]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(RETURN_ADDR_RTX): Remove call to copy_to_reg.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
8b109b37 2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
7981384f 45/* No point in running CPP on our assembler output. */
e0fb9029 46#define ASM_SPEC "-nocpp %{pg}"
7981384f 47
1c6c2b05 48/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 49
1c6c2b05 50#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 51
f987462f
JM
52/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
53 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 54 -call_shared as appropriate. Also pass -pg. */
8877eb00 55#define LINK_SPEC \
d37df6cc 56 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
57 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
58 %{rpath*}"
59
60#define WORD_SWITCH_TAKES_ARG(STR) \
61 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
62 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
63 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
64 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
65 || !strcmp (STR, "isystem"))
8877eb00 66
85d159a3 67#define STARTFILE_SPEC \
1c6c2b05 68 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 69
1a94ca49
RK
70/* Print subsidiary information on the compiler version in use. */
71#define TARGET_VERSION
72
0076aa6b
RK
73/* Default this to not be compiling for Windows/NT. */
74#ifndef WINDOWS_NT
75#define WINDOWS_NT 0
76#endif
77
1a94ca49
RK
78/* Define the location for the startup file on OSF/1 for Alpha. */
79
80#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
81
82/* Run-time compilation parameters selecting different hardware subsets. */
83
84extern int target_flags;
85
86/* This means that floating-point support exists in the target implementation
87 of the Alpha architecture. This is usually the default. */
88
89#define TARGET_FP (target_flags & 1)
90
91/* This means that floating-point registers are allowed to be used. Note
92 that Alpha implementations without FP operations are required to
93 provide the FP registers. */
94
03f8c4cc
RK
95#define TARGET_FPREGS (target_flags & 2)
96
97/* This means that gas is used to process the assembler file. */
98
99#define MASK_GAS 4
100#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
101
102/* Macro to define tables used to set the flags.
103 This is a list in braces of pairs in braces,
104 each pair being { "NAME", VALUE }
105 where VALUE is the bits to set or minus the bits to clear.
106 An empty string NAME is used to identify the default VALUE. */
107
108#define TARGET_SWITCHES \
109 { {"no-soft-float", 1}, \
110 {"soft-float", -1}, \
111 {"fp-regs", 2}, \
112 {"no-fp-regs", -3}, \
03f8c4cc
RK
113 {"alpha-as", -MASK_GAS}, \
114 {"gas", MASK_GAS}, \
88681624 115 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
116
117#define TARGET_DEFAULT 3
118
88681624
ILT
119#ifndef TARGET_CPU_DEFAULT
120#define TARGET_CPU_DEFAULT 0
121#endif
122
1a94ca49
RK
123/* Define this macro to change register usage conditional on target flags.
124
125 On the Alpha, we use this to disable the floating-point registers when
126 they don't exist. */
127
128#define CONDITIONAL_REGISTER_USAGE \
129 if (! TARGET_FPREGS) \
52a69200 130 for (i = 32; i < 63; i++) \
1a94ca49
RK
131 fixed_regs[i] = call_used_regs[i] = 1;
132
4f074454
RK
133/* Show we can debug even without a frame pointer. */
134#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
135\f
136/* target machine storage layout */
137
2700ac93
RS
138/* Define to enable software floating point emulation. */
139#define REAL_ARITHMETIC
140
1a94ca49
RK
141/* Define the size of `int'. The default is the same as the word size. */
142#define INT_TYPE_SIZE 32
143
144/* Define the size of `long long'. The default is the twice the word size. */
145#define LONG_LONG_TYPE_SIZE 64
146
147/* The two floating-point formats we support are S-floating, which is
148 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
149 and `long double' are T. */
150
151#define FLOAT_TYPE_SIZE 32
152#define DOUBLE_TYPE_SIZE 64
153#define LONG_DOUBLE_TYPE_SIZE 64
154
155#define WCHAR_TYPE "short unsigned int"
156#define WCHAR_TYPE_SIZE 16
157
13d39dbc 158/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
159 in a wider mode than that declared by the program. In such cases,
160 the value is constrained to be within the bounds of the declared
161 type, but kept valid in the wider mode. The signedness of the
162 extension may differ from that of the type.
163
164 For Alpha, we always store objects in a full register. 32-bit objects
165 are always sign-extended, but smaller objects retain their signedness. */
166
167#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
168 if (GET_MODE_CLASS (MODE) == MODE_INT \
169 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
170 { \
171 if ((MODE) == SImode) \
172 (UNSIGNEDP) = 0; \
173 (MODE) = DImode; \
174 }
175
176/* Define this if function arguments should also be promoted using the above
177 procedure. */
178
179#define PROMOTE_FUNCTION_ARGS
180
181/* Likewise, if the function return value is promoted. */
182
183#define PROMOTE_FUNCTION_RETURN
184
185/* Define this if most significant bit is lowest numbered
186 in instructions that operate on numbered bit-fields.
187
188 There are no such instructions on the Alpha, but the documentation
189 is little endian. */
190#define BITS_BIG_ENDIAN 0
191
192/* Define this if most significant byte of a word is the lowest numbered.
193 This is false on the Alpha. */
194#define BYTES_BIG_ENDIAN 0
195
196/* Define this if most significant word of a multiword number is lowest
197 numbered.
198
199 For Alpha we can decide arbitrarily since there are no machine instructions
200 for them. Might as well be consistent with bytes. */
201#define WORDS_BIG_ENDIAN 0
202
203/* number of bits in an addressable storage unit */
204#define BITS_PER_UNIT 8
205
206/* Width in bits of a "word", which is the contents of a machine register.
207 Note that this is not necessarily the width of data type `int';
208 if using 16-bit ints on a 68000, this would still be 32.
209 But on a machine with 16-bit registers, this would be 16. */
210#define BITS_PER_WORD 64
211
212/* Width of a word, in units (bytes). */
213#define UNITS_PER_WORD 8
214
215/* Width in bits of a pointer.
216 See also the macro `Pmode' defined below. */
217#define POINTER_SIZE 64
218
219/* Allocation boundary (in *bits*) for storing arguments in argument list. */
220#define PARM_BOUNDARY 64
221
222/* Boundary (in *bits*) on which stack pointer should be aligned. */
223#define STACK_BOUNDARY 64
224
225/* Allocation boundary (in *bits*) for the code of a function. */
226#define FUNCTION_BOUNDARY 64
227
228/* Alignment of field after `int : 0' in a structure. */
229#define EMPTY_FIELD_BOUNDARY 64
230
231/* Every structure's size must be a multiple of this. */
232#define STRUCTURE_SIZE_BOUNDARY 8
233
234/* A bitfield declared as `int' forces `int' alignment for the struct. */
235#define PCC_BITFIELD_TYPE_MATTERS 1
236
65823178
RK
237/* Align loop starts for optimal branching.
238
239 ??? Kludge this and the next macro for the moment by not doing anything if
240 we don't optimize and also if we are writing ECOFF symbols to work around
241 a bug in DEC's assembler. */
1a94ca49 242
130d2d72 243#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
244 if (optimize > 0 && write_symbols != SDB_DEBUG) \
245 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
246
247/* This is how to align an instruction for optimal branching.
248 On Alpha we'll get better performance by aligning on a quadword
249 boundary. */
130d2d72 250
1a94ca49 251#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
252 if (optimize > 0 && write_symbols != SDB_DEBUG) \
253 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
254
255/* No data type wants to be aligned rounder than this. */
256#define BIGGEST_ALIGNMENT 64
257
258/* Make strings word-aligned so strcpy from constants will be faster. */
259#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
260 (TREE_CODE (EXP) == STRING_CST \
261 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
262
263/* Make arrays of chars word-aligned for the same reasons. */
264#define DATA_ALIGNMENT(TYPE, ALIGN) \
265 (TREE_CODE (TYPE) == ARRAY_TYPE \
266 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
267 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
268
269/* Set this non-zero if move instructions will actually fail to work
270 when given unaligned data.
271
272 Since we get an error message when we do one, call them invalid. */
273
274#define STRICT_ALIGNMENT 1
275
276/* Set this non-zero if unaligned move instructions are extremely slow.
