]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
Remove accidental checkin.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ba3994a 2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
21798cd8
RK
23/* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
1a94ca49 25#define CPP_SPEC "\
21798cd8 26%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 27%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
28%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
29%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
30%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
31%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
32%{mieee:-D_IEEE_FP} \
33%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
34
35/* Set the spec to use for signed char. The default tests the above macro
36 but DEC's compiler can't handle the conditional in a "constant"
37 operand. */
38
39#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
40
b890f297
JM
41#define WORD_SWITCH_TAKES_ARG(STR) \
42 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
43 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
44 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
45 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
46 || !strcmp (STR, "isystem"))
8877eb00 47
1a94ca49
RK
48/* Print subsidiary information on the compiler version in use. */
49#define TARGET_VERSION
50
1a94ca49
RK
51/* Run-time compilation parameters selecting different hardware subsets. */
52
f6f6a13c
RK
53/* Which processor to schedule for. The cpu attribute defines a list that
54 mirrors this list, so changes to alpha.md must be made at the same time. */
55
56enum processor_type
57 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
58 PROCESSOR_EV5, /* 21164{a,pc,} */
59 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
60
61extern enum processor_type alpha_cpu;
62
2bf6230d
RK
63enum alpha_trap_precision
64{
65 ALPHA_TP_PROG, /* No precision (default). */
66 ALPHA_TP_FUNC, /* Trap contained within originating function. */
67 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
68};
69
70enum alpha_fp_rounding_mode
71{
72 ALPHA_FPRM_NORM, /* Normal rounding mode. */
73 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
74 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
75 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
76};
77
78enum alpha_fp_trap_mode
79{
80 ALPHA_FPTM_N, /* Normal trap mode. */
81 ALPHA_FPTM_U, /* Underflow traps enabled. */
82 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
83 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
84};
85
1a94ca49
RK
86extern int target_flags;
87
2bf6230d
RK
88extern enum alpha_trap_precision alpha_tp;
89extern enum alpha_fp_rounding_mode alpha_fprm;
90extern enum alpha_fp_trap_mode alpha_fptm;
91
1a94ca49
RK
92/* This means that floating-point support exists in the target implementation
93 of the Alpha architecture. This is usually the default. */
94
2bf6230d
RK
95#define MASK_FP 1
96#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
97
98/* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
2bf6230d
RK
102#define MASK_FPREGS 2
103#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
104
105/* This means that gas is used to process the assembler file. */
106
107#define MASK_GAS 4
108#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 109
2bf6230d
RK
110/* This means that we should mark procedures as IEEE conformant. */
111
112#define MASK_IEEE_CONFORMANT 8
113#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115/* This means we should be IEEE-compliant except for inexact. */
116
117#define MASK_IEEE 16
118#define TARGET_IEEE (target_flags & MASK_IEEE)
119
120/* This means we should be fully IEEE-compliant. */
121
122#define MASK_IEEE_WITH_INEXACT 32
123#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
803fee69
RK
125/* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128#define MASK_BUILD_CONSTANTS 128
129#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
e5958492
RK
131/* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134#define MASK_FLOAT_VAX 512
135#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
e9a25f70
JL
137/* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
025f3281 139
e9a25f70
JL
140#define MASK_BWX 1024
141#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 142
e9a25f70
JL
143/* This means that the processor has the CIX extension. */
144#define MASK_CIX 2048
145#define TARGET_CIX (target_flags & MASK_CIX)
146
147/* This means that the processor has the MAX extension. */
148#define MASK_MAX 4096
149#define TARGET_MAX (target_flags & MASK_MAX)
150
151/* This means that the processor is an EV5, EV56, or PCA56. This is defined
152 only in TARGET_CPU_DEFAULT. */
153#define MASK_CPU_EV5 8192
154
155/* Likewise for EV6. */
156#define MASK_CPU_EV6 16384
157
158/* This means we support the .arch directive in the assembler. Only
159 defined in TARGET_CPU_DEFAULT. */
160#define MASK_SUPPORT_ARCH 32768
161#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 162
9ba3994a
RH
163/* These are for target os support and cannot be changed at runtime. */
164#ifndef TARGET_WINDOWS_NT
165#define TARGET_WINDOWS_NT 0
166#endif
167#ifndef TARGET_OPEN_VMS
168#define TARGET_OPEN_VMS 0
169#endif
170
171#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
172#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
173#endif
9c0e94a5
RH
174#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
175#define TARGET_CAN_FAULT_IN_PROLOGUE 0
176#endif
9ba3994a 177
1a94ca49
RK
178/* Macro to define tables used to set the flags.
179 This is a list in braces of pairs in braces,
180 each pair being { "NAME", VALUE }
181 where VALUE is the bits to set or minus the bits to clear.
182 An empty string NAME is used to identify the default VALUE. */
183
2bf6230d
RK
184#define TARGET_SWITCHES \
185 { {"no-soft-float", MASK_FP}, \
186 {"soft-float", - MASK_FP}, \
187 {"fp-regs", MASK_FPREGS}, \
188 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
189 {"alpha-as", -MASK_GAS}, \
190 {"gas", MASK_GAS}, \
191 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
192 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
193 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 194 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
195 {"float-vax", MASK_FLOAT_VAX}, \
196 {"float-ieee", -MASK_FLOAT_VAX}, \
e9a25f70
JL
197 {"bwx", MASK_BWX}, \
198 {"no-bwx", -MASK_BWX}, \
199 {"cix", MASK_CIX}, \
200 {"no-cix", -MASK_CIX}, \
201 {"max", MASK_MAX}, \
202 {"no-max", -MASK_MAX}, \
88681624 203 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 204
c01b5470 205#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 206
88681624
ILT
207#ifndef TARGET_CPU_DEFAULT
208#define TARGET_CPU_DEFAULT 0
209#endif
210
2bf6230d
RK
211/* This macro is similar to `TARGET_SWITCHES' but defines names of
212 command options that have values. Its definition is an initializer
213 with a subgrouping for each command option.
214
215 Each subgrouping contains a string constant, that defines the fixed
216 part of the option name, and the address of a variable. The
217 variable, type `char *', is set to the variable part of the given
218 option if the fixed part matches. The actual option name is made
219 by appending `-m' to the specified name.
220
221 Here is an example which defines `-mshort-data-NUMBER'. If the
222 given option is `-mshort-data-512', the variable `m88k_short_data'
223 will be set to the string `"512"'.
224
225 extern char *m88k_short_data;
226 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
227
bcbbac26 228extern char *alpha_cpu_string; /* For -mcpu= */
2bf6230d
RK
229extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
230extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
231extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
bcbbac26 232extern char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d
RK
233
234#define TARGET_OPTIONS \
235{ \
f6f6a13c 236 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
237 {"fp-rounding-mode=", &alpha_fprm_string}, \
238 {"fp-trap-mode=", &alpha_fptm_string}, \
239 {"trap-precision=", &alpha_tp_string}, \
bcbbac26 240 {"memory-latency=", &alpha_mlat_string}, \
2bf6230d
RK
241}
242
243/* Sometimes certain combinations of command options do not make sense
244 on a particular target machine. You can define a macro
245 `OVERRIDE_OPTIONS' to take account of this. This macro, if
246 defined, is executed once just after all the command options have
247 been parsed.
248
249 On the Alpha, it is used to translate target-option strings into
250 numeric values. */
251
252extern void override_options ();
253#define OVERRIDE_OPTIONS override_options ()
254
255
1a94ca49
RK
256/* Define this macro to change register usage conditional on target flags.
257
258 On the Alpha, we use this to disable the floating-point registers when
259 they don't exist. */
260
261#define CONDITIONAL_REGISTER_USAGE \
262 if (! TARGET_FPREGS) \
52a69200 263 for (i = 32; i < 63; i++) \
1a94ca49
RK
264 fixed_regs[i] = call_used_regs[i] = 1;
265
4f074454
RK
266/* Show we can debug even without a frame pointer. */
267#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
268\f
269/* target machine storage layout */
270
2700ac93
RS
271/* Define to enable software floating point emulation. */
272#define REAL_ARITHMETIC
273
861bb6c1
JL
274/* The following #defines are used when compiling the routines in
275 libgcc1.c. Since the Alpha calling conventions require single
276 precision floats to be passed in the floating-point registers
277 (rather than in the general registers) we have to build the
278 libgcc1.c routines in such a way that they know the actual types
279 of their formal arguments and the actual types of their return
280 values. Otherwise, gcc will generate calls to the libgcc1.c
281 routines, passing arguments in the floating-point registers,
282 but the libgcc1.c routines will expect their arguments on the
283 stack (where the Alpha calling conventions require structs &
284 unions to be passed). */
285
286#define FLOAT_VALUE_TYPE double
287#define INTIFY(FLOATVAL) (FLOATVAL)
288#define FLOATIFY(INTVAL) (INTVAL)
289#define FLOAT_ARG_TYPE double
290
1a94ca49
RK
291/* Define the size of `int'. The default is the same as the word size. */
292#define INT_TYPE_SIZE 32
293
294/* Define the size of `long long'. The default is the twice the word size. */
295#define LONG_LONG_TYPE_SIZE 64
296
297/* The two floating-point formats we support are S-floating, which is
298 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
299 and `long double' are T. */
300
301#define FLOAT_TYPE_SIZE 32
302#define DOUBLE_TYPE_SIZE 64
303#define LONG_DOUBLE_TYPE_SIZE 64
304
5258d7ae
RK
305#define WCHAR_TYPE "unsigned int"
306#define WCHAR_TYPE_SIZE 32
1a94ca49 307
13d39dbc 308/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
309 in a wider mode than that declared by the program. In such cases,
310 the value is constrained to be within the bounds of the declared
311 type, but kept valid in the wider mode. The signedness of the
312 extension may differ from that of the type.
