]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
crtstuff.c: Fix thinko last change.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ddd9abd 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
cf011243 3 2000, 2001 Free Software Foundation, Inc.
1e6c6f11 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
1a94ca49
RK
22
23
887af1f2
RO
24/* For C++ we need to ensure that __LANGUAGE_C_PLUS_PLUS is defined independent
25 of the source file extension. */
26#define CPLUSPLUS_CPP_SPEC "\
27-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus \
28%(cpp) \
29"
30
21798cd8
RK
31/* Write out the correct language type definition for the header files.
32 Unless we have assembler language, write out the symbols for C. */
1a94ca49 33#define CPP_SPEC "\
952fc2ed
RH
34%{!undef:\
35%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
952fc2ed 36%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
887af1f2 37%{!.S:%{!.cc:%{!.cxx:%{!.cpp:%{!.cp:%{!.c++:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}}}}\
952fc2ed
RH
38%{mieee:-D_IEEE_FP }\
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
40%(cpp_cpu) %(cpp_subtarget)"
41
42#ifndef CPP_SUBTARGET_SPEC
43#define CPP_SUBTARGET_SPEC ""
44#endif
1a94ca49
RK
45
46/* Set the spec to use for signed char. The default tests the above macro
47 but DEC's compiler can't handle the conditional in a "constant"
48 operand. */
49
50#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
51
b890f297 52#define WORD_SWITCH_TAKES_ARG(STR) \
2efe55c1 53 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
8877eb00 54
1a94ca49
RK
55/* Print subsidiary information on the compiler version in use. */
56#define TARGET_VERSION
57
1a94ca49
RK
58/* Run-time compilation parameters selecting different hardware subsets. */
59
f6f6a13c
RK
60/* Which processor to schedule for. The cpu attribute defines a list that
61 mirrors this list, so changes to alpha.md must be made at the same time. */
62
63enum processor_type
64 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
65 PROCESSOR_EV5, /* 21164{a,pc,} */
66 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
67
68extern enum processor_type alpha_cpu;
69
2bf6230d
RK
70enum alpha_trap_precision
71{
72 ALPHA_TP_PROG, /* No precision (default). */
73 ALPHA_TP_FUNC, /* Trap contained within originating function. */
74 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
75};
76
77enum alpha_fp_rounding_mode
78{
79 ALPHA_FPRM_NORM, /* Normal rounding mode. */
80 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
81 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
82 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
83};
84
85enum alpha_fp_trap_mode
86{
87 ALPHA_FPTM_N, /* Normal trap mode. */
88 ALPHA_FPTM_U, /* Underflow traps enabled. */
89 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
90 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
91};
92
1a94ca49
RK
93extern int target_flags;
94
2bf6230d
RK
95extern enum alpha_trap_precision alpha_tp;
96extern enum alpha_fp_rounding_mode alpha_fprm;
97extern enum alpha_fp_trap_mode alpha_fptm;
98
1a94ca49
RK
99/* This means that floating-point support exists in the target implementation
100 of the Alpha architecture. This is usually the default. */
de4abb91 101#define MASK_FP (1 << 0)
2bf6230d 102#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
103
104/* This means that floating-point registers are allowed to be used. Note
105 that Alpha implementations without FP operations are required to
106 provide the FP registers. */
107
de4abb91 108#define MASK_FPREGS (1 << 1)
2bf6230d 109#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
110
111/* This means that gas is used to process the assembler file. */
112
de4abb91 113#define MASK_GAS (1 << 2)
03f8c4cc 114#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 115
2bf6230d
RK
116/* This means that we should mark procedures as IEEE conformant. */
117
de4abb91 118#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
119#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
120
121/* This means we should be IEEE-compliant except for inexact. */
122
de4abb91 123#define MASK_IEEE (1 << 4)
2bf6230d
RK
124#define TARGET_IEEE (target_flags & MASK_IEEE)
125
126/* This means we should be fully IEEE-compliant. */
127
de4abb91 128#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
129#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
130
803fee69
RK
131/* This means we must construct all constants rather than emitting
132 them as literal data. */
133
de4abb91 134#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
135#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
136
e5958492
RK
137/* This means we handle floating points in VAX F- (float)
138 or G- (double) Format. */
139
de4abb91 140#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
141#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
142
e9a25f70
JL
143/* This means that the processor has byte and half word loads and stores
144 (the BWX extension). */
025f3281 145
de4abb91 146#define MASK_BWX (1 << 8)
e9a25f70 147#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 148
e9a25f70 149/* This means that the processor has the MAX extension. */
de4abb91 150#define MASK_MAX (1 << 9)
e9a25f70
JL
151#define TARGET_MAX (target_flags & MASK_MAX)
152
de4abb91
RH
153/* This means that the processor has the FIX extension. */
154#define MASK_FIX (1 << 10)
155#define TARGET_FIX (target_flags & MASK_FIX)
156
157/* This means that the processor has the CIX extension. */
158#define MASK_CIX (1 << 11)
159#define TARGET_CIX (target_flags & MASK_CIX)
160
a3b815cb
JJ
161/* This means that the processor is an EV5, EV56, or PCA56.
162 Unlike alpha_cpu this is not affected by -mtune= setting. */
a76c0119 163#define MASK_CPU_EV5 (1 << 28)
a3b815cb 164#define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
e9a25f70
JL
165
166/* Likewise for EV6. */
a76c0119 167#define MASK_CPU_EV6 (1 << 29)
a3b815cb 168#define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
e9a25f70
JL
169
170/* This means we support the .arch directive in the assembler. Only
171 defined in TARGET_CPU_DEFAULT. */
a76c0119 172#define MASK_SUPPORT_ARCH (1 << 30)
e9a25f70 173#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 174
9ba3994a 175/* These are for target os support and cannot be changed at runtime. */
be7b80f4
RH
176#define TARGET_ABI_WINDOWS_NT 0
177#define TARGET_ABI_OPEN_VMS 0
178#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT && !TARGET_ABI_OPEN_VMS)
9ba3994a
RH
179
180#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
181#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
182#endif
9c0e94a5
RH
183#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
184#define TARGET_CAN_FAULT_IN_PROLOGUE 0
185#endif
5495cc55
RH
186#ifndef TARGET_HAS_XFLOATING_LIBS
187#define TARGET_HAS_XFLOATING_LIBS 0
188#endif
4f1c5cce
RH
189#ifndef TARGET_PROFILING_NEEDS_GP
190#define TARGET_PROFILING_NEEDS_GP 0
191#endif
ccb83cbc
RH
192#ifndef TARGET_LD_BUGGY_LDGP
193#define TARGET_LD_BUGGY_LDGP 0
194#endif
9ba3994a 195
1a94ca49
RK
196/* Macro to define tables used to set the flags.
197 This is a list in braces of pairs in braces,
198 each pair being { "NAME", VALUE }
199 where VALUE is the bits to set or minus the bits to clear.
200 An empty string NAME is used to identify the default VALUE. */
201
f8e52397 202#define TARGET_SWITCHES \
047142d3
PT
203 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
204 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
205 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
206 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
207 N_("Do not use fp registers")}, \
208 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
209 {"gas", MASK_GAS, N_("Assume GAS")}, \
f8e52397 210 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
047142d3 211 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
f8e52397 212 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
047142d3 213 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
f8e52397 214 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
047142d3 215 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
f8e52397 216 {"build-constants", MASK_BUILD_CONSTANTS, \
047142d3
PT
217 N_("Do not emit complex integer constants to read-only memory")}, \
218 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
219 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
220 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
f8e52397 221 {"no-bwx", -MASK_BWX, ""}, \
047142d3
PT
222 {"max", MASK_MAX, \
223 N_("Emit code for the motion video ISA extension")}, \
f8e52397 224 {"no-max", -MASK_MAX, ""}, \
047142d3
PT
225 {"fix", MASK_FIX, \
226 N_("Emit code for the fp move and sqrt ISA extension")}, \
de4abb91 227 {"no-fix", -MASK_FIX, ""}, \
047142d3 228 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
de4abb91 229 {"no-cix", -MASK_CIX, ""}, \
f8e52397 230 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 231
c01b5470 232#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 233
88681624
ILT
234#ifndef TARGET_CPU_DEFAULT
235#define TARGET_CPU_DEFAULT 0
236#endif
237
2bf6230d
RK
238/* This macro is similar to `TARGET_SWITCHES' but defines names of
239 command options that have values. Its definition is an initializer
240 with a subgrouping for each command option.
241
242 Each subgrouping contains a string constant, that defines the fixed
243 part of the option name, and the address of a variable. The
244 variable, type `char *', is set to the variable part of the given
245 option if the fixed part matches. The actual option name is made
246 by appending `-m' to the specified name.
247
248 Here is an example which defines `-mshort-data-NUMBER'. If the
249 given option is `-mshort-data-512', the variable `m88k_short_data'
250 will be set to the string `"512"'.
251
252 extern char *m88k_short_data;
253 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
254
df45c7ea 255extern const char *alpha_cpu_string; /* For -mcpu= */
a3b815cb 256extern const char *alpha_tune_string; /* For -mtune= */
df45c7ea
KG
257extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
258extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
259extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
260extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 261
f8e52397
RH
262#define TARGET_OPTIONS \
263{ \
264 {"cpu=", &alpha_cpu_string, \
a3b815cb
JJ
265 N_("Use features of and schedule given CPU")}, \
266 {"tune=", &alpha_tune_string, \
267 N_("Schedule given CPU")}, \
f8e52397 268 {"fp-rounding-mode=", &alpha_fprm_string, \
047142d3 269 N_("Control the generated fp rounding mode")}, \
f8e52397 270 {"fp-trap-mode=", &alpha_fptm_string, \
047142d3 271 N_("Control the IEEE trap mode")}, \
f8e52397 272 {"trap-precision=", &alpha_tp_string, \
047142d3 273 N_("Control the precision given to fp exceptions")}, \
f8e52397 274 {"memory-latency=", &alpha_mlat_string, \
047142d3 275 N_("Tune expected memory latency")}, \
2bf6230d
RK
276}
277
952fc2ed
RH
278/* Attempt to describe CPU characteristics to the preprocessor. */
279
280/* Corresponding to amask... */
2b57e919
NB
281#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu=bwx"
282#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu=max"
283#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu=fix"
284#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu=cix"
952fc2ed
RH
285
286/* Corresponding to implver... */
2b57e919
NB
287#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu=ev4"
288#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu=ev5"
289#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu=ev6"
952fc2ed
RH
290
291/* Common combinations. */
292#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
293#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
294#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
295#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
d8ee3e20
RH
296#define CPP_CPU_EV6_SPEC \
297 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
298#define CPP_CPU_EV67_SPEC \
299 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix) %(cpp_am_cix)"
952fc2ed
RH
300
301#ifndef CPP_CPU_DEFAULT_SPEC
302# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
8f4773ea 303# if TARGET_CPU_DEFAULT & MASK_CIX
d8ee3e20
RH
304# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV67_SPEC
305# else
306# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
307# endif
952fc2ed
RH
308# else
309# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
310# if TARGET_CPU_DEFAULT & MASK_MAX
311# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
312# else
313# if TARGET_CPU_DEFAULT & MASK_BWX
314# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
315# else
316# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
317# endif
318# endif
319# else
320# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
321# endif
322# endif
323#endif /* CPP_CPU_DEFAULT_SPEC */
324
325#ifndef CPP_CPU_SPEC
326#define CPP_CPU_SPEC "\
2b57e919 327%{!undef:-Acpu=alpha -Amachine=alpha -D__alpha -D__alpha__ \
952fc2ed
RH
328%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
329%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
330%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
331%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
332%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
d8ee3e20 333%{mcpu=ev67|mcpu=21264a:%(cpp_cpu_ev67) }\
952fc2ed
RH
334%{!mcpu*:%(cpp_cpu_default) }}"
335#endif
336
337/* This macro defines names of additional specifications to put in the
338 specs that can be used in various specifications like CC1_SPEC. Its
339 definition is an initializer with a subgrouping for each command option.
