact, we make it quite expensive because we really don't want to
705 do these moves unless it is clearly worth it. Optimizations may
706 reduce the impact of not being able to allocate a pseudo to a
707 hard register. */
708
709#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
710 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
711
712/* A C expressions returning the cost of moving data of MODE from a register to
713 or from memory.
714
715 On the Alpha, bump this up a bit. */
716
717#define MEMORY_MOVE_COST(MODE) 6
718
719/* Provide the cost of a branch. Exact meaning under development. */
720#define BRANCH_COST 5
721
722/* Adjust the cost of dependencies. */
723
724#define ADJUST_COST(INSN,LINK,DEP,COST) \
725 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
726\f
727/* Stack layout; function entry, exit and calling. */
728
729/* Define this if pushing a word on the stack
730 makes the stack pointer a smaller address. */
731#define STACK_GROWS_DOWNWARD
732
733/* Define this if the nominal address of the stack frame
734 is at the high-address end of the local variables;
735 that is, each additional local variable allocated
736 goes at a more negative offset in the frame. */
130d2d72 737/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
738
739/* Offset within stack frame to start allocating local variables at.
740 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
741 first local allocated. Otherwise, it is the offset to the BEGINNING
742 of the first local allocated. */
743
52a69200 744#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
745
746/* If we generate an insn to push BYTES bytes,
747 this says how many the stack pointer really advances by.
748 On Alpha, don't define this because there are no push insns. */
749/* #define PUSH_ROUNDING(BYTES) */
750
751/* Define this if the maximum size of all the outgoing args is to be
752 accumulated and pushed during the prologue. The amount can be
753 found in the variable current_function_outgoing_args_size. */
754#define ACCUMULATE_OUTGOING_ARGS
755
756/* Offset of first parameter from the argument pointer register value. */
757
130d2d72 758#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
759
760/* Definitions for register eliminations.
761
978e8952 762 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 763 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
764 pointer register. Secondly, the argument pointer register can always be
765 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
766
767/* This is an array of structures. Each structure initializes one pair
768 of eliminable registers. The "from" register number is given first,
769 followed by "to". Eliminations of the same "from" register are listed
770 in order of preference. */
771
52a69200
RK
772#define ELIMINABLE_REGS \
773{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
774 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
775 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
776 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
777
778/* Given FROM and TO register numbers, say whether this elimination is allowed.
779 Frame pointer elimination is automatically handled.
780
130d2d72 781 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
782 eliminated are already handled. */
783
130d2d72 784#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 785
52a69200
RK
786/* Round up to a multiple of 16 bytes. */
787#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
788
1a94ca49
RK
789/* Define the offset between two registers, one to be eliminated, and the other
790 its replacement, at the start of a routine. */
791#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
792{ if ((FROM) == FRAME_POINTER_REGNUM) \
793 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
794 + alpha_sa_size ()); \
795 else if ((FROM) == ARG_POINTER_REGNUM) \
796 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
797 + alpha_sa_size () \
d772039b
RK
798 + (ALPHA_ROUND (get_frame_size () \
799 + current_function_pretend_args_size) \
800 - current_function_pretend_args_size)); \
1a94ca49
RK
801}
802
803/* Define this if stack space is still allocated for a parameter passed
804 in a register. */
805/* #define REG_PARM_STACK_SPACE */
806
807/* Value is the number of bytes of arguments automatically
808 popped when returning from a subroutine call.
8b109b37 809 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
810 FUNTYPE is the data type of the function (as a tree),
811 or for a library call it is an identifier node for the subroutine name.
812 SIZE is the number of bytes of arguments passed on the stack. */
813
8b109b37 814#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
815
816/* Define how to find the value returned by a function.
817 VALTYPE is the data type of the value (as a tree).
818 If the precise function being called is known, FUNC is its FUNCTION_DECL;
819 otherwise, FUNC is 0.
820
821 On Alpha the value is found in $0 for integer functions and
822 $f0 for floating-point functions. */
823
824#define FUNCTION_VALUE(VALTYPE, FUNC) \
825 gen_rtx (REG, \
20e76cb9 826 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
1a94ca49
RK
827 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
828 ? word_mode : TYPE_MODE (VALTYPE), \
829 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
830
831/* Define how to find the value returned by a library function
832 assuming the value has mode MODE. */
833
834#define LIBCALL_VALUE(MODE) \
835 gen_rtx (REG, MODE, \
836 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
837
130d2d72
RK
838/* The definition of this macro implies that there are cases where
839 a scalar value cannot be returned in registers.
840
841 For the Alpha, any structure or union type is returned in memory, as
842 are integers whose size is larger than 64 bits. */
843
844#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 845 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
846 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
847
1a94ca49
RK
848/* 1 if N is a possible register number for a function value
849 as seen by the caller. */
850
851#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
852
853/* 1 if N is a possible register number for function argument passing.
854 On Alpha, these are $16-$21 and $f16-$f21. */
855
856#define FUNCTION_ARG_REGNO_P(N) \
857 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
858\f
859/* Define a data type for recording info about an argument list
860 during the scan of that argument list. This data type should
861 hold all necessary information about the function itself
862 and about the args processed so far, enough to enable macros
863 such as FUNCTION_ARG to determine where the next arg should go.
864
865 On Alpha, this is a single integer, which is a number of words
866 of arguments scanned so far.
867 Thus 6 or more means all following args should go on the stack. */
868
869#define CUMULATIVE_ARGS int
870
871/* Initialize a variable CUM of type CUMULATIVE_ARGS
872 for a call to a function whose data type is FNTYPE.
873 For a library call, FNTYPE is 0. */
874
2c7ee1a6 875#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
876
877/* Define intermediate macro to compute the size (in registers) of an argument
878 for the Alpha. */
879
880#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
881((MODE) != BLKmode \
882 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
883 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
884
885/* Update the data in CUM to advance over an argument
886 of mode MODE and data type TYPE.
887 (TYPE is null for libcalls where that information may not be available.) */
888
889#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
890 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
891 (CUM) = 6; \
892 else \
893 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
894
895/* Determine where to put an argument to a function.
