]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(alpha_swapped_comparison_operator): New function.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
5258d7ae 2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
38%{mieee:-D_IEEE_FP} \
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
40
41/* Set the spec to use for signed char. The default tests the above macro
42 but DEC's compiler can't handle the conditional in a "constant"
43 operand. */
44
45#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
46
1c6c2b05 47/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 48
1c6c2b05 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
d37df6cc 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
57 %{rpath*}"
58
59#define WORD_SWITCH_TAKES_ARG(STR) \
60 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
61 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
62 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
63 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
64 || !strcmp (STR, "isystem"))
8877eb00 65
85d159a3 66#define STARTFILE_SPEC \
1c6c2b05 67 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 68
1a94ca49
RK
69/* Print subsidiary information on the compiler version in use. */
70#define TARGET_VERSION
71
72/* Define the location for the startup file on OSF/1 for Alpha. */
73
74#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
75
76/* Run-time compilation parameters selecting different hardware subsets. */
77
f6f6a13c
RK
78/* Which processor to schedule for. The cpu attribute defines a list that
79 mirrors this list, so changes to alpha.md must be made at the same time. */
80
81enum processor_type
82 {PROCESSOR_EV4, /* 2106[46]{a,} */
83 PROCESSOR_EV5}; /* 21164{a,} */
84
85extern enum processor_type alpha_cpu;
86
2bf6230d
RK
87enum alpha_trap_precision
88{
89 ALPHA_TP_PROG, /* No precision (default). */
90 ALPHA_TP_FUNC, /* Trap contained within originating function. */
91 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
92};
93
94enum alpha_fp_rounding_mode
95{
96 ALPHA_FPRM_NORM, /* Normal rounding mode. */
97 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
98 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
99 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
100};
101
102enum alpha_fp_trap_mode
103{
104 ALPHA_FPTM_N, /* Normal trap mode. */
105 ALPHA_FPTM_U, /* Underflow traps enabled. */
106 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
107 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
108};
109
1a94ca49
RK
110extern int target_flags;
111
2bf6230d
RK
112extern enum alpha_trap_precision alpha_tp;
113extern enum alpha_fp_rounding_mode alpha_fprm;
114extern enum alpha_fp_trap_mode alpha_fptm;
115
1a94ca49
RK
116/* This means that floating-point support exists in the target implementation
117 of the Alpha architecture. This is usually the default. */
118
2bf6230d
RK
119#define MASK_FP 1
120#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
121
122/* This means that floating-point registers are allowed to be used. Note
123 that Alpha implementations without FP operations are required to
124 provide the FP registers. */
125
2bf6230d
RK
126#define MASK_FPREGS 2
127#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
128
129/* This means that gas is used to process the assembler file. */
130
131#define MASK_GAS 4
132#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 133
2bf6230d
RK
134/* This means that we should mark procedures as IEEE conformant. */
135
136#define MASK_IEEE_CONFORMANT 8
137#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
138
139/* This means we should be IEEE-compliant except for inexact. */
140
141#define MASK_IEEE 16
142#define TARGET_IEEE (target_flags & MASK_IEEE)
143
144/* This means we should be fully IEEE-compliant. */
145
146#define MASK_IEEE_WITH_INEXACT 32
147#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
148
e7a2eff8 149/* This means we are compiling for Windows NT. */
803fee69 150
e7a2eff8
RK
151#define MASK_WINDOWS_NT 64
152#define TARGET_WINDOWS_NT (target_flags & MASK_WINDOWS_NT)
153
803fee69
RK
154/* This means we must construct all constants rather than emitting
155 them as literal data. */
156
157#define MASK_BUILD_CONSTANTS 128
158#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
159
1a94ca49
RK
160/* Macro to define tables used to set the flags.
161 This is a list in braces of pairs in braces,
162 each pair being { "NAME", VALUE }
163 where VALUE is the bits to set or minus the bits to clear.
164 An empty string NAME is used to identify the default VALUE. */
165
2bf6230d
RK
166#define TARGET_SWITCHES \
167 { {"no-soft-float", MASK_FP}, \
168 {"soft-float", - MASK_FP}, \
169 {"fp-regs", MASK_FPREGS}, \
170 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
171 {"alpha-as", -MASK_GAS}, \
172 {"gas", MASK_GAS}, \
173 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
174 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
175 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 176 {"build-constants", MASK_BUILD_CONSTANTS}, \
88681624 177 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 178
c01b5470 179#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 180
88681624
ILT
181#ifndef TARGET_CPU_DEFAULT
182#define TARGET_CPU_DEFAULT 0
183#endif
184
2bf6230d
RK
185/* This macro is similar to `TARGET_SWITCHES' but defines names of
186 command options that have values. Its definition is an initializer
187 with a subgrouping for each command option.
188
189 Each subgrouping contains a string constant, that defines the fixed
190 part of the option name, and the address of a variable. The
191 variable, type `char *', is set to the variable part of the given
192 option if the fixed part matches. The actual option name is made
193 by appending `-m' to the specified name.
194
195 Here is an example which defines `-mshort-data-NUMBER'. If the
196 given option is `-mshort-data-512', the variable `m88k_short_data'
197 will be set to the string `"512"'.
198
199 extern char *m88k_short_data;
200 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
201
f6f6a13c 202extern char *alpha_cpu_string; /* For -mcpu=ev[4|5] */
2bf6230d
RK
203extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
204extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
205extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
206
207#define TARGET_OPTIONS \
208{ \
f6f6a13c 209 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
210 {"fp-rounding-mode=", &alpha_fprm_string}, \
211 {"fp-trap-mode=", &alpha_fptm_string}, \
212 {"trap-precision=", &alpha_tp_string}, \
213}
214
215/* Sometimes certain combinations of command options do not make sense
216 on a particular target machine. You can define a macro
217 `OVERRIDE_OPTIONS' to take account of this. This macro, if
218 defined, is executed once just after all the command options have
219 been parsed.
220
221 On the Alpha, it is used to translate target-option strings into
222 numeric values. */
223
224extern void override_options ();
225#define OVERRIDE_OPTIONS override_options ()
226
227
1a94ca49
RK
228/* Define this macro to change register usage conditional on target flags.
229
230 On the Alpha, we use this to disable the floating-point registers when
231 they don't exist. */
232
233#define CONDITIONAL_REGISTER_USAGE \
234 if (! TARGET_FPREGS) \
52a69200 235 for (i = 32; i < 63; i++) \
1a94ca49
RK
236 fixed_regs[i] = call_used_regs[i] = 1;
237
4f074454
RK
238/* Show we can debug even without a frame pointer. */
239#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
240\f
241/* target machine storage layout */
242
2700ac93
RS
243/* Define to enable software floating point emulation. */
244#define REAL_ARITHMETIC
245
1a94ca49
RK
246/* Define the size of `int'. The default is the same as the word size. */
247#define INT_TYPE_SIZE 32
248
249/* Define the size of `long long'. The default is the twice the word size. */
250#define LONG_LONG_TYPE_SIZE 64
251
252/* The two floating-point formats we support are S-floating, which is
253 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
254 and `long double' are T. */
255
256#define FLOAT_TYPE_SIZE 32
257#define DOUBLE_TYPE_SIZE 64
258#define LONG_DOUBLE_TYPE_SIZE 64
259
5258d7ae
RK
260#define WCHAR_TYPE "unsigned int"
261#define WCHAR_TYPE_SIZE 32
1a94ca49 262
13d39dbc 263/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
264 in a wider mode than that declared by the program. In such cases,
265 the value is constrained to be within the bounds of the declared
266 type, but kept valid in the wider mode. The signedness of the
267 extension may differ from that of the type.
268
269 For Alpha, we always store objects in a full register. 32-bit objects
270 are always sign-extended, but smaller objects retain their signedness. */
271
272#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
273 if (GET_MODE_CLASS (MODE) == MODE_INT \
274 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
275 { \
276 if ((MODE) == SImode) \
277 (UNSIGNEDP) = 0; \
278 (MODE) = DImode; \
279 }
280
281/* Define this if function arguments should also be promoted using the above
282 procedure. */
283
284#define PROMOTE_FUNCTION_ARGS
285
286/* Likewise, if the function return value is promoted. */
287
288#define PROMOTE_FUNCTION_RETURN
289
290/* Define this if most significant bit is lowest numbered
291 in instructions that operate on numbered bit-fields.
292
293 There are no such instructions on the Alpha, but the documentation
294 is little endian. */
295#define BITS_BIG_ENDIAN 0
296
297/* Define this if most significant byte of a word is the lowest numbered.
298 This is false on the Alpha. */
299#define BYTES_BIG_ENDIAN 0
300
301/* Define this if most significant word of a multiword number is lowest
302 numbered.
303
304 For Alpha we can decide arbitrarily since there are no machine instructions
305 for them. Might as well be consistent with bytes. */
306#define WORDS_BIG_ENDIAN 0
307
308/* number of bits in an addressable storage unit */
309#define BITS_PER_UNIT 8
310
311/* Width in bits of a "word", which is the contents of a machine register.
312 Note that this is not necessarily the width of data type `int';
313 if using 16-bit ints on a 68000, this would still be 32.