277
278 On the Alpha, they trap. */
130d2d72
RK
279
280#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
281\f
282/* Standard register usage. */
283
284/* Number of actual hardware registers.
285 The hardware registers are assigned numbers for the compiler
286 from 0 to just below FIRST_PSEUDO_REGISTER.
287 All registers that the compiler knows about must be given numbers,
288 even those that are not normally considered general registers.
289
290 We define all 32 integer registers, even though $31 is always zero,
291 and all 32 floating-point registers, even though $f31 is also
292 always zero. We do not bother defining the FP status register and
130d2d72
RK
293 there are no other registers.
294
295 Since $31 is always zero, we will use register number 31 as the
296 argument pointer. It will never appear in the generated code
297 because we will always be eliminating it in favor of the stack
52a69200
RK
298 pointer or hardware frame pointer.
299
300 Likewise, we use $f31 for the frame pointer, which will always
301 be eliminated in favor of the hardware frame pointer or the
302 stack pointer. */
1a94ca49
RK
303
304#define FIRST_PSEUDO_REGISTER 64
305
306/* 1 for registers that have pervasive standard uses
307 and are not available for the register allocator. */
308
309#define FIXED_REGISTERS \
310 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
314
315/* 1 for registers not available across function calls.
316 These must include the FIXED_REGISTERS and also any
317 registers that can be used without being saved.
318 The latter must include the registers where values are returned
319 and the register where structure-value addresses are passed.
320 Aside from that, you can include as many other registers as you like. */
321#define CALL_USED_REGISTERS \
322 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
323 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
324 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
325 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
326
327/* List the order in which to allocate registers. Each register must be
328 listed once, even those in FIXED_REGISTERS.
329
330 We allocate in the following order:
331 $f1 (nonsaved floating-point register)
332 $f10-$f15 (likewise)
333 $f22-$f30 (likewise)
334 $f21-$f16 (likewise, but input args)
335 $f0 (nonsaved, but return value)
336 $f2-$f9 (saved floating-point registers)
337 $1-$8 (nonsaved integer registers)
338 $22-$25 (likewise)
339 $28 (likewise)
340 $0 (likewise, but return value)
341 $21-$16 (likewise, but input args)
0076aa6b 342 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
343 $9-$14 (saved integer registers)
344 $26 (return PC)
345 $15 (frame pointer)
346 $29 (global pointer)
52a69200 347 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
348
349#define REG_ALLOC_ORDER \
350 {33, \
da01bc2c 351 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
352 54, 55, 56, 57, 58, 59, 60, 61, 62, \
353 53, 52, 51, 50, 49, 48, \
354 32, \
355 34, 35, 36, 37, 38, 39, 40, 41, \
356 1, 2, 3, 4, 5, 6, 7, 8, \
357 22, 23, 24, 25, \
358 28, \
359 0, \
360 21, 20, 19, 18, 17, 16, \
361 27, \
362 9, 10, 11, 12, 13, 14, \
363 26, \
364 15, \
365 29, \
366 30, 31, 63 }
367
368/* Return number of consecutive hard regs needed starting at reg REGNO
369 to hold something of mode MODE.
370 This is ordinarily the length in words of a value of mode MODE
371 but can be less for certain modes in special long registers. */
372
373#define HARD_REGNO_NREGS(REGNO, MODE) \
374 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
375
376/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
377 On Alpha, the integer registers can hold any mode. The floating-point
378 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
379 or 8-bit values. If we only allowed the larger integers into FP registers,
380 we'd have to say that QImode and SImode aren't tiable, which is a
381 pain. So say all registers can hold everything and see how that works. */
382
383#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
384
385/* Value is 1 if it is a good idea to tie two pseudo registers
386 when one has mode MODE1 and one has mode MODE2.
387 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
388 for any hard reg, then this must be 0 for correct output. */
389
390#define MODES_TIEABLE_P(MODE1, MODE2) 1
391
392/* Specify the registers used for certain standard purposes.
393 The values of these macros are register numbers. */
394
395/* Alpha pc isn't overloaded on a register that the compiler knows about. */
396/* #define PC_REGNUM */
397
398/* Register to use for pushing function arguments. */
399#define STACK_POINTER_REGNUM 30
400
401/* Base register for access to local variables of the function. */
52a69200 402#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
403
404/* Value should be nonzero if functions must have frame pointers.
405 Zero means the frame pointer need not be set up (and parms
406 may be accessed via the stack pointer) in functions that seem suitable.
407 This is computed in `reload', in reload1.c. */
408#define FRAME_POINTER_REQUIRED 0
409
410/* Base register for access to arguments of the function. */
130d2d72 411#define ARG_POINTER_REGNUM 31
1a94ca49 412
52a69200
RK
413/* Base register for access to local variables of function. */
414#define FRAME_POINTER_REGNUM 63
415
1a94ca49
RK
416/* Register in which static-chain is passed to a function.
417
418 For the Alpha, this is based on an example; the calling sequence
419 doesn't seem to specify this. */
420#define STATIC_CHAIN_REGNUM 1
421
422/* Register in which address to store a structure value
423 arrives in the function. On the Alpha, the address is passed
424 as a hidden argument. */
425#define STRUCT_VALUE 0
426\f
427/* Define the classes of registers for register constraints in the
428 machine description. Also define ranges of constants.
429
430 One of the classes must always be named ALL_REGS and include all hard regs.
431 If there is more than one class, another class must be named NO_REGS
432 and contain no registers.
433
434 The name GENERAL_REGS must be the name of a class (or an alias for
435 another name such as ALL_REGS). This is the class of registers
436 that is allowed by "g" or "r" in a register constraint.
437 Also, registers outside this class are allocated only when
438 instructions express preferences for them.
439
440 The classes must be numbered in nondecreasing order; that is,
441 a larger-numbered class must never be contained completely
442 in a smaller-numbered class.
443
444 For any two classes, it is very desirable that there be another
445 class that represents their union. */
446
447enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
448 LIM_REG_CLASSES };
449
450#define N_REG_CLASSES (int) LIM_REG_CLASSES
451
452/* Give names of register classes as strings for dump file. */
453
454#define REG_CLASS_NAMES \
455 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
456
457/* Define which registers fit in which classes.
458 This is an initializer for a vector of HARD_REG_SET
459 of length N_REG_CLASSES. */
460
461#define REG_CLASS_CONTENTS \
52a69200 462 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
463
464/* The same information, inverted:
465 Return the class number of the smallest class containing
466 reg number REGNO. This could be a conditional expression
467 or could index an array. */
468
52a69200
RK
469#define REGNO_REG_CLASS(REGNO) \
470 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
471
472/* The class value for index registers, and the one for base regs. */
473#define INDEX_REG_CLASS NO_REGS
474#define BASE_REG_CLASS GENERAL_REGS
475
476/* Get reg_class from a letter such as appears in the machine description. */
477
478#define REG_CLASS_FROM_LETTER(C) \
479 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
480
481/* Define this macro to change register usage conditional on target flags. */
482/* #define CONDITIONAL_REGISTER_USAGE */
483
484/* The letters I, J, K, L, M, N, O, and P in a register constraint string
485 can be used to stand for particular ranges of immediate operands.
486 This macro defines what the ranges are.
487 C is the letter, and VALUE is a constant value.
488 Return 1 if VALUE is in the range specified by C.
489
490 For Alpha:
491 `I' is used for the range of constants most insns can contain.
492 `J' is the constant zero.
493 `K' is used for the constant in an LDA insn.
494 `L' is used for the constant in a LDAH insn.
495 `M' is used for the constants that can be AND'ed with using a ZAP insn.
496 `N' is used for complemented 8-bit constants.
497 `O' is used for negated 8-bit constants.
498 `P' is used for the constants 1, 2 and 3. */
499
500#define CONST_OK_FOR_LETTER_P(VALUE, C) \
501 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
502 : (C) == 'J' ? (VALUE) == 0 \
503 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
504 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
505 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
506 && ((HOST_BITS_PER_WIDE_INT == 64 \
507 || (unsigned) (VALUE) != 0x80000000u))) \
1a94ca49
RK
508 : (C) == 'M' ? zap_mask (VALUE) \
509 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
510 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
511 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
512 : 0)
513
514/* Similar, but for floating or large integer constants, and defining letters
515 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
516
517 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
518 that is the operand of a ZAP insn. */
519
520#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
521 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
522 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
523 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
524 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
525 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
526 : 0)
527
e560f226
RK
528/* Optional extra constraints for this machine.
