]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
alpha.c (alpha_handle_trap_shadows): Remove do-nothing exit.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ba3994a 2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
952fc2ed
RH
26%{!undef:\
27%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
28%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
29%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
30%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
31%{mieee:-D_IEEE_FP }\
32%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
33%(cpp_cpu) %(cpp_subtarget)"
34
35#ifndef CPP_SUBTARGET_SPEC
36#define CPP_SUBTARGET_SPEC ""
37#endif
1a94ca49
RK
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
b890f297
JM
45#define WORD_SWITCH_TAKES_ARG(STR) \
46 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
47 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
48 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
49 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
50 || !strcmp (STR, "isystem"))
8877eb00 51
1a94ca49
RK
52/* Print subsidiary information on the compiler version in use. */
53#define TARGET_VERSION
54
1a94ca49
RK
55/* Run-time compilation parameters selecting different hardware subsets. */
56
f6f6a13c
RK
57/* Which processor to schedule for. The cpu attribute defines a list that
58 mirrors this list, so changes to alpha.md must be made at the same time. */
59
60enum processor_type
61 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
62 PROCESSOR_EV5, /* 21164{a,pc,} */
63 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
64
65extern enum processor_type alpha_cpu;
66
2bf6230d
RK
67enum alpha_trap_precision
68{
69 ALPHA_TP_PROG, /* No precision (default). */
70 ALPHA_TP_FUNC, /* Trap contained within originating function. */
71 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
72};
73
74enum alpha_fp_rounding_mode
75{
76 ALPHA_FPRM_NORM, /* Normal rounding mode. */
77 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
78 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
79 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
80};
81
82enum alpha_fp_trap_mode
83{
84 ALPHA_FPTM_N, /* Normal trap mode. */
85 ALPHA_FPTM_U, /* Underflow traps enabled. */
86 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
87 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
88};
89
1a94ca49
RK
90extern int target_flags;
91
2bf6230d
RK
92extern enum alpha_trap_precision alpha_tp;
93extern enum alpha_fp_rounding_mode alpha_fprm;
94extern enum alpha_fp_trap_mode alpha_fptm;
95
1a94ca49
RK
96/* This means that floating-point support exists in the target implementation
97 of the Alpha architecture. This is usually the default. */
98
2bf6230d
RK
99#define MASK_FP 1
100#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
101
102/* This means that floating-point registers are allowed to be used. Note
103 that Alpha implementations without FP operations are required to
104 provide the FP registers. */
105
2bf6230d
RK
106#define MASK_FPREGS 2
107#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
108
109/* This means that gas is used to process the assembler file. */
110
111#define MASK_GAS 4
112#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 113
2bf6230d
RK
114/* This means that we should mark procedures as IEEE conformant. */
115
116#define MASK_IEEE_CONFORMANT 8
117#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
118
119/* This means we should be IEEE-compliant except for inexact. */
120
121#define MASK_IEEE 16
122#define TARGET_IEEE (target_flags & MASK_IEEE)
123
124/* This means we should be fully IEEE-compliant. */
125
126#define MASK_IEEE_WITH_INEXACT 32
127#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
128
803fee69
RK
129/* This means we must construct all constants rather than emitting
130 them as literal data. */
131
132#define MASK_BUILD_CONSTANTS 128
133#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
134
e5958492
RK
135/* This means we handle floating points in VAX F- (float)
136 or G- (double) Format. */
137
138#define MASK_FLOAT_VAX 512
139#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
140
e9a25f70
JL
141/* This means that the processor has byte and half word loads and stores
142 (the BWX extension). */
025f3281 143
e9a25f70
JL
144#define MASK_BWX 1024
145#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 146
e9a25f70
JL
147/* This means that the processor has the CIX extension. */
148#define MASK_CIX 2048
149#define TARGET_CIX (target_flags & MASK_CIX)
150
151/* This means that the processor has the MAX extension. */
152#define MASK_MAX 4096
153#define TARGET_MAX (target_flags & MASK_MAX)
154
155/* This means that the processor is an EV5, EV56, or PCA56. This is defined
156 only in TARGET_CPU_DEFAULT. */
157#define MASK_CPU_EV5 8192
158
159/* Likewise for EV6. */
160#define MASK_CPU_EV6 16384
161
162/* This means we support the .arch directive in the assembler. Only
163 defined in TARGET_CPU_DEFAULT. */
164#define MASK_SUPPORT_ARCH 32768
165#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 166
9ba3994a
RH
167/* These are for target os support and cannot be changed at runtime. */
168#ifndef TARGET_WINDOWS_NT
169#define TARGET_WINDOWS_NT 0
170#endif
171#ifndef TARGET_OPEN_VMS
172#define TARGET_OPEN_VMS 0
173#endif
174
175#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
176#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
177#endif
9c0e94a5
RH
178#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
179#define TARGET_CAN_FAULT_IN_PROLOGUE 0
180#endif
9ba3994a 181
1a94ca49
RK
182/* Macro to define tables used to set the flags.
183 This is a list in braces of pairs in braces,
184 each pair being { "NAME", VALUE }
185 where VALUE is the bits to set or minus the bits to clear.
186 An empty string NAME is used to identify the default VALUE. */
187
2bf6230d
RK
188#define TARGET_SWITCHES \
189 { {"no-soft-float", MASK_FP}, \
190 {"soft-float", - MASK_FP}, \
191 {"fp-regs", MASK_FPREGS}, \
192 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
193 {"alpha-as", -MASK_GAS}, \
194 {"gas", MASK_GAS}, \
195 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
196 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
197 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 198 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
199 {"float-vax", MASK_FLOAT_VAX}, \
200 {"float-ieee", -MASK_FLOAT_VAX}, \
e9a25f70
JL
201 {"bwx", MASK_BWX}, \
202 {"no-bwx", -MASK_BWX}, \
203 {"cix", MASK_CIX}, \
204 {"no-cix", -MASK_CIX}, \
205 {"max", MASK_MAX}, \
206 {"no-max", -MASK_MAX}, \
88681624 207 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 208
c01b5470 209#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 210
88681624
ILT
211#ifndef TARGET_CPU_DEFAULT
212#define TARGET_CPU_DEFAULT 0
213#endif
214
2bf6230d
RK
215/* This macro is similar to `TARGET_SWITCHES' but defines names of
216 command options that have values. Its definition is an initializer
217 with a subgrouping for each command option.
218
219 Each subgrouping contains a string constant, that defines the fixed
220 part of the option name, and the address of a variable. The
221 variable, type `char *', is set to the variable part of the given
222 option if the fixed part matches. The actual option name is made
223 by appending `-m' to the specified name.
224
225 Here is an example which defines `-mshort-data-NUMBER'. If the
226 given option is `-mshort-data-512', the variable `m88k_short_data'
227 will be set to the string `"512"'.
228
229 extern char *m88k_short_data;
230 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
231
bcbbac26 232extern char *alpha_cpu_string; /* For -mcpu= */
2bf6230d
RK
233extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
234extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
235extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
bcbbac26 236extern char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d
RK
237
238#define TARGET_OPTIONS \
239{ \
f6f6a13c 240 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
241 {"fp-rounding-mode=", &alpha_fprm_string}, \
242 {"fp-trap-mode=", &alpha_fptm_string}, \
243 {"trap-precision=", &alpha_tp_string}, \
bcbbac26 244 {"memory-latency=", &alpha_mlat_string}, \
2bf6230d
RK
245}
246
952fc2ed
RH
247/* Attempt to describe CPU characteristics to the preprocessor. */
248
249/* Corresponding to amask... */
250#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
251#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
252#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
253
254/* Corresponding to implver... */
255#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
256#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
257#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
258
259/* Common combinations. */
260#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
261#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
262#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
263#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
264#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_cix)"
265
266#ifndef CPP_CPU_DEFAULT_SPEC
267# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
268# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
269# else
270# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
271# if TARGET_CPU_DEFAULT & MASK_MAX
272# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
273# else
274# if TARGET_CPU_DEFAULT & MASK_BWX
275# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
276# else
277# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
278# endif
279# endif
280# else
281# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
282# endif
283# endif
284#endif /* CPP_CPU_DEFAULT_SPEC */
285
286#ifndef CPP_CPU_SPEC
287#define CPP_CPU_SPEC "\
288%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
289%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
290%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
291%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
292%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
293%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
294%{!mcpu*:%(cpp_cpu_default) }}"
295#endif
296
297/* This macro defines names of additional specifications to put in the
298 specs that can be used in various specifications like CC1_SPEC. Its
299 definition is an initializer with a subgrouping for each command option.
300
301 Each subgrouping contains a string constant, that defines the
302 specification name, and a string constant that used by the GNU CC driver
303 program.
304
305 Do not define this macro if it does not need to do anything. */
306
307#ifndef SUBTARGET_EXTRA_SPECS
308#define SUBTARGET_EXTRA_SPECS
309#endif
310
311#define EXTRA_SPECS \
312 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
313 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
314 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
315 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
316 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
317 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
318 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
319 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
320 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
321 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
322 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
323 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
324 { "cpp_cpu", CPP_CPU_SPEC }, \
325 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
326 SUBTARGET_EXTRA_SPECS
327
328
2bf6230d
RK
329/* Sometimes certain combinations of command options do not make sense
330 on a particular target machine. You can define a macro
331 `OVERRIDE_OPTIONS' to take account of this. This macro, if
332 defined, is executed once just after all the command options have
333 been parsed.
334
335 On the Alpha, it is used to translate target-option strings into
336 numeric values. */
337
338extern void override_options ();
339#define OVERRIDE_OPTIONS override_options ()
340
341
1a94ca49
RK
342/* Define this macro to change register usage conditional on target flags.