314 But on a machine with 16-bit registers, this would be 16. */
315#define BITS_PER_WORD 64
316
317/* Width of a word, in units (bytes). */
318#define UNITS_PER_WORD 8
319
320/* Width in bits of a pointer.
321 See also the macro `Pmode' defined below. */
322#define POINTER_SIZE 64
323
324/* Allocation boundary (in *bits*) for storing arguments in argument list. */
325#define PARM_BOUNDARY 64
326
327/* Boundary (in *bits*) on which stack pointer should be aligned. */
328#define STACK_BOUNDARY 64
329
330/* Allocation boundary (in *bits*) for the code of a function. */
331#define FUNCTION_BOUNDARY 64
332
333/* Alignment of field after `int : 0' in a structure. */
334#define EMPTY_FIELD_BOUNDARY 64
335
336/* Every structure's size must be a multiple of this. */
337#define STRUCTURE_SIZE_BOUNDARY 8
338
339/* A bitfield declared as `int' forces `int' alignment for the struct. */
340#define PCC_BITFIELD_TYPE_MATTERS 1
341
65823178
RK
342/* Align loop starts for optimal branching.
343
344 ??? Kludge this and the next macro for the moment by not doing anything if
345 we don't optimize and also if we are writing ECOFF symbols to work around
346 a bug in DEC's assembler. */
1a94ca49 347
130d2d72 348#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
349 if (optimize > 0 && write_symbols != SDB_DEBUG) \
350 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
351
352/* This is how to align an instruction for optimal branching.
353 On Alpha we'll get better performance by aligning on a quadword
354 boundary. */
130d2d72 355
1a94ca49 356#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
357 if (optimize > 0 && write_symbols != SDB_DEBUG) \
358 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
359
360/* No data type wants to be aligned rounder than this. */
361#define BIGGEST_ALIGNMENT 64
362
442b1685
RK
363/* Align all constants and variables to at least a word boundary so
364 we can pick up pieces of them faster. */
365#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
366#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
1a94ca49
RK
367
368/* Set this non-zero if move instructions will actually fail to work
369 when given unaligned data.
370
371 Since we get an error message when we do one, call them invalid. */
372
373#define STRICT_ALIGNMENT 1
374
375/* Set this non-zero if unaligned move instructions are extremely slow.
376
377 On the Alpha, they trap. */
130d2d72
RK
378
379#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
380\f
381/* Standard register usage. */
382
383/* Number of actual hardware registers.
384 The hardware registers are assigned numbers for the compiler
385 from 0 to just below FIRST_PSEUDO_REGISTER.
386 All registers that the compiler knows about must be given numbers,
387 even those that are not normally considered general registers.
388
389 We define all 32 integer registers, even though $31 is always zero,
390 and all 32 floating-point registers, even though $f31 is also
391 always zero. We do not bother defining the FP status register and
130d2d72
RK
392 there are no other registers.
393
394 Since $31 is always zero, we will use register number 31 as the
395 argument pointer. It will never appear in the generated code
396 because we will always be eliminating it in favor of the stack
52a69200
RK
397 pointer or hardware frame pointer.
398
399 Likewise, we use $f31 for the frame pointer, which will always
400 be eliminated in favor of the hardware frame pointer or the
401 stack pointer. */
1a94ca49
RK
402
403#define FIRST_PSEUDO_REGISTER 64
404
405/* 1 for registers that have pervasive standard uses
406 and are not available for the register allocator. */
407
408#define FIXED_REGISTERS \
409 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
411 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
412 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
413
414/* 1 for registers not available across function calls.
415 These must include the FIXED_REGISTERS and also any
416 registers that can be used without being saved.
417 The latter must include the registers where values are returned
418 and the register where structure-value addresses are passed.
419 Aside from that, you can include as many other registers as you like. */
420#define CALL_USED_REGISTERS \
421 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
422 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
423 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
424 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
425
426/* List the order in which to allocate registers. Each register must be
427 listed once, even those in FIXED_REGISTERS.
428
429 We allocate in the following order:
430 $f1 (nonsaved floating-point register)
431 $f10-$f15 (likewise)
432 $f22-$f30 (likewise)
433 $f21-$f16 (likewise, but input args)
434 $f0 (nonsaved, but return value)
435 $f2-$f9 (saved floating-point registers)
436 $1-$8 (nonsaved integer registers)
437 $22-$25 (likewise)
438 $28 (likewise)
439 $0 (likewise, but return value)
440 $21-$16 (likewise, but input args)
0076aa6b 441 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
442 $9-$14 (saved integer registers)
443 $26 (return PC)
444 $15 (frame pointer)
445 $29 (global pointer)
52a69200 446 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
447
448#define REG_ALLOC_ORDER \
449 {33, \
da01bc2c 450 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
451 54, 55, 56, 57, 58, 59, 60, 61, 62, \
452 53, 52, 51, 50, 49, 48, \
453 32, \
454 34, 35, 36, 37, 38, 39, 40, 41, \
455 1, 2, 3, 4, 5, 6, 7, 8, \
456 22, 23, 24, 25, \
457 28, \
458 0, \
459 21, 20, 19, 18, 17, 16, \
460 27, \
461 9, 10, 11, 12, 13, 14, \
462 26, \
463 15, \
464 29, \
465 30, 31, 63 }
466
467/* Return number of consecutive hard regs needed starting at reg REGNO
468 to hold something of mode MODE.
469 This is ordinarily the length in words of a value of mode MODE
470 but can be less for certain modes in special long registers. */
471
472#define HARD_REGNO_NREGS(REGNO, MODE) \
473 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
474
475/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On Alpha, the integer registers can hold any mode. The floating-point
477 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
478 or 8-bit values. If we only allowed the larger integers into FP registers,
479 we'd have to say that QImode and SImode aren't tiable, which is a
480 pain. So say all registers can hold everything and see how that works. */
481
482#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
483
484/* Value is 1 if it is a good idea to tie two pseudo registers
485 when one has mode MODE1 and one has mode MODE2.
486 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
487 for any hard reg, then this must be 0 for correct output. */
488
489#define MODES_TIEABLE_P(MODE1, MODE2) 1
490
491/* Specify the registers used for certain standard purposes.
492 The values of these macros are register numbers. */
493
494/* Alpha pc isn't overloaded on a register that the compiler knows about. */
495/* #define PC_REGNUM */
496
497/* Register to use for pushing function arguments. */
498#define STACK_POINTER_REGNUM 30
499
500/* Base register for access to local variables of the function. */
52a69200 501#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
502
503/* Value should be nonzero if functions must have frame pointers.
504 Zero means the frame pointer need not be set up (and parms
505 may be accessed via the stack pointer) in functions that seem suitable.
506 This is computed in `reload', in reload1.c. */
507#define FRAME_POINTER_REQUIRED 0
508
509/* Base register for access to arguments of the function. */
130d2d72 510#define ARG_POINTER_REGNUM 31
1a94ca49 511
52a69200
RK
512/* Base register for access to local variables of function. */
513#define FRAME_POINTER_REGNUM 63
514
1a94ca49
RK
515/* Register in which static-chain is passed to a function.
516
517 For the Alpha, this is based on an example; the calling sequence
518 doesn't seem to specify this. */
519#define STATIC_CHAIN_REGNUM 1
520
521/* Register in which address to store a structure value
522 arrives in the function. On the Alpha, the address is passed
523 as a hidden argument. */
524#define STRUCT_VALUE 0
525\f
526/* Define the classes of registers for register constraints in the
527 machine description. Also define ranges of constants.
528
529 One of the classes must always be named ALL_REGS and include all hard regs.
530 If there is more than one class, another class must be named NO_REGS
531 and contain no registers.
532
533 The name GENERAL_REGS must be the name of a class (or an alias for
534 another name such as ALL_REGS). This is the class of registers
535 that is allowed by "g" or "r" in a register constraint.
536 Also, registers outside this class are allocated only when
537 instructions express preferences for them.
538
539 The classes must be numbered in nondecreasing order; that is,
540 a larger-numbered class must never be contained completely
541 in a smaller-numbered class.
542
543 For any two classes, it is very desirable that there be another
544 class that represents their union. */
545
546enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
547 LIM_REG_CLASSES };
548
549#define N_REG_CLASSES (int) LIM_REG_CLASSES
550
551/* Give names of register classes as strings for dump file. */
552
553#define REG_CLASS_NAMES \
554 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
555
556/* Define which registers fit in which classes.
557 This is an initializer for a vector of HARD_REG_SET
558 of length N_REG_CLASSES. */
559
560#define REG_CLASS_CONTENTS \
52a69200 561 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
562
563/* The same information, inverted:
564 Return the class number of the smallest class containing
565 reg number REGNO. This could be a conditional expression
566 or could index an array. */
567
52a69200
RK
568#define REGNO_REG_CLASS(REGNO) \
569 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
570
571/* The class value for index registers, and the one for base regs. */
572#define INDEX_REG_CLASS NO_REGS
573#define BASE_REG_CLASS GENERAL_REGS
574
575/* Get reg_class from a letter such as appears in the machine description. */
576
577#define REG_CLASS_FROM_LETTER(C) \
578 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
579
580/* Define this macro to change register usage conditional on target flags. */
581/* #define CONDITIONAL_REGISTER_USAGE */
582
583/* The letters I, J, K, L, M, N, O, and P in a register constraint string
584 can be used to stand for particular ranges of immediate operands.