529
530 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
531 reference to an unaligned location.
532 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
533 function. */
e560f226
RK
534
535#define EXTRA_CONSTRAINT(OP, C) \
536 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 537 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
538 : 0)
539
1a94ca49
RK
540/* Given an rtx X being reloaded into a reg required to be
541 in class CLASS, return the class of reg to actually use.
542 In general this is just CLASS; but on some machines
543 in some cases it is preferable to use a more restrictive class.
544
545 On the Alpha, all constants except zero go into a floating-point
546 register via memory. */
547
548#define PREFERRED_RELOAD_CLASS(X, CLASS) \
549 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
550 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
551 : (CLASS))
552
553/* Loading and storing HImode or QImode values to and from memory
554 usually requires a scratch register. The exceptions are loading
e560f226 555 QImode and HImode from an aligned address to a general register.
ddd5a7c1 556 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 557 FP register. */
1a94ca49
RK
558
559#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
560(((GET_CODE (IN) == MEM \
561 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
562 || (GET_CODE (IN) == SUBREG \
563 && (GET_CODE (SUBREG_REG (IN)) == MEM \
564 || (GET_CODE (SUBREG_REG (IN)) == REG \
565 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
566 && (((CLASS) == FLOAT_REGS \
567 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
568 || (((MODE) == QImode || (MODE) == HImode) \
569 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
570 ? GENERAL_REGS \
571 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
572 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
573 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
574 && (GET_MODE_SIZE (GET_MODE (IN)) \
575 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 576 : NO_REGS)
1a94ca49
RK
577
578#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
579(((GET_CODE (OUT) == MEM \
580 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
581 || (GET_CODE (OUT) == SUBREG \
582 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
583 || (GET_CODE (SUBREG_REG (OUT)) == REG \
584 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
585 && (((MODE) == HImode || (MODE) == QImode \
586 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
587 ? GENERAL_REGS \
588 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
589 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
590 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
591 && (GET_MODE_SIZE (GET_MODE (OUT)) \
592 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
593 : NO_REGS)
1a94ca49
RK
594
595/* If we are copying between general and FP registers, we need a memory
596 location. */
597
598#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
599
acd94aaf
RK
600/* Specify the mode to be used for memory when a secondary memory
601 location is needed. If MODE is floating-point, use it. Otherwise,
602 widen to a word like the default. This is needed because we always
603 store integers in FP registers in quadword format. This whole
604 area is very tricky! */
605#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
606 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 607 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
608 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
609
1a94ca49
RK
610/* Return the maximum number of consecutive registers
611 needed to represent mode MODE in a register of class CLASS. */
612
613#define CLASS_MAX_NREGS(CLASS, MODE) \
614 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
615
c31dfe4d
RK
616/* If defined, gives a class of registers that cannot be used as the
617 operand of a SUBREG that changes the size of the object. */
618
619#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
620
1a94ca49
RK
621/* Define the cost of moving between registers of various classes. Moving
622 between FLOAT_REGS and anything else except float regs is expensive.
623 In fact, we make it quite expensive because we really don't want to
624 do these moves unless it is clearly worth it. Optimizations may
625 reduce the impact of not being able to allocate a pseudo to a
626 hard register. */
627
628#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
629 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
630
631/* A C expressions returning the cost of moving data of MODE from a register to
632 or from memory.
633
634 On the Alpha, bump this up a bit. */
635
636#define MEMORY_MOVE_COST(MODE) 6
637
638/* Provide the cost of a branch. Exact meaning under development. */
639#define BRANCH_COST 5
640
641/* Adjust the cost of dependencies. */
642
643#define ADJUST_COST(INSN,LINK,DEP,COST) \
644 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
645\f
646/* Stack layout; function entry, exit and calling. */
647
648/* Define this if pushing a word on the stack
649 makes the stack pointer a smaller address. */
650#define STACK_GROWS_DOWNWARD
651
652/* Define this if the nominal address of the stack frame
653 is at the high-address end of the local variables;
654 that is, each additional local variable allocated
655 goes at a more negative offset in the frame. */
130d2d72 656/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
657
658/* Offset within stack frame to start allocating local variables at.
659 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
660 first local allocated. Otherwise, it is the offset to the BEGINNING
661 of the first local allocated. */
662
52a69200 663#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
664
665/* If we generate an insn to push BYTES bytes,
666 this says how many the stack pointer really advances by.
667 On Alpha, don't define this because there are no push insns. */
668/* #define PUSH_ROUNDING(BYTES) */
669
670/* Define this if the maximum size of all the outgoing args is to be
671 accumulated and pushed during the prologue. The amount can be
672 found in the variable current_function_outgoing_args_size. */
673#define ACCUMULATE_OUTGOING_ARGS
674
675/* Offset of first parameter from the argument pointer register value. */
676
130d2d72 677#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
678
679/* Definitions for register eliminations.
680
978e8952 681 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 682 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
683 pointer register. Secondly, the argument pointer register can always be
684 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
685
686/* This is an array of structures. Each structure initializes one pair
687 of eliminable registers. The "from" register number is given first,
688 followed by "to". Eliminations of the same "from" register are listed
689 in order of preference. */
690
52a69200
RK
691#define ELIMINABLE_REGS \
692{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
693 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
694 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
695 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
696
697/* Given FROM and TO register numbers, say whether this elimination is allowed.
698 Frame pointer elimination is automatically handled.
699
130d2d72 700 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
701 eliminated are already handled. */
702
130d2d72 703#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 704
52a69200
RK
705/* Round up to a multiple of 16 bytes. */
706#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
707
1a94ca49
RK
708/* Define the offset between two registers, one to be eliminated, and the other
709 its replacement, at the start of a routine. */
710#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
711{ if ((FROM) == FRAME_POINTER_REGNUM) \
712 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
713 + alpha_sa_size ()); \
714 else if ((FROM) == ARG_POINTER_REGNUM) \
715 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
716 + alpha_sa_size () \
d772039b
RK
717 + (ALPHA_ROUND (get_frame_size () \
718 + current_function_pretend_args_size) \
719 - current_function_pretend_args_size)); \
1a94ca49
RK
720}
721
722/* Define this if stack space is still allocated for a parameter passed
723 in a register. */
724/* #define REG_PARM_STACK_SPACE */
725
726/* Value is the number of bytes of arguments automatically
727 popped when returning from a subroutine call.
8b109b37 728 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
729 FUNTYPE is the data type of the function (as a tree),
730 or for a library call it is an identifier node for the subroutine name.
731 SIZE is the number of bytes of arguments passed on the stack. */
732
8b109b37 733#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
734
735/* Define how to find the value returned by a function.
736 VALTYPE is the data type of the value (as a tree).
737 If the precise function being called is known, FUNC is its FUNCTION_DECL;
738 otherwise, FUNC is 0.
739
740 On Alpha the value is found in $0 for integer functions and
741 $f0 for floating-point functions. */
742
743#define FUNCTION_VALUE(VALTYPE, FUNC) \
744 gen_rtx (REG, \
20e76cb9 745 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
1a94ca49
RK
746 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
747 ? word_mode : TYPE_MODE (VALTYPE), \
748 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
749
750/* Define how to find the value returned by a library function
751 assuming the value has mode MODE. */
752
753#define LIBCALL_VALUE(MODE) \
754 gen_rtx (REG, MODE, \
755 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
756
130d2d72
RK
757/* The definition of this macro implies that there are cases where
758 a scalar value cannot be returned in registers.
759
760 For the Alpha, any structure or union type is returned in memory, as
761 are integers whose size is larger than 64 bits. */
762
763#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 764 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
765 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
766
1a94ca49
RK
767/* 1 if N is a possible register number for a function value
768 as seen by the caller. */
769
770#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
771
772/* 1 if N is a possible register number for function argument passing.
