]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(expand_binop): New variable next_methods; pass to most recursive calls when trying...
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
34fa88ab 2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
24#define CPP_PREDEFINES "\
25-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 26-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 27
21798cd8
RK
28/* Write out the correct language type definition for the header files.
29 Unless we have assembler language, write out the symbols for C. */
1a94ca49 30#define CPP_SPEC "\
21798cd8 31%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 32%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
33%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
34%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
36%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38/* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
7981384f
RK
44/* No point in running CPP on our assembler output. */
45#define ASM_SPEC "-nocpp"
46
d621c38b 47/* Right now Alpha OSF/1 doesn't seem to have debugging libraries. */
1a94ca49 48
917fecc0 49#define LIB_SPEC "%{p:-lprof1} -lc"
1a94ca49 50
65823178 51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are optimizing,
8877eb00
RK
52 -O1 if we are not. Pass -non_shared or -call_shared as appropriate. */
53#define LINK_SPEC \
65823178 54 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} %{!static:-call_shared}"
8877eb00 55
1a94ca49
RK
56/* Print subsidiary information on the compiler version in use. */
57#define TARGET_VERSION
58
59/* Define the location for the startup file on OSF/1 for Alpha. */
60
61#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
62
63/* Run-time compilation parameters selecting different hardware subsets. */
64
65extern int target_flags;
66
67/* This means that floating-point support exists in the target implementation
68 of the Alpha architecture. This is usually the default. */
69
70#define TARGET_FP (target_flags & 1)
71
72/* This means that floating-point registers are allowed to be used. Note
73 that Alpha implementations without FP operations are required to
74 provide the FP registers. */
75
03f8c4cc
RK
76#define TARGET_FPREGS (target_flags & 2)
77
78/* This means that gas is used to process the assembler file. */
79
80#define MASK_GAS 4
81#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
82
83/* Macro to define tables used to set the flags.
84 This is a list in braces of pairs in braces,
85 each pair being { "NAME", VALUE }
86 where VALUE is the bits to set or minus the bits to clear.
87 An empty string NAME is used to identify the default VALUE. */
88
89#define TARGET_SWITCHES \
90 { {"no-soft-float", 1}, \
91 {"soft-float", -1}, \
92 {"fp-regs", 2}, \
93 {"no-fp-regs", -3}, \
03f8c4cc
RK
94 {"alpha-as", -MASK_GAS}, \
95 {"gas", MASK_GAS}, \
1a94ca49
RK
96 {"", TARGET_DEFAULT} }
97
98#define TARGET_DEFAULT 3
99
100/* Define this macro to change register usage conditional on target flags.
101
102 On the Alpha, we use this to disable the floating-point registers when
103 they don't exist. */
104
105#define CONDITIONAL_REGISTER_USAGE \
106 if (! TARGET_FPREGS) \
107 for (i = 32; i < 64; i++) \
108 fixed_regs[i] = call_used_regs[i] = 1;
109
4f074454
RK
110/* Show we can debug even without a frame pointer. */
111#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
112\f
113/* target machine storage layout */
114
2700ac93
RS
115/* Define to enable software floating point emulation. */
116#define REAL_ARITHMETIC
117
1a94ca49
RK
118/* Define the size of `int'. The default is the same as the word size. */
119#define INT_TYPE_SIZE 32
120
121/* Define the size of `long long'. The default is the twice the word size. */
122#define LONG_LONG_TYPE_SIZE 64
123
124/* The two floating-point formats we support are S-floating, which is
125 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
126 and `long double' are T. */
127
128#define FLOAT_TYPE_SIZE 32
129#define DOUBLE_TYPE_SIZE 64
130#define LONG_DOUBLE_TYPE_SIZE 64
131
132#define WCHAR_TYPE "short unsigned int"
133#define WCHAR_TYPE_SIZE 16
134
13d39dbc 135/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
136 in a wider mode than that declared by the program. In such cases,
137 the value is constrained to be within the bounds of the declared
138 type, but kept valid in the wider mode. The signedness of the
139 extension may differ from that of the type.
140
141 For Alpha, we always store objects in a full register. 32-bit objects
142 are always sign-extended, but smaller objects retain their signedness. */
143
144#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
145 if (GET_MODE_CLASS (MODE) == MODE_INT \
146 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
147 { \
148 if ((MODE) == SImode) \
149 (UNSIGNEDP) = 0; \
150 (MODE) = DImode; \
151 }
152
153/* Define this if function arguments should also be promoted using the above
154 procedure. */
155
156#define PROMOTE_FUNCTION_ARGS
157
158/* Likewise, if the function return value is promoted. */
159
160#define PROMOTE_FUNCTION_RETURN
161
162/* Define this if most significant bit is lowest numbered
163 in instructions that operate on numbered bit-fields.
164
165 There are no such instructions on the Alpha, but the documentation
166 is little endian. */
167#define BITS_BIG_ENDIAN 0
168
169/* Define this if most significant byte of a word is the lowest numbered.
170 This is false on the Alpha. */
171#define BYTES_BIG_ENDIAN 0
172
173/* Define this if most significant word of a multiword number is lowest
174 numbered.
175
176 For Alpha we can decide arbitrarily since there are no machine instructions
177 for them. Might as well be consistent with bytes. */
178#define WORDS_BIG_ENDIAN 0
179
180/* number of bits in an addressable storage unit */
181#define BITS_PER_UNIT 8
182
183/* Width in bits of a "word", which is the contents of a machine register.
184 Note that this is not necessarily the width of data type `int';
185 if using 16-bit ints on a 68000, this would still be 32.
186 But on a machine with 16-bit registers, this would be 16. */
187#define BITS_PER_WORD 64
188
189/* Width of a word, in units (bytes). */
190#define UNITS_PER_WORD 8
191
192/* Width in bits of a pointer.
193 See also the macro `Pmode' defined below. */
194#define POINTER_SIZE 64
195
196/* Allocation boundary (in *bits*) for storing arguments in argument list. */
197#define PARM_BOUNDARY 64
198
199/* Boundary (in *bits*) on which stack pointer should be aligned. */
200#define STACK_BOUNDARY 64
201
202/* Allocation boundary (in *bits*) for the code of a function. */
203#define FUNCTION_BOUNDARY 64
204
205/* Alignment of field after `int : 0' in a structure. */
206#define EMPTY_FIELD_BOUNDARY 64
207
208/* Every structure's size must be a multiple of this. */
209#define STRUCTURE_SIZE_BOUNDARY 8
210
211/* A bitfield declared as `int' forces `int' alignment for the struct. */
212#define PCC_BITFIELD_TYPE_MATTERS 1
213
65823178
RK
214/* Align loop starts for optimal branching.
215
216 ??? Kludge this and the next macro for the moment by not doing anything if
217 we don't optimize and also if we are writing ECOFF symbols to work around
218 a bug in DEC's assembler. */
1a94ca49 219
130d2d72 220#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
221 if (optimize > 0 && write_symbols != SDB_DEBUG) \
222 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
223
224/* This is how to align an instruction for optimal branching.
225 On Alpha we'll get better performance by aligning on a quadword
226 boundary. */
130d2d72 227
1a94ca49 228#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
229 if (optimize > 0 && write_symbols != SDB_DEBUG) \
230 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
231
232/* No data type wants to be aligned rounder than this. */
233#define BIGGEST_ALIGNMENT 64
234
235/* Make strings word-aligned so strcpy from constants will be faster. */
236#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
237 (TREE_CODE (EXP) == STRING_CST \
238 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
239
240/* Make arrays of chars word-aligned for the same reasons. */
241#define DATA_ALIGNMENT(TYPE, ALIGN) \
242 (TREE_CODE (TYPE) == ARRAY_TYPE \
243 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
244 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
245
246/* Set this non-zero if move instructions will actually fail to work
247 when given unaligned data.