585 This macro defines what the ranges are.
586 C is the letter, and VALUE is a constant value.
587 Return 1 if VALUE is in the range specified by C.
588
589 For Alpha:
590 `I' is used for the range of constants most insns can contain.
591 `J' is the constant zero.
592 `K' is used for the constant in an LDA insn.
593 `L' is used for the constant in a LDAH insn.
594 `M' is used for the constants that can be AND'ed with using a ZAP insn.
595 `N' is used for complemented 8-bit constants.
596 `O' is used for negated 8-bit constants.
597 `P' is used for the constants 1, 2 and 3. */
598
599#define CONST_OK_FOR_LETTER_P(VALUE, C) \
600 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
601 : (C) == 'J' ? (VALUE) == 0 \
602 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
603 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
604 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
605 && ((HOST_BITS_PER_WIDE_INT == 64 \
23334240 606 || (unsigned) (VALUE) != 0x80000000U))) \
1a94ca49
RK
607 : (C) == 'M' ? zap_mask (VALUE) \
608 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
609 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
610 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
611 : 0)
612
613/* Similar, but for floating or large integer constants, and defining letters
614 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
615
616 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
617 that is the operand of a ZAP insn. */
618
619#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
620 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
621 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
622 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
623 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
624 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
625 : 0)
626
e560f226
RK
627/* Optional extra constraints for this machine.
628
629 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
630 reference to an unaligned location.
631 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
632 function. */
e560f226
RK
633
634#define EXTRA_CONSTRAINT(OP, C) \
635 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 636 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
637 : 0)
638
1a94ca49
RK
639/* Given an rtx X being reloaded into a reg required to be
640 in class CLASS, return the class of reg to actually use.
641 In general this is just CLASS; but on some machines
642 in some cases it is preferable to use a more restrictive class.
643
644 On the Alpha, all constants except zero go into a floating-point
645 register via memory. */
646
647#define PREFERRED_RELOAD_CLASS(X, CLASS) \
648 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
649 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
650 : (CLASS))
651
652/* Loading and storing HImode or QImode values to and from memory
653 usually requires a scratch register. The exceptions are loading
e560f226 654 QImode and HImode from an aligned address to a general register.
ddd5a7c1 655 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 656 FP register. */
1a94ca49
RK
657
658#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
659(((GET_CODE (IN) == MEM \
660 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
661 || (GET_CODE (IN) == SUBREG \
662 && (GET_CODE (SUBREG_REG (IN)) == MEM \
663 || (GET_CODE (SUBREG_REG (IN)) == REG \
664 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
665 && (((CLASS) == FLOAT_REGS \
666 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
667 || (((MODE) == QImode || (MODE) == HImode) \
668 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
669 ? GENERAL_REGS \
670 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
671 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
672 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
673 && (GET_MODE_SIZE (GET_MODE (IN)) \
674 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 675 : NO_REGS)
1a94ca49
RK
676
677#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
678(((GET_CODE (OUT) == MEM \
679 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
680 || (GET_CODE (OUT) == SUBREG \
681 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
682 || (GET_CODE (SUBREG_REG (OUT)) == REG \
683 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
684 && (((MODE) == HImode || (MODE) == QImode \
685 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
686 ? GENERAL_REGS \
687 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
688 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
689 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
690 && (GET_MODE_SIZE (GET_MODE (OUT)) \
691 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
692 : NO_REGS)
1a94ca49
RK
693
694/* If we are copying between general and FP registers, we need a memory
695 location. */
696
697#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
698
acd94aaf
RK
699/* Specify the mode to be used for memory when a secondary memory
700 location is needed. If MODE is floating-point, use it. Otherwise,
701 widen to a word like the default. This is needed because we always
702 store integers in FP registers in quadword format. This whole
703 area is very tricky! */
704#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
705 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 706 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
707 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
708
1a94ca49
RK
709/* Return the maximum number of consecutive registers
710 needed to represent mode MODE in a register of class CLASS. */
711
712#define CLASS_MAX_NREGS(CLASS, MODE) \
713 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
714
c31dfe4d
RK
715/* If defined, gives a class of registers that cannot be used as the
716 operand of a SUBREG that changes the size of the object. */
717
718#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
719
1a94ca49
RK
720/* Define the cost of moving between registers of various classes. Moving
721 between FLOAT_REGS and anything else except float regs is expensive.
722 In fact, we make it quite expensive because we really don't want to
723 do these moves unless it is clearly worth it. Optimizations may
724 reduce the impact of not being able to allocate a pseudo to a
725 hard register. */
726
727#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
728 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
729
730/* A C expressions returning the cost of moving data of MODE from a register to
731 or from memory.
732
733 On the Alpha, bump this up a bit. */
734
735#define MEMORY_MOVE_COST(MODE) 6
736
737/* Provide the cost of a branch. Exact meaning under development. */
738#define BRANCH_COST 5
739
740/* Adjust the cost of dependencies. */
741
742#define ADJUST_COST(INSN,LINK,DEP,COST) \
743 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
744\f
745/* Stack layout; function entry, exit and calling. */
746
747/* Define this if pushing a word on the stack
748 makes the stack pointer a smaller address. */
749#define STACK_GROWS_DOWNWARD
750
751/* Define this if the nominal address of the stack frame
752 is at the high-address end of the local variables;
753 that is, each additional local variable allocated
754 goes at a more negative offset in the frame. */
130d2d72 755/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
756
757/* Offset within stack frame to start allocating local variables at.
758 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
759 first local allocated. Otherwise, it is the offset to the BEGINNING
760 of the first local allocated. */
761
52a69200 762#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
763
764/* If we generate an insn to push BYTES bytes,
765 this says how many the stack pointer really advances by.
766 On Alpha, don't define this because there are no push insns. */
767/* #define PUSH_ROUNDING(BYTES) */
768
769/* Define this if the maximum size of all the outgoing args is to be
770 accumulated and pushed during the prologue. The amount can be
771 found in the variable current_function_outgoing_args_size. */
772#define ACCUMULATE_OUTGOING_ARGS
773
774/* Offset of first parameter from the argument pointer register value. */
775
130d2d72 776#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
777
778/* Definitions for register eliminations.
779
978e8952 780 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 781 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
782 pointer register. Secondly, the argument pointer register can always be
783 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
784
785/* This is an array of structures. Each structure initializes one pair
786 of eliminable registers. The "from" register number is given first,
787 followed by "to". Eliminations of the same "from" register are listed
788 in order of preference. */
789
52a69200
RK
790#define ELIMINABLE_REGS \
791{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
792 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
793 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
794 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
795
796/* Given FROM and TO register numbers, say whether this elimination is allowed.
797 Frame pointer elimination is automatically handled.
798
130d2d72 799 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
800 eliminated are already handled. */
801
130d2d72 802#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 803
52a69200
RK
804/* Round up to a multiple of 16 bytes. */
805#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
806
1a94ca49
RK
807/* Define the offset between two registers, one to be eliminated, and the other
808 its replacement, at the start of a routine. */
809#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
810{ if ((FROM) == FRAME_POINTER_REGNUM) \
811 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
812 + alpha_sa_size ()); \
813 else if ((FROM) == ARG_POINTER_REGNUM) \
814 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
815 + alpha_sa_size () \
d772039b
RK
816 + (ALPHA_ROUND (get_frame_size () \
817 + current_function_pretend_args_size) \
818 - current_function_pretend_args_size)); \
1a94ca49
RK
819}
820
821/* Define this if stack space is still allocated for a parameter passed
822 in a register. */
823/* #define REG_PARM_STACK_SPACE */
824
825/* Value is the number of bytes of arguments automatically
826 popped when returning from a subroutine call.
8b109b37 827 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
828 FUNTYPE is the data type of the function (as a tree),
829 or for a library call it is an identifier node for the subroutine name.
830 SIZE is the number of bytes of arguments passed on the stack. */
831
8b109b37 832#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
833
834/* Define how to find the value returned by a function.
835 VALTYPE is the data type of the value (as a tree).
836 If the precise function being called is known, FUNC is its FUNCTION_DECL;
837 otherwise, FUNC is 0.
838
839 On Alpha the value is found in $0 for integer functions and
840 $f0 for floating-point functions. */
841
842#define FUNCTION_VALUE(VALTYPE, FUNC) \
843 gen_rtx (REG, \
20e76cb9 844 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
1a94ca49
RK
845 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
846 ? word_mode : TYPE_MODE (VALTYPE), \
847 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
848
849/* Define how to find the value returned by a library function
850 assuming the value has mode MODE. */
851
852#define LIBCALL_VALUE(MODE) \
853 gen_rtx (REG, MODE, \
854 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
855
130d2d72
RK
856/* The definition of this macro implies that there are cases where
857 a scalar value cannot be returned in registers.
