]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(instantiate_virtual_regs_1...
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
5258d7ae 2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
38%{mieee:-D_IEEE_FP} \
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
40
41/* Set the spec to use for signed char. The default tests the above macro
42 but DEC's compiler can't handle the conditional in a "constant"
43 operand. */
44
45#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
46
1c6c2b05 47/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 48
1c6c2b05 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
d37df6cc 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
57 %{rpath*}"
58
59#define WORD_SWITCH_TAKES_ARG(STR) \
60 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
61 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
62 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
63 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
64 || !strcmp (STR, "isystem"))
8877eb00 65
85d159a3 66#define STARTFILE_SPEC \
1c6c2b05 67 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 68
1a94ca49
RK
69/* Print subsidiary information on the compiler version in use. */
70#define TARGET_VERSION
71
72/* Define the location for the startup file on OSF/1 for Alpha. */
73
74#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
75
76/* Run-time compilation parameters selecting different hardware subsets. */
77
f6f6a13c
RK
78/* Which processor to schedule for. The cpu attribute defines a list that
79 mirrors this list, so changes to alpha.md must be made at the same time. */
80
81enum processor_type
82 {PROCESSOR_EV4, /* 2106[46]{a,} */
83 PROCESSOR_EV5}; /* 21164{a,} */
84
85extern enum processor_type alpha_cpu;
86
2bf6230d
RK
87enum alpha_trap_precision
88{
89 ALPHA_TP_PROG, /* No precision (default). */
90 ALPHA_TP_FUNC, /* Trap contained within originating function. */
91 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
92};
93
94enum alpha_fp_rounding_mode
95{
96 ALPHA_FPRM_NORM, /* Normal rounding mode. */
97 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
98 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
99 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
100};
101
102enum alpha_fp_trap_mode
103{
104 ALPHA_FPTM_N, /* Normal trap mode. */
105 ALPHA_FPTM_U, /* Underflow traps enabled. */
106 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
107 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
108};
109
1a94ca49
RK
110extern int target_flags;
111
2bf6230d
RK
112extern enum alpha_trap_precision alpha_tp;
113extern enum alpha_fp_rounding_mode alpha_fprm;
114extern enum alpha_fp_trap_mode alpha_fptm;
115
1a94ca49
RK
116/* This means that floating-point support exists in the target implementation
117 of the Alpha architecture. This is usually the default. */
118
2bf6230d
RK
119#define MASK_FP 1
120#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
121
122/* This means that floating-point registers are allowed to be used. Note
123 that Alpha implementations without FP operations are required to
124 provide the FP registers. */
125
2bf6230d
RK
126#define MASK_FPREGS 2
127#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
128
129/* This means that gas is used to process the assembler file. */
130
131#define MASK_GAS 4
132#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 133
2bf6230d
RK
134/* This means that we should mark procedures as IEEE conformant. */
135
136#define MASK_IEEE_CONFORMANT 8
137#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
138
139/* This means we should be IEEE-compliant except for inexact. */
140
141#define MASK_IEEE 16
142#define TARGET_IEEE (target_flags & MASK_IEEE)
143
144/* This means we should be fully IEEE-compliant. */
145
146#define MASK_IEEE_WITH_INEXACT 32
147#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
148
e7a2eff8 149/* This means we are compiling for Windows NT. */
803fee69 150
e7a2eff8
RK
151#define MASK_WINDOWS_NT 64
152#define TARGET_WINDOWS_NT (target_flags & MASK_WINDOWS_NT)
153
803fee69
RK
154/* This means we must construct all constants rather than emitting
155 them as literal data. */
156
157#define MASK_BUILD_CONSTANTS 128
158#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
159
e5958492
RK
160/* This means we are compiling for openVMS. */
161
162#define MASK_OPEN_VMS 256
163#define TARGET_OPEN_VMS (target_flags & MASK_OPEN_VMS)
164
165/* This means we handle floating points in VAX F- (float)
166 or G- (double) Format. */
167
168#define MASK_FLOAT_VAX 512
169#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
170
025f3281
RK
171/* This means that the processor has byte and half word loads and stores. */
172
173#define MASK_BYTE_OPS 1024
174#define TARGET_BYTE_OPS (target_flags & MASK_BYTE_OPS)
175
1a94ca49
RK
176/* Macro to define tables used to set the flags.
177 This is a list in braces of pairs in braces,
178 each pair being { "NAME", VALUE }
179 where VALUE is the bits to set or minus the bits to clear.
180 An empty string NAME is used to identify the default VALUE. */
181
2bf6230d
RK
182#define TARGET_SWITCHES \
183 { {"no-soft-float", MASK_FP}, \
184 {"soft-float", - MASK_FP}, \
185 {"fp-regs", MASK_FPREGS}, \
186 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
187 {"alpha-as", -MASK_GAS}, \
188 {"gas", MASK_GAS}, \
189 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
190 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
191 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 192 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
193 {"float-vax", MASK_FLOAT_VAX}, \
194 {"float-ieee", -MASK_FLOAT_VAX}, \
b7747781 195 {"byte", MASK_BYTE_OPS}, \
88681624 196 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 197
c01b5470 198#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 199
88681624
ILT
200#ifndef TARGET_CPU_DEFAULT
201#define TARGET_CPU_DEFAULT 0
202#endif
203
2bf6230d
RK
204/* This macro is similar to `TARGET_SWITCHES' but defines names of
205 command options that have values. Its definition is an initializer
206 with a subgrouping for each command option.
207
208 Each subgrouping contains a string constant, that defines the fixed
209 part of the option name, and the address of a variable. The
210 variable, type `char *', is set to the variable part of the given
211 option if the fixed part matches. The actual option name is made
212 by appending `-m' to the specified name.
213
214 Here is an example which defines `-mshort-data-NUMBER'. If the
215 given option is `-mshort-data-512', the variable `m88k_short_data'
216 will be set to the string `"512"'.
217
218 extern char *m88k_short_data;
219 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
220
f6f6a13c 221extern char *alpha_cpu_string; /* For -mcpu=ev[4|5] */
2bf6230d
RK
222extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
223extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
224extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
225
226#define TARGET_OPTIONS \
227{ \
f6f6a13c 228 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
229 {"fp-rounding-mode=", &alpha_fprm_string}, \
230 {"fp-trap-mode=", &alpha_fptm_string}, \
231 {"trap-precision=", &alpha_tp_string}, \
232}
233
234/* Sometimes certain combinations of command options do not make sense
235 on a particular target machine. You can define a macro
236 `OVERRIDE_OPTIONS' to take account of this. This macro, if
237 defined, is executed once just after all the command options have
238 been parsed.
239
240 On the Alpha, it is used to translate target-option strings into
241 numeric values. */
242
243extern void override_options ();
244#define OVERRIDE_OPTIONS override_options ()
245
246
1a94ca49
RK
247/* Define this macro to change register usage conditional on target flags.
248
249 On the Alpha, we use this to disable the floating-point registers when
250 they don't exist. */
251
252#define CONDITIONAL_REGISTER_USAGE \
253 if (! TARGET_FPREGS) \
52a69200 254 for (i = 32; i < 63; i++) \
1a94ca49
RK
255 fixed_regs[i] = call_used_regs[i] = 1;
256
4f074454
RK
257/* Show we can debug even without a frame pointer. */
258#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
259\f
260/* target machine storage layout */
261
2700ac93
RS
262/* Define to enable software floating point emulation. */
263#define REAL_ARITHMETIC
264
1a94ca49
RK
265/* Define the size of `int'. The default is the same as the word size. */
266#define INT_TYPE_SIZE 32
267
268/* Define the size of `long long'. The default is the twice the word size. */
269#define LONG_LONG_TYPE_SIZE 64
270
271/* The two floating-point formats we support are S-floating, which is
272 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
273 and `long double' are T. */
274
275#define FLOAT_TYPE_SIZE 32
276#define DOUBLE_TYPE_SIZE 64
277#define LONG_DOUBLE_TYPE_SIZE 64
278
5258d7ae
RK
279#define WCHAR_TYPE "unsigned int"
280#define WCHAR_TYPE_SIZE 32
1a94ca49 281
13d39dbc 282/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
283 in a wider mode than that declared by the program. In such cases,
284 the value is constrained to be within the bounds of the declared
285 type, but kept valid in the wider mode. The signedness of the
286 extension may differ from that of the type.
287
288 For Alpha, we always store objects in a full register. 32-bit objects
289 are always sign-extended, but smaller objects retain their signedness. */
290
291#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
292 if (GET_MODE_CLASS (MODE) == MODE_INT \
293 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
294 { \
295 if ((MODE) == SImode) \
296 (UNSIGNEDP) = 0; \
297 (MODE) = DImode; \
298 }
299
300/* Define this if function arguments should also be promoted using the above
301 procedure. */
302
303#define PROMOTE_FUNCTION_ARGS
304
305/* Likewise, if the function return value is promoted. */
306
307#define PROMOTE_FUNCTION_RETURN
308
309/* Define this if most significant bit is lowest numbered
310 in instructions that operate on numbered bit-fields.
311
312 There are no such instructions on the Alpha, but the documentation
313 is little endian. */
314#define BITS_BIG_ENDIAN 0
315
316/* Define this if most significant byte of a word is the lowest numbered.