896 Value is zero to push the argument on the stack,
897 or a hard register in which to store the argument.
898
899 MODE is the argument's machine mode.
900 TYPE is the data type of the argument (as a tree).
901 This is null for libcalls where that information may
902 not be available.
903 CUM is a variable of type CUMULATIVE_ARGS which gives info about
904 the preceding args and about the function being called.
905 NAMED is nonzero if this argument is a named parameter
906 (otherwise it is an extra parameter matching an ellipsis).
907
908 On Alpha the first 6 words of args are normally in registers
909 and the rest are pushed. */
910
911#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
912((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
913 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
914 (CUM) + 16 + ((TARGET_FPREGS \
915 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
916 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
917 * 32)) \
918 : 0)
1a94ca49 919
1a94ca49
RK
920/* Specify the padding direction of arguments.
921
922 On the Alpha, we must pad upwards in order to be able to pass args in
923 registers. */
924
925#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
926
927/* For an arg passed partly in registers and partly in memory,
928 this is the number of registers used.
929 For args passed entirely in registers or entirely in memory, zero. */
930
931#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
932((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
933 ? 6 - (CUM) : 0)
934
130d2d72
RK
935/* Perform any needed actions needed for a function that is receiving a
936 variable number of arguments.
937
938 CUM is as above.
939
940 MODE and TYPE are the mode and type of the current parameter.
941
942 PRETEND_SIZE is a variable that should be set to the amount of stack
943 that must be pushed by the prolog to pretend that our caller pushed
944 it.
945
946 Normally, this macro will push all remaining incoming registers on the
947 stack and set PRETEND_SIZE to the length of the registers pushed.
948
949 On the Alpha, we allocate space for all 12 arg registers, but only
950 push those that are remaining.
951
952 However, if NO registers need to be saved, don't allocate any space.
953 This is not only because we won't need the space, but because AP includes
954 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
955 ap-relative addresses already made.
956
957 If we are not to use the floating-point registers, save the integer
958 registers where we would put the floating-point registers. This is
959 not the most efficient way to implement varargs with just one register
960 class, but it isn't worth doing anything more efficient in this rare
961 case. */
962
130d2d72
RK
963
964#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
965{ if ((CUM) < 6) \
966 { \
967 if (! (NO_RTL)) \
968 { \
969 move_block_from_reg \
970 (16 + CUM, \
971 gen_rtx (MEM, BLKmode, \
972 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 973 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 974 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 975 move_block_from_reg \
7a92339b 976 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
977 gen_rtx (MEM, BLKmode, \
978 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 979 (CUM) * UNITS_PER_WORD)), \
02892e06 980 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
981 } \
982 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
983 } \
984}
985
c8e9adec
RK
986/* Try to output insns to set TARGET equal to the constant C if it can be
987 done in less than N insns. Do all computations in MODE. Returns the place
988 where the output has been placed if it can be done and the insns have been
989 emitted. If it would take more than N insns, zero is returned and no
990 insns and emitted. */
991extern struct rtx_def *alpha_emit_set_const ();
992
1a94ca49
RK
993/* Generate necessary RTL for __builtin_saveregs().
994 ARGLIST is the argument list; see expr.c. */
995extern struct rtx_def *alpha_builtin_saveregs ();
996#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
997
998/* Define the information needed to generate branch and scc insns. This is
999 stored from the compare operation. Note that we can't use "rtx" here
1000 since it hasn't been defined! */
1001
1002extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1003extern int alpha_compare_fp_p;
1004
1005/* This macro produces the initial definition of a function name. On the
03f8c4cc 1006 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
1007
1008extern char *alpha_function_name;
1009
1010#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 1011{ \
1a94ca49
RK
1012 alpha_function_name = NAME; \
1013}
1014
1015/* This macro generates the assembly code for function entry.
1016 FILE is a stdio stream to output the code to.
1017 SIZE is an int: how many units of temporary storage to allocate.
1018 Refer to the array `regs_ever_live' to determine which registers
1019 to save; `regs_ever_live[I]' is nonzero if register number I
1020 is ever used in the function. This macro is responsible for
1021 knowing which registers should not be saved even if used. */
1022
1023#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1024
1025/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1026 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1027 by simply passing -pg to the assembler and linker. */
85d159a3 1028
e0fb9029 1029#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1030
1031/* Output assembler code to FILE to initialize this source file's
1032 basic block profiling info, if that has not already been done.
1033 This assumes that __bb_init_func doesn't garble a1-a5. */
1034
1035#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1036 do { \
1037 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1038 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1039 fputs ("\tldq $26,0($16)\n", (FILE)); \
1040 fputs ("\tbne $26,1f\n", (FILE)); \
1041 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1042 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1043 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1044 fputs ("1:\n", (FILE)); \
85d159a3
RK
1045 ASM_OUTPUT_REG_POP (FILE, 16); \
1046 } while (0);
1047
1048/* Output assembler code to FILE to increment the entry-count for
1049 the BLOCKNO'th basic block in this source file. */
1050
1051#define BLOCK_PROFILER(FILE, BLOCKNO) \
1052 do { \
1053 int blockn = (BLOCKNO); \
a62eb16f 1054 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1055 fputs ("\tstq $26,0($30)\n", (FILE)); \
1056 fputs ("\tstq $27,8($30)\n", (FILE)); \
1057 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1058 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1059 fputs ("\taddq $27,1,$27\n", (FILE)); \
1060 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1061 fputs ("\tldq $26,0($30)\n", (FILE)); \
1062 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1063 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1064 } while (0)
1a94ca49 1065
1a94ca49
RK
1066
1067/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1068 the stack pointer does not matter. The value is tested only in
1069 functions that have frame pointers.
1070 No definition is equivalent to always zero. */
1071
1072#define EXIT_IGNORE_STACK 1
1073
1074/* This macro generates the assembly code for function exit,
1075 on machines that need it. If FUNCTION_EPILOGUE is not defined
1076 then individual return instructions are generated for each
1077 return statement. Args are same as for FUNCTION_PROLOGUE.