858
859 For the Alpha, any structure or union type is returned in memory, as
860 are integers whose size is larger than 64 bits. */
861
862#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 863 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
864 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
865
1a94ca49
RK
866/* 1 if N is a possible register number for a function value
867 as seen by the caller. */
868
869#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
870
871/* 1 if N is a possible register number for function argument passing.
872 On Alpha, these are $16-$21 and $f16-$f21. */
873
874#define FUNCTION_ARG_REGNO_P(N) \
875 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
876\f
877/* Define a data type for recording info about an argument list
878 during the scan of that argument list. This data type should
879 hold all necessary information about the function itself
880 and about the args processed so far, enough to enable macros
881 such as FUNCTION_ARG to determine where the next arg should go.
882
883 On Alpha, this is a single integer, which is a number of words
884 of arguments scanned so far.
885 Thus 6 or more means all following args should go on the stack. */
886
887#define CUMULATIVE_ARGS int
888
889/* Initialize a variable CUM of type CUMULATIVE_ARGS
890 for a call to a function whose data type is FNTYPE.
891 For a library call, FNTYPE is 0. */
892
2c7ee1a6 893#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
894
895/* Define intermediate macro to compute the size (in registers) of an argument
896 for the Alpha. */
897
898#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
899((MODE) != BLKmode \
900 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
901 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
902
903/* Update the data in CUM to advance over an argument
904 of mode MODE and data type TYPE.
905 (TYPE is null for libcalls where that information may not be available.) */
906
907#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
908 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
909 (CUM) = 6; \
910 else \
911 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
912
913/* Determine where to put an argument to a function.
914 Value is zero to push the argument on the stack,
915 or a hard register in which to store the argument.
916
917 MODE is the argument's machine mode.
918 TYPE is the data type of the argument (as a tree).
919 This is null for libcalls where that information may
920 not be available.
921 CUM is a variable of type CUMULATIVE_ARGS which gives info about
922 the preceding args and about the function being called.
923 NAMED is nonzero if this argument is a named parameter
924 (otherwise it is an extra parameter matching an ellipsis).
925
926 On Alpha the first 6 words of args are normally in registers
927 and the rest are pushed. */
928
929#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
930((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
931 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
932 (CUM) + 16 + ((TARGET_FPREGS \
933 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
934 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
935 * 32)) \
936 : 0)
1a94ca49 937
1a94ca49
RK
938/* Specify the padding direction of arguments.
939
940 On the Alpha, we must pad upwards in order to be able to pass args in
941 registers. */
942
943#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
944
945/* For an arg passed partly in registers and partly in memory,
946 this is the number of registers used.
947 For args passed entirely in registers or entirely in memory, zero. */
948
949#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
950((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
951 ? 6 - (CUM) : 0)
952
130d2d72
RK
953/* Perform any needed actions needed for a function that is receiving a
954 variable number of arguments.
955
956 CUM is as above.
957
958 MODE and TYPE are the mode and type of the current parameter.
959
960 PRETEND_SIZE is a variable that should be set to the amount of stack
961 that must be pushed by the prolog to pretend that our caller pushed
962 it.
963
964 Normally, this macro will push all remaining incoming registers on the
965 stack and set PRETEND_SIZE to the length of the registers pushed.
966
967 On the Alpha, we allocate space for all 12 arg registers, but only
968 push those that are remaining.
969
970 However, if NO registers need to be saved, don't allocate any space.
971 This is not only because we won't need the space, but because AP includes
972 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
973 ap-relative addresses already made.
974
975 If we are not to use the floating-point registers, save the integer
976 registers where we would put the floating-point registers. This is
977 not the most efficient way to implement varargs with just one register
978 class, but it isn't worth doing anything more efficient in this rare
979 case. */
980
130d2d72
RK
981
982#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
983{ if ((CUM) < 6) \
984 { \
985 if (! (NO_RTL)) \
986 { \
987 move_block_from_reg \
988 (16 + CUM, \
989 gen_rtx (MEM, BLKmode, \
990 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 991 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 992 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 993 move_block_from_reg \
7a92339b 994 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
995 gen_rtx (MEM, BLKmode, \
996 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 997 (CUM) * UNITS_PER_WORD)), \
02892e06 998 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
999 } \
1000 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1001 } \
1002}
1003
c8e9adec
RK
1004/* Try to output insns to set TARGET equal to the constant C if it can be
1005 done in less than N insns. Do all computations in MODE. Returns the place
1006 where the output has been placed if it can be done and the insns have been
1007 emitted. If it would take more than N insns, zero is returned and no
1008 insns and emitted. */
1009extern struct rtx_def *alpha_emit_set_const ();
803fee69 1010extern struct rtx_def *alpha_emit_set_long_const ();
92e40a7a
RK
1011extern struct rtx_def *alpha_emit_conditional_move ();
1012
1a94ca49
RK
1013/* Generate necessary RTL for __builtin_saveregs().
1014 ARGLIST is the argument list; see expr.c. */
1015extern struct rtx_def *alpha_builtin_saveregs ();
1016#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1017
1018/* Define the information needed to generate branch and scc insns. This is
1019 stored from the compare operation. Note that we can't use "rtx" here
1020 since it hasn't been defined! */
1021
1022extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1023extern int alpha_compare_fp_p;
1024
1025/* This macro produces the initial definition of a function name. On the
03f8c4cc 1026 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
1027
1028extern char *alpha_function_name;
1029
1030#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 1031{ \
1a94ca49
RK
1032 alpha_function_name = NAME; \
1033}
1034
1035/* This macro generates the assembly code for function entry.
1036 FILE is a stdio stream to output the code to.
1037 SIZE is an int: how many units of temporary storage to allocate.
1038 Refer to the array `regs_ever_live' to determine which registers
1039 to save; `regs_ever_live[I]' is nonzero if register number I
1040 is ever used in the function. This macro is responsible for
1041 knowing which registers should not be saved even if used. */
1042
1043#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1044
1045/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1046 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1047 by simply passing -pg to the assembler and linker. */
85d159a3 1048
e0fb9029 1049#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1050
1051/* Output assembler code to FILE to initialize this source file's
1052 basic block profiling info, if that has not already been done.
1053 This assumes that __bb_init_func doesn't garble a1-a5. */
1054
1055#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1056 do { \
1057 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1058 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1059 fputs ("\tldq $26,0($16)\n", (FILE)); \
1060 fputs ("\tbne $26,1f\n", (FILE)); \
1061 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1062 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1063 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1064 fputs ("1:\n", (FILE)); \
85d159a3
RK
1065 ASM_OUTPUT_REG_POP (FILE, 16); \
1066 } while (0);
1067
1068/* Output assembler code to FILE to increment the entry-count for
1069 the BLOCKNO'th basic block in this source file. */
1070
1071#define BLOCK_PROFILER(FILE, BLOCKNO) \
1072 do { \
1073 int blockn = (BLOCKNO); \
a62eb16f 1074 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1075 fputs ("\tstq $26,0($30)\n", (FILE)); \
1076 fputs ("\tstq $27,8($30)\n", (FILE)); \
1077 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1078 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1079 fputs ("\taddq $27,1,$27\n", (FILE)); \
1080 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1081 fputs ("\tldq $26,0($30)\n", (FILE)); \
1082 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1083 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1084 } while (0)
1a94ca49 1085
1a94ca49
RK
1086
1087/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1088 the stack pointer does not matter. The value is tested only in
1089 functions that have frame pointers.
1090 No definition is equivalent to always zero. */
1091
1092#define EXIT_IGNORE_STACK 1
1093
1094/* This macro generates the assembly code for function exit,
1095 on machines that need it. If FUNCTION_EPILOGUE is not defined
1096 then individual return instructions are generated for each
1097 return statement. Args are same as for FUNCTION_PROLOGUE.
1098
1099 The function epilogue should not depend on the current stack pointer!
1100 It should use the frame pointer only. This is mandatory because
1101 of alloca; we also take advantage of it to omit stack adjustments
1102 before returning. */
1103
1104#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1105
1106\f
1107/* Output assembler code for a block containing the constant parts
1108 of a trampoline, leaving space for the variable parts.
1109
1110 The trampoline should set the static chain pointer to value placed
7981384f
RK
1111 into the trampoline and should branch to the specified routine.
1112 Note that $27 has been set to the address of the trampoline, so we can
1113 use it for addressability of the two data items. Trampolines are always
1114 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1115
1116#define TRAMPOLINE_TEMPLATE(FILE) \
1117{ \
7981384f 1118 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1119 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1120 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1121 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1122 fprintf (FILE, "\t.quad 0,0\n"); \
1123}
1124
3a523eeb
RS
1125/* Section in which to place the trampoline. On Alpha, instructions
1126 may only be placed in a text segment. */
1127
1128#define TRAMPOLINE_SECTION text_section
1129
1a94ca49
RK
1130/* Length in units of the trampoline for entering a nested function. */
1131
7981384f 1132#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1133
1134/* Emit RTL insns to initialize the variable parts of a trampoline.