313
314 For Alpha, we always store objects in a full register. 32-bit objects
315 are always sign-extended, but smaller objects retain their signedness. */
316
317#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
318 if (GET_MODE_CLASS (MODE) == MODE_INT \
319 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
320 { \
321 if ((MODE) == SImode) \
322 (UNSIGNEDP) = 0; \
323 (MODE) = DImode; \
324 }
325
326/* Define this if function arguments should also be promoted using the above
327 procedure. */
328
329#define PROMOTE_FUNCTION_ARGS
330
331/* Likewise, if the function return value is promoted. */
332
333#define PROMOTE_FUNCTION_RETURN
334
335/* Define this if most significant bit is lowest numbered
336 in instructions that operate on numbered bit-fields.
337
338 There are no such instructions on the Alpha, but the documentation
339 is little endian. */
340#define BITS_BIG_ENDIAN 0
341
342/* Define this if most significant byte of a word is the lowest numbered.
343 This is false on the Alpha. */
344#define BYTES_BIG_ENDIAN 0
345
346/* Define this if most significant word of a multiword number is lowest
347 numbered.
348
349 For Alpha we can decide arbitrarily since there are no machine instructions
350 for them. Might as well be consistent with bytes. */
351#define WORDS_BIG_ENDIAN 0
352
353/* number of bits in an addressable storage unit */
354#define BITS_PER_UNIT 8
355
356/* Width in bits of a "word", which is the contents of a machine register.
357 Note that this is not necessarily the width of data type `int';
358 if using 16-bit ints on a 68000, this would still be 32.
359 But on a machine with 16-bit registers, this would be 16. */
360#define BITS_PER_WORD 64
361
362/* Width of a word, in units (bytes). */
363#define UNITS_PER_WORD 8
364
365/* Width in bits of a pointer.
366 See also the macro `Pmode' defined below. */
367#define POINTER_SIZE 64
368
369/* Allocation boundary (in *bits*) for storing arguments in argument list. */
370#define PARM_BOUNDARY 64
371
372/* Boundary (in *bits*) on which stack pointer should be aligned. */
373#define STACK_BOUNDARY 64
374
375/* Allocation boundary (in *bits*) for the code of a function. */
9c0e94a5 376#define FUNCTION_BOUNDARY 256
1a94ca49
RK
377
378/* Alignment of field after `int : 0' in a structure. */
379#define EMPTY_FIELD_BOUNDARY 64
380
381/* Every structure's size must be a multiple of this. */
382#define STRUCTURE_SIZE_BOUNDARY 8
383
384/* A bitfield declared as `int' forces `int' alignment for the struct. */
385#define PCC_BITFIELD_TYPE_MATTERS 1
386
65823178
RK
387/* Align loop starts for optimal branching.
388
389 ??? Kludge this and the next macro for the moment by not doing anything if
390 we don't optimize and also if we are writing ECOFF symbols to work around
391 a bug in DEC's assembler. */
1a94ca49 392
fc470718 393#define LOOP_ALIGN(LABEL) \
9c0e94a5 394 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49 395
9c0e94a5
RH
396/* This is how to align an instruction for optimal branching. On
397 Alpha we'll get better performance by aligning on an octaword
1a94ca49 398 boundary. */
130d2d72 399
fc470718 400#define ALIGN_LABEL_AFTER_BARRIER(FILE) \
9c0e94a5 401 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
1a94ca49
RK
402
403/* No data type wants to be aligned rounder than this. */
404#define BIGGEST_ALIGNMENT 64
405
d16fe557
RK
406/* For atomic access to objects, must have at least 32-bit alignment
407 unless the machine has byte operations. */
e9a25f70 408#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
d16fe557 409
442b1685
RK
410/* Align all constants and variables to at least a word boundary so
411 we can pick up pieces of them faster. */
6c174fc0
RH
412/* ??? Only if block-move stuff knows about different source/destination
413 alignment. */
414#if 0
442b1685
RK
415#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
416#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 417#endif
1a94ca49
RK
418
419/* Set this non-zero if move instructions will actually fail to work
420 when given unaligned data.
421
422 Since we get an error message when we do one, call them invalid. */
423
424#define STRICT_ALIGNMENT 1
425
426/* Set this non-zero if unaligned move instructions are extremely slow.
427
428 On the Alpha, they trap. */
130d2d72
RK
429
430#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
431\f
432/* Standard register usage. */
433
434/* Number of actual hardware registers.
435 The hardware registers are assigned numbers for the compiler
436 from 0 to just below FIRST_PSEUDO_REGISTER.
437 All registers that the compiler knows about must be given numbers,
438 even those that are not normally considered general registers.
439
440 We define all 32 integer registers, even though $31 is always zero,
441 and all 32 floating-point registers, even though $f31 is also
442 always zero. We do not bother defining the FP status register and
130d2d72
RK
443 there are no other registers.
444
445 Since $31 is always zero, we will use register number 31 as the
446 argument pointer. It will never appear in the generated code
447 because we will always be eliminating it in favor of the stack
52a69200
RK
448 pointer or hardware frame pointer.
449
450 Likewise, we use $f31 for the frame pointer, which will always
451 be eliminated in favor of the hardware frame pointer or the
452 stack pointer. */
1a94ca49
RK
453
454#define FIRST_PSEUDO_REGISTER 64
455
456/* 1 for registers that have pervasive standard uses
457 and are not available for the register allocator. */
458
459#define FIXED_REGISTERS \
460 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
461 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
464
465/* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471#define CALL_USED_REGISTERS \
472 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
473 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
474 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
476
477/* List the order in which to allocate registers. Each register must be
478 listed once, even those in FIXED_REGISTERS.
479
480 We allocate in the following order:
2c4be73e 481 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
482 $f22-$f30 (likewise)
483 $f21-$f16 (likewise, but input args)
484 $f0 (nonsaved, but return value)
2c4be73e 485 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
486 $f2-$f9 (saved floating-point registers)
487 $1-$8 (nonsaved integer registers)
488 $22-$25 (likewise)
489 $28 (likewise)
490 $0 (likewise, but return value)
491 $21-$16 (likewise, but input args)
0076aa6b 492 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
493 $9-$14 (saved integer registers)
494 $26 (return PC)
495 $15 (frame pointer)
496 $29 (global pointer)
52a69200 497 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
498
499#define REG_ALLOC_ORDER \
2c4be73e 500 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
501 54, 55, 56, 57, 58, 59, 60, 61, 62, \
502 53, 52, 51, 50, 49, 48, \
2c4be73e 503 32, 33, \
1a94ca49
RK
504 34, 35, 36, 37, 38, 39, 40, 41, \
505 1, 2, 3, 4, 5, 6, 7, 8, \
506 22, 23, 24, 25, \
507 28, \
508 0, \
509 21, 20, 19, 18, 17, 16, \
510 27, \
511 9, 10, 11, 12, 13, 14, \
512 26, \
513 15, \
514 29, \
515 30, 31, 63 }
516
517/* Return number of consecutive hard regs needed starting at reg REGNO
518 to hold something of mode MODE.
519 This is ordinarily the length in words of a value of mode MODE
520 but can be less for certain modes in special long registers. */
521
522#define HARD_REGNO_NREGS(REGNO, MODE) \
523 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
524
525/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
526 On Alpha, the integer registers can hold any mode. The floating-point
527 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
528 or 8-bit values. If we only allowed the larger integers into FP registers,
529 we'd have to say that QImode and SImode aren't tiable, which is a
530 pain. So say all registers can hold everything and see how that works. */
531
532#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
533
534/* Value is 1 if it is a good idea to tie two pseudo registers
535 when one has mode MODE1 and one has mode MODE2.
536 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
537 for any hard reg, then this must be 0 for correct output. */
538
539#define MODES_TIEABLE_P(MODE1, MODE2) 1
540
541/* Specify the registers used for certain standard purposes.
542 The values of these macros are register numbers. */
543
544/* Alpha pc isn't overloaded on a register that the compiler knows about. */
545/* #define PC_REGNUM */
546
547/* Register to use for pushing function arguments. */
548#define STACK_POINTER_REGNUM 30
549
550/* Base register for access to local variables of the function. */
52a69200 551#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
552
553/* Value should be nonzero if functions must have frame pointers.
554 Zero means the frame pointer need not be set up (and parms
555 may be accessed via the stack pointer) in functions that seem suitable.
556 This is computed in `reload', in reload1.c. */
557#define FRAME_POINTER_REQUIRED 0
558
559/* Base register for access to arguments of the function. */
130d2d72 560#define ARG_POINTER_REGNUM 31
1a94ca49 561
52a69200
RK
562/* Base register for access to local variables of function. */
563#define FRAME_POINTER_REGNUM 63
564
1a94ca49
RK
565/* Register in which static-chain is passed to a function.
566
567 For the Alpha, this is based on an example; the calling sequence
568 doesn't seem to specify this. */
569#define STATIC_CHAIN_REGNUM 1
570
571/* Register in which address to store a structure value
572 arrives in the function. On the Alpha, the address is passed
573 as a hidden argument. */
574#define STRUCT_VALUE 0
575\f
576/* Define the classes of registers for register constraints in the
577 machine description. Also define ranges of constants.
578
579 One of the classes must always be named ALL_REGS and include all hard regs.
580 If there is more than one class, another class must be named NO_REGS
581 and contain no registers.
582
583 The name GENERAL_REGS must be the name of a class (or an alias for
584 another name such as ALL_REGS). This is the class of registers
585 that is allowed by "g" or "r" in a register constraint.
586 Also, registers outside this class are allocated only when
587 instructions express preferences for them.
588
589 The classes must be numbered in nondecreasing order; that is,
590 a larger-numbered class must never be contained completely
591 in a smaller-numbered class.
592
593 For any two classes, it is very desirable that there be another
594 class that represents their union. */
595
596enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
597 LIM_REG_CLASSES };
598
599#define N_REG_CLASSES (int) LIM_REG_CLASSES
600
601/* Give names of register classes as strings for dump file. */
602
603#define REG_CLASS_NAMES \
604 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
605
606/* Define which registers fit in which classes.