340
341 Each subgrouping contains a string constant, that defines the
342 specification name, and a string constant that used by the GNU CC driver
343 program.
344
345 Do not define this macro if it does not need to do anything. */
346
347#ifndef SUBTARGET_EXTRA_SPECS
348#define SUBTARGET_EXTRA_SPECS
349#endif
350
829245be
KG
351#define EXTRA_SPECS \
352 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
353 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 354 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
355 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
356 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
357 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
358 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
359 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
360 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
361 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
362 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
363 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
d8ee3e20 364 { "cpp_cpu_ev67", CPP_CPU_EV67_SPEC }, \
829245be
KG
365 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
366 { "cpp_cpu", CPP_CPU_SPEC }, \
367 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
368 SUBTARGET_EXTRA_SPECS
369
370
2bf6230d
RK
371/* Sometimes certain combinations of command options do not make sense
372 on a particular target machine. You can define a macro
373 `OVERRIDE_OPTIONS' to take account of this. This macro, if
374 defined, is executed once just after all the command options have
375 been parsed.
376
377 On the Alpha, it is used to translate target-option strings into
378 numeric values. */
379
2bf6230d
RK
380#define OVERRIDE_OPTIONS override_options ()
381
382
1a94ca49
RK
383/* Define this macro to change register usage conditional on target flags.
384
385 On the Alpha, we use this to disable the floating-point registers when
386 they don't exist. */
387
388#define CONDITIONAL_REGISTER_USAGE \
389 if (! TARGET_FPREGS) \
52a69200 390 for (i = 32; i < 63; i++) \
1a94ca49
RK
391 fixed_regs[i] = call_used_regs[i] = 1;
392
4f074454
RK
393/* Show we can debug even without a frame pointer. */
394#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
395\f
396/* target machine storage layout */
397
2700ac93
RS
398/* Define to enable software floating point emulation. */
399#define REAL_ARITHMETIC
400
1a94ca49
RK
401/* Define the size of `int'. The default is the same as the word size. */
402#define INT_TYPE_SIZE 32
403
404/* Define the size of `long long'. The default is the twice the word size. */
405#define LONG_LONG_TYPE_SIZE 64
406
407/* The two floating-point formats we support are S-floating, which is
408 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
409 and `long double' are T. */
410
411#define FLOAT_TYPE_SIZE 32
412#define DOUBLE_TYPE_SIZE 64
413#define LONG_DOUBLE_TYPE_SIZE 64
414
5258d7ae
RK
415#define WCHAR_TYPE "unsigned int"
416#define WCHAR_TYPE_SIZE 32
1a94ca49 417
13d39dbc 418/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
419 in a wider mode than that declared by the program. In such cases,
420 the value is constrained to be within the bounds of the declared
421 type, but kept valid in the wider mode. The signedness of the
422 extension may differ from that of the type.
423
424 For Alpha, we always store objects in a full register. 32-bit objects
425 are always sign-extended, but smaller objects retain their signedness. */
426
427#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
428 if (GET_MODE_CLASS (MODE) == MODE_INT \
429 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
430 { \
431 if ((MODE) == SImode) \
432 (UNSIGNEDP) = 0; \
433 (MODE) = DImode; \
434 }
435
436/* Define this if function arguments should also be promoted using the above
437 procedure. */
438
439#define PROMOTE_FUNCTION_ARGS
440
441/* Likewise, if the function return value is promoted. */
442
443#define PROMOTE_FUNCTION_RETURN
444
445/* Define this if most significant bit is lowest numbered
446 in instructions that operate on numbered bit-fields.
447
448 There are no such instructions on the Alpha, but the documentation
449 is little endian. */
450#define BITS_BIG_ENDIAN 0
451
452/* Define this if most significant byte of a word is the lowest numbered.
453 This is false on the Alpha. */
454#define BYTES_BIG_ENDIAN 0
455
456/* Define this if most significant word of a multiword number is lowest
457 numbered.
458
459 For Alpha we can decide arbitrarily since there are no machine instructions
460 for them. Might as well be consistent with bytes. */
461#define WORDS_BIG_ENDIAN 0
462
463/* number of bits in an addressable storage unit */
464#define BITS_PER_UNIT 8
465
466/* Width in bits of a "word", which is the contents of a machine register.
467 Note that this is not necessarily the width of data type `int';
468 if using 16-bit ints on a 68000, this would still be 32.
469 But on a machine with 16-bit registers, this would be 16. */
470#define BITS_PER_WORD 64
471
472/* Width of a word, in units (bytes). */
473#define UNITS_PER_WORD 8
474
475/* Width in bits of a pointer.
476 See also the macro `Pmode' defined below. */
477#define POINTER_SIZE 64
478
479/* Allocation boundary (in *bits*) for storing arguments in argument list. */
480#define PARM_BOUNDARY 64
481
482/* Boundary (in *bits*) on which stack pointer should be aligned. */
483#define STACK_BOUNDARY 64
484
485/* Allocation boundary (in *bits*) for the code of a function. */
c176c051 486#define FUNCTION_BOUNDARY 32
1a94ca49
RK
487
488/* Alignment of field after `int : 0' in a structure. */
489#define EMPTY_FIELD_BOUNDARY 64
490
491/* Every structure's size must be a multiple of this. */
492#define STRUCTURE_SIZE_BOUNDARY 8
493
494/* A bitfield declared as `int' forces `int' alignment for the struct. */
495#define PCC_BITFIELD_TYPE_MATTERS 1
496
1a94ca49 497/* No data type wants to be aligned rounder than this. */
5495cc55 498#define BIGGEST_ALIGNMENT 128
1a94ca49 499
d16fe557
RK
500/* For atomic access to objects, must have at least 32-bit alignment
501 unless the machine has byte operations. */
13eb1f7f 502#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
d16fe557 503
442b1685
RK
504/* Align all constants and variables to at least a word boundary so
505 we can pick up pieces of them faster. */
6c174fc0
RH
506/* ??? Only if block-move stuff knows about different source/destination
507 alignment. */
508#if 0
442b1685
RK
509#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
510#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 511#endif
1a94ca49
RK
512
513/* Set this non-zero if move instructions will actually fail to work
514 when given unaligned data.
515
516 Since we get an error message when we do one, call them invalid. */
517
518#define STRICT_ALIGNMENT 1
519
520/* Set this non-zero if unaligned move instructions are extremely slow.
521
522 On the Alpha, they trap. */
130d2d72 523
e1565e65 524#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1a94ca49
RK
525\f
526/* Standard register usage. */
527
528/* Number of actual hardware registers.
529 The hardware registers are assigned numbers for the compiler
530 from 0 to just below FIRST_PSEUDO_REGISTER.
531 All registers that the compiler knows about must be given numbers,
532 even those that are not normally considered general registers.
533
534 We define all 32 integer registers, even though $31 is always zero,
535 and all 32 floating-point registers, even though $f31 is also
536 always zero. We do not bother defining the FP status register and
130d2d72
RK
537 there are no other registers.
538
539 Since $31 is always zero, we will use register number 31 as the
540 argument pointer. It will never appear in the generated code
541 because we will always be eliminating it in favor of the stack
52a69200
RK
542 pointer or hardware frame pointer.
543
544 Likewise, we use $f31 for the frame pointer, which will always
545 be eliminated in favor of the hardware frame pointer or the
546 stack pointer. */
1a94ca49
RK
547
548#define FIRST_PSEUDO_REGISTER 64
549
550/* 1 for registers that have pervasive standard uses
551 and are not available for the register allocator. */
552
553#define FIXED_REGISTERS \
554 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
555 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
558
559/* 1 for registers not available across function calls.
560 These must include the FIXED_REGISTERS and also any
561 registers that can be used without being saved.
562 The latter must include the registers where values are returned
563 and the register where structure-value addresses are passed.
564 Aside from that, you can include as many other registers as you like. */
565#define CALL_USED_REGISTERS \
566 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
568 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
570
571/* List the order in which to allocate registers. Each register must be
572 listed once, even those in FIXED_REGISTERS.
573
574 We allocate in the following order:
2c4be73e 575 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
576 $f22-$f30 (likewise)
577 $f21-$f16 (likewise, but input args)
578 $f0 (nonsaved, but return value)
2c4be73e 579 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
580 $f2-$f9 (saved floating-point registers)
581 $1-$8 (nonsaved integer registers)
582 $22-$25 (likewise)
583 $28 (likewise)
584 $0 (likewise, but return value)
585 $21-$16 (likewise, but input args)
0076aa6b 586 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
587 $9-$14 (saved integer registers)
588 $26 (return PC)
589 $15 (frame pointer)
590 $29 (global pointer)
52a69200 591 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
592
593#define REG_ALLOC_ORDER \
2c4be73e 594 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
595 54, 55, 56, 57, 58, 59, 60, 61, 62, \
596 53, 52, 51, 50, 49, 48, \
2c4be73e 597 32, 33, \
1a94ca49
RK
598 34, 35, 36, 37, 38, 39, 40, 41, \
599 1, 2, 3, 4, 5, 6, 7, 8, \
600 22, 23, 24, 25, \
601 28, \
602 0, \
603 21, 20, 19, 18, 17, 16, \
604 27, \
605 9, 10, 11, 12, 13, 14, \
606 26, \
607 15, \
608 29, \
609 30, 31, 63 }
610
611/* Return number of consecutive hard regs needed starting at reg REGNO
612 to hold something of mode MODE.