1135 FNADDR is an RTX for the address of the function's pure code.
1136 CXT is an RTX for the static chain value for the function. We assume
1137 here that a function will be called many more times than its address
1138 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1139 to initialize the "hint" field in the JMP insn. Note that the hint
1140 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1141
1142#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1143{ \
1144 rtx _temp, _temp1, _addr; \
1145 \
1146 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1147 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1148 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1149 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1150 \
7981384f
RK
1151 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1152 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1153 OPTAB_WIDEN); \
1154 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1155 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1156 _temp = expand_and (gen_lowpart (SImode, _temp), \
1157 GEN_INT (0x3fff), 0); \
1a94ca49 1158 \
7981384f 1159 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1160 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1161 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1162 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1163 OPTAB_WIDEN); \
1164 \
1165 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1166 \
1167 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1168 "__enable_execute_stack"), \
1169 0, VOIDmode, 1,_addr, Pmode); \
1170 \
1171 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1172 gen_rtvec (1, const0_rtx), 0)); \
1173}
1174
1175/* Attempt to turn on access permissions for the stack. */
1176
1177#define TRANSFER_FROM_TRAMPOLINE \
1178 \
1179void \
1180__enable_execute_stack (addr) \
1181 void *addr; \
1182{ \
1183 long size = getpagesize (); \
1184 long mask = ~(size-1); \
1185 char *page = (char *) (((long) addr) & mask); \
1186 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1187 \
1188 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1189 if (mprotect (page, end - page, 7) < 0) \
1190 perror ("mprotect of trampoline code"); \
1a94ca49 1191}
675f0e7c
RK
1192
1193/* A C expression whose value is RTL representing the value of the return
1194 address for the frame COUNT steps up from the current frame.
1195 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1196 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
1197
1198 This definition for Alpha is broken, but is put in at the request of
1199 Mike Stump. */
1200
1201#define RETURN_ADDR_RTX(COUNT, FRAME) \
1202((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
6ea0cab3
RK
1203 ? gen_rtx (REG, Pmode, 26) \
1204 : gen_rtx (MEM, Pmode, \
675f0e7c
RK
1205 memory_address (Pmode, FRAME)))
1206\f
1a94ca49
RK
1207/* Addressing modes, and classification of registers for them. */
1208
1209/* #define HAVE_POST_INCREMENT */
1210/* #define HAVE_POST_DECREMENT */
1211
1212/* #define HAVE_PRE_DECREMENT */
1213/* #define HAVE_PRE_INCREMENT */
1214
1215/* Macros to check register numbers against specific register classes. */
1216
1217/* These assume that REGNO is a hard or pseudo reg number.
1218 They give nonzero only if REGNO is a hard reg of the suitable class
1219 or a pseudo reg currently allocated to a suitable hard reg.
1220 Since they use reg_renumber, they are safe only once reg_renumber
1221 has been allocated, which happens in local-alloc.c. */
1222
1223#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1224#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1225((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1226 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1227\f
1228/* Maximum number of registers that can appear in a valid memory address. */
1229#define MAX_REGS_PER_ADDRESS 1
1230
1231/* Recognize any constant value that is a valid address. For the Alpha,
1232 there are only constants none since we want to use LDA to load any
1233 symbolic addresses into registers. */
1234
1235#define CONSTANT_ADDRESS_P(X) \
1236 (GET_CODE (X) == CONST_INT \
1237 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1238
1239/* Include all constant integers and constant doubles, but not
1240 floating-point, except for floating-point zero. */
1241
1242#define LEGITIMATE_CONSTANT_P(X) \
1243 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1244 || (X) == CONST0_RTX (GET_MODE (X)))
1245
1246/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1247 and check its validity for a certain class.
1248 We have two alternate definitions for each of them.
1249 The usual definition accepts all pseudo regs; the other rejects
1250 them unless they have been allocated suitable hard regs.
1251 The symbol REG_OK_STRICT causes the latter definition to be used.
1252
1253 Most source files want to accept pseudo regs in the hope that
1254 they will get allocated to the class that the insn wants them to be in.
1255 Source files for reload pass need to be strict.
1256 After reload, it makes no difference, since pseudo regs have
1257 been eliminated by then. */
1258
1259#ifndef REG_OK_STRICT
1260
1261/* Nonzero if X is a hard reg that can be used as an index
1262 or if it is a pseudo reg. */
1263#define REG_OK_FOR_INDEX_P(X) 0
1264/* Nonzero if X is a hard reg that can be used as a base reg
1265 or if it is a pseudo reg. */
1266#define REG_OK_FOR_BASE_P(X) \
52a69200 1267 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1268
1269#else
1270
1271/* Nonzero if X is a hard reg that can be used as an index. */
1272#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1273/* Nonzero if X is a hard reg that can be used as a base reg. */
1274#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1275
1276#endif
1277\f
1278/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1279 that is a valid memory address for an instruction.
1280 The MODE argument is the machine mode for the MEM expression
1281 that wants to use this address.
1282
1283 For Alpha, we have either a constant address or the sum of a register
1284 and a constant address, or just a register. For DImode, any of those
1285 forms can be surrounded with an AND that clear the low-order three bits;
1286 this is an "unaligned" access.
1287
1a94ca49
RK
1288 First define the basic valid address. */
1289
1290#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1291{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1292 goto ADDR; \
1293 if (CONSTANT_ADDRESS_P (X)) \
1294 goto ADDR; \
1295 if (GET_CODE (X) == PLUS \
1296 && REG_P (XEXP (X, 0)) \
1297 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1298 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1299 goto ADDR; \
1300}
1301
1302/* Now accept the simple address, or, for DImode only, an AND of a simple
1303 address that turns off the low three bits. */
1304
1a94ca49
RK
1305#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1306{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1307 if ((MODE) == DImode \
1308 && GET_CODE (X) == AND \
1309 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1310 && INTVAL (XEXP (X, 1)) == -8) \
1311 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1312}
1313
1314/* Try machine-dependent ways of modifying an illegitimate address
1315 to be legitimate. If we find one, return the new, valid address.
1316 This macro is used in only one place: `memory_address' in explow.c.
1317
1318 OLDX is the address as it was before break_out_memory_refs was called.
1319 In some cases it is useful to look at this to decide what needs to be done.
1320
1321 MODE and WIN are passed so that this macro can use
1322 GO_IF_LEGITIMATE_ADDRESS.
1323
1324 It is always safe for this macro to do nothing. It exists to recognize
1325 opportunities to optimize the output.
1326
1327 For the Alpha, there are three cases we handle:
1328
1329 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1330 valid offset, compute the high part of the constant and add it to the
1331 register. Then our address is (plus temp low-part-const).
1332 (2) If the address is (const (plus FOO const_int)), find the low-order
1333 part of the CONST_INT. Then load FOO plus any high-order part of the
1334 CONST_INT into a register. Our address is (plus reg low-part-const).
1335 This is done to reduce the number of GOT entries.
1336 (3) If we have a (plus reg const), emit the load as in (2), then add
1337 the two registers, and finally generate (plus reg low-part-const) as
1338 our address. */
1339
1340#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1341{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1342 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1343 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1344 { \
1345 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1346 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1347 HOST_WIDE_INT highpart = val - lowpart; \
1348 rtx high = GEN_INT (highpart); \
1349 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1350 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1351 \
1352 (X) = plus_constant (temp, lowpart); \
1353 goto WIN; \
1354 } \
1355 else if (GET_CODE (X) == CONST \
1356 && GET_CODE (XEXP (X, 0)) == PLUS \
1357 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1358 { \
1359 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1360 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1361 HOST_WIDE_INT highpart = val - lowpart; \
1362 rtx high = XEXP (XEXP (X, 0), 0); \
1363 \
1364 if (highpart) \
1365 high = plus_constant (high, highpart); \
1366 \
1367 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1368 goto WIN; \
1369 } \
1370 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1371 && GET_CODE (XEXP (X, 1)) == CONST \
1372 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1373 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1374 { \
1375 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1376 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1377 HOST_WIDE_INT highpart = val - lowpart; \
1378 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1379 \
1380 if (highpart) \
1381 high = plus_constant (high, highpart); \
1382 \
1383 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1384 force_reg (Pmode, high), \
80f251fe 1385 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1386 (X) = plus_constant (high, lowpart); \
1387 goto WIN; \
1388 } \
1389}
1390
1391/* Go to LABEL if ADDR (a legitimate address expression)
1392 has an effect that depends on the machine mode it is used for.
1393 On the Alpha this is true only for the unaligned modes. We can
1394 simplify this test since we know that the address must be valid. */
1395
1396#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1397{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1398
1399/* Compute the cost of an address. For the Alpha, all valid addresses are
1400 the same cost. */
1401
1402#define ADDRESS_COST(X) 0
1403
1404/* Define this if some processing needs to be done immediately before
1405 emitting code for an insn. */
1406
2bf6230d
RK
1407extern void final_prescan_insn ();
1408#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1409 final_prescan_insn ((INSN), (OPERANDS), (NOPERANDS))
1410
1411/* Define this if FINAL_PRESCAN_INSN should be called for a CODE_LABEL. */
1412#define FINAL_PRESCAN_LABEL
1a94ca49
RK
1413\f
1414/* Specify the machine mode that this machine uses
1415 for the index in the tablejump instruction. */
1416#define CASE_VECTOR_MODE SImode
1417
1418/* Define this if the tablejump instruction expects the table
1419 to contain offsets from the address of the table.