343
344 On the Alpha, we use this to disable the floating-point registers when
345 they don't exist. */
346
347#define CONDITIONAL_REGISTER_USAGE \
348 if (! TARGET_FPREGS) \
52a69200 349 for (i = 32; i < 63; i++) \
1a94ca49
RK
350 fixed_regs[i] = call_used_regs[i] = 1;
351
4f074454
RK
352/* Show we can debug even without a frame pointer. */
353#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
354\f
355/* target machine storage layout */
356
2700ac93
RS
357/* Define to enable software floating point emulation. */
358#define REAL_ARITHMETIC
359
861bb6c1
JL
360/* The following #defines are used when compiling the routines in
361 libgcc1.c. Since the Alpha calling conventions require single
362 precision floats to be passed in the floating-point registers
363 (rather than in the general registers) we have to build the
364 libgcc1.c routines in such a way that they know the actual types
365 of their formal arguments and the actual types of their return
366 values. Otherwise, gcc will generate calls to the libgcc1.c
367 routines, passing arguments in the floating-point registers,
368 but the libgcc1.c routines will expect their arguments on the
369 stack (where the Alpha calling conventions require structs &
370 unions to be passed). */
371
372#define FLOAT_VALUE_TYPE double
373#define INTIFY(FLOATVAL) (FLOATVAL)
374#define FLOATIFY(INTVAL) (INTVAL)
375#define FLOAT_ARG_TYPE double
376
1a94ca49
RK
377/* Define the size of `int'. The default is the same as the word size. */
378#define INT_TYPE_SIZE 32
379
380/* Define the size of `long long'. The default is the twice the word size. */
381#define LONG_LONG_TYPE_SIZE 64
382
383/* The two floating-point formats we support are S-floating, which is
384 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
385 and `long double' are T. */
386
387#define FLOAT_TYPE_SIZE 32
388#define DOUBLE_TYPE_SIZE 64
389#define LONG_DOUBLE_TYPE_SIZE 64
390
5258d7ae
RK
391#define WCHAR_TYPE "unsigned int"
392#define WCHAR_TYPE_SIZE 32
1a94ca49 393
13d39dbc 394/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
395 in a wider mode than that declared by the program. In such cases,
396 the value is constrained to be within the bounds of the declared
397 type, but kept valid in the wider mode. The signedness of the
398 extension may differ from that of the type.
399
400 For Alpha, we always store objects in a full register. 32-bit objects
401 are always sign-extended, but smaller objects retain their signedness. */
402
403#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
404 if (GET_MODE_CLASS (MODE) == MODE_INT \
405 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
406 { \
407 if ((MODE) == SImode) \
408 (UNSIGNEDP) = 0; \
409 (MODE) = DImode; \
410 }
411
412/* Define this if function arguments should also be promoted using the above
413 procedure. */
414
415#define PROMOTE_FUNCTION_ARGS
416
417/* Likewise, if the function return value is promoted. */
418
419#define PROMOTE_FUNCTION_RETURN
420
421/* Define this if most significant bit is lowest numbered
422 in instructions that operate on numbered bit-fields.
423
424 There are no such instructions on the Alpha, but the documentation
425 is little endian. */
426#define BITS_BIG_ENDIAN 0
427
428/* Define this if most significant byte of a word is the lowest numbered.
429 This is false on the Alpha. */
430#define BYTES_BIG_ENDIAN 0
431
432/* Define this if most significant word of a multiword number is lowest
433 numbered.
434
435 For Alpha we can decide arbitrarily since there are no machine instructions
436 for them. Might as well be consistent with bytes. */
437#define WORDS_BIG_ENDIAN 0
438
439/* number of bits in an addressable storage unit */
440#define BITS_PER_UNIT 8
441
442/* Width in bits of a "word", which is the contents of a machine register.
443 Note that this is not necessarily the width of data type `int';
444 if using 16-bit ints on a 68000, this would still be 32.
445 But on a machine with 16-bit registers, this would be 16. */
446#define BITS_PER_WORD 64
447
448/* Width of a word, in units (bytes). */
449#define UNITS_PER_WORD 8
450
451/* Width in bits of a pointer.
452 See also the macro `Pmode' defined below. */
453#define POINTER_SIZE 64
454
455/* Allocation boundary (in *bits*) for storing arguments in argument list. */
456#define PARM_BOUNDARY 64
457
458/* Boundary (in *bits*) on which stack pointer should be aligned. */
459#define STACK_BOUNDARY 64
460
461/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 462#define FUNCTION_BOUNDARY 256
1a94ca49
RK
463
464/* Alignment of field after `int : 0' in a structure. */
465#define EMPTY_FIELD_BOUNDARY 64
466
467/* Every structure's size must be a multiple of this. */
468#define STRUCTURE_SIZE_BOUNDARY 8
469
470/* A bitfield declared as `int' forces `int' alignment for the struct. */
471#define PCC_BITFIELD_TYPE_MATTERS 1
472
65823178
RK
473/* Align loop starts for optimal branching.
474
475 ??? Kludge this and the next macro for the moment by not doing anything if
476 we don't optimize and also if we are writing ECOFF symbols to work around
477 a bug in DEC's assembler. */
1a94ca49 478
fc470718 479#define LOOP_ALIGN(LABEL) \
9c0e94a5 480 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 481
9c0e94a5
RH
482/* This is how to align an instruction for optimal branching. On
483 Alpha we'll get better performance by aligning on an octaword
1a94ca49 484 boundary. */
130d2d72 485
fc470718 486#define ALIGN_LABEL_AFTER_BARRIER(FILE) \
9c0e94a5 487 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
488
489/* No data type wants to be aligned rounder than this. */
490#define BIGGEST_ALIGNMENT 64
491
d16fe557
RK
492/* For atomic access to objects, must have at least 32-bit alignment
493 unless the machine has byte operations. */
e9a25f70 494#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 495
442b1685
RK
496/* Align all constants and variables to at least a word boundary so
497 we can pick up pieces of them faster. */
6c174fc0
RH
498/* ??? Only if block-move stuff knows about different source/destination
499 alignment. */
500#if 0
442b1685
RK
501#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
502#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 503#endif
1a94ca49
RK
504
505/* Set this non-zero if move instructions will actually fail to work
506 when given unaligned data.
507
508 Since we get an error message when we do one, call them invalid. */
509
510#define STRICT_ALIGNMENT 1
511
512/* Set this non-zero if unaligned move instructions are extremely slow.
513
514 On the Alpha, they trap. */
130d2d72
RK
515
516#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
517\f
518/* Standard register usage. */
519
520/* Number of actual hardware registers.
521 The hardware registers are assigned numbers for the compiler
522 from 0 to just below FIRST_PSEUDO_REGISTER.
523 All registers that the compiler knows about must be given numbers,
524 even those that are not normally considered general registers.
525
526 We define all 32 integer registers, even though $31 is always zero,
527 and all 32 floating-point registers, even though $f31 is also
528 always zero. We do not bother defining the FP status register and
130d2d72
RK
529 there are no other registers.
530
531 Since $31 is always zero, we will use register number 31 as the
532 argument pointer. It will never appear in the generated code
533 because we will always be eliminating it in favor of the stack
52a69200
RK
534 pointer or hardware frame pointer.
535
536 Likewise, we use $f31 for the frame pointer, which will always
537 be eliminated in favor of the hardware frame pointer or the
538 stack pointer. */
1a94ca49
RK
539
540#define FIRST_PSEUDO_REGISTER 64
541
542/* 1 for registers that have pervasive standard uses
543 and are not available for the register allocator. */
544
545#define FIXED_REGISTERS \
546 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
547 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
550
551/* 1 for registers not available across function calls.
552 These must include the FIXED_REGISTERS and also any
553 registers that can be used without being saved.
554 The latter must include the registers where values are returned
555 and the register where structure-value addresses are passed.
556 Aside from that, you can include as many other registers as you like. */
557#define CALL_USED_REGISTERS \
558 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
559 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
560 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
562
563/* List the order in which to allocate registers. Each register must be
564 listed once, even those in FIXED_REGISTERS.
565
566 We allocate in the following order:
2c4be73e 567 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
568 $f22-$f30 (likewise)
569 $f21-$f16 (likewise, but input args)
570 $f0 (nonsaved, but return value)
2c4be73e 571 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
572 $f2-$f9 (saved floating-point registers)
573 $1-$8 (nonsaved integer registers)
574 $22-$25 (likewise)
575 $28 (likewise)
576 $0 (likewise, but return value)
577 $21-$16 (likewise, but input args)
0076aa6b 578 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
579 $9-$14 (saved integer registers)
580 $26 (return PC)
581 $15 (frame pointer)
582 $29 (global pointer)
52a69200 583 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
584
585#define REG_ALLOC_ORDER \
2c4be73e 586 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
587 54, 55, 56, 57, 58, 59, 60, 61, 62, \
588 53, 52, 51, 50, 49, 48, \
2c4be73e 589 32, 33, \
1a94ca49
RK
590 34, 35, 36, 37, 38, 39, 40, 41, \
591 1, 2, 3, 4, 5, 6, 7, 8, \
592 22, 23, 24, 25, \
593 28, \
594 0, \
595 21, 20, 19, 18, 17, 16, \
596 27, \
597 9, 10, 11, 12, 13, 14, \
598 26, \
599 15, \
600 29, \
601 30, 31, 63 }
602
603/* Return number of consecutive hard regs needed starting at reg REGNO
604 to hold something of mode MODE.
605 This is ordinarily the length in words of a value of mode MODE
606 but can be less for certain modes in special long registers. */
607
608#define HARD_REGNO_NREGS(REGNO, MODE) \
609 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
610
611/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
612 On Alpha, the integer registers can hold any mode. The floating-point
613 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
614 or 8-bit values. If we only allowed the larger integers into FP registers,
615 we'd have to say that QImode and SImode aren't tiable, which is a
616 pain. So say all registers can hold everything and see how that works. */
617
618#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
619
620/* Value is 1 if it is a good idea to tie two pseudo registers
621 when one has mode MODE1 and one has mode MODE2.
622 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
623 for any hard reg, then this must be 0 for correct output. */
624
625#define MODES_TIEABLE_P(MODE1, MODE2) 1
626
627/* Specify the registers used for certain standard purposes.
628 The values of these macros are register numbers. */
629
630/* Alpha pc isn't overloaded on a register that the compiler knows about. */
631/* #define PC_REGNUM */
632
633/* Register to use for pushing function arguments. */
634#define STACK_POINTER_REGNUM 30
635
636/* Base register for access to local variables of the function. */
52a69200 637#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
638
639/* Value should be nonzero if functions must have frame pointers.
640 Zero means the frame pointer need not be set up (and parms
641 may be accessed via the stack pointer) in functions that seem suitable.