248
249 Since we get an error message when we do one, call them invalid. */
250
251#define STRICT_ALIGNMENT 1
252
253/* Set this non-zero if unaligned move instructions are extremely slow.
254
255 On the Alpha, they trap. */
130d2d72
RK
256
257#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
258\f
259/* Standard register usage. */
260
261/* Number of actual hardware registers.
262 The hardware registers are assigned numbers for the compiler
263 from 0 to just below FIRST_PSEUDO_REGISTER.
264 All registers that the compiler knows about must be given numbers,
265 even those that are not normally considered general registers.
266
267 We define all 32 integer registers, even though $31 is always zero,
268 and all 32 floating-point registers, even though $f31 is also
269 always zero. We do not bother defining the FP status register and
130d2d72
RK
270 there are no other registers.
271
272 Since $31 is always zero, we will use register number 31 as the
273 argument pointer. It will never appear in the generated code
274 because we will always be eliminating it in favor of the stack
275 poointer or frame pointer. */
1a94ca49
RK
276
277#define FIRST_PSEUDO_REGISTER 64
278
279/* 1 for registers that have pervasive standard uses
280 and are not available for the register allocator. */
281
282#define FIXED_REGISTERS \
283 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
284 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
285 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
286 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
287
288/* 1 for registers not available across function calls.
289 These must include the FIXED_REGISTERS and also any
290 registers that can be used without being saved.
291 The latter must include the registers where values are returned
292 and the register where structure-value addresses are passed.
293 Aside from that, you can include as many other registers as you like. */
294#define CALL_USED_REGISTERS \
295 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
296 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
297 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
298 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
299
300/* List the order in which to allocate registers. Each register must be
301 listed once, even those in FIXED_REGISTERS.
302
303 We allocate in the following order:
304 $f1 (nonsaved floating-point register)
305 $f10-$f15 (likewise)
306 $f22-$f30 (likewise)
307 $f21-$f16 (likewise, but input args)
308 $f0 (nonsaved, but return value)
309 $f2-$f9 (saved floating-point registers)
310 $1-$8 (nonsaved integer registers)
311 $22-$25 (likewise)
312 $28 (likewise)
313 $0 (likewise, but return value)
314 $21-$16 (likewise, but input args)
315 $27 (procedure value)
316 $9-$14 (saved integer registers)
317 $26 (return PC)
318 $15 (frame pointer)
319 $29 (global pointer)
130d2d72 320 $30, $31, $f31 (stack pointer and always zero/ap) */
1a94ca49
RK
321
322#define REG_ALLOC_ORDER \
323 {33, \
da01bc2c 324 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
325 54, 55, 56, 57, 58, 59, 60, 61, 62, \
326 53, 52, 51, 50, 49, 48, \
327 32, \
328 34, 35, 36, 37, 38, 39, 40, 41, \
329 1, 2, 3, 4, 5, 6, 7, 8, \
330 22, 23, 24, 25, \
331 28, \
332 0, \
333 21, 20, 19, 18, 17, 16, \
334 27, \
335 9, 10, 11, 12, 13, 14, \
336 26, \
337 15, \
338 29, \
339 30, 31, 63 }
340
341/* Return number of consecutive hard regs needed starting at reg REGNO
342 to hold something of mode MODE.
343 This is ordinarily the length in words of a value of mode MODE
344 but can be less for certain modes in special long registers. */
345
346#define HARD_REGNO_NREGS(REGNO, MODE) \
347 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
348
349/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
350 On Alpha, the integer registers can hold any mode. The floating-point
351 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
352 or 8-bit values. If we only allowed the larger integers into FP registers,
353 we'd have to say that QImode and SImode aren't tiable, which is a
354 pain. So say all registers can hold everything and see how that works. */
355
356#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
357
358/* Value is 1 if it is a good idea to tie two pseudo registers
359 when one has mode MODE1 and one has mode MODE2.
360 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
361 for any hard reg, then this must be 0 for correct output. */
362
363#define MODES_TIEABLE_P(MODE1, MODE2) 1
364
365/* Specify the registers used for certain standard purposes.
366 The values of these macros are register numbers. */
367
368/* Alpha pc isn't overloaded on a register that the compiler knows about. */
369/* #define PC_REGNUM */
370
371/* Register to use for pushing function arguments. */
372#define STACK_POINTER_REGNUM 30
373
374/* Base register for access to local variables of the function. */
375#define FRAME_POINTER_REGNUM 15
376
377/* Value should be nonzero if functions must have frame pointers.
378 Zero means the frame pointer need not be set up (and parms
379 may be accessed via the stack pointer) in functions that seem suitable.
380 This is computed in `reload', in reload1.c. */
381#define FRAME_POINTER_REQUIRED 0
382
383/* Base register for access to arguments of the function. */
130d2d72 384#define ARG_POINTER_REGNUM 31
1a94ca49
RK
385
386/* Register in which static-chain is passed to a function.
387
388 For the Alpha, this is based on an example; the calling sequence
389 doesn't seem to specify this. */
390#define STATIC_CHAIN_REGNUM 1
391
392/* Register in which address to store a structure value
393 arrives in the function. On the Alpha, the address is passed
394 as a hidden argument. */
395#define STRUCT_VALUE 0
396\f
397/* Define the classes of registers for register constraints in the
398 machine description. Also define ranges of constants.
399
400 One of the classes must always be named ALL_REGS and include all hard regs.
401 If there is more than one class, another class must be named NO_REGS
402 and contain no registers.
403
404 The name GENERAL_REGS must be the name of a class (or an alias for
405 another name such as ALL_REGS). This is the class of registers
406 that is allowed by "g" or "r" in a register constraint.
407 Also, registers outside this class are allocated only when
408 instructions express preferences for them.
409
410 The classes must be numbered in nondecreasing order; that is,
411 a larger-numbered class must never be contained completely
412 in a smaller-numbered class.
413
414 For any two classes, it is very desirable that there be another
415 class that represents their union. */
416
417enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
418 LIM_REG_CLASSES };
419
420#define N_REG_CLASSES (int) LIM_REG_CLASSES
421
422/* Give names of register classes as strings for dump file. */
423
424#define REG_CLASS_NAMES \
425 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
426
427/* Define which registers fit in which classes.
428 This is an initializer for a vector of HARD_REG_SET
429 of length N_REG_CLASSES. */
430
431#define REG_CLASS_CONTENTS \
432 { {0, 0}, {~0, 0}, {0, ~0}, {~0, ~0} }
433
434/* The same information, inverted:
435 Return the class number of the smallest class containing
436 reg number REGNO. This could be a conditional expression
437 or could index an array. */
438
439#define REGNO_REG_CLASS(REGNO) ((REGNO) >= 32 ? FLOAT_REGS : GENERAL_REGS)
440
441/* The class value for index registers, and the one for base regs. */
442#define INDEX_REG_CLASS NO_REGS
443#define BASE_REG_CLASS GENERAL_REGS
444
445/* Get reg_class from a letter such as appears in the machine description. */
446
447#define REG_CLASS_FROM_LETTER(C) \
448 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
449
450/* Define this macro to change register usage conditional on target flags. */
451/* #define CONDITIONAL_REGISTER_USAGE */
452
453/* The letters I, J, K, L, M, N, O, and P in a register constraint string
454 can be used to stand for particular ranges of immediate operands.
455 This macro defines what the ranges are.
456 C is the letter, and VALUE is a constant value.
457 Return 1 if VALUE is in the range specified by C.
458
459 For Alpha:
460 `I' is used for the range of constants most insns can contain.
461 `J' is the constant zero.
462 `K' is used for the constant in an LDA insn.
463 `L' is used for the constant in a LDAH insn.
464 `M' is used for the constants that can be AND'ed with using a ZAP insn.
465 `N' is used for complemented 8-bit constants.
466 `O' is used for negated 8-bit constants.