260ced47
RK
1420 Do not define this if the table should contain absolute addresses.
1421 On the Alpha, the table is really GP-relative, not relative to the PC
1422 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1423 but we should try to find some better way sometime. */
260ced47 1424#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1425
1426/* Specify the tree operation to be used to convert reals to integers. */
1427#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1428
1429/* This is the kind of divide that is easiest to do in the general case. */
1430#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1431
1432/* Define this as 1 if `char' should by default be signed; else as 0. */
1433#define DEFAULT_SIGNED_CHAR 1
1434
1435/* This flag, if defined, says the same insns that convert to a signed fixnum
1436 also convert validly to an unsigned one.
1437
1438 We actually lie a bit here as overflow conditions are different. But
1439 they aren't being checked anyway. */
1440
1441#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1442
1443/* Max number of bytes we can move to or from memory
1444 in one reasonably fast instruction. */
1445
1446#define MOVE_MAX 8
1447
1448/* Largest number of bytes of an object that can be placed in a register.
1449 On the Alpha we have plenty of registers, so use TImode. */
1450#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1451
1452/* Nonzero if access to memory by bytes is no faster than for words.
1453 Also non-zero if doing byte operations (specifically shifts) in registers
1454 is undesirable.
1455
1456 On the Alpha, we want to not use the byte operation and instead use
1457 masking operations to access fields; these will save instructions. */
1458
1459#define SLOW_BYTE_ACCESS 1
1460
9a63901f
RK
1461/* Define if operations between registers always perform the operation
1462 on the full register even if a narrower mode is specified. */
1463#define WORD_REGISTER_OPERATIONS
1464
1465/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1466 will either zero-extend or sign-extend. The value of this macro should
1467 be the code that says which one of the two operations is implicitly
1468 done, NIL if none. */
1469#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1470
225211e2
RK
1471/* Define if loading short immediate values into registers sign extends. */
1472#define SHORT_IMMEDIATES_SIGN_EXTEND
1473
1a94ca49
RK
1474/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1475 is done just by pretending it is already truncated. */
1476#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1477
1478/* We assume that the store-condition-codes instructions store 0 for false
1479 and some other value for true. This is the value stored for true. */
1480
1481#define STORE_FLAG_VALUE 1
1482
1483/* Define the value returned by a floating-point comparison instruction. */
1484
1485#define FLOAT_STORE_FLAG_VALUE 0.5
1486
35bb77fd
RK
1487/* Canonicalize a comparison from one we don't have to one we do have. */
1488
1489#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1490 do { \
1491 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1492 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1493 { \
1494 rtx tem = (OP0); \
1495 (OP0) = (OP1); \
1496 (OP1) = tem; \
1497 (CODE) = swap_condition (CODE); \
1498 } \
1499 if (((CODE) == LT || (CODE) == LTU) \
1500 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1501 { \
1502 (CODE) = (CODE) == LT ? LE : LEU; \
1503 (OP1) = GEN_INT (255); \
1504 } \
1505 } while (0)
1506
1a94ca49
RK
1507/* Specify the machine mode that pointers have.
1508 After generation of rtl, the compiler makes no further distinction
1509 between pointers and any other objects of this machine mode. */
1510#define Pmode DImode
1511
1512/* Mode of a function address in a call instruction (for indexing purposes). */
1513
1514#define FUNCTION_MODE Pmode
1515
1516/* Define this if addresses of constant functions
1517 shouldn't be put through pseudo regs where they can be cse'd.
1518 Desirable on machines where ordinary constants are expensive
1519 but a CALL with constant address is cheap.
1520
1521 We define this on the Alpha so that gen_call and gen_call_value
1522 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1523 then copy it into a register, thus actually letting the address be
1524 cse'ed. */
1525
1526#define NO_FUNCTION_CSE
1527
d969caf8 1528/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1529 few bits. */
d969caf8 1530#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1531
d721b776
RK
1532/* Use atexit for static constructors/destructors, instead of defining
1533 our own exit function. */
1534#define HAVE_ATEXIT
1535
1a94ca49
RK
1536/* Compute the cost of computing a constant rtl expression RTX
1537 whose rtx-code is CODE. The body of this macro is a portion
1538 of a switch statement. If the code is computed here,
1539 return it with a return statement. Otherwise, break from the switch.
1540
8b7b2e36
RK
1541 If this is an 8-bit constant, return zero since it can be used
1542 nearly anywhere with no cost. If it is a valid operand for an
1543 ADD or AND, likewise return 0 if we know it will be used in that
1544 context. Otherwise, return 2 since it might be used there later.
1545 All other constants take at least two insns. */
1a94ca49
RK
1546
1547#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1548 case CONST_INT: \
06eb8e92 1549 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1550 return 0; \
1a94ca49 1551 case CONST_DOUBLE: \
8b7b2e36
RK
1552 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1553 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1554 return 0; \
1555 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1556 return 2; \
1557 else \
1558 return COSTS_N_INSNS (2); \
1a94ca49
RK
1559 case CONST: \
1560 case SYMBOL_REF: \
1561 case LABEL_REF: \
f6f6a13c
RK
1562 switch (alpha_cpu) \
1563 { \
1564 case PROCESSOR_EV4: \
1565 return COSTS_N_INSNS (3); \
1566 case PROCESSOR_EV5: \
1567 return COSTS_N_INSNS (2); \
1568 }
1a94ca49
RK
1569
1570/* Provide the costs of a rtl expression. This is in the body of a
1571 switch on CODE. */
1572
1573#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1574 case PLUS: case MINUS: \
1575 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1576 switch (alpha_cpu) \
1577 { \
1578 case PROCESSOR_EV4: \
1579 return COSTS_N_INSNS (6); \
1580 case PROCESSOR_EV5: \
1581 return COSTS_N_INSNS (4); \
1582 } \
b49e978e
RK
1583 else if (GET_CODE (XEXP (X, 0)) == MULT \
1584 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1585 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1586 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1587 break; \
1588 case MULT: \
f6f6a13c
RK
1589 switch (alpha_cpu) \
1590 { \
1591 case PROCESSOR_EV4: \
1592 if (FLOAT_MODE_P (GET_MODE (X))) \
1593 return COSTS_N_INSNS (6); \
1594 return COSTS_N_INSNS (23); \
1595 case PROCESSOR_EV5: \
1596 if (FLOAT_MODE_P (GET_MODE (X))) \
1597 return COSTS_N_INSNS (4); \
1598 else if (GET_MODE (X) == DImode) \
1599 return COSTS_N_INSNS (12); \
1600 else \
1601 return COSTS_N_INSNS (8); \
1602 } \
b49e978e
RK
1603 case ASHIFT: \
1604 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1605 && INTVAL (XEXP (X, 1)) <= 3) \
1606 break; \
1607 /* ... fall through ... */ \
1608 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
f6f6a13c
RK
1609 switch (alpha_cpu) \
1610 { \
1611 case PROCESSOR_EV4: \
1612 return COSTS_N_INSNS (2); \
1613 case PROCESSOR_EV5: \
1614 return COSTS_N_INSNS (1); \
1615 } \
3bda6d11 1616 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1617 switch (alpha_cpu) \
1618 { \
1619 case PROCESSOR_EV4: \
1620 if (GET_MODE (X) == SFmode) \
1621 return COSTS_N_INSNS (34); \
1622 else if (GET_MODE (X) == DFmode) \
1623 return COSTS_N_INSNS (63); \
1624 else \
1625 return COSTS_N_INSNS (70); \
1626 case PROCESSOR_EV5: \
1627 if (GET_MODE (X) == SFmode) \
1628 return COSTS_N_INSNS (15); \
1629 else if (GET_MODE (X) == DFmode) \
1630 return COSTS_N_INSNS (22); \
1631 else \
1632 return COSTS_N_INSNS (70); /* EV5 ??? */ \
1633 } \
1a94ca49 1634 case MEM: \
f6f6a13c
RK
1635 switch (alpha_cpu) \
1636 { \
1637 case PROCESSOR_EV4: \
1638 return COSTS_N_INSNS (3); \
1639 case PROCESSOR_EV5: \
1640 return COSTS_N_INSNS (2); \
1641 } \
1642 case NEG: case ABS: \
1643 if (! FLOAT_MODE_P (GET_MODE (X))) \
1644 break; \
1645 /* ... fall through ... */ \
3bda6d11
RK
1646 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1647 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1648 switch (alpha_cpu) \
1649 { \
1650 case PROCESSOR_EV4: \
1651 return COSTS_N_INSNS (6); \
1652 case PROCESSOR_EV5: \
1653 return COSTS_N_INSNS (4); \
1654 }
1a94ca49
RK
1655\f
1656/* Control the assembler format that we output. */
1657
1658/* Output at beginning of assembler file. */
1659
1660#define ASM_FILE_START(FILE) \
03f8c4cc 1661{ \
130d2d72
RK
1662 alpha_write_verstamp (FILE); \
1663 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1664 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1665 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1666 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1667}
1668
1669/* Output to assembler file text saying following lines
1670 may contain character constants, extra white space, comments, etc. */
1671
1672#define ASM_APP_ON ""
1673
1674/* Output to assembler file text saying following lines
1675 no longer contain unusual constructs. */
1676
1677#define ASM_APP_OFF ""
1678
1679#define TEXT_SECTION_ASM_OP ".text"
1680
1681/* Output before read-only data. */
1682
1683#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1684
1685/* Output before writable data. */
1686
1687#define DATA_SECTION_ASM_OP ".data"
1688
1689/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1690 indicate that it is for read-only data.