613 This is ordinarily the length in words of a value of mode MODE
614 but can be less for certain modes in special long registers. */
615
616#define HARD_REGNO_NREGS(REGNO, MODE) \
617 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
618
619/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
620 On Alpha, the integer registers can hold any mode. The floating-point
621 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 622 or 8-bit values. */
1a94ca49 623
e6a8ebb4
RH
624#define HARD_REGNO_MODE_OK(REGNO, MODE) \
625 ((REGNO) >= 32 && (REGNO) <= 62 \
626 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
627 : 1)
628
629/* A C expression that is nonzero if a value of mode
630 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 631
e6a8ebb4
RH
632 This asymmetric test is true when MODE1 could be put
633 in an FP register but MODE2 could not. */
1a94ca49 634
a7adf08e 635#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
636 (HARD_REGNO_MODE_OK (32, (MODE1)) \
637 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 638 : 1)
1a94ca49
RK
639
640/* Specify the registers used for certain standard purposes.
641 The values of these macros are register numbers. */
642
643/* Alpha pc isn't overloaded on a register that the compiler knows about. */
644/* #define PC_REGNUM */
645
646/* Register to use for pushing function arguments. */
647#define STACK_POINTER_REGNUM 30
648
649/* Base register for access to local variables of the function. */
52a69200 650#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
651
652/* Value should be nonzero if functions must have frame pointers.
653 Zero means the frame pointer need not be set up (and parms
654 may be accessed via the stack pointer) in functions that seem suitable.
655 This is computed in `reload', in reload1.c. */
656#define FRAME_POINTER_REQUIRED 0
657
658/* Base register for access to arguments of the function. */
130d2d72 659#define ARG_POINTER_REGNUM 31
1a94ca49 660
52a69200
RK
661/* Base register for access to local variables of function. */
662#define FRAME_POINTER_REGNUM 63
663
1a94ca49
RK
664/* Register in which static-chain is passed to a function.
665
666 For the Alpha, this is based on an example; the calling sequence
667 doesn't seem to specify this. */
668#define STATIC_CHAIN_REGNUM 1
669
670/* Register in which address to store a structure value
671 arrives in the function. On the Alpha, the address is passed
672 as a hidden argument. */
673#define STRUCT_VALUE 0
674\f
675/* Define the classes of registers for register constraints in the
676 machine description. Also define ranges of constants.
677
678 One of the classes must always be named ALL_REGS and include all hard regs.
679 If there is more than one class, another class must be named NO_REGS
680 and contain no registers.
681
682 The name GENERAL_REGS must be the name of a class (or an alias for
683 another name such as ALL_REGS). This is the class of registers
684 that is allowed by "g" or "r" in a register constraint.
685 Also, registers outside this class are allocated only when
686 instructions express preferences for them.
687
688 The classes must be numbered in nondecreasing order; that is,
689 a larger-numbered class must never be contained completely
690 in a smaller-numbered class.
691
692 For any two classes, it is very desirable that there be another
693 class that represents their union. */
694
93c89ab3 695enum reg_class { NO_REGS, PV_REG, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
1a94ca49
RK
696 LIM_REG_CLASSES };
697
698#define N_REG_CLASSES (int) LIM_REG_CLASSES
699
700/* Give names of register classes as strings for dump file. */
701
702#define REG_CLASS_NAMES \
93c89ab3 703 {"NO_REGS", "PV_REG", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
1a94ca49
RK
704
705/* Define which registers fit in which classes.
706 This is an initializer for a vector of HARD_REG_SET
707 of length N_REG_CLASSES. */
708
709#define REG_CLASS_CONTENTS \
93c89ab3 710 { {0, 0}, {0x08000000, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
711
712/* The same information, inverted:
713 Return the class number of the smallest class containing
714 reg number REGNO. This could be a conditional expression
715 or could index an array. */
716
93c89ab3
RH
717#define REGNO_REG_CLASS(REGNO) \
718 ((REGNO) == 27 ? PV_REG \
719 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
720 : GENERAL_REGS)
1a94ca49
RK
721
722/* The class value for index registers, and the one for base regs. */
723#define INDEX_REG_CLASS NO_REGS
724#define BASE_REG_CLASS GENERAL_REGS
725
726/* Get reg_class from a letter such as appears in the machine description. */
727
728#define REG_CLASS_FROM_LETTER(C) \
93c89ab3 729 ((C) == 'c' ? PV_REG : (C) == 'f' ? FLOAT_REGS : NO_REGS)
1a94ca49
RK
730
731/* Define this macro to change register usage conditional on target flags. */
732/* #define CONDITIONAL_REGISTER_USAGE */
733
734/* The letters I, J, K, L, M, N, O, and P in a register constraint string
735 can be used to stand for particular ranges of immediate operands.
736 This macro defines what the ranges are.
737 C is the letter, and VALUE is a constant value.
738 Return 1 if VALUE is in the range specified by C.
739
740 For Alpha:
741 `I' is used for the range of constants most insns can contain.
742 `J' is the constant zero.
743 `K' is used for the constant in an LDA insn.
744 `L' is used for the constant in a LDAH insn.
745 `M' is used for the constants that can be AND'ed with using a ZAP insn.
746 `N' is used for complemented 8-bit constants.
747 `O' is used for negated 8-bit constants.
748 `P' is used for the constants 1, 2 and 3. */
749
750#define CONST_OK_FOR_LETTER_P(VALUE, C) \
751 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
752 : (C) == 'J' ? (VALUE) == 0 \
753 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
754 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 755 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
756 : (C) == 'M' ? zap_mask (VALUE) \
757 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
758 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
759 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
760 : 0)
761
762/* Similar, but for floating or large integer constants, and defining letters
763 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
764
765 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
766 that is the operand of a ZAP insn. */
767
768#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
769 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
770 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
771 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
772 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
773 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
774 : 0)
775
e560f226
RK
776/* Optional extra constraints for this machine.
777
778 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 779 reference to an unaligned location.
9ec36da5 780
ac030a7b 781 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
782 function.
783
784 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
785
786#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 787 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
9ec36da5
JL
788 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
789 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
790 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
791 : 0)
792
1a94ca49
RK
793/* Given an rtx X being reloaded into a reg required to be
794 in class CLASS, return the class of reg to actually use.
795 In general this is just CLASS; but on some machines
796 in some cases it is preferable to use a more restrictive class.
797
798 On the Alpha, all constants except zero go into a floating-point
799 register via memory. */
800
801#define PREFERRED_RELOAD_CLASS(X, CLASS) \
802 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 803 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
804 : (CLASS))
805
806/* Loading and storing HImode or QImode values to and from memory
807 usually requires a scratch register. The exceptions are loading
e008606e
RK
808 QImode and HImode from an aligned address to a general register
809 unless byte instructions are permitted.
ddd5a7c1 810 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 811 FP register. */
1a94ca49 812
3611aef0
RH
813#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
814 secondary_reload_class((CLASS), (MODE), (IN), 1)
815
816#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
817 secondary_reload_class((CLASS), (MODE), (OUT), 0)
1a94ca49
RK
818
819/* If we are copying between general and FP registers, we need a memory
de4abb91 820 location unless the FIX extension is available. */
1a94ca49 821
e9a25f70 822#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
de4abb91 823 (! TARGET_FIX && (CLASS1) != (CLASS2))
1a94ca49 824
acd94aaf
RK
825/* Specify the mode to be used for memory when a secondary memory
826 location is needed. If MODE is floating-point, use it. Otherwise,
827 widen to a word like the default. This is needed because we always
828 store integers in FP registers in quadword format. This whole
829 area is very tricky! */
830#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
831 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 832 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
833 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
834
1a94ca49
RK
835/* Return the maximum number of consecutive registers
836 needed to represent mode MODE in a register of class CLASS. */
837
838#define CLASS_MAX_NREGS(CLASS, MODE) \
839 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
840
c31dfe4d 841/* If defined, gives a class of registers that cannot be used as the
02188693 842 operand of a SUBREG that changes the mode of the object illegally. */
c31dfe4d 843
02188693
RH
844#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
845
846/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
847
848#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
849 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
c31dfe4d 850
1a94ca49
RK
851/* Define the cost of moving between registers of various classes. Moving
852 between FLOAT_REGS and anything else except float regs is expensive.
853 In fact, we make it quite expensive because we really don't want to
854 do these moves unless it is clearly worth it. Optimizations may
855 reduce the impact of not being able to allocate a pseudo to a
856 hard register. */
857
cf011243 858#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
71d9b493
RH
859 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
860 ? 2 \
de4abb91 861 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
862
863/* A C expressions returning the cost of moving data of MODE from a register to
864 or from memory.
865
866 On the Alpha, bump this up a bit. */
867
bcbbac26 868extern int alpha_memory_latency;
cbd5b9a2 869#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
870
871/* Provide the cost of a branch. Exact meaning under development. */
872#define BRANCH_COST 5
1a94ca49
RK
873\f
874/* Stack layout; function entry, exit and calling. */
875
876/* Define this if pushing a word on the stack
877 makes the stack pointer a smaller address. */
878#define STACK_GROWS_DOWNWARD
879
880/* Define this if the nominal address of the stack frame
881 is at the high-address end of the local variables;
882 that is, each additional local variable allocated
883 goes at a more negative offset in the frame. */
130d2d72 884/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
885
886/* Offset within stack frame to start allocating local variables at.
887 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
888 first local allocated. Otherwise, it is the offset to the BEGINNING
889 of the first local allocated. */
890
52a69200 891#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
892
893/* If we generate an insn to push BYTES bytes,
894 this says how many the stack pointer really advances by.
895 On Alpha, don't define this because there are no push insns. */
896/* #define PUSH_ROUNDING(BYTES) */
897
e008606e
RK
898/* Define this to be nonzero if stack checking is built into the ABI. */
899#define STACK_CHECK_BUILTIN 1
900
1a94ca49
RK
901/* Define this if the maximum size of all the outgoing args is to be
902 accumulated and pushed during the prologue. The amount can be
903 found in the variable current_function_outgoing_args_size. */
f73ad30e 904#define ACCUMULATE_OUTGOING_ARGS 1
1a94ca49
RK
905
906/* Offset of first parameter from the argument pointer register value. */
907
130d2d72 908#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
909
910/* Definitions for register eliminations.
911
978e8952 912 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 913 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
914 pointer register. Secondly, the argument pointer register can always be
915 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
916
917/* This is an array of structures. Each structure initializes one pair
918 of eliminable registers. The "from" register number is given first,
919 followed by "to". Eliminations of the same "from" register are listed
920 in order of preference. */
921
52a69200
RK
922#define ELIMINABLE_REGS \
923{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
924 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
925 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
926 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
927
928/* Given FROM and TO register numbers, say whether this elimination is allowed.