607 This is an initializer for a vector of HARD_REG_SET
608 of length N_REG_CLASSES. */
609
610#define REG_CLASS_CONTENTS \
52a69200 611 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
612
613/* The same information, inverted:
614 Return the class number of the smallest class containing
615 reg number REGNO. This could be a conditional expression
616 or could index an array. */
617
52a69200
RK
618#define REGNO_REG_CLASS(REGNO) \
619 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
620
621/* The class value for index registers, and the one for base regs. */
622#define INDEX_REG_CLASS NO_REGS
623#define BASE_REG_CLASS GENERAL_REGS
624
625/* Get reg_class from a letter such as appears in the machine description. */
626
627#define REG_CLASS_FROM_LETTER(C) \
628 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
629
630/* Define this macro to change register usage conditional on target flags. */
631/* #define CONDITIONAL_REGISTER_USAGE */
632
633/* The letters I, J, K, L, M, N, O, and P in a register constraint string
634 can be used to stand for particular ranges of immediate operands.
635 This macro defines what the ranges are.
636 C is the letter, and VALUE is a constant value.
637 Return 1 if VALUE is in the range specified by C.
638
639 For Alpha:
640 `I' is used for the range of constants most insns can contain.
641 `J' is the constant zero.
642 `K' is used for the constant in an LDA insn.
643 `L' is used for the constant in a LDAH insn.
644 `M' is used for the constants that can be AND'ed with using a ZAP insn.
645 `N' is used for complemented 8-bit constants.
646 `O' is used for negated 8-bit constants.
647 `P' is used for the constants 1, 2 and 3. */
648
649#define CONST_OK_FOR_LETTER_P(VALUE, C) \
650 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
651 : (C) == 'J' ? (VALUE) == 0 \
652 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
653 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 654 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
655 : (C) == 'M' ? zap_mask (VALUE) \
656 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
657 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
658 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
659 : 0)
660
661/* Similar, but for floating or large integer constants, and defining letters
662 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
663
664 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
665 that is the operand of a ZAP insn. */
666
667#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
668 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
669 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
670 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
671 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
672 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
673 : 0)
674
e560f226
RK
675/* Optional extra constraints for this machine.
676
677 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 678 reference to an unaligned location.
9ec36da5 679
ac030a7b 680 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
681 function.
682
683 'S' is a 6-bit constant (valid for a shift insn). */
e560f226
RK
684
685#define EXTRA_CONSTRAINT(OP, C) \
9ec36da5
JL
686 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
687 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
688 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
689 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
e560f226
RK
690 : 0)
691
1a94ca49
RK
692/* Given an rtx X being reloaded into a reg required to be
693 in class CLASS, return the class of reg to actually use.
694 In general this is just CLASS; but on some machines
695 in some cases it is preferable to use a more restrictive class.
696
697 On the Alpha, all constants except zero go into a floating-point
698 register via memory. */
699
700#define PREFERRED_RELOAD_CLASS(X, CLASS) \
701 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
a6a503ed 702 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
1a94ca49
RK
703 : (CLASS))
704
705/* Loading and storing HImode or QImode values to and from memory
706 usually requires a scratch register. The exceptions are loading
e008606e
RK
707 QImode and HImode from an aligned address to a general register
708 unless byte instructions are permitted.
ddd5a7c1 709 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 710 FP register. */
1a94ca49
RK
711
712#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
713(((GET_CODE (IN) == MEM \
714 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
715 || (GET_CODE (IN) == SUBREG \
716 && (GET_CODE (SUBREG_REG (IN)) == MEM \
717 || (GET_CODE (SUBREG_REG (IN)) == REG \
718 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
719 && (((CLASS) == FLOAT_REGS \
720 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
721 || (((MODE) == QImode || (MODE) == HImode) \
e9a25f70 722 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
723 ? GENERAL_REGS \
724 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
725 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
726 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
727 && (GET_MODE_SIZE (GET_MODE (IN)) \
728 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 729 : NO_REGS)
1a94ca49
RK
730
731#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
732(((GET_CODE (OUT) == MEM \
733 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
734 || (GET_CODE (OUT) == SUBREG \
735 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
736 || (GET_CODE (SUBREG_REG (OUT)) == REG \
737 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
956d6950
JL
738 && ((((MODE) == HImode || (MODE) == QImode) \
739 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
740 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
e560f226
RK
741 ? GENERAL_REGS \
742 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
743 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
744 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
745 && (GET_MODE_SIZE (GET_MODE (OUT)) \
746 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
747 : NO_REGS)
1a94ca49
RK
748
749/* If we are copying between general and FP registers, we need a memory
e9a25f70 750 location unless the CIX extension is available. */
1a94ca49 751
e9a25f70
JL
752#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
753 (! TARGET_CIX && (CLASS1) != (CLASS2))
1a94ca49 754
acd94aaf
RK
755/* Specify the mode to be used for memory when a secondary memory
756 location is needed. If MODE is floating-point, use it. Otherwise,
757 widen to a word like the default. This is needed because we always
758 store integers in FP registers in quadword format. This whole
759 area is very tricky! */
760#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
761 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 762 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
763 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
764
1a94ca49
RK
765/* Return the maximum number of consecutive registers
766 needed to represent mode MODE in a register of class CLASS. */
767
768#define CLASS_MAX_NREGS(CLASS, MODE) \
769 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
770
c31dfe4d
RK
771/* If defined, gives a class of registers that cannot be used as the
772 operand of a SUBREG that changes the size of the object. */
773
774#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
775
1a94ca49
RK
776/* Define the cost of moving between registers of various classes. Moving
777 between FLOAT_REGS and anything else except float regs is expensive.
778 In fact, we make it quite expensive because we really don't want to
779 do these moves unless it is clearly worth it. Optimizations may
780 reduce the impact of not being able to allocate a pseudo to a
781 hard register. */
782
71d9b493
RH
783#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
784 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
785 ? 2 \
786 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
787
788/* A C expressions returning the cost of moving data of MODE from a register to
789 or from memory.
790
791 On the Alpha, bump this up a bit. */
792
bcbbac26 793extern int alpha_memory_latency;
cbd5b9a2 794#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
795
796/* Provide the cost of a branch. Exact meaning under development. */
797#define BRANCH_COST 5
798
799/* Adjust the cost of dependencies. */
800
801#define ADJUST_COST(INSN,LINK,DEP,COST) \
802 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
803\f
804/* Stack layout; function entry, exit and calling. */
805
806/* Define this if pushing a word on the stack
807 makes the stack pointer a smaller address. */
808#define STACK_GROWS_DOWNWARD
809
810/* Define this if the nominal address of the stack frame
811 is at the high-address end of the local variables;
812 that is, each additional local variable allocated
813 goes at a more negative offset in the frame. */
130d2d72 814/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
815
816/* Offset within stack frame to start allocating local variables at.
817 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
818 first local allocated. Otherwise, it is the offset to the BEGINNING
819 of the first local allocated. */
820
52a69200 821#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
822
823/* If we generate an insn to push BYTES bytes,
824 this says how many the stack pointer really advances by.
825 On Alpha, don't define this because there are no push insns. */
826/* #define PUSH_ROUNDING(BYTES) */
827
e008606e
RK
828/* Define this to be nonzero if stack checking is built into the ABI. */
829#define STACK_CHECK_BUILTIN 1
830
1a94ca49
RK
831/* Define this if the maximum size of all the outgoing args is to be
832 accumulated and pushed during the prologue. The amount can be
833 found in the variable current_function_outgoing_args_size. */
834#define ACCUMULATE_OUTGOING_ARGS
835
836/* Offset of first parameter from the argument pointer register value. */
837
130d2d72 838#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
839
840/* Definitions for register eliminations.
841
978e8952 842 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 843 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
844 pointer register. Secondly, the argument pointer register can always be
845 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
846
847/* This is an array of structures. Each structure initializes one pair
848 of eliminable registers. The "from" register number is given first,
849 followed by "to". Eliminations of the same "from" register are listed
850 in order of preference. */
851
52a69200
RK
852#define ELIMINABLE_REGS \
853{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
854 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
855 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
856 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
857
858/* Given FROM and TO register numbers, say whether this elimination is allowed.
859 Frame pointer elimination is automatically handled.
860
130d2d72 861 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
862 eliminated are already handled. */
863
130d2d72 864#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 865
52a69200
RK
866/* Round up to a multiple of 16 bytes. */
867#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
868
1a94ca49
RK
869/* Define the offset between two registers, one to be eliminated, and the other
870 its replacement, at the start of a routine. */
871#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
872{ if ((FROM) == FRAME_POINTER_REGNUM) \
873 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
874 + alpha_sa_size ()); \
875 else if ((FROM) == ARG_POINTER_REGNUM) \
876 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
877 + alpha_sa_size () \
d772039b
RK
878 + (ALPHA_ROUND (get_frame_size () \
879 + current_function_pretend_args_size) \
880 - current_function_pretend_args_size)); \
1a94ca49
RK
881}
882
883/* Define this if stack space is still allocated for a parameter passed
884 in a register. */
885/* #define REG_PARM_STACK_SPACE */
886
887/* Value is the number of bytes of arguments automatically
888 popped when returning from a subroutine call.
8b109b37 889 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
890 FUNTYPE is the data type of the function (as a tree),
891 or for a library call it is an identifier node for the subroutine name.
892 SIZE is the number of bytes of arguments passed on the stack. */
893
8b109b37 894#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
895
896/* Define how to find the value returned by a function.
897 VALTYPE is the data type of the value (as a tree).
898 If the precise function being called is known, FUNC is its FUNCTION_DECL;
899 otherwise, FUNC is 0.
900
901 On Alpha the value is found in $0 for integer functions and
902 $f0 for floating-point functions. */
903
904#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492 905 gen_rtx (REG, \
956d6950
JL
906 ((INTEGRAL_TYPE_P (VALTYPE) \
907 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
908 || POINTER_TYPE_P (VALTYPE)) \
e5958492
RK
909 ? word_mode : TYPE_MODE (VALTYPE), \
910 ((TARGET_FPREGS \
911 && (TREE_CODE (VALTYPE) == REAL_TYPE \
912 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
913 ? 32 : 0))
1a94ca49
RK
914
915/* Define how to find the value returned by a library function
916 assuming the value has mode MODE. */
917
918#define LIBCALL_VALUE(MODE) \
e5958492
RK
919 gen_rtx (REG, MODE, \
920 (TARGET_FPREGS \
921 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
922 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
923 ? 32 : 0))
1a94ca49 924
130d2d72
RK
925/* The definition of this macro implies that there are cases where
926 a scalar value cannot be returned in registers.