1691
abc95ed3 1692 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1693 eight bytes of zero. This works around a bug in DEC's assembler in
1694 some versions of OSF/1 V3.x. */
1a94ca49
RK
1695
1696#define EXTRA_SECTIONS readonly_data
1697
1698#define EXTRA_SECTION_FUNCTIONS \
1699void \
1700literal_section () \
1701{ \
1702 if (in_section != readonly_data) \
1703 { \
c0388f29
RK
1704 static int firsttime = 1; \
1705 \
1a94ca49 1706 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1707 if (firsttime) \
1708 { \
1709 firsttime = 0; \
1710 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1711 } \
1712 \
1a94ca49
RK
1713 in_section = readonly_data; \
1714 } \
1715} \
1716
1717#define READONLY_DATA_SECTION literal_section
1718
ac030a7b
RK
1719/* If we are referencing a function that is static, make the SYMBOL_REF
1720 special. We use this to see indicate we can branch to this function
1721 without setting PV or restoring GP. */
130d2d72
RK
1722
1723#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1724 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1725 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1726
1a94ca49
RK
1727/* How to refer to registers in assembler output.
1728 This sequence is indexed by compiler's hard-register-number (see above). */
1729
1730#define REGISTER_NAMES \
1731{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1732 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1733 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1734 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1735 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1736 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1737 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1738 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1739
1740/* How to renumber registers for dbx and gdb. */
1741
1742#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1743
1744/* This is how to output the definition of a user-level label named NAME,
1745 such as the label on a static function or variable NAME. */
1746
1747#define ASM_OUTPUT_LABEL(FILE,NAME) \
1748 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1749
1750/* This is how to output a command to make the user-level label named NAME
1751 defined for reference from other files. */
1752
1753#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1754 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1755
1756/* This is how to output a reference to a user-level label named NAME.
1757 `assemble_name' uses this. */
1758
1759#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1760 fprintf (FILE, "%s", NAME)
1761
1762/* This is how to output an internal numbered label where
1763 PREFIX is the class of label and NUM is the number within the class. */
1764
1765#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1766 if ((PREFIX)[0] == 'L') \
1767 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1768 else \
1769 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1770
1771/* This is how to output a label for a jump table. Arguments are the same as
1772 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1773 passed. */
1774
1775#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1776{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1777
1778/* This is how to store into the string LABEL
1779 the symbol_ref name of an internal numbered label where
1780 PREFIX is the class of label and NUM is the number within the class.
1781 This is suitable for output with `assemble_name'. */
1782
1783#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1784 if ((PREFIX)[0] == 'L') \
1785 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1786 else \
1787 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1788
e247ca2a
RK
1789/* Check a floating-point value for validity for a particular machine mode. */
1790
1791#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1792 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1793
1a94ca49
RK
1794/* This is how to output an assembler line defining a `double' constant. */
1795
e99300f1
RS
1796#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1797 { \
1798 if (REAL_VALUE_ISINF (VALUE) \
1799 || REAL_VALUE_ISNAN (VALUE) \
1800 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1801 { \
1802 long t[2]; \
1803 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1804 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1805 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1806 } \
1807 else \
1808 { \
1809 char str[30]; \
1810 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1811 fprintf (FILE, "\t.t_floating %s\n", str); \
1812 } \
1813 }
1a94ca49
RK
1814
1815/* This is how to output an assembler line defining a `float' constant. */
1816
e247ca2a
RK
1817#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1818 do { \
1819 long t; \
1820 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1821 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1822} while (0)
2700ac93 1823
1a94ca49
RK
1824/* This is how to output an assembler line defining an `int' constant. */
1825
1826#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1827( fprintf (FILE, "\t.long "), \
1828 output_addr_const (FILE, (VALUE)), \
1829 fprintf (FILE, "\n"))
1a94ca49
RK
1830
1831/* This is how to output an assembler line defining a `long' constant. */
1832
1833#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1834( fprintf (FILE, "\t.quad "), \
1835 output_addr_const (FILE, (VALUE)), \
1836 fprintf (FILE, "\n"))
1837
1838/* Likewise for `char' and `short' constants. */
1839
1840#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1841 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1842 (GET_CODE (VALUE) == CONST_INT \
1843 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1844
1845#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1846 fprintf (FILE, "\t.byte %d\n", \
1847 (GET_CODE (VALUE) == CONST_INT \
1848 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1849
1850/* We use the default ASCII-output routine, except that we don't write more
1851 than 50 characters since the assembler doesn't support very long lines. */
1852
1853#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1854 do { \
1855 FILE *_hide_asm_out_file = (MYFILE); \
1856 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1857 int _hide_thissize = (MYLENGTH); \
1858 int _size_so_far = 0; \
1859 { \
1860 FILE *asm_out_file = _hide_asm_out_file; \
1861 unsigned char *p = _hide_p; \
1862 int thissize = _hide_thissize; \
1863 int i; \
1864 fprintf (asm_out_file, "\t.ascii \""); \
1865 \
1866 for (i = 0; i < thissize; i++) \
1867 { \
1868 register int c = p[i]; \
1869 \
1870 if (_size_so_far ++ > 50 && i < thissize - 4) \
1871 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1872 \
1873 if (c == '\"' || c == '\\') \
1874 putc ('\\', asm_out_file); \
1875 if (c >= ' ' && c < 0177) \
1876 putc (c, asm_out_file); \
1877 else \
1878 { \
1879 fprintf (asm_out_file, "\\%o", c); \
1880 /* After an octal-escape, if a digit follows, \
1881 terminate one string constant and start another. \
1882 The Vax assembler fails to stop reading the escape \
1883 after three digits, so this is the only way we \
1884 can get it to parse the data properly. */ \
1885 if (i < thissize - 1 \
1886 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1887 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1888 } \
1889 } \
1890 fprintf (asm_out_file, "\"\n"); \
1891 } \
1892 } \
1893 while (0)
52a69200 1894
1a94ca49
RK
1895/* This is how to output an insn to push a register on the stack.
1896 It need not be very fast code. */
1897
1898#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1899 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1900 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1901 (REGNO) & 31);
1902
1903/* This is how to output an insn to pop a register from the stack.
1904 It need not be very fast code. */
1905
1906#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1907 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1908 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1909 (REGNO) & 31);
1910
1911/* This is how to output an assembler line for a numeric constant byte. */
1912
1913#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1914 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1915
260ced47
RK
1916/* This is how to output an element of a case-vector that is absolute.
1917 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1918
260ced47 1919#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1920
260ced47 1921/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1922
0076aa6b 1923#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
e7a2eff8
RK
1924 fprintf (FILE, "\t.%s $%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
1925 (VALUE) + 32)
1a94ca49
RK
1926
1927/* This is how to output an assembler line
1928 that says to advance the location counter
1929 to a multiple of 2**LOG bytes. */
1930
1931#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1932 if ((LOG) != 0) \
1933 fprintf (FILE, "\t.align %d\n", LOG);
1934
1935/* This is how to advance the location counter by SIZE bytes. */
1936
1937#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1938 fprintf (FILE, "\t.space %d\n", (SIZE))
1939
1940/* This says how to output an assembler line
1941 to define a global common symbol. */
1942
1943#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1944( fputs ("\t.comm ", (FILE)), \
1945 assemble_name ((FILE), (NAME)), \
1946 fprintf ((FILE), ",%d\n", (SIZE)))
1947
1948/* This says how to output an assembler line
1949 to define a local common symbol. */
1950
1951#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1952( fputs ("\t.lcomm ", (FILE)), \
1953 assemble_name ((FILE), (NAME)), \
1954 fprintf ((FILE), ",%d\n", (SIZE)))
1955
1956/* Store in OUTPUT a string (made with alloca) containing
1957 an assembler-name for a local static variable named NAME.
1958 LABELNO is an integer which is different for each call. */
1959
1960#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1961( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1962 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1963
1964/* Define the parentheses used to group arithmetic operations
1965 in assembler code. */
1966
1967#define ASM_OPEN_PAREN "("
1968#define ASM_CLOSE_PAREN ")"
1969
1970/* Define results of standard character escape sequences. */
1971#define TARGET_BELL 007
1972#define TARGET_BS 010
1973#define TARGET_TAB 011
1974#define TARGET_NEWLINE 012
1975#define TARGET_VT 013
1976#define TARGET_FF 014
1977#define TARGET_CR 015
1978
1979/* Print operand X (an rtx) in assembler syntax to file FILE.