929 Frame pointer elimination is automatically handled.
930
130d2d72 931 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
932 eliminated are already handled. */
933
130d2d72 934#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 935
52a69200
RK
936/* Round up to a multiple of 16 bytes. */
937#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
938
1a94ca49
RK
939/* Define the offset between two registers, one to be eliminated, and the other
940 its replacement, at the start of a routine. */
941#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
942{ if ((FROM) == FRAME_POINTER_REGNUM) \
943 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
944 + alpha_sa_size ()); \
945 else if ((FROM) == ARG_POINTER_REGNUM) \
946 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
947 + alpha_sa_size () \
d772039b
RK
948 + (ALPHA_ROUND (get_frame_size () \
949 + current_function_pretend_args_size) \
950 - current_function_pretend_args_size)); \
c8d8ed65
RK
951 else \
952 abort (); \
1a94ca49
RK
953}
954
955/* Define this if stack space is still allocated for a parameter passed
956 in a register. */
957/* #define REG_PARM_STACK_SPACE */
958
959/* Value is the number of bytes of arguments automatically
960 popped when returning from a subroutine call.
8b109b37 961 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
962 FUNTYPE is the data type of the function (as a tree),
963 or for a library call it is an identifier node for the subroutine name.
964 SIZE is the number of bytes of arguments passed on the stack. */
965
8b109b37 966#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
967
968/* Define how to find the value returned by a function.
969 VALTYPE is the data type of the value (as a tree).
970 If the precise function being called is known, FUNC is its FUNCTION_DECL;
971 otherwise, FUNC is 0.
972
973 On Alpha the value is found in $0 for integer functions and
974 $f0 for floating-point functions. */
975
c5c76735 976#define FUNCTION_VALUE(VALTYPE, FUNC) \
4c020733 977 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
c5c76735
JL
978 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
979 || POINTER_TYPE_P (VALTYPE)) \
4c020733
RH
980 ? word_mode : TYPE_MODE (VALTYPE), \
981 ((TARGET_FPREGS \
c5c76735 982 && (TREE_CODE (VALTYPE) == REAL_TYPE \
4c020733 983 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
c5c76735 984 ? 32 : 0))
1a94ca49
RK
985
986/* Define how to find the value returned by a library function
987 assuming the value has mode MODE. */
988
c5c76735 989#define LIBCALL_VALUE(MODE) \
4c020733 990 gen_rtx_REG (MODE, \
c5c76735
JL
991 (TARGET_FPREGS \
992 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
4c020733 993 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
c5c76735 994 ? 32 : 0))
1a94ca49 995
130d2d72
RK
996/* The definition of this macro implies that there are cases where
997 a scalar value cannot be returned in registers.
998
999 For the Alpha, any structure or union type is returned in memory, as
1000 are integers whose size is larger than 64 bits. */
1001
1002#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1003 (TYPE_MODE (TYPE) == BLKmode \
5495cc55
RH
1004 || TYPE_MODE (TYPE) == TFmode \
1005 || TYPE_MODE (TYPE) == TCmode \
130d2d72
RK
1006 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1007
1a94ca49
RK
1008/* 1 if N is a possible register number for a function value
1009 as seen by the caller. */
1010
e5958492
RK
1011#define FUNCTION_VALUE_REGNO_P(N) \
1012 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1013
1014/* 1 if N is a possible register number for function argument passing.
1015 On Alpha, these are $16-$21 and $f16-$f21. */
1016
1017#define FUNCTION_ARG_REGNO_P(N) \
1018 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1019\f
1020/* Define a data type for recording info about an argument list
1021 during the scan of that argument list. This data type should
1022 hold all necessary information about the function itself
1023 and about the args processed so far, enough to enable macros
1024 such as FUNCTION_ARG to determine where the next arg should go.
1025
1026 On Alpha, this is a single integer, which is a number of words
1027 of arguments scanned so far.
1028 Thus 6 or more means all following args should go on the stack. */
1029
1030#define CUMULATIVE_ARGS int
1031
1032/* Initialize a variable CUM of type CUMULATIVE_ARGS
1033 for a call to a function whose data type is FNTYPE.
1034 For a library call, FNTYPE is 0. */
1035
2c7ee1a6 1036#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1037
1038/* Define intermediate macro to compute the size (in registers) of an argument
1039 for the Alpha. */
1040
1041#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
5495cc55
RH
1042 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1043 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1044 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1a94ca49
RK
1045
1046/* Update the data in CUM to advance over an argument
1047 of mode MODE and data type TYPE.
1048 (TYPE is null for libcalls where that information may not be available.) */
1049
1050#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1051 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1052 (CUM) = 6; \
1053 else \
1054 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1055
1056/* Determine where to put an argument to a function.
1057 Value is zero to push the argument on the stack,
1058 or a hard register in which to store the argument.
1059
1060 MODE is the argument's machine mode.
1061 TYPE is the data type of the argument (as a tree).
1062 This is null for libcalls where that information may
1063 not be available.
1064 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1065 the preceding args and about the function being called.
1066 NAMED is nonzero if this argument is a named parameter
1067 (otherwise it is an extra parameter matching an ellipsis).
1068
1069 On Alpha the first 6 words of args are normally in registers
1070 and the rest are pushed. */
1071
1072#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
5495cc55
RH
1073 function_arg((CUM), (MODE), (TYPE), (NAMED))
1074
1075/* A C expression that indicates when an argument must be passed by
1076 reference. If nonzero for an argument, a copy of that argument is
1077 made in memory and a pointer to the argument is passed instead of
1078 the argument itself. The pointer is passed in whatever way is
1079 appropriate for passing a pointer to that type. */
1080
1081#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1082 ((MODE) == TFmode || (MODE) == TCmode)
1a94ca49 1083
1a94ca49
RK
1084/* Specify the padding direction of arguments.
1085
1086 On the Alpha, we must pad upwards in order to be able to pass args in
1087 registers. */
1088
1089#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1090
1091/* For an arg passed partly in registers and partly in memory,
1092 this is the number of registers used.
1093 For args passed entirely in registers or entirely in memory, zero. */
1094
1095#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1096((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1097 ? 6 - (CUM) : 0)
1098
130d2d72
RK
1099/* Perform any needed actions needed for a function that is receiving a
1100 variable number of arguments.
1101
1102 CUM is as above.
1103
1104 MODE and TYPE are the mode and type of the current parameter.
1105
1106 PRETEND_SIZE is a variable that should be set to the amount of stack
1107 that must be pushed by the prolog to pretend that our caller pushed
1108 it.
1109
1110 Normally, this macro will push all remaining incoming registers on the
1111 stack and set PRETEND_SIZE to the length of the registers pushed.
1112
1113 On the Alpha, we allocate space for all 12 arg registers, but only
1114 push those that are remaining.
1115
1116 However, if NO registers need to be saved, don't allocate any space.
1117 This is not only because we won't need the space, but because AP includes
1118 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1119 ap-relative addresses already made.
1120
1121 If we are not to use the floating-point registers, save the integer
1122 registers where we would put the floating-point registers. This is
1123 not the most efficient way to implement varargs with just one register
1124 class, but it isn't worth doing anything more efficient in this rare
1125 case. */
1126
130d2d72
RK
1127#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1128{ if ((CUM) < 6) \
1129 { \
1130 if (! (NO_RTL)) \
1131 { \
63966b3b
RH
1132 rtx tmp; int set = get_varargs_alias_set (); \
1133 tmp = gen_rtx_MEM (BLKmode, \
1134 plus_constant (virtual_incoming_args_rtx, \
1135 ((CUM) + 6)* UNITS_PER_WORD)); \
1136 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1137 move_block_from_reg \
63966b3b 1138 (16 + CUM, tmp, \
02892e06 1139 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
63966b3b
RH
1140 \
1141 tmp = gen_rtx_MEM (BLKmode, \
1142 plus_constant (virtual_incoming_args_rtx, \
1143 (CUM) * UNITS_PER_WORD)); \
1144 MEM_ALIAS_SET (tmp) = set; \
130d2d72 1145 move_block_from_reg \
63966b3b 1146 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
02892e06 1147 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1148 } \
1149 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1150 } \
1151}
1152
7d89dda5
RH
1153/* We do not allow indirect calls to be optimized into sibling calls, nor
1154 can we allow a call to a function in a different compilation unit to
1155 be optimized into a sibcall. Except if the function is known not to
1156 return, in which case our caller doesn't care what the gp is. */
1157#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1158 (DECL \
1159 && ((TREE_ASM_WRITTEN (DECL) && !flag_pic) \
9a1ba437 1160 || ! TREE_PUBLIC (DECL)))
7d89dda5 1161
c8e9adec
RK
1162/* Try to output insns to set TARGET equal to the constant C if it can be
1163 done in less than N insns. Do all computations in MODE. Returns the place
1164 where the output has been placed if it can be done and the insns have been
1165 emitted. If it would take more than N insns, zero is returned and no
1166 insns and emitted. */
92e40a7a 1167
1a94ca49
RK
1168/* Define the information needed to generate branch and scc insns. This is
1169 stored from the compare operation. Note that we can't use "rtx" here
1170 since it hasn't been defined! */
1171
6db21c7f
RH
1172struct alpha_compare
1173{
1174 struct rtx_def *op0, *op1;
1175 int fp_p;
1176};
1177
1178extern struct alpha_compare alpha_compare;
1a94ca49 1179
e5958492 1180/* Make (or fake) .linkage entry for function call.
e5958492 1181 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
e5958492 1182
bcbbac26
RH
1183/* This macro defines the start of an assembly comment. */
1184
1185#define ASM_COMMENT_START " #"
1186
acd92049 1187/* This macro produces the initial definition of a function. */
1a94ca49 1188
acd92049
RH
1189#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1190 alpha_start_function(FILE,NAME,DECL);
1a94ca49 1191
acd92049 1192/* This macro closes up a function definition for the assembler. */
9c0e94a5 1193
acd92049
RH
1194#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1195 alpha_end_function(FILE,NAME,DECL)
acd92049 1196
acd92049
RH
1197/* Output any profiling code before the prologue. */
1198
1199#define PROFILE_BEFORE_PROLOGUE 1
1200
1a94ca49 1201/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1202 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1203 by simply passing -pg to the assembler and linker. */
85d159a3 1204
e0fb9029 1205#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1206
1207/* Output assembler code to FILE to initialize this source file's
1208 basic block profiling info, if that has not already been done.