642 This is computed in `reload', in reload1.c. */
643#define FRAME_POINTER_REQUIRED 0
644
645/* Base register for access to arguments of the function. */
130d2d72 646#define ARG_POINTER_REGNUM 31
1a94ca49 647
52a69200
RK
648/* Base register for access to local variables of function. */
649#define FRAME_POINTER_REGNUM 63
650
1a94ca49
RK
651/* Register in which static-chain is passed to a function.
652
653 For the Alpha, this is based on an example; the calling sequence
654 doesn't seem to specify this. */
655#define STATIC_CHAIN_REGNUM 1
656
657/* Register in which address to store a structure value
658 arrives in the function. On the Alpha, the address is passed
659 as a hidden argument. */
660#define STRUCT_VALUE 0
661\f
662/* Define the classes of registers for register constraints in the
663 machine description. Also define ranges of constants.
664
665 One of the classes must always be named ALL_REGS and include all hard regs.
666 If there is more than one class, another class must be named NO_REGS
667 and contain no registers.
668
669 The name GENERAL_REGS must be the name of a class (or an alias for
670 another name such as ALL_REGS). This is the class of registers
671 that is allowed by "g" or "r" in a register constraint.
672 Also, registers outside this class are allocated only when
673 instructions express preferences for them.
674
675 The classes must be numbered in nondecreasing order; that is,
676 a larger-numbered class must never be contained completely
677 in a smaller-numbered class.
678
679 For any two classes, it is very desirable that there be another
680 class that represents their union. */
681
682enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
683 LIM_REG_CLASSES };
684
685#define N_REG_CLASSES (int) LIM_REG_CLASSES
686
687/* Give names of register classes as strings for dump file. */
688
689#define REG_CLASS_NAMES \
690 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
691
692/* Define which registers fit in which classes.
693 This is an initializer for a vector of HARD_REG_SET
694 of length N_REG_CLASSES. */
695
696#define REG_CLASS_CONTENTS \
52a69200 697 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
698
699/* The same information, inverted:
700 Return the class number of the smallest class containing
701 reg number REGNO. This could be a conditional expression
702 or could index an array. */
703
52a69200
RK
704#define REGNO_REG_CLASS(REGNO) \
705 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
706
707/* The class value for index registers, and the one for base regs. */
708#define INDEX_REG_CLASS NO_REGS
709#define BASE_REG_CLASS GENERAL_REGS
710
711/* Get reg_class from a letter such as appears in the machine description. */
712
713#define REG_CLASS_FROM_LETTER(C) \
714 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
715
716/* Define this macro to change register usage conditional on target flags. */
717/* #define CONDITIONAL_REGISTER_USAGE */
718
719/* The letters I, J, K, L, M, N, O, and P in a register constraint string
720 can be used to stand for particular ranges of immediate operands.
721 This macro defines what the ranges are.
722 C is the letter, and VALUE is a constant value.
723 Return 1 if VALUE is in the range specified by C.
724
725 For Alpha:
726 `I' is used for the range of constants most insns can contain.
727 `J' is the constant zero.
728 `K' is used for the constant in an LDA insn.
729 `L' is used for the constant in a LDAH insn.
730 `M' is used for the constants that can be AND'ed with using a ZAP insn.
731 `N' is used for complemented 8-bit constants.
732 `O' is used for negated 8-bit constants.
733 `P' is used for the constants 1, 2 and 3. */
734
735#define CONST_OK_FOR_LETTER_P(VALUE, C) \
736 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
737 : (C) == 'J' ? (VALUE) == 0 \
738 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
739 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 740 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
741 : (C) == 'M' ? zap_mask (VALUE) \
742 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
743 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
744 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
745 : 0)
746
747/* Similar, but for floating or large integer constants, and defining letters
748 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
749
750 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
751 that is the operand of a ZAP insn. */
752
753#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
754 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
755 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
756 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
757 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
758 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
759 : 0)
760
e560f226
RK
761/* Optional extra constraints for this machine.
762
763 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 764 reference to an unaligned location.
9ec36da5 765
ac030a7b 766 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
767 function.
768
769 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
770
771#define EXTRA_CONSTRAINT(OP, C) \
9ec36da5
JL
772 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
773 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
774 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
775 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
776 : 0)
777
1a94ca49
RK
778/* Given an rtx X being reloaded into a reg required to be
779 in class CLASS, return the class of reg to actually use.
780 In general this is just CLASS; but on some machines
781 in some cases it is preferable to use a more restrictive class.
782
783 On the Alpha, all constants except zero go into a floating-point
784 register via memory. */
785
786#define PREFERRED_RELOAD_CLASS(X, CLASS) \
787 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 788 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
789 : (CLASS))
790
791/* Loading and storing HImode or QImode values to and from memory
792 usually requires a scratch register. The exceptions are loading
e008606e
RK
793 QImode and HImode from an aligned address to a general register
794 unless byte instructions are permitted.
ddd5a7c1 795 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 796 FP register. */
1a94ca49
RK
797
798#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
799(((GET_CODE (IN) == MEM \
800 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
801 || (GET_CODE (IN) == SUBREG \
802 && (GET_CODE (SUBREG_REG (IN)) == MEM \
803 || (GET_CODE (SUBREG_REG (IN)) == REG \
804 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
805 && (((CLASS) == FLOAT_REGS \
806 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
807 || (((MODE) == QImode || (MODE) == HImode) \
e9a25f70 808 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
809 ? GENERAL_REGS \
810 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
811 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
812 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
813 && (GET_MODE_SIZE (GET_MODE (IN)) \
814 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 815 : NO_REGS)
1a94ca49
RK
816
817#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
818(((GET_CODE (OUT) == MEM \
819 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
820 || (GET_CODE (OUT) == SUBREG \
821 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
822 || (GET_CODE (SUBREG_REG (OUT)) == REG \
823 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
824 && ((((MODE) == HImode || (MODE) == QImode) \
825 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
826 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
827 ? GENERAL_REGS \
828 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
829 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
830 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
831 && (GET_MODE_SIZE (GET_MODE (OUT)) \
832 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
833 : NO_REGS)
1a94ca49
RK
834
835/* If we are copying between general and FP registers, we need a memory
e9a25f70 836 location unless the CIX extension is available. */
1a94ca49 837
e9a25f70
JL
838#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
839 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 840
acd94aaf
RK
841/* Specify the mode to be used for memory when a secondary memory
842 location is needed. If MODE is floating-point, use it. Otherwise,
843 widen to a word like the default. This is needed because we always
844 store integers in FP registers in quadword format. This whole
845 area is very tricky! */
846#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
847 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 848 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
849 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
850
1a94ca49
RK
851/* Return the maximum number of consecutive registers
852 needed to represent mode MODE in a register of class CLASS. */
853
854#define CLASS_MAX_NREGS(CLASS, MODE) \
855 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
856
c31dfe4d
RK
857/* If defined, gives a class of registers that cannot be used as the
858 operand of a SUBREG that changes the size of the object. */
859
860#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
861
1a94ca49
RK
862/* Define the cost of moving between registers of various classes. Moving
863 between FLOAT_REGS and anything else except float regs is expensive.
864 In fact, we make it quite expensive because we really don't want to
865 do these moves unless it is clearly worth it. Optimizations may
866 reduce the impact of not being able to allocate a pseudo to a
867 hard register. */
868
71d9b493
RH
869#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
870 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
871 ? 2 \
872 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
873
874/* A C expressions returning the cost of moving data of MODE from a register to
875 or from memory.
876
877 On the Alpha, bump this up a bit. */
878
bcbbac26 879extern int alpha_memory_latency;
cbd5b9a2 880#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
881
882/* Provide the cost of a branch. Exact meaning under development. */
883#define BRANCH_COST 5
884
885/* Adjust the cost of dependencies. */
886
887#define ADJUST_COST(INSN,LINK,DEP,COST) \
888 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
889\f
890/* Stack layout; function entry, exit and calling. */
891
892/* Define this if pushing a word on the stack
893 makes the stack pointer a smaller address. */
894#define STACK_GROWS_DOWNWARD
895
896/* Define this if the nominal address of the stack frame
897 is at the high-address end of the local variables;
898 that is, each additional local variable allocated
899 goes at a more negative offset in the frame. */
130d2d72 900/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
901
902/* Offset within stack frame to start allocating local variables at.
903 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
904 first local allocated. Otherwise, it is the offset to the BEGINNING
905 of the first local allocated. */
906
52a69200 907#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
908
909/* If we generate an insn to push BYTES bytes,
910 this says how many the stack pointer really advances by.
911 On Alpha, don't define this because there are no push insns. */
912/* #define PUSH_ROUNDING(BYTES) */
913
e008606e
RK
914/* Define this to be nonzero if stack checking is built into the ABI. */
915#define STACK_CHECK_BUILTIN 1
916
1a94ca49
RK
917/* Define this if the maximum size of all the outgoing args is to be
918 accumulated and pushed during the prologue. The amount can be
919 found in the variable current_function_outgoing_args_size. */
920#define ACCUMULATE_OUTGOING_ARGS
921
922/* Offset of first parameter from the argument pointer register value. */
923
130d2d72 924#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
925
926/* Definitions for register eliminations.
927
978e8952 928 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 929 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
930 pointer register. Secondly, the argument pointer register can always be
931 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
932
933/* This is an array of structures. Each structure initializes one pair
934 of eliminable registers. The "from" register number is given first,
935 followed by "to". Eliminations of the same "from" register are listed
936 in order of preference. */
937
52a69200
RK
938#define ELIMINABLE_REGS \
939{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
940 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
941 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
942 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
943
944/* Given FROM and TO register numbers, say whether this elimination is allowed.
945 Frame pointer elimination is automatically handled.
946
130d2d72 947 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
948 eliminated are already handled. */
949
130d2d72 950#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 951
52a69200
RK
952/* Round up to a multiple of 16 bytes. */
953#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
954
1a94ca49
RK
955/* Define the offset between two registers, one to be eliminated, and the other
956 its replacement, at the start of a routine. */
957#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
958{ if ((FROM) == FRAME_POINTER_REGNUM) \
959 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
960 + alpha_sa_size ()); \
961 else if ((FROM) == ARG_POINTER_REGNUM) \
962 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
963 + alpha_sa_size () \
d772039b
RK
964 + (ALPHA_ROUND (get_frame_size () \
965 + current_function_pretend_args_size) \
966 - current_function_pretend_args_size)); \
1a94ca49
RK
967}
968
969/* Define this if stack space is still allocated for a parameter passed
970 in a register. */
971/* #define REG_PARM_STACK_SPACE */
972
973/* Value is the number of bytes of arguments automatically
974 popped when returning from a subroutine call.