317 This is false on the Alpha. */
318#define BYTES_BIG_ENDIAN 0
319
320/* Define this if most significant word of a multiword number is lowest
321 numbered.
322
323 For Alpha we can decide arbitrarily since there are no machine instructions
324 for them. Might as well be consistent with bytes. */
325#define WORDS_BIG_ENDIAN 0
326
327/* number of bits in an addressable storage unit */
328#define BITS_PER_UNIT 8
329
330/* Width in bits of a "word", which is the contents of a machine register.
331 Note that this is not necessarily the width of data type `int';
332 if using 16-bit ints on a 68000, this would still be 32.
333 But on a machine with 16-bit registers, this would be 16. */
334#define BITS_PER_WORD 64
335
336/* Width of a word, in units (bytes). */
337#define UNITS_PER_WORD 8
338
339/* Width in bits of a pointer.
340 See also the macro `Pmode' defined below. */
341#define POINTER_SIZE 64
342
343/* Allocation boundary (in *bits*) for storing arguments in argument list. */
344#define PARM_BOUNDARY 64
345
346/* Boundary (in *bits*) on which stack pointer should be aligned. */
347#define STACK_BOUNDARY 64
348
349/* Allocation boundary (in *bits*) for the code of a function. */
350#define FUNCTION_BOUNDARY 64
351
352/* Alignment of field after `int : 0' in a structure. */
353#define EMPTY_FIELD_BOUNDARY 64
354
355/* Every structure's size must be a multiple of this. */
356#define STRUCTURE_SIZE_BOUNDARY 8
357
358/* A bitfield declared as `int' forces `int' alignment for the struct. */
359#define PCC_BITFIELD_TYPE_MATTERS 1
360
65823178
RK
361/* Align loop starts for optimal branching.
362
363 ??? Kludge this and the next macro for the moment by not doing anything if
364 we don't optimize and also if we are writing ECOFF symbols to work around
365 a bug in DEC's assembler. */
1a94ca49 366
130d2d72 367#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
368 if (optimize > 0 && write_symbols != SDB_DEBUG) \
369 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
370
371/* This is how to align an instruction for optimal branching.
372 On Alpha we'll get better performance by aligning on a quadword
373 boundary. */
130d2d72 374
1a94ca49 375#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
376 if (optimize > 0 && write_symbols != SDB_DEBUG) \
377 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
378
379/* No data type wants to be aligned rounder than this. */
380#define BIGGEST_ALIGNMENT 64
381
442b1685
RK
382/* Align all constants and variables to at least a word boundary so
383 we can pick up pieces of them faster. */
384#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
385#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
1a94ca49
RK
386
387/* Set this non-zero if move instructions will actually fail to work
388 when given unaligned data.
389
390 Since we get an error message when we do one, call them invalid. */
391
392#define STRICT_ALIGNMENT 1
393
394/* Set this non-zero if unaligned move instructions are extremely slow.
395
396 On the Alpha, they trap. */
130d2d72
RK
397
398#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
399\f
400/* Standard register usage. */
401
402/* Number of actual hardware registers.
403 The hardware registers are assigned numbers for the compiler
404 from 0 to just below FIRST_PSEUDO_REGISTER.
405 All registers that the compiler knows about must be given numbers,
406 even those that are not normally considered general registers.
407
408 We define all 32 integer registers, even though $31 is always zero,
409 and all 32 floating-point registers, even though $f31 is also
410 always zero. We do not bother defining the FP status register and
130d2d72
RK
411 there are no other registers.
412
413 Since $31 is always zero, we will use register number 31 as the
414 argument pointer. It will never appear in the generated code
415 because we will always be eliminating it in favor of the stack
52a69200
RK
416 pointer or hardware frame pointer.
417
418 Likewise, we use $f31 for the frame pointer, which will always
419 be eliminated in favor of the hardware frame pointer or the
420 stack pointer. */
1a94ca49
RK
421
422#define FIRST_PSEUDO_REGISTER 64
423
424/* 1 for registers that have pervasive standard uses
425 and are not available for the register allocator. */
426
427#define FIXED_REGISTERS \
428 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
430 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
432
433/* 1 for registers not available across function calls.
434 These must include the FIXED_REGISTERS and also any
435 registers that can be used without being saved.
436 The latter must include the registers where values are returned
437 and the register where structure-value addresses are passed.
438 Aside from that, you can include as many other registers as you like. */
439#define CALL_USED_REGISTERS \
440 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
442 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
443 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
444
445/* List the order in which to allocate registers. Each register must be
446 listed once, even those in FIXED_REGISTERS.
447
448 We allocate in the following order:
449 $f1 (nonsaved floating-point register)
450 $f10-$f15 (likewise)
451 $f22-$f30 (likewise)
452 $f21-$f16 (likewise, but input args)
453 $f0 (nonsaved, but return value)
454 $f2-$f9 (saved floating-point registers)
455 $1-$8 (nonsaved integer registers)
456 $22-$25 (likewise)
457 $28 (likewise)
458 $0 (likewise, but return value)
459 $21-$16 (likewise, but input args)
0076aa6b 460 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
461 $9-$14 (saved integer registers)
462 $26 (return PC)
463 $15 (frame pointer)
464 $29 (global pointer)
52a69200 465 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
466
467#define REG_ALLOC_ORDER \
468 {33, \
da01bc2c 469 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
470 54, 55, 56, 57, 58, 59, 60, 61, 62, \
471 53, 52, 51, 50, 49, 48, \
472 32, \
473 34, 35, 36, 37, 38, 39, 40, 41, \
474 1, 2, 3, 4, 5, 6, 7, 8, \
475 22, 23, 24, 25, \
476 28, \
477 0, \
478 21, 20, 19, 18, 17, 16, \
479 27, \
480 9, 10, 11, 12, 13, 14, \
481 26, \
482 15, \
483 29, \
484 30, 31, 63 }
485
486/* Return number of consecutive hard regs needed starting at reg REGNO
487 to hold something of mode MODE.
488 This is ordinarily the length in words of a value of mode MODE
489 but can be less for certain modes in special long registers. */
490
491#define HARD_REGNO_NREGS(REGNO, MODE) \
492 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
493
494/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
495 On Alpha, the integer registers can hold any mode. The floating-point
496 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
497 or 8-bit values. If we only allowed the larger integers into FP registers,
498 we'd have to say that QImode and SImode aren't tiable, which is a
499 pain. So say all registers can hold everything and see how that works. */
500
501#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
502
503/* Value is 1 if it is a good idea to tie two pseudo registers
504 when one has mode MODE1 and one has mode MODE2.
505 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
506 for any hard reg, then this must be 0 for correct output. */
507
508#define MODES_TIEABLE_P(MODE1, MODE2) 1
509
510/* Specify the registers used for certain standard purposes.
511 The values of these macros are register numbers. */
512
513/* Alpha pc isn't overloaded on a register that the compiler knows about. */
514/* #define PC_REGNUM */
515
516/* Register to use for pushing function arguments. */
517#define STACK_POINTER_REGNUM 30
518
519/* Base register for access to local variables of the function. */
52a69200 520#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
521
522/* Value should be nonzero if functions must have frame pointers.
523 Zero means the frame pointer need not be set up (and parms
524 may be accessed via the stack pointer) in functions that seem suitable.
525 This is computed in `reload', in reload1.c. */
526#define FRAME_POINTER_REQUIRED 0
527
528/* Base register for access to arguments of the function. */
130d2d72 529#define ARG_POINTER_REGNUM 31
1a94ca49 530
52a69200
RK
531/* Base register for access to local variables of function. */
532#define FRAME_POINTER_REGNUM 63
533
1a94ca49
RK
534/* Register in which static-chain is passed to a function.
535
536 For the Alpha, this is based on an example; the calling sequence
537 doesn't seem to specify this. */
538#define STATIC_CHAIN_REGNUM 1
539
540/* Register in which address to store a structure value
541 arrives in the function. On the Alpha, the address is passed
542 as a hidden argument. */
543#define STRUCT_VALUE 0
544\f
545/* Define the classes of registers for register constraints in the
546 machine description. Also define ranges of constants.
547
548 One of the classes must always be named ALL_REGS and include all hard regs.
549 If there is more than one class, another class must be named NO_REGS
550 and contain no registers.
551
552 The name GENERAL_REGS must be the name of a class (or an alias for
553 another name such as ALL_REGS). This is the class of registers
554 that is allowed by "g" or "r" in a register constraint.
555 Also, registers outside this class are allocated only when
556 instructions express preferences for them.
557
558 The classes must be numbered in nondecreasing order; that is,
559 a larger-numbered class must never be contained completely
560 in a smaller-numbered class.
561
562 For any two classes, it is very desirable that there be another
563 class that represents their union. */
564
565enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
566 LIM_REG_CLASSES };
567
568#define N_REG_CLASSES (int) LIM_REG_CLASSES
569
570/* Give names of register classes as strings for dump file. */
571
572#define REG_CLASS_NAMES \
573 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
574
575/* Define which registers fit in which classes.