927
928 For the Alpha, any structure or union type is returned in memory, as
929 are integers whose size is larger than 64 bits. */
930
931#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 932 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
933 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
934
1a94ca49
RK
935/* 1 if N is a possible register number for a function value
936 as seen by the caller. */
937
e5958492
RK
938#define FUNCTION_VALUE_REGNO_P(N) \
939 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
940
941/* 1 if N is a possible register number for function argument passing.
942 On Alpha, these are $16-$21 and $f16-$f21. */
943
944#define FUNCTION_ARG_REGNO_P(N) \
945 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
946\f
947/* Define a data type for recording info about an argument list
948 during the scan of that argument list. This data type should
949 hold all necessary information about the function itself
950 and about the args processed so far, enough to enable macros
951 such as FUNCTION_ARG to determine where the next arg should go.
952
953 On Alpha, this is a single integer, which is a number of words
954 of arguments scanned so far.
955 Thus 6 or more means all following args should go on the stack. */
956
957#define CUMULATIVE_ARGS int
958
959/* Initialize a variable CUM of type CUMULATIVE_ARGS
960 for a call to a function whose data type is FNTYPE.
961 For a library call, FNTYPE is 0. */
962
2c7ee1a6 963#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
964
965/* Define intermediate macro to compute the size (in registers) of an argument
966 for the Alpha. */
967
968#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
969((MODE) != BLKmode \
970 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
971 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
972
973/* Update the data in CUM to advance over an argument
974 of mode MODE and data type TYPE.
975 (TYPE is null for libcalls where that information may not be available.) */
976
977#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
978 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
979 (CUM) = 6; \
980 else \
981 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
982
983/* Determine where to put an argument to a function.
984 Value is zero to push the argument on the stack,
985 or a hard register in which to store the argument.
986
987 MODE is the argument's machine mode.
988 TYPE is the data type of the argument (as a tree).
989 This is null for libcalls where that information may
990 not be available.
991 CUM is a variable of type CUMULATIVE_ARGS which gives info about
992 the preceding args and about the function being called.
993 NAMED is nonzero if this argument is a named parameter
994 (otherwise it is an extra parameter matching an ellipsis).
995
996 On Alpha the first 6 words of args are normally in registers
997 and the rest are pushed. */
998
999#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1000((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1001 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
1002 (CUM) + 16 + ((TARGET_FPREGS \
1003 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1004 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1005 * 32)) \
1006 : 0)
1a94ca49 1007
1a94ca49
RK
1008/* Specify the padding direction of arguments.
1009
1010 On the Alpha, we must pad upwards in order to be able to pass args in
1011 registers. */
1012
1013#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1014
1015/* For an arg passed partly in registers and partly in memory,
1016 this is the number of registers used.
1017 For args passed entirely in registers or entirely in memory, zero. */
1018
1019#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1020((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1021 ? 6 - (CUM) : 0)
1022
130d2d72
RK
1023/* Perform any needed actions needed for a function that is receiving a
1024 variable number of arguments.
1025
1026 CUM is as above.
1027
1028 MODE and TYPE are the mode and type of the current parameter.
1029
1030 PRETEND_SIZE is a variable that should be set to the amount of stack
1031 that must be pushed by the prolog to pretend that our caller pushed
1032 it.
1033
1034 Normally, this macro will push all remaining incoming registers on the
1035 stack and set PRETEND_SIZE to the length of the registers pushed.
1036
1037 On the Alpha, we allocate space for all 12 arg registers, but only
1038 push those that are remaining.
1039
1040 However, if NO registers need to be saved, don't allocate any space.
1041 This is not only because we won't need the space, but because AP includes
1042 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1043 ap-relative addresses already made.
1044
1045 If we are not to use the floating-point registers, save the integer
1046 registers where we would put the floating-point registers. This is
1047 not the most efficient way to implement varargs with just one register
1048 class, but it isn't worth doing anything more efficient in this rare
1049 case. */
1050
130d2d72
RK
1051
1052#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1053{ if ((CUM) < 6) \
1054 { \
1055 if (! (NO_RTL)) \
1056 { \
1057 move_block_from_reg \
1058 (16 + CUM, \
1059 gen_rtx (MEM, BLKmode, \
1060 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1061 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1062 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1063 move_block_from_reg \
7a92339b 1064 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1065 gen_rtx (MEM, BLKmode, \
1066 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1067 (CUM) * UNITS_PER_WORD)), \
02892e06 1068 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
7a14fdc5 1069 emit_insn (gen_blockage ()); \
130d2d72
RK
1070 } \
1071 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1072 } \
1073}
1074
c8e9adec
RK
1075/* Try to output insns to set TARGET equal to the constant C if it can be
1076 done in less than N insns. Do all computations in MODE. Returns the place
1077 where the output has been placed if it can be done and the insns have been
1078 emitted. If it would take more than N insns, zero is returned and no
1079 insns and emitted. */
1080extern struct rtx_def *alpha_emit_set_const ();
803fee69 1081extern struct rtx_def *alpha_emit_set_long_const ();
e83015a9 1082extern struct rtx_def *alpha_emit_conditional_branch ();
92e40a7a
RK
1083extern struct rtx_def *alpha_emit_conditional_move ();
1084
1a94ca49
RK
1085/* Generate necessary RTL for __builtin_saveregs().
1086 ARGLIST is the argument list; see expr.c. */
1087extern struct rtx_def *alpha_builtin_saveregs ();
1088#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1089
1090/* Define the information needed to generate branch and scc insns. This is
1091 stored from the compare operation. Note that we can't use "rtx" here
1092 since it hasn't been defined! */
1093
1094extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1095extern int alpha_compare_fp_p;
1096
e5958492 1097/* Make (or fake) .linkage entry for function call.
e5958492
RK
1098 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1099extern void alpha_need_linkage ();
1100
bcbbac26
RH
1101/* This macro defines the start of an assembly comment. */
1102
1103#define ASM_COMMENT_START " #"
1104
acd92049 1105/* This macro produces the initial definition of a function. */
1a94ca49 1106
acd92049
RH
1107#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1108 alpha_start_function(FILE,NAME,DECL);
1109extern void alpha_start_function ();
1a94ca49 1110
acd92049 1111/* This macro closes up a function definition for the assembler. */
9c0e94a5 1112
acd92049
RH
1113#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1114 alpha_end_function(FILE,NAME,DECL)
1115extern void alpha_end_function ();
1116
9c0e94a5
RH
1117/* This macro notes the end of the prologue. */
1118
1119#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
3c303f52 1120extern void output_end_prologue ();
1a94ca49 1121
acd92049
RH
1122/* Output any profiling code before the prologue. */
1123
1124#define PROFILE_BEFORE_PROLOGUE 1
1125
1a94ca49 1126/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1127 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1128 by simply passing -pg to the assembler and linker. */
85d159a3 1129
e0fb9029 1130#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1131
1132/* Output assembler code to FILE to initialize this source file's
1133 basic block profiling info, if that has not already been done.
1134 This assumes that __bb_init_func doesn't garble a1-a5. */
1135
1136#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1137 do { \
1138 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1139 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1140 fputs ("\tldq $26,0($16)\n", (FILE)); \
1141 fputs ("\tbne $26,1f\n", (FILE)); \
1142 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1143 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1144 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1145 fputs ("1:\n", (FILE)); \
85d159a3
RK
1146 ASM_OUTPUT_REG_POP (FILE, 16); \
1147 } while (0);
1148
1149/* Output assembler code to FILE to increment the entry-count for
1150 the BLOCKNO'th basic block in this source file. */
1151
1152#define BLOCK_PROFILER(FILE, BLOCKNO) \
1153 do { \
1154 int blockn = (BLOCKNO); \
a62eb16f 1155 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1156 fputs ("\tstq $26,0($30)\n", (FILE)); \
1157 fputs ("\tstq $27,8($30)\n", (FILE)); \
1158 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1159 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1160 fputs ("\taddq $27,1,$27\n", (FILE)); \
1161 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1162 fputs ("\tldq $26,0($30)\n", (FILE)); \
1163 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1164 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1165 } while (0)
1a94ca49 1166
1a94ca49
RK
1167
1168/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1169 the stack pointer does not matter. The value is tested only in
1170 functions that have frame pointers.
1171 No definition is equivalent to always zero. */
1172
1173#define EXIT_IGNORE_STACK 1
1a94ca49
RK
1174\f
1175/* Output assembler code for a block containing the constant parts
1176 of a trampoline, leaving space for the variable parts.
1177
1178 The trampoline should set the static chain pointer to value placed
7981384f
RK
1179 into the trampoline and should branch to the specified routine.
1180 Note that $27 has been set to the address of the trampoline, so we can
1181 use it for addressability of the two data items. Trampolines are always
1182 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1183
1184#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1185do { \
7981384f 1186 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1187 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1188 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1189 fprintf (FILE, "\tnop\n"); \
1a94ca49 1190 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1191} while (0)
1a94ca49 1192
3a523eeb
RS
1193/* Section in which to place the trampoline. On Alpha, instructions
1194 may only be placed in a text segment. */
1195
1196#define TRAMPOLINE_SECTION text_section
1197
1a94ca49
RK
1198/* Length in units of the trampoline for entering a nested function. */
1199
7981384f 1200#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1201
1202/* Emit RTL insns to initialize the variable parts of a trampoline.
1203 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1204 CXT is an RTX for the static chain value for the function. */
1a94ca49 1205
9ec36da5 1206#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1207 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1208
1209/* A C expression whose value is RTL representing the value of the return
1210 address for the frame COUNT steps up from the current frame.