8b109b37 975 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
976 FUNTYPE is the data type of the function (as a tree),
977 or for a library call it is an identifier node for the subroutine name.
978 SIZE is the number of bytes of arguments passed on the stack. */
979
8b109b37 980#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
981
982/* Define how to find the value returned by a function.
983 VALTYPE is the data type of the value (as a tree).
984 If the precise function being called is known, FUNC is its FUNCTION_DECL;
985 otherwise, FUNC is 0.
986
987 On Alpha the value is found in $0 for integer functions and
988 $f0 for floating-point functions. */
989
990#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492 991 gen_rtx (REG, \
956d6950
JL
992 ((INTEGRAL_TYPE_P (VALTYPE) \
993 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
994 || POINTER_TYPE_P (VALTYPE)) \
e5958492
RK
995 ? word_mode : TYPE_MODE (VALTYPE), \
996 ((TARGET_FPREGS \
997 && (TREE_CODE (VALTYPE) == REAL_TYPE \
998 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
999 ? 32 : 0))
1a94ca49
RK
1000
1001/* Define how to find the value returned by a library function
1002 assuming the value has mode MODE. */
1003
1004#define LIBCALL_VALUE(MODE) \
e5958492
RK
1005 gen_rtx (REG, MODE, \
1006 (TARGET_FPREGS \
1007 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1008 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1009 ? 32 : 0))
1a94ca49 1010
130d2d72
RK
1011/* The definition of this macro implies that there are cases where
1012 a scalar value cannot be returned in registers.
1013
1014 For the Alpha, any structure or union type is returned in memory, as
1015 are integers whose size is larger than 64 bits. */
1016
1017#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1018 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
1019 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1020
1a94ca49
RK
1021/* 1 if N is a possible register number for a function value
1022 as seen by the caller. */
1023
e5958492
RK
1024#define FUNCTION_VALUE_REGNO_P(N) \
1025 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1026
1027/* 1 if N is a possible register number for function argument passing.
1028 On Alpha, these are $16-$21 and $f16-$f21. */
1029
1030#define FUNCTION_ARG_REGNO_P(N) \
1031 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1032\f
1033/* Define a data type for recording info about an argument list
1034 during the scan of that argument list. This data type should
1035 hold all necessary information about the function itself
1036 and about the args processed so far, enough to enable macros
1037 such as FUNCTION_ARG to determine where the next arg should go.
1038
1039 On Alpha, this is a single integer, which is a number of words
1040 of arguments scanned so far.
1041 Thus 6 or more means all following args should go on the stack. */
1042
1043#define CUMULATIVE_ARGS int
1044
1045/* Initialize a variable CUM of type CUMULATIVE_ARGS
1046 for a call to a function whose data type is FNTYPE.
1047 For a library call, FNTYPE is 0. */
1048
2c7ee1a6 1049#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1050
1051/* Define intermediate macro to compute the size (in registers) of an argument
1052 for the Alpha. */
1053
1054#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1055((MODE) != BLKmode \
1056 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1057 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1058
1059/* Update the data in CUM to advance over an argument
1060 of mode MODE and data type TYPE.
1061 (TYPE is null for libcalls where that information may not be available.) */
1062
1063#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1064 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1065 (CUM) = 6; \
1066 else \
1067 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1068
1069/* Determine where to put an argument to a function.
1070 Value is zero to push the argument on the stack,
1071 or a hard register in which to store the argument.
1072
1073 MODE is the argument's machine mode.
1074 TYPE is the data type of the argument (as a tree).
1075 This is null for libcalls where that information may
1076 not be available.
1077 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1078 the preceding args and about the function being called.
1079 NAMED is nonzero if this argument is a named parameter
1080 (otherwise it is an extra parameter matching an ellipsis).
1081
1082 On Alpha the first 6 words of args are normally in registers
1083 and the rest are pushed. */
1084
1085#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1086((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1087 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
1088 (CUM) + 16 + ((TARGET_FPREGS \
1089 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1090 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1091 * 32)) \
1092 : 0)
1a94ca49 1093
1a94ca49
RK
1094/* Specify the padding direction of arguments.
1095
1096 On the Alpha, we must pad upwards in order to be able to pass args in
1097 registers. */
1098
1099#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1100
1101/* For an arg passed partly in registers and partly in memory,
1102 this is the number of registers used.
1103 For args passed entirely in registers or entirely in memory, zero. */
1104
1105#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1106((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1107 ? 6 - (CUM) : 0)
1108
130d2d72
RK
1109/* Perform any needed actions needed for a function that is receiving a
1110 variable number of arguments.
1111
1112 CUM is as above.
1113
1114 MODE and TYPE are the mode and type of the current parameter.
1115
1116 PRETEND_SIZE is a variable that should be set to the amount of stack
1117 that must be pushed by the prolog to pretend that our caller pushed
1118 it.
1119
1120 Normally, this macro will push all remaining incoming registers on the
1121 stack and set PRETEND_SIZE to the length of the registers pushed.
1122
1123 On the Alpha, we allocate space for all 12 arg registers, but only
1124 push those that are remaining.
1125
1126 However, if NO registers need to be saved, don't allocate any space.
1127 This is not only because we won't need the space, but because AP includes
1128 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1129 ap-relative addresses already made.
1130
1131 If we are not to use the floating-point registers, save the integer
1132 registers where we would put the floating-point registers. This is
1133 not the most efficient way to implement varargs with just one register
1134 class, but it isn't worth doing anything more efficient in this rare
1135 case. */
1136
130d2d72
RK
1137
1138#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1139{ if ((CUM) < 6) \
1140 { \
1141 if (! (NO_RTL)) \
1142 { \
1143 move_block_from_reg \
1144 (16 + CUM, \
1145 gen_rtx (MEM, BLKmode, \
1146 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1147 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1148 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1149 move_block_from_reg \
7a92339b 1150 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1151 gen_rtx (MEM, BLKmode, \
1152 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1153 (CUM) * UNITS_PER_WORD)), \
02892e06 1154 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1155 emit_insn (gen_blockage ()); \
130d2d72
RK
1156 } \
1157 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1158 } \
1159}
1160
c8e9adec
RK
1161/* Try to output insns to set TARGET equal to the constant C if it can be
1162 done in less than N insns. Do all computations in MODE. Returns the place
1163 where the output has been placed if it can be done and the insns have been
1164 emitted. If it would take more than N insns, zero is returned and no
1165 insns and emitted. */
1166extern struct rtx_def *alpha_emit_set_const ();
803fee69 1167extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1168extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1169extern struct rtx_def *alpha_emit_conditional_move ();
1170
1a94ca49
RK
1171/* Generate necessary RTL for __builtin_saveregs().
1172 ARGLIST is the argument list; see expr.c. */
1173extern struct rtx_def *alpha_builtin_saveregs ();
1174#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1175
1176/* Define the information needed to generate branch and scc insns. This is
1177 stored from the compare operation. Note that we can't use "rtx" here
1178 since it hasn't been defined! */
1179
1180extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1181extern int alpha_compare_fp_p;
1182
e5958492 1183/* Make (or fake) .linkage entry for function call.
e5958492
RK
1184 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1185extern void alpha_need_linkage ();
1186
bcbbac26
RH
1187/* This macro defines the start of an assembly comment. */
1188
1189#define ASM_COMMENT_START " #"
1190
acd92049 1191/* This macro produces the initial definition of a function. */
1a94ca49 1192
acd92049
RH
1193#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1194 alpha_start_function(FILE,NAME,DECL);
1195extern void alpha_start_function ();
1a94ca49 1196
acd92049 1197/* This macro closes up a function definition for the assembler. */
9c0e94a5 1198
acd92049
RH
1199#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1200 alpha_end_function(FILE,NAME,DECL)
1201extern void alpha_end_function ();
1202
9c0e94a5
RH
1203/* This macro notes the end of the prologue. */
1204
1205#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
3c303f52 1206extern void output_end_prologue ();
1a94ca49 1207
acd92049
RH
1208/* Output any profiling code before the prologue. */
1209
1210#define PROFILE_BEFORE_PROLOGUE 1
1211
1a94ca49 1212/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1213 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1214 by simply passing -pg to the assembler and linker. */
85d159a3 1215
e0fb9029 1216#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1217
1218/* Output assembler code to FILE to initialize this source file's
1219 basic block profiling info, if that has not already been done.
1220 This assumes that __bb_init_func doesn't garble a1-a5. */
1221
1222#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1223 do { \
1224 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1225 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1226 fputs ("\tldq $26,0($16)\n", (FILE)); \
1227 fputs ("\tbne $26,1f\n", (FILE)); \
1228 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1229 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1230 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1231 fputs ("1:\n", (FILE)); \
85d159a3
RK
1232 ASM_OUTPUT_REG_POP (FILE, 16); \
1233 } while (0);
1234
1235/* Output assembler code to FILE to increment the entry-count for
1236 the BLOCKNO'th basic block in this source file. */
1237
1238#define BLOCK_PROFILER(FILE, BLOCKNO) \
1239 do { \
1240 int blockn = (BLOCKNO); \
a62eb16f 1241 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1242 fputs ("\tstq $26,0($30)\n", (FILE)); \
1243 fputs ("\tstq $27,8($30)\n", (FILE)); \
1244 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1245 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1246 fputs ("\taddq $27,1,$27\n", (FILE)); \
1247 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1248 fputs ("\tldq $26,0($30)\n", (FILE)); \
1249 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1250 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1251 } while (0)
1a94ca49 1252
1a94ca49
RK
1253
1254/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1255 the stack pointer does not matter. The value is tested only in
1256 functions that have frame pointers.
1257 No definition is equivalent to always zero. */
1258
1259#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1260\f
1261/* Output assembler code for a block containing the constant parts
1262 of a trampoline, leaving space for the variable parts.
1263
1264 The trampoline should set the static chain pointer to value placed
7981384f
RK
1265 into the trampoline and should branch to the specified routine.
