]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
Fix formatting.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
8b109b37 2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
24#define CPP_PREDEFINES "\
25-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 26-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 27
21798cd8
RK
28/* Write out the correct language type definition for the header files.
29 Unless we have assembler language, write out the symbols for C. */
1a94ca49 30#define CPP_SPEC "\
21798cd8 31%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 32%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
33%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
34%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
36%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38/* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
7981384f
RK
44/* No point in running CPP on our assembler output. */
45#define ASM_SPEC "-nocpp"
46
1c6c2b05 47/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 48
1c6c2b05 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
f987462f 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{!shared:-init __main} %{static:-non_shared} \
1c6c2b05 56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg}"
8877eb00 57
85d159a3 58#define STARTFILE_SPEC \
1c6c2b05 59 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 60
1a94ca49
RK
61/* Print subsidiary information on the compiler version in use. */
62#define TARGET_VERSION
63
64/* Define the location for the startup file on OSF/1 for Alpha. */
65
66#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
67
68/* Run-time compilation parameters selecting different hardware subsets. */
69
70extern int target_flags;
71
72/* This means that floating-point support exists in the target implementation
73 of the Alpha architecture. This is usually the default. */
74
75#define TARGET_FP (target_flags & 1)
76
77/* This means that floating-point registers are allowed to be used. Note
78 that Alpha implementations without FP operations are required to
79 provide the FP registers. */
80
03f8c4cc
RK
81#define TARGET_FPREGS (target_flags & 2)
82
83/* This means that gas is used to process the assembler file. */
84
85#define MASK_GAS 4
86#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
87
88/* Macro to define tables used to set the flags.
89 This is a list in braces of pairs in braces,
90 each pair being { "NAME", VALUE }
91 where VALUE is the bits to set or minus the bits to clear.
92 An empty string NAME is used to identify the default VALUE. */
93
94#define TARGET_SWITCHES \
95 { {"no-soft-float", 1}, \
96 {"soft-float", -1}, \
97 {"fp-regs", 2}, \
98 {"no-fp-regs", -3}, \
03f8c4cc
RK
99 {"alpha-as", -MASK_GAS}, \
100 {"gas", MASK_GAS}, \
88681624 101 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
102
103#define TARGET_DEFAULT 3
104
88681624
ILT
105#ifndef TARGET_CPU_DEFAULT
106#define TARGET_CPU_DEFAULT 0
107#endif
108
1a94ca49
RK
109/* Define this macro to change register usage conditional on target flags.
110
111 On the Alpha, we use this to disable the floating-point registers when
112 they don't exist. */
113
114#define CONDITIONAL_REGISTER_USAGE \
115 if (! TARGET_FPREGS) \
52a69200 116 for (i = 32; i < 63; i++) \
1a94ca49
RK
117 fixed_regs[i] = call_used_regs[i] = 1;
118
4f074454
RK
119/* Show we can debug even without a frame pointer. */
120#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
121\f
122/* target machine storage layout */
123
2700ac93
RS
124/* Define to enable software floating point emulation. */
125#define REAL_ARITHMETIC
126
1a94ca49
RK
127/* Define the size of `int'. The default is the same as the word size. */
128#define INT_TYPE_SIZE 32
129
130/* Define the size of `long long'. The default is the twice the word size. */
131#define LONG_LONG_TYPE_SIZE 64
132
133/* The two floating-point formats we support are S-floating, which is
134 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
135 and `long double' are T. */
136
137#define FLOAT_TYPE_SIZE 32
138#define DOUBLE_TYPE_SIZE 64
139#define LONG_DOUBLE_TYPE_SIZE 64
140
141#define WCHAR_TYPE "short unsigned int"
142#define WCHAR_TYPE_SIZE 16
143
13d39dbc 144/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
145 in a wider mode than that declared by the program. In such cases,
146 the value is constrained to be within the bounds of the declared
147 type, but kept valid in the wider mode. The signedness of the
148 extension may differ from that of the type.
149
150 For Alpha, we always store objects in a full register. 32-bit objects
151 are always sign-extended, but smaller objects retain their signedness. */
152
153#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
154 if (GET_MODE_CLASS (MODE) == MODE_INT \
155 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
156 { \
157 if ((MODE) == SImode) \
158 (UNSIGNEDP) = 0; \
159 (MODE) = DImode; \
160 }
161
162/* Define this if function arguments should also be promoted using the above
163 procedure. */
164
165#define PROMOTE_FUNCTION_ARGS
166
167/* Likewise, if the function return value is promoted. */
168
169#define PROMOTE_FUNCTION_RETURN
170
171/* Define this if most significant bit is lowest numbered
172 in instructions that operate on numbered bit-fields.
173
174 There are no such instructions on the Alpha, but the documentation
175 is little endian. */
176#define BITS_BIG_ENDIAN 0
177
178/* Define this if most significant byte of a word is the lowest numbered.
179 This is false on the Alpha. */
180#define BYTES_BIG_ENDIAN 0
181
182/* Define this if most significant word of a multiword number is lowest
183 numbered.
184
185 For Alpha we can decide arbitrarily since there are no machine instructions
186 for them. Might as well be consistent with bytes. */
187#define WORDS_BIG_ENDIAN 0
188
189/* number of bits in an addressable storage unit */
190#define BITS_PER_UNIT 8
191
192/* Width in bits of a "word", which is the contents of a machine register.
193 Note that this is not necessarily the width of data type `int';
194 if using 16-bit ints on a 68000, this would still be 32.
195 But on a machine with 16-bit registers, this would be 16. */
196#define BITS_PER_WORD 64
197
198/* Width of a word, in units (bytes). */
199#define UNITS_PER_WORD 8
200
201/* Width in bits of a pointer.
202 See also the macro `Pmode' defined below. */
203#define POINTER_SIZE 64
204
205/* Allocation boundary (in *bits*) for storing arguments in argument list. */
206#define PARM_BOUNDARY 64
207
208/* Boundary (in *bits*) on which stack pointer should be aligned. */
209#define STACK_BOUNDARY 64
210
211/* Allocation boundary (in *bits*) for the code of a function. */
212#define FUNCTION_BOUNDARY 64
213
214/* Alignment of field after `int : 0' in a structure. */
215#define EMPTY_FIELD_BOUNDARY 64
216
217/* Every structure's size must be a multiple of this. */
218#define STRUCTURE_SIZE_BOUNDARY 8
219
220/* A bitfield declared as `int' forces `int' alignment for the struct. */
221#define PCC_BITFIELD_TYPE_MATTERS 1
222
65823178
RK
223/* Align loop starts for optimal branching.
224
225 ??? Kludge this and the next macro for the moment by not doing anything if
226 we don't optimize and also if we are writing ECOFF symbols to work around
227 a bug in DEC's assembler. */
1a94ca49 228
130d2d72 229#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
230 if (optimize > 0 && write_symbols != SDB_DEBUG) \
231 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
232
233/* This is how to align an instruction for optimal branching.
234 On Alpha we'll get better performance by aligning on a quadword
235 boundary. */
130d2d72 236
1a94ca49 237#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
238 if (optimize > 0 && write_symbols != SDB_DEBUG) \
239 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
240
241/* No data type wants to be aligned rounder than this. */
242#define BIGGEST_ALIGNMENT 64
243
244/* Make strings word-aligned so strcpy from constants will be faster. */
245#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
246 (TREE_CODE (EXP) == STRING_CST \
247 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
248
249/* Make arrays of chars word-aligned for the same reasons. */
250#define DATA_ALIGNMENT(TYPE, ALIGN) \
251 (TREE_CODE (TYPE) == ARRAY_TYPE \
252 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
253 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
254
255/* Set this non-zero if move instructions will actually fail to work
256 when given unaligned data.
257
258 Since we get an error message when we do one, call them invalid. */
259
260#define STRICT_ALIGNMENT 1
261
262/* Set this non-zero if unaligned move instructions are extremely slow.
263
264 On the Alpha, they trap. */
130d2d72
RK
265
266#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
267\f
268/* Standard register usage. */
269
270/* Number of actual hardware registers.