1980 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1981 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1982
1983#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1984
1985/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
1986 not be alphabetic (the characters are chosen so that
1987 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1988 using ASCII).
1989
1990 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
1991 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
1992 mode. alpha_fprm controls which suffix is generated.
1993
1994 ' Generates trap-mode suffix for instructions that accept the
1995 su suffix only (cmpt et al).
1996
1997 ) Generates trap-mode suffix for instructions that accept the
1998 u, su, and sui suffix. This is the bulk of the IEEE floating
1999 point instructions (addt et al).
2000
2001 + Generates trap-mode suffix for instructions that accept the
2002 sui suffix (cvtqt and cvtqs).
2003 */
1a94ca49 2004
2bf6230d
RK
2005#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2006 ((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+')
1a94ca49
RK
2007\f
2008/* Print a memory address as an operand to reference that memory location. */
2009
2010#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2011{ rtx addr = (ADDR); \
2012 int basereg = 31; \
2013 HOST_WIDE_INT offset = 0; \
2014 \
2015 if (GET_CODE (addr) == AND) \
2016 addr = XEXP (addr, 0); \
2017 \
2018 if (GET_CODE (addr) == REG) \
2019 basereg = REGNO (addr); \
2020 else if (GET_CODE (addr) == CONST_INT) \
2021 offset = INTVAL (addr); \
2022 else if (GET_CODE (addr) == PLUS \
2023 && GET_CODE (XEXP (addr, 0)) == REG \
2024 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2025 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2026 else \
2027 abort (); \
2028 \
2029 fprintf (FILE, "%d($%d)", offset, basereg); \
2030}
2031/* Define the codes that are matched by predicates in alpha.c. */
2032
2033#define PREDICATE_CODES \
2034 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2035 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2036 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2037 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2038 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2039 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2040 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2041 {"const48_operand", {CONST_INT}}, \
2042 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2043 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2044 {"mode_mask_operand", {CONST_INT}}, \
2045 {"mul8_operand", {CONST_INT}}, \
2046 {"mode_width_operand", {CONST_INT}}, \
2047 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2048 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2049 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2050 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2051 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2052 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2053 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2054 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2055 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2056 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2057 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2058 {"aligned_memory_operand", {MEM}}, \
2059 {"unaligned_memory_operand", {MEM}}, \
442b1685 2060 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1a94ca49 2061 {"any_memory_operand", {MEM}},
03f8c4cc 2062\f
34fa88ab
RK
2063/* Tell collect that the object format is ECOFF. */
2064#define OBJECT_FORMAT_COFF
2065#define EXTENDED_COFF
2066
2067/* If we use NM, pass -g to it so it only lists globals. */
2068#define NM_FLAGS "-pg"
2069
03f8c4cc
RK
2070/* Definitions for debugging. */
2071
2072#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2073#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2074#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2075
2076#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
2077#define PREFERRED_DEBUGGING_TYPE \
2078 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
2079#endif
2080
2081
2082/* Correct the offset of automatic variables and arguments. Note that
2083 the Alpha debug format wants all automatic variables and arguments
2084 to be in terms of two different offsets from the virtual frame pointer,
2085 which is the stack pointer before any adjustment in the function.
2086 The offset for the argument pointer is fixed for the native compiler,
2087 it is either zero (for the no arguments case) or large enough to hold
2088 all argument registers.
2089 The offset for the auto pointer is the fourth argument to the .frame
2090 directive (local_offset).
2091 To stay compatible with the native tools we use the same offsets
2092 from the virtual frame pointer and adjust the debugger arg/auto offsets
2093 accordingly. These debugger offsets are set up in output_prolog. */
2094
9a0b18f2
RK
2095extern long alpha_arg_offset;
2096extern long alpha_auto_offset;
03f8c4cc
RK
2097#define DEBUGGER_AUTO_OFFSET(X) \
2098 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2099#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2100
2101
2102#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2103 alpha_output_lineno (STREAM, LINE)
2104extern void alpha_output_lineno ();
2105
2106#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2107 alpha_output_filename (STREAM, NAME)
2108extern void alpha_output_filename ();
2109
2110
ab8b8941
RK
2111/* mips-tfile.c limits us to strings of one page. */
2112#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
2113
2114/* By default, turn on GDB extensions. */
2115#define DEFAULT_GDB_EXTENSIONS 1
2116
7aadc7c2
RK
2117/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2118#define NO_DBX_FUNCTION_END 1
2119
03f8c4cc
RK
2120/* If we are smuggling stabs through the ALPHA ECOFF object
2121 format, put a comment in front of the .stab<x> operation so
2122 that the ALPHA assembler does not choke. The mips-tfile program
2123 will correctly put the stab into the object file. */
2124
2125#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2126#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2127#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2128
2129/* Forward references to tags are allowed. */
2130#define SDB_ALLOW_FORWARD_REFERENCES
2131
2132/* Unknown tags are also allowed. */
2133#define SDB_ALLOW_UNKNOWN_REFERENCES
2134
2135#define PUT_SDB_DEF(a) \
2136do { \
2137 fprintf (asm_out_file, "\t%s.def\t", \
2138 (TARGET_GAS) ? "" : "#"); \
2139 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2140 fputc (';', asm_out_file); \
2141} while (0)
2142
2143#define PUT_SDB_PLAIN_DEF(a) \
2144do { \
2145 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2146 (TARGET_GAS) ? "" : "#", (a)); \
2147} while (0)
2148
2149#define PUT_SDB_TYPE(a) \
2150do { \
2151 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2152} while (0)
2153
2154/* For block start and end, we create labels, so that
2155 later we can figure out where the correct offset is.
2156 The normal .ent/.end serve well enough for functions,
2157 so those are just commented out. */
2158
2159extern int sdb_label_count; /* block start/end next label # */
2160
2161#define PUT_SDB_BLOCK_START(LINE) \
2162do { \
2163 fprintf (asm_out_file, \
2164 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2165 sdb_label_count, \
2166 (TARGET_GAS) ? "" : "#", \
2167 sdb_label_count, \
2168 (LINE)); \
2169 sdb_label_count++; \
2170} while (0)
2171
2172#define PUT_SDB_BLOCK_END(LINE) \
2173do { \
2174 fprintf (asm_out_file, \
2175 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2176 sdb_label_count, \
2177 (TARGET_GAS) ? "" : "#", \
2178 sdb_label_count, \
2179 (LINE)); \
2180 sdb_label_count++; \
2181} while (0)
2182
2183#define PUT_SDB_FUNCTION_START(LINE)
2184
2185#define PUT_SDB_FUNCTION_END(LINE)
2186
2187#define PUT_SDB_EPILOGUE_END(NAME)
2188
7bd7a756
RK
2189/* No point in running CPP on our assembler output. */
2190#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
2191/* Don't pass -g to GNU as, because some versions don't accept this option. */
2192#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
2193#else
2194/* In OSF/1 v3.2c, the assembler by default does not output file names which
2195 causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
2196 ??? Stricly speaking, we only need -g if the user specifies -g. Passing
2197 it always means that we get slightly larger than necessary object files
2198 if the user does not specify -g. If we don't pass -g, then mips-tfile
2199 will need to be fixed to work in this case. */
2200#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
2201#endif
2202
03f8c4cc
RK
2203/* Specify to run a post-processor, mips-tfile after the assembler
2204 has run to stuff the ecoff debug information into the object file.
2205 This is needed because the Alpha assembler provides no way
2206 of specifying such information in the assembly file. */
2207
88681624 2208#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2209
2210#define ASM_FINAL_SPEC "\
2211%{malpha-as: %{!mno-mips-tfile: \
2212 \n mips-tfile %{v*: -v} \
2213 %{K: -I %b.o~} \
2214 %{!K: %{save-temps: -I %b.o~}} \
2215 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2216 %{.s:%i} %{!.s:%g.s}}}"
2217
2218#else
2219#define ASM_FINAL_SPEC "\
2220%{!mgas: %{!mno-mips-tfile: \
2221 \n mips-tfile %{v*: -v} \
2222 %{K: -I %b.o~} \
2223 %{!K: %{save-temps: -I %b.o~}} \
2224 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2225 %{.s:%i} %{!.s:%g.s}}}"
2226
2227#endif
2228
2229/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2230 mips-tdump.c to print them out.
2231
2232 These must match the corresponding definitions in gdb/mipsread.c.
2233 Unfortunately, gcc and gdb do not currently share any directories. */
2234
2235#define CODE_MASK 0x8F300
2236#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2237#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2238#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2239
2240/* Override some mips-tfile definitions. */
2241
2242#define SHASH_SIZE 511
2243#define THASH_SIZE 55
1e6c6f11
RK
2244
2245/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2246
2247#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2248
2249/* The system headers under OSF/1 are C++-aware. */
2250#define NO_IMPLICIT_EXTERN_C
54190234
JM
2251
2252/* The linker will stick __main into the .init section. */
2253#define HAS_INIT_SECTION
68d69835
JM
2254#define LD_INIT_SWITCH "-init"
2255#define LD_FINI_SWITCH "-fini"
This page took 0.536268 seconds and 5 git commands to generate.