1211 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
9ecc37f0 1212 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined. */
675f0e7c 1213
9ecc37f0
RH
1214#define RETURN_ADDR_RTX alpha_return_addr
1215extern struct rtx_def *alpha_return_addr ();
1216
1217/* Initialize data used by insn expanders. This is called from insn_emit,
1218 once for every function before code is generated. */
1219
1220#define INIT_EXPANDERS alpha_init_expanders ()
1221extern void alpha_init_expanders ();
675f0e7c 1222\f
1a94ca49
RK
1223/* Addressing modes, and classification of registers for them. */
1224
1225/* #define HAVE_POST_INCREMENT */
1226/* #define HAVE_POST_DECREMENT */
1227
1228/* #define HAVE_PRE_DECREMENT */
1229/* #define HAVE_PRE_INCREMENT */
1230
1231/* Macros to check register numbers against specific register classes. */
1232
1233/* These assume that REGNO is a hard or pseudo reg number.
1234 They give nonzero only if REGNO is a hard reg of the suitable class
1235 or a pseudo reg currently allocated to a suitable hard reg.
1236 Since they use reg_renumber, they are safe only once reg_renumber
1237 has been allocated, which happens in local-alloc.c. */
1238
1239#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1240#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1241((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1242 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1243\f
1244/* Maximum number of registers that can appear in a valid memory address. */
1245#define MAX_REGS_PER_ADDRESS 1
1246
1247/* Recognize any constant value that is a valid address. For the Alpha,
1248 there are only constants none since we want to use LDA to load any
1249 symbolic addresses into registers. */
1250
1251#define CONSTANT_ADDRESS_P(X) \
1252 (GET_CODE (X) == CONST_INT \
1253 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1254
1255/* Include all constant integers and constant doubles, but not
1256 floating-point, except for floating-point zero. */
1257
1258#define LEGITIMATE_CONSTANT_P(X) \
1259 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1260 || (X) == CONST0_RTX (GET_MODE (X)))
1261
1262/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1263 and check its validity for a certain class.
1264 We have two alternate definitions for each of them.
1265 The usual definition accepts all pseudo regs; the other rejects
1266 them unless they have been allocated suitable hard regs.
1267 The symbol REG_OK_STRICT causes the latter definition to be used.
1268
1269 Most source files want to accept pseudo regs in the hope that
1270 they will get allocated to the class that the insn wants them to be in.
1271 Source files for reload pass need to be strict.
1272 After reload, it makes no difference, since pseudo regs have
1273 been eliminated by then. */
1274
1275#ifndef REG_OK_STRICT
1276
1277/* Nonzero if X is a hard reg that can be used as an index
1278 or if it is a pseudo reg. */
1279#define REG_OK_FOR_INDEX_P(X) 0
1280/* Nonzero if X is a hard reg that can be used as a base reg
1281 or if it is a pseudo reg. */
1282#define REG_OK_FOR_BASE_P(X) \
52a69200 1283 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1284
1285#else
1286
1287/* Nonzero if X is a hard reg that can be used as an index. */
1288#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1289/* Nonzero if X is a hard reg that can be used as a base reg. */
1290#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1291
1292#endif
1293\f
1294/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1295 that is a valid memory address for an instruction.
1296 The MODE argument is the machine mode for the MEM expression
1297 that wants to use this address.
1298
1299 For Alpha, we have either a constant address or the sum of a register
1300 and a constant address, or just a register. For DImode, any of those
1301 forms can be surrounded with an AND that clear the low-order three bits;
1302 this is an "unaligned" access.
1303
1a94ca49
RK
1304 First define the basic valid address. */
1305
1306#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1307{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1308 goto ADDR; \
1309 if (CONSTANT_ADDRESS_P (X)) \
1310 goto ADDR; \
1311 if (GET_CODE (X) == PLUS \
1312 && REG_P (XEXP (X, 0)) \
1313 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1314 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1315 goto ADDR; \
1316}
1317
1318/* Now accept the simple address, or, for DImode only, an AND of a simple
1319 address that turns off the low three bits. */
1320
1a94ca49
RK
1321#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1322{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1323 if ((MODE) == DImode \
1324 && GET_CODE (X) == AND \
1325 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1326 && INTVAL (XEXP (X, 1)) == -8) \
1327 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1328}
1329
1330/* Try machine-dependent ways of modifying an illegitimate address
1331 to be legitimate. If we find one, return the new, valid address.
1332 This macro is used in only one place: `memory_address' in explow.c.
1333
1334 OLDX is the address as it was before break_out_memory_refs was called.
1335 In some cases it is useful to look at this to decide what needs to be done.
1336
1337 MODE and WIN are passed so that this macro can use
1338 GO_IF_LEGITIMATE_ADDRESS.
1339
1340 It is always safe for this macro to do nothing. It exists to recognize
1341 opportunities to optimize the output.
1342
1343 For the Alpha, there are three cases we handle:
1344
1345 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1346 valid offset, compute the high part of the constant and add it to the
1347 register. Then our address is (plus temp low-part-const).
1348 (2) If the address is (const (plus FOO const_int)), find the low-order
1349 part of the CONST_INT. Then load FOO plus any high-order part of the
1350 CONST_INT into a register. Our address is (plus reg low-part-const).
1351 This is done to reduce the number of GOT entries.
1352 (3) If we have a (plus reg const), emit the load as in (2), then add
1353 the two registers, and finally generate (plus reg low-part-const) as
1354 our address. */
1355
1356#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1357{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1358 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1359 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1360 { \
1361 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1362 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1363 HOST_WIDE_INT highpart = val - lowpart; \
1364 rtx high = GEN_INT (highpart); \
1365 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1366 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1367 \
1368 (X) = plus_constant (temp, lowpart); \
1369 goto WIN; \
1370 } \
1371 else if (GET_CODE (X) == CONST \
1372 && GET_CODE (XEXP (X, 0)) == PLUS \
1373 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1374 { \
1375 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1376 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1377 HOST_WIDE_INT highpart = val - lowpart; \
1378 rtx high = XEXP (XEXP (X, 0), 0); \
1379 \
1380 if (highpart) \
1381 high = plus_constant (high, highpart); \
1382 \
1383 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1384 goto WIN; \
1385 } \
1386 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1387 && GET_CODE (XEXP (X, 1)) == CONST \
1388 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1389 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1390 { \
1391 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1392 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1393 HOST_WIDE_INT highpart = val - lowpart; \
1394 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1395 \
1396 if (highpart) \
1397 high = plus_constant (high, highpart); \
1398 \
1399 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1400 force_reg (Pmode, high), \
80f251fe 1401 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1402 (X) = plus_constant (high, lowpart); \
1403 goto WIN; \
1404 } \
1405}
1406
a9a2595b
JR
1407/* Try a machine-dependent way of reloading an illegitimate address
1408 operand. If we find one, push the reload and jump to WIN. This
1409 macro is used in only one place: `find_reloads_address' in reload.c.
1410
1411 For the Alpha, we wish to handle large displacements off a base
1412 register by splitting the addend across an ldah and the mem insn.
1413 This cuts number of extra insns needed from 3 to 1. */
1414
1415#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1416do { \
1417 if (GET_CODE (X) == PLUS \
1418 && GET_CODE (XEXP (X, 0)) == REG \
1419 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1420 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1421 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1422 { \
1423 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1424 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1425 HOST_WIDE_INT high \
1426 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1427 \
1428 /* Check for 32-bit overflow. */ \
1429 if (high + low != val) \
1430 break; \
1431 \
1432 /* Reload the high part into a base reg; leave the low part \
1433 in the mem directly. */ \
1434 \
1435 X = gen_rtx_PLUS (GET_MODE (X), \
1436 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1437 GEN_INT (high)), \
1438 GEN_INT (low)); \
1439 \
1440 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1441 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1442 OPNUM, TYPE); \
1443 goto WIN; \
1444 } \
1445} while (0)
1446
1a94ca49
RK
1447/* Go to LABEL if ADDR (a legitimate address expression)
1448 has an effect that depends on the machine mode it is used for.
1449 On the Alpha this is true only for the unaligned modes. We can
1450 simplify this test since we know that the address must be valid. */
1451
1452#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1453{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1454
1455/* Compute the cost of an address. For the Alpha, all valid addresses are
1456 the same cost. */
1457
1458#define ADDRESS_COST(X) 0
1459
2ea844d3
RH
1460/* Machine-dependent reorg pass. */
1461#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1462\f
1463/* Specify the machine mode that this machine uses
1464 for the index in the tablejump instruction. */
1465#define CASE_VECTOR_MODE SImode
1466
18543a22
ILT
1467/* Define as C expression which evaluates to nonzero if the tablejump
1468 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1469 table.
b0435cf4 1470
3aa9d5b6 1471 Do not define this if the table should contain absolute addresses.
260ced47
RK
1472 On the Alpha, the table is really GP-relative, not relative to the PC
1473 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1474 but we should try to find some better way sometime. */
18543a22 1475#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1476
1477/* Specify the tree operation to be used to convert reals to integers. */
1478#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1479
1480/* This is the kind of divide that is easiest to do in the general case. */
1481#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1482
1483/* Define this as 1 if `char' should by default be signed; else as 0. */
1484#define DEFAULT_SIGNED_CHAR 1
1485
1486/* This flag, if defined, says the same insns that convert to a signed fixnum
1487 also convert validly to an unsigned one.
1488
1489 We actually lie a bit here as overflow conditions are different. But
1490 they aren't being checked anyway. */
1491
1492#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1493
1494/* Max number of bytes we can move to or from memory
1495 in one reasonably fast instruction. */
1496
1497#define MOVE_MAX 8
1498
6c174fc0
RH
1499/* Controls how many units are moved by expr.c before resorting to movstr.
1500 Without byte/word accesses, we want no more than one; with, several single
1501 byte accesses are better. */
1502
1503#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1504
1a94ca49
RK
1505/* Largest number of bytes of an object that can be placed in a register.
1506 On the Alpha we have plenty of registers, so use TImode. */
1507#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1508
1509/* Nonzero if access to memory by bytes is no faster than for words.
1510 Also non-zero if doing byte operations (specifically shifts) in registers
1511 is undesirable.