271 The hardware registers are assigned numbers for the compiler
272 from 0 to just below FIRST_PSEUDO_REGISTER.
273 All registers that the compiler knows about must be given numbers,
274 even those that are not normally considered general registers.
275
276 We define all 32 integer registers, even though $31 is always zero,
277 and all 32 floating-point registers, even though $f31 is also
278 always zero. We do not bother defining the FP status register and
130d2d72
RK
279 there are no other registers.
280
281 Since $31 is always zero, we will use register number 31 as the
282 argument pointer. It will never appear in the generated code
283 because we will always be eliminating it in favor of the stack
52a69200
RK
284 pointer or hardware frame pointer.
285
286 Likewise, we use $f31 for the frame pointer, which will always
287 be eliminated in favor of the hardware frame pointer or the
288 stack pointer. */
1a94ca49
RK
289
290#define FIRST_PSEUDO_REGISTER 64
291
292/* 1 for registers that have pervasive standard uses
293 and are not available for the register allocator. */
294
295#define FIXED_REGISTERS \
296 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
298 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
299 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
300
301/* 1 for registers not available across function calls.
302 These must include the FIXED_REGISTERS and also any
303 registers that can be used without being saved.
304 The latter must include the registers where values are returned
305 and the register where structure-value addresses are passed.
306 Aside from that, you can include as many other registers as you like. */
307#define CALL_USED_REGISTERS \
308 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
309 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
310 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
311 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
312
313/* List the order in which to allocate registers. Each register must be
314 listed once, even those in FIXED_REGISTERS.
315
316 We allocate in the following order:
317 $f1 (nonsaved floating-point register)
318 $f10-$f15 (likewise)
319 $f22-$f30 (likewise)
320 $f21-$f16 (likewise, but input args)
321 $f0 (nonsaved, but return value)
322 $f2-$f9 (saved floating-point registers)
323 $1-$8 (nonsaved integer registers)
324 $22-$25 (likewise)
325 $28 (likewise)
326 $0 (likewise, but return value)
327 $21-$16 (likewise, but input args)
328 $27 (procedure value)
329 $9-$14 (saved integer registers)
330 $26 (return PC)
331 $15 (frame pointer)
332 $29 (global pointer)
52a69200 333 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
334
335#define REG_ALLOC_ORDER \
336 {33, \
da01bc2c 337 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
338 54, 55, 56, 57, 58, 59, 60, 61, 62, \
339 53, 52, 51, 50, 49, 48, \
340 32, \
341 34, 35, 36, 37, 38, 39, 40, 41, \
342 1, 2, 3, 4, 5, 6, 7, 8, \
343 22, 23, 24, 25, \
344 28, \
345 0, \
346 21, 20, 19, 18, 17, 16, \
347 27, \
348 9, 10, 11, 12, 13, 14, \
349 26, \
350 15, \
351 29, \
352 30, 31, 63 }
353
354/* Return number of consecutive hard regs needed starting at reg REGNO
355 to hold something of mode MODE.
356 This is ordinarily the length in words of a value of mode MODE
357 but can be less for certain modes in special long registers. */
358
359#define HARD_REGNO_NREGS(REGNO, MODE) \
360 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
361
362/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
363 On Alpha, the integer registers can hold any mode. The floating-point
364 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
365 or 8-bit values. If we only allowed the larger integers into FP registers,
366 we'd have to say that QImode and SImode aren't tiable, which is a
367 pain. So say all registers can hold everything and see how that works. */
368
369#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
370
371/* Value is 1 if it is a good idea to tie two pseudo registers
372 when one has mode MODE1 and one has mode MODE2.
373 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
374 for any hard reg, then this must be 0 for correct output. */
375
376#define MODES_TIEABLE_P(MODE1, MODE2) 1
377
378/* Specify the registers used for certain standard purposes.
379 The values of these macros are register numbers. */
380
381/* Alpha pc isn't overloaded on a register that the compiler knows about. */
382/* #define PC_REGNUM */
383
384/* Register to use for pushing function arguments. */
385#define STACK_POINTER_REGNUM 30
386
387/* Base register for access to local variables of the function. */
52a69200 388#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
389
390/* Value should be nonzero if functions must have frame pointers.
391 Zero means the frame pointer need not be set up (and parms
392 may be accessed via the stack pointer) in functions that seem suitable.
393 This is computed in `reload', in reload1.c. */
394#define FRAME_POINTER_REQUIRED 0
395
396/* Base register for access to arguments of the function. */
130d2d72 397#define ARG_POINTER_REGNUM 31
1a94ca49 398
52a69200
RK
399/* Base register for access to local variables of function. */
400#define FRAME_POINTER_REGNUM 63
401
1a94ca49
RK
402/* Register in which static-chain is passed to a function.
403
404 For the Alpha, this is based on an example; the calling sequence
405 doesn't seem to specify this. */
406#define STATIC_CHAIN_REGNUM 1
407
408/* Register in which address to store a structure value
409 arrives in the function. On the Alpha, the address is passed
410 as a hidden argument. */
411#define STRUCT_VALUE 0
412\f
413/* Define the classes of registers for register constraints in the
414 machine description. Also define ranges of constants.
415
416 One of the classes must always be named ALL_REGS and include all hard regs.
417 If there is more than one class, another class must be named NO_REGS
418 and contain no registers.
419
420 The name GENERAL_REGS must be the name of a class (or an alias for
421 another name such as ALL_REGS). This is the class of registers
422 that is allowed by "g" or "r" in a register constraint.
423 Also, registers outside this class are allocated only when
424 instructions express preferences for them.
425
426 The classes must be numbered in nondecreasing order; that is,
427 a larger-numbered class must never be contained completely
428 in a smaller-numbered class.
429
430 For any two classes, it is very desirable that there be another
431 class that represents their union. */
432
433enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
434 LIM_REG_CLASSES };
435
436#define N_REG_CLASSES (int) LIM_REG_CLASSES
437
438/* Give names of register classes as strings for dump file. */
439
440#define REG_CLASS_NAMES \
441 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
442
443/* Define which registers fit in which classes.
444 This is an initializer for a vector of HARD_REG_SET
445 of length N_REG_CLASSES. */
446
447#define REG_CLASS_CONTENTS \
52a69200 448 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
449
450/* The same information, inverted:
451 Return the class number of the smallest class containing
452 reg number REGNO. This could be a conditional expression
453 or could index an array. */
454
52a69200
RK
455#define REGNO_REG_CLASS(REGNO) \
456 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
457
458/* The class value for index registers, and the one for base regs. */
459#define INDEX_REG_CLASS NO_REGS
460#define BASE_REG_CLASS GENERAL_REGS
461
462/* Get reg_class from a letter such as appears in the machine description. */
463
464#define REG_CLASS_FROM_LETTER(C) \
465 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
466
467/* Define this macro to change register usage conditional on target flags. */
468/* #define CONDITIONAL_REGISTER_USAGE */
469
470/* The letters I, J, K, L, M, N, O, and P in a register constraint string
471 can be used to stand for particular ranges of immediate operands.
472 This macro defines what the ranges are.
473 C is the letter, and VALUE is a constant value.
474 Return 1 if VALUE is in the range specified by C.
475
476 For Alpha:
477 `I' is used for the range of constants most insns can contain.
478 `J' is the constant zero.
479 `K' is used for the constant in an LDA insn.
480 `L' is used for the constant in a LDAH insn.
481 `M' is used for the constants that can be AND'ed with using a ZAP insn.
482 `N' is used for complemented 8-bit constants.
483 `O' is used for negated 8-bit constants.
484 `P' is used for the constants 1, 2 and 3. */
485
486#define CONST_OK_FOR_LETTER_P(VALUE, C) \
487 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
488 : (C) == 'J' ? (VALUE) == 0 \
489 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
490 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
491 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
492 : (C) == 'M' ? zap_mask (VALUE) \
493 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
494 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
495 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
496 : 0)
497
498/* Similar, but for floating or large integer constants, and defining letters
499 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
500
501 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
502 that is the operand of a ZAP insn. */
503
504#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
505 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
506 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
507 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
508 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
509 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
510 : 0)
511
e560f226
RK
512/* Optional extra constraints for this machine.
