]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
parse.y (qualify_ambiguous_name): Take into account that a CONVERT_EXPR might specify...
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
ca7cdae3 2 Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
952fc2ed
RH
26%{!undef:\
27%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
28%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
29%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
30%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
31%{mieee:-D_IEEE_FP }\
32%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
33%(cpp_cpu) %(cpp_subtarget)"
34
35#ifndef CPP_SUBTARGET_SPEC
36#define CPP_SUBTARGET_SPEC ""
37#endif
1a94ca49
RK
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
b890f297
JM
45#define WORD_SWITCH_TAKES_ARG(STR) \
46 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
47 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
48 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
49 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
50 || !strcmp (STR, "isystem"))
8877eb00 51
1a94ca49
RK
52/* Print subsidiary information on the compiler version in use. */
53#define TARGET_VERSION
54
1a94ca49
RK
55/* Run-time compilation parameters selecting different hardware subsets. */
56
f6f6a13c
RK
57/* Which processor to schedule for. The cpu attribute defines a list that
58 mirrors this list, so changes to alpha.md must be made at the same time. */
59
60enum processor_type
61 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
62 PROCESSOR_EV5, /* 21164{a,pc,} */
63 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
64
65extern enum processor_type alpha_cpu;
66
2bf6230d
RK
67enum alpha_trap_precision
68{
69 ALPHA_TP_PROG, /* No precision (default). */
70 ALPHA_TP_FUNC, /* Trap contained within originating function. */
71 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
72};
73
74enum alpha_fp_rounding_mode
75{
76 ALPHA_FPRM_NORM, /* Normal rounding mode. */
77 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
78 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
79 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
80};
81
82enum alpha_fp_trap_mode
83{
84 ALPHA_FPTM_N, /* Normal trap mode. */
85 ALPHA_FPTM_U, /* Underflow traps enabled. */
86 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
87 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
88};
89
1a94ca49
RK
90extern int target_flags;
91
2bf6230d
RK
92extern enum alpha_trap_precision alpha_tp;
93extern enum alpha_fp_rounding_mode alpha_fprm;
94extern enum alpha_fp_trap_mode alpha_fptm;
95
1a94ca49
RK
96/* This means that floating-point support exists in the target implementation
97 of the Alpha architecture. This is usually the default. */
98
2bf6230d
RK
99#define MASK_FP 1
100#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
101
102/* This means that floating-point registers are allowed to be used. Note
103 that Alpha implementations without FP operations are required to
104 provide the FP registers. */
105
2bf6230d
RK
106#define MASK_FPREGS 2
107#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
108
109/* This means that gas is used to process the assembler file. */
110
111#define MASK_GAS 4
112#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 113
2bf6230d
RK
114/* This means that we should mark procedures as IEEE conformant. */
115
116#define MASK_IEEE_CONFORMANT 8
117#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
118
119/* This means we should be IEEE-compliant except for inexact. */
120
121#define MASK_IEEE 16
122#define TARGET_IEEE (target_flags & MASK_IEEE)
123
124/* This means we should be fully IEEE-compliant. */
125
126#define MASK_IEEE_WITH_INEXACT 32
127#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
128
803fee69
RK
129/* This means we must construct all constants rather than emitting
130 them as literal data. */
131
132#define MASK_BUILD_CONSTANTS 128
133#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
134
e5958492
RK
135/* This means we handle floating points in VAX F- (float)
136 or G- (double) Format. */
137
138#define MASK_FLOAT_VAX 512
139#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
140
e9a25f70
JL
141/* This means that the processor has byte and half word loads and stores
142 (the BWX extension). */
025f3281 143
e9a25f70
JL
144#define MASK_BWX 1024
145#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 146
e9a25f70
JL
147/* This means that the processor has the CIX extension. */
148#define MASK_CIX 2048
149#define TARGET_CIX (target_flags & MASK_CIX)
150
151/* This means that the processor has the MAX extension. */
152#define MASK_MAX 4096
153#define TARGET_MAX (target_flags & MASK_MAX)
154
155/* This means that the processor is an EV5, EV56, or PCA56. This is defined
156 only in TARGET_CPU_DEFAULT. */
157#define MASK_CPU_EV5 8192
158
159/* Likewise for EV6. */
160#define MASK_CPU_EV6 16384
161
162/* This means we support the .arch directive in the assembler. Only
163 defined in TARGET_CPU_DEFAULT. */
164#define MASK_SUPPORT_ARCH 32768
165#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 166
9ba3994a
RH
167/* These are for target os support and cannot be changed at runtime. */
168#ifndef TARGET_WINDOWS_NT
169#define TARGET_WINDOWS_NT 0
170#endif
171#ifndef TARGET_OPEN_VMS
172#define TARGET_OPEN_VMS 0
173#endif
174
175#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
176#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
177#endif
9c0e94a5
RH
178#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
179#define TARGET_CAN_FAULT_IN_PROLOGUE 0
180#endif
9ba3994a 181
1a94ca49
RK
182/* Macro to define tables used to set the flags.
183 This is a list in braces of pairs in braces,
184 each pair being { "NAME", VALUE }
185 where VALUE is the bits to set or minus the bits to clear.
186 An empty string NAME is used to identify the default VALUE. */
187
f8e52397
RH
188#define TARGET_SWITCHES \
189 { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
190 {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
191 {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
192 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
193 {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
194 {"gas", MASK_GAS, "Assume GAS"}, \
195 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
196 "Request IEEE-conformant math library routines (OSF/1)"}, \
197 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
198 "Emit IEEE-conformant code, without inexact exceptions"}, \
199 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
200 "Emit IEEE-conformant code, with inexact exceptions"}, \
201 {"build-constants", MASK_BUILD_CONSTANTS, \
202 "Do not emit complex integer constants to read-only memory"}, \
203 {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
204 {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
205 {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
206 {"no-bwx", -MASK_BWX, ""}, \
207 {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
208 {"no-cix", -MASK_CIX, ""}, \
209 {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
210 {"no-max", -MASK_MAX, ""}, \
211 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 212
c01b5470 213#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 214
88681624
ILT
215#ifndef TARGET_CPU_DEFAULT
216#define TARGET_CPU_DEFAULT 0
217#endif
218
2bf6230d
RK
219/* This macro is similar to `TARGET_SWITCHES' but defines names of
220 command options that have values. Its definition is an initializer
221 with a subgrouping for each command option.
222
223 Each subgrouping contains a string constant, that defines the fixed
224 part of the option name, and the address of a variable. The
225 variable, type `char *', is set to the variable part of the given
226 option if the fixed part matches. The actual option name is made
227 by appending `-m' to the specified name.
228
229 Here is an example which defines `-mshort-data-NUMBER'. If the
230 given option is `-mshort-data-512', the variable `m88k_short_data'
231 will be set to the string `"512"'.
232
233 extern char *m88k_short_data;
234 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
235
df45c7ea
KG
236extern const char *alpha_cpu_string; /* For -mcpu= */
237extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
238extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
239extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
240extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 241
f8e52397
RH
242#define TARGET_OPTIONS \
243{ \
244 {"cpu=", &alpha_cpu_string, \
245 "Generate code for a given CPU"}, \
246 {"fp-rounding-mode=", &alpha_fprm_string, \
247 "Control the generated fp rounding mode"}, \
248 {"fp-trap-mode=", &alpha_fptm_string, \
249 "Control the IEEE trap mode"}, \
250 {"trap-precision=", &alpha_tp_string, \
251 "Control the precision given to fp exceptions"}, \
252 {"memory-latency=", &alpha_mlat_string, \
253 "Tune expected memory latency"}, \
2bf6230d
RK
254}
255
952fc2ed
RH
256/* Attempt to describe CPU characteristics to the preprocessor. */
257
258/* Corresponding to amask... */
259#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
260#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
261#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
262
263/* Corresponding to implver... */
264#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
265#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
266#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
267
268/* Common combinations. */
269#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
270#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
271#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
272#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
273#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_cix)"
274
275#ifndef CPP_CPU_DEFAULT_SPEC
276# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
277# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
278# else
279# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
280# if TARGET_CPU_DEFAULT & MASK_MAX
281# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
282# else
283# if TARGET_CPU_DEFAULT & MASK_BWX
284# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
285# else
286# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
287# endif
288# endif
289# else
290# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
291# endif
292# endif
293#endif /* CPP_CPU_DEFAULT_SPEC */
294
295#ifndef CPP_CPU_SPEC
296#define CPP_CPU_SPEC "\
297%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
298%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
299%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
300%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
301%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
302%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
303%{!mcpu*:%(cpp_cpu_default) }}"
304#endif
305
306/* This macro defines names of additional specifications to put in the
307 specs that can be used in various specifications like CC1_SPEC. Its
308 definition is an initializer with a subgrouping for each command option.
309
310 Each subgrouping contains a string constant, that defines the
311 specification name, and a string constant that used by the GNU CC driver
312 program.
313
314 Do not define this macro if it does not need to do anything. */
315
316#ifndef SUBTARGET_EXTRA_SPECS
317#define SUBTARGET_EXTRA_SPECS
318#endif
319
829245be
KG
320#define EXTRA_SPECS \
321 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
322 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
323 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
324 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
325 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
326 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
327 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
328 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
329 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
330 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
331 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
332 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
333 { "cpp_cpu", CPP_CPU_SPEC }, \
334 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
335 SUBTARGET_EXTRA_SPECS
336
337
2bf6230d
RK
338/* Sometimes certain combinations of command options do not make sense
339 on a particular target machine. You can define a macro
340 `OVERRIDE_OPTIONS' to take account of this. This macro, if
341 defined, is executed once just after all the command options have
342 been parsed.
343
344 On the Alpha, it is used to translate target-option strings into
345 numeric values. */
346
347extern void override_options ();
348#define OVERRIDE_OPTIONS override_options ()
349
350
1a94ca49
RK
351/* Define this macro to change register usage conditional on target flags.