576 This is an initializer for a vector of HARD_REG_SET
577 of length N_REG_CLASSES. */
578
579#define REG_CLASS_CONTENTS \
52a69200 580 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
581
582/* The same information, inverted:
583 Return the class number of the smallest class containing
584 reg number REGNO. This could be a conditional expression
585 or could index an array. */
586
52a69200
RK
587#define REGNO_REG_CLASS(REGNO) \
588 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
589
590/* The class value for index registers, and the one for base regs. */
591#define INDEX_REG_CLASS NO_REGS
592#define BASE_REG_CLASS GENERAL_REGS
593
594/* Get reg_class from a letter such as appears in the machine description. */
595
596#define REG_CLASS_FROM_LETTER(C) \
597 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
598
599/* Define this macro to change register usage conditional on target flags. */
600/* #define CONDITIONAL_REGISTER_USAGE */
601
602/* The letters I, J, K, L, M, N, O, and P in a register constraint string
603 can be used to stand for particular ranges of immediate operands.
604 This macro defines what the ranges are.
605 C is the letter, and VALUE is a constant value.
606 Return 1 if VALUE is in the range specified by C.
607
608 For Alpha:
609 `I' is used for the range of constants most insns can contain.
610 `J' is the constant zero.
611 `K' is used for the constant in an LDA insn.
612 `L' is used for the constant in a LDAH insn.
613 `M' is used for the constants that can be AND'ed with using a ZAP insn.
614 `N' is used for complemented 8-bit constants.
615 `O' is used for negated 8-bit constants.
616 `P' is used for the constants 1, 2 and 3. */
617
618#define CONST_OK_FOR_LETTER_P(VALUE, C) \
619 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
620 : (C) == 'J' ? (VALUE) == 0 \
621 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
622 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
623 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
624 && ((HOST_BITS_PER_WIDE_INT == 64 \
23334240 625 || (unsigned) (VALUE) != 0x80000000U))) \
1a94ca49
RK
626 : (C) == 'M' ? zap_mask (VALUE) \
627 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
628 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
629 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
630 : 0)
631
632/* Similar, but for floating or large integer constants, and defining letters
633 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
634
635 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
636 that is the operand of a ZAP insn. */
637
638#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
639 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
640 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
641 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
642 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
643 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
644 : 0)
645
e560f226
RK
646/* Optional extra constraints for this machine.
647
648 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
649 reference to an unaligned location.
650 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
651 function. */
e560f226
RK
652
653#define EXTRA_CONSTRAINT(OP, C) \
654 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 655 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
656 : 0)
657
1a94ca49
RK
658/* Given an rtx X being reloaded into a reg required to be
659 in class CLASS, return the class of reg to actually use.
660 In general this is just CLASS; but on some machines
661 in some cases it is preferable to use a more restrictive class.
662
663 On the Alpha, all constants except zero go into a floating-point
664 register via memory. */
665
666#define PREFERRED_RELOAD_CLASS(X, CLASS) \
667 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
668 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
669 : (CLASS))
670
671/* Loading and storing HImode or QImode values to and from memory
672 usually requires a scratch register. The exceptions are loading
e560f226 673 QImode and HImode from an aligned address to a general register.
ddd5a7c1 674 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 675 FP register. */
1a94ca49
RK
676
677#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
678(((GET_CODE (IN) == MEM \
679 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
680 || (GET_CODE (IN) == SUBREG \
681 && (GET_CODE (SUBREG_REG (IN)) == MEM \
682 || (GET_CODE (SUBREG_REG (IN)) == REG \
683 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
684 && (((CLASS) == FLOAT_REGS \
685 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
686 || (((MODE) == QImode || (MODE) == HImode) \
687 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
688 ? GENERAL_REGS \
689 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
690 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
691 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
692 && (GET_MODE_SIZE (GET_MODE (IN)) \
693 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 694 : NO_REGS)
1a94ca49
RK
695
696#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
697(((GET_CODE (OUT) == MEM \
698 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
699 || (GET_CODE (OUT) == SUBREG \
700 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
701 || (GET_CODE (SUBREG_REG (OUT)) == REG \
702 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
703 && (((MODE) == HImode || (MODE) == QImode \
704 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
705 ? GENERAL_REGS \
706 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
707 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
708 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
709 && (GET_MODE_SIZE (GET_MODE (OUT)) \
710 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
711 : NO_REGS)
1a94ca49
RK
712
713/* If we are copying between general and FP registers, we need a memory
714 location. */
715
716#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
717
acd94aaf
RK
718/* Specify the mode to be used for memory when a secondary memory
719 location is needed. If MODE is floating-point, use it. Otherwise,
720 widen to a word like the default. This is needed because we always
721 store integers in FP registers in quadword format. This whole
722 area is very tricky! */
723#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
724 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 725 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
726 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
727
1a94ca49
RK
728/* Return the maximum number of consecutive registers
729 needed to represent mode MODE in a register of class CLASS. */
730
731#define CLASS_MAX_NREGS(CLASS, MODE) \
732 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
733
c31dfe4d
RK
734/* If defined, gives a class of registers that cannot be used as the
735 operand of a SUBREG that changes the size of the object. */
736
737#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
738
1a94ca49
RK
739/* Define the cost of moving between registers of various classes. Moving
740 between FLOAT_REGS and anything else except float regs is expensive.
741 In fact, we make it quite expensive because we really don't want to
742 do these moves unless it is clearly worth it. Optimizations may
743 reduce the impact of not being able to allocate a pseudo to a
744 hard register. */
745
746#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
747 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
748
749/* A C expressions returning the cost of moving data of MODE from a register to
750 or from memory.
751
752 On the Alpha, bump this up a bit. */
753
754#define MEMORY_MOVE_COST(MODE) 6
755
756/* Provide the cost of a branch. Exact meaning under development. */
757#define BRANCH_COST 5
758
759/* Adjust the cost of dependencies. */
760
761#define ADJUST_COST(INSN,LINK,DEP,COST) \
762 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
763\f
764/* Stack layout; function entry, exit and calling. */
765
766/* Define this if pushing a word on the stack
767 makes the stack pointer a smaller address. */
768#define STACK_GROWS_DOWNWARD
769
770/* Define this if the nominal address of the stack frame
771 is at the high-address end of the local variables;
772 that is, each additional local variable allocated
773 goes at a more negative offset in the frame. */
130d2d72 774/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
775
776/* Offset within stack frame to start allocating local variables at.
777 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
778 first local allocated. Otherwise, it is the offset to the BEGINNING
779 of the first local allocated. */
780
52a69200 781#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
782
783/* If we generate an insn to push BYTES bytes,
784 this says how many the stack pointer really advances by.
785 On Alpha, don't define this because there are no push insns. */
786/* #define PUSH_ROUNDING(BYTES) */
787
788/* Define this if the maximum size of all the outgoing args is to be
789 accumulated and pushed during the prologue. The amount can be
790 found in the variable current_function_outgoing_args_size. */
791#define ACCUMULATE_OUTGOING_ARGS
792
793/* Offset of first parameter from the argument pointer register value. */
794
130d2d72 795#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
796
797/* Definitions for register eliminations.
798
978e8952 799 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 800 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
801 pointer register. Secondly, the argument pointer register can always be
802 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
803
804/* This is an array of structures. Each structure initializes one pair
805 of eliminable registers. The "from" register number is given first,
806 followed by "to". Eliminations of the same "from" register are listed
807 in order of preference. */
808
52a69200
RK
809#define ELIMINABLE_REGS \
810{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
811 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
812 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
813 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
814
815/* Given FROM and TO register numbers, say whether this elimination is allowed.
816 Frame pointer elimination is automatically handled.
817
130d2d72 818 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
819 eliminated are already handled. */
820
130d2d72 821#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 822
52a69200
RK
823/* Round up to a multiple of 16 bytes. */
824#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
825
1a94ca49
RK
826/* Define the offset between two registers, one to be eliminated, and the other
827 its replacement, at the start of a routine. */
828#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
829{ if ((FROM) == FRAME_POINTER_REGNUM) \
830 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
831 + alpha_sa_size ()); \
832 else if ((FROM) == ARG_POINTER_REGNUM) \
833 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
834 + alpha_sa_size () \
d772039b
RK
835 + (ALPHA_ROUND (get_frame_size () \
836 + current_function_pretend_args_size) \
837 - current_function_pretend_args_size)); \
1a94ca49
RK
838}
839
840/* Define this if stack space is still allocated for a parameter passed
841 in a register. */
842/* #define REG_PARM_STACK_SPACE */
843
844/* Value is the number of bytes of arguments automatically
845 popped when returning from a subroutine call.
8b109b37 846 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
847 FUNTYPE is the data type of the function (as a tree),
848 or for a library call it is an identifier node for the subroutine name.
849 SIZE is the number of bytes of arguments passed on the stack. */
850
8b109b37 851#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
852
853/* Define how to find the value returned by a function.
854 VALTYPE is the data type of the value (as a tree).
855 If the precise function being called is known, FUNC is its FUNCTION_DECL;
856 otherwise, FUNC is 0.
857
858 On Alpha the value is found in $0 for integer functions and
859 $f0 for floating-point functions. */
860
861#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492
RK
862 gen_rtx (REG, \
863 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
864 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
865 ? word_mode : TYPE_MODE (VALTYPE), \
866 ((TARGET_FPREGS \
867 && (TREE_CODE (VALTYPE) == REAL_TYPE \
868 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
869 ? 32 : 0))
1a94ca49
RK
870
871/* Define how to find the value returned by a library function
872 assuming the value has mode MODE. */
873
874#define LIBCALL_VALUE(MODE) \
e5958492
RK
875 gen_rtx (REG, MODE, \
876 (TARGET_FPREGS \
877 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
878 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
879 ? 32 : 0))
1a94ca49 880
130d2d72
RK
881/* The definition of this macro implies that there are cases where
882 a scalar value cannot be returned in registers.