467 `P' is used for the constants 1, 2 and 3. */
468
469#define CONST_OK_FOR_LETTER_P(VALUE, C) \
470 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
471 : (C) == 'J' ? (VALUE) == 0 \
472 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
473 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
474 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
475 : (C) == 'M' ? zap_mask (VALUE) \
476 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
477 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
478 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
479 : 0)
480
481/* Similar, but for floating or large integer constants, and defining letters
482 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
483
484 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
485 that is the operand of a ZAP insn. */
486
487#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
488 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
489 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
490 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
491 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
492 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
493 : 0)
494
e560f226
RK
495/* Optional extra constraints for this machine.
496
497 For the Alpha, `Q' means that this is a memory operand but not a
498 reference to an unaligned location. */
499
500#define EXTRA_CONSTRAINT(OP, C) \
501 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
502 : 0)
503
1a94ca49
RK
504/* Given an rtx X being reloaded into a reg required to be
505 in class CLASS, return the class of reg to actually use.
506 In general this is just CLASS; but on some machines
507 in some cases it is preferable to use a more restrictive class.
508
509 On the Alpha, all constants except zero go into a floating-point
510 register via memory. */
511
512#define PREFERRED_RELOAD_CLASS(X, CLASS) \
513 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
514 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
515 : (CLASS))
516
517/* Loading and storing HImode or QImode values to and from memory
518 usually requires a scratch register. The exceptions are loading
e560f226
RK
519 QImode and HImode from an aligned address to a general register.
520 We also cannot load an unaligned address into an FP register. */
1a94ca49
RK
521
522#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
523(((GET_CODE (IN) == MEM \
524 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
525 || (GET_CODE (IN) == SUBREG \
526 && (GET_CODE (SUBREG_REG (IN)) == MEM \
527 || (GET_CODE (SUBREG_REG (IN)) == REG \
528 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
529 && (((CLASS) == FLOAT_REGS \
530 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
531 || (((MODE) == QImode || (MODE) == HImode) \
532 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
533 ? GENERAL_REGS \
534 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
535 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
536 : NO_REGS)
1a94ca49
RK
537
538#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
539(((GET_CODE (OUT) == MEM \
540 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
541 || (GET_CODE (OUT) == SUBREG \
542 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
543 || (GET_CODE (SUBREG_REG (OUT)) == REG \
544 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
545 && (((MODE) == HImode || (MODE) == QImode \
546 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
547 ? GENERAL_REGS \
548 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
549 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
550 : NO_REGS)
1a94ca49
RK
551
552/* If we are copying between general and FP registers, we need a memory
553 location. */
554
555#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
556
acd94aaf
RK
557/* Specify the mode to be used for memory when a secondary memory
558 location is needed. If MODE is floating-point, use it. Otherwise,
559 widen to a word like the default. This is needed because we always
560 store integers in FP registers in quadword format. This whole
561 area is very tricky! */
562#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
563 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
564 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
565
1a94ca49
RK
566/* Return the maximum number of consecutive registers
567 needed to represent mode MODE in a register of class CLASS. */
568
569#define CLASS_MAX_NREGS(CLASS, MODE) \
570 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
571
572/* Define the cost of moving between registers of various classes. Moving
573 between FLOAT_REGS and anything else except float regs is expensive.
574 In fact, we make it quite expensive because we really don't want to
575 do these moves unless it is clearly worth it. Optimizations may
576 reduce the impact of not being able to allocate a pseudo to a
577 hard register. */
578
579#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
580 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
581
582/* A C expressions returning the cost of moving data of MODE from a register to
583 or from memory.
584
585 On the Alpha, bump this up a bit. */
586
587#define MEMORY_MOVE_COST(MODE) 6
588
589/* Provide the cost of a branch. Exact meaning under development. */
590#define BRANCH_COST 5
591
592/* Adjust the cost of dependencies. */
593
594#define ADJUST_COST(INSN,LINK,DEP,COST) \
595 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
596\f
597/* Stack layout; function entry, exit and calling. */
598
599/* Define this if pushing a word on the stack
600 makes the stack pointer a smaller address. */
601#define STACK_GROWS_DOWNWARD
602
603/* Define this if the nominal address of the stack frame
604 is at the high-address end of the local variables;
605 that is, each additional local variable allocated
606 goes at a more negative offset in the frame. */
130d2d72 607/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
608
609/* Offset within stack frame to start allocating local variables at.
610 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
611 first local allocated. Otherwise, it is the offset to the BEGINNING
612 of the first local allocated. */
613
130d2d72 614#define STARTING_FRAME_OFFSET current_function_outgoing_args_size
1a94ca49
RK
615
616/* If we generate an insn to push BYTES bytes,
617 this says how many the stack pointer really advances by.
618 On Alpha, don't define this because there are no push insns. */
619/* #define PUSH_ROUNDING(BYTES) */
620
621/* Define this if the maximum size of all the outgoing args is to be
622 accumulated and pushed during the prologue. The amount can be
623 found in the variable current_function_outgoing_args_size. */
624#define ACCUMULATE_OUTGOING_ARGS
625
626/* Offset of first parameter from the argument pointer register value. */
627
130d2d72 628#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
629
630/* Definitions for register eliminations.
631
978e8952 632 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 633 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
634 pointer register. Secondly, the argument pointer register can always be
635 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
636
637/* This is an array of structures. Each structure initializes one pair
638 of eliminable registers. The "from" register number is given first,
639 followed by "to". Eliminations of the same "from" register are listed
640 in order of preference. */
641
642#define ELIMINABLE_REGS \
130d2d72
RK
643{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
644 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
645 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1a94ca49
RK
646
647/* Given FROM and TO register numbers, say whether this elimination is allowed.
648 Frame pointer elimination is automatically handled.
649
130d2d72 650 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
651 eliminated are already handled. */
652
130d2d72 653#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49
RK
654
655/* Define the offset between two registers, one to be eliminated, and the other
656 its replacement, at the start of a routine. */
657#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
658{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
130d2d72
RK
659 (OFFSET) = 0; \
660 else \
978e8952
RK
661 { \
662 (OFFSET) = ((get_frame_size () + current_function_outgoing_args_size \
663 + current_function_pretend_args_size \
664 + alpha_sa_size () + 15) \
665 & ~ 15); \
666 if ((FROM) == ARG_POINTER_REGNUM) \
667 (OFFSET) -= current_function_pretend_args_size; \
668 } \
1a94ca49
RK
669}
670
671/* Define this if stack space is still allocated for a parameter passed
672 in a register. */
673/* #define REG_PARM_STACK_SPACE */
674
675/* Value is the number of bytes of arguments automatically
676 popped when returning from a subroutine call.
677 FUNTYPE is the data type of the function (as a tree),
678 or for a library call it is an identifier node for the subroutine name.
679 SIZE is the number of bytes of arguments passed on the stack. */
680
681#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
682
683/* Define how to find the value returned by a function.
684 VALTYPE is the data type of the value (as a tree).
685 If the precise function being called is known, FUNC is its FUNCTION_DECL;
686 otherwise, FUNC is 0.
687
688 On Alpha the value is found in $0 for integer functions and
689 $f0 for floating-point functions. */
690
691#define FUNCTION_VALUE(VALTYPE, FUNC) \
692 gen_rtx (REG, \
693 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
694 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
695 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
696 || TREE_CODE (VALTYPE) == CHAR_TYPE \
697 || TREE_CODE (VALTYPE) == POINTER_TYPE \
698 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
699 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
700 ? word_mode : TYPE_MODE (VALTYPE), \
701 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
702
703/* Define how to find the value returned by a library function
704 assuming the value has mode MODE. */
705
706#define LIBCALL_VALUE(MODE) \
707 gen_rtx (REG, MODE, \
708 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
709
130d2d72
RK
710/* The definition of this macro implies that there are cases where
711 a scalar value cannot be returned in registers.