352
353 On the Alpha, we use this to disable the floating-point registers when
354 they don't exist. */
355
356#define CONDITIONAL_REGISTER_USAGE \
357 if (! TARGET_FPREGS) \
52a69200 358 for (i = 32; i < 63; i++) \
1a94ca49
RK
359 fixed_regs[i] = call_used_regs[i] = 1;
360
4f074454
RK
361/* Show we can debug even without a frame pointer. */
362#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
363\f
364/* target machine storage layout */
365
2700ac93
RS
366/* Define to enable software floating point emulation. */
367#define REAL_ARITHMETIC
368
861bb6c1
JL
369/* The following #defines are used when compiling the routines in
370 libgcc1.c. Since the Alpha calling conventions require single
371 precision floats to be passed in the floating-point registers
372 (rather than in the general registers) we have to build the
373 libgcc1.c routines in such a way that they know the actual types
374 of their formal arguments and the actual types of their return
375 values. Otherwise, gcc will generate calls to the libgcc1.c
376 routines, passing arguments in the floating-point registers,
377 but the libgcc1.c routines will expect their arguments on the
378 stack (where the Alpha calling conventions require structs &
379 unions to be passed). */
380
381#define FLOAT_VALUE_TYPE double
382#define INTIFY(FLOATVAL) (FLOATVAL)
383#define FLOATIFY(INTVAL) (INTVAL)
384#define FLOAT_ARG_TYPE double
385
1a94ca49
RK
386/* Define the size of `int'. The default is the same as the word size. */
387#define INT_TYPE_SIZE 32
388
389/* Define the size of `long long'. The default is the twice the word size. */
390#define LONG_LONG_TYPE_SIZE 64
391
392/* The two floating-point formats we support are S-floating, which is
393 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
394 and `long double' are T. */
395
396#define FLOAT_TYPE_SIZE 32
397#define DOUBLE_TYPE_SIZE 64
398#define LONG_DOUBLE_TYPE_SIZE 64
399
5258d7ae
RK
400#define WCHAR_TYPE "unsigned int"
401#define WCHAR_TYPE_SIZE 32
1a94ca49 402
13d39dbc 403/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
404 in a wider mode than that declared by the program. In such cases,
405 the value is constrained to be within the bounds of the declared
406 type, but kept valid in the wider mode. The signedness of the
407 extension may differ from that of the type.
408
409 For Alpha, we always store objects in a full register. 32-bit objects
410 are always sign-extended, but smaller objects retain their signedness. */
411
412#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
413 if (GET_MODE_CLASS (MODE) == MODE_INT \
414 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
415 { \
416 if ((MODE) == SImode) \
417 (UNSIGNEDP) = 0; \
418 (MODE) = DImode; \
419 }
420
421/* Define this if function arguments should also be promoted using the above
422 procedure. */
423
424#define PROMOTE_FUNCTION_ARGS
425
426/* Likewise, if the function return value is promoted. */
427
428#define PROMOTE_FUNCTION_RETURN
429
430/* Define this if most significant bit is lowest numbered
431 in instructions that operate on numbered bit-fields.
432
433 There are no such instructions on the Alpha, but the documentation
434 is little endian. */
435#define BITS_BIG_ENDIAN 0
436
437/* Define this if most significant byte of a word is the lowest numbered.
438 This is false on the Alpha. */
439#define BYTES_BIG_ENDIAN 0
440
441/* Define this if most significant word of a multiword number is lowest
442 numbered.
443
444 For Alpha we can decide arbitrarily since there are no machine instructions
445 for them. Might as well be consistent with bytes. */
446#define WORDS_BIG_ENDIAN 0
447
448/* number of bits in an addressable storage unit */
449#define BITS_PER_UNIT 8
450
451/* Width in bits of a "word", which is the contents of a machine register.
452 Note that this is not necessarily the width of data type `int';
453 if using 16-bit ints on a 68000, this would still be 32.
454 But on a machine with 16-bit registers, this would be 16. */
455#define BITS_PER_WORD 64
456
457/* Width of a word, in units (bytes). */
458#define UNITS_PER_WORD 8
459
460/* Width in bits of a pointer.
461 See also the macro `Pmode' defined below. */
462#define POINTER_SIZE 64
463
464/* Allocation boundary (in *bits*) for storing arguments in argument list. */
465#define PARM_BOUNDARY 64
466
467/* Boundary (in *bits*) on which stack pointer should be aligned. */
468#define STACK_BOUNDARY 64
469
470/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 471#define FUNCTION_BOUNDARY 256
1a94ca49
RK
472
473/* Alignment of field after `int : 0' in a structure. */
474#define EMPTY_FIELD_BOUNDARY 64
475
476/* Every structure's size must be a multiple of this. */
477#define STRUCTURE_SIZE_BOUNDARY 8
478
479/* A bitfield declared as `int' forces `int' alignment for the struct. */
480#define PCC_BITFIELD_TYPE_MATTERS 1
481
65823178
RK
482/* Align loop starts for optimal branching.
483
484 ??? Kludge this and the next macro for the moment by not doing anything if
485 we don't optimize and also if we are writing ECOFF symbols to work around
486 a bug in DEC's assembler. */
1a94ca49 487
fc470718 488#define LOOP_ALIGN(LABEL) \
9c0e94a5 489 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 490
9c0e94a5
RH
491/* This is how to align an instruction for optimal branching. On
492 Alpha we'll get better performance by aligning on an octaword
1a94ca49 493 boundary. */
130d2d72 494
7d0bfbd0 495#define LABEL_ALIGN_AFTER_BARRIER(FILE) \
9c0e94a5 496 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
497
498/* No data type wants to be aligned rounder than this. */
499#define BIGGEST_ALIGNMENT 64
500
d16fe557
RK
501/* For atomic access to objects, must have at least 32-bit alignment
502 unless the machine has byte operations. */
e9a25f70 503#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 504
442b1685
RK
505/* Align all constants and variables to at least a word boundary so
506 we can pick up pieces of them faster. */
6c174fc0
RH
507/* ??? Only if block-move stuff knows about different source/destination
508 alignment. */
509#if 0
442b1685
RK
510#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
511#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 512#endif
1a94ca49
RK
513
514/* Set this non-zero if move instructions will actually fail to work
515 when given unaligned data.
516
517 Since we get an error message when we do one, call them invalid. */
518
519#define STRICT_ALIGNMENT 1
520
521/* Set this non-zero if unaligned move instructions are extremely slow.
522
523 On the Alpha, they trap. */
130d2d72
RK
524
525#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
526\f
527/* Standard register usage. */
528
529/* Number of actual hardware registers.
530 The hardware registers are assigned numbers for the compiler
531 from 0 to just below FIRST_PSEUDO_REGISTER.
532 All registers that the compiler knows about must be given numbers,
533 even those that are not normally considered general registers.
534
535 We define all 32 integer registers, even though $31 is always zero,
536 and all 32 floating-point registers, even though $f31 is also
537 always zero. We do not bother defining the FP status register and
130d2d72
RK
538 there are no other registers.
539
540 Since $31 is always zero, we will use register number 31 as the
541 argument pointer. It will never appear in the generated code
542 because we will always be eliminating it in favor of the stack
52a69200
RK
543 pointer or hardware frame pointer.
544
545 Likewise, we use $f31 for the frame pointer, which will always
546 be eliminated in favor of the hardware frame pointer or the
547 stack pointer. */
1a94ca49
RK
548
549#define FIRST_PSEUDO_REGISTER 64
550
551/* 1 for registers that have pervasive standard uses
552 and are not available for the register allocator. */
553
554#define FIXED_REGISTERS \
555 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
558 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
559
560/* 1 for registers not available across function calls.
561 These must include the FIXED_REGISTERS and also any
562 registers that can be used without being saved.
563 The latter must include the registers where values are returned
564 and the register where structure-value addresses are passed.
565 Aside from that, you can include as many other registers as you like. */
566#define CALL_USED_REGISTERS \
567 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
569 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
571
572/* List the order in which to allocate registers. Each register must be
573 listed once, even those in FIXED_REGISTERS.
574
575 We allocate in the following order:
2c4be73e 576 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
577 $f22-$f30 (likewise)
578 $f21-$f16 (likewise, but input args)
579 $f0 (nonsaved, but return value)
2c4be73e 580 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
581 $f2-$f9 (saved floating-point registers)
582 $1-$8 (nonsaved integer registers)
583 $22-$25 (likewise)
584 $28 (likewise)
585 $0 (likewise, but return value)
586 $21-$16 (likewise, but input args)
0076aa6b 587 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
588 $9-$14 (saved integer registers)
589 $26 (return PC)
590 $15 (frame pointer)
591 $29 (global pointer)
52a69200 592 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
593
594#define REG_ALLOC_ORDER \
2c4be73e 595 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
596 54, 55, 56, 57, 58, 59, 60, 61, 62, \
597 53, 52, 51, 50, 49, 48, \
2c4be73e 598 32, 33, \
1a94ca49
RK
599 34, 35, 36, 37, 38, 39, 40, 41, \
600 1, 2, 3, 4, 5, 6, 7, 8, \
601 22, 23, 24, 25, \
602 28, \
603 0, \
604 21, 20, 19, 18, 17, 16, \
605 27, \
606 9, 10, 11, 12, 13, 14, \
607 26, \
608 15, \
609 29, \
610 30, 31, 63 }
611
612/* Return number of consecutive hard regs needed starting at reg REGNO
613 to hold something of mode MODE.
614 This is ordinarily the length in words of a value of mode MODE
615 but can be less for certain modes in special long registers. */
616
617#define HARD_REGNO_NREGS(REGNO, MODE) \
618 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
619
620/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
621 On Alpha, the integer registers can hold any mode. The floating-point
622 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 623 or 8-bit values. */
1a94ca49 624
e6a8ebb4
RH
625#define HARD_REGNO_MODE_OK(REGNO, MODE) \
626 ((REGNO) >= 32 && (REGNO) <= 62 \
627 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
628 : 1)
629
630/* A C expression that is nonzero if a value of mode
631 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 632
e6a8ebb4
RH
633 This asymmetric test is true when MODE1 could be put
634 in an FP register but MODE2 could not. */
1a94ca49 635
a7adf08e 636#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
637 (HARD_REGNO_MODE_OK (32, (MODE1)) \
638 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 639 : 1)
1a94ca49
RK
640
641/* Specify the registers used for certain standard purposes.
642 The values of these macros are register numbers. */
643
644/* Alpha pc isn't overloaded on a register that the compiler knows about. */
645/* #define PC_REGNUM */
646
647/* Register to use for pushing function arguments. */
648#define STACK_POINTER_REGNUM 30
649
650/* Base register for access to local variables of the function. */
52a69200 651#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
652
653/* Value should be nonzero if functions must have frame pointers.
654 Zero means the frame pointer need not be set up (and parms
655 may be accessed via the stack pointer) in functions that seem suitable.