513
514 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
515 reference to an unaligned location.
516 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
517 function. */
e560f226
RK
518
519#define EXTRA_CONSTRAINT(OP, C) \
520 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 521 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
522 : 0)
523
1a94ca49
RK
524/* Given an rtx X being reloaded into a reg required to be
525 in class CLASS, return the class of reg to actually use.
526 In general this is just CLASS; but on some machines
527 in some cases it is preferable to use a more restrictive class.
528
529 On the Alpha, all constants except zero go into a floating-point
530 register via memory. */
531
532#define PREFERRED_RELOAD_CLASS(X, CLASS) \
533 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
534 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
535 : (CLASS))
536
537/* Loading and storing HImode or QImode values to and from memory
538 usually requires a scratch register. The exceptions are loading
e560f226
RK
539 QImode and HImode from an aligned address to a general register.
540 We also cannot load an unaligned address into an FP register. */
1a94ca49
RK
541
542#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
543(((GET_CODE (IN) == MEM \
544 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
545 || (GET_CODE (IN) == SUBREG \
546 && (GET_CODE (SUBREG_REG (IN)) == MEM \
547 || (GET_CODE (SUBREG_REG (IN)) == REG \
548 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
549 && (((CLASS) == FLOAT_REGS \
550 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
551 || (((MODE) == QImode || (MODE) == HImode) \
552 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
553 ? GENERAL_REGS \
554 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
555 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
556 : NO_REGS)
1a94ca49
RK
557
558#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
559(((GET_CODE (OUT) == MEM \
560 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
561 || (GET_CODE (OUT) == SUBREG \
562 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
563 || (GET_CODE (SUBREG_REG (OUT)) == REG \
564 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
565 && (((MODE) == HImode || (MODE) == QImode \
566 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
567 ? GENERAL_REGS \
568 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
569 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
570 : NO_REGS)
1a94ca49
RK
571
572/* If we are copying between general and FP registers, we need a memory
573 location. */
574
575#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
576
acd94aaf
RK
577/* Specify the mode to be used for memory when a secondary memory
578 location is needed. If MODE is floating-point, use it. Otherwise,
579 widen to a word like the default. This is needed because we always
580 store integers in FP registers in quadword format. This whole
581 area is very tricky! */
582#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
583 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
584 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
585
1a94ca49
RK
586/* Return the maximum number of consecutive registers
587 needed to represent mode MODE in a register of class CLASS. */
588
589#define CLASS_MAX_NREGS(CLASS, MODE) \
590 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
591
c31dfe4d
RK
592/* If defined, gives a class of registers that cannot be used as the
593 operand of a SUBREG that changes the size of the object. */
594
595#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
596
1a94ca49
RK
597/* Define the cost of moving between registers of various classes. Moving
598 between FLOAT_REGS and anything else except float regs is expensive.
599 In fact, we make it quite expensive because we really don't want to
600 do these moves unless it is clearly worth it. Optimizations may
601 reduce the impact of not being able to allocate a pseudo to a
602 hard register. */
603
604#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
605 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
606
607/* A C expressions returning the cost of moving data of MODE from a register to
608 or from memory.
609
610 On the Alpha, bump this up a bit. */
611
612#define MEMORY_MOVE_COST(MODE) 6
613
614/* Provide the cost of a branch. Exact meaning under development. */
615#define BRANCH_COST 5
616
617/* Adjust the cost of dependencies. */
618
619#define ADJUST_COST(INSN,LINK,DEP,COST) \
620 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
621\f
622/* Stack layout; function entry, exit and calling. */
623
624/* Define this if pushing a word on the stack
625 makes the stack pointer a smaller address. */
626#define STACK_GROWS_DOWNWARD
627
628/* Define this if the nominal address of the stack frame
629 is at the high-address end of the local variables;
630 that is, each additional local variable allocated
631 goes at a more negative offset in the frame. */
130d2d72 632/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
633
634/* Offset within stack frame to start allocating local variables at.
635 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
636 first local allocated. Otherwise, it is the offset to the BEGINNING
637 of the first local allocated. */
638
52a69200 639#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
640
641/* If we generate an insn to push BYTES bytes,
642 this says how many the stack pointer really advances by.
643 On Alpha, don't define this because there are no push insns. */
644/* #define PUSH_ROUNDING(BYTES) */
645
646/* Define this if the maximum size of all the outgoing args is to be
647 accumulated and pushed during the prologue. The amount can be
648 found in the variable current_function_outgoing_args_size. */
649#define ACCUMULATE_OUTGOING_ARGS
650
651/* Offset of first parameter from the argument pointer register value. */
652
130d2d72 653#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
654
655/* Definitions for register eliminations.
656
978e8952 657 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 658 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
659 pointer register. Secondly, the argument pointer register can always be
660 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
661
662/* This is an array of structures. Each structure initializes one pair
663 of eliminable registers. The "from" register number is given first,
664 followed by "to". Eliminations of the same "from" register are listed
665 in order of preference. */
666
52a69200
RK
667#define ELIMINABLE_REGS \
668{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
669 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
670 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
671 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
672
673/* Given FROM and TO register numbers, say whether this elimination is allowed.
674 Frame pointer elimination is automatically handled.
675
130d2d72 676 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
677 eliminated are already handled. */
678
130d2d72 679#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 680
52a69200
RK
681/* Round up to a multiple of 16 bytes. */
682#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
683
1a94ca49
RK
684/* Define the offset between two registers, one to be eliminated, and the other
685 its replacement, at the start of a routine. */
686#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
687{ if ((FROM) == FRAME_POINTER_REGNUM) \
688 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
689 + alpha_sa_size ()); \
690 else if ((FROM) == ARG_POINTER_REGNUM) \
691 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
692 + alpha_sa_size () \
d772039b
RK
693 + (ALPHA_ROUND (get_frame_size () \
694 + current_function_pretend_args_size) \
695 - current_function_pretend_args_size)); \
1a94ca49
RK
696}
697
698/* Define this if stack space is still allocated for a parameter passed
699 in a register. */
700/* #define REG_PARM_STACK_SPACE */
701
702/* Value is the number of bytes of arguments automatically
703 popped when returning from a subroutine call.
8b109b37 704 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
705 FUNTYPE is the data type of the function (as a tree),
706 or for a library call it is an identifier node for the subroutine name.
707 SIZE is the number of bytes of arguments passed on the stack. */
708
8b109b37 709#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
710
711/* Define how to find the value returned by a function.
712 VALTYPE is the data type of the value (as a tree).
713 If the precise function being called is known, FUNC is its FUNCTION_DECL;
714 otherwise, FUNC is 0.
715
716 On Alpha the value is found in $0 for integer functions and
717 $f0 for floating-point functions. */
718
719#define FUNCTION_VALUE(VALTYPE, FUNC) \
720 gen_rtx (REG, \
20e76cb9 721 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
1a94ca49
RK
722 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
723 ? word_mode : TYPE_MODE (VALTYPE), \
724 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
725
726/* Define how to find the value returned by a library function
727 assuming the value has mode MODE. */
728
729#define LIBCALL_VALUE(MODE) \
730 gen_rtx (REG, MODE, \
731 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
732
130d2d72
RK
733/* The definition of this macro implies that there are cases where
734 a scalar value cannot be returned in registers.
735
736 For the Alpha, any structure or union type is returned in memory, as
737 are integers whose size is larger than 64 bits. */
738
739#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 740 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
741 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
742
1a94ca49
RK
743/* 1 if N is a possible register number for a function value
744 as seen by the caller. */
745
746#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
747
748/* 1 if N is a possible register number for function argument passing.
749 On Alpha, these are $16-$21 and $f16-$f21. */
750
751#define FUNCTION_ARG_REGNO_P(N) \
752 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
753\f
754/* Define a data type for recording info about an argument list
755 during the scan of that argument list. This data type should
756 hold all necessary information about the function itself
757 and about the args processed so far, enough to enable macros
758 such as FUNCTION_ARG to determine where the next arg should go.
759
760 On Alpha, this is a single integer, which is a number of words
761 of arguments scanned so far.