1209 This assumes that __bb_init_func doesn't garble a1-a5. */
1210
1211#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1212 do { \
1213 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1214 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1215 fputs ("\tldq $26,0($16)\n", (FILE)); \
1216 fputs ("\tbne $26,1f\n", (FILE)); \
1217 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1218 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1219 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1220 fputs ("1:\n", (FILE)); \
85d159a3
RK
1221 ASM_OUTPUT_REG_POP (FILE, 16); \
1222 } while (0);
1223
1224/* Output assembler code to FILE to increment the entry-count for
1225 the BLOCKNO'th basic block in this source file. */
1226
1227#define BLOCK_PROFILER(FILE, BLOCKNO) \
1228 do { \
1229 int blockn = (BLOCKNO); \
a62eb16f 1230 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1231 fputs ("\tstq $26,0($30)\n", (FILE)); \
1232 fputs ("\tstq $27,8($30)\n", (FILE)); \
1233 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1234 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1235 fputs ("\taddq $27,1,$27\n", (FILE)); \
1236 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1237 fputs ("\tldq $26,0($30)\n", (FILE)); \
1238 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1239 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1240 } while (0)
1a94ca49 1241
1a94ca49
RK
1242
1243/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1244 the stack pointer does not matter. The value is tested only in
1245 functions that have frame pointers.
1246 No definition is equivalent to always zero. */
1247
1248#define EXIT_IGNORE_STACK 1
c112e233
RH
1249
1250/* Define registers used by the epilogue and return instruction. */
1251
1252#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1a94ca49
RK
1253\f
1254/* Output assembler code for a block containing the constant parts
1255 of a trampoline, leaving space for the variable parts.
1256
1257 The trampoline should set the static chain pointer to value placed
7981384f
RK
1258 into the trampoline and should branch to the specified routine.
1259 Note that $27 has been set to the address of the trampoline, so we can
1260 use it for addressability of the two data items. Trampolines are always
1261 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1262
1263#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1264do { \
7981384f 1265 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1266 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1267 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1268 fprintf (FILE, "\tnop\n"); \
1a94ca49 1269 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1270} while (0)
1a94ca49 1271
3a523eeb
RS
1272/* Section in which to place the trampoline. On Alpha, instructions
1273 may only be placed in a text segment. */
1274
1275#define TRAMPOLINE_SECTION text_section
1276
1a94ca49
RK
1277/* Length in units of the trampoline for entering a nested function. */
1278
7981384f 1279#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1280
1281/* Emit RTL insns to initialize the variable parts of a trampoline.
1282 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1283 CXT is an RTX for the static chain value for the function. */
1a94ca49 1284
9ec36da5 1285#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1286 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1287
1288/* A C expression whose value is RTL representing the value of the return
1289 address for the frame COUNT steps up from the current frame.
1290 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1291 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1292
9ecc37f0 1293#define RETURN_ADDR_RTX alpha_return_addr
9ecc37f0 1294
6abc6f40
RH
1295/* Before the prologue, RA lives in $26. */
1296#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
8034da37 1297#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
4573b4de
RH
1298
1299/* Describe how we implement __builtin_eh_return. */
1300#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1301#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1302#define EH_RETURN_HANDLER_RTX \
1303 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1304 current_function_outgoing_args_size))
675f0e7c 1305\f
1a94ca49
RK
1306/* Addressing modes, and classification of registers for them. */
1307
940da324
JL
1308/* #define HAVE_POST_INCREMENT 0 */
1309/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1310
940da324
JL
1311/* #define HAVE_PRE_DECREMENT 0 */
1312/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1313
1314/* Macros to check register numbers against specific register classes. */
1315
1316/* These assume that REGNO is a hard or pseudo reg number.
1317 They give nonzero only if REGNO is a hard reg of the suitable class
1318 or a pseudo reg currently allocated to a suitable hard reg.
1319 Since they use reg_renumber, they are safe only once reg_renumber
1320 has been allocated, which happens in local-alloc.c. */
1321
1322#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1323#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1324((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1325 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1326\f
1327/* Maximum number of registers that can appear in a valid memory address. */
1328#define MAX_REGS_PER_ADDRESS 1
1329
1330/* Recognize any constant value that is a valid address. For the Alpha,
1331 there are only constants none since we want to use LDA to load any
1332 symbolic addresses into registers. */
1333
1334#define CONSTANT_ADDRESS_P(X) \
1335 (GET_CODE (X) == CONST_INT \
1336 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1337
1338/* Include all constant integers and constant doubles, but not
1339 floating-point, except for floating-point zero. */
1340
1341#define LEGITIMATE_CONSTANT_P(X) \
1342 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1343 || (X) == CONST0_RTX (GET_MODE (X)))
1344
1345/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1346 and check its validity for a certain class.
1347 We have two alternate definitions for each of them.
1348 The usual definition accepts all pseudo regs; the other rejects
1349 them unless they have been allocated suitable hard regs.
1350 The symbol REG_OK_STRICT causes the latter definition to be used.
1351
1352 Most source files want to accept pseudo regs in the hope that
1353 they will get allocated to the class that the insn wants them to be in.
1354 Source files for reload pass need to be strict.
1355 After reload, it makes no difference, since pseudo regs have
1356 been eliminated by then. */
1357
1358#ifndef REG_OK_STRICT
1359
1360/* Nonzero if X is a hard reg that can be used as an index
1361 or if it is a pseudo reg. */
1362#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1363
1a94ca49
RK
1364/* Nonzero if X is a hard reg that can be used as a base reg
1365 or if it is a pseudo reg. */
1366#define REG_OK_FOR_BASE_P(X) \
52a69200 1367 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1368
5d02b6c2
RH
1369/* ??? Nonzero if X is the frame pointer, or some virtual register
1370 that may eliminate to the frame pointer. These will be allowed to
1371 have offsets greater than 32K. This is done because register
1372 elimination offsets will change the hi/lo split, and if we split
1373 before reload, we will require additional instructions. */
1374#define REG_OK_FP_BASE_P(X) \
1375 (REGNO (X) == 31 || REGNO (X) == 63 \
1376 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1377 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1378
1a94ca49
RK
1379#else
1380
1381/* Nonzero if X is a hard reg that can be used as an index. */
1382#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
5d02b6c2 1383
1a94ca49
RK
1384/* Nonzero if X is a hard reg that can be used as a base reg. */
1385#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1386
5d02b6c2
RH
1387#define REG_OK_FP_BASE_P(X) 0
1388
1a94ca49
RK
1389#endif
1390\f
1391/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1392 that is a valid memory address for an instruction.
1393 The MODE argument is the machine mode for the MEM expression
1394 that wants to use this address.
1395
1396 For Alpha, we have either a constant address or the sum of a register
1397 and a constant address, or just a register. For DImode, any of those
1398 forms can be surrounded with an AND that clear the low-order three bits;
1399 this is an "unaligned" access.
1400
1a94ca49
RK
1401 First define the basic valid address. */
1402
4c020733
RH
1403#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1404{ \
1405 rtx tmp = (X); \
1406 if (GET_CODE (tmp) == SUBREG \
1407 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1408 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1409 tmp = SUBREG_REG (tmp); \
1410 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1411 goto ADDR; \
1412 if (CONSTANT_ADDRESS_P (X)) \
1413 goto ADDR; \
1414 if (GET_CODE (X) == PLUS) \
1415 { \
1416 tmp = XEXP (X, 0); \
1417 if (GET_CODE (tmp) == SUBREG \
1418 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1419 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1420 tmp = SUBREG_REG (tmp); \
1421 if (REG_P (tmp)) \
1422 { \
1423 if (REG_OK_FP_BASE_P (tmp) \
1424 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1425 goto ADDR; \
1426 if (REG_OK_FOR_BASE_P (tmp) \
1427 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1428 goto ADDR; \
1429 } \
0c5912f4
RH
1430 else if (GET_CODE (tmp) == ADDRESSOF \
1431 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1432 goto ADDR; \
4c020733 1433 } \
1a94ca49
RK
1434}
1435
1436/* Now accept the simple address, or, for DImode only, an AND of a simple
1437 address that turns off the low three bits. */
1438
1a94ca49
RK
1439#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1440{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1441 if ((MODE) == DImode \
1442 && GET_CODE (X) == AND \
1443 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1444 && INTVAL (XEXP (X, 1)) == -8) \
1445 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1446}
1447
1448/* Try machine-dependent ways of modifying an illegitimate address
1449 to be legitimate. If we find one, return the new, valid address.
1450 This macro is used in only one place: `memory_address' in explow.c.
1451
1452 OLDX is the address as it was before break_out_memory_refs was called.
1453 In some cases it is useful to look at this to decide what needs to be done.
1454
1455 MODE and WIN are passed so that this macro can use
1456 GO_IF_LEGITIMATE_ADDRESS.
1457
1458 It is always safe for this macro to do nothing. It exists to recognize
1459 opportunities to optimize the output.
1460
1461 For the Alpha, there are three cases we handle:
1462
1463 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1464 valid offset, compute the high part of the constant and add it to the
1465 register. Then our address is (plus temp low-part-const).
1466 (2) If the address is (const (plus FOO const_int)), find the low-order
1467 part of the CONST_INT. Then load FOO plus any high-order part of the
1468 CONST_INT into a register. Our address is (plus reg low-part-const).
1469 This is done to reduce the number of GOT entries.
1470 (3) If we have a (plus reg const), emit the load as in (2), then add
1471 the two registers, and finally generate (plus reg low-part-const) as
1472 our address. */
1473
1474#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1475{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1476 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1477 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1478 { \
1479 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1480 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1481 HOST_WIDE_INT highpart = val - lowpart; \
1482 rtx high = GEN_INT (highpart); \
1483 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1484 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1485 \
1486 (X) = plus_constant (temp, lowpart); \
1487 goto WIN; \
1488 } \
1489 else if (GET_CODE (X) == CONST \
1490 && GET_CODE (XEXP (X, 0)) == PLUS \
1491 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1492 { \
1493 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1494 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1495 HOST_WIDE_INT highpart = val - lowpart; \
1496 rtx high = XEXP (XEXP (X, 0), 0); \
1497 \
1498 if (highpart) \
1499 high = plus_constant (high, highpart); \
1500 \
1501 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1502 goto WIN; \
1503 } \
1504 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1505 && GET_CODE (XEXP (X, 1)) == CONST \
1506 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1507 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1508 { \
1509 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1510 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1511 HOST_WIDE_INT highpart = val - lowpart; \
1512 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1513 \
1514 if (highpart) \
1515 high = plus_constant (high, highpart); \
1516 \
1517 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1518 force_reg (Pmode, high), \
80f251fe 1519 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1520 (X) = plus_constant (high, lowpart); \
1521 goto WIN; \
1522 } \
1523}
1524
a9a2595b
JR
1525/* Try a machine-dependent way of reloading an illegitimate address
1526 operand. If we find one, push the reload and jump to WIN. This
1527 macro is used in only one place: `find_reloads_address' in reload.c.