1512
1513 On the Alpha, we want to not use the byte operation and instead use
1514 masking operations to access fields; these will save instructions. */
1515
1516#define SLOW_BYTE_ACCESS 1
1517
9a63901f
RK
1518/* Define if operations between registers always perform the operation
1519 on the full register even if a narrower mode is specified. */
1520#define WORD_REGISTER_OPERATIONS
1521
1522/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1523 will either zero-extend or sign-extend. The value of this macro should
1524 be the code that says which one of the two operations is implicitly
1525 done, NIL if none. */
b7747781 1526#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1527
225211e2
RK
1528/* Define if loading short immediate values into registers sign extends. */
1529#define SHORT_IMMEDIATES_SIGN_EXTEND
1530
1a94ca49
RK
1531/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1532 is done just by pretending it is already truncated. */
1533#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1534
1535/* We assume that the store-condition-codes instructions store 0 for false
1536 and some other value for true. This is the value stored for true. */
1537
1538#define STORE_FLAG_VALUE 1
1539
1540/* Define the value returned by a floating-point comparison instruction. */
1541
e9a25f70 1542#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1a94ca49 1543
35bb77fd
RK
1544/* Canonicalize a comparison from one we don't have to one we do have. */
1545
1546#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1547 do { \
1548 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1549 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1550 { \
1551 rtx tem = (OP0); \
1552 (OP0) = (OP1); \
1553 (OP1) = tem; \
1554 (CODE) = swap_condition (CODE); \
1555 } \
1556 if (((CODE) == LT || (CODE) == LTU) \
1557 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1558 { \
1559 (CODE) = (CODE) == LT ? LE : LEU; \
1560 (OP1) = GEN_INT (255); \
1561 } \
1562 } while (0)
1563
1a94ca49
RK
1564/* Specify the machine mode that pointers have.
1565 After generation of rtl, the compiler makes no further distinction
1566 between pointers and any other objects of this machine mode. */
1567#define Pmode DImode
1568
1569/* Mode of a function address in a call instruction (for indexing purposes). */
1570
1571#define FUNCTION_MODE Pmode
1572
1573/* Define this if addresses of constant functions
1574 shouldn't be put through pseudo regs where they can be cse'd.
1575 Desirable on machines where ordinary constants are expensive
1576 but a CALL with constant address is cheap.
1577
1578 We define this on the Alpha so that gen_call and gen_call_value
1579 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1580 then copy it into a register, thus actually letting the address be
1581 cse'ed. */
1582
1583#define NO_FUNCTION_CSE
1584
d969caf8 1585/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1586 few bits. */
d969caf8 1587#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1588
d721b776
RK
1589/* Use atexit for static constructors/destructors, instead of defining
1590 our own exit function. */
1591#define HAVE_ATEXIT
1592
71d9b493 1593/* The EV4 is dual issue; EV5/EV6 are quad issue. */
74835ed8
RH
1594#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1595
1a94ca49
RK
1596/* Compute the cost of computing a constant rtl expression RTX
1597 whose rtx-code is CODE. The body of this macro is a portion
1598 of a switch statement. If the code is computed here,
1599 return it with a return statement. Otherwise, break from the switch.
1600
8b7b2e36
RK
1601 If this is an 8-bit constant, return zero since it can be used
1602 nearly anywhere with no cost. If it is a valid operand for an
1603 ADD or AND, likewise return 0 if we know it will be used in that
1604 context. Otherwise, return 2 since it might be used there later.
1605 All other constants take at least two insns. */
1a94ca49
RK
1606
1607#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1608 case CONST_INT: \
06eb8e92 1609 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1610 return 0; \
1a94ca49 1611 case CONST_DOUBLE: \
5d02ee66
RH
1612 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1613 return 0; \
1614 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1615 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1616 return 0; \
1617 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1618 return 2; \
1619 else \
1620 return COSTS_N_INSNS (2); \
1a94ca49
RK
1621 case CONST: \
1622 case SYMBOL_REF: \
1623 case LABEL_REF: \
f6f6a13c
RK
1624 switch (alpha_cpu) \
1625 { \
1626 case PROCESSOR_EV4: \
1627 return COSTS_N_INSNS (3); \
1628 case PROCESSOR_EV5: \
5d02ee66 1629 case PROCESSOR_EV6: \
f6f6a13c 1630 return COSTS_N_INSNS (2); \
5d02ee66 1631 default: abort(); \
f6f6a13c 1632 }
1a94ca49
RK
1633
1634/* Provide the costs of a rtl expression. This is in the body of a
1635 switch on CODE. */
1636
1637#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1638 case PLUS: case MINUS: \
1639 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1640 switch (alpha_cpu) \
1641 { \
1642 case PROCESSOR_EV4: \
1643 return COSTS_N_INSNS (6); \
1644 case PROCESSOR_EV5: \
5d02ee66 1645 case PROCESSOR_EV6: \
f6f6a13c 1646 return COSTS_N_INSNS (4); \
5d02ee66 1647 default: abort(); \
f6f6a13c 1648 } \
b49e978e
RK
1649 else if (GET_CODE (XEXP (X, 0)) == MULT \
1650 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1651 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1652 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1653 break; \
1654 case MULT: \
f6f6a13c
RK
1655 switch (alpha_cpu) \
1656 { \
1657 case PROCESSOR_EV4: \
1658 if (FLOAT_MODE_P (GET_MODE (X))) \
1659 return COSTS_N_INSNS (6); \
1660 return COSTS_N_INSNS (23); \
1661 case PROCESSOR_EV5: \
1662 if (FLOAT_MODE_P (GET_MODE (X))) \
1663 return COSTS_N_INSNS (4); \
1664 else if (GET_MODE (X) == DImode) \
1665 return COSTS_N_INSNS (12); \
1666 else \
1667 return COSTS_N_INSNS (8); \
5d02ee66
RH
1668 case PROCESSOR_EV6: \
1669 if (FLOAT_MODE_P (GET_MODE (X))) \
1670 return COSTS_N_INSNS (4); \
1671 else \
1672 return COSTS_N_INSNS (7); \
1673 default: abort(); \
f6f6a13c 1674 } \
b49e978e
RK
1675 case ASHIFT: \
1676 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1677 && INTVAL (XEXP (X, 1)) <= 3) \
1678 break; \
1679 /* ... fall through ... */ \
5d02ee66 1680 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1681 switch (alpha_cpu) \
1682 { \
1683 case PROCESSOR_EV4: \
1684 return COSTS_N_INSNS (2); \
1685 case PROCESSOR_EV5: \
5d02ee66 1686 case PROCESSOR_EV6: \
f6f6a13c 1687 return COSTS_N_INSNS (1); \
5d02ee66
RH
1688 default: abort(); \
1689 } \
1690 case IF_THEN_ELSE: \
1691 switch (alpha_cpu) \
1692 { \
1693 case PROCESSOR_EV4: \
1694 case PROCESSOR_EV6: \
1695 return COSTS_N_INSNS (2); \
1696 case PROCESSOR_EV5: \
1697 return COSTS_N_INSNS (1); \
1698 default: abort(); \
f6f6a13c 1699 } \
3bda6d11 1700 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1701 switch (alpha_cpu) \
1702 { \
1703 case PROCESSOR_EV4: \
1704 if (GET_MODE (X) == SFmode) \
1705 return COSTS_N_INSNS (34); \
1706 else if (GET_MODE (X) == DFmode) \
1707 return COSTS_N_INSNS (63); \
1708 else \
1709 return COSTS_N_INSNS (70); \
1710 case PROCESSOR_EV5: \
1711 if (GET_MODE (X) == SFmode) \
1712 return COSTS_N_INSNS (15); \
1713 else if (GET_MODE (X) == DFmode) \
1714 return COSTS_N_INSNS (22); \
1715 else \
5d02ee66
RH
1716 return COSTS_N_INSNS (70); /* ??? */ \
1717 case PROCESSOR_EV6: \
1718 if (GET_MODE (X) == SFmode) \
1719 return COSTS_N_INSNS (12); \
1720 else if (GET_MODE (X) == DFmode) \
1721 return COSTS_N_INSNS (15); \
1722 else \
1723 return COSTS_N_INSNS (70); /* ??? */ \
1724 default: abort(); \
f6f6a13c 1725 } \
1a94ca49 1726 case MEM: \
f6f6a13c
RK
1727 switch (alpha_cpu) \
1728 { \
1729 case PROCESSOR_EV4: \
5d02ee66 1730 case PROCESSOR_EV6: \
f6f6a13c
RK
1731 return COSTS_N_INSNS (3); \
1732 case PROCESSOR_EV5: \
1733 return COSTS_N_INSNS (2); \
5d02ee66 1734 default: abort(); \
f6f6a13c
RK
1735 } \
1736 case NEG: case ABS: \
1737 if (! FLOAT_MODE_P (GET_MODE (X))) \
1738 break; \
1739 /* ... fall through ... */ \
3bda6d11
RK
1740 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1741 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1742 switch (alpha_cpu) \
1743 { \
1744 case PROCESSOR_EV4: \
1745 return COSTS_N_INSNS (6); \
1746 case PROCESSOR_EV5: \
5d02ee66 1747 case PROCESSOR_EV6: \
f6f6a13c 1748 return COSTS_N_INSNS (4); \
5d02ee66 1749 default: abort(); \
f6f6a13c 1750 }
1a94ca49
RK
1751\f
1752/* Control the assembler format that we output. */
1753
40ef2fc5
JL
1754/* We don't emit these labels, so as to avoid getting linker errors about
1755 missing exception handling info. If we emit a gcc_compiled. label into
1756 text, and the file has no code, then the DEC assembler gives us a zero
1757 sized text section with no associated exception handling info. The
38e01259 1758 DEC linker sees this text section, and gives a warning saying that
40ef2fc5 1759 the exception handling info is missing. */
3c303f52
KG
1760#define ASM_IDENTIFY_GCC(x)
1761#define ASM_IDENTIFY_LANGUAGE(x)
40ef2fc5 1762
1a94ca49
RK
1763/* Output to assembler file text saying following lines
1764 may contain character constants, extra white space, comments, etc. */
1765
1766#define ASM_APP_ON ""
1767
1768/* Output to assembler file text saying following lines
1769 no longer contain unusual constructs. */
1770
1771#define ASM_APP_OFF ""
1772
1773#define TEXT_SECTION_ASM_OP ".text"
1774
1775/* Output before read-only data. */
1776
1777#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1778
1779/* Output before writable data. */
1780
1781#define DATA_SECTION_ASM_OP ".data"
1782
1783/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1784 indicate that it is for read-only data.