773 On Alpha, these are $16-$21 and $f16-$f21. */
774
775#define FUNCTION_ARG_REGNO_P(N) \
776 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
777\f
778/* Define a data type for recording info about an argument list
779 during the scan of that argument list. This data type should
780 hold all necessary information about the function itself
781 and about the args processed so far, enough to enable macros
782 such as FUNCTION_ARG to determine where the next arg should go.
783
784 On Alpha, this is a single integer, which is a number of words
785 of arguments scanned so far.
786 Thus 6 or more means all following args should go on the stack. */
787
788#define CUMULATIVE_ARGS int
789
790/* Initialize a variable CUM of type CUMULATIVE_ARGS
791 for a call to a function whose data type is FNTYPE.
792 For a library call, FNTYPE is 0. */
793
794#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
795
796/* Define intermediate macro to compute the size (in registers) of an argument
797 for the Alpha. */
798
799#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
800((MODE) != BLKmode \
801 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
802 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
803
804/* Update the data in CUM to advance over an argument
805 of mode MODE and data type TYPE.
806 (TYPE is null for libcalls where that information may not be available.) */
807
808#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
809 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
810 (CUM) = 6; \
811 else \
812 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
813
814/* Determine where to put an argument to a function.
815 Value is zero to push the argument on the stack,
816 or a hard register in which to store the argument.
817
818 MODE is the argument's machine mode.
819 TYPE is the data type of the argument (as a tree).
820 This is null for libcalls where that information may
821 not be available.
822 CUM is a variable of type CUMULATIVE_ARGS which gives info about
823 the preceding args and about the function being called.
824 NAMED is nonzero if this argument is a named parameter
825 (otherwise it is an extra parameter matching an ellipsis).
826
827 On Alpha the first 6 words of args are normally in registers
828 and the rest are pushed. */
829
830#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
831((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
832 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
833 (CUM) + 16 + ((TARGET_FPREGS \
834 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
835 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
836 * 32)) \
837 : 0)
1a94ca49 838
1a94ca49
RK
839/* Specify the padding direction of arguments.
840
841 On the Alpha, we must pad upwards in order to be able to pass args in
842 registers. */
843
844#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
845
846/* For an arg passed partly in registers and partly in memory,
847 this is the number of registers used.
848 For args passed entirely in registers or entirely in memory, zero. */
849
850#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
851((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
852 ? 6 - (CUM) : 0)
853
130d2d72
RK
854/* Perform any needed actions needed for a function that is receiving a
855 variable number of arguments.
856
857 CUM is as above.
858
859 MODE and TYPE are the mode and type of the current parameter.
860
861 PRETEND_SIZE is a variable that should be set to the amount of stack
862 that must be pushed by the prolog to pretend that our caller pushed
863 it.
864
865 Normally, this macro will push all remaining incoming registers on the
866 stack and set PRETEND_SIZE to the length of the registers pushed.
867
868 On the Alpha, we allocate space for all 12 arg registers, but only
869 push those that are remaining.
870
871 However, if NO registers need to be saved, don't allocate any space.
872 This is not only because we won't need the space, but because AP includes
873 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
874 ap-relative addresses already made.
875
876 If we are not to use the floating-point registers, save the integer
877 registers where we would put the floating-point registers. This is
878 not the most efficient way to implement varargs with just one register
879 class, but it isn't worth doing anything more efficient in this rare
880 case. */
881
130d2d72
RK
882
883#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
884{ if ((CUM) < 6) \
885 { \
886 if (! (NO_RTL)) \
887 { \
888 move_block_from_reg \
889 (16 + CUM, \
890 gen_rtx (MEM, BLKmode, \
891 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 892 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 893 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 894 move_block_from_reg \
7a92339b 895 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
896 gen_rtx (MEM, BLKmode, \
897 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 898 (CUM) * UNITS_PER_WORD)), \
02892e06 899 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
900 } \
901 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
902 } \
903}
904
c8e9adec
RK
905/* Try to output insns to set TARGET equal to the constant C if it can be
906 done in less than N insns. Do all computations in MODE. Returns the place
907 where the output has been placed if it can be done and the insns have been
908 emitted. If it would take more than N insns, zero is returned and no
909 insns and emitted. */
910extern struct rtx_def *alpha_emit_set_const ();
911
1a94ca49
RK
912/* Generate necessary RTL for __builtin_saveregs().
913 ARGLIST is the argument list; see expr.c. */
914extern struct rtx_def *alpha_builtin_saveregs ();
915#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
916
917/* Define the information needed to generate branch and scc insns. This is
918 stored from the compare operation. Note that we can't use "rtx" here
919 since it hasn't been defined! */
920
921extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
922extern int alpha_compare_fp_p;
923
924/* This macro produces the initial definition of a function name. On the
03f8c4cc 925 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
926
927extern char *alpha_function_name;
928
929#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 930{ \
1a94ca49
RK
931 alpha_function_name = NAME; \
932}
933
934/* This macro generates the assembly code for function entry.
935 FILE is a stdio stream to output the code to.
936 SIZE is an int: how many units of temporary storage to allocate.
937 Refer to the array `regs_ever_live' to determine which registers
938 to save; `regs_ever_live[I]' is nonzero if register number I
939 is ever used in the function. This macro is responsible for
940 knowing which registers should not be saved even if used. */
941
942#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
943
944/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 945 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 946 by simply passing -pg to the assembler and linker. */
85d159a3 947
e0fb9029 948#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
949
950/* Output assembler code to FILE to initialize this source file's
951 basic block profiling info, if that has not already been done.
952 This assumes that __bb_init_func doesn't garble a1-a5. */
953
954#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
955 do { \
956 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
957 fputs ("\tlda $16,$PBX32\n", (FILE)); \
958 fputs ("\tldq $26,0($16)\n", (FILE)); \
959 fputs ("\tbne $26,1f\n", (FILE)); \
960 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
961 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
962 fputs ("\tldgp $29,0($26)\n", (FILE)); \
963 fputs ("1:\n", (FILE)); \
85d159a3
RK
964 ASM_OUTPUT_REG_POP (FILE, 16); \
965 } while (0);
966
967/* Output assembler code to FILE to increment the entry-count for
968 the BLOCKNO'th basic block in this source file. */
969
970#define BLOCK_PROFILER(FILE, BLOCKNO) \
971 do { \
972 int blockn = (BLOCKNO); \
a62eb16f 973 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
974 fputs ("\tstq $26,0($30)\n", (FILE)); \
975 fputs ("\tstq $27,8($30)\n", (FILE)); \
976 fputs ("\tlda $26,$PBX34\n", (FILE)); \
977 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
978 fputs ("\taddq $27,1,$27\n", (FILE)); \
979 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
980 fputs ("\tldq $26,0($30)\n", (FILE)); \
981 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 982 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 983 } while (0)
1a94ca49 984
1a94ca49
RK
985
986/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
987 the stack pointer does not matter. The value is tested only in
988 functions that have frame pointers.
989 No definition is equivalent to always zero. */
990
991#define EXIT_IGNORE_STACK 1
992
993/* This macro generates the assembly code for function exit,
994 on machines that need it. If FUNCTION_EPILOGUE is not defined
995 then individual return instructions are generated for each
996 return statement. Args are same as for FUNCTION_PROLOGUE.
997
998 The function epilogue should not depend on the current stack pointer!
999 It should use the frame pointer only. This is mandatory because
1000 of alloca; we also take advantage of it to omit stack adjustments
1001 before returning. */
1002
1003#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1004
1005\f
1006/* Output assembler code for a block containing the constant parts
1007 of a trampoline, leaving space for the variable parts.
1008
1009 The trampoline should set the static chain pointer to value placed
7981384f
RK
1010 into the trampoline and should branch to the specified routine.
1011 Note that $27 has been set to the address of the trampoline, so we can
1012 use it for addressability of the two data items. Trampolines are always
1013 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1014
1015#define TRAMPOLINE_TEMPLATE(FILE) \
1016{ \
7981384f 1017 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1018 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1019 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1020 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1021 fprintf (FILE, "\t.quad 0,0\n"); \
1022}
1023
3a523eeb
RS
1024/* Section in which to place the trampoline. On Alpha, instructions
1025 may only be placed in a text segment. */
1026
1027#define TRAMPOLINE_SECTION text_section
1028
1a94ca49
RK
1029/* Length in units of the trampoline for entering a nested function. */
1030
7981384f 1031#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1032
1033/* Emit RTL insns to initialize the variable parts of a trampoline.