1078
1079 The function epilogue should not depend on the current stack pointer!
1080 It should use the frame pointer only. This is mandatory because
1081 of alloca; we also take advantage of it to omit stack adjustments
1082 before returning. */
1083
1084#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1085
1086\f
1087/* Output assembler code for a block containing the constant parts
1088 of a trampoline, leaving space for the variable parts.
1089
1090 The trampoline should set the static chain pointer to value placed
7981384f
RK
1091 into the trampoline and should branch to the specified routine.
1092 Note that $27 has been set to the address of the trampoline, so we can
1093 use it for addressability of the two data items. Trampolines are always
1094 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1095
1096#define TRAMPOLINE_TEMPLATE(FILE) \
1097{ \
7981384f 1098 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1099 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1100 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1101 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1102 fprintf (FILE, "\t.quad 0,0\n"); \
1103}
1104
3a523eeb
RS
1105/* Section in which to place the trampoline. On Alpha, instructions
1106 may only be placed in a text segment. */
1107
1108#define TRAMPOLINE_SECTION text_section
1109
1a94ca49
RK
1110/* Length in units of the trampoline for entering a nested function. */
1111
7981384f 1112#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1113
1114/* Emit RTL insns to initialize the variable parts of a trampoline.
1115 FNADDR is an RTX for the address of the function's pure code.
1116 CXT is an RTX for the static chain value for the function. We assume
1117 here that a function will be called many more times than its address
1118 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1119 to initialize the "hint" field in the JMP insn. Note that the hint
1120 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1121
1122#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1123{ \
1124 rtx _temp, _temp1, _addr; \
1125 \
1126 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1127 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1128 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1129 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1130 \
7981384f
RK
1131 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1132 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1133 OPTAB_WIDEN); \
1134 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1135 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1136 _temp = expand_and (gen_lowpart (SImode, _temp), \
1137 GEN_INT (0x3fff), 0); \
1a94ca49 1138 \
7981384f 1139 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1140 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1141 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1142 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1143 OPTAB_WIDEN); \
1144 \
1145 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1146 \
1147 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1148 "__enable_execute_stack"), \
1149 0, VOIDmode, 1,_addr, Pmode); \
1150 \
1151 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1152 gen_rtvec (1, const0_rtx), 0)); \
1153}
1154
1155/* Attempt to turn on access permissions for the stack. */
1156
1157#define TRANSFER_FROM_TRAMPOLINE \
1158 \
1159void \
1160__enable_execute_stack (addr) \
1161 void *addr; \
1162{ \
1163 long size = getpagesize (); \
1164 long mask = ~(size-1); \
1165 char *page = (char *) (((long) addr) & mask); \
1166 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1167 \
1168 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1169 if (mprotect (page, end - page, 7) < 0) \
1170 perror ("mprotect of trampoline code"); \
1a94ca49 1171}
675f0e7c
RK
1172
1173/* A C expression whose value is RTL representing the value of the return
1174 address for the frame COUNT steps up from the current frame.
1175 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1176 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
1177
1178 This definition for Alpha is broken, but is put in at the request of
1179 Mike Stump. */
1180
1181#define RETURN_ADDR_RTX(COUNT, FRAME) \
1182((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
6ea0cab3
RK
1183 ? gen_rtx (REG, Pmode, 26) \
1184 : gen_rtx (MEM, Pmode, \
675f0e7c
RK
1185 memory_address (Pmode, FRAME)))
1186\f
1a94ca49
RK
1187/* Addressing modes, and classification of registers for them. */
1188
1189/* #define HAVE_POST_INCREMENT */
1190/* #define HAVE_POST_DECREMENT */
1191
1192/* #define HAVE_PRE_DECREMENT */
1193/* #define HAVE_PRE_INCREMENT */
1194
1195/* Macros to check register numbers against specific register classes. */
1196
1197/* These assume that REGNO is a hard or pseudo reg number.
1198 They give nonzero only if REGNO is a hard reg of the suitable class
1199 or a pseudo reg currently allocated to a suitable hard reg.
1200 Since they use reg_renumber, they are safe only once reg_renumber
1201 has been allocated, which happens in local-alloc.c. */
1202
1203#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1204#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1205((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1206 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1207\f
1208/* Maximum number of registers that can appear in a valid memory address. */
1209#define MAX_REGS_PER_ADDRESS 1
1210
1211/* Recognize any constant value that is a valid address. For the Alpha,
1212 there are only constants none since we want to use LDA to load any
1213 symbolic addresses into registers. */
1214
1215#define CONSTANT_ADDRESS_P(X) \
1216 (GET_CODE (X) == CONST_INT \
1217 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1218
1219/* Include all constant integers and constant doubles, but not
1220 floating-point, except for floating-point zero. */
1221
1222#define LEGITIMATE_CONSTANT_P(X) \
1223 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1224 || (X) == CONST0_RTX (GET_MODE (X)))
1225
1226/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1227 and check its validity for a certain class.
1228 We have two alternate definitions for each of them.
1229 The usual definition accepts all pseudo regs; the other rejects
1230 them unless they have been allocated suitable hard regs.
1231 The symbol REG_OK_STRICT causes the latter definition to be used.
1232
1233 Most source files want to accept pseudo regs in the hope that
1234 they will get allocated to the class that the insn wants them to be in.
1235 Source files for reload pass need to be strict.
1236 After reload, it makes no difference, since pseudo regs have
1237 been eliminated by then. */
1238
1239#ifndef REG_OK_STRICT
1240
1241/* Nonzero if X is a hard reg that can be used as an index
1242 or if it is a pseudo reg. */
1243#define REG_OK_FOR_INDEX_P(X) 0
1244/* Nonzero if X is a hard reg that can be used as a base reg
1245 or if it is a pseudo reg. */
1246#define REG_OK_FOR_BASE_P(X) \
52a69200 1247 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1248
1249#else
1250
1251/* Nonzero if X is a hard reg that can be used as an index. */
1252#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1253/* Nonzero if X is a hard reg that can be used as a base reg. */
1254#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1255
1256#endif
1257\f
1258/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1259 that is a valid memory address for an instruction.