1785
abc95ed3 1786 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1787 eight bytes of zero. This works around a bug in DEC's assembler in
1788 some versions of OSF/1 V3.x. */
1a94ca49
RK
1789
1790#define EXTRA_SECTIONS readonly_data
1791
1792#define EXTRA_SECTION_FUNCTIONS \
1793void \
1794literal_section () \
1795{ \
1796 if (in_section != readonly_data) \
1797 { \
c0388f29
RK
1798 static int firsttime = 1; \
1799 \
1a94ca49 1800 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1801 if (firsttime) \
1802 { \
1803 firsttime = 0; \
1804 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1805 } \
1806 \
1a94ca49
RK
1807 in_section = readonly_data; \
1808 } \
1809} \
1810
1811#define READONLY_DATA_SECTION literal_section
1812
ac030a7b
RK
1813/* If we are referencing a function that is static, make the SYMBOL_REF
1814 special. We use this to see indicate we can branch to this function
1815 without setting PV or restoring GP. */
130d2d72
RK
1816
1817#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1818 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1819 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1820
1a94ca49
RK
1821/* How to refer to registers in assembler output.
1822 This sequence is indexed by compiler's hard-register-number (see above). */
1823
1824#define REGISTER_NAMES \
1825{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1826 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1827 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1828 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1829 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1830 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1831 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1832 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1833
1834/* How to renumber registers for dbx and gdb. */
1835
1836#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1837
1838/* This is how to output the definition of a user-level label named NAME,
1839 such as the label on a static function or variable NAME. */
1840
1841#define ASM_OUTPUT_LABEL(FILE,NAME) \
1842 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1843
1844/* This is how to output a command to make the user-level label named NAME
1845 defined for reference from other files. */
1846
1847#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1848 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1849
4e0c8ad2 1850/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1851
4e0c8ad2 1852#define USER_LABEL_PREFIX ""
1a94ca49
RK
1853
1854/* This is how to output an internal numbered label where
1855 PREFIX is the class of label and NUM is the number within the class. */
1856
1857#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1858 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1859
1860/* This is how to output a label for a jump table. Arguments are the same as
1861 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1862 passed. */
1863
1864#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1865{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1866
1867/* This is how to store into the string LABEL
1868 the symbol_ref name of an internal numbered label where
1869 PREFIX is the class of label and NUM is the number within the class.
1870 This is suitable for output with `assemble_name'. */
1871
1872#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
531ea24e 1873 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1a94ca49 1874
e247ca2a
RK
1875/* Check a floating-point value for validity for a particular machine mode. */
1876
1877#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1878 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1879
1a94ca49
RK
1880/* This is how to output an assembler line defining a `double' constant. */
1881
e99300f1
RS
1882#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1883 { \
1884 if (REAL_VALUE_ISINF (VALUE) \
1885 || REAL_VALUE_ISNAN (VALUE) \
1886 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1887 { \
1888 long t[2]; \
1889 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1890 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1891 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1892 } \
1893 else \
1894 { \
1895 char str[30]; \
1896 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1897 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1898 } \
1899 }
1a94ca49
RK
1900
1901/* This is how to output an assembler line defining a `float' constant. */
1902
e247ca2a
RK
1903#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1904 do { \
1905 long t; \
1906 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1907 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1908} while (0)
2700ac93 1909
1a94ca49
RK
1910/* This is how to output an assembler line defining an `int' constant. */
1911
1912#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1913( fprintf (FILE, "\t.long "), \
1914 output_addr_const (FILE, (VALUE)), \
1915 fprintf (FILE, "\n"))
1a94ca49
RK
1916
1917/* This is how to output an assembler line defining a `long' constant. */
1918
1919#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1920( fprintf (FILE, "\t.quad "), \
1921 output_addr_const (FILE, (VALUE)), \
1922 fprintf (FILE, "\n"))
1923
1924/* Likewise for `char' and `short' constants. */
1925
1926#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1927 fprintf (FILE, "\t.word %d\n", \
3c303f52 1928 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1929 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1930
1931#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 1932 fprintf (FILE, "\t.byte %d\n", \
3c303f52 1933 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1934 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1935
1936/* We use the default ASCII-output routine, except that we don't write more
1937 than 50 characters since the assembler doesn't support very long lines. */
1938
1939#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1940 do { \
1941 FILE *_hide_asm_out_file = (MYFILE); \
1942 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1943 int _hide_thissize = (MYLENGTH); \
1944 int _size_so_far = 0; \
1945 { \
1946 FILE *asm_out_file = _hide_asm_out_file; \
1947 unsigned char *p = _hide_p; \
1948 int thissize = _hide_thissize; \
1949 int i; \
1950 fprintf (asm_out_file, "\t.ascii \""); \
1951 \
1952 for (i = 0; i < thissize; i++) \
1953 { \
1954 register int c = p[i]; \
1955 \
1956 if (_size_so_far ++ > 50 && i < thissize - 4) \
1957 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1958 \
1959 if (c == '\"' || c == '\\') \
1960 putc ('\\', asm_out_file); \
1961 if (c >= ' ' && c < 0177) \
1962 putc (c, asm_out_file); \
1963 else \
1964 { \
1965 fprintf (asm_out_file, "\\%o", c); \
1966 /* After an octal-escape, if a digit follows, \
1967 terminate one string constant and start another. \
1968 The Vax assembler fails to stop reading the escape \
1969 after three digits, so this is the only way we \
1970 can get it to parse the data properly. */ \
1971 if (i < thissize - 1 \
1972 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1973 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1974 } \
1975 } \
1976 fprintf (asm_out_file, "\"\n"); \
1977 } \
1978 } \
1979 while (0)
52a69200 1980
1a94ca49
RK
1981/* This is how to output an insn to push a register on the stack.
1982 It need not be very fast code. */
1983
1984#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1985 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1986 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1987 (REGNO) & 31);
1988
1989/* This is how to output an insn to pop a register from the stack.
1990 It need not be very fast code. */
1991
1992#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1993 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1994 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1995 (REGNO) & 31);
1996
1997/* This is how to output an assembler line for a numeric constant byte. */
1998
1999#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2000 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2001
260ced47
RK
2002/* This is how to output an element of a case-vector that is absolute.
2003 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2004
260ced47 2005#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2006
260ced47 2007/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2008
33f7f353 2009#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
8dfe3c62
RH
2010 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2011 (VALUE))
1a94ca49
RK
2012
2013/* This is how to output an assembler line
2014 that says to advance the location counter
2015 to a multiple of 2**LOG bytes. */
2016
2017#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2018 if ((LOG) != 0) \
2019 fprintf (FILE, "\t.align %d\n", LOG);
2020
2021/* This is how to advance the location counter by SIZE bytes. */
2022
2023#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2024 fprintf (FILE, "\t.space %d\n", (SIZE))
2025
2026/* This says how to output an assembler line
2027 to define a global common symbol. */
2028
2029#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2030( fputs ("\t.comm ", (FILE)), \
2031 assemble_name ((FILE), (NAME)), \
2032 fprintf ((FILE), ",%d\n", (SIZE)))
2033
2034/* This says how to output an assembler line
2035 to define a local common symbol. */
2036
2037#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2038( fputs ("\t.lcomm ", (FILE)), \
2039 assemble_name ((FILE), (NAME)), \
2040 fprintf ((FILE), ",%d\n", (SIZE)))
2041
2042/* Store in OUTPUT a string (made with alloca) containing
2043 an assembler-name for a local static variable named NAME.
2044 LABELNO is an integer which is different for each call. */
2045
2046#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2047( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2048 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2049
2050/* Define the parentheses used to group arithmetic operations
2051 in assembler code. */
2052
2053#define ASM_OPEN_PAREN "("
2054#define ASM_CLOSE_PAREN ")"
2055
60593797
RH
2056/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2057 Used for C++ multiple inheritance. */
2058
2059#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2060do { \
92d4501f 2061 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
60593797 2062 \
acd92049
RH
2063 /* Mark end of prologue. */ \
2064 output_end_prologue (FILE); \
60593797
RH
2065 \
2066 /* Rely on the assembler to macro expand a large delta. */ \
2067 fprintf (FILE, "\tlda $16,%ld($16)\n", (long)(DELTA)); \
2068 \
2069 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2070 { \
2071 fprintf (FILE, "\tbr $31,$"); \
2072 assemble_name (FILE, fn_name); \
2073 fprintf (FILE, "..ng\n"); \
2074 } \
2075 else \
2076 { \
acd92049 2077 fprintf (FILE, "\tjmp $31,"); \
60593797
RH
2078 assemble_name (FILE, fn_name); \
2079 fputc ('\n', FILE); \
2080 } \
60593797 2081} while (0)
60593797 2082\f
9ec36da5 2083
1a94ca49
RK
2084/* Define results of standard character escape sequences. */
2085#define TARGET_BELL 007
2086#define TARGET_BS 010
2087#define TARGET_TAB 011
2088#define TARGET_NEWLINE 012
2089#define TARGET_VT 013
2090#define TARGET_FF 014
2091#define TARGET_CR 015
2092
2093/* Print operand X (an rtx) in assembler syntax to file FILE.
2094 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2095 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2096
2097#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2098
2099/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2100 not be alphabetic (the characters are chosen so that
2101 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2102 using ASCII).
2103
2104 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2105 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2106 mode. alpha_fprm controls which suffix is generated.
2107
2108 ' Generates trap-mode suffix for instructions that accept the
2109 su suffix only (cmpt et al).
2110
e83015a9
RH
2111 ` Generates trap-mode suffix for instructions that accept the
2112 v and sv suffix. The only instruction that needs this is cvtql.
2113
0022a940
DMT
2114 ( Generates trap-mode suffix for instructions that accept the
2115 v, sv, and svi suffix. The only instruction that needs this
2116 is cvttq.