712
713 For the Alpha, any structure or union type is returned in memory, as
714 are integers whose size is larger than 64 bits. */
715
716#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 717 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
718 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
719
1a94ca49
RK
720/* 1 if N is a possible register number for a function value
721 as seen by the caller. */
722
723#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
724
725/* 1 if N is a possible register number for function argument passing.
726 On Alpha, these are $16-$21 and $f16-$f21. */
727
728#define FUNCTION_ARG_REGNO_P(N) \
729 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
730\f
731/* Define a data type for recording info about an argument list
732 during the scan of that argument list. This data type should
733 hold all necessary information about the function itself
734 and about the args processed so far, enough to enable macros
735 such as FUNCTION_ARG to determine where the next arg should go.
736
737 On Alpha, this is a single integer, which is a number of words
738 of arguments scanned so far.
739 Thus 6 or more means all following args should go on the stack. */
740
741#define CUMULATIVE_ARGS int
742
743/* Initialize a variable CUM of type CUMULATIVE_ARGS
744 for a call to a function whose data type is FNTYPE.
745 For a library call, FNTYPE is 0. */
746
747#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
748
749/* Define intermediate macro to compute the size (in registers) of an argument
750 for the Alpha. */
751
752#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
753((MODE) != BLKmode \
754 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
755 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
756
757/* Update the data in CUM to advance over an argument
758 of mode MODE and data type TYPE.
759 (TYPE is null for libcalls where that information may not be available.) */
760
761#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
762 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
763 (CUM) = 6; \
764 else \
765 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
766
767/* Determine where to put an argument to a function.
768 Value is zero to push the argument on the stack,
769 or a hard register in which to store the argument.
770
771 MODE is the argument's machine mode.
772 TYPE is the data type of the argument (as a tree).
773 This is null for libcalls where that information may
774 not be available.
775 CUM is a variable of type CUMULATIVE_ARGS which gives info about
776 the preceding args and about the function being called.
777 NAMED is nonzero if this argument is a named parameter
778 (otherwise it is an extra parameter matching an ellipsis).
779
780 On Alpha the first 6 words of args are normally in registers
781 and the rest are pushed. */
782
783#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
784((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
785 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
786 (CUM) + 16 + ((TARGET_FPREGS \
787 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
788 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
789 * 32)) \
790 : 0)
1a94ca49 791
1a94ca49
RK
792/* Specify the padding direction of arguments.
793
794 On the Alpha, we must pad upwards in order to be able to pass args in
795 registers. */
796
797#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
798
799/* For an arg passed partly in registers and partly in memory,
800 this is the number of registers used.
801 For args passed entirely in registers or entirely in memory, zero. */
802
803#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
804((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
805 ? 6 - (CUM) : 0)
806
130d2d72
RK
807/* Perform any needed actions needed for a function that is receiving a
808 variable number of arguments.
809
810 CUM is as above.
811
812 MODE and TYPE are the mode and type of the current parameter.
813
814 PRETEND_SIZE is a variable that should be set to the amount of stack
815 that must be pushed by the prolog to pretend that our caller pushed
816 it.
817
818 Normally, this macro will push all remaining incoming registers on the
819 stack and set PRETEND_SIZE to the length of the registers pushed.
820
821 On the Alpha, we allocate space for all 12 arg registers, but only
822 push those that are remaining.
823
824 However, if NO registers need to be saved, don't allocate any space.
825 This is not only because we won't need the space, but because AP includes
826 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
827 ap-relative addresses already made.
828
829 If we are not to use the floating-point registers, save the integer
830 registers where we would put the floating-point registers. This is
831 not the most efficient way to implement varargs with just one register
832 class, but it isn't worth doing anything more efficient in this rare
833 case. */
834
130d2d72
RK
835
836#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
837{ if ((CUM) < 6) \
838 { \
839 if (! (NO_RTL)) \
840 { \
841 move_block_from_reg \
842 (16 + CUM, \
843 gen_rtx (MEM, BLKmode, \
844 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 845 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 846 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 847 move_block_from_reg \
7a92339b 848 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
849 gen_rtx (MEM, BLKmode, \
850 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 851 (CUM) * UNITS_PER_WORD)), \
02892e06 852 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
853 } \
854 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
855 } \
856}
857
1a94ca49
RK
858/* Generate necessary RTL for __builtin_saveregs().
859 ARGLIST is the argument list; see expr.c. */
860extern struct rtx_def *alpha_builtin_saveregs ();
861#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
862
863/* Define the information needed to generate branch and scc insns. This is
864 stored from the compare operation. Note that we can't use "rtx" here
865 since it hasn't been defined! */
866
867extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
868extern int alpha_compare_fp_p;
869
870/* This macro produces the initial definition of a function name. On the
03f8c4cc 871 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
872
873extern char *alpha_function_name;
874
875#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 876{ \
1a94ca49
RK
877 alpha_function_name = NAME; \
878}
879
880/* This macro generates the assembly code for function entry.
881 FILE is a stdio stream to output the code to.
882 SIZE is an int: how many units of temporary storage to allocate.
883 Refer to the array `regs_ever_live' to determine which registers
884 to save; `regs_ever_live[I]' is nonzero if register number I
885 is ever used in the function. This macro is responsible for
886 knowing which registers should not be saved even if used. */
887
888#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
889
890/* Output assembler code to FILE to increment profiler label # LABELNO
891 for profiling a function entry. */
892
893#define FUNCTION_PROFILER(FILE, LABELNO)
894
895/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
896 the stack pointer does not matter. The value is tested only in
897 functions that have frame pointers.
898 No definition is equivalent to always zero. */
899
900#define EXIT_IGNORE_STACK 1
901
902/* This macro generates the assembly code for function exit,
903 on machines that need it. If FUNCTION_EPILOGUE is not defined
904 then individual return instructions are generated for each
905 return statement. Args are same as for FUNCTION_PROLOGUE.
906
907 The function epilogue should not depend on the current stack pointer!
908 It should use the frame pointer only. This is mandatory because
909 of alloca; we also take advantage of it to omit stack adjustments
910 before returning. */
911
912#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
913
914\f
915/* Output assembler code for a block containing the constant parts
916 of a trampoline, leaving space for the variable parts.
917
918 The trampoline should set the static chain pointer to value placed
7981384f
RK
919 into the trampoline and should branch to the specified routine.
920 Note that $27 has been set to the address of the trampoline, so we can
921 use it for addressability of the two data items. Trampolines are always
922 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
923
924#define TRAMPOLINE_TEMPLATE(FILE) \
925{ \
7981384f 926 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 927 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
928 fprintf (FILE, "\tjmp $31,($27),0\n"); \
929 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
930 fprintf (FILE, "\t.quad 0,0\n"); \
931}
932
3a523eeb
RS
933/* Section in which to place the trampoline. On Alpha, instructions
934 may only be placed in a text segment. */
935
936#define TRAMPOLINE_SECTION text_section
937
1a94ca49
RK
938/* Length in units of the trampoline for entering a nested function. */
939
7981384f 940#define TRAMPOLINE_SIZE 32
1a94ca49
RK
941
942/* Emit RTL insns to initialize the variable parts of a trampoline.