656 This is computed in `reload', in reload1.c. */
657#define FRAME_POINTER_REQUIRED 0
658
659/* Base register for access to arguments of the function. */
130d2d72 660#define ARG_POINTER_REGNUM 31
1a94ca49 661
52a69200
RK
662/* Base register for access to local variables of function. */
663#define FRAME_POINTER_REGNUM 63
664
1a94ca49
RK
665/* Register in which static-chain is passed to a function.
666
667 For the Alpha, this is based on an example; the calling sequence
668 doesn't seem to specify this. */
669#define STATIC_CHAIN_REGNUM 1
670
671/* Register in which address to store a structure value
672 arrives in the function. On the Alpha, the address is passed
673 as a hidden argument. */
674#define STRUCT_VALUE 0
675\f
676/* Define the classes of registers for register constraints in the
677 machine description. Also define ranges of constants.
678
679 One of the classes must always be named ALL_REGS and include all hard regs.
680 If there is more than one class, another class must be named NO_REGS
681 and contain no registers.
682
683 The name GENERAL_REGS must be the name of a class (or an alias for
684 another name such as ALL_REGS). This is the class of registers
685 that is allowed by "g" or "r" in a register constraint.
686 Also, registers outside this class are allocated only when
687 instructions express preferences for them.
688
689 The classes must be numbered in nondecreasing order; that is,
690 a larger-numbered class must never be contained completely
691 in a smaller-numbered class.
692
693 For any two classes, it is very desirable that there be another
694 class that represents their union. */
695
696enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
697 LIM_REG_CLASSES };
698
699#define N_REG_CLASSES (int) LIM_REG_CLASSES
700
701/* Give names of register classes as strings for dump file. */
702
703#define REG_CLASS_NAMES \
704 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
705
706/* Define which registers fit in which classes.
707 This is an initializer for a vector of HARD_REG_SET
708 of length N_REG_CLASSES. */
709
710#define REG_CLASS_CONTENTS \
52a69200 711 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
712
713/* The same information, inverted:
714 Return the class number of the smallest class containing
715 reg number REGNO. This could be a conditional expression
716 or could index an array. */
717
52a69200
RK
718#define REGNO_REG_CLASS(REGNO) \
719 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
720
721/* The class value for index registers, and the one for base regs. */
722#define INDEX_REG_CLASS NO_REGS
723#define BASE_REG_CLASS GENERAL_REGS
724
725/* Get reg_class from a letter such as appears in the machine description. */
726
727#define REG_CLASS_FROM_LETTER(C) \
728 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
729
730/* Define this macro to change register usage conditional on target flags. */
731/* #define CONDITIONAL_REGISTER_USAGE */
732
733/* The letters I, J, K, L, M, N, O, and P in a register constraint string
734 can be used to stand for particular ranges of immediate operands.
735 This macro defines what the ranges are.
736 C is the letter, and VALUE is a constant value.
737 Return 1 if VALUE is in the range specified by C.
738
739 For Alpha:
740 `I' is used for the range of constants most insns can contain.
741 `J' is the constant zero.
742 `K' is used for the constant in an LDA insn.
743 `L' is used for the constant in a LDAH insn.
744 `M' is used for the constants that can be AND'ed with using a ZAP insn.
745 `N' is used for complemented 8-bit constants.
746 `O' is used for negated 8-bit constants.
747 `P' is used for the constants 1, 2 and 3. */
748
749#define CONST_OK_FOR_LETTER_P(VALUE, C) \
750 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
751 : (C) == 'J' ? (VALUE) == 0 \
752 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
753 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 754 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
755 : (C) == 'M' ? zap_mask (VALUE) \
756 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
757 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
758 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
759 : 0)
760
761/* Similar, but for floating or large integer constants, and defining letters
762 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
763
764 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
765 that is the operand of a ZAP insn. */
766
767#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
768 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
769 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
770 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
771 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
772 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
773 : 0)
774
e560f226
RK
775/* Optional extra constraints for this machine.
776
777 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 778 reference to an unaligned location.
9ec36da5 779
ac030a7b 780 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
781 function.
782
783 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
784
785#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 786 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
787 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
788 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
789 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226 790 : 0)
df45c7ea 791extern int normal_memory_operand ();
e560f226 792
1a94ca49
RK
793/* Given an rtx X being reloaded into a reg required to be
794 in class CLASS, return the class of reg to actually use.
795 In general this is just CLASS; but on some machines
796 in some cases it is preferable to use a more restrictive class.
797
798 On the Alpha, all constants except zero go into a floating-point
799 register via memory. */
800
801#define PREFERRED_RELOAD_CLASS(X, CLASS) \
802 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 803 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
804 : (CLASS))
805
806/* Loading and storing HImode or QImode values to and from memory
807 usually requires a scratch register. The exceptions are loading
e008606e
RK
808 QImode and HImode from an aligned address to a general register
809 unless byte instructions are permitted.
ddd5a7c1 810 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 811 FP register. */
1a94ca49
RK
812
813#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
814(((GET_CODE (IN) == MEM \
815 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
816 || (GET_CODE (IN) == SUBREG \
817 && (GET_CODE (SUBREG_REG (IN)) == MEM \
818 || (GET_CODE (SUBREG_REG (IN)) == REG \
819 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
820 && (((CLASS) == FLOAT_REGS \
821 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
822 || (((MODE) == QImode || (MODE) == HImode) \
4e46365b 823 && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \
e560f226
RK
824 ? GENERAL_REGS \
825 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
826 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
827 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
828 && (GET_MODE_SIZE (GET_MODE (IN)) \
829 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 830 : NO_REGS)
1a94ca49
RK
831
832#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
833(((GET_CODE (OUT) == MEM \
834 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
835 || (GET_CODE (OUT) == SUBREG \
836 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
837 || (GET_CODE (SUBREG_REG (OUT)) == REG \
838 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
839 && ((((MODE) == HImode || (MODE) == QImode) \
840 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
841 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
842 ? GENERAL_REGS \
843 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
844 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
845 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
846 && (GET_MODE_SIZE (GET_MODE (OUT)) \
847 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
848 : NO_REGS)
1a94ca49
RK
849
850/* If we are copying between general and FP registers, we need a memory
e9a25f70 851 location unless the CIX extension is available. */
1a94ca49 852
e9a25f70
JL
853#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
854 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 855
acd94aaf
RK
856/* Specify the mode to be used for memory when a secondary memory
857 location is needed. If MODE is floating-point, use it. Otherwise,
858 widen to a word like the default. This is needed because we always
859 store integers in FP registers in quadword format. This whole
860 area is very tricky! */
861#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
862 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 863 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
864 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
865
1a94ca49
RK
866/* Return the maximum number of consecutive registers
867 needed to represent mode MODE in a register of class CLASS. */
868
869#define CLASS_MAX_NREGS(CLASS, MODE) \
870 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
871
c31dfe4d
RK
872/* If defined, gives a class of registers that cannot be used as the
873 operand of a SUBREG that changes the size of the object. */
874
875#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
876
1a94ca49
RK
877/* Define the cost of moving between registers of various classes. Moving
878 between FLOAT_REGS and anything else except float regs is expensive.
879 In fact, we make it quite expensive because we really don't want to
880 do these moves unless it is clearly worth it. Optimizations may
881 reduce the impact of not being able to allocate a pseudo to a
882 hard register. */
883
71d9b493
RH
884#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
885 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
886 ? 2 \
887 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
888
889/* A C expressions returning the cost of moving data of MODE from a register to
890 or from memory.
891
892 On the Alpha, bump this up a bit. */
893
bcbbac26 894extern int alpha_memory_latency;
cbd5b9a2 895#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
896
897/* Provide the cost of a branch. Exact meaning under development. */
898#define BRANCH_COST 5
899
900/* Adjust the cost of dependencies. */
901
902#define ADJUST_COST(INSN,LINK,DEP,COST) \
903 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
904\f
905/* Stack layout; function entry, exit and calling. */
906
907/* Define this if pushing a word on the stack
908 makes the stack pointer a smaller address. */
909#define STACK_GROWS_DOWNWARD
910
911/* Define this if the nominal address of the stack frame
912 is at the high-address end of the local variables;
913 that is, each additional local variable allocated
914 goes at a more negative offset in the frame. */
130d2d72 915/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
916
917/* Offset within stack frame to start allocating local variables at.
918 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
919 first local allocated. Otherwise, it is the offset to the BEGINNING
920 of the first local allocated. */
921
52a69200 922#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
923
924/* If we generate an insn to push BYTES bytes,
925 this says how many the stack pointer really advances by.
926 On Alpha, don't define this because there are no push insns. */
927/* #define PUSH_ROUNDING(BYTES) */
928
e008606e
RK
929/* Define this to be nonzero if stack checking is built into the ABI. */
930#define STACK_CHECK_BUILTIN 1
931
1a94ca49
RK
932/* Define this if the maximum size of all the outgoing args is to be
933 accumulated and pushed during the prologue. The amount can be
934 found in the variable current_function_outgoing_args_size. */
935#define ACCUMULATE_OUTGOING_ARGS
936
937/* Offset of first parameter from the argument pointer register value. */
938
130d2d72 939#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
940
941/* Definitions for register eliminations.
942
978e8952 943 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 944 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
945 pointer register. Secondly, the argument pointer register can always be
946 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
947
948/* This is an array of structures. Each structure initializes one pair
949 of eliminable registers. The "from" register number is given first,
950 followed by "to". Eliminations of the same "from" register are listed
951 in order of preference. */
952
52a69200
RK
953#define ELIMINABLE_REGS \
954{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
955 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
956 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
957 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
958
959/* Given FROM and TO register numbers, say whether this elimination is allowed.
960 Frame pointer elimination is automatically handled.
961
130d2d72 962 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
963 eliminated are already handled. */
964
130d2d72 965#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 966
52a69200
RK
967/* Round up to a multiple of 16 bytes. */
968#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
969
1a94ca49
RK
970/* Define the offset between two registers, one to be eliminated, and the other
971 its replacement, at the start of a routine. */
972#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
973{ if ((FROM) == FRAME_POINTER_REGNUM) \
974 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
975 + alpha_sa_size ()); \
976 else if ((FROM) == ARG_POINTER_REGNUM) \
977 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
978 + alpha_sa_size () \
d772039b
RK
979 + (ALPHA_ROUND (get_frame_size () \
980 + current_function_pretend_args_size) \
981 - current_function_pretend_args_size)); \
1a94ca49
RK
982}
983
984/* Define this if stack space is still allocated for a parameter passed
985 in a register. */
986/* #define REG_PARM_STACK_SPACE */
987
988/* Value is the number of bytes of arguments automatically
989 popped when returning from a subroutine call.