1034 FNADDR is an RTX for the address of the function's pure code.
1035 CXT is an RTX for the static chain value for the function. We assume
1036 here that a function will be called many more times than its address
1037 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1038 to initialize the "hint" field in the JMP insn. Note that the hint
1039 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1040
1041#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1042{ \
1043 rtx _temp, _temp1, _addr; \
1044 \
1045 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1046 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1047 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1048 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1049 \
7981384f
RK
1050 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1051 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1052 OPTAB_WIDEN); \
1053 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1054 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1055 _temp = expand_and (gen_lowpart (SImode, _temp), \
1056 GEN_INT (0x3fff), 0); \
1a94ca49 1057 \
7981384f 1058 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1059 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1060 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1061 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1062 OPTAB_WIDEN); \
1063 \
1064 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1065 \
1066 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1067 "__enable_execute_stack"), \
1068 0, VOIDmode, 1,_addr, Pmode); \
1069 \
1070 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1071 gen_rtvec (1, const0_rtx), 0)); \
1072}
1073
1074/* Attempt to turn on access permissions for the stack. */
1075
1076#define TRANSFER_FROM_TRAMPOLINE \
1077 \
1078void \
1079__enable_execute_stack (addr) \
1080 void *addr; \
1081{ \
1082 long size = getpagesize (); \
1083 long mask = ~(size-1); \
1084 char *page = (char *) (((long) addr) & mask); \
1085 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1086 \
1087 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1088 if (mprotect (page, end - page, 7) < 0) \
1089 perror ("mprotect of trampoline code"); \
1a94ca49
RK
1090}
1091\f
1092/* Addressing modes, and classification of registers for them. */
1093
1094/* #define HAVE_POST_INCREMENT */
1095/* #define HAVE_POST_DECREMENT */
1096
1097/* #define HAVE_PRE_DECREMENT */
1098/* #define HAVE_PRE_INCREMENT */
1099
1100/* Macros to check register numbers against specific register classes. */
1101
1102/* These assume that REGNO is a hard or pseudo reg number.
1103 They give nonzero only if REGNO is a hard reg of the suitable class
1104 or a pseudo reg currently allocated to a suitable hard reg.
1105 Since they use reg_renumber, they are safe only once reg_renumber
1106 has been allocated, which happens in local-alloc.c. */
1107
1108#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1109#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1110((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1111 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1112\f
1113/* Maximum number of registers that can appear in a valid memory address. */
1114#define MAX_REGS_PER_ADDRESS 1
1115
1116/* Recognize any constant value that is a valid address. For the Alpha,
1117 there are only constants none since we want to use LDA to load any
1118 symbolic addresses into registers. */
1119
1120#define CONSTANT_ADDRESS_P(X) \
1121 (GET_CODE (X) == CONST_INT \
1122 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1123
1124/* Include all constant integers and constant doubles, but not
1125 floating-point, except for floating-point zero. */
1126
1127#define LEGITIMATE_CONSTANT_P(X) \
1128 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1129 || (X) == CONST0_RTX (GET_MODE (X)))
1130
1131/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1132 and check its validity for a certain class.
1133 We have two alternate definitions for each of them.
1134 The usual definition accepts all pseudo regs; the other rejects
1135 them unless they have been allocated suitable hard regs.
1136 The symbol REG_OK_STRICT causes the latter definition to be used.
1137
1138 Most source files want to accept pseudo regs in the hope that
1139 they will get allocated to the class that the insn wants them to be in.
1140 Source files for reload pass need to be strict.
1141 After reload, it makes no difference, since pseudo regs have
1142 been eliminated by then. */
1143
1144#ifndef REG_OK_STRICT
1145
1146/* Nonzero if X is a hard reg that can be used as an index
1147 or if it is a pseudo reg. */
1148#define REG_OK_FOR_INDEX_P(X) 0
1149/* Nonzero if X is a hard reg that can be used as a base reg
1150 or if it is a pseudo reg. */
1151#define REG_OK_FOR_BASE_P(X) \
52a69200 1152 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1153
1154#else
1155
1156/* Nonzero if X is a hard reg that can be used as an index. */
1157#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1158/* Nonzero if X is a hard reg that can be used as a base reg. */
1159#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1160
1161#endif
1162\f
1163/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1164 that is a valid memory address for an instruction.
1165 The MODE argument is the machine mode for the MEM expression
1166 that wants to use this address.
1167
1168 For Alpha, we have either a constant address or the sum of a register
1169 and a constant address, or just a register. For DImode, any of those
1170 forms can be surrounded with an AND that clear the low-order three bits;
1171 this is an "unaligned" access.
1172
1a94ca49
RK
1173 First define the basic valid address. */
1174
1175#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1176{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1177 goto ADDR; \
1178 if (CONSTANT_ADDRESS_P (X)) \
1179 goto ADDR; \
1180 if (GET_CODE (X) == PLUS \
1181 && REG_P (XEXP (X, 0)) \
1182 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1183 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1184 goto ADDR; \
1185}
1186
1187/* Now accept the simple address, or, for DImode only, an AND of a simple
1188 address that turns off the low three bits. */
1189
1a94ca49
RK
1190#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1191{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1192 if ((MODE) == DImode \
1193 && GET_CODE (X) == AND \
1194 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1195 && INTVAL (XEXP (X, 1)) == -8) \
1196 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1197}
1198
1199/* Try machine-dependent ways of modifying an illegitimate address
1200 to be legitimate. If we find one, return the new, valid address.
1201 This macro is used in only one place: `memory_address' in explow.c.
1202
1203 OLDX is the address as it was before break_out_memory_refs was called.
1204 In some cases it is useful to look at this to decide what needs to be done.
1205
1206 MODE and WIN are passed so that this macro can use
1207 GO_IF_LEGITIMATE_ADDRESS.
1208
1209 It is always safe for this macro to do nothing. It exists to recognize
1210 opportunities to optimize the output.
1211
1212 For the Alpha, there are three cases we handle:
1213
1214 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1215 valid offset, compute the high part of the constant and add it to the
1216 register. Then our address is (plus temp low-part-const).
1217 (2) If the address is (const (plus FOO const_int)), find the low-order
1218 part of the CONST_INT. Then load FOO plus any high-order part of the
1219 CONST_INT into a register. Our address is (plus reg low-part-const).
1220 This is done to reduce the number of GOT entries.
1221 (3) If we have a (plus reg const), emit the load as in (2), then add
1222 the two registers, and finally generate (plus reg low-part-const) as
1223 our address. */
1224
1225#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1226{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1227 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1228 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1229 { \
1230 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1231 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1232 HOST_WIDE_INT highpart = val - lowpart; \
1233 rtx high = GEN_INT (highpart); \
1234 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1235 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1236 \
1237 (X) = plus_constant (temp, lowpart); \
1238 goto WIN; \
1239 } \
1240 else if (GET_CODE (X) == CONST \
1241 && GET_CODE (XEXP (X, 0)) == PLUS \
1242 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1243 { \
1244 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1245 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1246 HOST_WIDE_INT highpart = val - lowpart; \
1247 rtx high = XEXP (XEXP (X, 0), 0); \
1248 \
1249 if (highpart) \
1250 high = plus_constant (high, highpart); \
1251 \
1252 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1253 goto WIN; \
1254 } \
1255 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1256 && GET_CODE (XEXP (X, 1)) == CONST \
1257 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1258 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1259 { \
1260 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1261 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1262 HOST_WIDE_INT highpart = val - lowpart; \
1263 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1264 \
1265 if (highpart) \
1266 high = plus_constant (high, highpart); \
1267 \
1268 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1269 force_reg (Pmode, high), \
80f251fe 1270 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1271 (X) = plus_constant (high, lowpart); \
1272 goto WIN; \
1273 } \
1274}
1275
1276/* Go to LABEL if ADDR (a legitimate address expression)
1277 has an effect that depends on the machine mode it is used for.