762 Thus 6 or more means all following args should go on the stack. */
763
764#define CUMULATIVE_ARGS int
765
766/* Initialize a variable CUM of type CUMULATIVE_ARGS
767 for a call to a function whose data type is FNTYPE.
768 For a library call, FNTYPE is 0. */
769
770#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
771
772/* Define intermediate macro to compute the size (in registers) of an argument
773 for the Alpha. */
774
775#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
776((MODE) != BLKmode \
777 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
778 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
779
780/* Update the data in CUM to advance over an argument
781 of mode MODE and data type TYPE.
782 (TYPE is null for libcalls where that information may not be available.) */
783
784#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
785 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
786 (CUM) = 6; \
787 else \
788 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
789
790/* Determine where to put an argument to a function.
791 Value is zero to push the argument on the stack,
792 or a hard register in which to store the argument.
793
794 MODE is the argument's machine mode.
795 TYPE is the data type of the argument (as a tree).
796 This is null for libcalls where that information may
797 not be available.
798 CUM is a variable of type CUMULATIVE_ARGS which gives info about
799 the preceding args and about the function being called.
800 NAMED is nonzero if this argument is a named parameter
801 (otherwise it is an extra parameter matching an ellipsis).
802
803 On Alpha the first 6 words of args are normally in registers
804 and the rest are pushed. */
805
806#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
807((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
808 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
809 (CUM) + 16 + ((TARGET_FPREGS \
810 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
811 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
812 * 32)) \
813 : 0)
1a94ca49 814
1a94ca49
RK
815/* Specify the padding direction of arguments.
816
817 On the Alpha, we must pad upwards in order to be able to pass args in
818 registers. */
819
820#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
821
822/* For an arg passed partly in registers and partly in memory,
823 this is the number of registers used.
824 For args passed entirely in registers or entirely in memory, zero. */
825
826#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
827((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
828 ? 6 - (CUM) : 0)
829
130d2d72
RK
830/* Perform any needed actions needed for a function that is receiving a
831 variable number of arguments.
832
833 CUM is as above.
834
835 MODE and TYPE are the mode and type of the current parameter.
836
837 PRETEND_SIZE is a variable that should be set to the amount of stack
838 that must be pushed by the prolog to pretend that our caller pushed
839 it.
840
841 Normally, this macro will push all remaining incoming registers on the
842 stack and set PRETEND_SIZE to the length of the registers pushed.
843
844 On the Alpha, we allocate space for all 12 arg registers, but only
845 push those that are remaining.
846
847 However, if NO registers need to be saved, don't allocate any space.
848 This is not only because we won't need the space, but because AP includes
849 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
850 ap-relative addresses already made.
851
852 If we are not to use the floating-point registers, save the integer
853 registers where we would put the floating-point registers. This is
854 not the most efficient way to implement varargs with just one register
855 class, but it isn't worth doing anything more efficient in this rare
856 case. */
857
130d2d72
RK
858
859#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
860{ if ((CUM) < 6) \
861 { \
862 if (! (NO_RTL)) \
863 { \
864 move_block_from_reg \
865 (16 + CUM, \
866 gen_rtx (MEM, BLKmode, \
867 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 868 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 869 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 870 move_block_from_reg \
7a92339b 871 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
872 gen_rtx (MEM, BLKmode, \
873 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 874 (CUM) * UNITS_PER_WORD)), \
02892e06 875 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
876 } \
877 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
878 } \
879}
880
1a94ca49
RK
881/* Generate necessary RTL for __builtin_saveregs().
882 ARGLIST is the argument list; see expr.c. */
883extern struct rtx_def *alpha_builtin_saveregs ();
884#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
885
886/* Define the information needed to generate branch and scc insns. This is
887 stored from the compare operation. Note that we can't use "rtx" here
888 since it hasn't been defined! */
889
890extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
891extern int alpha_compare_fp_p;
892
893/* This macro produces the initial definition of a function name. On the
03f8c4cc 894 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
895
896extern char *alpha_function_name;
897
898#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 899{ \
1a94ca49
RK
900 alpha_function_name = NAME; \
901}
902
903/* This macro generates the assembly code for function entry.
904 FILE is a stdio stream to output the code to.
905 SIZE is an int: how many units of temporary storage to allocate.
906 Refer to the array `regs_ever_live' to determine which registers
907 to save; `regs_ever_live[I]' is nonzero if register number I
908 is ever used in the function. This macro is responsible for
909 knowing which registers should not be saved even if used. */
910
911#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
912
913/* Output assembler code to FILE to increment profiler label # LABELNO
85d159a3
RK
914 for profiling a function entry. Profiling for gprof does not
915 require LABELNO so we don't reference it at all. This does,
916 however, mean that -p won't work. But OSF/1 doesn't support the
917 traditional prof anyways, so there is no good reason to be
918 backwards compatible. */
919
920#define FUNCTION_PROFILER(FILE, LABELNO) \
921 do { \
1c6c2b05
RK
922 fputs ("\tlda $28,_mcount\n", (FILE)); \
923 fputs ("\tjsr $28,($28),_mcount\n", (FILE)); \
08b2cb48 924 fputs ("\tldgp $29,0($27)\n", (FILE)); \
85d159a3
RK
925 } while (0);
926
927
928/* Output assembler code to FILE to initialize this source file's
929 basic block profiling info, if that has not already been done.
930 This assumes that __bb_init_func doesn't garble a1-a5. */
931
932#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
933 do { \
934 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
935 fputs ("\tlda $16,$PBX32\n", (FILE)); \
936 fputs ("\tldq $26,0($16)\n", (FILE)); \
937 fputs ("\tbne $26,1f\n", (FILE)); \
938 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
939 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
940 fputs ("\tldgp $29,0($26)\n", (FILE)); \
941 fputs ("1:\n", (FILE)); \
85d159a3
RK
942 ASM_OUTPUT_REG_POP (FILE, 16); \
943 } while (0);
944
945/* Output assembler code to FILE to increment the entry-count for
946 the BLOCKNO'th basic block in this source file. */
947
948#define BLOCK_PROFILER(FILE, BLOCKNO) \
949 do { \
950 int blockn = (BLOCKNO); \
a62eb16f 951 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
952 fputs ("\tstq $26,0($30)\n", (FILE)); \
953 fputs ("\tstq $27,8($30)\n", (FILE)); \
954 fputs ("\tlda $26,$PBX34\n", (FILE)); \
955 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
956 fputs ("\taddq $27,1,$27\n", (FILE)); \
957 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
958 fputs ("\tldq $26,0($30)\n", (FILE)); \
959 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 960 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 961 } while (0)
1a94ca49 962
1a94ca49
RK
963
964/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
965 the stack pointer does not matter. The value is tested only in
966 functions that have frame pointers.
967 No definition is equivalent to always zero. */
968
969#define EXIT_IGNORE_STACK 1
970
971/* This macro generates the assembly code for function exit,
972 on machines that need it. If FUNCTION_EPILOGUE is not defined
973 then individual return instructions are generated for each
974 return statement. Args are same as for FUNCTION_PROLOGUE.
975
976 The function epilogue should not depend on the current stack pointer!
977 It should use the frame pointer only. This is mandatory because
978 of alloca; we also take advantage of it to omit stack adjustments
979 before returning. */
980
981#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
982
983\f
984/* Output assembler code for a block containing the constant parts
985 of a trampoline, leaving space for the variable parts.
986
987 The trampoline should set the static chain pointer to value placed
7981384f
RK
988 into the trampoline and should branch to the specified routine.
989 Note that $27 has been set to the address of the trampoline, so we can
990 use it for addressability of the two data items. Trampolines are always
991 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
992
993#define TRAMPOLINE_TEMPLATE(FILE) \
994{ \
7981384f 995 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 996 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
997 fprintf (FILE, "\tjmp $31,($27),0\n"); \
998 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
999 fprintf (FILE, "\t.quad 0,0\n"); \
1000}
1001
3a523eeb
RS
1002/* Section in which to place the trampoline. On Alpha, instructions
1003 may only be placed in a text segment. */
1004
1005#define TRAMPOLINE_SECTION text_section
1006
1a94ca49
RK
1007/* Length in units of the trampoline for entering a nested function. */
1008
7981384f 1009#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1010
1011/* Emit RTL insns to initialize the variable parts of a trampoline.