943 FNADDR is an RTX for the address of the function's pure code.
944 CXT is an RTX for the static chain value for the function. We assume
945 here that a function will be called many more times than its address
946 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
947 to initialize the "hint" field in the JMP insn. Note that the hint
948 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
949
950#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
951{ \
952 rtx _temp, _temp1, _addr; \
953 \
954 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
955 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 956 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
957 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
958 \
7981384f
RK
959 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
960 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
961 OPTAB_WIDEN); \
962 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 963 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
964 _temp = expand_and (gen_lowpart (SImode, _temp), \
965 GEN_INT (0x3fff), 0); \
1a94ca49 966 \
7981384f 967 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 968 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 969 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
970 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
971 OPTAB_WIDEN); \
972 \
973 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
974 \
975 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
976 "__enable_execute_stack"), \
977 0, VOIDmode, 1,_addr, Pmode); \
978 \
979 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
980 gen_rtvec (1, const0_rtx), 0)); \
981}
982
983/* Attempt to turn on access permissions for the stack. */
984
985#define TRANSFER_FROM_TRAMPOLINE \
986 \
987void \
988__enable_execute_stack (addr) \
989 void *addr; \
990{ \
991 long size = getpagesize (); \
992 long mask = ~(size-1); \
993 char *page = (char *) (((long) addr) & mask); \
994 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
995 \
996 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
997 if (mprotect (page, end - page, 7) < 0) \
998 perror ("mprotect of trampoline code"); \
1a94ca49
RK
999}
1000\f
1001/* Addressing modes, and classification of registers for them. */
1002
1003/* #define HAVE_POST_INCREMENT */
1004/* #define HAVE_POST_DECREMENT */
1005
1006/* #define HAVE_PRE_DECREMENT */
1007/* #define HAVE_PRE_INCREMENT */
1008
1009/* Macros to check register numbers against specific register classes. */
1010
1011/* These assume that REGNO is a hard or pseudo reg number.
1012 They give nonzero only if REGNO is a hard reg of the suitable class
1013 or a pseudo reg currently allocated to a suitable hard reg.
1014 Since they use reg_renumber, they are safe only once reg_renumber
1015 has been allocated, which happens in local-alloc.c. */
1016
1017#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1018#define REGNO_OK_FOR_BASE_P(REGNO) \
1019(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1020\f
1021/* Maximum number of registers that can appear in a valid memory address. */
1022#define MAX_REGS_PER_ADDRESS 1
1023
1024/* Recognize any constant value that is a valid address. For the Alpha,
1025 there are only constants none since we want to use LDA to load any
1026 symbolic addresses into registers. */
1027
1028#define CONSTANT_ADDRESS_P(X) \
1029 (GET_CODE (X) == CONST_INT \
1030 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1031
1032/* Include all constant integers and constant doubles, but not
1033 floating-point, except for floating-point zero. */
1034
1035#define LEGITIMATE_CONSTANT_P(X) \
1036 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1037 || (X) == CONST0_RTX (GET_MODE (X)))
1038
1039/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1040 and check its validity for a certain class.
1041 We have two alternate definitions for each of them.
1042 The usual definition accepts all pseudo regs; the other rejects
1043 them unless they have been allocated suitable hard regs.
1044 The symbol REG_OK_STRICT causes the latter definition to be used.
1045
1046 Most source files want to accept pseudo regs in the hope that
1047 they will get allocated to the class that the insn wants them to be in.
1048 Source files for reload pass need to be strict.
1049 After reload, it makes no difference, since pseudo regs have
1050 been eliminated by then. */
1051
1052#ifndef REG_OK_STRICT
1053
1054/* Nonzero if X is a hard reg that can be used as an index
1055 or if it is a pseudo reg. */
1056#define REG_OK_FOR_INDEX_P(X) 0
1057/* Nonzero if X is a hard reg that can be used as a base reg
1058 or if it is a pseudo reg. */
1059#define REG_OK_FOR_BASE_P(X) \
1060 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1061
1062#else
1063
1064/* Nonzero if X is a hard reg that can be used as an index. */
1065#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1066/* Nonzero if X is a hard reg that can be used as a base reg. */
1067#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1068
1069#endif
1070\f
1071/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1072 that is a valid memory address for an instruction.
1073 The MODE argument is the machine mode for the MEM expression
1074 that wants to use this address.
1075
1076 For Alpha, we have either a constant address or the sum of a register
1077 and a constant address, or just a register. For DImode, any of those
1078 forms can be surrounded with an AND that clear the low-order three bits;
1079 this is an "unaligned" access.
1080
1081 We also allow a SYMBOL_REF that is the name of the current function as
1082 valid address. This is for CALL_INSNs. It cannot be used in any other
1083 context.
1084
1085 First define the basic valid address. */
1086
1087#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1088{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1089 goto ADDR; \
1090 if (CONSTANT_ADDRESS_P (X)) \
1091 goto ADDR; \
1092 if (GET_CODE (X) == PLUS \
1093 && REG_P (XEXP (X, 0)) \
1094 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1095 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1096 goto ADDR; \
1097}
1098
1099/* Now accept the simple address, or, for DImode only, an AND of a simple
1100 address that turns off the low three bits. */
1101
1102extern char *current_function_name;
1103
1104#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1105{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1106 if ((MODE) == DImode \
1107 && GET_CODE (X) == AND \
1108 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1109 && INTVAL (XEXP (X, 1)) == -8) \
1110 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1111 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1112 && ! strcmp (XSTR (X, 0), current_function_name)) \
1113 goto ADDR; \
1114}
1115
1116/* Try machine-dependent ways of modifying an illegitimate address
1117 to be legitimate. If we find one, return the new, valid address.
1118 This macro is used in only one place: `memory_address' in explow.c.
1119
1120 OLDX is the address as it was before break_out_memory_refs was called.
1121 In some cases it is useful to look at this to decide what needs to be done.
1122
1123 MODE and WIN are passed so that this macro can use
1124 GO_IF_LEGITIMATE_ADDRESS.
1125
1126 It is always safe for this macro to do nothing. It exists to recognize
1127 opportunities to optimize the output.
1128
1129 For the Alpha, there are three cases we handle:
1130
1131 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1132 valid offset, compute the high part of the constant and add it to the
1133 register. Then our address is (plus temp low-part-const).
1134 (2) If the address is (const (plus FOO const_int)), find the low-order
1135 part of the CONST_INT. Then load FOO plus any high-order part of the
1136 CONST_INT into a register. Our address is (plus reg low-part-const).
1137 This is done to reduce the number of GOT entries.
1138 (3) If we have a (plus reg const), emit the load as in (2), then add
1139 the two registers, and finally generate (plus reg low-part-const) as
1140 our address. */
1141
1142#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1143{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1144 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1145 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1146 { \
1147 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1148 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1149 HOST_WIDE_INT highpart = val - lowpart; \
1150 rtx high = GEN_INT (highpart); \
1151 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1152 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1153 \
1154 (X) = plus_constant (temp, lowpart); \
1155 goto WIN; \
1156 } \
1157 else if (GET_CODE (X) == CONST \
1158 && GET_CODE (XEXP (X, 0)) == PLUS \
1159 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1160 { \
1161 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1162 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1163 HOST_WIDE_INT highpart = val - lowpart; \
1164 rtx high = XEXP (XEXP (X, 0), 0); \
1165 \
1166 if (highpart) \
1167 high = plus_constant (high, highpart); \
1168 \
1169 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1170 goto WIN; \
1171 } \
1172 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1173 && GET_CODE (XEXP (X, 1)) == CONST \
1174 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1175 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1176 { \
1177 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1178 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1179 HOST_WIDE_INT highpart = val - lowpart; \
1180 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1181 \
1182 if (highpart) \
1183 high = plus_constant (high, highpart); \
1184 \
1185 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1186 force_reg (Pmode, high), \
80f251fe 1187 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1188 (X) = plus_constant (high, lowpart); \
1189 goto WIN; \
1190 } \
1191}
1192
1193/* Go to LABEL if ADDR (a legitimate address expression)
1194 has an effect that depends on the machine mode it is used for.
1195 On the Alpha this is true only for the unaligned modes. We can
1196 simplify this test since we know that the address must be valid. */
1197
1198#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1199{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1200
1201/* Compute the cost of an address. For the Alpha, all valid addresses are
1202 the same cost. */
1203
1204#define ADDRESS_COST(X) 0
1205
1206/* Define this if some processing needs to be done immediately before
1207 emitting code for an insn. */
1208
1209/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1210\f
1211/* Specify the machine mode that this machine uses
1212 for the index in the tablejump instruction. */
1213#define CASE_VECTOR_MODE SImode
1214
1215/* Define this if the tablejump instruction expects the table
1216 to contain offsets from the address of the table.