1278 On the Alpha this is true only for the unaligned modes. We can
1279 simplify this test since we know that the address must be valid. */
1280
1281#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1282{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1283
1284/* Compute the cost of an address. For the Alpha, all valid addresses are
1285 the same cost. */
1286
1287#define ADDRESS_COST(X) 0
1288
1289/* Define this if some processing needs to be done immediately before
1290 emitting code for an insn. */
1291
1292/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1293\f
1294/* Specify the machine mode that this machine uses
1295 for the index in the tablejump instruction. */
1296#define CASE_VECTOR_MODE SImode
1297
1298/* Define this if the tablejump instruction expects the table
1299 to contain offsets from the address of the table.
260ced47
RK
1300 Do not define this if the table should contain absolute addresses.
1301 On the Alpha, the table is really GP-relative, not relative to the PC
1302 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1303 but we should try to find some better way sometime. */
260ced47 1304#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1305
1306/* Specify the tree operation to be used to convert reals to integers. */
1307#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1308
1309/* This is the kind of divide that is easiest to do in the general case. */
1310#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1311
1312/* Define this as 1 if `char' should by default be signed; else as 0. */
1313#define DEFAULT_SIGNED_CHAR 1
1314
1315/* This flag, if defined, says the same insns that convert to a signed fixnum
1316 also convert validly to an unsigned one.
1317
1318 We actually lie a bit here as overflow conditions are different. But
1319 they aren't being checked anyway. */
1320
1321#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1322
1323/* Max number of bytes we can move to or from memory
1324 in one reasonably fast instruction. */
1325
1326#define MOVE_MAX 8
1327
1328/* Largest number of bytes of an object that can be placed in a register.
1329 On the Alpha we have plenty of registers, so use TImode. */
1330#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1331
1332/* Nonzero if access to memory by bytes is no faster than for words.
1333 Also non-zero if doing byte operations (specifically shifts) in registers
1334 is undesirable.
1335
1336 On the Alpha, we want to not use the byte operation and instead use
1337 masking operations to access fields; these will save instructions. */
1338
1339#define SLOW_BYTE_ACCESS 1
1340
9a63901f
RK
1341/* Define if operations between registers always perform the operation
1342 on the full register even if a narrower mode is specified. */
1343#define WORD_REGISTER_OPERATIONS
1344
1345/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1346 will either zero-extend or sign-extend. The value of this macro should
1347 be the code that says which one of the two operations is implicitly
1348 done, NIL if none. */
1349#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1350
225211e2
RK
1351/* Define if loading short immediate values into registers sign extends. */
1352#define SHORT_IMMEDIATES_SIGN_EXTEND
1353
1a94ca49
RK
1354/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1355 is done just by pretending it is already truncated. */
1356#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1357
1358/* We assume that the store-condition-codes instructions store 0 for false
1359 and some other value for true. This is the value stored for true. */
1360
1361#define STORE_FLAG_VALUE 1
1362
1363/* Define the value returned by a floating-point comparison instruction. */
1364
1365#define FLOAT_STORE_FLAG_VALUE 0.5
1366
35bb77fd
RK
1367/* Canonicalize a comparison from one we don't have to one we do have. */
1368
1369#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1370 do { \
1371 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1372 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1373 { \
1374 rtx tem = (OP0); \
1375 (OP0) = (OP1); \
1376 (OP1) = tem; \
1377 (CODE) = swap_condition (CODE); \
1378 } \
1379 if (((CODE) == LT || (CODE) == LTU) \
1380 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1381 { \
1382 (CODE) = (CODE) == LT ? LE : LEU; \
1383 (OP1) = GEN_INT (255); \
1384 } \
1385 } while (0)
1386
1a94ca49
RK
1387/* Specify the machine mode that pointers have.
1388 After generation of rtl, the compiler makes no further distinction
1389 between pointers and any other objects of this machine mode. */
1390#define Pmode DImode
1391
1392/* Mode of a function address in a call instruction (for indexing purposes). */
1393
1394#define FUNCTION_MODE Pmode
1395
1396/* Define this if addresses of constant functions
1397 shouldn't be put through pseudo regs where they can be cse'd.
1398 Desirable on machines where ordinary constants are expensive
1399 but a CALL with constant address is cheap.
1400
1401 We define this on the Alpha so that gen_call and gen_call_value
1402 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1403 then copy it into a register, thus actually letting the address be
1404 cse'ed. */
1405
1406#define NO_FUNCTION_CSE
1407
d969caf8 1408/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1409 few bits. */
d969caf8 1410#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1411
d721b776
RK
1412/* Use atexit for static constructors/destructors, instead of defining
1413 our own exit function. */
1414#define HAVE_ATEXIT
1415
1a94ca49
RK
1416/* Compute the cost of computing a constant rtl expression RTX
1417 whose rtx-code is CODE. The body of this macro is a portion
1418 of a switch statement. If the code is computed here,
1419 return it with a return statement. Otherwise, break from the switch.
1420
8b7b2e36
RK
1421 If this is an 8-bit constant, return zero since it can be used
1422 nearly anywhere with no cost. If it is a valid operand for an
1423 ADD or AND, likewise return 0 if we know it will be used in that
1424 context. Otherwise, return 2 since it might be used there later.
1425 All other constants take at least two insns. */
1a94ca49
RK
1426
1427#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1428 case CONST_INT: \
06eb8e92 1429 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1430 return 0; \
1a94ca49 1431 case CONST_DOUBLE: \
8b7b2e36
RK
1432 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1433 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1434 return 0; \
1435 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1436 return 2; \
1437 else \
1438 return COSTS_N_INSNS (2); \
1a94ca49
RK
1439 case CONST: \
1440 case SYMBOL_REF: \
1441 case LABEL_REF: \
8b7b2e36 1442 return COSTS_N_INSNS (3);
1a94ca49
RK
1443
1444/* Provide the costs of a rtl expression. This is in the body of a
1445 switch on CODE. */
1446
1447#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1448 case PLUS: case MINUS: \
1449 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1450 return COSTS_N_INSNS (6); \
b49e978e
RK
1451 else if (GET_CODE (XEXP (X, 0)) == MULT \
1452 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1453 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1454 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1455 break; \
1456 case MULT: \
3bda6d11 1457 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1458 return COSTS_N_INSNS (6); \
919ea6a5 1459 return COSTS_N_INSNS (23); \
b49e978e
RK
1460 case ASHIFT: \
1461 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1462 && INTVAL (XEXP (X, 1)) <= 3) \
1463 break; \
1464 /* ... fall through ... */ \
1465 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1466 return COSTS_N_INSNS (2); \
3bda6d11 1467 case DIV: case UDIV: case MOD: case UMOD: \
1a94ca49
RK
1468 if (GET_MODE (X) == SFmode) \
1469 return COSTS_N_INSNS (34); \
1470 else if (GET_MODE (X) == DFmode) \
1471 return COSTS_N_INSNS (63); \
1472 else \
1473 return COSTS_N_INSNS (70); \
1474 case MEM: \
3bda6d11
RK
1475 return COSTS_N_INSNS (3); \
1476 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1477 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1478 return COSTS_N_INSNS (6); \
1479 case NEG: case ABS: \
1480 if (FLOAT_MODE_P (GET_MODE (X))) \
1481 return COSTS_N_INSNS (6); \
1482 break;
1a94ca49
RK
1483\f
1484/* Control the assembler format that we output. */
1485
1486/* Output at beginning of assembler file. */
1487
1488#define ASM_FILE_START(FILE) \
03f8c4cc 1489{ \
130d2d72
RK
1490 alpha_write_verstamp (FILE); \
1491 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1492 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1493 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1494 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1495}
1496
1497/* Output to assembler file text saying following lines
1498 may contain character constants, extra white space, comments, etc. */
1499
1500#define ASM_APP_ON ""
1501
1502/* Output to assembler file text saying following lines
1503 no longer contain unusual constructs. */
1504
1505#define ASM_APP_OFF ""
1506
1507#define TEXT_SECTION_ASM_OP ".text"
1508
1509/* Output before read-only data. */
1510
1511#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1512
1513/* Output before writable data. */
1514
1515#define DATA_SECTION_ASM_OP ".data"
1516
1517/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1518 indicate that it is for read-only data.