883
884 For the Alpha, any structure or union type is returned in memory, as
885 are integers whose size is larger than 64 bits. */
886
887#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 888 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
889 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
890
1a94ca49
RK
891/* 1 if N is a possible register number for a function value
892 as seen by the caller. */
893
e5958492
RK
894#define FUNCTION_VALUE_REGNO_P(N) \
895 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
896
897/* 1 if N is a possible register number for function argument passing.
898 On Alpha, these are $16-$21 and $f16-$f21. */
899
900#define FUNCTION_ARG_REGNO_P(N) \
901 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
902\f
903/* Define a data type for recording info about an argument list
904 during the scan of that argument list. This data type should
905 hold all necessary information about the function itself
906 and about the args processed so far, enough to enable macros
907 such as FUNCTION_ARG to determine where the next arg should go.
908
909 On Alpha, this is a single integer, which is a number of words
910 of arguments scanned so far.
911 Thus 6 or more means all following args should go on the stack. */
912
913#define CUMULATIVE_ARGS int
914
915/* Initialize a variable CUM of type CUMULATIVE_ARGS
916 for a call to a function whose data type is FNTYPE.
917 For a library call, FNTYPE is 0. */
918
2c7ee1a6 919#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
920
921/* Define intermediate macro to compute the size (in registers) of an argument
922 for the Alpha. */
923
924#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
925((MODE) != BLKmode \
926 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
927 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
928
929/* Update the data in CUM to advance over an argument
930 of mode MODE and data type TYPE.
931 (TYPE is null for libcalls where that information may not be available.) */
932
933#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
934 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
935 (CUM) = 6; \
936 else \
937 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
938
939/* Determine where to put an argument to a function.
940 Value is zero to push the argument on the stack,
941 or a hard register in which to store the argument.
942
943 MODE is the argument's machine mode.
944 TYPE is the data type of the argument (as a tree).
945 This is null for libcalls where that information may
946 not be available.
947 CUM is a variable of type CUMULATIVE_ARGS which gives info about
948 the preceding args and about the function being called.
949 NAMED is nonzero if this argument is a named parameter
950 (otherwise it is an extra parameter matching an ellipsis).
951
952 On Alpha the first 6 words of args are normally in registers
953 and the rest are pushed. */
954
955#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
956((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
957 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
958 (CUM) + 16 + ((TARGET_FPREGS \
959 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
960 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
961 * 32)) \
962 : 0)
1a94ca49 963
1a94ca49
RK
964/* Specify the padding direction of arguments.
965
966 On the Alpha, we must pad upwards in order to be able to pass args in
967 registers. */
968
969#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
970
971/* For an arg passed partly in registers and partly in memory,
972 this is the number of registers used.
973 For args passed entirely in registers or entirely in memory, zero. */
974
975#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
976((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
977 ? 6 - (CUM) : 0)
978
130d2d72
RK
979/* Perform any needed actions needed for a function that is receiving a
980 variable number of arguments.
981
982 CUM is as above.
983
984 MODE and TYPE are the mode and type of the current parameter.
985
986 PRETEND_SIZE is a variable that should be set to the amount of stack
987 that must be pushed by the prolog to pretend that our caller pushed
988 it.
989
990 Normally, this macro will push all remaining incoming registers on the
991 stack and set PRETEND_SIZE to the length of the registers pushed.
992
993 On the Alpha, we allocate space for all 12 arg registers, but only
994 push those that are remaining.
995
996 However, if NO registers need to be saved, don't allocate any space.
997 This is not only because we won't need the space, but because AP includes
998 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
999 ap-relative addresses already made.
1000
1001 If we are not to use the floating-point registers, save the integer
1002 registers where we would put the floating-point registers. This is
1003 not the most efficient way to implement varargs with just one register
1004 class, but it isn't worth doing anything more efficient in this rare
1005 case. */
1006
130d2d72
RK
1007
1008#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1009{ if ((CUM) < 6) \
1010 { \
1011 if (! (NO_RTL)) \
1012 { \
1013 move_block_from_reg \
1014 (16 + CUM, \
1015 gen_rtx (MEM, BLKmode, \
1016 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1017 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1018 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1019 move_block_from_reg \
7a92339b 1020 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1021 gen_rtx (MEM, BLKmode, \
1022 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1023 (CUM) * UNITS_PER_WORD)), \
02892e06 1024 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1025 } \
1026 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1027 } \
1028}
1029
c8e9adec
RK
1030/* Try to output insns to set TARGET equal to the constant C if it can be
1031 done in less than N insns. Do all computations in MODE. Returns the place
1032 where the output has been placed if it can be done and the insns have been
1033 emitted. If it would take more than N insns, zero is returned and no
1034 insns and emitted. */
1035extern struct rtx_def *alpha_emit_set_const ();
803fee69 1036extern struct rtx_def *alpha_emit_set_long_const ();
92e40a7a
RK
1037extern struct rtx_def *alpha_emit_conditional_move ();
1038
1a94ca49
RK
1039/* Generate necessary RTL for __builtin_saveregs().
1040 ARGLIST is the argument list; see expr.c. */
1041extern struct rtx_def *alpha_builtin_saveregs ();
1042#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1043
1044/* Define the information needed to generate branch and scc insns. This is
1045 stored from the compare operation. Note that we can't use "rtx" here
1046 since it hasn't been defined! */
1047
1048extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1049extern int alpha_compare_fp_p;
1050
e5958492
RK
1051/* Make (or fake) .linkage entry for function call.
1052
1053 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1054extern void alpha_need_linkage ();
1055
1a94ca49 1056/* This macro produces the initial definition of a function name. On the
03f8c4cc 1057 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
1058
1059extern char *alpha_function_name;
1060
1061#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 1062{ \
1a94ca49
RK
1063 alpha_function_name = NAME; \
1064}
1065
1066/* This macro generates the assembly code for function entry.
1067 FILE is a stdio stream to output the code to.
1068 SIZE is an int: how many units of temporary storage to allocate.
1069 Refer to the array `regs_ever_live' to determine which registers
1070 to save; `regs_ever_live[I]' is nonzero if register number I
1071 is ever used in the function. This macro is responsible for
1072 knowing which registers should not be saved even if used. */
1073
1074#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1075
1076/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1077 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1078 by simply passing -pg to the assembler and linker. */
85d159a3 1079
e0fb9029 1080#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1081
1082/* Output assembler code to FILE to initialize this source file's
1083 basic block profiling info, if that has not already been done.
1084 This assumes that __bb_init_func doesn't garble a1-a5. */
1085
1086#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1087 do { \
1088 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1089 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1090 fputs ("\tldq $26,0($16)\n", (FILE)); \
1091 fputs ("\tbne $26,1f\n", (FILE)); \
1092 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1093 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1094 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1095 fputs ("1:\n", (FILE)); \
85d159a3
RK
1096 ASM_OUTPUT_REG_POP (FILE, 16); \
1097 } while (0);
1098
1099/* Output assembler code to FILE to increment the entry-count for
1100 the BLOCKNO'th basic block in this source file. */
1101
1102#define BLOCK_PROFILER(FILE, BLOCKNO) \
1103 do { \
1104 int blockn = (BLOCKNO); \
a62eb16f 1105 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1106 fputs ("\tstq $26,0($30)\n", (FILE)); \
1107 fputs ("\tstq $27,8($30)\n", (FILE)); \
1108 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1109 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1110 fputs ("\taddq $27,1,$27\n", (FILE)); \
1111 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1112 fputs ("\tldq $26,0($30)\n", (FILE)); \
1113 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1114 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1115 } while (0)
1a94ca49 1116
1a94ca49
RK
1117
1118/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1119 the stack pointer does not matter. The value is tested only in
1120 functions that have frame pointers.
1121 No definition is equivalent to always zero. */
1122
1123#define EXIT_IGNORE_STACK 1
1124
1125/* This macro generates the assembly code for function exit,
1126 on machines that need it. If FUNCTION_EPILOGUE is not defined
1127 then individual return instructions are generated for each
1128 return statement. Args are same as for FUNCTION_PROLOGUE.
1129
1130 The function epilogue should not depend on the current stack pointer!
1131 It should use the frame pointer only. This is mandatory because
1132 of alloca; we also take advantage of it to omit stack adjustments
1133 before returning. */
1134
1135#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1136
1137\f
1138/* Output assembler code for a block containing the constant parts
1139 of a trampoline, leaving space for the variable parts.
1140
1141 The trampoline should set the static chain pointer to value placed
7981384f
RK
1142 into the trampoline and should branch to the specified routine.
1143 Note that $27 has been set to the address of the trampoline, so we can
1144 use it for addressability of the two data items. Trampolines are always
1145 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1146
1147#define TRAMPOLINE_TEMPLATE(FILE) \
1148{ \
7981384f 1149 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1150 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1151 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1152 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1153 fprintf (FILE, "\t.quad 0,0\n"); \
1154}
1155
3a523eeb
RS
1156/* Section in which to place the trampoline. On Alpha, instructions
1157 may only be placed in a text segment. */
1158
1159#define TRAMPOLINE_SECTION text_section
1160
1a94ca49
RK
1161/* Length in units of the trampoline for entering a nested function. */
1162
7981384f 1163#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1164
1165/* Emit RTL insns to initialize the variable parts of a trampoline.