1266 Note that $27 has been set to the address of the trampoline, so we can
1267 use it for addressability of the two data items. Trampolines are always
1268 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1269
1270#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1271do { \
7981384f 1272 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1273 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1274 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1275 fprintf (FILE, "\tnop\n"); \
1a94ca49 1276 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1277} while (0)
1a94ca49 1278
3a523eeb
RS
1279/* Section in which to place the trampoline. On Alpha, instructions
1280 may only be placed in a text segment. */
1281
1282#define TRAMPOLINE_SECTION text_section
1283
1a94ca49
RK
1284/* Length in units of the trampoline for entering a nested function. */
1285
7981384f 1286#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1287
1288/* Emit RTL insns to initialize the variable parts of a trampoline.
1289 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1290 CXT is an RTX for the static chain value for the function. */
1a94ca49 1291
9ec36da5 1292#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1293 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
804a4e13 1294extern void alpha_initialize_trampoline ();
675f0e7c
RK
1295
1296/* A C expression whose value is RTL representing the value of the return
1297 address for the frame COUNT steps up from the current frame.
1298 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1299 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1300
9ecc37f0
RH
1301#define RETURN_ADDR_RTX alpha_return_addr
1302extern struct rtx_def *alpha_return_addr ();
1303
1304/* Initialize data used by insn expanders. This is called from insn_emit,
1305 once for every function before code is generated. */
1306
1307#define INIT_EXPANDERS alpha_init_expanders ()
1308extern void alpha_init_expanders ();
675f0e7c 1309\f
1a94ca49
RK
1310/* Addressing modes, and classification of registers for them. */
1311
1312/* #define HAVE_POST_INCREMENT */
1313/* #define HAVE_POST_DECREMENT */
1314
1315/* #define HAVE_PRE_DECREMENT */
1316/* #define HAVE_PRE_INCREMENT */
1317
1318/* Macros to check register numbers against specific register classes. */
1319
1320/* These assume that REGNO is a hard or pseudo reg number.
1321 They give nonzero only if REGNO is a hard reg of the suitable class
1322 or a pseudo reg currently allocated to a suitable hard reg.
1323 Since they use reg_renumber, they are safe only once reg_renumber
1324 has been allocated, which happens in local-alloc.c. */
1325
1326#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1327#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1328((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1329 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1330\f
1331/* Maximum number of registers that can appear in a valid memory address. */
1332#define MAX_REGS_PER_ADDRESS 1
1333
1334/* Recognize any constant value that is a valid address. For the Alpha,
1335 there are only constants none since we want to use LDA to load any
1336 symbolic addresses into registers. */
1337
1338#define CONSTANT_ADDRESS_P(X) \
1339 (GET_CODE (X) == CONST_INT \
1340 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1341
1342/* Include all constant integers and constant doubles, but not
1343 floating-point, except for floating-point zero. */
1344
1345#define LEGITIMATE_CONSTANT_P(X) \
1346 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1347 || (X) == CONST0_RTX (GET_MODE (X)))
1348
1349/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1350 and check its validity for a certain class.
1351 We have two alternate definitions for each of them.
1352 The usual definition accepts all pseudo regs; the other rejects
1353 them unless they have been allocated suitable hard regs.
1354 The symbol REG_OK_STRICT causes the latter definition to be used.
1355
1356 Most source files want to accept pseudo regs in the hope that
1357 they will get allocated to the class that the insn wants them to be in.
1358 Source files for reload pass need to be strict.
1359 After reload, it makes no difference, since pseudo regs have
1360 been eliminated by then. */
1361
1362#ifndef REG_OK_STRICT
1363
1364/* Nonzero if X is a hard reg that can be used as an index
1365 or if it is a pseudo reg. */
1366#define REG_OK_FOR_INDEX_P(X) 0
1367/* Nonzero if X is a hard reg that can be used as a base reg
1368 or if it is a pseudo reg. */
1369#define REG_OK_FOR_BASE_P(X) \
52a69200 1370 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1371
1372#else
1373
1374/* Nonzero if X is a hard reg that can be used as an index. */
1375#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1376/* Nonzero if X is a hard reg that can be used as a base reg. */
1377#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1378
1379#endif
1380\f
1381/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1382 that is a valid memory address for an instruction.
1383 The MODE argument is the machine mode for the MEM expression
1384 that wants to use this address.
1385
1386 For Alpha, we have either a constant address or the sum of a register
1387 and a constant address, or just a register. For DImode, any of those
1388 forms can be surrounded with an AND that clear the low-order three bits;
1389 this is an "unaligned" access.
1390
1a94ca49
RK
1391 First define the basic valid address. */
1392
1393#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1394{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1395 goto ADDR; \
1396 if (CONSTANT_ADDRESS_P (X)) \
1397 goto ADDR; \
1398 if (GET_CODE (X) == PLUS \
1399 && REG_P (XEXP (X, 0)) \
1400 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1401 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1402 goto ADDR; \
1403}
1404
1405/* Now accept the simple address, or, for DImode only, an AND of a simple
1406 address that turns off the low three bits. */
1407
1a94ca49
RK
1408#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1409{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1410 if ((MODE) == DImode \
1411 && GET_CODE (X) == AND \
1412 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1413 && INTVAL (XEXP (X, 1)) == -8) \
1414 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1415}
1416
1417/* Try machine-dependent ways of modifying an illegitimate address
1418 to be legitimate. If we find one, return the new, valid address.
1419 This macro is used in only one place: `memory_address' in explow.c.
1420
1421 OLDX is the address as it was before break_out_memory_refs was called.
1422 In some cases it is useful to look at this to decide what needs to be done.
1423
1424 MODE and WIN are passed so that this macro can use
1425 GO_IF_LEGITIMATE_ADDRESS.
1426
1427 It is always safe for this macro to do nothing. It exists to recognize
1428 opportunities to optimize the output.
1429
1430 For the Alpha, there are three cases we handle:
1431
1432 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1433 valid offset, compute the high part of the constant and add it to the
1434 register. Then our address is (plus temp low-part-const).
1435 (2) If the address is (const (plus FOO const_int)), find the low-order
1436 part of the CONST_INT. Then load FOO plus any high-order part of the
1437 CONST_INT into a register. Our address is (plus reg low-part-const).
1438 This is done to reduce the number of GOT entries.
1439 (3) If we have a (plus reg const), emit the load as in (2), then add
1440 the two registers, and finally generate (plus reg low-part-const) as
1441 our address. */
1442
1443#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1444{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1445 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1446 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1447 { \
1448 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1449 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1450 HOST_WIDE_INT highpart = val - lowpart; \
1451 rtx high = GEN_INT (highpart); \
1452 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1453 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1454 \
1455 (X) = plus_constant (temp, lowpart); \
1456 goto WIN; \
1457 } \
1458 else if (GET_CODE (X) == CONST \
1459 && GET_CODE (XEXP (X, 0)) == PLUS \
1460 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1461 { \
1462 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1463 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1464 HOST_WIDE_INT highpart = val - lowpart; \
1465 rtx high = XEXP (XEXP (X, 0), 0); \
1466 \
1467 if (highpart) \
1468 high = plus_constant (high, highpart); \
1469 \
1470 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1471 goto WIN; \
1472 } \
1473 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1474 && GET_CODE (XEXP (X, 1)) == CONST \
1475 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1476 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1477 { \
1478 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1479 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1480 HOST_WIDE_INT highpart = val - lowpart; \
1481 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1482 \
1483 if (highpart) \
1484 high = plus_constant (high, highpart); \
1485 \
1486 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1487 force_reg (Pmode, high), \
80f251fe 1488 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1489 (X) = plus_constant (high, lowpart); \
1490 goto WIN; \
1491 } \
1492}
1493
a9a2595b
JR
1494/* Try a machine-dependent way of reloading an illegitimate address
1495 operand. If we find one, push the reload and jump to WIN. This
1496 macro is used in only one place: `find_reloads_address' in reload.c.
1497
1498 For the Alpha, we wish to handle large displacements off a base
1499 register by splitting the addend across an ldah and the mem insn.
1500 This cuts number of extra insns needed from 3 to 1. */
1501
1502#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1503do { \
1504 if (GET_CODE (X) == PLUS \
1505 && GET_CODE (XEXP (X, 0)) == REG \
1506 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1507 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1508 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1509 { \
1510 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1511 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1512 HOST_WIDE_INT high \
1513 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1514 \
1515 /* Check for 32-bit overflow. */ \
1516 if (high + low != val) \
1517 break; \
1518 \
1519 /* Reload the high part into a base reg; leave the low part \
1520 in the mem directly. */ \
1521 \
1522 X = gen_rtx_PLUS (GET_MODE (X), \
1523 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1524 GEN_INT (high)), \
1525 GEN_INT (low)); \
1526 \
1527 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1528 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1529 OPNUM, TYPE); \
1530 goto WIN; \
1531 } \
1532} while (0)
1533
1a94ca49
RK
1534/* Go to LABEL if ADDR (a legitimate address expression)
1535 has an effect that depends on the machine mode it is used for.
1536 On the Alpha this is true only for the unaligned modes. We can
1537 simplify this test since we know that the address must be valid. */
1538
1539#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1540{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1541
1542/* Compute the cost of an address. For the Alpha, all valid addresses are
1543 the same cost. */
1544
1545#define ADDRESS_COST(X) 0
1546
2ea844d3
RH
1547/* Machine-dependent reorg pass. */
1548#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1549\f
1550/* Specify the machine mode that this machine uses
1551 for the index in the tablejump instruction. */
1552#define CASE_VECTOR_MODE SImode
1553
18543a22
ILT
1554/* Define as C expression which evaluates to nonzero if the tablejump
1555 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1556 table.
b0435cf4 1557
3aa9d5b6 1558 Do not define this if the table should contain absolute addresses.
260ced47
RK
1559 On the Alpha, the table is really GP-relative, not relative to the PC
1560 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1561 but we should try to find some better way sometime. */
18543a22 1562#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1563
1564/* Specify the tree operation to be used to convert reals to integers. */
1565#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1566
1567/* This is the kind of divide that is easiest to do in the general case. */
1568#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1569
1570/* Define this as 1 if `char' should by default be signed; else as 0. */
1571#define DEFAULT_SIGNED_CHAR 1
1572
1573/* This flag, if defined, says the same insns that convert to a signed fixnum
1574 also convert validly to an unsigned one.