1519
abc95ed3 1520 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1521 eight bytes of zero. This works around a bug in DEC's assembler in
1522 some versions of OSF/1 V3.x. */
1a94ca49
RK
1523
1524#define EXTRA_SECTIONS readonly_data
1525
1526#define EXTRA_SECTION_FUNCTIONS \
1527void \
1528literal_section () \
1529{ \
1530 if (in_section != readonly_data) \
1531 { \
c0388f29
RK
1532 static int firsttime = 1; \
1533 \
1a94ca49 1534 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1535 if (firsttime) \
1536 { \
1537 firsttime = 0; \
1538 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1539 } \
1540 \
1a94ca49
RK
1541 in_section = readonly_data; \
1542 } \
1543} \
1544
1545#define READONLY_DATA_SECTION literal_section
1546
ac030a7b
RK
1547/* If we are referencing a function that is static, make the SYMBOL_REF
1548 special. We use this to see indicate we can branch to this function
1549 without setting PV or restoring GP. */
130d2d72
RK
1550
1551#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1552 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1553 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1554
1a94ca49
RK
1555/* How to refer to registers in assembler output.
1556 This sequence is indexed by compiler's hard-register-number (see above). */
1557
1558#define REGISTER_NAMES \
1559{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1560 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1561 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1562 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1563 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1564 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1565 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1566 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1567
1568/* How to renumber registers for dbx and gdb. */
1569
1570#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1571
1572/* This is how to output the definition of a user-level label named NAME,
1573 such as the label on a static function or variable NAME. */
1574
1575#define ASM_OUTPUT_LABEL(FILE,NAME) \
1576 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1577
1578/* This is how to output a command to make the user-level label named NAME
1579 defined for reference from other files. */
1580
1581#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1582 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1583
1584/* This is how to output a reference to a user-level label named NAME.
1585 `assemble_name' uses this. */
1586
1587#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1588 fprintf (FILE, "%s", NAME)
1589
1590/* This is how to output an internal numbered label where
1591 PREFIX is the class of label and NUM is the number within the class. */
1592
1593#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1594 if ((PREFIX)[0] == 'L') \
1595 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1596 else \
1597 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1598
1599/* This is how to output a label for a jump table. Arguments are the same as
1600 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1601 passed. */
1602
1603#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1604{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1605
1606/* This is how to store into the string LABEL
1607 the symbol_ref name of an internal numbered label where
1608 PREFIX is the class of label and NUM is the number within the class.
1609 This is suitable for output with `assemble_name'. */
1610
1611#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1612 if ((PREFIX)[0] == 'L') \
1613 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1614 else \
1615 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1616
1617/* This is how to output an assembler line defining a `double' constant. */
1618
e99300f1
RS
1619#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1620 { \
1621 if (REAL_VALUE_ISINF (VALUE) \
1622 || REAL_VALUE_ISNAN (VALUE) \
1623 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1624 { \
1625 long t[2]; \
1626 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1627 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1628 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1629 } \
1630 else \
1631 { \
1632 char str[30]; \
1633 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1634 fprintf (FILE, "\t.t_floating %s\n", str); \
1635 } \
1636 }
1a94ca49
RK
1637
1638/* This is how to output an assembler line defining a `float' constant. */
1639
e99300f1
RS
1640#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1641 { \
1642 if (REAL_VALUE_ISINF (VALUE) \
1643 || REAL_VALUE_ISNAN (VALUE) \
1644 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1645 { \
1646 long t; \
1647 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1648 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1649 } \
1650 else \
1651 { \
1652 char str[30]; \
1653 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1654 fprintf (FILE, "\t.s_floating %s\n", str); \
1655 } \
1656 }
2700ac93 1657
1a94ca49
RK
1658/* This is how to output an assembler line defining an `int' constant. */
1659
1660#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1661( fprintf (FILE, "\t.long "), \
1662 output_addr_const (FILE, (VALUE)), \
1663 fprintf (FILE, "\n"))
1a94ca49
RK
1664
1665/* This is how to output an assembler line defining a `long' constant. */
1666
1667#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1668( fprintf (FILE, "\t.quad "), \
1669 output_addr_const (FILE, (VALUE)), \
1670 fprintf (FILE, "\n"))
1671
1672/* Likewise for `char' and `short' constants. */
1673
1674#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1675 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1676 (GET_CODE (VALUE) == CONST_INT \
1677 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1678
1679#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1680 fprintf (FILE, "\t.byte %d\n", \
1681 (GET_CODE (VALUE) == CONST_INT \
1682 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1683
1684/* We use the default ASCII-output routine, except that we don't write more
1685 than 50 characters since the assembler doesn't support very long lines. */
1686
1687#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1688 do { \
1689 FILE *_hide_asm_out_file = (MYFILE); \
1690 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1691 int _hide_thissize = (MYLENGTH); \
1692 int _size_so_far = 0; \
1693 { \
1694 FILE *asm_out_file = _hide_asm_out_file; \
1695 unsigned char *p = _hide_p; \
1696 int thissize = _hide_thissize; \
1697 int i; \
1698 fprintf (asm_out_file, "\t.ascii \""); \
1699 \
1700 for (i = 0; i < thissize; i++) \
1701 { \
1702 register int c = p[i]; \
1703 \
1704 if (_size_so_far ++ > 50 && i < thissize - 4) \
1705 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1706 \
1707 if (c == '\"' || c == '\\') \
1708 putc ('\\', asm_out_file); \
1709 if (c >= ' ' && c < 0177) \
1710 putc (c, asm_out_file); \
1711 else \
1712 { \
1713 fprintf (asm_out_file, "\\%o", c); \
1714 /* After an octal-escape, if a digit follows, \
1715 terminate one string constant and start another. \
1716 The Vax assembler fails to stop reading the escape \
1717 after three digits, so this is the only way we \
1718 can get it to parse the data properly. */ \
1719 if (i < thissize - 1 \
1720 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1721 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1722 } \
1723 } \
1724 fprintf (asm_out_file, "\"\n"); \
1725 } \
1726 } \
1727 while (0)
52a69200 1728
1a94ca49
RK
1729/* This is how to output an insn to push a register on the stack.
1730 It need not be very fast code. */
1731
1732#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1733 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1734 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1735 (REGNO) & 31);
1736
1737/* This is how to output an insn to pop a register from the stack.
1738 It need not be very fast code. */
1739
1740#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1741 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1742 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1743 (REGNO) & 31);
1744
1745/* This is how to output an assembler line for a numeric constant byte. */
1746
1747#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1748 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1749
260ced47
RK
1750/* This is how to output an element of a case-vector that is absolute.
1751 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1752
260ced47 1753#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1754
260ced47 1755/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1756
0076aa6b
RK
1757#if WINDOWS_NT
1758#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1759 fprintf (FILE, "\t.long $%d\n", (VALUE) + 32)
1760#else
260ced47
RK
1761#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1762 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
0076aa6b 1763#endif
1a94ca49
RK
1764
1765/* This is how to output an assembler line
1766 that says to advance the location counter
1767 to a multiple of 2**LOG bytes. */
1768
1769#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1770 if ((LOG) != 0) \
1771 fprintf (FILE, "\t.align %d\n", LOG);
1772
1773/* This is how to advance the location counter by SIZE bytes. */
1774
1775#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1776 fprintf (FILE, "\t.space %d\n", (SIZE))
1777
1778/* This says how to output an assembler line
1779 to define a global common symbol. */
1780
1781#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1782( fputs ("\t.comm ", (FILE)), \
1783 assemble_name ((FILE), (NAME)), \
1784 fprintf ((FILE), ",%d\n", (SIZE)))
1785
1786/* This says how to output an assembler line
1787 to define a local common symbol. */
1788
1789#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1790( fputs ("\t.lcomm ", (FILE)), \
1791 assemble_name ((FILE), (NAME)), \
1792 fprintf ((FILE), ",%d\n", (SIZE)))
1793
1794/* Store in OUTPUT a string (made with alloca) containing
1795 an assembler-name for a local static variable named NAME.