1166 FNADDR is an RTX for the address of the function's pure code.
1167 CXT is an RTX for the static chain value for the function. We assume
1168 here that a function will be called many more times than its address
1169 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1170 to initialize the "hint" field in the JMP insn. Note that the hint
1171 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1172
1173#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1174{ \
1175 rtx _temp, _temp1, _addr; \
1176 \
1177 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1178 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1179 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1180 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1181 \
7981384f
RK
1182 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1183 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1184 OPTAB_WIDEN); \
1185 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1186 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1187 _temp = expand_and (gen_lowpart (SImode, _temp), \
1188 GEN_INT (0x3fff), 0); \
1a94ca49 1189 \
7981384f 1190 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1191 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1192 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1193 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1194 OPTAB_WIDEN); \
1195 \
1196 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1197 \
1198 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1199 "__enable_execute_stack"), \
1200 0, VOIDmode, 1,_addr, Pmode); \
1201 \
1202 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1203 gen_rtvec (1, const0_rtx), 0)); \
1204}
1205
1206/* Attempt to turn on access permissions for the stack. */
1207
1208#define TRANSFER_FROM_TRAMPOLINE \
1209 \
1210void \
1211__enable_execute_stack (addr) \
1212 void *addr; \
1213{ \
1214 long size = getpagesize (); \
1215 long mask = ~(size-1); \
1216 char *page = (char *) (((long) addr) & mask); \
1217 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1218 \
1219 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1220 if (mprotect (page, end - page, 7) < 0) \
1221 perror ("mprotect of trampoline code"); \
1a94ca49 1222}
675f0e7c
RK
1223
1224/* A C expression whose value is RTL representing the value of the return
1225 address for the frame COUNT steps up from the current frame.
1226 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1227 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
1228
1229 This definition for Alpha is broken, but is put in at the request of
1230 Mike Stump. */
1231
1232#define RETURN_ADDR_RTX(COUNT, FRAME) \
1233((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
6ea0cab3
RK
1234 ? gen_rtx (REG, Pmode, 26) \
1235 : gen_rtx (MEM, Pmode, \
675f0e7c
RK
1236 memory_address (Pmode, FRAME)))
1237\f
1a94ca49
RK
1238/* Addressing modes, and classification of registers for them. */
1239
1240/* #define HAVE_POST_INCREMENT */
1241/* #define HAVE_POST_DECREMENT */
1242
1243/* #define HAVE_PRE_DECREMENT */
1244/* #define HAVE_PRE_INCREMENT */
1245
1246/* Macros to check register numbers against specific register classes. */
1247
1248/* These assume that REGNO is a hard or pseudo reg number.
1249 They give nonzero only if REGNO is a hard reg of the suitable class
1250 or a pseudo reg currently allocated to a suitable hard reg.
1251 Since they use reg_renumber, they are safe only once reg_renumber
1252 has been allocated, which happens in local-alloc.c. */
1253
1254#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1255#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1256((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1257 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1258\f
1259/* Maximum number of registers that can appear in a valid memory address. */
1260#define MAX_REGS_PER_ADDRESS 1
1261
1262/* Recognize any constant value that is a valid address. For the Alpha,
1263 there are only constants none since we want to use LDA to load any
1264 symbolic addresses into registers. */
1265
1266#define CONSTANT_ADDRESS_P(X) \
1267 (GET_CODE (X) == CONST_INT \
1268 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1269
1270/* Include all constant integers and constant doubles, but not
1271 floating-point, except for floating-point zero. */
1272
1273#define LEGITIMATE_CONSTANT_P(X) \
1274 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1275 || (X) == CONST0_RTX (GET_MODE (X)))
1276
1277/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1278 and check its validity for a certain class.
1279 We have two alternate definitions for each of them.
1280 The usual definition accepts all pseudo regs; the other rejects
1281 them unless they have been allocated suitable hard regs.
1282 The symbol REG_OK_STRICT causes the latter definition to be used.
1283
1284 Most source files want to accept pseudo regs in the hope that
1285 they will get allocated to the class that the insn wants them to be in.
1286 Source files for reload pass need to be strict.
1287 After reload, it makes no difference, since pseudo regs have
1288 been eliminated by then. */
1289
1290#ifndef REG_OK_STRICT
1291
1292/* Nonzero if X is a hard reg that can be used as an index
1293 or if it is a pseudo reg. */
1294#define REG_OK_FOR_INDEX_P(X) 0
1295/* Nonzero if X is a hard reg that can be used as a base reg
1296 or if it is a pseudo reg. */
1297#define REG_OK_FOR_BASE_P(X) \
52a69200 1298 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1299
1300#else
1301
1302/* Nonzero if X is a hard reg that can be used as an index. */
1303#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1304/* Nonzero if X is a hard reg that can be used as a base reg. */
1305#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1306
1307#endif
1308\f
1309/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1310 that is a valid memory address for an instruction.
1311 The MODE argument is the machine mode for the MEM expression
1312 that wants to use this address.
1313
1314 For Alpha, we have either a constant address or the sum of a register
1315 and a constant address, or just a register. For DImode, any of those
1316 forms can be surrounded with an AND that clear the low-order three bits;
1317 this is an "unaligned" access.
1318
1a94ca49
RK
1319 First define the basic valid address. */
1320
1321#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1322{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1323 goto ADDR; \
1324 if (CONSTANT_ADDRESS_P (X)) \
1325 goto ADDR; \
1326 if (GET_CODE (X) == PLUS \
1327 && REG_P (XEXP (X, 0)) \
1328 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1329 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1330 goto ADDR; \
1331}
1332
1333/* Now accept the simple address, or, for DImode only, an AND of a simple
1334 address that turns off the low three bits. */
1335
1a94ca49
RK
1336#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1337{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1338 if ((MODE) == DImode \
1339 && GET_CODE (X) == AND \
1340 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1341 && INTVAL (XEXP (X, 1)) == -8) \
1342 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1343}
1344
1345/* Try machine-dependent ways of modifying an illegitimate address
1346 to be legitimate. If we find one, return the new, valid address.
1347 This macro is used in only one place: `memory_address' in explow.c.
1348
1349 OLDX is the address as it was before break_out_memory_refs was called.
1350 In some cases it is useful to look at this to decide what needs to be done.
1351
1352 MODE and WIN are passed so that this macro can use
1353 GO_IF_LEGITIMATE_ADDRESS.
1354
1355 It is always safe for this macro to do nothing. It exists to recognize
1356 opportunities to optimize the output.
1357
1358 For the Alpha, there are three cases we handle:
1359
1360 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1361 valid offset, compute the high part of the constant and add it to the
1362 register. Then our address is (plus temp low-part-const).
1363 (2) If the address is (const (plus FOO const_int)), find the low-order
1364 part of the CONST_INT. Then load FOO plus any high-order part of the
1365 CONST_INT into a register. Our address is (plus reg low-part-const).
1366 This is done to reduce the number of GOT entries.
1367 (3) If we have a (plus reg const), emit the load as in (2), then add
1368 the two registers, and finally generate (plus reg low-part-const) as
1369 our address. */
1370
1371#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1372{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1373 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1374 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1375 { \
1376 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1377 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1378 HOST_WIDE_INT highpart = val - lowpart; \
1379 rtx high = GEN_INT (highpart); \
1380 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1381 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1382 \
1383 (X) = plus_constant (temp, lowpart); \
1384 goto WIN; \
1385 } \
1386 else if (GET_CODE (X) == CONST \
1387 && GET_CODE (XEXP (X, 0)) == PLUS \
1388 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1389 { \
1390 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1391 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1392 HOST_WIDE_INT highpart = val - lowpart; \
1393 rtx high = XEXP (XEXP (X, 0), 0); \
1394 \
1395 if (highpart) \
1396 high = plus_constant (high, highpart); \
1397 \
1398 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1399 goto WIN; \
1400 } \
1401 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1402 && GET_CODE (XEXP (X, 1)) == CONST \
1403 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1404 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1405 { \
1406 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1407 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1408 HOST_WIDE_INT highpart = val - lowpart; \
1409 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1410 \
1411 if (highpart) \
1412 high = plus_constant (high, highpart); \
1413 \
1414 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1415 force_reg (Pmode, high), \
80f251fe 1416 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1417 (X) = plus_constant (high, lowpart); \
1418 goto WIN; \
1419 } \
1420}
1421
1422/* Go to LABEL if ADDR (a legitimate address expression)
1423 has an effect that depends on the machine mode it is used for.