1528
1529 For the Alpha, we wish to handle large displacements off a base
1530 register by splitting the addend across an ldah and the mem insn.
1531 This cuts number of extra insns needed from 3 to 1. */
1532
1533#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1534do { \
c8ab9901
RH
1535 /* We must recognize output that we have already generated ourselves. */ \
1536 if (GET_CODE (X) == PLUS \
1537 && GET_CODE (XEXP (X, 0)) == PLUS \
1538 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1539 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1540 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1541 { \
df4ae160 1542 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
c8ab9901
RH
1543 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1544 OPNUM, TYPE); \
1545 goto WIN; \
1546 } \
a9a2595b
JR
1547 if (GET_CODE (X) == PLUS \
1548 && GET_CODE (XEXP (X, 0)) == REG \
1549 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1550 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1551 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1552 { \
1553 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1554 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1555 HOST_WIDE_INT high \
1556 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1557 \
1558 /* Check for 32-bit overflow. */ \
1559 if (high + low != val) \
1560 break; \
1561 \
1562 /* Reload the high part into a base reg; leave the low part \
1563 in the mem directly. */ \
1564 \
1565 X = gen_rtx_PLUS (GET_MODE (X), \
1566 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1567 GEN_INT (high)), \
1568 GEN_INT (low)); \
1569 \
df4ae160 1570 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
a9a2595b
JR
1571 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1572 OPNUM, TYPE); \
1573 goto WIN; \
1574 } \
1575} while (0)
1576
1a94ca49
RK
1577/* Go to LABEL if ADDR (a legitimate address expression)
1578 has an effect that depends on the machine mode it is used for.
1579 On the Alpha this is true only for the unaligned modes. We can
1580 simplify this test since we know that the address must be valid. */
1581
1582#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1583{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1584
1585/* Compute the cost of an address. For the Alpha, all valid addresses are
1586 the same cost. */
1587
1588#define ADDRESS_COST(X) 0
1589
2ea844d3
RH
1590/* Machine-dependent reorg pass. */
1591#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1592\f
1593/* Specify the machine mode that this machine uses
1594 for the index in the tablejump instruction. */
1595#define CASE_VECTOR_MODE SImode
1596
18543a22
ILT
1597/* Define as C expression which evaluates to nonzero if the tablejump
1598 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1599 table.
b0435cf4 1600
3aa9d5b6 1601 Do not define this if the table should contain absolute addresses.
260ced47
RK
1602 On the Alpha, the table is really GP-relative, not relative to the PC
1603 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1604 but we should try to find some better way sometime. */
18543a22 1605#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1606
1607/* Specify the tree operation to be used to convert reals to integers. */
1608#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1609
1610/* This is the kind of divide that is easiest to do in the general case. */
1611#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1612
1613/* Define this as 1 if `char' should by default be signed; else as 0. */
1614#define DEFAULT_SIGNED_CHAR 1
1615
1616/* This flag, if defined, says the same insns that convert to a signed fixnum
1617 also convert validly to an unsigned one.
1618
1619 We actually lie a bit here as overflow conditions are different. But
1620 they aren't being checked anyway. */
1621
1622#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1623
1624/* Max number of bytes we can move to or from memory
1625 in one reasonably fast instruction. */
1626
1627#define MOVE_MAX 8
1628
7e24ffc9
HPN
1629/* If a memory-to-memory move would take MOVE_RATIO or more simple
1630 move-instruction pairs, we will do a movstr or libcall instead.
1631
1632 Without byte/word accesses, we want no more than four instructions;
1633 with, several single byte accesses are better. */
6c174fc0
RH
1634
1635#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1636
1a94ca49
RK
1637/* Largest number of bytes of an object that can be placed in a register.
1638 On the Alpha we have plenty of registers, so use TImode. */
1639#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1640
1641/* Nonzero if access to memory by bytes is no faster than for words.
1642 Also non-zero if doing byte operations (specifically shifts) in registers
1643 is undesirable.
1644
1645 On the Alpha, we want to not use the byte operation and instead use
1646 masking operations to access fields; these will save instructions. */
1647
1648#define SLOW_BYTE_ACCESS 1
1649
9a63901f
RK
1650/* Define if operations between registers always perform the operation
1651 on the full register even if a narrower mode is specified. */
1652#define WORD_REGISTER_OPERATIONS
1653
1654/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1655 will either zero-extend or sign-extend. The value of this macro should
1656 be the code that says which one of the two operations is implicitly
1657 done, NIL if none. */
b7747781 1658#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1659
225211e2
RK
1660/* Define if loading short immediate values into registers sign extends. */
1661#define SHORT_IMMEDIATES_SIGN_EXTEND
1662
1a94ca49
RK
1663/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1664 is done just by pretending it is already truncated. */
1665#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1666
1667/* We assume that the store-condition-codes instructions store 0 for false
1668 and some other value for true. This is the value stored for true. */
1669
1670#define STORE_FLAG_VALUE 1
1671
1672/* Define the value returned by a floating-point comparison instruction. */
1673
12530dbe
RH
1674#define FLOAT_STORE_FLAG_VALUE(MODE) \
1675 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1a94ca49 1676
35bb77fd
RK
1677/* Canonicalize a comparison from one we don't have to one we do have. */
1678
1679#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1680 do { \
1681 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1682 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1683 { \
1684 rtx tem = (OP0); \
1685 (OP0) = (OP1); \
1686 (OP1) = tem; \
1687 (CODE) = swap_condition (CODE); \
1688 } \
1689 if (((CODE) == LT || (CODE) == LTU) \
1690 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1691 { \
1692 (CODE) = (CODE) == LT ? LE : LEU; \
1693 (OP1) = GEN_INT (255); \
1694 } \
1695 } while (0)
1696
1a94ca49
RK
1697/* Specify the machine mode that pointers have.
1698 After generation of rtl, the compiler makes no further distinction
1699 between pointers and any other objects of this machine mode. */
1700#define Pmode DImode
1701
1702/* Mode of a function address in a call instruction (for indexing purposes). */
1703
1704#define FUNCTION_MODE Pmode
1705
1706/* Define this if addresses of constant functions
1707 shouldn't be put through pseudo regs where they can be cse'd.
1708 Desirable on machines where ordinary constants are expensive
1709 but a CALL with constant address is cheap.
1710
1711 We define this on the Alpha so that gen_call and gen_call_value
1712 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1713 then copy it into a register, thus actually letting the address be
1714 cse'ed. */
1715
1716#define NO_FUNCTION_CSE
1717
d969caf8 1718/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1719 few bits. */
d969caf8 1720#define SHIFT_COUNT_TRUNCATED 1
1a94ca49
RK
1721
1722/* Compute the cost of computing a constant rtl expression RTX
1723 whose rtx-code is CODE. The body of this macro is a portion
1724 of a switch statement. If the code is computed here,
1725 return it with a return statement. Otherwise, break from the switch.
1726
8b7b2e36
RK
1727 If this is an 8-bit constant, return zero since it can be used
1728 nearly anywhere with no cost. If it is a valid operand for an
1729 ADD or AND, likewise return 0 if we know it will be used in that
1730 context. Otherwise, return 2 since it might be used there later.
1731 All other constants take at least two insns. */
1a94ca49
RK
1732
1733#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1734 case CONST_INT: \
06eb8e92 1735 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1736 return 0; \
1a94ca49 1737 case CONST_DOUBLE: \
5d02ee66
RH
1738 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1739 return 0; \
1740 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1741 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1742 return 0; \
1743 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1744 return 2; \
1745 else \
1746 return COSTS_N_INSNS (2); \
1a94ca49
RK
1747 case CONST: \
1748 case SYMBOL_REF: \
1749 case LABEL_REF: \
f6f6a13c
RK
1750 switch (alpha_cpu) \
1751 { \
1752 case PROCESSOR_EV4: \
1753 return COSTS_N_INSNS (3); \
1754 case PROCESSOR_EV5: \
5d02ee66 1755 case PROCESSOR_EV6: \
f6f6a13c 1756 return COSTS_N_INSNS (2); \
5d02ee66 1757 default: abort(); \
f6f6a13c 1758 }
1a94ca49
RK
1759
1760/* Provide the costs of a rtl expression. This is in the body of a
1761 switch on CODE. */
1762
1763#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1764 case PLUS: case MINUS: \
1765 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1766 switch (alpha_cpu) \
1767 { \
1768 case PROCESSOR_EV4: \
1769 return COSTS_N_INSNS (6); \
1770 case PROCESSOR_EV5: \
5d02ee66 1771 case PROCESSOR_EV6: \
f6f6a13c 1772 return COSTS_N_INSNS (4); \
5d02ee66 1773 default: abort(); \
f6f6a13c 1774 } \
b49e978e
RK
1775 else if (GET_CODE (XEXP (X, 0)) == MULT \
1776 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1777 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1778 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1779 break; \
1780 case MULT: \
f6f6a13c
RK
1781 switch (alpha_cpu) \
1782 { \
1783 case PROCESSOR_EV4: \
1784 if (FLOAT_MODE_P (GET_MODE (X))) \
1785 return COSTS_N_INSNS (6); \
1786 return COSTS_N_INSNS (23); \
1787 case PROCESSOR_EV5: \
1788 if (FLOAT_MODE_P (GET_MODE (X))) \
1789 return COSTS_N_INSNS (4); \
1790 else if (GET_MODE (X) == DImode) \
1791 return COSTS_N_INSNS (12); \
1792 else \
1793 return COSTS_N_INSNS (8); \
5d02ee66
RH
1794 case PROCESSOR_EV6: \
1795 if (FLOAT_MODE_P (GET_MODE (X))) \
1796 return COSTS_N_INSNS (4); \
1797 else \
1798 return COSTS_N_INSNS (7); \
1799 default: abort(); \
f6f6a13c 1800 } \
b49e978e
RK
1801 case ASHIFT: \
1802 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1803 && INTVAL (XEXP (X, 1)) <= 3) \
1804 break; \
1805 /* ... fall through ... */ \
5d02ee66 1806 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1807 switch (alpha_cpu) \
1808 { \
1809 case PROCESSOR_EV4: \
1810 return COSTS_N_INSNS (2); \
1811 case PROCESSOR_EV5: \
5d02ee66 1812 case PROCESSOR_EV6: \
f6f6a13c 1813 return COSTS_N_INSNS (1); \
5d02ee66
RH
1814 default: abort(); \
1815 } \
1816 case IF_THEN_ELSE: \
1817 switch (alpha_cpu) \
1818 { \
1819 case PROCESSOR_EV4: \