1012 FNADDR is an RTX for the address of the function's pure code.
1013 CXT is an RTX for the static chain value for the function. We assume
1014 here that a function will be called many more times than its address
1015 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1016 to initialize the "hint" field in the JMP insn. Note that the hint
1017 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1018
1019#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1020{ \
1021 rtx _temp, _temp1, _addr; \
1022 \
1023 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1024 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1025 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1026 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1027 \
7981384f
RK
1028 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1029 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1030 OPTAB_WIDEN); \
1031 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1032 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1033 _temp = expand_and (gen_lowpart (SImode, _temp), \
1034 GEN_INT (0x3fff), 0); \
1a94ca49 1035 \
7981384f 1036 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1037 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1038 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1039 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1040 OPTAB_WIDEN); \
1041 \
1042 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1043 \
1044 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1045 "__enable_execute_stack"), \
1046 0, VOIDmode, 1,_addr, Pmode); \
1047 \
1048 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1049 gen_rtvec (1, const0_rtx), 0)); \
1050}
1051
1052/* Attempt to turn on access permissions for the stack. */
1053
1054#define TRANSFER_FROM_TRAMPOLINE \
1055 \
1056void \
1057__enable_execute_stack (addr) \
1058 void *addr; \
1059{ \
1060 long size = getpagesize (); \
1061 long mask = ~(size-1); \
1062 char *page = (char *) (((long) addr) & mask); \
1063 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1064 \
1065 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1066 if (mprotect (page, end - page, 7) < 0) \
1067 perror ("mprotect of trampoline code"); \
1a94ca49
RK
1068}
1069\f
1070/* Addressing modes, and classification of registers for them. */
1071
1072/* #define HAVE_POST_INCREMENT */
1073/* #define HAVE_POST_DECREMENT */
1074
1075/* #define HAVE_PRE_DECREMENT */
1076/* #define HAVE_PRE_INCREMENT */
1077
1078/* Macros to check register numbers against specific register classes. */
1079
1080/* These assume that REGNO is a hard or pseudo reg number.
1081 They give nonzero only if REGNO is a hard reg of the suitable class
1082 or a pseudo reg currently allocated to a suitable hard reg.
1083 Since they use reg_renumber, they are safe only once reg_renumber
1084 has been allocated, which happens in local-alloc.c. */
1085
1086#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1087#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1088((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1089 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1090\f
1091/* Maximum number of registers that can appear in a valid memory address. */
1092#define MAX_REGS_PER_ADDRESS 1
1093
1094/* Recognize any constant value that is a valid address. For the Alpha,
1095 there are only constants none since we want to use LDA to load any
1096 symbolic addresses into registers. */
1097
1098#define CONSTANT_ADDRESS_P(X) \
1099 (GET_CODE (X) == CONST_INT \
1100 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1101
1102/* Include all constant integers and constant doubles, but not
1103 floating-point, except for floating-point zero. */
1104
1105#define LEGITIMATE_CONSTANT_P(X) \
1106 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1107 || (X) == CONST0_RTX (GET_MODE (X)))
1108
1109/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1110 and check its validity for a certain class.
1111 We have two alternate definitions for each of them.
1112 The usual definition accepts all pseudo regs; the other rejects
1113 them unless they have been allocated suitable hard regs.
1114 The symbol REG_OK_STRICT causes the latter definition to be used.
1115
1116 Most source files want to accept pseudo regs in the hope that
1117 they will get allocated to the class that the insn wants them to be in.
1118 Source files for reload pass need to be strict.
1119 After reload, it makes no difference, since pseudo regs have
1120 been eliminated by then. */
1121
1122#ifndef REG_OK_STRICT
1123
1124/* Nonzero if X is a hard reg that can be used as an index
1125 or if it is a pseudo reg. */
1126#define REG_OK_FOR_INDEX_P(X) 0
1127/* Nonzero if X is a hard reg that can be used as a base reg
1128 or if it is a pseudo reg. */
1129#define REG_OK_FOR_BASE_P(X) \
52a69200 1130 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1131
1132#else
1133
1134/* Nonzero if X is a hard reg that can be used as an index. */
1135#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1136/* Nonzero if X is a hard reg that can be used as a base reg. */
1137#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1138
1139#endif
1140\f
1141/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1142 that is a valid memory address for an instruction.
1143 The MODE argument is the machine mode for the MEM expression
1144 that wants to use this address.
1145
1146 For Alpha, we have either a constant address or the sum of a register
1147 and a constant address, or just a register. For DImode, any of those
1148 forms can be surrounded with an AND that clear the low-order three bits;
1149 this is an "unaligned" access.
1150
1151 We also allow a SYMBOL_REF that is the name of the current function as
1152 valid address. This is for CALL_INSNs. It cannot be used in any other
1153 context.
1154
1155 First define the basic valid address. */
1156
1157#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1158{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1159 goto ADDR; \
1160 if (CONSTANT_ADDRESS_P (X)) \
1161 goto ADDR; \
1162 if (GET_CODE (X) == PLUS \
1163 && REG_P (XEXP (X, 0)) \
1164 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1165 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1166 goto ADDR; \
1167}
1168
1169/* Now accept the simple address, or, for DImode only, an AND of a simple
1170 address that turns off the low three bits. */
1171
1172extern char *current_function_name;
1173
1174#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1175{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1176 if ((MODE) == DImode \
1177 && GET_CODE (X) == AND \
1178 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1179 && INTVAL (XEXP (X, 1)) == -8) \
1180 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1181 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1182 && ! strcmp (XSTR (X, 0), current_function_name)) \
1183 goto ADDR; \
1184}
1185
1186/* Try machine-dependent ways of modifying an illegitimate address
1187 to be legitimate. If we find one, return the new, valid address.
1188 This macro is used in only one place: `memory_address' in explow.c.
1189
1190 OLDX is the address as it was before break_out_memory_refs was called.
1191 In some cases it is useful to look at this to decide what needs to be done.
1192
1193 MODE and WIN are passed so that this macro can use
1194 GO_IF_LEGITIMATE_ADDRESS.
1195
1196 It is always safe for this macro to do nothing. It exists to recognize
1197 opportunities to optimize the output.
1198
1199 For the Alpha, there are three cases we handle:
1200
1201 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1202 valid offset, compute the high part of the constant and add it to the
1203 register. Then our address is (plus temp low-part-const).
1204 (2) If the address is (const (plus FOO const_int)), find the low-order
1205 part of the CONST_INT. Then load FOO plus any high-order part of the
1206 CONST_INT into a register. Our address is (plus reg low-part-const).
1207 This is done to reduce the number of GOT entries.
1208 (3) If we have a (plus reg const), emit the load as in (2), then add
1209 the two registers, and finally generate (plus reg low-part-const) as
1210 our address. */
1211
1212#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1213{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1214 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1215 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1216 { \
1217 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1218 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1219 HOST_WIDE_INT highpart = val - lowpart; \
1220 rtx high = GEN_INT (highpart); \
1221 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1222 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1223 \
1224 (X) = plus_constant (temp, lowpart); \
1225 goto WIN; \
1226 } \
1227 else if (GET_CODE (X) == CONST \
1228 && GET_CODE (XEXP (X, 0)) == PLUS \
1229 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1230 { \
1231 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1232 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1233 HOST_WIDE_INT highpart = val - lowpart; \
1234 rtx high = XEXP (XEXP (X, 0), 0); \
1235 \
1236 if (highpart) \
1237 high = plus_constant (high, highpart); \
1238 \
1239 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1240 goto WIN; \
1241 } \
1242 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1243 && GET_CODE (XEXP (X, 1)) == CONST \
1244 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1245 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1246 { \
1247 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1248 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1249 HOST_WIDE_INT highpart = val - lowpart; \
1250 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1251 \
1252 if (highpart) \
1253 high = plus_constant (high, highpart); \
1254 \
1255 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1256 force_reg (Pmode, high), \
80f251fe 1257 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1258 (X) = plus_constant (high, lowpart); \
1259 goto WIN; \
1260 } \
1261}
1262
1263/* Go to LABEL if ADDR (a legitimate address expression)
1264 has an effect that depends on the machine mode it is used for.