1424 On the Alpha this is true only for the unaligned modes. We can
1425 simplify this test since we know that the address must be valid. */
1426
1427#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1428{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1429
1430/* Compute the cost of an address. For the Alpha, all valid addresses are
1431 the same cost. */
1432
1433#define ADDRESS_COST(X) 0
1434
1435/* Define this if some processing needs to be done immediately before
1436 emitting code for an insn. */
1437
2bf6230d
RK
1438extern void final_prescan_insn ();
1439#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1440 final_prescan_insn ((INSN), (OPERANDS), (NOPERANDS))
1441
1442/* Define this if FINAL_PRESCAN_INSN should be called for a CODE_LABEL. */
1443#define FINAL_PRESCAN_LABEL
1a94ca49
RK
1444\f
1445/* Specify the machine mode that this machine uses
1446 for the index in the tablejump instruction. */
1447#define CASE_VECTOR_MODE SImode
1448
1449/* Define this if the tablejump instruction expects the table
1450 to contain offsets from the address of the table.
260ced47
RK
1451 Do not define this if the table should contain absolute addresses.
1452 On the Alpha, the table is really GP-relative, not relative to the PC
1453 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1454 but we should try to find some better way sometime. */
260ced47 1455#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1456
1457/* Specify the tree operation to be used to convert reals to integers. */
1458#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1459
1460/* This is the kind of divide that is easiest to do in the general case. */
1461#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1462
1463/* Define this as 1 if `char' should by default be signed; else as 0. */
1464#define DEFAULT_SIGNED_CHAR 1
1465
1466/* This flag, if defined, says the same insns that convert to a signed fixnum
1467 also convert validly to an unsigned one.
1468
1469 We actually lie a bit here as overflow conditions are different. But
1470 they aren't being checked anyway. */
1471
1472#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1473
1474/* Max number of bytes we can move to or from memory
1475 in one reasonably fast instruction. */
1476
1477#define MOVE_MAX 8
1478
1479/* Largest number of bytes of an object that can be placed in a register.
1480 On the Alpha we have plenty of registers, so use TImode. */
1481#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1482
1483/* Nonzero if access to memory by bytes is no faster than for words.
1484 Also non-zero if doing byte operations (specifically shifts) in registers
1485 is undesirable.
1486
1487 On the Alpha, we want to not use the byte operation and instead use
1488 masking operations to access fields; these will save instructions. */
1489
1490#define SLOW_BYTE_ACCESS 1
1491
9a63901f
RK
1492/* Define if operations between registers always perform the operation
1493 on the full register even if a narrower mode is specified. */
1494#define WORD_REGISTER_OPERATIONS
1495
1496/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1497 will either zero-extend or sign-extend. The value of this macro should
1498 be the code that says which one of the two operations is implicitly
1499 done, NIL if none. */
b7747781 1500#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1501
225211e2
RK
1502/* Define if loading short immediate values into registers sign extends. */
1503#define SHORT_IMMEDIATES_SIGN_EXTEND
1504
1a94ca49
RK
1505/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1506 is done just by pretending it is already truncated. */
1507#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1508
1509/* We assume that the store-condition-codes instructions store 0 for false
1510 and some other value for true. This is the value stored for true. */
1511
1512#define STORE_FLAG_VALUE 1
1513
1514/* Define the value returned by a floating-point comparison instruction. */
1515
1516#define FLOAT_STORE_FLAG_VALUE 0.5
1517
35bb77fd
RK
1518/* Canonicalize a comparison from one we don't have to one we do have. */
1519
1520#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1521 do { \
1522 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1523 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1524 { \
1525 rtx tem = (OP0); \
1526 (OP0) = (OP1); \
1527 (OP1) = tem; \
1528 (CODE) = swap_condition (CODE); \
1529 } \
1530 if (((CODE) == LT || (CODE) == LTU) \
1531 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1532 { \
1533 (CODE) = (CODE) == LT ? LE : LEU; \
1534 (OP1) = GEN_INT (255); \
1535 } \
1536 } while (0)
1537
1a94ca49
RK
1538/* Specify the machine mode that pointers have.
1539 After generation of rtl, the compiler makes no further distinction
1540 between pointers and any other objects of this machine mode. */
1541#define Pmode DImode
1542
1543/* Mode of a function address in a call instruction (for indexing purposes). */
1544
1545#define FUNCTION_MODE Pmode
1546
1547/* Define this if addresses of constant functions
1548 shouldn't be put through pseudo regs where they can be cse'd.
1549 Desirable on machines where ordinary constants are expensive
1550 but a CALL with constant address is cheap.
1551
1552 We define this on the Alpha so that gen_call and gen_call_value
1553 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1554 then copy it into a register, thus actually letting the address be
1555 cse'ed. */
1556
1557#define NO_FUNCTION_CSE
1558
d969caf8 1559/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1560 few bits. */
d969caf8 1561#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1562
d721b776
RK
1563/* Use atexit for static constructors/destructors, instead of defining
1564 our own exit function. */
1565#define HAVE_ATEXIT
1566
1a94ca49
RK
1567/* Compute the cost of computing a constant rtl expression RTX
1568 whose rtx-code is CODE. The body of this macro is a portion
1569 of a switch statement. If the code is computed here,
1570 return it with a return statement. Otherwise, break from the switch.
1571
8b7b2e36
RK
1572 If this is an 8-bit constant, return zero since it can be used
1573 nearly anywhere with no cost. If it is a valid operand for an
1574 ADD or AND, likewise return 0 if we know it will be used in that
1575 context. Otherwise, return 2 since it might be used there later.
1576 All other constants take at least two insns. */
1a94ca49
RK
1577
1578#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1579 case CONST_INT: \
06eb8e92 1580 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1581 return 0; \
1a94ca49 1582 case CONST_DOUBLE: \
8b7b2e36
RK
1583 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1584 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1585 return 0; \
1586 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1587 return 2; \
1588 else \
1589 return COSTS_N_INSNS (2); \
1a94ca49
RK
1590 case CONST: \
1591 case SYMBOL_REF: \
1592 case LABEL_REF: \
f6f6a13c
RK
1593 switch (alpha_cpu) \
1594 { \
1595 case PROCESSOR_EV4: \
1596 return COSTS_N_INSNS (3); \
1597 case PROCESSOR_EV5: \
1598 return COSTS_N_INSNS (2); \
1599 }
1a94ca49
RK
1600
1601/* Provide the costs of a rtl expression. This is in the body of a
1602 switch on CODE. */
1603
1604#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1605 case PLUS: case MINUS: \
1606 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1607 switch (alpha_cpu) \
1608 { \
1609 case PROCESSOR_EV4: \
1610 return COSTS_N_INSNS (6); \
1611 case PROCESSOR_EV5: \
1612 return COSTS_N_INSNS (4); \
1613 } \
b49e978e
RK
1614 else if (GET_CODE (XEXP (X, 0)) == MULT \
1615 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1616 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1617 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1618 break; \
1619 case MULT: \
f6f6a13c
RK
1620 switch (alpha_cpu) \
1621 { \
1622 case PROCESSOR_EV4: \
1623 if (FLOAT_MODE_P (GET_MODE (X))) \
1624 return COSTS_N_INSNS (6); \
1625 return COSTS_N_INSNS (23); \
1626 case PROCESSOR_EV5: \
1627 if (FLOAT_MODE_P (GET_MODE (X))) \
1628 return COSTS_N_INSNS (4); \
1629 else if (GET_MODE (X) == DImode) \
1630 return COSTS_N_INSNS (12); \
1631 else \
1632 return COSTS_N_INSNS (8); \
1633 } \
b49e978e
RK
1634 case ASHIFT: \
1635 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1636 && INTVAL (XEXP (X, 1)) <= 3) \
1637 break; \
1638 /* ... fall through ... */ \
1639 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
f6f6a13c
RK
1640 switch (alpha_cpu) \
1641 { \
1642 case PROCESSOR_EV4: \
1643 return COSTS_N_INSNS (2); \
1644 case PROCESSOR_EV5: \
1645 return COSTS_N_INSNS (1); \
1646 } \
3bda6d11 1647 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1648 switch (alpha_cpu) \
1649 { \
1650 case PROCESSOR_EV4: \
1651 if (GET_MODE (X) == SFmode) \
1652 return COSTS_N_INSNS (34); \
1653 else if (GET_MODE (X) == DFmode) \
1654 return COSTS_N_INSNS (63); \
1655 else \
1656 return COSTS_N_INSNS (70); \
1657 case PROCESSOR_EV5: \
1658 if (GET_MODE (X) == SFmode) \
1659 return COSTS_N_INSNS (15); \
1660 else if (GET_MODE (X) == DFmode) \
1661 return COSTS_N_INSNS (22); \
1662 else \
1663 return COSTS_N_INSNS (70); /* EV5 ??? */ \
1664 } \
1a94ca49 1665 case MEM: \
f6f6a13c
RK
1666 switch (alpha_cpu) \
1667 { \
1668 case PROCESSOR_EV4: \
1669 return COSTS_N_INSNS (3); \
1670 case PROCESSOR_EV5: \
1671 return COSTS_N_INSNS (2); \
1672 } \
1673 case NEG: case ABS: \
1674 if (! FLOAT_MODE_P (GET_MODE (X))) \
1675 break; \
1676 /* ... fall through ... */ \
3bda6d11
RK
1677 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1678 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1679 switch (alpha_cpu) \
1680 { \
1681 case PROCESSOR_EV4: \
1682 return COSTS_N_INSNS (6); \
1683 case PROCESSOR_EV5: \
1684 return COSTS_N_INSNS (4); \
1685 }
1a94ca49
RK
1686\f
1687/* Control the assembler format that we output. */
1688
1689/* Output at beginning of assembler file. */
1690
1691#define ASM_FILE_START(FILE) \
03f8c4cc 1692{ \
130d2d72
RK
1693 alpha_write_verstamp (FILE); \
1694 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1695 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1696 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1697 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1698}
1699
1700/* Output to assembler file text saying following lines
1701 may contain character constants, extra white space, comments, etc. */
1702
1703#define ASM_APP_ON ""
1704
1705/* Output to assembler file text saying following lines
1706 no longer contain unusual constructs. */
1707
1708#define ASM_APP_OFF ""
1709
1710#define TEXT_SECTION_ASM_OP ".text"
1711
1712/* Output before read-only data. */
1713
1714#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1715
1716/* Output before writable data. */
1717
1718#define DATA_SECTION_ASM_OP ".data"
1719
1720/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1721 indicate that it is for read-only data.