1260 The MODE argument is the machine mode for the MEM expression
1261 that wants to use this address.
1262
1263 For Alpha, we have either a constant address or the sum of a register
1264 and a constant address, or just a register. For DImode, any of those
1265 forms can be surrounded with an AND that clear the low-order three bits;
1266 this is an "unaligned" access.
1267
1a94ca49
RK
1268 First define the basic valid address. */
1269
1270#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1271{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1272 goto ADDR; \
1273 if (CONSTANT_ADDRESS_P (X)) \
1274 goto ADDR; \
1275 if (GET_CODE (X) == PLUS \
1276 && REG_P (XEXP (X, 0)) \
1277 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1278 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1279 goto ADDR; \
1280}
1281
1282/* Now accept the simple address, or, for DImode only, an AND of a simple
1283 address that turns off the low three bits. */
1284
1a94ca49
RK
1285#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1286{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1287 if ((MODE) == DImode \
1288 && GET_CODE (X) == AND \
1289 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1290 && INTVAL (XEXP (X, 1)) == -8) \
1291 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1292}
1293
1294/* Try machine-dependent ways of modifying an illegitimate address
1295 to be legitimate. If we find one, return the new, valid address.
1296 This macro is used in only one place: `memory_address' in explow.c.
1297
1298 OLDX is the address as it was before break_out_memory_refs was called.
1299 In some cases it is useful to look at this to decide what needs to be done.
1300
1301 MODE and WIN are passed so that this macro can use
1302 GO_IF_LEGITIMATE_ADDRESS.
1303
1304 It is always safe for this macro to do nothing. It exists to recognize
1305 opportunities to optimize the output.
1306
1307 For the Alpha, there are three cases we handle:
1308
1309 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1310 valid offset, compute the high part of the constant and add it to the
1311 register. Then our address is (plus temp low-part-const).
1312 (2) If the address is (const (plus FOO const_int)), find the low-order
1313 part of the CONST_INT. Then load FOO plus any high-order part of the
1314 CONST_INT into a register. Our address is (plus reg low-part-const).
1315 This is done to reduce the number of GOT entries.
1316 (3) If we have a (plus reg const), emit the load as in (2), then add
1317 the two registers, and finally generate (plus reg low-part-const) as
1318 our address. */
1319
1320#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1321{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1322 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1323 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1324 { \
1325 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1326 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1327 HOST_WIDE_INT highpart = val - lowpart; \
1328 rtx high = GEN_INT (highpart); \
1329 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1330 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1331 \
1332 (X) = plus_constant (temp, lowpart); \
1333 goto WIN; \
1334 } \
1335 else if (GET_CODE (X) == CONST \
1336 && GET_CODE (XEXP (X, 0)) == PLUS \
1337 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1338 { \
1339 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1340 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1341 HOST_WIDE_INT highpart = val - lowpart; \
1342 rtx high = XEXP (XEXP (X, 0), 0); \
1343 \
1344 if (highpart) \
1345 high = plus_constant (high, highpart); \
1346 \
1347 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1348 goto WIN; \
1349 } \
1350 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1351 && GET_CODE (XEXP (X, 1)) == CONST \
1352 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1353 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1354 { \
1355 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1356 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1357 HOST_WIDE_INT highpart = val - lowpart; \
1358 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1359 \
1360 if (highpart) \
1361 high = plus_constant (high, highpart); \
1362 \
1363 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1364 force_reg (Pmode, high), \
80f251fe 1365 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1366 (X) = plus_constant (high, lowpart); \
1367 goto WIN; \
1368 } \
1369}
1370
1371/* Go to LABEL if ADDR (a legitimate address expression)
1372 has an effect that depends on the machine mode it is used for.
1373 On the Alpha this is true only for the unaligned modes. We can
1374 simplify this test since we know that the address must be valid. */
1375
1376#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1377{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1378
1379/* Compute the cost of an address. For the Alpha, all valid addresses are
1380 the same cost. */
1381
1382#define ADDRESS_COST(X) 0
1383
1384/* Define this if some processing needs to be done immediately before
1385 emitting code for an insn. */
1386
2bf6230d
RK
1387extern void final_prescan_insn ();
1388#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1389 final_prescan_insn ((INSN), (OPERANDS), (NOPERANDS))
1390
1391/* Define this if FINAL_PRESCAN_INSN should be called for a CODE_LABEL. */
1392#define FINAL_PRESCAN_LABEL
1a94ca49
RK
1393\f
1394/* Specify the machine mode that this machine uses
1395 for the index in the tablejump instruction. */
1396#define CASE_VECTOR_MODE SImode
1397
1398/* Define this if the tablejump instruction expects the table
1399 to contain offsets from the address of the table.
260ced47
RK
1400 Do not define this if the table should contain absolute addresses.
1401 On the Alpha, the table is really GP-relative, not relative to the PC
1402 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1403 but we should try to find some better way sometime. */
260ced47 1404#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1405
1406/* Specify the tree operation to be used to convert reals to integers. */
1407#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1408
1409/* This is the kind of divide that is easiest to do in the general case. */
1410#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1411
1412/* Define this as 1 if `char' should by default be signed; else as 0. */
1413#define DEFAULT_SIGNED_CHAR 1
1414
1415/* This flag, if defined, says the same insns that convert to a signed fixnum
1416 also convert validly to an unsigned one.
1417
1418 We actually lie a bit here as overflow conditions are different. But
1419 they aren't being checked anyway. */
1420
1421#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1422
1423/* Max number of bytes we can move to or from memory
1424 in one reasonably fast instruction. */
1425
1426#define MOVE_MAX 8
1427
1428/* Largest number of bytes of an object that can be placed in a register.
1429 On the Alpha we have plenty of registers, so use TImode. */
1430#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1431
1432/* Nonzero if access to memory by bytes is no faster than for words.
1433 Also non-zero if doing byte operations (specifically shifts) in registers
1434 is undesirable.