1265 On the Alpha this is true only for the unaligned modes. We can
1266 simplify this test since we know that the address must be valid. */
1267
1268#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1269{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1270
1271/* Compute the cost of an address. For the Alpha, all valid addresses are
1272 the same cost. */
1273
1274#define ADDRESS_COST(X) 0
1275
1276/* Define this if some processing needs to be done immediately before
1277 emitting code for an insn. */
1278
1279/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1280\f
1281/* Specify the machine mode that this machine uses
1282 for the index in the tablejump instruction. */
1283#define CASE_VECTOR_MODE SImode
1284
1285/* Define this if the tablejump instruction expects the table
1286 to contain offsets from the address of the table.
260ced47
RK
1287 Do not define this if the table should contain absolute addresses.
1288 On the Alpha, the table is really GP-relative, not relative to the PC
1289 of the table, but we pretend that it is PC-relative; this should be OK,
1290 but we hsould try to find some better way sometime. */
1291#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1292
1293/* Specify the tree operation to be used to convert reals to integers. */
1294#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1295
1296/* This is the kind of divide that is easiest to do in the general case. */
1297#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1298
1299/* Define this as 1 if `char' should by default be signed; else as 0. */
1300#define DEFAULT_SIGNED_CHAR 1
1301
1302/* This flag, if defined, says the same insns that convert to a signed fixnum
1303 also convert validly to an unsigned one.
1304
1305 We actually lie a bit here as overflow conditions are different. But
1306 they aren't being checked anyway. */
1307
1308#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1309
1310/* Max number of bytes we can move to or from memory
1311 in one reasonably fast instruction. */
1312
1313#define MOVE_MAX 8
1314
1315/* Largest number of bytes of an object that can be placed in a register.
1316 On the Alpha we have plenty of registers, so use TImode. */
1317#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1318
1319/* Nonzero if access to memory by bytes is no faster than for words.
1320 Also non-zero if doing byte operations (specifically shifts) in registers
1321 is undesirable.
1322
1323 On the Alpha, we want to not use the byte operation and instead use
1324 masking operations to access fields; these will save instructions. */
1325
1326#define SLOW_BYTE_ACCESS 1
1327
9a63901f
RK
1328/* Define if operations between registers always perform the operation
1329 on the full register even if a narrower mode is specified. */
1330#define WORD_REGISTER_OPERATIONS
1331
1332/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1333 will either zero-extend or sign-extend. The value of this macro should
1334 be the code that says which one of the two operations is implicitly
1335 done, NIL if none. */
1336#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1337
225211e2
RK
1338/* Define if loading short immediate values into registers sign extends. */
1339#define SHORT_IMMEDIATES_SIGN_EXTEND
1340
1a94ca49
RK
1341/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1342 is done just by pretending it is already truncated. */
1343#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1344
1345/* We assume that the store-condition-codes instructions store 0 for false
1346 and some other value for true. This is the value stored for true. */
1347
1348#define STORE_FLAG_VALUE 1
1349
1350/* Define the value returned by a floating-point comparison instruction. */
1351
1352#define FLOAT_STORE_FLAG_VALUE 0.5
1353
35bb77fd
RK
1354/* Canonicalize a comparison from one we don't have to one we do have. */
1355
1356#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1357 do { \
1358 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1359 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1360 { \
1361 rtx tem = (OP0); \
1362 (OP0) = (OP1); \
1363 (OP1) = tem; \
1364 (CODE) = swap_condition (CODE); \
1365 } \
1366 if (((CODE) == LT || (CODE) == LTU) \
1367 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1368 { \
1369 (CODE) = (CODE) == LT ? LE : LEU; \
1370 (OP1) = GEN_INT (255); \
1371 } \
1372 } while (0)
1373
1a94ca49
RK
1374/* Specify the machine mode that pointers have.
1375 After generation of rtl, the compiler makes no further distinction
1376 between pointers and any other objects of this machine mode. */
1377#define Pmode DImode
1378
1379/* Mode of a function address in a call instruction (for indexing purposes). */
1380
1381#define FUNCTION_MODE Pmode
1382
1383/* Define this if addresses of constant functions
1384 shouldn't be put through pseudo regs where they can be cse'd.
1385 Desirable on machines where ordinary constants are expensive
1386 but a CALL with constant address is cheap.
1387
1388 We define this on the Alpha so that gen_call and gen_call_value
1389 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1390 then copy it into a register, thus actually letting the address be
1391 cse'ed. */
1392
1393#define NO_FUNCTION_CSE
1394
d969caf8 1395/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1396 few bits. */
d969caf8 1397#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1398
d721b776
RK
1399/* Use atexit for static constructors/destructors, instead of defining
1400 our own exit function. */
1401#define HAVE_ATEXIT
1402
1a94ca49
RK
1403/* Compute the cost of computing a constant rtl expression RTX
1404 whose rtx-code is CODE. The body of this macro is a portion
1405 of a switch statement. If the code is computed here,
1406 return it with a return statement. Otherwise, break from the switch.
1407
8b7b2e36
RK
1408 If this is an 8-bit constant, return zero since it can be used
1409 nearly anywhere with no cost. If it is a valid operand for an
1410 ADD or AND, likewise return 0 if we know it will be used in that
1411 context. Otherwise, return 2 since it might be used there later.
1412 All other constants take at least two insns. */
1a94ca49
RK
1413
1414#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1415 case CONST_INT: \
06eb8e92 1416 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1417 return 0; \
1a94ca49 1418 case CONST_DOUBLE: \
8b7b2e36
RK
1419 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1420 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1421 return 0; \
1422 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1423 return 2; \
1424 else \
1425 return COSTS_N_INSNS (2); \
1a94ca49
RK
1426 case CONST: \
1427 case SYMBOL_REF: \
1428 case LABEL_REF: \
8b7b2e36 1429 return COSTS_N_INSNS (3);
1a94ca49
RK
1430
1431/* Provide the costs of a rtl expression. This is in the body of a
1432 switch on CODE. */
1433
1434#define RTX_COSTS(X,CODE,OUTER_CODE) \
1435 case PLUS: \
1436 case MINUS: \
1437 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1438 return COSTS_N_INSNS (6); \
b49e978e
RK
1439 else if (GET_CODE (XEXP (X, 0)) == MULT \
1440 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1441 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1442 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1443 break; \
1444 case MULT: \
1445 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1446 return COSTS_N_INSNS (6); \
919ea6a5 1447 return COSTS_N_INSNS (23); \
b49e978e
RK
1448 case ASHIFT: \
1449 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1450 && INTVAL (XEXP (X, 1)) <= 3) \
1451 break; \
1452 /* ... fall through ... */ \
1453 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1454 return COSTS_N_INSNS (2); \
1a94ca49
RK
1455 case DIV: \
1456 case UDIV: \
1457 case MOD: \
1458 case UMOD: \
1459 if (GET_MODE (X) == SFmode) \
1460 return COSTS_N_INSNS (34); \
1461 else if (GET_MODE (X) == DFmode) \
1462 return COSTS_N_INSNS (63); \
1463 else \
1464 return COSTS_N_INSNS (70); \
1465 case MEM: \
1466 return COSTS_N_INSNS (3);
1467\f
1468/* Control the assembler format that we output. */
1469
1470/* Output at beginning of assembler file. */
1471
1472#define ASM_FILE_START(FILE) \
03f8c4cc 1473{ \
130d2d72
RK
1474 alpha_write_verstamp (FILE); \
1475 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1476 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1477 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1478 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1479}
1480
1481/* Output to assembler file text saying following lines
1482 may contain character constants, extra white space, comments, etc. */
1483
1484#define ASM_APP_ON ""
1485
1486/* Output to assembler file text saying following lines
1487 no longer contain unusual constructs. */
1488
1489#define ASM_APP_OFF ""
1490
1491#define TEXT_SECTION_ASM_OP ".text"
1492
1493/* Output before read-only data. */
1494
1495#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1496
1497/* Output before writable data. */
1498
1499#define DATA_SECTION_ASM_OP ".data"
1500
1501/* Define an extra section for read-only data, a routine to enter it, and
1502 indicate that it is for read-only data. */
1503
1504#define EXTRA_SECTIONS readonly_data
1505
1506#define EXTRA_SECTION_FUNCTIONS \
1507void \
1508literal_section () \
1509{ \
1510 if (in_section != readonly_data) \
1511 { \
1512 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1513 in_section = readonly_data; \
1514 } \
1515} \
1516
1517#define READONLY_DATA_SECTION literal_section
1518
ac030a7b
RK
1519/* If we are referencing a function that is static, make the SYMBOL_REF
1520 special. We use this to see indicate we can branch to this function
1521 without setting PV or restoring GP. */
130d2d72
RK
1522
1523#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1524 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1525 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1526
1a94ca49
RK
1527/* How to refer to registers in assembler output.