1820 case PROCESSOR_EV6: \
1821 return COSTS_N_INSNS (2); \
1822 case PROCESSOR_EV5: \
1823 return COSTS_N_INSNS (1); \
1824 default: abort(); \
f6f6a13c 1825 } \
3bda6d11 1826 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1827 switch (alpha_cpu) \
1828 { \
1829 case PROCESSOR_EV4: \
1830 if (GET_MODE (X) == SFmode) \
1831 return COSTS_N_INSNS (34); \
1832 else if (GET_MODE (X) == DFmode) \
1833 return COSTS_N_INSNS (63); \
1834 else \
1835 return COSTS_N_INSNS (70); \
1836 case PROCESSOR_EV5: \
1837 if (GET_MODE (X) == SFmode) \
1838 return COSTS_N_INSNS (15); \
1839 else if (GET_MODE (X) == DFmode) \
1840 return COSTS_N_INSNS (22); \
1841 else \
5d02ee66
RH
1842 return COSTS_N_INSNS (70); /* ??? */ \
1843 case PROCESSOR_EV6: \
1844 if (GET_MODE (X) == SFmode) \
1845 return COSTS_N_INSNS (12); \
1846 else if (GET_MODE (X) == DFmode) \
1847 return COSTS_N_INSNS (15); \
1848 else \
1849 return COSTS_N_INSNS (70); /* ??? */ \
1850 default: abort(); \
f6f6a13c 1851 } \
1a94ca49 1852 case MEM: \
f6f6a13c
RK
1853 switch (alpha_cpu) \
1854 { \
1855 case PROCESSOR_EV4: \
5d02ee66 1856 case PROCESSOR_EV6: \
f6f6a13c
RK
1857 return COSTS_N_INSNS (3); \
1858 case PROCESSOR_EV5: \
1859 return COSTS_N_INSNS (2); \
5d02ee66 1860 default: abort(); \
f6f6a13c
RK
1861 } \
1862 case NEG: case ABS: \
1863 if (! FLOAT_MODE_P (GET_MODE (X))) \
1864 break; \
1865 /* ... fall through ... */ \
3bda6d11
RK
1866 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1867 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1868 switch (alpha_cpu) \
1869 { \
1870 case PROCESSOR_EV4: \
1871 return COSTS_N_INSNS (6); \
1872 case PROCESSOR_EV5: \
5d02ee66 1873 case PROCESSOR_EV6: \
f6f6a13c 1874 return COSTS_N_INSNS (4); \
5d02ee66 1875 default: abort(); \
f6f6a13c 1876 }
1a94ca49
RK
1877\f
1878/* Control the assembler format that we output. */
1879
1a94ca49
RK
1880/* Output to assembler file text saying following lines
1881 may contain character constants, extra white space, comments, etc. */
1882
1883#define ASM_APP_ON ""
1884
1885/* Output to assembler file text saying following lines
1886 no longer contain unusual constructs. */
1887
1888#define ASM_APP_OFF ""
1889
93de6f51 1890#define TEXT_SECTION_ASM_OP "\t.text"
1a94ca49
RK
1891
1892/* Output before read-only data. */
1893
93de6f51 1894#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1a94ca49
RK
1895
1896/* Output before writable data. */
1897
93de6f51 1898#define DATA_SECTION_ASM_OP "\t.data"
1a94ca49
RK
1899
1900/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1901 indicate that it is for read-only data.
1902
abc95ed3 1903 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1904 eight bytes of zero. This works around a bug in DEC's assembler in
1905 some versions of OSF/1 V3.x. */
1a94ca49
RK
1906
1907#define EXTRA_SECTIONS readonly_data
1908
1909#define EXTRA_SECTION_FUNCTIONS \
1910void \
1911literal_section () \
1912{ \
1913 if (in_section != readonly_data) \
1914 { \
c0388f29
RK
1915 static int firsttime = 1; \
1916 \
1a94ca49 1917 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1918 if (firsttime) \
1919 { \
1920 firsttime = 0; \
1921 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1922 } \
1923 \
1a94ca49
RK
1924 in_section = readonly_data; \
1925 } \
1926} \
1927
1928#define READONLY_DATA_SECTION literal_section
1929
ac030a7b
RK
1930/* If we are referencing a function that is static, make the SYMBOL_REF
1931 special. We use this to see indicate we can branch to this function
1932 without setting PV or restoring GP. */
130d2d72
RK
1933
1934#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1935 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1936 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1937
1a94ca49
RK
1938/* How to refer to registers in assembler output.
1939 This sequence is indexed by compiler's hard-register-number (see above). */
1940
1941#define REGISTER_NAMES \
1942{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1943 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1944 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1945 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1946 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1947 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1948 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1949 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1950
1951/* How to renumber registers for dbx and gdb. */
1952
1953#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1954
1955/* This is how to output the definition of a user-level label named NAME,
1956 such as the label on a static function or variable NAME. */
1957
1958#define ASM_OUTPUT_LABEL(FILE,NAME) \
1959 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1960
1961/* This is how to output a command to make the user-level label named NAME
1962 defined for reference from other files. */
1963
1964#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1965 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1966
4e0c8ad2 1967/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1968
4e0c8ad2 1969#define USER_LABEL_PREFIX ""
1a94ca49
RK
1970
1971/* This is how to output an internal numbered label where
1972 PREFIX is the class of label and NUM is the number within the class. */
1973
1974#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1975 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1976
1977/* This is how to output a label for a jump table. Arguments are the same as
1978 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1979 passed. */
1980
1981#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1982{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1983
1984/* This is how to store into the string LABEL
1985 the symbol_ref name of an internal numbered label where
1986 PREFIX is the class of label and NUM is the number within the class.
1987 This is suitable for output with `assemble_name'. */
1988
1989#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 1990 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 1991
e247ca2a
RK
1992/* Check a floating-point value for validity for a particular machine mode. */
1993
1994#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1995 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1996
5495cc55
RH
1997/* This is how to output an assembler line defining a `long double'
1998 constant. */
1999
2000#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2001 do { \
2002 long t[4]; \
2003 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2004 fprintf (FILE, "\t.quad 0x%lx%08lx,0x%lx%08lx\n", \
2005 t[1] & 0xffffffff, t[0] & 0xffffffff, \
2006 t[3] & 0xffffffff, t[2] & 0xffffffff); \
2007 } while (0)
2008
1a94ca49
RK
2009/* This is how to output an assembler line defining a `double' constant. */
2010
e99300f1 2011#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
5495cc55
RH
2012 do { \
2013 long t[2]; \
2014 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2015 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2016 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2017 } while (0)
1a94ca49
RK
2018
2019/* This is how to output an assembler line defining a `float' constant. */
2020
e247ca2a
RK
2021#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2022 do { \
2023 long t; \
2024 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2025 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
5495cc55 2026 } while (0)
2700ac93 2027
1a94ca49
RK
2028/* This is how to output an assembler line defining an `int' constant. */
2029
2030#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
2031( fprintf (FILE, "\t.long "), \
2032 output_addr_const (FILE, (VALUE)), \
2033 fprintf (FILE, "\n"))
1a94ca49
RK
2034
2035/* This is how to output an assembler line defining a `long' constant. */
2036
2037#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2038( fprintf (FILE, "\t.quad "), \
2039 output_addr_const (FILE, (VALUE)), \
2040 fprintf (FILE, "\n"))
2041
2042/* Likewise for `char' and `short' constants. */
2043
2044#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 2045 fprintf (FILE, "\t.word %d\n", \
3c303f52 2046 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2047 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
2048
2049#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 2050 fprintf (FILE, "\t.byte %d\n", \
3c303f52 2051 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 2052 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
2053
2054/* We use the default ASCII-output routine, except that we don't write more
2055 than 50 characters since the assembler doesn't support very long lines. */
2056
2057#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2058 do { \
2059 FILE *_hide_asm_out_file = (MYFILE); \
e03c5670 2060 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1a94ca49
RK
2061 int _hide_thissize = (MYLENGTH); \
2062 int _size_so_far = 0; \
2063 { \
2064 FILE *asm_out_file = _hide_asm_out_file; \
e03c5670 2065 const unsigned char *p = _hide_p; \
1a94ca49
RK
2066 int thissize = _hide_thissize; \
2067 int i; \
2068 fprintf (asm_out_file, "\t.ascii \""); \
2069 \
2070 for (i = 0; i < thissize; i++) \
2071 { \
2072 register int c = p[i]; \
2073 \
2074 if (_size_so_far ++ > 50 && i < thissize - 4) \
2075 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2076 \
2077 if (c == '\"' || c == '\\') \
2078 putc ('\\', asm_out_file); \
2079 if (c >= ' ' && c < 0177) \
2080 putc (c, asm_out_file); \
2081 else \
2082 { \
2083 fprintf (asm_out_file, "\\%o", c); \
2084 /* After an octal-escape, if a digit follows, \
2085 terminate one string constant and start another. \
8aeea6e6 2086 The VAX assembler fails to stop reading the escape \
1a94ca49
RK
2087 after three digits, so this is the only way we \
2088 can get it to parse the data properly. */ \
2089 if (i < thissize - 1 \
2090 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 2091 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2092 } \
2093 } \
2094 fprintf (asm_out_file, "\"\n"); \
2095 } \
2096 } \
2097 while (0)
52a69200 2098
6690d24c 2099/* To get unaligned data, we have to turn off auto alignment. */
93de6f51
HPN
2100#define UNALIGNED_SHORT_ASM_OP "\t.align 0\n\t.word\t"
2101#define UNALIGNED_INT_ASM_OP "\t.align 0\n\t.long\t"
2102#define UNALIGNED_DOUBLE_INT_ASM_OP "\t.align 0\n\t.quad\t"
6690d24c 2103
1a94ca49
RK
2104/* This is how to output an insn to push a register on the stack.
2105 It need not be very fast code. */
2106
2107#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2108 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2109 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2110 (REGNO) & 31);
2111
2112/* This is how to output an insn to pop a register from the stack.
2113 It need not be very fast code. */
2114
2115#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2116 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2117 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2118 (REGNO) & 31);
2119
2120/* This is how to output an assembler line for a numeric constant byte. */
2121
2122#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2123 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2124
260ced47
RK
2125/* This is how to output an element of a case-vector that is absolute.