1435
1436 On the Alpha, we want to not use the byte operation and instead use
1437 masking operations to access fields; these will save instructions. */
1438
1439#define SLOW_BYTE_ACCESS 1
1440
9a63901f
RK
1441/* Define if operations between registers always perform the operation
1442 on the full register even if a narrower mode is specified. */
1443#define WORD_REGISTER_OPERATIONS
1444
1445/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1446 will either zero-extend or sign-extend. The value of this macro should
1447 be the code that says which one of the two operations is implicitly
1448 done, NIL if none. */
1449#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1450
225211e2
RK
1451/* Define if loading short immediate values into registers sign extends. */
1452#define SHORT_IMMEDIATES_SIGN_EXTEND
1453
1a94ca49
RK
1454/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1455 is done just by pretending it is already truncated. */
1456#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1457
1458/* We assume that the store-condition-codes instructions store 0 for false
1459 and some other value for true. This is the value stored for true. */
1460
1461#define STORE_FLAG_VALUE 1
1462
1463/* Define the value returned by a floating-point comparison instruction. */
1464
1465#define FLOAT_STORE_FLAG_VALUE 0.5
1466
35bb77fd
RK
1467/* Canonicalize a comparison from one we don't have to one we do have. */
1468
1469#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1470 do { \
1471 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1472 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1473 { \
1474 rtx tem = (OP0); \
1475 (OP0) = (OP1); \
1476 (OP1) = tem; \
1477 (CODE) = swap_condition (CODE); \
1478 } \
1479 if (((CODE) == LT || (CODE) == LTU) \
1480 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1481 { \
1482 (CODE) = (CODE) == LT ? LE : LEU; \
1483 (OP1) = GEN_INT (255); \
1484 } \
1485 } while (0)
1486
1a94ca49
RK
1487/* Specify the machine mode that pointers have.
1488 After generation of rtl, the compiler makes no further distinction
1489 between pointers and any other objects of this machine mode. */
1490#define Pmode DImode
1491
1492/* Mode of a function address in a call instruction (for indexing purposes). */
1493
1494#define FUNCTION_MODE Pmode
1495
1496/* Define this if addresses of constant functions
1497 shouldn't be put through pseudo regs where they can be cse'd.
1498 Desirable on machines where ordinary constants are expensive
1499 but a CALL with constant address is cheap.
1500
1501 We define this on the Alpha so that gen_call and gen_call_value
1502 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1503 then copy it into a register, thus actually letting the address be
1504 cse'ed. */
1505
1506#define NO_FUNCTION_CSE
1507
d969caf8 1508/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1509 few bits. */
d969caf8 1510#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1511
d721b776
RK
1512/* Use atexit for static constructors/destructors, instead of defining
1513 our own exit function. */
1514#define HAVE_ATEXIT
1515
1a94ca49
RK
1516/* Compute the cost of computing a constant rtl expression RTX
1517 whose rtx-code is CODE. The body of this macro is a portion
1518 of a switch statement. If the code is computed here,
1519 return it with a return statement. Otherwise, break from the switch.
1520
8b7b2e36
RK
1521 If this is an 8-bit constant, return zero since it can be used
1522 nearly anywhere with no cost. If it is a valid operand for an
1523 ADD or AND, likewise return 0 if we know it will be used in that
1524 context. Otherwise, return 2 since it might be used there later.
1525 All other constants take at least two insns. */
1a94ca49
RK
1526
1527#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1528 case CONST_INT: \
06eb8e92 1529 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1530 return 0; \
1a94ca49 1531 case CONST_DOUBLE: \
8b7b2e36
RK
1532 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1533 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1534 return 0; \
1535 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1536 return 2; \
1537 else \
1538 return COSTS_N_INSNS (2); \
1a94ca49
RK
1539 case CONST: \
1540 case SYMBOL_REF: \
1541 case LABEL_REF: \
8b7b2e36 1542 return COSTS_N_INSNS (3);
1a94ca49
RK
1543
1544/* Provide the costs of a rtl expression. This is in the body of a
1545 switch on CODE. */
1546
1547#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1548 case PLUS: case MINUS: \
1549 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1550 return COSTS_N_INSNS (6); \
b49e978e
RK
1551 else if (GET_CODE (XEXP (X, 0)) == MULT \
1552 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1553 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1554 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1555 break; \
1556 case MULT: \
3bda6d11 1557 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1558 return COSTS_N_INSNS (6); \
919ea6a5 1559 return COSTS_N_INSNS (23); \
b49e978e
RK
1560 case ASHIFT: \
1561 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1562 && INTVAL (XEXP (X, 1)) <= 3) \
1563 break; \
1564 /* ... fall through ... */ \
1565 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1566 return COSTS_N_INSNS (2); \
3bda6d11 1567 case DIV: case UDIV: case MOD: case UMOD: \
1a94ca49
RK
1568 if (GET_MODE (X) == SFmode) \
1569 return COSTS_N_INSNS (34); \
1570 else if (GET_MODE (X) == DFmode) \
1571 return COSTS_N_INSNS (63); \
1572 else \
1573 return COSTS_N_INSNS (70); \
1574 case MEM: \
3bda6d11
RK
1575 return COSTS_N_INSNS (3); \
1576 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1577 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1578 return COSTS_N_INSNS (6); \
1579 case NEG: case ABS: \
1580 if (FLOAT_MODE_P (GET_MODE (X))) \
1581 return COSTS_N_INSNS (6); \
1582 break;
1a94ca49
RK
1583\f
1584/* Control the assembler format that we output. */
1585
1586/* Output at beginning of assembler file. */
1587
1588#define ASM_FILE_START(FILE) \
03f8c4cc 1589{ \
130d2d72
RK
1590 alpha_write_verstamp (FILE); \
1591 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1592 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1593 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1594 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1595}
1596
1597/* Output to assembler file text saying following lines
1598 may contain character constants, extra white space, comments, etc. */
1599
1600#define ASM_APP_ON ""
1601
1602/* Output to assembler file text saying following lines
1603 no longer contain unusual constructs. */
1604
1605#define ASM_APP_OFF ""
1606
1607#define TEXT_SECTION_ASM_OP ".text"
1608
1609/* Output before read-only data. */
1610
1611#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1612
1613/* Output before writable data. */
1614
1615#define DATA_SECTION_ASM_OP ".data"
1616
1617/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1618 indicate that it is for read-only data.