1217 Do not define this if the table should contain absolute addresses. */
1218/* #define CASE_VECTOR_PC_RELATIVE */
1219
1220/* Specify the tree operation to be used to convert reals to integers. */
1221#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1222
1223/* This is the kind of divide that is easiest to do in the general case. */
1224#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1225
1226/* Define this as 1 if `char' should by default be signed; else as 0. */
1227#define DEFAULT_SIGNED_CHAR 1
1228
1229/* This flag, if defined, says the same insns that convert to a signed fixnum
1230 also convert validly to an unsigned one.
1231
1232 We actually lie a bit here as overflow conditions are different. But
1233 they aren't being checked anyway. */
1234
1235#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1236
1237/* Max number of bytes we can move to or from memory
1238 in one reasonably fast instruction. */
1239
1240#define MOVE_MAX 8
1241
1242/* Largest number of bytes of an object that can be placed in a register.
1243 On the Alpha we have plenty of registers, so use TImode. */
1244#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1245
1246/* Nonzero if access to memory by bytes is no faster than for words.
1247 Also non-zero if doing byte operations (specifically shifts) in registers
1248 is undesirable.
1249
1250 On the Alpha, we want to not use the byte operation and instead use
1251 masking operations to access fields; these will save instructions. */
1252
1253#define SLOW_BYTE_ACCESS 1
1254
9a63901f
RK
1255/* Define if operations between registers always perform the operation
1256 on the full register even if a narrower mode is specified. */
1257#define WORD_REGISTER_OPERATIONS
1258
1259/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1260 will either zero-extend or sign-extend. The value of this macro should
1261 be the code that says which one of the two operations is implicitly
1262 done, NIL if none. */
1263#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1264
225211e2
RK
1265/* Define if loading short immediate values into registers sign extends. */
1266#define SHORT_IMMEDIATES_SIGN_EXTEND
1267
1a94ca49
RK
1268/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1269 is done just by pretending it is already truncated. */
1270#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1271
1272/* We assume that the store-condition-codes instructions store 0 for false
1273 and some other value for true. This is the value stored for true. */
1274
1275#define STORE_FLAG_VALUE 1
1276
1277/* Define the value returned by a floating-point comparison instruction. */
1278
1279#define FLOAT_STORE_FLAG_VALUE 0.5
1280
35bb77fd
RK
1281/* Canonicalize a comparison from one we don't have to one we do have. */
1282
1283#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1284 do { \
1285 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1286 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1287 { \
1288 rtx tem = (OP0); \
1289 (OP0) = (OP1); \
1290 (OP1) = tem; \
1291 (CODE) = swap_condition (CODE); \
1292 } \
1293 if (((CODE) == LT || (CODE) == LTU) \
1294 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1295 { \
1296 (CODE) = (CODE) == LT ? LE : LEU; \
1297 (OP1) = GEN_INT (255); \
1298 } \
1299 } while (0)
1300
1a94ca49
RK
1301/* Specify the machine mode that pointers have.
1302 After generation of rtl, the compiler makes no further distinction
1303 between pointers and any other objects of this machine mode. */
1304#define Pmode DImode
1305
1306/* Mode of a function address in a call instruction (for indexing purposes). */
1307
1308#define FUNCTION_MODE Pmode
1309
1310/* Define this if addresses of constant functions
1311 shouldn't be put through pseudo regs where they can be cse'd.
1312 Desirable on machines where ordinary constants are expensive
1313 but a CALL with constant address is cheap.
1314
1315 We define this on the Alpha so that gen_call and gen_call_value
1316 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1317 then copy it into a register, thus actually letting the address be
1318 cse'ed. */
1319
1320#define NO_FUNCTION_CSE
1321
d969caf8 1322/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1323 few bits. */
d969caf8 1324#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1325
d721b776
RK
1326/* Use atexit for static constructors/destructors, instead of defining
1327 our own exit function. */
1328#define HAVE_ATEXIT
1329
1a94ca49
RK
1330/* Compute the cost of computing a constant rtl expression RTX
1331 whose rtx-code is CODE. The body of this macro is a portion
1332 of a switch statement. If the code is computed here,
1333 return it with a return statement. Otherwise, break from the switch.
1334
8b7b2e36
RK
1335 If this is an 8-bit constant, return zero since it can be used
1336 nearly anywhere with no cost. If it is a valid operand for an
1337 ADD or AND, likewise return 0 if we know it will be used in that
1338 context. Otherwise, return 2 since it might be used there later.
1339 All other constants take at least two insns. */
1a94ca49
RK
1340
1341#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1342 case CONST_INT: \
06eb8e92 1343 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1344 return 0; \
1a94ca49 1345 case CONST_DOUBLE: \
8b7b2e36
RK
1346 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1347 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1348 return 0; \
1349 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1350 return 2; \
1351 else \
1352 return COSTS_N_INSNS (2); \
1a94ca49
RK
1353 case CONST: \
1354 case SYMBOL_REF: \
1355 case LABEL_REF: \
8b7b2e36 1356 return COSTS_N_INSNS (3);
1a94ca49
RK
1357
1358/* Provide the costs of a rtl expression. This is in the body of a
1359 switch on CODE. */
1360
1361#define RTX_COSTS(X,CODE,OUTER_CODE) \
1362 case PLUS: \
1363 case MINUS: \
1364 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1365 return COSTS_N_INSNS (6); \
b49e978e
RK
1366 else if (GET_CODE (XEXP (X, 0)) == MULT \
1367 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1368 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1369 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1370 break; \
1371 case MULT: \
1372 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1373 return COSTS_N_INSNS (6); \
919ea6a5 1374 return COSTS_N_INSNS (23); \
b49e978e
RK
1375 case ASHIFT: \
1376 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1377 && INTVAL (XEXP (X, 1)) <= 3) \
1378 break; \
1379 /* ... fall through ... */ \
1380 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1381 return COSTS_N_INSNS (2); \
1a94ca49
RK
1382 case DIV: \
1383 case UDIV: \
1384 case MOD: \
1385 case UMOD: \
1386 if (GET_MODE (X) == SFmode) \
1387 return COSTS_N_INSNS (34); \
1388 else if (GET_MODE (X) == DFmode) \
1389 return COSTS_N_INSNS (63); \
1390 else \
1391 return COSTS_N_INSNS (70); \
1392 case MEM: \
1393 return COSTS_N_INSNS (3);
1394\f
1395/* Control the assembler format that we output. */
1396
1397/* Output at beginning of assembler file. */
1398
1399#define ASM_FILE_START(FILE) \
03f8c4cc 1400{ \
130d2d72
RK
1401 alpha_write_verstamp (FILE); \
1402 fprintf (FILE, "\t.set noreorder\n"); \
1a94ca49 1403 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1404 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1405}
1406
1407/* Output to assembler file text saying following lines
1408 may contain character constants, extra white space, comments, etc. */
1409
1410#define ASM_APP_ON ""
1411
1412/* Output to assembler file text saying following lines
1413 no longer contain unusual constructs. */
1414
1415#define ASM_APP_OFF ""
1416
1417#define TEXT_SECTION_ASM_OP ".text"
1418
1419/* Output before read-only data. */
1420
1421#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1422
1423/* Output before writable data. */
1424
1425#define DATA_SECTION_ASM_OP ".data"
1426
1427/* Define an extra section for read-only data, a routine to enter it, and
1428 indicate that it is for read-only data. */
1429
1430#define EXTRA_SECTIONS readonly_data
1431
1432#define EXTRA_SECTION_FUNCTIONS \
1433void \
1434literal_section () \
1435{ \
1436 if (in_section != readonly_data) \
1437 { \
1438 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1439 in_section = readonly_data; \
1440 } \
1441} \
1442
1443#define READONLY_DATA_SECTION literal_section
1444
130d2d72
RK
1445/* If we are referencing a function that is static or is known to be
1446 in this file, make the SYMBOL_REF special. We can use this to see
1447 indicate that we can branch to this function without setting PV or
1448 restoring GP. */
1449
1450#define ENCODE_SECTION_INFO(DECL) \
1451 if (TREE_CODE (DECL) == FUNCTION_DECL \
1452 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1453 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1454
1a94ca49
RK
1455/* How to refer to registers in assembler output.