1575
1576 We actually lie a bit here as overflow conditions are different. But
1577 they aren't being checked anyway. */
1578
1579#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1580
1581/* Max number of bytes we can move to or from memory
1582 in one reasonably fast instruction. */
1583
1584#define MOVE_MAX 8
1585
6c174fc0
RH
1586/* Controls how many units are moved by expr.c before resorting to movstr.
1587 Without byte/word accesses, we want no more than one; with, several single
1588 byte accesses are better. */
1589
1590#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1591
1a94ca49
RK
1592/* Largest number of bytes of an object that can be placed in a register.
1593 On the Alpha we have plenty of registers, so use TImode. */
1594#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1595
1596/* Nonzero if access to memory by bytes is no faster than for words.
1597 Also non-zero if doing byte operations (specifically shifts) in registers
1598 is undesirable.
1599
1600 On the Alpha, we want to not use the byte operation and instead use
1601 masking operations to access fields; these will save instructions. */
1602
1603#define SLOW_BYTE_ACCESS 1
1604
9a63901f
RK
1605/* Define if operations between registers always perform the operation
1606 on the full register even if a narrower mode is specified. */
1607#define WORD_REGISTER_OPERATIONS
1608
1609/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1610 will either zero-extend or sign-extend. The value of this macro should
1611 be the code that says which one of the two operations is implicitly
1612 done, NIL if none. */
b7747781 1613#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1614
225211e2
RK
1615/* Define if loading short immediate values into registers sign extends. */
1616#define SHORT_IMMEDIATES_SIGN_EXTEND
1617
1a94ca49
RK
1618/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1619 is done just by pretending it is already truncated. */
1620#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1621
1622/* We assume that the store-condition-codes instructions store 0 for false
1623 and some other value for true. This is the value stored for true. */
1624
1625#define STORE_FLAG_VALUE 1
1626
1627/* Define the value returned by a floating-point comparison instruction. */
1628
e9a25f70 1629#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1630
35bb77fd
RK
1631/* Canonicalize a comparison from one we don't have to one we do have. */
1632
1633#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1634 do { \
1635 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1636 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1637 { \
1638 rtx tem = (OP0); \
1639 (OP0) = (OP1); \
1640 (OP1) = tem; \
1641 (CODE) = swap_condition (CODE); \
1642 } \
1643 if (((CODE) == LT || (CODE) == LTU) \
1644 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1645 { \
1646 (CODE) = (CODE) == LT ? LE : LEU; \
1647 (OP1) = GEN_INT (255); \
1648 } \
1649 } while (0)
1650
1a94ca49
RK
1651/* Specify the machine mode that pointers have.
1652 After generation of rtl, the compiler makes no further distinction
1653 between pointers and any other objects of this machine mode. */
1654#define Pmode DImode
1655
1656/* Mode of a function address in a call instruction (for indexing purposes). */
1657
1658#define FUNCTION_MODE Pmode
1659
1660/* Define this if addresses of constant functions
1661 shouldn't be put through pseudo regs where they can be cse'd.
1662 Desirable on machines where ordinary constants are expensive
1663 but a CALL with constant address is cheap.
1664
1665 We define this on the Alpha so that gen_call and gen_call_value
1666 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1667 then copy it into a register, thus actually letting the address be
1668 cse'ed. */
1669
1670#define NO_FUNCTION_CSE
1671
d969caf8 1672/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1673 few bits. */
d969caf8 1674#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1675
d721b776
RK
1676/* Use atexit for static constructors/destructors, instead of defining
1677 our own exit function. */
1678#define HAVE_ATEXIT
1679
71d9b493 1680/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1681#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1682
1a94ca49
RK
1683/* Compute the cost of computing a constant rtl expression RTX
1684 whose rtx-code is CODE. The body of this macro is a portion
1685 of a switch statement. If the code is computed here,
1686 return it with a return statement. Otherwise, break from the switch.
1687
8b7b2e36
RK
1688 If this is an 8-bit constant, return zero since it can be used
1689 nearly anywhere with no cost. If it is a valid operand for an
1690 ADD or AND, likewise return 0 if we know it will be used in that
1691 context. Otherwise, return 2 since it might be used there later.
1692 All other constants take at least two insns. */
1a94ca49
RK
1693
1694#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1695 case CONST_INT: \
06eb8e92 1696 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1697 return 0; \
1a94ca49 1698 case CONST_DOUBLE: \
5d02ee66
RH
1699 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1700 return 0; \
1701 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1702 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1703 return 0; \
1704 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1705 return 2; \
1706 else \
1707 return COSTS_N_INSNS (2); \
1a94ca49
RK
1708 case CONST: \
1709 case SYMBOL_REF: \
1710 case LABEL_REF: \
f6f6a13c
RK
1711 switch (alpha_cpu) \
1712 { \
1713 case PROCESSOR_EV4: \
1714 return COSTS_N_INSNS (3); \
1715 case PROCESSOR_EV5: \
5d02ee66 1716 case PROCESSOR_EV6: \
f6f6a13c 1717 return COSTS_N_INSNS (2); \
5d02ee66 1718 default: abort(); \
f6f6a13c 1719 }
1a94ca49
RK
1720
1721/* Provide the costs of a rtl expression. This is in the body of a
1722 switch on CODE. */
1723
1724#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1725 case PLUS: case MINUS: \
1726 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1727 switch (alpha_cpu) \
1728 { \
1729 case PROCESSOR_EV4: \
1730 return COSTS_N_INSNS (6); \
1731 case PROCESSOR_EV5: \
5d02ee66 1732 case PROCESSOR_EV6: \
f6f6a13c 1733 return COSTS_N_INSNS (4); \
5d02ee66 1734 default: abort(); \
f6f6a13c 1735 } \
b49e978e
RK
1736 else if (GET_CODE (XEXP (X, 0)) == MULT \
1737 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1738 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1739 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1740 break; \
1741 case MULT: \
f6f6a13c
RK
1742 switch (alpha_cpu) \
1743 { \
1744 case PROCESSOR_EV4: \
1745 if (FLOAT_MODE_P (GET_MODE (X))) \
1746 return COSTS_N_INSNS (6); \
1747 return COSTS_N_INSNS (23); \
1748 case PROCESSOR_EV5: \
1749 if (FLOAT_MODE_P (GET_MODE (X))) \
1750 return COSTS_N_INSNS (4); \
1751 else if (GET_MODE (X) == DImode) \
1752 return COSTS_N_INSNS (12); \
1753 else \
1754 return COSTS_N_INSNS (8); \
5d02ee66
RH
1755 case PROCESSOR_EV6: \
1756 if (FLOAT_MODE_P (GET_MODE (X))) \
1757 return COSTS_N_INSNS (4); \
1758 else \
1759 return COSTS_N_INSNS (7); \
1760 default: abort(); \
f6f6a13c 1761 } \
b49e978e
RK
1762 case ASHIFT: \
1763 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1764 && INTVAL (XEXP (X, 1)) <= 3) \
1765 break; \
1766 /* ... fall through ... */ \
5d02ee66 1767 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1768 switch (alpha_cpu) \
1769 { \
1770 case PROCESSOR_EV4: \
1771 return COSTS_N_INSNS (2); \
1772 case PROCESSOR_EV5: \
5d02ee66 1773 case PROCESSOR_EV6: \
f6f6a13c 1774 return COSTS_N_INSNS (1); \
5d02ee66
RH
1775 default: abort(); \
1776 } \
1777 case IF_THEN_ELSE: \
1778 switch (alpha_cpu) \
1779 { \
1780 case PROCESSOR_EV4: \
1781 case PROCESSOR_EV6: \
1782 return COSTS_N_INSNS (2); \
1783 case PROCESSOR_EV5: \
1784 return COSTS_N_INSNS (1); \
1785 default: abort(); \
f6f6a13c 1786 } \
3bda6d11 1787 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1788 switch (alpha_cpu) \
1789 { \
1790 case PROCESSOR_EV4: \
1791 if (GET_MODE (X) == SFmode) \
1792 return COSTS_N_INSNS (34); \
1793 else if (GET_MODE (X) == DFmode) \
1794 return COSTS_N_INSNS (63); \
1795 else \
1796 return COSTS_N_INSNS (70); \
1797 case PROCESSOR_EV5: \
1798 if (GET_MODE (X) == SFmode) \
1799 return COSTS_N_INSNS (15); \
1800 else if (GET_MODE (X) == DFmode) \
1801 return COSTS_N_INSNS (22); \
1802 else \
5d02ee66
RH
1803 return COSTS_N_INSNS (70); /* ??? */ \
1804 case PROCESSOR_EV6: \
1805 if (GET_MODE (X) == SFmode) \
1806 return COSTS_N_INSNS (12); \
1807 else if (GET_MODE (X) == DFmode) \
1808 return COSTS_N_INSNS (15); \
1809 else \
1810 return COSTS_N_INSNS (70); /* ??? */ \
1811 default: abort(); \
f6f6a13c 1812 } \
1a94ca49 1813 case MEM: \
f6f6a13c
RK
1814 switch (alpha_cpu) \
1815 { \
1816 case PROCESSOR_EV4: \
5d02ee66 1817 case PROCESSOR_EV6: \
f6f6a13c
RK
1818 return COSTS_N_INSNS (3); \
1819 case PROCESSOR_EV5: \
1820 return COSTS_N_INSNS (2); \
5d02ee66 1821 default: abort(); \
f6f6a13c
RK
1822 } \
1823 case NEG: case ABS: \
1824 if (! FLOAT_MODE_P (GET_MODE (X))) \
1825 break; \
1826 /* ... fall through ... */ \
3bda6d11
RK
1827 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1828 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1829 switch (alpha_cpu) \
1830 { \
1831 case PROCESSOR_EV4: \
1832 return COSTS_N_INSNS (6); \
1833 case PROCESSOR_EV5: \
5d02ee66 1834 case PROCESSOR_EV6: \
f6f6a13c 1835 return COSTS_N_INSNS (4); \
5d02ee66 1836 default: abort(); \
f6f6a13c 1837 }
1a94ca49
RK
1838\f
1839/* Control the assembler format that we output. */
1840
40ef2fc5
JL
1841/* We don't emit these labels, so as to avoid getting linker errors about
1842 missing exception handling info. If we emit a gcc_compiled. label into
1843 text, and the file has no code, then the DEC assembler gives us a zero
1844 sized text section with no associated exception handling info. The
38e01259 1845 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1846 the exception handling info is missing. */
3c303f52
KG
1847#define ASM_IDENTIFY_GCC(x)
1848#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1849
1a94ca49
RK
1850/* Output to assembler file text saying following lines
1851 may contain character constants, extra white space, comments, etc. */
1852
1853#define ASM_APP_ON ""
1854
1855/* Output to assembler file text saying following lines
1856 no longer contain unusual constructs. */
1857
1858#define ASM_APP_OFF ""
1859
1860#define TEXT_SECTION_ASM_OP ".text"
1861
1862/* Output before read-only data. */
1863
1864#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1865
1866/* Output before writable data. */
1867
1868#define DATA_SECTION_ASM_OP ".data"
1869
1870/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1871 indicate that it is for read-only data.