1619
abc95ed3 1620 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1621 eight bytes of zero. This works around a bug in DEC's assembler in
1622 some versions of OSF/1 V3.x. */
1a94ca49
RK
1623
1624#define EXTRA_SECTIONS readonly_data
1625
1626#define EXTRA_SECTION_FUNCTIONS \
1627void \
1628literal_section () \
1629{ \
1630 if (in_section != readonly_data) \
1631 { \
c0388f29
RK
1632 static int firsttime = 1; \
1633 \
1a94ca49 1634 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1635 if (firsttime) \
1636 { \
1637 firsttime = 0; \
1638 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1639 } \
1640 \
1a94ca49
RK
1641 in_section = readonly_data; \
1642 } \
1643} \
1644
1645#define READONLY_DATA_SECTION literal_section
1646
ac030a7b
RK
1647/* If we are referencing a function that is static, make the SYMBOL_REF
1648 special. We use this to see indicate we can branch to this function
1649 without setting PV or restoring GP. */
130d2d72
RK
1650
1651#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1652 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1653 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1654
1a94ca49
RK
1655/* How to refer to registers in assembler output.
1656 This sequence is indexed by compiler's hard-register-number (see above). */
1657
1658#define REGISTER_NAMES \
1659{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1660 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1661 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1662 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1663 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1664 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1665 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1666 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1667
1668/* How to renumber registers for dbx and gdb. */
1669
1670#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1671
1672/* This is how to output the definition of a user-level label named NAME,
1673 such as the label on a static function or variable NAME. */
1674
1675#define ASM_OUTPUT_LABEL(FILE,NAME) \
1676 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1677
1678/* This is how to output a command to make the user-level label named NAME
1679 defined for reference from other files. */
1680
1681#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1682 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1683
1684/* This is how to output a reference to a user-level label named NAME.
1685 `assemble_name' uses this. */
1686
1687#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1688 fprintf (FILE, "%s", NAME)
1689
1690/* This is how to output an internal numbered label where
1691 PREFIX is the class of label and NUM is the number within the class. */
1692
1693#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1694 if ((PREFIX)[0] == 'L') \
1695 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1696 else \
1697 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1698
1699/* This is how to output a label for a jump table. Arguments are the same as
1700 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1701 passed. */
1702
1703#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1704{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1705
1706/* This is how to store into the string LABEL
1707 the symbol_ref name of an internal numbered label where
1708 PREFIX is the class of label and NUM is the number within the class.
1709 This is suitable for output with `assemble_name'. */
1710
1711#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1712 if ((PREFIX)[0] == 'L') \
1713 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1714 else \
1715 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1716
1717/* This is how to output an assembler line defining a `double' constant. */
1718
e99300f1
RS
1719#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1720 { \
1721 if (REAL_VALUE_ISINF (VALUE) \
1722 || REAL_VALUE_ISNAN (VALUE) \
1723 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1724 { \
1725 long t[2]; \
1726 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1727 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1728 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1729 } \
1730 else \
1731 { \
1732 char str[30]; \
1733 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1734 fprintf (FILE, "\t.t_floating %s\n", str); \
1735 } \
1736 }
1a94ca49
RK
1737
1738/* This is how to output an assembler line defining a `float' constant. */
1739
e99300f1
RS
1740#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1741 { \
1742 if (REAL_VALUE_ISINF (VALUE) \
1743 || REAL_VALUE_ISNAN (VALUE) \
1744 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1745 { \
1746 long t; \
1747 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1748 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1749 } \
1750 else \
1751 { \
1752 char str[30]; \
1753 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1754 fprintf (FILE, "\t.s_floating %s\n", str); \
1755 } \
1756 }
2700ac93 1757
1a94ca49
RK
1758/* This is how to output an assembler line defining an `int' constant. */
1759
1760#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1761( fprintf (FILE, "\t.long "), \
1762 output_addr_const (FILE, (VALUE)), \
1763 fprintf (FILE, "\n"))
1a94ca49
RK
1764
1765/* This is how to output an assembler line defining a `long' constant. */
1766
1767#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1768( fprintf (FILE, "\t.quad "), \
1769 output_addr_const (FILE, (VALUE)), \
1770 fprintf (FILE, "\n"))
1771
1772/* Likewise for `char' and `short' constants. */
1773
1774#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1775 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1776 (GET_CODE (VALUE) == CONST_INT \
1777 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1778
1779#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1780 fprintf (FILE, "\t.byte %d\n", \
1781 (GET_CODE (VALUE) == CONST_INT \
1782 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1783
1784/* We use the default ASCII-output routine, except that we don't write more
1785 than 50 characters since the assembler doesn't support very long lines. */
1786
1787#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1788 do { \
1789 FILE *_hide_asm_out_file = (MYFILE); \
1790 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1791 int _hide_thissize = (MYLENGTH); \
1792 int _size_so_far = 0; \
1793 { \
1794 FILE *asm_out_file = _hide_asm_out_file; \
1795 unsigned char *p = _hide_p; \
1796 int thissize = _hide_thissize; \
1797 int i; \
1798 fprintf (asm_out_file, "\t.ascii \""); \
1799 \
1800 for (i = 0; i < thissize; i++) \
1801 { \
1802 register int c = p[i]; \
1803 \
1804 if (_size_so_far ++ > 50 && i < thissize - 4) \
1805 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1806 \
1807 if (c == '\"' || c == '\\') \
1808 putc ('\\', asm_out_file); \
1809 if (c >= ' ' && c < 0177) \
1810 putc (c, asm_out_file); \
1811 else \
1812 { \
1813 fprintf (asm_out_file, "\\%o", c); \
1814 /* After an octal-escape, if a digit follows, \
1815 terminate one string constant and start another. \
1816 The Vax assembler fails to stop reading the escape \
1817 after three digits, so this is the only way we \
1818 can get it to parse the data properly. */ \
1819 if (i < thissize - 1 \
1820 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1821 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1822 } \
1823 } \
1824 fprintf (asm_out_file, "\"\n"); \
1825 } \
1826 } \
1827 while (0)
52a69200 1828
1a94ca49
RK
1829/* This is how to output an insn to push a register on the stack.