8b109b37 990 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
991 FUNTYPE is the data type of the function (as a tree),
992 or for a library call it is an identifier node for the subroutine name.
993 SIZE is the number of bytes of arguments passed on the stack. */
994
8b109b37 995#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
996
997/* Define how to find the value returned by a function.
998 VALTYPE is the data type of the value (as a tree).
999 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1000 otherwise, FUNC is 0.
1001
1002 On Alpha the value is found in $0 for integer functions and
1003 $f0 for floating-point functions. */
1004
4c020733
RH
1005#define FUNCTION_VALUE(VALTYPE, FUNC) \
1006 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
1007 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1008 || POINTER_TYPE_P (VALTYPE)) \
1009 ? word_mode : TYPE_MODE (VALTYPE), \
1010 ((TARGET_FPREGS \
1011 && (TREE_CODE (VALTYPE) == REAL_TYPE \
1012 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
1013 ? 32 : 0))
1a94ca49
RK
1014
1015/* Define how to find the value returned by a library function
1016 assuming the value has mode MODE. */
1017
4c020733
RH
1018#define LIBCALL_VALUE(MODE) \
1019 gen_rtx_REG (MODE, \
1020 (TARGET_FPREGS \
1021 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1022 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1023 ? 32 : 0))
1a94ca49 1024
130d2d72
RK
1025/* The definition of this macro implies that there are cases where
1026 a scalar value cannot be returned in registers.
1027
1028 For the Alpha, any structure or union type is returned in memory, as
1029 are integers whose size is larger than 64 bits. */
1030
1031#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1032 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
1033 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1034
1a94ca49
RK
1035/* 1 if N is a possible register number for a function value
1036 as seen by the caller. */
1037
e5958492
RK
1038#define FUNCTION_VALUE_REGNO_P(N) \
1039 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1040
1041/* 1 if N is a possible register number for function argument passing.
1042 On Alpha, these are $16-$21 and $f16-$f21. */
1043
1044#define FUNCTION_ARG_REGNO_P(N) \
1045 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1046\f
1047/* Define a data type for recording info about an argument list
1048 during the scan of that argument list. This data type should
1049 hold all necessary information about the function itself
1050 and about the args processed so far, enough to enable macros
1051 such as FUNCTION_ARG to determine where the next arg should go.
1052
1053 On Alpha, this is a single integer, which is a number of words
1054 of arguments scanned so far.
1055 Thus 6 or more means all following args should go on the stack. */
1056
1057#define CUMULATIVE_ARGS int
1058
1059/* Initialize a variable CUM of type CUMULATIVE_ARGS
1060 for a call to a function whose data type is FNTYPE.
1061 For a library call, FNTYPE is 0. */
1062
2c7ee1a6 1063#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1064
1065/* Define intermediate macro to compute the size (in registers) of an argument
1066 for the Alpha. */
1067
1068#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1069((MODE) != BLKmode \
1070 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1071 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1072
1073/* Update the data in CUM to advance over an argument
1074 of mode MODE and data type TYPE.
1075 (TYPE is null for libcalls where that information may not be available.) */
1076
1077#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1078 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1079 (CUM) = 6; \
1080 else \
1081 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1082
1083/* Determine where to put an argument to a function.
1084 Value is zero to push the argument on the stack,
1085 or a hard register in which to store the argument.
1086
1087 MODE is the argument's machine mode.
1088 TYPE is the data type of the argument (as a tree).
1089 This is null for libcalls where that information may
1090 not be available.
1091 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1092 the preceding args and about the function being called.
1093 NAMED is nonzero if this argument is a named parameter
1094 (otherwise it is an extra parameter matching an ellipsis).
1095
1096 On Alpha the first 6 words of args are normally in registers
1097 and the rest are pushed. */
1098
1099#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1100((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1101 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
1102 (CUM) + 16 + ((TARGET_FPREGS \
1103 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1104 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1105 * 32)) \
1106 : 0)
1a94ca49 1107
1a94ca49
RK
1108/* Specify the padding direction of arguments.
1109
1110 On the Alpha, we must pad upwards in order to be able to pass args in
1111 registers. */
1112
1113#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1114
1115/* For an arg passed partly in registers and partly in memory,
1116 this is the number of registers used.
1117 For args passed entirely in registers or entirely in memory, zero. */
1118
1119#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1120((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1121 ? 6 - (CUM) : 0)
1122
130d2d72
RK
1123/* Perform any needed actions needed for a function that is receiving a
1124 variable number of arguments.
1125
1126 CUM is as above.
1127
1128 MODE and TYPE are the mode and type of the current parameter.
1129
1130 PRETEND_SIZE is a variable that should be set to the amount of stack
1131 that must be pushed by the prolog to pretend that our caller pushed
1132 it.
1133
1134 Normally, this macro will push all remaining incoming registers on the
1135 stack and set PRETEND_SIZE to the length of the registers pushed.
1136
1137 On the Alpha, we allocate space for all 12 arg registers, but only
1138 push those that are remaining.
1139
1140 However, if NO registers need to be saved, don't allocate any space.
1141 This is not only because we won't need the space, but because AP includes
1142 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1143 ap-relative addresses already made.
1144
1145 If we are not to use the floating-point registers, save the integer
1146 registers where we would put the floating-point registers. This is
1147 not the most efficient way to implement varargs with just one register
1148 class, but it isn't worth doing anything more efficient in this rare
1149 case. */
1150
130d2d72
RK
1151
1152#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1153{ if ((CUM) < 6) \
1154 { \
1155 if (! (NO_RTL)) \
1156 { \
1157 move_block_from_reg \
1158 (16 + CUM, \
1159 gen_rtx (MEM, BLKmode, \
1160 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1161 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1162 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1163 move_block_from_reg \
7a92339b 1164 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1165 gen_rtx (MEM, BLKmode, \
1166 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1167 (CUM) * UNITS_PER_WORD)), \
02892e06 1168 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1169 emit_insn (gen_blockage ()); \
130d2d72
RK
1170 } \
1171 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1172 } \
1173}
1174
c8e9adec
RK
1175/* Try to output insns to set TARGET equal to the constant C if it can be
1176 done in less than N insns. Do all computations in MODE. Returns the place
1177 where the output has been placed if it can be done and the insns have been
1178 emitted. If it would take more than N insns, zero is returned and no
1179 insns and emitted. */
1180extern struct rtx_def *alpha_emit_set_const ();
803fee69 1181extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1182extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1183extern struct rtx_def *alpha_emit_conditional_move ();
1184
1a94ca49
RK
1185/* Generate necessary RTL for __builtin_saveregs().
1186 ARGLIST is the argument list; see expr.c. */
1187extern struct rtx_def *alpha_builtin_saveregs ();
1188#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1189
1190/* Define the information needed to generate branch and scc insns. This is
1191 stored from the compare operation. Note that we can't use "rtx" here
1192 since it hasn't been defined! */
1193
1194extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1195extern int alpha_compare_fp_p;
1196
71038426
RH
1197/* Define the information needed to modify the epilogue for EH. */
1198
1199extern struct rtx_def *alpha_eh_epilogue_sp_ofs;
1200
e5958492 1201/* Make (or fake) .linkage entry for function call.
e5958492
RK
1202 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1203extern void alpha_need_linkage ();
1204
bcbbac26
RH
1205/* This macro defines the start of an assembly comment. */
1206
1207#define ASM_COMMENT_START " #"
1208
acd92049 1209/* This macro produces the initial definition of a function. */
1a94ca49 1210
acd92049
RH
1211#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1212 alpha_start_function(FILE,NAME,DECL);
1213extern void alpha_start_function ();
1a94ca49 1214
acd92049 1215/* This macro closes up a function definition for the assembler. */
9c0e94a5 1216
acd92049
RH
1217#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1218 alpha_end_function(FILE,NAME,DECL)
1219extern void alpha_end_function ();
1220
9c0e94a5
RH
1221/* This macro notes the end of the prologue. */
1222
1223#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
3c303f52 1224extern void output_end_prologue ();
1a94ca49 1225
acd92049
RH
1226/* Output any profiling code before the prologue. */
1227
1228#define PROFILE_BEFORE_PROLOGUE 1
1229
1a94ca49 1230/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1231 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1232 by simply passing -pg to the assembler and linker. */
85d159a3 1233
e0fb9029 1234#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1235
1236/* Output assembler code to FILE to initialize this source file's
1237 basic block profiling info, if that has not already been done.
1238 This assumes that __bb_init_func doesn't garble a1-a5. */
1239
1240#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1241 do { \
1242 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1243 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1244 fputs ("\tldq $26,0($16)\n", (FILE)); \
1245 fputs ("\tbne $26,1f\n", (FILE)); \
1246 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1247 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1248 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1249 fputs ("1:\n", (FILE)); \
85d159a3
RK
1250 ASM_OUTPUT_REG_POP (FILE, 16); \
1251 } while (0);
1252
1253/* Output assembler code to FILE to increment the entry-count for
1254 the BLOCKNO'th basic block in this source file. */
1255
1256#define BLOCK_PROFILER(FILE, BLOCKNO) \
1257 do { \
1258 int blockn = (BLOCKNO); \
a62eb16f 1259 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1260 fputs ("\tstq $26,0($30)\n", (FILE)); \
1261 fputs ("\tstq $27,8($30)\n", (FILE)); \
1262 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1263 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1264 fputs ("\taddq $27,1,$27\n", (FILE)); \
1265 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1266 fputs ("\tldq $26,0($30)\n", (FILE)); \
1267 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1268 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1269 } while (0)
1a94ca49 1270
1a94ca49
RK
1271
1272/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1273 the stack pointer does not matter. The value is tested only in
1274 functions that have frame pointers.
1275 No definition is equivalent to always zero. */
1276
1277#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1278\f
1279/* Output assembler code for a block containing the constant parts
1280 of a trampoline, leaving space for the variable parts.
1281
1282 The trampoline should set the static chain pointer to value placed
7981384f
RK
1283 into the trampoline and should branch to the specified routine.
1284 Note that $27 has been set to the address of the trampoline, so we can
1285 use it for addressability of the two data items. Trampolines are always
1286 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1287
1288#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1289do { \
7981384f 1290 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1291 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1292 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1293 fprintf (FILE, "\tnop\n"); \
1a94ca49 1294 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1295} while (0)
1a94ca49 1296
3a523eeb
RS
1297/* Section in which to place the trampoline. On Alpha, instructions
1298 may only be placed in a text segment. */
1299
1300#define TRAMPOLINE_SECTION text_section
1301
1a94ca49
RK
1302/* Length in units of the trampoline for entering a nested function. */
1303
7981384f 1304#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1305
1306/* Emit RTL insns to initialize the variable parts of a trampoline.