1456 This sequence is indexed by compiler's hard-register-number (see above). */
1457
1458#define REGISTER_NAMES \
1459{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1460 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1461 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1462 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1463 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1464 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1465 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1466 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"}
1467
1468/* How to renumber registers for dbx and gdb. */
1469
1470#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1471
1472/* This is how to output the definition of a user-level label named NAME,
1473 such as the label on a static function or variable NAME. */
1474
1475#define ASM_OUTPUT_LABEL(FILE,NAME) \
1476 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1477
1478/* This is how to output a command to make the user-level label named NAME
1479 defined for reference from other files. */
1480
1481#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1482 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1483
1484/* This is how to output a reference to a user-level label named NAME.
1485 `assemble_name' uses this. */
1486
1487#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1488 fprintf (FILE, "%s", NAME)
1489
1490/* This is how to output an internal numbered label where
1491 PREFIX is the class of label and NUM is the number within the class. */
1492
1493#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1494 if ((PREFIX)[0] == 'L') \
1495 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1496 else \
1497 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1498
1499/* This is how to output a label for a jump table. Arguments are the same as
1500 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1501 passed. */
1502
1503#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1504{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1505
1506/* This is how to store into the string LABEL
1507 the symbol_ref name of an internal numbered label where
1508 PREFIX is the class of label and NUM is the number within the class.
1509 This is suitable for output with `assemble_name'. */
1510
1511#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1512 if ((PREFIX)[0] == 'L') \
1513 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1514 else \
1515 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1516
1517/* This is how to output an assembler line defining a `double' constant. */
1518
e99300f1
RS
1519#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1520 { \
1521 if (REAL_VALUE_ISINF (VALUE) \
1522 || REAL_VALUE_ISNAN (VALUE) \
1523 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1524 { \
1525 long t[2]; \
1526 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1527 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1528 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1529 } \
1530 else \
1531 { \
1532 char str[30]; \
1533 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1534 fprintf (FILE, "\t.t_floating %s\n", str); \
1535 } \
1536 }
1a94ca49
RK
1537
1538/* This is how to output an assembler line defining a `float' constant. */
1539
e99300f1
RS
1540#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1541 { \
1542 if (REAL_VALUE_ISINF (VALUE) \
1543 || REAL_VALUE_ISNAN (VALUE) \
1544 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1545 { \
1546 long t; \
1547 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1548 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1549 } \
1550 else \
1551 { \
1552 char str[30]; \
1553 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1554 fprintf (FILE, "\t.s_floating %s\n", str); \
1555 } \
1556 }
2700ac93 1557
1a94ca49
RK
1558/* This is how to output an assembler line defining an `int' constant. */
1559
1560#define ASM_OUTPUT_INT(FILE,VALUE) \
45c45e79
RK
1561 fprintf (FILE, "\t.long %d\n", \
1562 (GET_CODE (VALUE) == CONST_INT \
1563 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1a94ca49
RK
1564
1565/* This is how to output an assembler line defining a `long' constant. */
1566
1567#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1568( fprintf (FILE, "\t.quad "), \
1569 output_addr_const (FILE, (VALUE)), \
1570 fprintf (FILE, "\n"))
1571
1572/* Likewise for `char' and `short' constants. */
1573
1574#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1575 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1576 (GET_CODE (VALUE) == CONST_INT \
1577 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1578
1579#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1580 fprintf (FILE, "\t.byte %d\n", \
1581 (GET_CODE (VALUE) == CONST_INT \
1582 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1583
1584/* We use the default ASCII-output routine, except that we don't write more
1585 than 50 characters since the assembler doesn't support very long lines. */
1586
1587#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1588 do { \
1589 FILE *_hide_asm_out_file = (MYFILE); \
1590 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1591 int _hide_thissize = (MYLENGTH); \
1592 int _size_so_far = 0; \
1593 { \
1594 FILE *asm_out_file = _hide_asm_out_file; \
1595 unsigned char *p = _hide_p; \
1596 int thissize = _hide_thissize; \
1597 int i; \
1598 fprintf (asm_out_file, "\t.ascii \""); \
1599 \
1600 for (i = 0; i < thissize; i++) \
1601 { \
1602 register int c = p[i]; \
1603 \
1604 if (_size_so_far ++ > 50 && i < thissize - 4) \
1605 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1606 \
1607 if (c == '\"' || c == '\\') \
1608 putc ('\\', asm_out_file); \
1609 if (c >= ' ' && c < 0177) \
1610 putc (c, asm_out_file); \
1611 else \
1612 { \
1613 fprintf (asm_out_file, "\\%o", c); \
1614 /* After an octal-escape, if a digit follows, \
1615 terminate one string constant and start another. \
1616 The Vax assembler fails to stop reading the escape \
1617 after three digits, so this is the only way we \
1618 can get it to parse the data properly. */ \
1619 if (i < thissize - 1 \
1620 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1621 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1622 } \
1623 } \
1624 fprintf (asm_out_file, "\"\n"); \
1625 } \
1626 } \
1627 while (0)
1628/* This is how to output an insn to push a register on the stack.
1629 It need not be very fast code. */
1630
1631#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1632 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1633 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1634 (REGNO) & 31);
1635
1636/* This is how to output an insn to pop a register from the stack.
1637 It need not be very fast code. */
1638
1639#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1640 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1641 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1642 (REGNO) & 31);
1643
1644/* This is how to output an assembler line for a numeric constant byte. */
1645
1646#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1647 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49
RK
1648
1649/* This is how to output an element of a case-vector that is absolute. */
1650
1651#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1652 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1653
1654/* This is how to output an element of a case-vector that is relative.
1655 (Alpha does not use such vectors, but we must define this macro anyway.) */
1656
1657#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1658
1659/* This is how to output an assembler line
1660 that says to advance the location counter
1661 to a multiple of 2**LOG bytes. */
1662
1663#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1664 if ((LOG) != 0) \
1665 fprintf (FILE, "\t.align %d\n", LOG);
1666
1667/* This is how to advance the location counter by SIZE bytes. */
1668
1669#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1670 fprintf (FILE, "\t.space %d\n", (SIZE))
1671
1672/* This says how to output an assembler line
1673 to define a global common symbol. */
1674
1675#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1676( fputs ("\t.comm ", (FILE)), \
1677 assemble_name ((FILE), (NAME)), \
1678 fprintf ((FILE), ",%d\n", (SIZE)))
1679
1680/* This says how to output an assembler line
1681 to define a local common symbol. */
1682
1683#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1684( fputs ("\t.lcomm ", (FILE)), \
1685 assemble_name ((FILE), (NAME)), \
1686 fprintf ((FILE), ",%d\n", (SIZE)))
1687
1688/* Store in OUTPUT a string (made with alloca) containing
1689 an assembler-name for a local static variable named NAME.
1690 LABELNO is an integer which is different for each call. */
1691
1692#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1693( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1694 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1695
1696/* Define the parentheses used to group arithmetic operations
1697 in assembler code. */
1698
1699#define ASM_OPEN_PAREN "("
1700#define ASM_CLOSE_PAREN ")"
1701
1702/* Define results of standard character escape sequences. */
1703#define TARGET_BELL 007
1704#define TARGET_BS 010
1705#define TARGET_TAB 011
1706#define TARGET_NEWLINE 012
1707#define TARGET_VT 013
1708#define TARGET_FF 014
1709#define TARGET_CR 015
1710
1711/* Print operand X (an rtx) in assembler syntax to file FILE.