1830 It need not be very fast code. */
1831
1832#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1833 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1834 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1835 (REGNO) & 31);
1836
1837/* This is how to output an insn to pop a register from the stack.
1838 It need not be very fast code. */
1839
1840#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1841 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1842 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1843 (REGNO) & 31);
1844
1845/* This is how to output an assembler line for a numeric constant byte. */
1846
1847#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1848 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1849
260ced47
RK
1850/* This is how to output an element of a case-vector that is absolute.
1851 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1852
260ced47 1853#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1854
260ced47 1855/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1856
0076aa6b
RK
1857#if WINDOWS_NT
1858#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1859 fprintf (FILE, "\t.long $%d\n", (VALUE) + 32)
1860#else
260ced47
RK
1861#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1862 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
0076aa6b 1863#endif
1a94ca49
RK
1864
1865/* This is how to output an assembler line
1866 that says to advance the location counter
1867 to a multiple of 2**LOG bytes. */
1868
1869#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1870 if ((LOG) != 0) \
1871 fprintf (FILE, "\t.align %d\n", LOG);
1872
1873/* This is how to advance the location counter by SIZE bytes. */
1874
1875#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1876 fprintf (FILE, "\t.space %d\n", (SIZE))
1877
1878/* This says how to output an assembler line
1879 to define a global common symbol. */
1880
1881#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1882( fputs ("\t.comm ", (FILE)), \
1883 assemble_name ((FILE), (NAME)), \
1884 fprintf ((FILE), ",%d\n", (SIZE)))
1885
1886/* This says how to output an assembler line
1887 to define a local common symbol. */
1888
1889#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1890( fputs ("\t.lcomm ", (FILE)), \
1891 assemble_name ((FILE), (NAME)), \
1892 fprintf ((FILE), ",%d\n", (SIZE)))
1893
1894/* Store in OUTPUT a string (made with alloca) containing
1895 an assembler-name for a local static variable named NAME.
1896 LABELNO is an integer which is different for each call. */
1897
1898#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1899( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1900 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1901
1902/* Define the parentheses used to group arithmetic operations
1903 in assembler code. */
1904
1905#define ASM_OPEN_PAREN "("
1906#define ASM_CLOSE_PAREN ")"
1907
1908/* Define results of standard character escape sequences. */
1909#define TARGET_BELL 007
1910#define TARGET_BS 010
1911#define TARGET_TAB 011
1912#define TARGET_NEWLINE 012
1913#define TARGET_VT 013
1914#define TARGET_FF 014
1915#define TARGET_CR 015
1916
1917/* Print operand X (an rtx) in assembler syntax to file FILE.
1918 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1919 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1920
1921#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1922
1923/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
1924 not be alphabetic (the characters are chosen so that
1925 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1926 using ASCII).
1927
1928 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
1929 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
1930 mode. alpha_fprm controls which suffix is generated.
1931
1932 ' Generates trap-mode suffix for instructions that accept the
1933 su suffix only (cmpt et al).
1934
1935 ) Generates trap-mode suffix for instructions that accept the
1936 u, su, and sui suffix. This is the bulk of the IEEE floating
1937 point instructions (addt et al).
1938
1939 + Generates trap-mode suffix for instructions that accept the
1940 sui suffix (cvtqt and cvtqs).
1941 */
1a94ca49 1942
2bf6230d
RK
1943#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1944 ((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+')
1a94ca49
RK
1945\f
1946/* Print a memory address as an operand to reference that memory location. */
1947
1948#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1949{ rtx addr = (ADDR); \
1950 int basereg = 31; \
1951 HOST_WIDE_INT offset = 0; \
1952 \
1953 if (GET_CODE (addr) == AND) \
1954 addr = XEXP (addr, 0); \
1955 \
1956 if (GET_CODE (addr) == REG) \
1957 basereg = REGNO (addr); \
1958 else if (GET_CODE (addr) == CONST_INT) \
1959 offset = INTVAL (addr); \
1960 else if (GET_CODE (addr) == PLUS \
1961 && GET_CODE (XEXP (addr, 0)) == REG \
1962 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1963 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1964 else \
1965 abort (); \
1966 \
1967 fprintf (FILE, "%d($%d)", offset, basereg); \
1968}
1969/* Define the codes that are matched by predicates in alpha.c. */
1970
1971#define PREDICATE_CODES \
1972 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1973 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1974 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1975 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1976 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1977 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1978 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1979 {"const48_operand", {CONST_INT}}, \
1980 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1981 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1982 {"mode_mask_operand", {CONST_INT}}, \
1983 {"mul8_operand", {CONST_INT}}, \
1984 {"mode_width_operand", {CONST_INT}}, \
1985 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1986 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1987 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1988 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1989 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1990 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1991 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1992 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1993 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
1994 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1995 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
1996 {"aligned_memory_operand", {MEM}}, \
1997 {"unaligned_memory_operand", {MEM}}, \
442b1685 1998 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1a94ca49 1999 {"any_memory_operand", {MEM}},
03f8c4cc 2000\f
34fa88ab
RK
2001/* Tell collect that the object format is ECOFF. */
2002#define OBJECT_FORMAT_COFF
2003#define EXTENDED_COFF
2004
2005/* If we use NM, pass -g to it so it only lists globals. */
2006#define NM_FLAGS "-pg"
2007
03f8c4cc
RK
2008/* Definitions for debugging. */
2009
2010#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2011#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2012#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2013
2014#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
2015#define PREFERRED_DEBUGGING_TYPE \
2016 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
2017#endif
2018
2019
2020/* Correct the offset of automatic variables and arguments. Note that
2021 the Alpha debug format wants all automatic variables and arguments
2022 to be in terms of two different offsets from the virtual frame pointer,
2023 which is the stack pointer before any adjustment in the function.