1722
abc95ed3 1723 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1724 eight bytes of zero. This works around a bug in DEC's assembler in
1725 some versions of OSF/1 V3.x. */
1a94ca49
RK
1726
1727#define EXTRA_SECTIONS readonly_data
1728
1729#define EXTRA_SECTION_FUNCTIONS \
1730void \
1731literal_section () \
1732{ \
1733 if (in_section != readonly_data) \
1734 { \
c0388f29
RK
1735 static int firsttime = 1; \
1736 \
1a94ca49 1737 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1738 if (firsttime) \
1739 { \
1740 firsttime = 0; \
1741 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1742 } \
1743 \
1a94ca49
RK
1744 in_section = readonly_data; \
1745 } \
1746} \
1747
1748#define READONLY_DATA_SECTION literal_section
1749
ac030a7b
RK
1750/* If we are referencing a function that is static, make the SYMBOL_REF
1751 special. We use this to see indicate we can branch to this function
1752 without setting PV or restoring GP. */
130d2d72
RK
1753
1754#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1755 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1756 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1757
1a94ca49
RK
1758/* How to refer to registers in assembler output.
1759 This sequence is indexed by compiler's hard-register-number (see above). */
1760
1761#define REGISTER_NAMES \
1762{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1763 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1764 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1765 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1766 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1767 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1768 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1769 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1770
1771/* How to renumber registers for dbx and gdb. */
1772
1773#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1774
1775/* This is how to output the definition of a user-level label named NAME,
1776 such as the label on a static function or variable NAME. */
1777
1778#define ASM_OUTPUT_LABEL(FILE,NAME) \
1779 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1780
1781/* This is how to output a command to make the user-level label named NAME
1782 defined for reference from other files. */
1783
1784#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1785 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1786
4e0c8ad2 1787/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1788
4e0c8ad2 1789#define USER_LABEL_PREFIX ""
1a94ca49
RK
1790
1791/* This is how to output an internal numbered label where
1792 PREFIX is the class of label and NUM is the number within the class. */
1793
1794#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1795 if ((PREFIX)[0] == 'L') \
1796 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1797 else \
1798 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1799
1800/* This is how to output a label for a jump table. Arguments are the same as
1801 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1802 passed. */
1803
1804#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1805{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1806
1807/* This is how to store into the string LABEL
1808 the symbol_ref name of an internal numbered label where
1809 PREFIX is the class of label and NUM is the number within the class.
1810 This is suitable for output with `assemble_name'. */
1811
1812#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1813 if ((PREFIX)[0] == 'L') \
1814 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1815 else \
1816 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1817
e247ca2a
RK
1818/* Check a floating-point value for validity for a particular machine mode. */
1819
1820#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1821 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1822
1a94ca49
RK
1823/* This is how to output an assembler line defining a `double' constant. */
1824
e99300f1
RS
1825#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1826 { \
1827 if (REAL_VALUE_ISINF (VALUE) \
1828 || REAL_VALUE_ISNAN (VALUE) \
1829 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1830 { \
1831 long t[2]; \
1832 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1833 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1834 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1835 } \
1836 else \
1837 { \
1838 char str[30]; \
1839 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1840 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1841 } \
1842 }
1a94ca49
RK
1843
1844/* This is how to output an assembler line defining a `float' constant. */
1845
e247ca2a
RK
1846#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1847 do { \
1848 long t; \
1849 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1850 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1851} while (0)
2700ac93 1852
1a94ca49
RK
1853/* This is how to output an assembler line defining an `int' constant. */
1854
1855#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1856( fprintf (FILE, "\t.long "), \
1857 output_addr_const (FILE, (VALUE)), \
1858 fprintf (FILE, "\n"))
1a94ca49
RK
1859
1860/* This is how to output an assembler line defining a `long' constant. */
1861
1862#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1863( fprintf (FILE, "\t.quad "), \
1864 output_addr_const (FILE, (VALUE)), \
1865 fprintf (FILE, "\n"))
1866
1867/* Likewise for `char' and `short' constants. */
1868
1869#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1870 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1871 (GET_CODE (VALUE) == CONST_INT \
1872 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1873
1874#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1875 fprintf (FILE, "\t.byte %d\n", \
1876 (GET_CODE (VALUE) == CONST_INT \
1877 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1878
1879/* We use the default ASCII-output routine, except that we don't write more
1880 than 50 characters since the assembler doesn't support very long lines. */
1881
1882#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1883 do { \
1884 FILE *_hide_asm_out_file = (MYFILE); \
1885 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1886 int _hide_thissize = (MYLENGTH); \
1887 int _size_so_far = 0; \
1888 { \
1889 FILE *asm_out_file = _hide_asm_out_file; \
1890 unsigned char *p = _hide_p; \
1891 int thissize = _hide_thissize; \
1892 int i; \
1893 fprintf (asm_out_file, "\t.ascii \""); \
1894 \
1895 for (i = 0; i < thissize; i++) \
1896 { \
1897 register int c = p[i]; \
1898 \
1899 if (_size_so_far ++ > 50 && i < thissize - 4) \
1900 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1901 \
1902 if (c == '\"' || c == '\\') \
1903 putc ('\\', asm_out_file); \
1904 if (c >= ' ' && c < 0177) \
1905 putc (c, asm_out_file); \
1906 else \
1907 { \
1908 fprintf (asm_out_file, "\\%o", c); \
1909 /* After an octal-escape, if a digit follows, \
1910 terminate one string constant and start another. \
1911 The Vax assembler fails to stop reading the escape \
1912 after three digits, so this is the only way we \
1913 can get it to parse the data properly. */ \
1914 if (i < thissize - 1 \
1915 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1916 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1917 } \
1918 } \
1919 fprintf (asm_out_file, "\"\n"); \
1920 } \
1921 } \
1922 while (0)
52a69200 1923
1a94ca49
RK
1924/* This is how to output an insn to push a register on the stack.
1925 It need not be very fast code. */
1926
1927#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1928 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1929 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1930 (REGNO) & 31);
1931
1932/* This is how to output an insn to pop a register from the stack.
1933 It need not be very fast code. */
1934
1935#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1936 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1937 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1938 (REGNO) & 31);
1939
1940/* This is how to output an assembler line for a numeric constant byte. */
1941
1942#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1943 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1944
260ced47
RK
1945/* This is how to output an element of a case-vector that is absolute.
1946 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1947
260ced47 1948#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1949
260ced47 1950/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1951
0076aa6b 1952#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
e7a2eff8
RK
1953 fprintf (FILE, "\t.%s $%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
1954 (VALUE) + 32)
1a94ca49
RK
1955
1956/* This is how to output an assembler line
1957 that says to advance the location counter
1958 to a multiple of 2**LOG bytes. */
1959
1960#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1961 if ((LOG) != 0) \
1962 fprintf (FILE, "\t.align %d\n", LOG);
1963
1964/* This is how to advance the location counter by SIZE bytes. */
1965
1966#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1967 fprintf (FILE, "\t.space %d\n", (SIZE))
1968
1969/* This says how to output an assembler line
1970 to define a global common symbol. */
1971
1972#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1973( fputs ("\t.comm ", (FILE)), \
1974 assemble_name ((FILE), (NAME)), \
1975 fprintf ((FILE), ",%d\n", (SIZE)))
1976
1977/* This says how to output an assembler line
1978 to define a local common symbol. */
1979
1980#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1981( fputs ("\t.lcomm ", (FILE)), \
1982 assemble_name ((FILE), (NAME)), \
1983 fprintf ((FILE), ",%d\n", (SIZE)))
1984
1985/* Store in OUTPUT a string (made with alloca) containing
1986 an assembler-name for a local static variable named NAME.
1987 LABELNO is an integer which is different for each call. */
1988
1989#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1990( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1991 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1992
1993/* Define the parentheses used to group arithmetic operations
1994 in assembler code. */
1995
1996#define ASM_OPEN_PAREN "("
1997#define ASM_CLOSE_PAREN ")"
1998
1999/* Define results of standard character escape sequences. */
2000#define TARGET_BELL 007
2001#define TARGET_BS 010
2002#define TARGET_TAB 011
2003#define TARGET_NEWLINE 012
2004#define TARGET_VT 013
2005#define TARGET_FF 014
2006#define TARGET_CR 015
2007
2008/* Print operand X (an rtx) in assembler syntax to file FILE.
2009 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2010 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2011
2012#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2013
2014/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2015 not be alphabetic (the characters are chosen so that
2016 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2017 using ASCII).