2126 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2127
260ced47 2128#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2129
260ced47 2130/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2131
33f7f353 2132#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
be7b80f4 2133 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
8dfe3c62 2134 (VALUE))
1a94ca49
RK
2135
2136/* This is how to output an assembler line
2137 that says to advance the location counter
2138 to a multiple of 2**LOG bytes. */
2139
2140#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2141 if ((LOG) != 0) \
2142 fprintf (FILE, "\t.align %d\n", LOG);
2143
2144/* This is how to advance the location counter by SIZE bytes. */
2145
2146#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2147 fprintf (FILE, "\t.space %d\n", (SIZE))
2148
2149/* This says how to output an assembler line
2150 to define a global common symbol. */
2151
2152#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2153( fputs ("\t.comm ", (FILE)), \
2154 assemble_name ((FILE), (NAME)), \
2155 fprintf ((FILE), ",%d\n", (SIZE)))
2156
2157/* This says how to output an assembler line
2158 to define a local common symbol. */
2159
2160#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2161( fputs ("\t.lcomm ", (FILE)), \
2162 assemble_name ((FILE), (NAME)), \
2163 fprintf ((FILE), ",%d\n", (SIZE)))
2164
2165/* Store in OUTPUT a string (made with alloca) containing
2166 an assembler-name for a local static variable named NAME.
2167 LABELNO is an integer which is different for each call. */
2168
2169#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2170( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2171 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2172
60593797
RH
2173/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2174 Used for C++ multiple inheritance. */
f2720858
RH
2175/* ??? This is only used with the v2 ABI, and alpha.c makes assumptions
2176 about current_function_is_thunk that are not valid with the v3 ABI. */
2177#if 0
60593797
RH
2178#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2179do { \
e03c5670 2180 const char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
54473ca7 2181 int reg; \
60593797 2182 \
be7b80f4 2183 if (TARGET_ABI_OSF) \
4c646291
JJ
2184 fprintf (FILE, "\tldgp $29,0($27)\n"); \
2185 \
acd92049
RH
2186 /* Mark end of prologue. */ \
2187 output_end_prologue (FILE); \
60593797
RH
2188 \
2189 /* Rely on the assembler to macro expand a large delta. */ \
2eecbd3f 2190 fprintf (FILE, "\t.set at\n"); \
54473ca7
L
2191 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2192 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
60593797 2193 \
b1afd7f4
KG
2194 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0), \
2195 VOIDmode)) \
60593797
RH
2196 { \
2197 fprintf (FILE, "\tbr $31,$"); \
2198 assemble_name (FILE, fn_name); \
2199 fprintf (FILE, "..ng\n"); \
2200 } \
2201 else \
2202 { \
acd92049 2203 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2204 assemble_name (FILE, fn_name); \
2205 fputc ('\n', FILE); \
2206 } \
2eecbd3f 2207 fprintf (FILE, "\t.set noat\n"); \
60593797 2208} while (0)
f2720858 2209#endif
60593797 2210\f
9ec36da5 2211
1a94ca49
RK
2212/* Print operand X (an rtx) in assembler syntax to file FILE.
2213 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2214 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2215
2216#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2217
2218/* Determine which codes are valid without a following integer. These must
941cc05a
RK
2219 not be alphabetic.
2220
2221 ~ Generates the name of the current function.
2bf6230d 2222
be7560ea
RH
2223 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
2224 attributes are examined to determine what is appropriate.
e5958492
RK
2225
2226 , Generates single precision suffix for floating point
2227 instructions (s for IEEE, f for VAX)
2228
2229 - Generates double precision suffix for floating point
2230 instructions (t for IEEE, g for VAX)
2bf6230d 2231 */
1a94ca49 2232
be7560ea
RH
2233#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2234 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~')
1a94ca49
RK
2235\f
2236/* Print a memory address as an operand to reference that memory location. */
2237
714b019c
RH
2238#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2239 print_operand_address((FILE), (ADDR))
2240
1a94ca49
RK
2241/* Define the codes that are matched by predicates in alpha.c. */
2242
e3208d53
RH
2243#define PREDICATE_CODES \
2244 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2245 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2246 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2247 {"cint8_operand", {CONST_INT}}, \
2248 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2249 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2250 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2251 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2252 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2253 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2254 {"mode_mask_operand", {CONST_INT}}, \
2255 {"mul8_operand", {CONST_INT}}, \
2256 {"mode_width_operand", {CONST_INT}}, \
2257 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2258 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
8f4773ea 2259 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
e3208d53
RH
2260 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2261 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1eb8759b 2262 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
e3208d53
RH
2263 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2264 {"fp0_operand", {CONST_DOUBLE}}, \
2265 {"current_file_function_operand", {SYMBOL_REF}}, \
2266 {"call_operand", {REG, SYMBOL_REF}}, \
2267 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2268 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2269 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
eb8da868 2270 SYMBOL_REF, CONST, LABEL_REF}}, \
f711a22b 2271 {"some_ni_operand", {SUBREG, REG, MEM}}, \
e3208d53
RH
2272 {"aligned_memory_operand", {MEM}}, \
2273 {"unaligned_memory_operand", {MEM}}, \
2274 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2275 {"any_memory_operand", {MEM}}, \
40b80dad 2276 {"hard_fp_register_operand", {SUBREG, REG}}, \
d2c6a1b6 2277 {"hard_int_register_operand", {SUBREG, REG}}, \
67070f5c 2278 {"reg_not_elim_operand", {SUBREG, REG}}, \
3611aef0
RH
2279 {"reg_no_subreg_operand", {REG}}, \
2280 {"addition_operation", {PLUS}},
03f8c4cc 2281\f
63966b3b
RH
2282/* Define the `__builtin_va_list' type for the ABI. */
2283#define BUILD_VA_LIST_TYPE(VALIST) \
2284 (VALIST) = alpha_build_va_list ()
2285
2286/* Implement `va_start' for varargs and stdarg. */
2287#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2288 alpha_va_start (stdarg, valist, nextarg)
2289
2290/* Implement `va_arg'. */
2291#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2292 alpha_va_arg (valist, type)
2293\f
34fa88ab
RK
2294/* Tell collect that the object format is ECOFF. */
2295#define OBJECT_FORMAT_COFF
2296#define EXTENDED_COFF
2297
2298/* If we use NM, pass -g to it so it only lists globals. */
2299#define NM_FLAGS "-pg"
2300
03f8c4cc
RK
2301/* Definitions for debugging. */
2302
2303#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2304#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2305#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2306
2307#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2308#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2309#endif
2310
2311
2312/* Correct the offset of automatic variables and arguments. Note that
2313 the Alpha debug format wants all automatic variables and arguments
2314 to be in terms of two different offsets from the virtual frame pointer,
2315 which is the stack pointer before any adjustment in the function.
2316 The offset for the argument pointer is fixed for the native compiler,
2317 it is either zero (for the no arguments case) or large enough to hold
2318 all argument registers.
2319 The offset for the auto pointer is the fourth argument to the .frame
2320 directive (local_offset).
2321 To stay compatible with the native tools we use the same offsets
2322 from the virtual frame pointer and adjust the debugger arg/auto offsets
2323 accordingly. These debugger offsets are set up in output_prolog. */
2324
9a0b18f2
RK
2325extern long alpha_arg_offset;
2326extern long alpha_auto_offset;
03f8c4cc
RK
2327#define DEBUGGER_AUTO_OFFSET(X) \
2328 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2329#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2330
2331
2332#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2333 alpha_output_lineno (STREAM, LINE)
03f8c4cc
RK
2334
2335#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2336 alpha_output_filename (STREAM, NAME)
03f8c4cc 2337
4330b0e7
JW
2338/* mips-tfile.c limits us to strings of one page. We must underestimate this
2339 number, because the real length runs past this up to the next
2340 continuation point. This is really a dbxout.c bug. */
2341#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2342
2343/* By default, turn on GDB extensions. */
2344#define DEFAULT_GDB_EXTENSIONS 1
2345
7aadc7c2
RK
2346/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2347#define NO_DBX_FUNCTION_END 1
2348
03f8c4cc
RK
2349/* If we are smuggling stabs through the ALPHA ECOFF object
2350 format, put a comment in front of the .stab<x> operation so
2351 that the ALPHA assembler does not choke. The mips-tfile program
2352 will correctly put the stab into the object file. */
2353
93de6f51
HPN
2354#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2355#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2356#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
03f8c4cc
RK
2357
2358/* Forward references to tags are allowed. */
2359#define SDB_ALLOW_FORWARD_REFERENCES
2360
2361/* Unknown tags are also allowed. */
2362#define SDB_ALLOW_UNKNOWN_REFERENCES
2363
2364#define PUT_SDB_DEF(a) \
2365do { \
2366 fprintf (asm_out_file, "\t%s.def\t", \
2367 (TARGET_GAS) ? "" : "#"); \
2368 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2369 fputc (';', asm_out_file); \
2370} while (0)
2371
2372#define PUT_SDB_PLAIN_DEF(a) \
2373do { \
2374 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2375 (TARGET_GAS) ? "" : "#", (a)); \
2376} while (0)
2377
2378#define PUT_SDB_TYPE(a) \
2379do { \
2380 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2381} while (0)
2382
2383/* For block start and end, we create labels, so that
2384 later we can figure out where the correct offset is.
2385 The normal .ent/.end serve well enough for functions,
2386 so those are just commented out. */
2387
2388extern int sdb_label_count; /* block start/end next label # */
2389
2390#define PUT_SDB_BLOCK_START(LINE) \
2391do { \
2392 fprintf (asm_out_file, \
2393 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2394 sdb_label_count, \
2395 (TARGET_GAS) ? "" : "#", \
2396 sdb_label_count, \
2397 (LINE)); \
2398 sdb_label_count++; \
2399} while (0)
2400
2401#define PUT_SDB_BLOCK_END(LINE) \
2402do { \
2403 fprintf (asm_out_file, \
2404 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2405 sdb_label_count, \
2406 (TARGET_GAS) ? "" : "#", \
2407 sdb_label_count, \
2408 (LINE)); \
2409 sdb_label_count++; \
2410} while (0)
2411
2412#define PUT_SDB_FUNCTION_START(LINE)
2413
2414#define PUT_SDB_FUNCTION_END(LINE)
2415
3c303f52 2416#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2417
03f8c4cc
RK
2418/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2419 mips-tdump.c to print them out.
2420
2421 These must match the corresponding definitions in gdb/mipsread.c.
2422 Unfortunately, gcc and gdb do not currently share any directories. */
2423
2424#define CODE_MASK 0x8F300
2425#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2426#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2427#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2428
2429/* Override some mips-tfile definitions. */
2430
2431#define SHASH_SIZE 511
2432#define THASH_SIZE 55
1e6c6f11
RK
2433
2434/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2435
2436#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2437
b0435cf4
RH
2438/* The system headers under Alpha systems are generally C++-aware. */
2439#define NO_IMPLICIT_EXTERN_C
b517dcd2
RH
2440
2441/* Generate calls to memcpy, etc., not bcopy, etc. */
2442#define TARGET_MEM_FUNCTIONS 1
This page took 1.22711 seconds and 5 git commands to generate.