2024 The offset for the argument pointer is fixed for the native compiler,
2025 it is either zero (for the no arguments case) or large enough to hold
2026 all argument registers.
2027 The offset for the auto pointer is the fourth argument to the .frame
2028 directive (local_offset).
2029 To stay compatible with the native tools we use the same offsets
2030 from the virtual frame pointer and adjust the debugger arg/auto offsets
2031 accordingly. These debugger offsets are set up in output_prolog. */
2032
9a0b18f2
RK
2033extern long alpha_arg_offset;
2034extern long alpha_auto_offset;
03f8c4cc
RK
2035#define DEBUGGER_AUTO_OFFSET(X) \
2036 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2037#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2038
2039
2040#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2041 alpha_output_lineno (STREAM, LINE)
2042extern void alpha_output_lineno ();
2043
2044#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2045 alpha_output_filename (STREAM, NAME)
2046extern void alpha_output_filename ();
2047
2048
ab8b8941
RK
2049/* mips-tfile.c limits us to strings of one page. */
2050#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
2051
2052/* By default, turn on GDB extensions. */
2053#define DEFAULT_GDB_EXTENSIONS 1
2054
2055/* If we are smuggling stabs through the ALPHA ECOFF object
2056 format, put a comment in front of the .stab<x> operation so
2057 that the ALPHA assembler does not choke. The mips-tfile program
2058 will correctly put the stab into the object file. */
2059
2060#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2061#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2062#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2063
2064/* Forward references to tags are allowed. */
2065#define SDB_ALLOW_FORWARD_REFERENCES
2066
2067/* Unknown tags are also allowed. */
2068#define SDB_ALLOW_UNKNOWN_REFERENCES
2069
2070#define PUT_SDB_DEF(a) \
2071do { \
2072 fprintf (asm_out_file, "\t%s.def\t", \
2073 (TARGET_GAS) ? "" : "#"); \
2074 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2075 fputc (';', asm_out_file); \
2076} while (0)
2077
2078#define PUT_SDB_PLAIN_DEF(a) \
2079do { \
2080 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2081 (TARGET_GAS) ? "" : "#", (a)); \
2082} while (0)
2083
2084#define PUT_SDB_TYPE(a) \
2085do { \
2086 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2087} while (0)
2088
2089/* For block start and end, we create labels, so that
2090 later we can figure out where the correct offset is.
2091 The normal .ent/.end serve well enough for functions,
2092 so those are just commented out. */
2093
2094extern int sdb_label_count; /* block start/end next label # */
2095
2096#define PUT_SDB_BLOCK_START(LINE) \
2097do { \
2098 fprintf (asm_out_file, \
2099 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2100 sdb_label_count, \
2101 (TARGET_GAS) ? "" : "#", \
2102 sdb_label_count, \
2103 (LINE)); \
2104 sdb_label_count++; \
2105} while (0)
2106
2107#define PUT_SDB_BLOCK_END(LINE) \
2108do { \
2109 fprintf (asm_out_file, \
2110 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2111 sdb_label_count, \
2112 (TARGET_GAS) ? "" : "#", \
2113 sdb_label_count, \
2114 (LINE)); \
2115 sdb_label_count++; \
2116} while (0)
2117
2118#define PUT_SDB_FUNCTION_START(LINE)
2119
2120#define PUT_SDB_FUNCTION_END(LINE)
2121
2122#define PUT_SDB_EPILOGUE_END(NAME)
2123
7bd7a756
RK
2124/* No point in running CPP on our assembler output. */
2125#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
2126/* Don't pass -g to GNU as, because some versions don't accept this option. */
2127#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
2128#else
2129/* In OSF/1 v3.2c, the assembler by default does not output file names which
2130 causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
2131 ??? Stricly speaking, we only need -g if the user specifies -g. Passing
2132 it always means that we get slightly larger than necessary object files
2133 if the user does not specify -g. If we don't pass -g, then mips-tfile
2134 will need to be fixed to work in this case. */
2135#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
2136#endif
2137
03f8c4cc
RK
2138/* Specify to run a post-processor, mips-tfile after the assembler
2139 has run to stuff the ecoff debug information into the object file.
2140 This is needed because the Alpha assembler provides no way
2141 of specifying such information in the assembly file. */
2142
88681624 2143#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2144
2145#define ASM_FINAL_SPEC "\
2146%{malpha-as: %{!mno-mips-tfile: \
2147 \n mips-tfile %{v*: -v} \
2148 %{K: -I %b.o~} \
2149 %{!K: %{save-temps: -I %b.o~}} \
2150 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2151 %{.s:%i} %{!.s:%g.s}}}"
2152
2153#else
2154#define ASM_FINAL_SPEC "\
2155%{!mgas: %{!mno-mips-tfile: \
2156 \n mips-tfile %{v*: -v} \
2157 %{K: -I %b.o~} \
2158 %{!K: %{save-temps: -I %b.o~}} \
2159 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2160 %{.s:%i} %{!.s:%g.s}}}"
2161
2162#endif
2163
2164/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2165 mips-tdump.c to print them out.
2166
2167 These must match the corresponding definitions in gdb/mipsread.c.
2168 Unfortunately, gcc and gdb do not currently share any directories. */
2169
2170#define CODE_MASK 0x8F300
2171#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2172#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2173#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2174
2175/* Override some mips-tfile definitions. */
2176
2177#define SHASH_SIZE 511
2178#define THASH_SIZE 55
1e6c6f11
RK
2179
2180/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2181
2182#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2183
2184/* The system headers under OSF/1 are C++-aware. */
2185#define NO_IMPLICIT_EXTERN_C
54190234
JM
2186
2187/* The linker will stick __main into the .init section. */
2188#define HAS_INIT_SECTION
68d69835
JM
2189#define LD_INIT_SWITCH "-init"
2190#define LD_FINI_SWITCH "-fini"
This page took 0.608629 seconds and 5 git commands to generate.