1307 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1308 CXT is an RTX for the static chain value for the function. */
1a94ca49 1309
9ec36da5 1310#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1311 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
804a4e13 1312extern void alpha_initialize_trampoline ();
675f0e7c
RK
1313
1314/* A C expression whose value is RTL representing the value of the return
1315 address for the frame COUNT steps up from the current frame.
1316 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1317 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1318
9ecc37f0
RH
1319#define RETURN_ADDR_RTX alpha_return_addr
1320extern struct rtx_def *alpha_return_addr ();
1321
6abc6f40
RH
1322/* Before the prologue, RA lives in $26. */
1323#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1324
9ecc37f0
RH
1325/* Initialize data used by insn expanders. This is called from insn_emit,
1326 once for every function before code is generated. */
1327
1328#define INIT_EXPANDERS alpha_init_expanders ()
1329extern void alpha_init_expanders ();
675f0e7c 1330\f
1a94ca49
RK
1331/* Addressing modes, and classification of registers for them. */
1332
940da324
JL
1333/* #define HAVE_POST_INCREMENT 0 */
1334/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1335
940da324
JL
1336/* #define HAVE_PRE_DECREMENT 0 */
1337/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1338
1339/* Macros to check register numbers against specific register classes. */
1340
1341/* These assume that REGNO is a hard or pseudo reg number.
1342 They give nonzero only if REGNO is a hard reg of the suitable class
1343 or a pseudo reg currently allocated to a suitable hard reg.
1344 Since they use reg_renumber, they are safe only once reg_renumber
1345 has been allocated, which happens in local-alloc.c. */
1346
1347#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1348#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1349((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1350 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1351\f
1352/* Maximum number of registers that can appear in a valid memory address. */
1353#define MAX_REGS_PER_ADDRESS 1
1354
1355/* Recognize any constant value that is a valid address. For the Alpha,
1356 there are only constants none since we want to use LDA to load any
1357 symbolic addresses into registers. */
1358
1359#define CONSTANT_ADDRESS_P(X) \
1360 (GET_CODE (X) == CONST_INT \
1361 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1362
1363/* Include all constant integers and constant doubles, but not
1364 floating-point, except for floating-point zero. */
1365
1366#define LEGITIMATE_CONSTANT_P(X) \
1367 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1368 || (X) == CONST0_RTX (GET_MODE (X)))
1369
1370/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1371 and check its validity for a certain class.
1372 We have two alternate definitions for each of them.
1373 The usual definition accepts all pseudo regs; the other rejects
1374 them unless they have been allocated suitable hard regs.
1375 The symbol REG_OK_STRICT causes the latter definition to be used.
1376
1377 Most source files want to accept pseudo regs in the hope that
1378 they will get allocated to the class that the insn wants them to be in.
1379 Source files for reload pass need to be strict.
1380 After reload, it makes no difference, since pseudo regs have
1381 been eliminated by then. */
1382
1383#ifndef REG_OK_STRICT
1384
1385/* Nonzero if X is a hard reg that can be used as an index
1386 or if it is a pseudo reg. */
1387#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1388
1a94ca49
RK
1389/* Nonzero if X is a hard reg that can be used as a base reg
1390 or if it is a pseudo reg. */
1391#define REG_OK_FOR_BASE_P(X) \
52a69200 1392 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1393
5d02b6c2
RH
1394/* ??? Nonzero if X is the frame pointer, or some virtual register
1395 that may eliminate to the frame pointer. These will be allowed to
1396 have offsets greater than 32K. This is done because register
1397 elimination offsets will change the hi/lo split, and if we split
1398 before reload, we will require additional instructions. */
1399#define REG_OK_FP_BASE_P(X) \
1400 (REGNO (X) == 31 || REGNO (X) == 63 \
1401 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1402 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1403
1a94ca49
RK
1404#else
1405
1406/* Nonzero if X is a hard reg that can be used as an index. */
1407#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1408
1a94ca49
RK
1409/* Nonzero if X is a hard reg that can be used as a base reg. */
1410#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1411
5d02b6c2
RH
1412#define REG_OK_FP_BASE_P(X) 0
1413
1a94ca49
RK
1414#endif
1415\f
1416/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1417 that is a valid memory address for an instruction.
1418 The MODE argument is the machine mode for the MEM expression
1419 that wants to use this address.
1420
1421 For Alpha, we have either a constant address or the sum of a register
1422 and a constant address, or just a register. For DImode, any of those
1423 forms can be surrounded with an AND that clear the low-order three bits;
1424 this is an "unaligned" access.
1425
1a94ca49
RK
1426 First define the basic valid address. */
1427
4c020733
RH
1428#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1429{ \
1430 rtx tmp = (X); \
1431 if (GET_CODE (tmp) == SUBREG \
1432 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1433 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1434 tmp = SUBREG_REG (tmp); \
1435 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1436 goto ADDR; \
1437 if (CONSTANT_ADDRESS_P (X)) \
1438 goto ADDR; \
1439 if (GET_CODE (X) == PLUS) \
1440 { \
1441 tmp = XEXP (X, 0); \
1442 if (GET_CODE (tmp) == SUBREG \
1443 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1444 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1445 tmp = SUBREG_REG (tmp); \
1446 if (REG_P (tmp)) \
1447 { \
1448 if (REG_OK_FP_BASE_P (tmp) \
1449 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1450 goto ADDR; \
1451 if (REG_OK_FOR_BASE_P (tmp) \
1452 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1453 goto ADDR; \
1454 } \
1455 } \
1a94ca49
RK
1456}
1457
1458/* Now accept the simple address, or, for DImode only, an AND of a simple
1459 address that turns off the low three bits. */
1460
1a94ca49
RK
1461#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1462{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1463 if ((MODE) == DImode \
1464 && GET_CODE (X) == AND \
1465 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1466 && INTVAL (XEXP (X, 1)) == -8) \
1467 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1468}
1469
1470/* Try machine-dependent ways of modifying an illegitimate address
1471 to be legitimate. If we find one, return the new, valid address.
1472 This macro is used in only one place: `memory_address' in explow.c.
1473
1474 OLDX is the address as it was before break_out_memory_refs was called.
1475 In some cases it is useful to look at this to decide what needs to be done.
1476
1477 MODE and WIN are passed so that this macro can use
1478 GO_IF_LEGITIMATE_ADDRESS.
1479
1480 It is always safe for this macro to do nothing. It exists to recognize
1481 opportunities to optimize the output.
1482
1483 For the Alpha, there are three cases we handle:
1484
1485 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1486 valid offset, compute the high part of the constant and add it to the
1487 register. Then our address is (plus temp low-part-const).
1488 (2) If the address is (const (plus FOO const_int)), find the low-order
1489 part of the CONST_INT. Then load FOO plus any high-order part of the
1490 CONST_INT into a register. Our address is (plus reg low-part-const).
1491 This is done to reduce the number of GOT entries.
1492 (3) If we have a (plus reg const), emit the load as in (2), then add
1493 the two registers, and finally generate (plus reg low-part-const) as
1494 our address. */
1495
1496#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1497{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1498 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1499 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1500 { \
1501 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1502 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1503 HOST_WIDE_INT highpart = val - lowpart; \
1504 rtx high = GEN_INT (highpart); \
1505 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1506 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1507 \
1508 (X) = plus_constant (temp, lowpart); \
1509 goto WIN; \
1510 } \
1511 else if (GET_CODE (X) == CONST \
1512 && GET_CODE (XEXP (X, 0)) == PLUS \
1513 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1514 { \
1515 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1516 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1517 HOST_WIDE_INT highpart = val - lowpart; \
1518 rtx high = XEXP (XEXP (X, 0), 0); \
1519 \
1520 if (highpart) \
1521 high = plus_constant (high, highpart); \
1522 \
1523 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1524 goto WIN; \
1525 } \
1526 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1527 && GET_CODE (XEXP (X, 1)) == CONST \
1528 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1529 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1530 { \
1531 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1532 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1533 HOST_WIDE_INT highpart = val - lowpart; \
1534 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1535 \
1536 if (highpart) \
1537 high = plus_constant (high, highpart); \
1538 \
1539 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1540 force_reg (Pmode, high), \
80f251fe 1541 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1542 (X) = plus_constant (high, lowpart); \
1543 goto WIN; \
1544 } \
1545}
1546
a9a2595b
JR
1547/* Try a machine-dependent way of reloading an illegitimate address
1548 operand. If we find one, push the reload and jump to WIN. This
1549 macro is used in only one place: `find_reloads_address' in reload.c.
1550
1551 For the Alpha, we wish to handle large displacements off a base
1552 register by splitting the addend across an ldah and the mem insn.
1553 This cuts number of extra insns needed from 3 to 1. */
1554
1555#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1556do { \
c8ab9901
RH
1557 /* We must recognize output that we have already generated ourselves. */ \
1558 if (GET_CODE (X) == PLUS \
1559 && GET_CODE (XEXP (X, 0)) == PLUS \
1560 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1561 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1562 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1563 { \
1564 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1565 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1566 OPNUM, TYPE); \
1567 goto WIN; \
1568 } \
a9a2595b
JR
1569 if (GET_CODE (X) == PLUS \
1570 && GET_CODE (XEXP (X, 0)) == REG \
1571 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1572 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1573 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1574 { \
1575 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1576 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1577 HOST_WIDE_INT high \
1578 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1579 \
1580 /* Check for 32-bit overflow. */ \
1581 if (high + low != val) \
1582 break; \
1583 \
1584 /* Reload the high part into a base reg; leave the low part \
1585 in the mem directly. */ \
1586 \
1587 X = gen_rtx_PLUS (GET_MODE (X), \
1588 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1589 GEN_INT (high)), \
1590 GEN_INT (low)); \
1591 \
1592 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1593 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1594 OPNUM, TYPE); \
1595 goto WIN; \
1596 } \
1597} while (0)
1598
1a94ca49
RK
1599/* Go to LABEL if ADDR (a legitimate address expression)
1600 has an effect that depends on the machine mode it is used for.