1712 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1713 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1714
1715#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1716
1717/* Determine which codes are valid without a following integer. These must
1718 not be alphabetic. */
1719
1720#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1721\f
1722/* Print a memory address as an operand to reference that memory location. */
1723
1724#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1725{ rtx addr = (ADDR); \
1726 int basereg = 31; \
1727 HOST_WIDE_INT offset = 0; \
1728 \
1729 if (GET_CODE (addr) == AND) \
1730 addr = XEXP (addr, 0); \
1731 \
1732 if (GET_CODE (addr) == REG) \
1733 basereg = REGNO (addr); \
1734 else if (GET_CODE (addr) == CONST_INT) \
1735 offset = INTVAL (addr); \
1736 else if (GET_CODE (addr) == PLUS \
1737 && GET_CODE (XEXP (addr, 0)) == REG \
1738 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1739 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1740 else \
1741 abort (); \
1742 \
1743 fprintf (FILE, "%d($%d)", offset, basereg); \
1744}
1745/* Define the codes that are matched by predicates in alpha.c. */
1746
1747#define PREDICATE_CODES \
1748 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1749 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1750 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1751 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1752 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1753 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1754 {"const48_operand", {CONST_INT}}, \
1755 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1756 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1757 {"mode_mask_operand", {CONST_INT}}, \
1758 {"mul8_operand", {CONST_INT}}, \
1759 {"mode_width_operand", {CONST_INT}}, \
1760 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1761 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1762 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1763 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1764 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1765 {"current_file_function_operand", {SYMBOL_REF}}, \
1a94ca49
RK
1766 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1767 SYMBOL_REF, CONST, LABEL_REF}}, \
1768 {"aligned_memory_operand", {MEM}}, \
1769 {"unaligned_memory_operand", {MEM}}, \
1770 {"any_memory_operand", {MEM}},
03f8c4cc 1771\f
34fa88ab
RK
1772/* Tell collect that the object format is ECOFF. */
1773#define OBJECT_FORMAT_COFF
1774#define EXTENDED_COFF
1775
1776/* If we use NM, pass -g to it so it only lists globals. */
1777#define NM_FLAGS "-pg"
1778
03f8c4cc
RK
1779/* Definitions for debugging. */
1780
1781#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1782#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1783#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1784
1785#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1786#define PREFERRED_DEBUGGING_TYPE ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
1787#endif
1788
1789
1790/* Correct the offset of automatic variables and arguments. Note that
1791 the Alpha debug format wants all automatic variables and arguments
1792 to be in terms of two different offsets from the virtual frame pointer,
1793 which is the stack pointer before any adjustment in the function.
1794 The offset for the argument pointer is fixed for the native compiler,
1795 it is either zero (for the no arguments case) or large enough to hold
1796 all argument registers.
1797 The offset for the auto pointer is the fourth argument to the .frame
1798 directive (local_offset).
1799 To stay compatible with the native tools we use the same offsets
1800 from the virtual frame pointer and adjust the debugger arg/auto offsets
1801 accordingly. These debugger offsets are set up in output_prolog. */
1802
1803long alpha_arg_offset;
1804long alpha_auto_offset;
1805#define DEBUGGER_AUTO_OFFSET(X) \
1806 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1807#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1808
1809
1810#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1811 alpha_output_lineno (STREAM, LINE)
1812extern void alpha_output_lineno ();
1813
1814#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1815 alpha_output_filename (STREAM, NAME)
1816extern void alpha_output_filename ();
1817
1818
ab8b8941
RK
1819/* mips-tfile.c limits us to strings of one page. */
1820#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1821
1822/* By default, turn on GDB extensions. */
1823#define DEFAULT_GDB_EXTENSIONS 1
1824
1825/* If we are smuggling stabs through the ALPHA ECOFF object
1826 format, put a comment in front of the .stab<x> operation so
1827 that the ALPHA assembler does not choke. The mips-tfile program
1828 will correctly put the stab into the object file. */
1829
1830#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1831#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1832#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1833
1834/* Forward references to tags are allowed. */
1835#define SDB_ALLOW_FORWARD_REFERENCES
1836
1837/* Unknown tags are also allowed. */
1838#define SDB_ALLOW_UNKNOWN_REFERENCES
1839
1840#define PUT_SDB_DEF(a) \
1841do { \
1842 fprintf (asm_out_file, "\t%s.def\t", \
1843 (TARGET_GAS) ? "" : "#"); \
1844 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1845 fputc (';', asm_out_file); \
1846} while (0)
1847
1848#define PUT_SDB_PLAIN_DEF(a) \
1849do { \
1850 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1851 (TARGET_GAS) ? "" : "#", (a)); \
1852} while (0)
1853
1854#define PUT_SDB_TYPE(a) \
1855do { \
1856 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1857} while (0)
1858
1859/* For block start and end, we create labels, so that
1860 later we can figure out where the correct offset is.
1861 The normal .ent/.end serve well enough for functions,
1862 so those are just commented out. */
1863
1864extern int sdb_label_count; /* block start/end next label # */
1865
1866#define PUT_SDB_BLOCK_START(LINE) \
1867do { \
1868 fprintf (asm_out_file, \
1869 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1870 sdb_label_count, \
1871 (TARGET_GAS) ? "" : "#", \
1872 sdb_label_count, \
1873 (LINE)); \
1874 sdb_label_count++; \
1875} while (0)
1876
1877#define PUT_SDB_BLOCK_END(LINE) \
1878do { \
1879 fprintf (asm_out_file, \
1880 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1881 sdb_label_count, \
1882 (TARGET_GAS) ? "" : "#", \
1883 sdb_label_count, \
1884 (LINE)); \
1885 sdb_label_count++; \
1886} while (0)
1887
1888#define PUT_SDB_FUNCTION_START(LINE)
1889
1890#define PUT_SDB_FUNCTION_END(LINE)
1891
1892#define PUT_SDB_EPILOGUE_END(NAME)
1893
1894/* Specify to run a post-processor, mips-tfile after the assembler
1895 has run to stuff the ecoff debug information into the object file.
1896 This is needed because the Alpha assembler provides no way
1897 of specifying such information in the assembly file. */
1898
1899#if (TARGET_DEFAULT & MASK_GAS) != 0
1900
1901#define ASM_FINAL_SPEC "\
1902%{malpha-as: %{!mno-mips-tfile: \
1903 \n mips-tfile %{v*: -v} \
1904 %{K: -I %b.o~} \
1905 %{!K: %{save-temps: -I %b.o~}} \
1906 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1907 %{.s:%i} %{!.s:%g.s}}}"
1908
1909#else
1910#define ASM_FINAL_SPEC "\
1911%{!mgas: %{!mno-mips-tfile: \
1912 \n mips-tfile %{v*: -v} \
1913 %{K: -I %b.o~} \
1914 %{!K: %{save-temps: -I %b.o~}} \
1915 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1916 %{.s:%i} %{!.s:%g.s}}}"
1917
1918#endif
1919
1920/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1921 mips-tdump.c to print them out.
1922
1923 These must match the corresponding definitions in gdb/mipsread.c.
1924 Unfortunately, gcc and gdb do not currently share any directories. */
1925
1926#define CODE_MASK 0x8F300
1927#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1928#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1929#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1930
1931/* Override some mips-tfile definitions. */
1932
1933#define SHASH_SIZE 511
1934#define THASH_SIZE 55
1e6c6f11
RK
1935
1936/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1937
1938#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
This page took 0.408862 seconds and 5 git commands to generate.