]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
# Fix misspellings in comments.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49
RK
1/* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
24#define CPP_PREDEFINES "\
25-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
26-D_SYSTYPE_BSD"
27
28/* Write out the correct language type definition for the header files. */
29#define CPP_SPEC "\
30%{.c: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
31%{.h: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
32%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
33%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
34%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
35%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
36%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38/* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
7981384f
RK
44/* No point in running CPP on our assembler output. */
45#define ASM_SPEC "-nocpp"
46
1a94ca49
RK
47/* Right now Alpha OSF/1 doesn't seem to have debugging or profiled
48 libraries. */
49
50#define LIB_SPEC "-lc"
51
52/* Print subsidiary information on the compiler version in use. */
53#define TARGET_VERSION
54
55/* Define the location for the startup file on OSF/1 for Alpha. */
56
57#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
58
59/* Run-time compilation parameters selecting different hardware subsets. */
60
61extern int target_flags;
62
63/* This means that floating-point support exists in the target implementation
64 of the Alpha architecture. This is usually the default. */
65
66#define TARGET_FP (target_flags & 1)
67
68/* This means that floating-point registers are allowed to be used. Note
69 that Alpha implementations without FP operations are required to
70 provide the FP registers. */
71
72#define TARGET_FPREGS (target_flags & 2)
73
74/* Macro to define tables used to set the flags.
75 This is a list in braces of pairs in braces,
76 each pair being { "NAME", VALUE }
77 where VALUE is the bits to set or minus the bits to clear.
78 An empty string NAME is used to identify the default VALUE. */
79
80#define TARGET_SWITCHES \
81 { {"no-soft-float", 1}, \
82 {"soft-float", -1}, \
83 {"fp-regs", 2}, \
84 {"no-fp-regs", -3}, \
85 {"", TARGET_DEFAULT} }
86
87#define TARGET_DEFAULT 3
88
89/* Define this macro to change register usage conditional on target flags.
90
91 On the Alpha, we use this to disable the floating-point registers when
92 they don't exist. */
93
94#define CONDITIONAL_REGISTER_USAGE \
95 if (! TARGET_FPREGS) \
96 for (i = 32; i < 64; i++) \
97 fixed_regs[i] = call_used_regs[i] = 1;
98
99/* Define this to change the optimizations performed by default. */
100
101#define OPTIMIZATION_OPTIONS(LEVEL) \
102{ \
103 if ((LEVEL) > 0) \
104 { \
105 flag_force_addr = 1; \
106 flag_force_mem = 1; \
107 flag_omit_frame_pointer = 1; \
108 } \
109}
110\f
111/* target machine storage layout */
112
113/* Define the size of `int'. The default is the same as the word size. */
114#define INT_TYPE_SIZE 32
115
116/* Define the size of `long long'. The default is the twice the word size. */
117#define LONG_LONG_TYPE_SIZE 64
118
119/* The two floating-point formats we support are S-floating, which is
120 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
121 and `long double' are T. */
122
123#define FLOAT_TYPE_SIZE 32
124#define DOUBLE_TYPE_SIZE 64
125#define LONG_DOUBLE_TYPE_SIZE 64
126
127#define WCHAR_TYPE "short unsigned int"
128#define WCHAR_TYPE_SIZE 16
129
13d39dbc 130/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
131 in a wider mode than that declared by the program. In such cases,
132 the value is constrained to be within the bounds of the declared
133 type, but kept valid in the wider mode. The signedness of the
134 extension may differ from that of the type.
135
136 For Alpha, we always store objects in a full register. 32-bit objects
137 are always sign-extended, but smaller objects retain their signedness. */
138
139#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
140 if (GET_MODE_CLASS (MODE) == MODE_INT \
141 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
142 { \
143 if ((MODE) == SImode) \
144 (UNSIGNEDP) = 0; \
145 (MODE) = DImode; \
146 }
147
148/* Define this if function arguments should also be promoted using the above
149 procedure. */
150
151#define PROMOTE_FUNCTION_ARGS
152
153/* Likewise, if the function return value is promoted. */
154
155#define PROMOTE_FUNCTION_RETURN
156
157/* Define this if most significant bit is lowest numbered
158 in instructions that operate on numbered bit-fields.
159
160 There are no such instructions on the Alpha, but the documentation
161 is little endian. */
162#define BITS_BIG_ENDIAN 0
163
164/* Define this if most significant byte of a word is the lowest numbered.
165 This is false on the Alpha. */
166#define BYTES_BIG_ENDIAN 0
167
168/* Define this if most significant word of a multiword number is lowest
169 numbered.