1601 On the Alpha this is true only for the unaligned modes. We can
1602 simplify this test since we know that the address must be valid. */
1603
1604#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1605{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1606
1607/* Compute the cost of an address. For the Alpha, all valid addresses are
1608 the same cost. */
1609
1610#define ADDRESS_COST(X) 0
1611
2ea844d3
RH
1612/* Machine-dependent reorg pass. */
1613#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1614\f
1615/* Specify the machine mode that this machine uses
1616 for the index in the tablejump instruction. */
1617#define CASE_VECTOR_MODE SImode
1618
18543a22
ILT
1619/* Define as C expression which evaluates to nonzero if the tablejump
1620 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1621 table.
b0435cf4 1622
3aa9d5b6 1623 Do not define this if the table should contain absolute addresses.
260ced47
RK
1624 On the Alpha, the table is really GP-relative, not relative to the PC
1625 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1626 but we should try to find some better way sometime. */
18543a22 1627#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1628
1629/* Specify the tree operation to be used to convert reals to integers. */
1630#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1631
1632/* This is the kind of divide that is easiest to do in the general case. */
1633#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1634
1635/* Define this as 1 if `char' should by default be signed; else as 0. */
1636#define DEFAULT_SIGNED_CHAR 1
1637
1638/* This flag, if defined, says the same insns that convert to a signed fixnum
1639 also convert validly to an unsigned one.
1640
1641 We actually lie a bit here as overflow conditions are different. But
1642 they aren't being checked anyway. */
1643
1644#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1645
1646/* Max number of bytes we can move to or from memory
1647 in one reasonably fast instruction. */
1648
1649#define MOVE_MAX 8
1650
7e24ffc9
HPN
1651/* If a memory-to-memory move would take MOVE_RATIO or more simple
1652 move-instruction pairs, we will do a movstr or libcall instead.
1653
1654 Without byte/word accesses, we want no more than four instructions;
1655 with, several single byte accesses are better. */
6c174fc0
RH
1656
1657#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1658
1a94ca49
RK
1659/* Largest number of bytes of an object that can be placed in a register.
1660 On the Alpha we have plenty of registers, so use TImode. */
1661#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1662
1663/* Nonzero if access to memory by bytes is no faster than for words.
1664 Also non-zero if doing byte operations (specifically shifts) in registers
1665 is undesirable.
1666
1667 On the Alpha, we want to not use the byte operation and instead use
1668 masking operations to access fields; these will save instructions. */
1669
1670#define SLOW_BYTE_ACCESS 1
1671
9a63901f
RK
1672/* Define if operations between registers always perform the operation
1673 on the full register even if a narrower mode is specified. */
1674#define WORD_REGISTER_OPERATIONS
1675
1676/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1677 will either zero-extend or sign-extend. The value of this macro should
1678 be the code that says which one of the two operations is implicitly
1679 done, NIL if none. */
b7747781 1680#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1681
225211e2
RK
1682/* Define if loading short immediate values into registers sign extends. */
1683#define SHORT_IMMEDIATES_SIGN_EXTEND
1684
1a94ca49
RK
1685/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1686 is done just by pretending it is already truncated. */
1687#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1688
1689/* We assume that the store-condition-codes instructions store 0 for false
1690 and some other value for true. This is the value stored for true. */
1691
1692#define STORE_FLAG_VALUE 1
1693
1694/* Define the value returned by a floating-point comparison instruction. */
1695
e9a25f70 1696#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1697
35bb77fd
RK
1698/* Canonicalize a comparison from one we don't have to one we do have. */
1699
1700#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1701 do { \
1702 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1703 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1704 { \
1705 rtx tem = (OP0); \
1706 (OP0) = (OP1); \
1707 (OP1) = tem; \
1708 (CODE) = swap_condition (CODE); \
1709 } \
1710 if (((CODE) == LT || (CODE) == LTU) \
1711 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1712 { \
1713 (CODE) = (CODE) == LT ? LE : LEU; \
1714 (OP1) = GEN_INT (255); \
1715 } \
1716 } while (0)
1717
1a94ca49
RK
1718/* Specify the machine mode that pointers have.
1719 After generation of rtl, the compiler makes no further distinction
1720 between pointers and any other objects of this machine mode. */
1721#define Pmode DImode
1722
1723/* Mode of a function address in a call instruction (for indexing purposes). */
1724
1725#define FUNCTION_MODE Pmode
1726
1727/* Define this if addresses of constant functions
1728 shouldn't be put through pseudo regs where they can be cse'd.
1729 Desirable on machines where ordinary constants are expensive
1730 but a CALL with constant address is cheap.
1731
1732 We define this on the Alpha so that gen_call and gen_call_value
1733 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1734 then copy it into a register, thus actually letting the address be
1735 cse'ed. */
1736
1737#define NO_FUNCTION_CSE
1738
d969caf8 1739/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1740 few bits. */
d969caf8 1741#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1742
d721b776
RK
1743/* Use atexit for static constructors/destructors, instead of defining
1744 our own exit function. */
1745#define HAVE_ATEXIT
1746
71d9b493 1747/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1748#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1749
7d0bfbd0
RH
1750/* Describe the fact that MULTI instructions are multiple instructions
1751 and so to assume they don't pair with anything. */
1752#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1753 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1754 (CAN_ISSUE_MORE) = 0
1755
1a94ca49
RK
1756/* Compute the cost of computing a constant rtl expression RTX
1757 whose rtx-code is CODE. The body of this macro is a portion
1758 of a switch statement. If the code is computed here,
1759 return it with a return statement. Otherwise, break from the switch.
1760
8b7b2e36
RK
1761 If this is an 8-bit constant, return zero since it can be used
1762 nearly anywhere with no cost. If it is a valid operand for an
1763 ADD or AND, likewise return 0 if we know it will be used in that
1764 context. Otherwise, return 2 since it might be used there later.
1765 All other constants take at least two insns. */
1a94ca49
RK
1766
1767#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1768 case CONST_INT: \
06eb8e92 1769 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1770 return 0; \
1a94ca49 1771 case CONST_DOUBLE: \
5d02ee66
RH
1772 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1773 return 0; \
1774 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1775 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1776 return 0; \
1777 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1778 return 2; \
1779 else \
1780 return COSTS_N_INSNS (2); \
1a94ca49
RK
1781 case CONST: \
1782 case SYMBOL_REF: \
1783 case LABEL_REF: \
f6f6a13c
RK
1784 switch (alpha_cpu) \
1785 { \
1786 case PROCESSOR_EV4: \
1787 return COSTS_N_INSNS (3); \
1788 case PROCESSOR_EV5: \
5d02ee66 1789 case PROCESSOR_EV6: \
f6f6a13c 1790 return COSTS_N_INSNS (2); \
5d02ee66 1791 default: abort(); \
f6f6a13c 1792 }
1a94ca49
RK
1793
1794/* Provide the costs of a rtl expression. This is in the body of a
1795 switch on CODE. */
1796
1797#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1798 case PLUS: case MINUS: \
1799 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1800 switch (alpha_cpu) \
1801 { \
1802 case PROCESSOR_EV4: \
1803 return COSTS_N_INSNS (6); \
1804 case PROCESSOR_EV5: \
5d02ee66 1805 case PROCESSOR_EV6: \
f6f6a13c 1806 return COSTS_N_INSNS (4); \
5d02ee66 1807 default: abort(); \
f6f6a13c 1808 } \
b49e978e
RK
1809 else if (GET_CODE (XEXP (X, 0)) == MULT \
1810 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1811 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1812 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1813 break; \
1814 case MULT: \
f6f6a13c
RK
1815 switch (alpha_cpu) \
1816 { \
1817 case PROCESSOR_EV4: \
1818 if (FLOAT_MODE_P (GET_MODE (X))) \
1819 return COSTS_N_INSNS (6); \
1820 return COSTS_N_INSNS (23); \
1821 case PROCESSOR_EV5: \
1822 if (FLOAT_MODE_P (GET_MODE (X))) \
1823 return COSTS_N_INSNS (4); \
1824 else if (GET_MODE (X) == DImode) \
1825 return COSTS_N_INSNS (12); \
1826 else \
1827 return COSTS_N_INSNS (8); \
5d02ee66
RH
1828 case PROCESSOR_EV6: \
1829 if (FLOAT_MODE_P (GET_MODE (X))) \
1830 return COSTS_N_INSNS (4); \
1831 else \
1832 return COSTS_N_INSNS (7); \
1833 default: abort(); \
f6f6a13c 1834 } \
b49e978e
RK
1835 case ASHIFT: \
1836 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1837 && INTVAL (XEXP (X, 1)) <= 3) \
1838 break; \
1839 /* ... fall through ... */ \
5d02ee66 1840 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1841 switch (alpha_cpu) \
1842 { \
1843 case PROCESSOR_EV4: \
1844 return COSTS_N_INSNS (2); \
1845 case PROCESSOR_EV5: \
5d02ee66 1846 case PROCESSOR_EV6: \
f6f6a13c 1847 return COSTS_N_INSNS (1); \
5d02ee66
RH
1848 default: abort(); \
1849 } \
1850 case IF_THEN_ELSE: \
1851 switch (alpha_cpu) \
1852 { \
1853 case PROCESSOR_EV4: \
1854 case PROCESSOR_EV6: \
1855 return COSTS_N_INSNS (2); \
1856 case PROCESSOR_EV5: \
1857 return COSTS_N_INSNS (1); \
1858 default: abort(); \
f6f6a13c 1859 } \
3bda6d11 1860 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1861 switch (alpha_cpu) \
1862 { \
1863 case PROCESSOR_EV4: \
1864 if (GET_MODE (X) == SFmode) \
1865 return COSTS_N_INSNS (34); \
1866 else if (GET_MODE (X) == DFmode) \
1867 return COSTS_N_INSNS (63); \
1868 else \
1869 return COSTS_N_INSNS (70); \
1870 case PROCESSOR_EV5: \
1871 if (GET_MODE (X) == SFmode) \
1872 return COSTS_N_INSNS (15); \
1873 else if (GET_MODE (X) == DFmode) \
1874 return COSTS_N_INSNS (22); \
1875 else \
5d02ee66
RH
1876 return COSTS_N_INSNS (70); /* ??? */ \
1877 case PROCESSOR_EV6: \
1878 if (GET_MODE (X) == SFmode) \
1879 return COSTS_N_INSNS (12); \
1880 else if (GET_MODE (X) == DFmode) \
1881 return COSTS_N_INSNS (15); \
1882 else \
1883 return COSTS_N_INSNS (70); /* ??? */ \
1884 default: abort(); \
f6f6a13c 1885 } \
1a94ca49 1886 case MEM: \
f6f6a13c
RK
1887 switch (alpha_cpu) \
1888 { \
1889 case PROCESSOR_EV4: \
5d02ee66 1890 case PROCESSOR_EV6: \
f6f6a13c
RK
1891 return COSTS_N_INSNS (3); \
1892 case PROCESSOR_EV5: \
1893 return COSTS_N_INSNS (2); \
5d02ee66 1894 default: abort(); \
f6f6a13c
RK
1895 } \
1896 case NEG: case ABS: \
1897 if (! FLOAT_MODE_P (GET_MODE (X))) \
1898 break; \
1899 /* ... fall through ... */ \
3bda6d11
RK
1900 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1901 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1902 switch (alpha_cpu) \
1903 { \
1904 case PROCESSOR_EV4: \
1905 return COSTS_N_INSNS (6); \
1906 case PROCESSOR_EV5: \
5d02ee66 1907 case PROCESSOR_EV6: \
f6f6a13c 1908 return COSTS_N_INSNS (4); \
5d02ee66 1909 default: abort(); \
f6f6a13c 1910 }
1a94ca49
RK
1911\f
1912/* Control the assembler format that we output. */
1913
40ef2fc5
JL
1914/* We don't emit these labels, so as to avoid getting linker errors about
1915 missing exception handling info. If we emit a gcc_compiled. label into
1916 text, and the file has no code, then the DEC assembler gives us a zero
1917 sized text section with no associated exception handling info. The
38e01259 1918 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1919 the exception handling info is missing. */
3c303f52
KG
1920#define ASM_IDENTIFY_GCC(x)
1921#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1922
1a94ca49
RK
1923/* Output to assembler file text saying following lines
1924 may contain character constants, extra white space, comments, etc. */
1925
1926#define ASM_APP_ON ""
1927
1928/* Output to assembler file text saying following lines
1929 no longer contain unusual constructs. */
1930
1931#define ASM_APP_OFF ""
1932
1933#define TEXT_SECTION_ASM_OP ".text"
1934
1935/* Output before read-only data. */
1936
1937#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1938
1939/* Output before writable data. */
1940
1941#define DATA_SECTION_ASM_OP ".data"
1942
1943/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1944 indicate that it is for read-only data.