1528 This sequence is indexed by compiler's hard-register-number (see above). */
1529
1530#define REGISTER_NAMES \
1531{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1532 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1533 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1534 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1535 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1536 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1537 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1538 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1539
1540/* How to renumber registers for dbx and gdb. */
1541
1542#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1543
1544/* This is how to output the definition of a user-level label named NAME,
1545 such as the label on a static function or variable NAME. */
1546
1547#define ASM_OUTPUT_LABEL(FILE,NAME) \
1548 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1549
1550/* This is how to output a command to make the user-level label named NAME
1551 defined for reference from other files. */
1552
1553#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1554 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1555
1556/* This is how to output a reference to a user-level label named NAME.
1557 `assemble_name' uses this. */
1558
1559#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1560 fprintf (FILE, "%s", NAME)
1561
1562/* This is how to output an internal numbered label where
1563 PREFIX is the class of label and NUM is the number within the class. */
1564
1565#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1566 if ((PREFIX)[0] == 'L') \
1567 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1568 else \
1569 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1570
1571/* This is how to output a label for a jump table. Arguments are the same as
1572 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1573 passed. */
1574
1575#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1576{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1577
1578/* This is how to store into the string LABEL
1579 the symbol_ref name of an internal numbered label where
1580 PREFIX is the class of label and NUM is the number within the class.
1581 This is suitable for output with `assemble_name'. */
1582
1583#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1584 if ((PREFIX)[0] == 'L') \
1585 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1586 else \
1587 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1588
1589/* This is how to output an assembler line defining a `double' constant. */
1590
e99300f1
RS
1591#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1592 { \
1593 if (REAL_VALUE_ISINF (VALUE) \
1594 || REAL_VALUE_ISNAN (VALUE) \
1595 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1596 { \
1597 long t[2]; \
1598 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1599 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1600 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1601 } \
1602 else \
1603 { \
1604 char str[30]; \
1605 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1606 fprintf (FILE, "\t.t_floating %s\n", str); \
1607 } \
1608 }
1a94ca49
RK
1609
1610/* This is how to output an assembler line defining a `float' constant. */
1611
e99300f1
RS
1612#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1613 { \
1614 if (REAL_VALUE_ISINF (VALUE) \
1615 || REAL_VALUE_ISNAN (VALUE) \
1616 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1617 { \
1618 long t; \
1619 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1620 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1621 } \
1622 else \
1623 { \
1624 char str[30]; \
1625 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1626 fprintf (FILE, "\t.s_floating %s\n", str); \
1627 } \
1628 }
2700ac93 1629
1a94ca49
RK
1630/* This is how to output an assembler line defining an `int' constant. */
1631
1632#define ASM_OUTPUT_INT(FILE,VALUE) \
45c45e79
RK
1633 fprintf (FILE, "\t.long %d\n", \
1634 (GET_CODE (VALUE) == CONST_INT \
1635 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1a94ca49
RK
1636
1637/* This is how to output an assembler line defining a `long' constant. */
1638
1639#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1640( fprintf (FILE, "\t.quad "), \
1641 output_addr_const (FILE, (VALUE)), \
1642 fprintf (FILE, "\n"))
1643
1644/* Likewise for `char' and `short' constants. */
1645
1646#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1647 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1648 (GET_CODE (VALUE) == CONST_INT \
1649 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1650
1651#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1652 fprintf (FILE, "\t.byte %d\n", \
1653 (GET_CODE (VALUE) == CONST_INT \
1654 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1655
1656/* We use the default ASCII-output routine, except that we don't write more
1657 than 50 characters since the assembler doesn't support very long lines. */
1658
1659#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1660 do { \
1661 FILE *_hide_asm_out_file = (MYFILE); \
1662 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1663 int _hide_thissize = (MYLENGTH); \
1664 int _size_so_far = 0; \
1665 { \
1666 FILE *asm_out_file = _hide_asm_out_file; \
1667 unsigned char *p = _hide_p; \
1668 int thissize = _hide_thissize; \
1669 int i; \
1670 fprintf (asm_out_file, "\t.ascii \""); \
1671 \
1672 for (i = 0; i < thissize; i++) \
1673 { \
1674 register int c = p[i]; \
1675 \
1676 if (_size_so_far ++ > 50 && i < thissize - 4) \
1677 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1678 \
1679 if (c == '\"' || c == '\\') \
1680 putc ('\\', asm_out_file); \
1681 if (c >= ' ' && c < 0177) \
1682 putc (c, asm_out_file); \
1683 else \
1684 { \
1685 fprintf (asm_out_file, "\\%o", c); \
1686 /* After an octal-escape, if a digit follows, \
1687 terminate one string constant and start another. \
1688 The Vax assembler fails to stop reading the escape \
1689 after three digits, so this is the only way we \
1690 can get it to parse the data properly. */ \
1691 if (i < thissize - 1 \
1692 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1693 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1694 } \
1695 } \
1696 fprintf (asm_out_file, "\"\n"); \
1697 } \
1698 } \
1699 while (0)
52a69200 1700
1a94ca49
RK
1701/* This is how to output an insn to push a register on the stack.
1702 It need not be very fast code. */
1703
1704#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1705 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1706 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1707 (REGNO) & 31);
1708
1709/* This is how to output an insn to pop a register from the stack.
1710 It need not be very fast code. */
1711
1712#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1713 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1714 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1715 (REGNO) & 31);
1716
1717/* This is how to output an assembler line for a numeric constant byte. */
1718
1719#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1720 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1721
260ced47
RK
1722/* This is how to output an element of a case-vector that is absolute.
1723 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1724
260ced47 1725#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1726
260ced47 1727/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1728
260ced47
RK
1729#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1730 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1a94ca49
RK
1731
1732/* This is how to output an assembler line
1733 that says to advance the location counter
1734 to a multiple of 2**LOG bytes. */
1735
1736#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1737 if ((LOG) != 0) \
1738 fprintf (FILE, "\t.align %d\n", LOG);
1739
1740/* This is how to advance the location counter by SIZE bytes. */
1741
1742#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1743 fprintf (FILE, "\t.space %d\n", (SIZE))
1744
1745/* This says how to output an assembler line
1746 to define a global common symbol. */
1747
1748#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1749( fputs ("\t.comm ", (FILE)), \
1750 assemble_name ((FILE), (NAME)), \
1751 fprintf ((FILE), ",%d\n", (SIZE)))
1752
1753/* This says how to output an assembler line
1754 to define a local common symbol. */
1755
1756#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1757( fputs ("\t.lcomm ", (FILE)), \
1758 assemble_name ((FILE), (NAME)), \
1759 fprintf ((FILE), ",%d\n", (SIZE)))
1760
1761/* Store in OUTPUT a string (made with alloca) containing
1762 an assembler-name for a local static variable named NAME.
1763 LABELNO is an integer which is different for each call. */
1764
1765#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1766( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1767 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1768
1769/* Define the parentheses used to group arithmetic operations
1770 in assembler code. */
1771
1772#define ASM_OPEN_PAREN "("
1773#define ASM_CLOSE_PAREN ")"
1774
1775/* Define results of standard character escape sequences. */
1776#define TARGET_BELL 007
1777#define TARGET_BS 010
1778#define TARGET_TAB 011
1779#define TARGET_NEWLINE 012
1780#define TARGET_VT 013
1781#define TARGET_FF 014
1782#define TARGET_CR 015
1783
1784/* Print operand X (an rtx) in assembler syntax to file FILE.