1872
abc95ed3 1873 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1874 eight bytes of zero. This works around a bug in DEC's assembler in
1875 some versions of OSF/1 V3.x. */
1a94ca49
RK
1876
1877#define EXTRA_SECTIONS readonly_data
1878
1879#define EXTRA_SECTION_FUNCTIONS \
1880void \
1881literal_section () \
1882{ \
1883 if (in_section != readonly_data) \
1884 { \
c0388f29
RK
1885 static int firsttime = 1; \
1886 \
1a94ca49 1887 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1888 if (firsttime) \
1889 { \
1890 firsttime = 0; \
1891 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1892 } \
1893 \
1a94ca49
RK
1894 in_section = readonly_data; \
1895 } \
1896} \
1897
1898#define READONLY_DATA_SECTION literal_section
1899
ac030a7b
RK
1900/* If we are referencing a function that is static, make the SYMBOL_REF
1901 special. We use this to see indicate we can branch to this function
1902 without setting PV or restoring GP. */
130d2d72
RK
1903
1904#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1905 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1906 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1907
1a94ca49
RK
1908/* How to refer to registers in assembler output.
1909 This sequence is indexed by compiler's hard-register-number (see above). */
1910
1911#define REGISTER_NAMES \
1912{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1913 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1914 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1915 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1916 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1917 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1918 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1919 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1920
1921/* How to renumber registers for dbx and gdb. */
1922
1923#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1924
1925/* This is how to output the definition of a user-level label named NAME,
1926 such as the label on a static function or variable NAME. */
1927
1928#define ASM_OUTPUT_LABEL(FILE,NAME) \
1929 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1930
1931/* This is how to output a command to make the user-level label named NAME
1932 defined for reference from other files. */
1933
1934#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1935 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1936
4e0c8ad2 1937/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1938
4e0c8ad2 1939#define USER_LABEL_PREFIX ""
1a94ca49
RK
1940
1941/* This is how to output an internal numbered label where
1942 PREFIX is the class of label and NUM is the number within the class. */
1943
1944#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1945 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1946
1947/* This is how to output a label for a jump table. Arguments are the same as
1948 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1949 passed. */
1950
1951#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1952{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1953
1954/* This is how to store into the string LABEL
1955 the symbol_ref name of an internal numbered label where
1956 PREFIX is the class of label and NUM is the number within the class.
1957 This is suitable for output with `assemble_name'. */
1958
1959#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
531ea24e 1960 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1a94ca49 1961
e247ca2a
RK
1962/* Check a floating-point value for validity for a particular machine mode. */
1963
1964#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1965 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1966
1a94ca49
RK
1967/* This is how to output an assembler line defining a `double' constant. */
1968
e99300f1
RS
1969#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1970 { \
1971 if (REAL_VALUE_ISINF (VALUE) \
1972 || REAL_VALUE_ISNAN (VALUE) \
1973 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1974 { \
1975 long t[2]; \
1976 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1977 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1978 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1979 } \
1980 else \
1981 { \
1982 char str[30]; \
1983 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1984 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1985 } \
1986 }
1a94ca49
RK
1987
1988/* This is how to output an assembler line defining a `float' constant. */
1989
e247ca2a
RK
1990#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1991 do { \
1992 long t; \
1993 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1994 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1995} while (0)
2700ac93 1996
1a94ca49
RK
1997/* This is how to output an assembler line defining an `int' constant. */
1998
1999#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2000( fprintf (FILE, "\t.long "), \
2001 output_addr_const (FILE, (VALUE)), \
2002 fprintf (FILE, "\n"))
1a94ca49
RK
2003
2004/* This is how to output an assembler line defining a `long' constant. */
2005
2006#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2007( fprintf (FILE, "\t.quad "), \
2008 output_addr_const (FILE, (VALUE)), \
2009 fprintf (FILE, "\n"))
2010
2011/* Likewise for `char' and `short' constants. */
2012
2013#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2014 fprintf (FILE, "\t.word %d\n", \
3c303f52 2015 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2016 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2017
2018#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2019 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2020 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2021 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2022
2023/* We use the default ASCII-output routine, except that we don't write more
2024 than 50 characters since the assembler doesn't support very long lines. */
2025
2026#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2027 do { \
2028 FILE *_hide_asm_out_file = (MYFILE); \
2029 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2030 int _hide_thissize = (MYLENGTH); \
2031 int _size_so_far = 0; \
2032 { \
2033 FILE *asm_out_file = _hide_asm_out_file; \
2034 unsigned char *p = _hide_p; \
2035 int thissize = _hide_thissize; \
2036 int i; \
2037 fprintf (asm_out_file, "\t.ascii \""); \
2038 \
2039 for (i = 0; i < thissize; i++) \
2040 { \
2041 register int c = p[i]; \
2042 \
2043 if (_size_so_far ++ > 50 && i < thissize - 4) \
2044 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2045 \
2046 if (c == '\"' || c == '\\') \
2047 putc ('\\', asm_out_file); \
2048 if (c >= ' ' && c < 0177) \
2049 putc (c, asm_out_file); \
2050 else \
2051 { \
2052 fprintf (asm_out_file, "\\%o", c); \
2053 /* After an octal-escape, if a digit follows, \
2054 terminate one string constant and start another. \
2055 The Vax assembler fails to stop reading the escape \
2056 after three digits, so this is the only way we \
2057 can get it to parse the data properly. */ \
2058 if (i < thissize - 1 \
2059 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2060 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2061 } \
2062 } \
2063 fprintf (asm_out_file, "\"\n"); \
2064 } \
2065 } \
2066 while (0)
52a69200 2067
1a94ca49
RK
2068/* This is how to output an insn to push a register on the stack.
2069 It need not be very fast code. */
2070
2071#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2072 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2073 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2074 (REGNO) & 31);
2075
2076/* This is how to output an insn to pop a register from the stack.
2077 It need not be very fast code. */
2078
2079#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2080 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2081 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2082 (REGNO) & 31);
2083
2084/* This is how to output an assembler line for a numeric constant byte. */
2085
2086#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2087 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2088
260ced47
RK
2089/* This is how to output an element of a case-vector that is absolute.
2090 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2091
260ced47 2092#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2093
260ced47 2094/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2095
33f7f353 2096#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2097 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2098 (VALUE))
1a94ca49
RK
2099
2100/* This is how to output an assembler line
2101 that says to advance the location counter
2102 to a multiple of 2**LOG bytes. */
2103
2104#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2105 if ((LOG) != 0) \
2106 fprintf (FILE, "\t.align %d\n", LOG);
2107
2108/* This is how to advance the location counter by SIZE bytes. */
2109
2110#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2111 fprintf (FILE, "\t.space %d\n", (SIZE))
2112
2113/* This says how to output an assembler line
2114 to define a global common symbol. */
2115
2116#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2117( fputs ("\t.comm ", (FILE)), \
2118 assemble_name ((FILE), (NAME)), \
2119 fprintf ((FILE), ",%d\n", (SIZE)))
2120
2121/* This says how to output an assembler line
2122 to define a local common symbol. */
2123
2124#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2125( fputs ("\t.lcomm ", (FILE)), \
2126 assemble_name ((FILE), (NAME)), \
2127 fprintf ((FILE), ",%d\n", (SIZE)))
2128
2129/* Store in OUTPUT a string (made with alloca) containing
2130 an assembler-name for a local static variable named NAME.
2131 LABELNO is an integer which is different for each call. */
2132
2133#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2134( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2135 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2136
2137/* Define the parentheses used to group arithmetic operations
2138 in assembler code. */
2139
2140#define ASM_OPEN_PAREN "("
2141#define ASM_CLOSE_PAREN ")"
2142
60593797
RH
2143/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2144 Used for C++ multiple inheritance. */
2145
2146#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2147do { \
92d4501f 2148 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2149 int reg; \
60593797 2150 \
acd92049
RH
2151 /* Mark end of prologue. */ \
2152 output_end_prologue (FILE); \
60593797
RH
2153 \
2154 /* Rely on the assembler to macro expand a large delta. */ \
54473ca7
L
2155 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2156 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797
RH
2157 \
2158 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2159 { \
2160 fprintf (FILE, "\tbr $31,$"); \
2161 assemble_name (FILE, fn_name); \
2162 fprintf (FILE, "..ng\n"); \
2163 } \
2164 else \
2165 { \
acd92049 2166 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2167 assemble_name (FILE, fn_name); \
2168 fputc ('\n', FILE); \
2169 } \
60593797 2170} while (0)
60593797 2171\f
9ec36da5 2172
1a94ca49
RK
2173/* Define results of standard character escape sequences. */
2174#define TARGET_BELL 007
2175#define TARGET_BS 010
2176#define TARGET_TAB 011
2177#define TARGET_NEWLINE 012
2178#define TARGET_VT 013
2179#define TARGET_FF 014
2180#define TARGET_CR 015
2181
2182/* Print operand X (an rtx) in assembler syntax to file FILE.
2183 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2184 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2185
2186#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2187
2188/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2189 not be alphabetic (the characters are chosen so that
2190 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2191 using ASCII).
2192
2193 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2194 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2195 mode. alpha_fprm controls which suffix is generated.
2196
2197 ' Generates trap-mode suffix for instructions that accept the
2198 su suffix only (cmpt et al).