1945
abc95ed3 1946 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1947 eight bytes of zero. This works around a bug in DEC's assembler in
1948 some versions of OSF/1 V3.x. */
1a94ca49
RK
1949
1950#define EXTRA_SECTIONS readonly_data
1951
1952#define EXTRA_SECTION_FUNCTIONS \
1953void \
1954literal_section () \
1955{ \
1956 if (in_section != readonly_data) \
1957 { \
c0388f29
RK
1958 static int firsttime = 1; \
1959 \
1a94ca49 1960 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1961 if (firsttime) \
1962 { \
1963 firsttime = 0; \
1964 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1965 } \
1966 \
1a94ca49
RK
1967 in_section = readonly_data; \
1968 } \
1969} \
1970
1971#define READONLY_DATA_SECTION literal_section
1972
ac030a7b
RK
1973/* If we are referencing a function that is static, make the SYMBOL_REF
1974 special. We use this to see indicate we can branch to this function
1975 without setting PV or restoring GP. */
130d2d72
RK
1976
1977#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1978 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1979 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1980
1a94ca49
RK
1981/* How to refer to registers in assembler output.
1982 This sequence is indexed by compiler's hard-register-number (see above). */
1983
1984#define REGISTER_NAMES \
1985{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1986 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1987 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1988 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1989 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1990 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1991 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1992 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1993
1994/* How to renumber registers for dbx and gdb. */
1995
1996#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1997
1998/* This is how to output the definition of a user-level label named NAME,
1999 such as the label on a static function or variable NAME. */
2000
2001#define ASM_OUTPUT_LABEL(FILE,NAME) \
2002 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2003
2004/* This is how to output a command to make the user-level label named NAME
2005 defined for reference from other files. */
2006
2007#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2008 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2009
4e0c8ad2 2010/* The prefix to add to user-visible assembler symbols. */
1a94ca49 2011
4e0c8ad2 2012#define USER_LABEL_PREFIX ""
1a94ca49
RK
2013
2014/* This is how to output an internal numbered label where
2015 PREFIX is the class of label and NUM is the number within the class. */
2016
2017#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 2018 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
2019
2020/* This is how to output a label for a jump table. Arguments are the same as
2021 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2022 passed. */
2023
2024#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2025{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2026
2027/* This is how to store into the string LABEL
2028 the symbol_ref name of an internal numbered label where
2029 PREFIX is the class of label and NUM is the number within the class.
2030 This is suitable for output with `assemble_name'. */
2031
2032#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 2033 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 2034
e247ca2a
RK
2035/* Check a floating-point value for validity for a particular machine mode. */
2036
2037#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2038 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2039
1a94ca49
RK
2040/* This is how to output an assembler line defining a `double' constant. */
2041
e99300f1
RS
2042#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2043 { \
2044 if (REAL_VALUE_ISINF (VALUE) \
2045 || REAL_VALUE_ISNAN (VALUE) \
2046 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2047 { \
2048 long t[2]; \
2049 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2050 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2051 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2052 } \
2053 else \
2054 { \
2055 char str[30]; \
2056 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 2057 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
2058 } \
2059 }
1a94ca49
RK
2060
2061/* This is how to output an assembler line defining a `float' constant. */
2062
e247ca2a
RK
2063#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2064 do { \
2065 long t; \
2066 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2067 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2068} while (0)
2700ac93 2069
1a94ca49
RK
2070/* This is how to output an assembler line defining an `int' constant. */
2071
2072#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2073( fprintf (FILE, "\t.long "), \
2074 output_addr_const (FILE, (VALUE)), \
2075 fprintf (FILE, "\n"))
1a94ca49
RK
2076
2077/* This is how to output an assembler line defining a `long' constant. */
2078
2079#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2080( fprintf (FILE, "\t.quad "), \
2081 output_addr_const (FILE, (VALUE)), \
2082 fprintf (FILE, "\n"))
2083
2084/* Likewise for `char' and `short' constants. */
2085
2086#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2087 fprintf (FILE, "\t.word %d\n", \
3c303f52 2088 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2089 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2090
2091#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2092 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2093 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2094 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2095
2096/* We use the default ASCII-output routine, except that we don't write more
2097 than 50 characters since the assembler doesn't support very long lines. */
2098
2099#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2100 do { \
2101 FILE *_hide_asm_out_file = (MYFILE); \
2102 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2103 int _hide_thissize = (MYLENGTH); \
2104 int _size_so_far = 0; \
2105 { \
2106 FILE *asm_out_file = _hide_asm_out_file; \
2107 unsigned char *p = _hide_p; \
2108 int thissize = _hide_thissize; \
2109 int i; \
2110 fprintf (asm_out_file, "\t.ascii \""); \
2111 \
2112 for (i = 0; i < thissize; i++) \
2113 { \
2114 register int c = p[i]; \
2115 \
2116 if (_size_so_far ++ > 50 && i < thissize - 4) \
2117 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2118 \
2119 if (c == '\"' || c == '\\') \
2120 putc ('\\', asm_out_file); \
2121 if (c >= ' ' && c < 0177) \
2122 putc (c, asm_out_file); \
2123 else \
2124 { \
2125 fprintf (asm_out_file, "\\%o", c); \
2126 /* After an octal-escape, if a digit follows, \
2127 terminate one string constant and start another. \
2128 The Vax assembler fails to stop reading the escape \
2129 after three digits, so this is the only way we \
2130 can get it to parse the data properly. */ \
2131 if (i < thissize - 1 \
2132 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2133 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2134 } \
2135 } \
2136 fprintf (asm_out_file, "\"\n"); \
2137 } \
2138 } \
2139 while (0)
52a69200 2140
1a94ca49
RK
2141/* This is how to output an insn to push a register on the stack.
2142 It need not be very fast code. */
2143
2144#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2145 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2146 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2147 (REGNO) & 31);
2148
2149/* This is how to output an insn to pop a register from the stack.
2150 It need not be very fast code. */
2151
2152#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2153 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2154 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2155 (REGNO) & 31);
2156
2157/* This is how to output an assembler line for a numeric constant byte. */
2158
2159#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2160 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2161
260ced47
RK
2162/* This is how to output an element of a case-vector that is absolute.
2163 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2164
260ced47 2165#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2166
260ced47 2167/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2168
33f7f353 2169#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2170 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2171 (VALUE))
1a94ca49
RK
2172
2173/* This is how to output an assembler line
2174 that says to advance the location counter
2175 to a multiple of 2**LOG bytes. */
2176
2177#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2178 if ((LOG) != 0) \
2179 fprintf (FILE, "\t.align %d\n", LOG);
2180
2181/* This is how to advance the location counter by SIZE bytes. */
2182
2183#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2184 fprintf (FILE, "\t.space %d\n", (SIZE))
2185
2186/* This says how to output an assembler line
2187 to define a global common symbol. */
2188
2189#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2190( fputs ("\t.comm ", (FILE)), \
2191 assemble_name ((FILE), (NAME)), \
2192 fprintf ((FILE), ",%d\n", (SIZE)))
2193
2194/* This says how to output an assembler line
2195 to define a local common symbol. */
2196
2197#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2198( fputs ("\t.lcomm ", (FILE)), \
2199 assemble_name ((FILE), (NAME)), \
2200 fprintf ((FILE), ",%d\n", (SIZE)))
2201
2202/* Store in OUTPUT a string (made with alloca) containing
2203 an assembler-name for a local static variable named NAME.
2204 LABELNO is an integer which is different for each call. */
2205
2206#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2207( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2208 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2209
2210/* Define the parentheses used to group arithmetic operations
2211 in assembler code. */
2212
2213#define ASM_OPEN_PAREN "("
2214#define ASM_CLOSE_PAREN ")"
2215
60593797
RH
2216/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2217 Used for C++ multiple inheritance. */
2218
2219#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2220do { \
92d4501f 2221 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2222 int reg; \
60593797 2223 \
acd92049
RH
2224 /* Mark end of prologue. */ \
2225 output_end_prologue (FILE); \
60593797
RH
2226 \
2227 /* Rely on the assembler to macro expand a large delta. */ \
54473ca7
L
2228 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2229 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797
RH
2230 \
2231 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2232 { \
2233 fprintf (FILE, "\tbr $31,$"); \
2234 assemble_name (FILE, fn_name); \
2235 fprintf (FILE, "..ng\n"); \
2236 } \
2237 else \
2238 { \
acd92049 2239 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2240 assemble_name (FILE, fn_name); \
2241 fputc ('\n', FILE); \
2242 } \
60593797 2243} while (0)
60593797 2244\f
9ec36da5 2245
1a94ca49
RK
2246/* Define results of standard character escape sequences. */
2247#define TARGET_BELL 007
2248#define TARGET_BS 010
2249#define TARGET_TAB 011
2250#define TARGET_NEWLINE 012
2251#define TARGET_VT 013
2252#define TARGET_FF 014
2253#define TARGET_CR 015
2254
2255/* Print operand X (an rtx) in assembler syntax to file FILE.