1785 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1786 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1787
1788#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1789
1790/* Determine which codes are valid without a following integer. These must
1791 not be alphabetic. */
1792
1793#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1794\f
1795/* Print a memory address as an operand to reference that memory location. */
1796
1797#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1798{ rtx addr = (ADDR); \
1799 int basereg = 31; \
1800 HOST_WIDE_INT offset = 0; \
1801 \
1802 if (GET_CODE (addr) == AND) \
1803 addr = XEXP (addr, 0); \
1804 \
1805 if (GET_CODE (addr) == REG) \
1806 basereg = REGNO (addr); \
1807 else if (GET_CODE (addr) == CONST_INT) \
1808 offset = INTVAL (addr); \
1809 else if (GET_CODE (addr) == PLUS \
1810 && GET_CODE (XEXP (addr, 0)) == REG \
1811 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1812 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1813 else \
1814 abort (); \
1815 \
1816 fprintf (FILE, "%d($%d)", offset, basereg); \
1817}
1818/* Define the codes that are matched by predicates in alpha.c. */
1819
1820#define PREDICATE_CODES \
1821 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1822 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1823 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1824 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1825 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1826 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1827 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1828 {"const48_operand", {CONST_INT}}, \
1829 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1830 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1831 {"mode_mask_operand", {CONST_INT}}, \
1832 {"mul8_operand", {CONST_INT}}, \
1833 {"mode_width_operand", {CONST_INT}}, \
1834 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1835 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1836 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1837 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1838 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1839 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1840 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1841 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1842 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
1843 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1844 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
1845 {"aligned_memory_operand", {MEM}}, \
1846 {"unaligned_memory_operand", {MEM}}, \
1847 {"any_memory_operand", {MEM}},
03f8c4cc 1848\f
34fa88ab
RK
1849/* Tell collect that the object format is ECOFF. */
1850#define OBJECT_FORMAT_COFF
1851#define EXTENDED_COFF
1852
1853/* If we use NM, pass -g to it so it only lists globals. */
1854#define NM_FLAGS "-pg"
1855
03f8c4cc
RK
1856/* Definitions for debugging. */
1857
1858#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1859#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1860#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1861
1862#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
1863#define PREFERRED_DEBUGGING_TYPE \
1864 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
1865#endif
1866
1867
1868/* Correct the offset of automatic variables and arguments. Note that
1869 the Alpha debug format wants all automatic variables and arguments
1870 to be in terms of two different offsets from the virtual frame pointer,
1871 which is the stack pointer before any adjustment in the function.
1872 The offset for the argument pointer is fixed for the native compiler,
1873 it is either zero (for the no arguments case) or large enough to hold
1874 all argument registers.
1875 The offset for the auto pointer is the fourth argument to the .frame
1876 directive (local_offset).
1877 To stay compatible with the native tools we use the same offsets
1878 from the virtual frame pointer and adjust the debugger arg/auto offsets
1879 accordingly. These debugger offsets are set up in output_prolog. */
1880
1881long alpha_arg_offset;
1882long alpha_auto_offset;
1883#define DEBUGGER_AUTO_OFFSET(X) \
1884 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1885#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1886
1887
1888#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1889 alpha_output_lineno (STREAM, LINE)
1890extern void alpha_output_lineno ();
1891
1892#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1893 alpha_output_filename (STREAM, NAME)
1894extern void alpha_output_filename ();
1895
1896
ab8b8941
RK
1897/* mips-tfile.c limits us to strings of one page. */
1898#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1899
1900/* By default, turn on GDB extensions. */
1901#define DEFAULT_GDB_EXTENSIONS 1
1902
1903/* If we are smuggling stabs through the ALPHA ECOFF object
1904 format, put a comment in front of the .stab<x> operation so
1905 that the ALPHA assembler does not choke. The mips-tfile program
1906 will correctly put the stab into the object file. */
1907
1908#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1909#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1910#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1911
1912/* Forward references to tags are allowed. */
1913#define SDB_ALLOW_FORWARD_REFERENCES
1914
1915/* Unknown tags are also allowed. */
1916#define SDB_ALLOW_UNKNOWN_REFERENCES
1917
1918#define PUT_SDB_DEF(a) \
1919do { \
1920 fprintf (asm_out_file, "\t%s.def\t", \
1921 (TARGET_GAS) ? "" : "#"); \
1922 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1923 fputc (';', asm_out_file); \
1924} while (0)
1925
1926#define PUT_SDB_PLAIN_DEF(a) \
1927do { \
1928 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1929 (TARGET_GAS) ? "" : "#", (a)); \
1930} while (0)
1931
1932#define PUT_SDB_TYPE(a) \
1933do { \
1934 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1935} while (0)
1936
1937/* For block start and end, we create labels, so that
1938 later we can figure out where the correct offset is.
1939 The normal .ent/.end serve well enough for functions,
1940 so those are just commented out. */
1941
1942extern int sdb_label_count; /* block start/end next label # */
1943
1944#define PUT_SDB_BLOCK_START(LINE) \
1945do { \
1946 fprintf (asm_out_file, \
1947 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1948 sdb_label_count, \
1949 (TARGET_GAS) ? "" : "#", \
1950 sdb_label_count, \
1951 (LINE)); \
1952 sdb_label_count++; \
1953} while (0)
1954
1955#define PUT_SDB_BLOCK_END(LINE) \
1956do { \
1957 fprintf (asm_out_file, \
1958 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1959 sdb_label_count, \
1960 (TARGET_GAS) ? "" : "#", \
1961 sdb_label_count, \
1962 (LINE)); \
1963 sdb_label_count++; \
1964} while (0)
1965
1966#define PUT_SDB_FUNCTION_START(LINE)
1967
1968#define PUT_SDB_FUNCTION_END(LINE)
1969
1970#define PUT_SDB_EPILOGUE_END(NAME)
1971
1972/* Specify to run a post-processor, mips-tfile after the assembler
1973 has run to stuff the ecoff debug information into the object file.
1974 This is needed because the Alpha assembler provides no way
1975 of specifying such information in the assembly file. */
1976
88681624 1977#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
1978
1979#define ASM_FINAL_SPEC "\
1980%{malpha-as: %{!mno-mips-tfile: \
1981 \n mips-tfile %{v*: -v} \
1982 %{K: -I %b.o~} \
1983 %{!K: %{save-temps: -I %b.o~}} \
1984 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1985 %{.s:%i} %{!.s:%g.s}}}"
1986
1987#else
1988#define ASM_FINAL_SPEC "\
1989%{!mgas: %{!mno-mips-tfile: \
1990 \n mips-tfile %{v*: -v} \
1991 %{K: -I %b.o~} \
1992 %{!K: %{save-temps: -I %b.o~}} \
1993 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1994 %{.s:%i} %{!.s:%g.s}}}"
1995
1996#endif
1997
1998/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1999 mips-tdump.c to print them out.
2000
2001 These must match the corresponding definitions in gdb/mipsread.c.
2002 Unfortunately, gcc and gdb do not currently share any directories. */
2003
2004#define CODE_MASK 0x8F300
2005#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2006#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2007#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2008
2009/* Override some mips-tfile definitions. */
2010
2011#define SHASH_SIZE 511
2012#define THASH_SIZE 55
1e6c6f11
RK
2013
2014/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2015
2016#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2017
2018/* The system headers under OSF/1 are C++-aware. */
2019#define NO_IMPLICIT_EXTERN_C
54190234
JM
2020
2021/* The linker will stick __main into the .init section. */
2022#define HAS_INIT_SECTION
68d69835
JM
2023#define LD_INIT_SWITCH "-init"
2024#define LD_FINI_SWITCH "-fini"
2025
2026/* We do want to link in libgcc when building shared libraries under OSF/1. */
2027#define LIBGCC_SPEC "-lgcc"
This page took 0.405882 seconds and 5 git commands to generate.