2117
2bf6230d
RK
2118 ) Generates trap-mode suffix for instructions that accept the
2119 u, su, and sui suffix. This is the bulk of the IEEE floating
2120 point instructions (addt et al).
2121
2122 + Generates trap-mode suffix for instructions that accept the
2123 sui suffix (cvtqt and cvtqs).
e5958492
RK
2124
2125 , Generates single precision suffix for floating point
2126 instructions (s for IEEE, f for VAX)
2127
2128 - Generates double precision suffix for floating point
2129 instructions (t for IEEE, g for VAX)
2bf6230d 2130 */
1a94ca49 2131
2bf6230d 2132#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e83015a9
RH
2133 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2134 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2135\f
2136/* Print a memory address as an operand to reference that memory location. */
2137
2138#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2139{ rtx addr = (ADDR); \
2140 int basereg = 31; \
2141 HOST_WIDE_INT offset = 0; \
2142 \
2143 if (GET_CODE (addr) == AND) \
2144 addr = XEXP (addr, 0); \
2145 \
2146 if (GET_CODE (addr) == REG) \
2147 basereg = REGNO (addr); \
2148 else if (GET_CODE (addr) == CONST_INT) \
2149 offset = INTVAL (addr); \
2150 else if (GET_CODE (addr) == PLUS \
2151 && GET_CODE (XEXP (addr, 0)) == REG \
2152 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2153 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2154 else \
2155 abort (); \
2156 \
3c303f52
KG
2157 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, offset); \
2158 fprintf (FILE, "($%d)", basereg); \
1a94ca49
RK
2159}
2160/* Define the codes that are matched by predicates in alpha.c. */
2161
e3208d53
RH
2162#define PREDICATE_CODES \
2163 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2164 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2165 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2166 {"cint8_operand", {CONST_INT, CONSTANT_P_RTX}}, \
2167 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2168 {"add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2169 {"sext_add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2170 {"const48_operand", {CONST_INT}}, \
2171 {"and_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2172 {"or_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2173 {"mode_mask_operand", {CONST_INT}}, \
2174 {"mul8_operand", {CONST_INT}}, \
2175 {"mode_width_operand", {CONST_INT}}, \
2176 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2177 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2178 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2179 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2180 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2181 {"fp0_operand", {CONST_DOUBLE}}, \
2182 {"current_file_function_operand", {SYMBOL_REF}}, \
2183 {"call_operand", {REG, SYMBOL_REF}}, \
2184 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2185 SYMBOL_REF, CONST, LABEL_REF, CONSTANT_P_RTX}}, \
2186 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2187 SYMBOL_REF, CONST, LABEL_REF, CONSTANT_P_RTX}}, \
2188 {"aligned_memory_operand", {MEM}}, \
2189 {"unaligned_memory_operand", {MEM}}, \
2190 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2191 {"any_memory_operand", {MEM}}, \
4ed43ff8 2192 {"hard_fp_register_operand", {SUBREG, REG}},
03f8c4cc 2193\f
34fa88ab
RK
2194/* Tell collect that the object format is ECOFF. */
2195#define OBJECT_FORMAT_COFF
2196#define EXTENDED_COFF
2197
2198/* If we use NM, pass -g to it so it only lists globals. */
2199#define NM_FLAGS "-pg"
2200
03f8c4cc
RK
2201/* Definitions for debugging. */
2202
2203#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2204#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2205#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2206
2207#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2208#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2209#endif
2210
2211
2212/* Correct the offset of automatic variables and arguments. Note that
2213 the Alpha debug format wants all automatic variables and arguments
2214 to be in terms of two different offsets from the virtual frame pointer,
2215 which is the stack pointer before any adjustment in the function.
2216 The offset for the argument pointer is fixed for the native compiler,
2217 it is either zero (for the no arguments case) or large enough to hold
2218 all argument registers.
2219 The offset for the auto pointer is the fourth argument to the .frame
2220 directive (local_offset).
2221 To stay compatible with the native tools we use the same offsets
2222 from the virtual frame pointer and adjust the debugger arg/auto offsets
2223 accordingly. These debugger offsets are set up in output_prolog. */
2224
9a0b18f2
RK
2225extern long alpha_arg_offset;
2226extern long alpha_auto_offset;
03f8c4cc
RK
2227#define DEBUGGER_AUTO_OFFSET(X) \
2228 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2229#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2230
2231
2232#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2233 alpha_output_lineno (STREAM, LINE)
2234extern void alpha_output_lineno ();
2235
2236#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2237 alpha_output_filename (STREAM, NAME)
2238extern void alpha_output_filename ();
2239
4330b0e7
JW
2240/* mips-tfile.c limits us to strings of one page. We must underestimate this
2241 number, because the real length runs past this up to the next
2242 continuation point. This is really a dbxout.c bug. */
2243#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2244
2245/* By default, turn on GDB extensions. */
2246#define DEFAULT_GDB_EXTENSIONS 1
2247
7aadc7c2
RK
2248/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2249#define NO_DBX_FUNCTION_END 1
2250
03f8c4cc
RK
2251/* If we are smuggling stabs through the ALPHA ECOFF object
2252 format, put a comment in front of the .stab<x> operation so
2253 that the ALPHA assembler does not choke. The mips-tfile program
2254 will correctly put the stab into the object file. */
2255
2256#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2257#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2258#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2259
2260/* Forward references to tags are allowed. */
2261#define SDB_ALLOW_FORWARD_REFERENCES
2262
2263/* Unknown tags are also allowed. */
2264#define SDB_ALLOW_UNKNOWN_REFERENCES
2265
2266#define PUT_SDB_DEF(a) \
2267do { \
2268 fprintf (asm_out_file, "\t%s.def\t", \
2269 (TARGET_GAS) ? "" : "#"); \
2270 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2271 fputc (';', asm_out_file); \
2272} while (0)
2273
2274#define PUT_SDB_PLAIN_DEF(a) \
2275do { \
2276 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2277 (TARGET_GAS) ? "" : "#", (a)); \
2278} while (0)
2279
2280#define PUT_SDB_TYPE(a) \
2281do { \
2282 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2283} while (0)
2284
2285/* For block start and end, we create labels, so that
2286 later we can figure out where the correct offset is.
2287 The normal .ent/.end serve well enough for functions,
2288 so those are just commented out. */
2289
2290extern int sdb_label_count; /* block start/end next label # */
2291
2292#define PUT_SDB_BLOCK_START(LINE) \
2293do { \
2294 fprintf (asm_out_file, \
2295 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2296 sdb_label_count, \
2297 (TARGET_GAS) ? "" : "#", \
2298 sdb_label_count, \
2299 (LINE)); \
2300 sdb_label_count++; \
2301} while (0)
2302
2303#define PUT_SDB_BLOCK_END(LINE) \
2304do { \
2305 fprintf (asm_out_file, \
2306 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2307 sdb_label_count, \
2308 (TARGET_GAS) ? "" : "#", \
2309 sdb_label_count, \
2310 (LINE)); \
2311 sdb_label_count++; \
2312} while (0)
2313
2314#define PUT_SDB_FUNCTION_START(LINE)
2315
2316#define PUT_SDB_FUNCTION_END(LINE)
2317
3c303f52 2318#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2319
03f8c4cc
RK
2320/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2321 mips-tdump.c to print them out.
2322
2323 These must match the corresponding definitions in gdb/mipsread.c.
2324 Unfortunately, gcc and gdb do not currently share any directories. */
2325
2326#define CODE_MASK 0x8F300
2327#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2328#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2329#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2330
2331/* Override some mips-tfile definitions. */
2332
2333#define SHASH_SIZE 511
2334#define THASH_SIZE 55
1e6c6f11
RK
2335
2336/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2337
2338#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2339
54190234
JM
2340/* The linker will stick __main into the .init section. */
2341#define HAS_INIT_SECTION
68d69835
JM
2342#define LD_INIT_SWITCH "-init"
2343#define LD_FINI_SWITCH "-fini"
b0435cf4
RH
2344
2345/* The system headers under Alpha systems are generally C++-aware. */
2346#define NO_IMPLICIT_EXTERN_C
47747e53 2347
3c303f52 2348/* Prototypes for alpha.c functions used in the md file & elsewhere. */
47747e53 2349extern struct rtx_def *get_unaligned_address ();
3c303f52
KG
2350extern void alpha_write_verstamp ();
2351extern void alpha_reorg ();
2352extern int check_float_value ();
2353extern int direct_return ();
2354extern int const48_operand ();
2355extern int add_operand ();
2356extern int and_operand ();
2357extern int unaligned_memory_operand ();
2358extern int zap_mask ();
2359extern int current_file_function_operand ();
2360extern int alpha_sa_size ();
2361extern int alpha_adjust_cost ();
2362extern void print_operand ();
2363extern int reg_or_0_operand ();
2364extern int reg_or_8bit_operand ();
2365extern int mul8_operand ();
2366extern int reg_or_6bit_operand ();
2367extern int alpha_comparison_operator ();
2368extern int alpha_swapped_comparison_operator ();
2369extern int sext_add_operand ();
2370extern int cint8_operand ();
2371extern int mode_mask_operand ();
2372extern int or_operand ();
2373extern int mode_width_operand ();
2374extern int reg_or_fp0_operand ();
2375extern int signed_comparison_operator ();
2376extern int fp0_operand ();
2377extern int some_operand ();
2378extern int input_operand ();
2379extern int divmod_operator ();
2380extern int call_operand ();
2381extern int reg_or_cint_operand ();
2382extern int hard_fp_register_operand ();
2383extern void alpha_set_memflags ();
2384extern int aligned_memory_operand ();
2385extern void get_aligned_mem ();
2386extern void alpha_expand_unaligned_load ();
2387extern void alpha_expand_unaligned_store ();
2388extern int alpha_expand_block_move ();
2389extern int alpha_expand_block_clear ();
2390extern void alpha_expand_prologue ();
2391extern void alpha_expand_epilogue ();
This page took 0.687799 seconds and 5 git commands to generate.