2256 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2257 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2258
2259#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2260
2261/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2262 not be alphabetic (the characters are chosen so that
2263 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2264 using ASCII).
2265
2266 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2267 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2268 mode. alpha_fprm controls which suffix is generated.
2269
2270 ' Generates trap-mode suffix for instructions that accept the
2271 su suffix only (cmpt et al).
2272
e83015a9
RH
2273 ` Generates trap-mode suffix for instructions that accept the
2274 v and sv suffix. The only instruction that needs this is cvtql.
2275
0022a940
DMT
2276 ( Generates trap-mode suffix for instructions that accept the
2277 v, sv, and svi suffix. The only instruction that needs this
2278 is cvttq.
2279
2bf6230d
RK
2280 ) Generates trap-mode suffix for instructions that accept the
2281 u, su, and sui suffix. This is the bulk of the IEEE floating
2282 point instructions (addt et al).
2283
2284 + Generates trap-mode suffix for instructions that accept the
2285 sui suffix (cvtqt and cvtqs).
e5958492
RK
2286
2287 , Generates single precision suffix for floating point
2288 instructions (s for IEEE, f for VAX)
2289
2290 - Generates double precision suffix for floating point
2291 instructions (t for IEEE, g for VAX)
2bf6230d 2292 */
1a94ca49 2293
2bf6230d 2294#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2295 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2296 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2297\f
2298/* Print a memory address as an operand to reference that memory location. */
2299
714b019c
RH
2300#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2301 print_operand_address((FILE), (ADDR))
2302
1a94ca49
RK
2303/* Define the codes that are matched by predicates in alpha.c. */
2304
e3208d53
RH
2305#define PREDICATE_CODES \
2306 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2307 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2308 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2309 {"cint8_operand", {CONST_INT}}, \
2310 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2311 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2312 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2313 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2314 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2315 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2316 {"mode_mask_operand", {CONST_INT}}, \
2317 {"mul8_operand", {CONST_INT}}, \
2318 {"mode_width_operand", {CONST_INT}}, \
2319 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2320 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2321 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2322 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2323 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2324 {"fp0_operand", {CONST_DOUBLE}}, \
2325 {"current_file_function_operand", {SYMBOL_REF}}, \
2326 {"call_operand", {REG, SYMBOL_REF}}, \
2327 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2328 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2329 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2330 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53
RH
2331 {"aligned_memory_operand", {MEM}}, \
2332 {"unaligned_memory_operand", {MEM}}, \
2333 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2334 {"any_memory_operand", {MEM}}, \
40b80dad 2335 {"hard_fp_register_operand", {SUBREG, REG}}, \
67070f5c
RH
2336 {"reg_not_elim_operand", {SUBREG, REG}}, \
2337 {"reg_no_subreg_operand", {REG}},
03f8c4cc 2338\f
34fa88ab
RK
2339/* Tell collect that the object format is ECOFF. */
2340#define OBJECT_FORMAT_COFF
2341#define EXTENDED_COFF
2342
2343/* If we use NM, pass -g to it so it only lists globals. */
2344#define NM_FLAGS "-pg"
2345
03f8c4cc
RK
2346/* Definitions for debugging. */
2347
2348#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2349#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2350#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2351
2352#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2353#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2354#endif
2355
2356
2357/* Correct the offset of automatic variables and arguments. Note that
2358 the Alpha debug format wants all automatic variables and arguments
2359 to be in terms of two different offsets from the virtual frame pointer,
2360 which is the stack pointer before any adjustment in the function.
2361 The offset for the argument pointer is fixed for the native compiler,
2362 it is either zero (for the no arguments case) or large enough to hold
2363 all argument registers.
2364 The offset for the auto pointer is the fourth argument to the .frame
2365 directive (local_offset).
2366 To stay compatible with the native tools we use the same offsets
2367 from the virtual frame pointer and adjust the debugger arg/auto offsets
2368 accordingly. These debugger offsets are set up in output_prolog. */
2369
9a0b18f2
RK
2370extern long alpha_arg_offset;
2371extern long alpha_auto_offset;
03f8c4cc
RK
2372#define DEBUGGER_AUTO_OFFSET(X) \
2373 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2374#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2375
2376
2377#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2378 alpha_output_lineno (STREAM, LINE)
2379extern void alpha_output_lineno ();
2380
2381#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2382 alpha_output_filename (STREAM, NAME)
2383extern void alpha_output_filename ();
2384
4330b0e7
JW
2385/* mips-tfile.c limits us to strings of one page. We must underestimate this
2386 number, because the real length runs past this up to the next
2387 continuation point. This is really a dbxout.c bug. */
2388#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2389
2390/* By default, turn on GDB extensions. */
2391#define DEFAULT_GDB_EXTENSIONS 1
2392
7aadc7c2
RK
2393/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2394#define NO_DBX_FUNCTION_END 1
2395
03f8c4cc
RK
2396/* If we are smuggling stabs through the ALPHA ECOFF object
2397 format, put a comment in front of the .stab<x> operation so
2398 that the ALPHA assembler does not choke. The mips-tfile program
2399 will correctly put the stab into the object file. */
2400
2401#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2402#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2403#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2404
2405/* Forward references to tags are allowed. */
2406#define SDB_ALLOW_FORWARD_REFERENCES
2407
2408/* Unknown tags are also allowed. */
2409#define SDB_ALLOW_UNKNOWN_REFERENCES
2410
2411#define PUT_SDB_DEF(a) \
2412do { \
2413 fprintf (asm_out_file, "\t%s.def\t", \
2414 (TARGET_GAS) ? "" : "#"); \
2415 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2416 fputc (';', asm_out_file); \
2417} while (0)
2418
2419#define PUT_SDB_PLAIN_DEF(a) \
2420do { \
2421 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2422 (TARGET_GAS) ? "" : "#", (a)); \
2423} while (0)
2424
2425#define PUT_SDB_TYPE(a) \
2426do { \
2427 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2428} while (0)
2429
2430/* For block start and end, we create labels, so that
2431 later we can figure out where the correct offset is.
2432 The normal .ent/.end serve well enough for functions,
2433 so those are just commented out. */
2434
2435extern int sdb_label_count; /* block start/end next label # */
2436
2437#define PUT_SDB_BLOCK_START(LINE) \
2438do { \
2439 fprintf (asm_out_file, \
2440 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2441 sdb_label_count, \
2442 (TARGET_GAS) ? "" : "#", \
2443 sdb_label_count, \
2444 (LINE)); \
2445 sdb_label_count++; \
2446} while (0)
2447
2448#define PUT_SDB_BLOCK_END(LINE) \
2449do { \
2450 fprintf (asm_out_file, \
2451 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2452 sdb_label_count, \
2453 (TARGET_GAS) ? "" : "#", \
2454 sdb_label_count, \
2455 (LINE)); \
2456 sdb_label_count++; \
2457} while (0)
2458
2459#define PUT_SDB_FUNCTION_START(LINE)
2460
2461#define PUT_SDB_FUNCTION_END(LINE)
2462
3c303f52 2463#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2464
03f8c4cc
RK
2465/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2466 mips-tdump.c to print them out.
2467
2468 These must match the corresponding definitions in gdb/mipsread.c.
2469 Unfortunately, gcc and gdb do not currently share any directories. */
2470
2471#define CODE_MASK 0x8F300
2472#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2473#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2474#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2475
2476/* Override some mips-tfile definitions. */
2477
2478#define SHASH_SIZE 511
2479#define THASH_SIZE 55
1e6c6f11
RK
2480
2481/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2482
2483#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2484
54190234
JM
2485/* The linker will stick __main into the .init section. */
2486#define HAS_INIT_SECTION
68d69835
JM
2487#define LD_INIT_SWITCH "-init"
2488#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2489
2490/* The system headers under Alpha systems are generally C++-aware. */
2491#define NO_IMPLICIT_EXTERN_C
47747e53 2492
3c303f52 2493/* Prototypes for alpha.c functions used in the md file & elsewhere. */
47747e53 2494extern struct rtx_def *get_unaligned_address ();
3c303f52
KG
2495extern void alpha_write_verstamp ();
2496extern void alpha_reorg ();
2497extern int check_float_value ();
2498extern int direct_return ();
2499extern int const48_operand ();
2500extern int add_operand ();
2501extern int and_operand ();
2502extern int unaligned_memory_operand ();
2503extern int zap_mask ();
2504extern int current_file_function_operand ();
2505extern int alpha_sa_size ();
2506extern int alpha_adjust_cost ();
2507extern void print_operand ();
714b019c 2508extern void print_operand_address ();
3c303f52
KG
2509extern int reg_or_0_operand ();
2510extern int reg_or_8bit_operand ();
2511extern int mul8_operand ();
2512extern int reg_or_6bit_operand ();
2513extern int alpha_comparison_operator ();
2514extern int alpha_swapped_comparison_operator ();
2515extern int sext_add_operand ();
2516extern int cint8_operand ();
2517extern int mode_mask_operand ();
2518extern int or_operand ();
2519extern int mode_width_operand ();
2520extern int reg_or_fp0_operand ();
2521extern int signed_comparison_operator ();
2522extern int fp0_operand ();
2523extern int some_operand ();
2524extern int input_operand ();
2525extern int divmod_operator ();
2526extern int call_operand ();
2527extern int reg_or_cint_operand ();
2528extern int hard_fp_register_operand ();
40b80dad 2529extern int reg_not_elim_operand ();
3c303f52
KG
2530extern void alpha_set_memflags ();
2531extern int aligned_memory_operand ();
2532extern void get_aligned_mem ();
2533extern void alpha_expand_unaligned_load ();
2534extern void alpha_expand_unaligned_store ();
2535extern int alpha_expand_block_move ();
2536extern int alpha_expand_block_clear ();
2537extern void alpha_expand_prologue ();
2538extern void alpha_expand_epilogue ();
This page took 0.845473 seconds and 5 git commands to generate.