1796 LABELNO is an integer which is different for each call. */
1797
1798#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1799( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1800 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1801
1802/* Define the parentheses used to group arithmetic operations
1803 in assembler code. */
1804
1805#define ASM_OPEN_PAREN "("
1806#define ASM_CLOSE_PAREN ")"
1807
1808/* Define results of standard character escape sequences. */
1809#define TARGET_BELL 007
1810#define TARGET_BS 010
1811#define TARGET_TAB 011
1812#define TARGET_NEWLINE 012
1813#define TARGET_VT 013
1814#define TARGET_FF 014
1815#define TARGET_CR 015
1816
1817/* Print operand X (an rtx) in assembler syntax to file FILE.
1818 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1819 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1820
1821#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1822
1823/* Determine which codes are valid without a following integer. These must
1824 not be alphabetic. */
1825
1826#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1827\f
1828/* Print a memory address as an operand to reference that memory location. */
1829
1830#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1831{ rtx addr = (ADDR); \
1832 int basereg = 31; \
1833 HOST_WIDE_INT offset = 0; \
1834 \
1835 if (GET_CODE (addr) == AND) \
1836 addr = XEXP (addr, 0); \
1837 \
1838 if (GET_CODE (addr) == REG) \
1839 basereg = REGNO (addr); \
1840 else if (GET_CODE (addr) == CONST_INT) \
1841 offset = INTVAL (addr); \
1842 else if (GET_CODE (addr) == PLUS \
1843 && GET_CODE (XEXP (addr, 0)) == REG \
1844 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1845 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1846 else \
1847 abort (); \
1848 \
1849 fprintf (FILE, "%d($%d)", offset, basereg); \
1850}
1851/* Define the codes that are matched by predicates in alpha.c. */
1852
1853#define PREDICATE_CODES \
1854 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1855 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1856 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1857 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1858 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1859 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1860 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1861 {"const48_operand", {CONST_INT}}, \
1862 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1863 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1864 {"mode_mask_operand", {CONST_INT}}, \
1865 {"mul8_operand", {CONST_INT}}, \
1866 {"mode_width_operand", {CONST_INT}}, \
1867 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1868 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1869 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1870 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1871 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1872 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1873 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1874 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1875 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
1876 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1877 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
1878 {"aligned_memory_operand", {MEM}}, \
1879 {"unaligned_memory_operand", {MEM}}, \
1880 {"any_memory_operand", {MEM}},
03f8c4cc 1881\f
34fa88ab
RK
1882/* Tell collect that the object format is ECOFF. */
1883#define OBJECT_FORMAT_COFF
1884#define EXTENDED_COFF
1885
1886/* If we use NM, pass -g to it so it only lists globals. */
1887#define NM_FLAGS "-pg"
1888
03f8c4cc
RK
1889/* Definitions for debugging. */
1890
1891#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1892#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1893#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1894
1895#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
1896#define PREFERRED_DEBUGGING_TYPE \
1897 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
1898#endif
1899
1900
1901/* Correct the offset of automatic variables and arguments. Note that
1902 the Alpha debug format wants all automatic variables and arguments
1903 to be in terms of two different offsets from the virtual frame pointer,
1904 which is the stack pointer before any adjustment in the function.
1905 The offset for the argument pointer is fixed for the native compiler,
1906 it is either zero (for the no arguments case) or large enough to hold
1907 all argument registers.
1908 The offset for the auto pointer is the fourth argument to the .frame
1909 directive (local_offset).
1910 To stay compatible with the native tools we use the same offsets
1911 from the virtual frame pointer and adjust the debugger arg/auto offsets
1912 accordingly. These debugger offsets are set up in output_prolog. */
1913
1914long alpha_arg_offset;
1915long alpha_auto_offset;
1916#define DEBUGGER_AUTO_OFFSET(X) \
1917 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1918#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1919
1920
1921#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1922 alpha_output_lineno (STREAM, LINE)
1923extern void alpha_output_lineno ();
1924
1925#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1926 alpha_output_filename (STREAM, NAME)
1927extern void alpha_output_filename ();
1928
1929
ab8b8941
RK
1930/* mips-tfile.c limits us to strings of one page. */
1931#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1932
1933/* By default, turn on GDB extensions. */
1934#define DEFAULT_GDB_EXTENSIONS 1
1935
1936/* If we are smuggling stabs through the ALPHA ECOFF object
1937 format, put a comment in front of the .stab<x> operation so
1938 that the ALPHA assembler does not choke. The mips-tfile program
1939 will correctly put the stab into the object file. */
1940
1941#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1942#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1943#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1944
1945/* Forward references to tags are allowed. */
1946#define SDB_ALLOW_FORWARD_REFERENCES
1947
1948/* Unknown tags are also allowed. */
1949#define SDB_ALLOW_UNKNOWN_REFERENCES
1950
1951#define PUT_SDB_DEF(a) \
1952do { \
1953 fprintf (asm_out_file, "\t%s.def\t", \
1954 (TARGET_GAS) ? "" : "#"); \
1955 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1956 fputc (';', asm_out_file); \
1957} while (0)
1958
1959#define PUT_SDB_PLAIN_DEF(a) \
1960do { \
1961 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1962 (TARGET_GAS) ? "" : "#", (a)); \
1963} while (0)
1964
1965#define PUT_SDB_TYPE(a) \
1966do { \
1967 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1968} while (0)
1969
1970/* For block start and end, we create labels, so that
1971 later we can figure out where the correct offset is.
1972 The normal .ent/.end serve well enough for functions,
1973 so those are just commented out. */
1974
1975extern int sdb_label_count; /* block start/end next label # */
1976
1977#define PUT_SDB_BLOCK_START(LINE) \
1978do { \
1979 fprintf (asm_out_file, \
1980 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1981 sdb_label_count, \
1982 (TARGET_GAS) ? "" : "#", \
1983 sdb_label_count, \
1984 (LINE)); \
1985 sdb_label_count++; \
1986} while (0)
1987
1988#define PUT_SDB_BLOCK_END(LINE) \
1989do { \
1990 fprintf (asm_out_file, \
1991 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1992 sdb_label_count, \
1993 (TARGET_GAS) ? "" : "#", \
1994 sdb_label_count, \
1995 (LINE)); \
1996 sdb_label_count++; \
1997} while (0)
1998
1999#define PUT_SDB_FUNCTION_START(LINE)
2000
2001#define PUT_SDB_FUNCTION_END(LINE)
2002
2003#define PUT_SDB_EPILOGUE_END(NAME)
2004
2005/* Specify to run a post-processor, mips-tfile after the assembler
2006 has run to stuff the ecoff debug information into the object file.
2007 This is needed because the Alpha assembler provides no way
2008 of specifying such information in the assembly file. */
2009
88681624 2010#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2011
2012#define ASM_FINAL_SPEC "\
2013%{malpha-as: %{!mno-mips-tfile: \
2014 \n mips-tfile %{v*: -v} \
2015 %{K: -I %b.o~} \
2016 %{!K: %{save-temps: -I %b.o~}} \
2017 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2018 %{.s:%i} %{!.s:%g.s}}}"
2019
2020#else
2021#define ASM_FINAL_SPEC "\
2022%{!mgas: %{!mno-mips-tfile: \
2023 \n mips-tfile %{v*: -v} \
2024 %{K: -I %b.o~} \
2025 %{!K: %{save-temps: -I %b.o~}} \
2026 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2027 %{.s:%i} %{!.s:%g.s}}}"
2028
2029#endif
2030
2031/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2032 mips-tdump.c to print them out.
2033
2034 These must match the corresponding definitions in gdb/mipsread.c.
2035 Unfortunately, gcc and gdb do not currently share any directories. */
2036
2037#define CODE_MASK 0x8F300
2038#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2039#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2040#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2041
2042/* Override some mips-tfile definitions. */
2043
2044#define SHASH_SIZE 511
2045#define THASH_SIZE 55
1e6c6f11
RK
2046
2047/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2048
2049#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2050
2051/* The system headers under OSF/1 are C++-aware. */
2052#define NO_IMPLICIT_EXTERN_C
54190234
JM
2053
2054/* The linker will stick __main into the .init section. */
2055#define HAS_INIT_SECTION
68d69835
JM
2056#define LD_INIT_SWITCH "-init"
2057#define LD_FINI_SWITCH "-fini"
2058
2059/* We do want to link in libgcc when building shared libraries under OSF/1. */
2060#define LIBGCC_SPEC "-lgcc"
This page took 0.436307 seconds and 5 git commands to generate.