2018
2019 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2020 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2021 mode. alpha_fprm controls which suffix is generated.
2022
2023 ' Generates trap-mode suffix for instructions that accept the
2024 su suffix only (cmpt et al).
2025
2026 ) Generates trap-mode suffix for instructions that accept the
2027 u, su, and sui suffix. This is the bulk of the IEEE floating
2028 point instructions (addt et al).
2029
2030 + Generates trap-mode suffix for instructions that accept the
2031 sui suffix (cvtqt and cvtqs).
e5958492
RK
2032
2033 , Generates single precision suffix for floating point
2034 instructions (s for IEEE, f for VAX)
2035
2036 - Generates double precision suffix for floating point
2037 instructions (t for IEEE, g for VAX)
2bf6230d 2038 */
1a94ca49 2039
2bf6230d 2040#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e5958492
RK
2041 ((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+' \
2042 || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2043\f
2044/* Print a memory address as an operand to reference that memory location. */
2045
2046#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2047{ rtx addr = (ADDR); \
2048 int basereg = 31; \
2049 HOST_WIDE_INT offset = 0; \
2050 \
2051 if (GET_CODE (addr) == AND) \
2052 addr = XEXP (addr, 0); \
2053 \
2054 if (GET_CODE (addr) == REG) \
2055 basereg = REGNO (addr); \
2056 else if (GET_CODE (addr) == CONST_INT) \
2057 offset = INTVAL (addr); \
2058 else if (GET_CODE (addr) == PLUS \
2059 && GET_CODE (XEXP (addr, 0)) == REG \
2060 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2061 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2062 else \
2063 abort (); \
2064 \
2065 fprintf (FILE, "%d($%d)", offset, basereg); \
2066}
2067/* Define the codes that are matched by predicates in alpha.c. */
2068
2069#define PREDICATE_CODES \
2070 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2071 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2072 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2073 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2074 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2075 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2076 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2077 {"const48_operand", {CONST_INT}}, \
2078 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2079 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2080 {"mode_mask_operand", {CONST_INT}}, \
2081 {"mul8_operand", {CONST_INT}}, \
2082 {"mode_width_operand", {CONST_INT}}, \
2083 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2084 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
d1e03f31 2085 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1a94ca49 2086 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2087 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2088 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2089 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2090 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2091 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2092 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2093 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2094 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2095 {"aligned_memory_operand", {MEM}}, \
2096 {"unaligned_memory_operand", {MEM}}, \
442b1685 2097 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1a94ca49 2098 {"any_memory_operand", {MEM}},
03f8c4cc 2099\f
34fa88ab
RK
2100/* Tell collect that the object format is ECOFF. */
2101#define OBJECT_FORMAT_COFF
2102#define EXTENDED_COFF
2103
2104/* If we use NM, pass -g to it so it only lists globals. */
2105#define NM_FLAGS "-pg"
2106
03f8c4cc
RK
2107/* Definitions for debugging. */
2108
2109#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2110#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2111#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2112
2113#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
2114#define PREFERRED_DEBUGGING_TYPE \
2115 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
2116#endif
2117
2118
2119/* Correct the offset of automatic variables and arguments. Note that
2120 the Alpha debug format wants all automatic variables and arguments
2121 to be in terms of two different offsets from the virtual frame pointer,
2122 which is the stack pointer before any adjustment in the function.
2123 The offset for the argument pointer is fixed for the native compiler,
2124 it is either zero (for the no arguments case) or large enough to hold
2125 all argument registers.
2126 The offset for the auto pointer is the fourth argument to the .frame
2127 directive (local_offset).
2128 To stay compatible with the native tools we use the same offsets
2129 from the virtual frame pointer and adjust the debugger arg/auto offsets
2130 accordingly. These debugger offsets are set up in output_prolog. */
2131
9a0b18f2
RK
2132extern long alpha_arg_offset;
2133extern long alpha_auto_offset;
03f8c4cc
RK
2134#define DEBUGGER_AUTO_OFFSET(X) \
2135 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2136#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2137
2138
2139#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2140 alpha_output_lineno (STREAM, LINE)
2141extern void alpha_output_lineno ();
2142
2143#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2144 alpha_output_filename (STREAM, NAME)
2145extern void alpha_output_filename ();
2146
2147
ab8b8941
RK
2148/* mips-tfile.c limits us to strings of one page. */
2149#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
2150
2151/* By default, turn on GDB extensions. */
2152#define DEFAULT_GDB_EXTENSIONS 1
2153
7aadc7c2
RK
2154/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2155#define NO_DBX_FUNCTION_END 1
2156
03f8c4cc
RK
2157/* If we are smuggling stabs through the ALPHA ECOFF object
2158 format, put a comment in front of the .stab<x> operation so
2159 that the ALPHA assembler does not choke. The mips-tfile program
2160 will correctly put the stab into the object file. */
2161
2162#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2163#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2164#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2165
2166/* Forward references to tags are allowed. */
2167#define SDB_ALLOW_FORWARD_REFERENCES
2168
2169/* Unknown tags are also allowed. */
2170#define SDB_ALLOW_UNKNOWN_REFERENCES
2171
2172#define PUT_SDB_DEF(a) \
2173do { \
2174 fprintf (asm_out_file, "\t%s.def\t", \
2175 (TARGET_GAS) ? "" : "#"); \
2176 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2177 fputc (';', asm_out_file); \
2178} while (0)
2179
2180#define PUT_SDB_PLAIN_DEF(a) \
2181do { \
2182 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2183 (TARGET_GAS) ? "" : "#", (a)); \
2184} while (0)
2185
2186#define PUT_SDB_TYPE(a) \
2187do { \
2188 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2189} while (0)
2190
2191/* For block start and end, we create labels, so that
2192 later we can figure out where the correct offset is.
2193 The normal .ent/.end serve well enough for functions,
2194 so those are just commented out. */
2195
2196extern int sdb_label_count; /* block start/end next label # */
2197
2198#define PUT_SDB_BLOCK_START(LINE) \
2199do { \
2200 fprintf (asm_out_file, \
2201 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2202 sdb_label_count, \
2203 (TARGET_GAS) ? "" : "#", \
2204 sdb_label_count, \
2205 (LINE)); \
2206 sdb_label_count++; \
2207} while (0)
2208
2209#define PUT_SDB_BLOCK_END(LINE) \
2210do { \
2211 fprintf (asm_out_file, \
2212 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2213 sdb_label_count, \
2214 (TARGET_GAS) ? "" : "#", \
2215 sdb_label_count, \
2216 (LINE)); \
2217 sdb_label_count++; \
2218} while (0)
2219
2220#define PUT_SDB_FUNCTION_START(LINE)
2221
2222#define PUT_SDB_FUNCTION_END(LINE)
2223
2224#define PUT_SDB_EPILOGUE_END(NAME)
2225
7bd7a756
RK
2226/* No point in running CPP on our assembler output. */
2227#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
2228/* Don't pass -g to GNU as, because some versions don't accept this option. */
2229#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
2230#else
2231/* In OSF/1 v3.2c, the assembler by default does not output file names which
2232 causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
2233 ??? Stricly speaking, we only need -g if the user specifies -g. Passing
2234 it always means that we get slightly larger than necessary object files
2235 if the user does not specify -g. If we don't pass -g, then mips-tfile
2236 will need to be fixed to work in this case. */
2237#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
2238#endif
2239
03f8c4cc
RK
2240/* Specify to run a post-processor, mips-tfile after the assembler
2241 has run to stuff the ecoff debug information into the object file.
2242 This is needed because the Alpha assembler provides no way
2243 of specifying such information in the assembly file. */
2244
88681624 2245#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2246
2247#define ASM_FINAL_SPEC "\
2248%{malpha-as: %{!mno-mips-tfile: \
2249 \n mips-tfile %{v*: -v} \
2250 %{K: -I %b.o~} \
2251 %{!K: %{save-temps: -I %b.o~}} \
2252 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2253 %{.s:%i} %{!.s:%g.s}}}"
2254
2255#else
2256#define ASM_FINAL_SPEC "\
2257%{!mgas: %{!mno-mips-tfile: \
2258 \n mips-tfile %{v*: -v} \
2259 %{K: -I %b.o~} \
2260 %{!K: %{save-temps: -I %b.o~}} \
2261 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2262 %{.s:%i} %{!.s:%g.s}}}"
2263
2264#endif
2265
2266/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2267 mips-tdump.c to print them out.
2268
2269 These must match the corresponding definitions in gdb/mipsread.c.
2270 Unfortunately, gcc and gdb do not currently share any directories. */
2271
2272#define CODE_MASK 0x8F300
2273#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2274#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2275#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2276
2277/* Override some mips-tfile definitions. */
2278
2279#define SHASH_SIZE 511
2280#define THASH_SIZE 55
1e6c6f11
RK
2281
2282/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2283
2284#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2285
2286/* The system headers under OSF/1 are C++-aware. */
2287#define NO_IMPLICIT_EXTERN_C
54190234
JM
2288
2289/* The linker will stick __main into the .init section. */
2290#define HAS_INIT_SECTION
68d69835
JM
2291#define LD_INIT_SWITCH "-init"
2292#define LD_FINI_SWITCH "-fini"
This page took 0.484883 seconds and 5 git commands to generate.