2199
e83015a9
RH
2200 ` Generates trap-mode suffix for instructions that accept the
2201 v and sv suffix. The only instruction that needs this is cvtql.
2202
0022a940
DMT
2203 ( Generates trap-mode suffix for instructions that accept the
2204 v, sv, and svi suffix. The only instruction that needs this
2205 is cvttq.
2206
2bf6230d
RK
2207 ) Generates trap-mode suffix for instructions that accept the
2208 u, su, and sui suffix. This is the bulk of the IEEE floating
2209 point instructions (addt et al).
2210
2211 + Generates trap-mode suffix for instructions that accept the
2212 sui suffix (cvtqt and cvtqs).
e5958492
RK
2213
2214 , Generates single precision suffix for floating point
2215 instructions (s for IEEE, f for VAX)
2216
2217 - Generates double precision suffix for floating point
2218 instructions (t for IEEE, g for VAX)
2bf6230d 2219 */
1a94ca49 2220
2bf6230d 2221#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2222 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2223 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2224\f
2225/* Print a memory address as an operand to reference that memory location. */
2226
2227#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2228{ rtx addr = (ADDR); \
2229 int basereg = 31; \
2230 HOST_WIDE_INT offset = 0; \
2231 \
2232 if (GET_CODE (addr) == AND) \
2233 addr = XEXP (addr, 0); \
2234 \
2235 if (GET_CODE (addr) == REG) \
2236 basereg = REGNO (addr); \
2237 else if (GET_CODE (addr) == CONST_INT) \
2238 offset = INTVAL (addr); \
2239 else if (GET_CODE (addr) == PLUS \
2240 && GET_CODE (XEXP (addr, 0)) == REG \
2241 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2242 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2243 else \
2244 abort (); \
2245 \
3c303f52
KG
2246 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, offset); \
2247 fprintf (FILE, "($%d)", basereg); \
1a94ca49
RK
2248}
2249/* Define the codes that are matched by predicates in alpha.c. */
2250
e3208d53
RH
2251#define PREDICATE_CODES \
2252 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2253 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2254 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2255 {"cint8_operand", {CONST_INT, CONSTANT_P_RTX}}, \
2256 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2257 {"add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2258 {"sext_add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2259 {"const48_operand", {CONST_INT}}, \
2260 {"and_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2261 {"or_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2262 {"mode_mask_operand", {CONST_INT}}, \
2263 {"mul8_operand", {CONST_INT}}, \
2264 {"mode_width_operand", {CONST_INT}}, \
2265 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2266 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2267 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2268 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2269 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2270 {"fp0_operand", {CONST_DOUBLE}}, \
2271 {"current_file_function_operand", {SYMBOL_REF}}, \
2272 {"call_operand", {REG, SYMBOL_REF}}, \
2273 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2274 SYMBOL_REF, CONST, LABEL_REF, CONSTANT_P_RTX}}, \
2275 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2276 SYMBOL_REF, CONST, LABEL_REF, CONSTANT_P_RTX}}, \
2277 {"aligned_memory_operand", {MEM}}, \
2278 {"unaligned_memory_operand", {MEM}}, \
2279 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2280 {"any_memory_operand", {MEM}}, \
4ed43ff8 2281 {"hard_fp_register_operand", {SUBREG, REG}},
03f8c4cc 2282\f
34fa88ab
RK
2283/* Tell collect that the object format is ECOFF. */
2284#define OBJECT_FORMAT_COFF
2285#define EXTENDED_COFF
2286
2287/* If we use NM, pass -g to it so it only lists globals. */
2288#define NM_FLAGS "-pg"
2289
03f8c4cc
RK
2290/* Definitions for debugging. */
2291
2292#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2293#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2294#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2295
2296#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2297#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2298#endif
2299
2300
2301/* Correct the offset of automatic variables and arguments. Note that
2302 the Alpha debug format wants all automatic variables and arguments
2303 to be in terms of two different offsets from the virtual frame pointer,
2304 which is the stack pointer before any adjustment in the function.
2305 The offset for the argument pointer is fixed for the native compiler,
2306 it is either zero (for the no arguments case) or large enough to hold
2307 all argument registers.
2308 The offset for the auto pointer is the fourth argument to the .frame
2309 directive (local_offset).
2310 To stay compatible with the native tools we use the same offsets
2311 from the virtual frame pointer and adjust the debugger arg/auto offsets
2312 accordingly. These debugger offsets are set up in output_prolog. */
2313
9a0b18f2
RK
2314extern long alpha_arg_offset;
2315extern long alpha_auto_offset;
03f8c4cc
RK
2316#define DEBUGGER_AUTO_OFFSET(X) \
2317 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2318#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2319
2320
2321#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2322 alpha_output_lineno (STREAM, LINE)
2323extern void alpha_output_lineno ();
2324
2325#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2326 alpha_output_filename (STREAM, NAME)
2327extern void alpha_output_filename ();
2328
4330b0e7
JW
2329/* mips-tfile.c limits us to strings of one page. We must underestimate this
2330 number, because the real length runs past this up to the next
2331 continuation point. This is really a dbxout.c bug. */
2332#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2333
2334/* By default, turn on GDB extensions. */
2335#define DEFAULT_GDB_EXTENSIONS 1
2336
7aadc7c2
RK
2337/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2338#define NO_DBX_FUNCTION_END 1
2339
03f8c4cc
RK
2340/* If we are smuggling stabs through the ALPHA ECOFF object
2341 format, put a comment in front of the .stab<x> operation so
2342 that the ALPHA assembler does not choke. The mips-tfile program
2343 will correctly put the stab into the object file. */
2344
2345#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2346#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2347#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2348
2349/* Forward references to tags are allowed. */
2350#define SDB_ALLOW_FORWARD_REFERENCES
2351
2352/* Unknown tags are also allowed. */
2353#define SDB_ALLOW_UNKNOWN_REFERENCES
2354
2355#define PUT_SDB_DEF(a) \
2356do { \
2357 fprintf (asm_out_file, "\t%s.def\t", \
2358 (TARGET_GAS) ? "" : "#"); \
2359 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2360 fputc (';', asm_out_file); \
2361} while (0)
2362
2363#define PUT_SDB_PLAIN_DEF(a) \
2364do { \
2365 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2366 (TARGET_GAS) ? "" : "#", (a)); \
2367} while (0)
2368
2369#define PUT_SDB_TYPE(a) \
2370do { \
2371 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2372} while (0)
2373
2374/* For block start and end, we create labels, so that
2375 later we can figure out where the correct offset is.
2376 The normal .ent/.end serve well enough for functions,
2377 so those are just commented out. */
2378
2379extern int sdb_label_count; /* block start/end next label # */
2380
2381#define PUT_SDB_BLOCK_START(LINE) \
2382do { \
2383 fprintf (asm_out_file, \
2384 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2385 sdb_label_count, \
2386 (TARGET_GAS) ? "" : "#", \
2387 sdb_label_count, \
2388 (LINE)); \
2389 sdb_label_count++; \
2390} while (0)
2391
2392#define PUT_SDB_BLOCK_END(LINE) \
2393do { \
2394 fprintf (asm_out_file, \
2395 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2396 sdb_label_count, \
2397 (TARGET_GAS) ? "" : "#", \
2398 sdb_label_count, \
2399 (LINE)); \
2400 sdb_label_count++; \
2401} while (0)
2402
2403#define PUT_SDB_FUNCTION_START(LINE)
2404
2405#define PUT_SDB_FUNCTION_END(LINE)
2406
3c303f52 2407#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2408
03f8c4cc
RK
2409/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2410 mips-tdump.c to print them out.
2411
2412 These must match the corresponding definitions in gdb/mipsread.c.
2413 Unfortunately, gcc and gdb do not currently share any directories. */
2414
2415#define CODE_MASK 0x8F300
2416#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2417#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2418#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2419
2420/* Override some mips-tfile definitions. */
2421
2422#define SHASH_SIZE 511
2423#define THASH_SIZE 55
1e6c6f11
RK
2424
2425/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2426
2427#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2428
54190234
JM
2429/* The linker will stick __main into the .init section. */
2430#define HAS_INIT_SECTION
68d69835
JM
2431#define LD_INIT_SWITCH "-init"
2432#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2433
2434/* The system headers under Alpha systems are generally C++-aware. */
2435#define NO_IMPLICIT_EXTERN_C
47747e53 2436
3c303f52 2437/* Prototypes for alpha.c functions used in the md file & elsewhere. */
47747e53 2438extern struct rtx_def *get_unaligned_address ();
3c303f52
KG
2439extern void alpha_write_verstamp ();
2440extern void alpha_reorg ();
2441extern int check_float_value ();
2442extern int direct_return ();
2443extern int const48_operand ();
2444extern int add_operand ();
2445extern int and_operand ();
2446extern int unaligned_memory_operand ();
2447extern int zap_mask ();
2448extern int current_file_function_operand ();
2449extern int alpha_sa_size ();
2450extern int alpha_adjust_cost ();
2451extern void print_operand ();
2452extern int reg_or_0_operand ();
2453extern int reg_or_8bit_operand ();
2454extern int mul8_operand ();
2455extern int reg_or_6bit_operand ();
2456extern int alpha_comparison_operator ();
2457extern int alpha_swapped_comparison_operator ();
2458extern int sext_add_operand ();
2459extern int cint8_operand ();
2460extern int mode_mask_operand ();
2461extern int or_operand ();
2462extern int mode_width_operand ();
2463extern int reg_or_fp0_operand ();
2464extern int signed_comparison_operator ();
2465extern int fp0_operand ();
2466extern int some_operand ();
2467extern int input_operand ();
2468extern int divmod_operator ();
2469extern int call_operand ();
2470extern int reg_or_cint_operand ();
2471extern int hard_fp_register_operand ();
2472extern void alpha_set_memflags ();
2473extern int aligned_memory_operand ();
2474extern void get_aligned_mem ();
2475extern void alpha_expand_unaligned_load ();
2476extern void alpha_expand_unaligned_store ();
2477extern int alpha_expand_block_move ();
2478extern int alpha_expand_block_clear ();
2479extern void alpha_expand_prologue ();
2480extern void alpha_expand_epilogue ();
This page took 1.092677 seconds and 5 git commands to generate.