170
171 For Alpha we can decide arbitrarily since there are no machine instructions
172 for them. Might as well be consistent with bytes. */
173#define WORDS_BIG_ENDIAN 0
174
175/* number of bits in an addressable storage unit */
176#define BITS_PER_UNIT 8
177
178/* Width in bits of a "word", which is the contents of a machine register.
179 Note that this is not necessarily the width of data type `int';
180 if using 16-bit ints on a 68000, this would still be 32.
181 But on a machine with 16-bit registers, this would be 16. */
182#define BITS_PER_WORD 64
183
184/* Width of a word, in units (bytes). */
185#define UNITS_PER_WORD 8
186
187/* Width in bits of a pointer.
188 See also the macro `Pmode' defined below. */
189#define POINTER_SIZE 64
190
191/* Allocation boundary (in *bits*) for storing arguments in argument list. */
192#define PARM_BOUNDARY 64
193
194/* Boundary (in *bits*) on which stack pointer should be aligned. */
195#define STACK_BOUNDARY 64
196
197/* Allocation boundary (in *bits*) for the code of a function. */
198#define FUNCTION_BOUNDARY 64
199
200/* Alignment of field after `int : 0' in a structure. */
201#define EMPTY_FIELD_BOUNDARY 64
202
203/* Every structure's size must be a multiple of this. */
204#define STRUCTURE_SIZE_BOUNDARY 8
205
206/* A bitfield declared as `int' forces `int' alignment for the struct. */
207#define PCC_BITFIELD_TYPE_MATTERS 1
208
209/* Align loop starts for optimal branching.
210
211 Don't do this until they fix the assembler. */
212
213/* #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
214 ASM_OUTPUT_ALIGN (FILE, 5) */
215
216/* This is how to align an instruction for optimal branching.
217 On Alpha we'll get better performance by aligning on a quadword
218 boundary. */
219#define ASM_OUTPUT_ALIGN_CODE(FILE) \
220 ASM_OUTPUT_ALIGN ((FILE), 4)
221
222/* No data type wants to be aligned rounder than this. */
223#define BIGGEST_ALIGNMENT 64
224
225/* Make strings word-aligned so strcpy from constants will be faster. */
226#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
227 (TREE_CODE (EXP) == STRING_CST \
228 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
229
230/* Make arrays of chars word-aligned for the same reasons. */
231#define DATA_ALIGNMENT(TYPE, ALIGN) \
232 (TREE_CODE (TYPE) == ARRAY_TYPE \
233 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
234 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
235
236/* Set this non-zero if move instructions will actually fail to work
237 when given unaligned data.
238
239 Since we get an error message when we do one, call them invalid. */
240
241#define STRICT_ALIGNMENT 1
242
243/* Set this non-zero if unaligned move instructions are extremely slow.
244
245 On the Alpha, they trap. */
246/* #define SLOW_UNALIGNED_ACCESS 1 */
247\f
248/* Standard register usage. */
249
250/* Number of actual hardware registers.
251 The hardware registers are assigned numbers for the compiler
252 from 0 to just below FIRST_PSEUDO_REGISTER.
253 All registers that the compiler knows about must be given numbers,
254 even those that are not normally considered general registers.
255
256 We define all 32 integer registers, even though $31 is always zero,
257 and all 32 floating-point registers, even though $f31 is also
258 always zero. We do not bother defining the FP status register and
259 there are no other registers. */
260
261#define FIRST_PSEUDO_REGISTER 64
262
263/* 1 for registers that have pervasive standard uses
264 and are not available for the register allocator. */
265
266#define FIXED_REGISTERS \
267 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
268 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
269 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
271
272/* 1 for registers not available across function calls.
273 These must include the FIXED_REGISTERS and also any
274 registers that can be used without being saved.
275 The latter must include the registers where values are returned
276 and the register where structure-value addresses are passed.
277 Aside from that, you can include as many other registers as you like. */
278#define CALL_USED_REGISTERS \
279 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
280 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
281 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
282 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
283
284/* List the order in which to allocate registers. Each register must be
285 listed once, even those in FIXED_REGISTERS.
286
287 We allocate in the following order:
288 $f1 (nonsaved floating-point register)
289 $f10-$f15 (likewise)
290 $f22-$f30 (likewise)
291 $f21-$f16 (likewise, but input args)
292 $f0 (nonsaved, but return value)
293 $f2-$f9 (saved floating-point registers)
294 $1-$8 (nonsaved integer registers)
295 $22-$25 (likewise)
296 $28 (likewise)
297 $0 (likewise, but return value)
298 $21-$16 (likewise, but input args)
299 $27 (procedure value)
300 $9-$14 (saved integer registers)
301 $26 (return PC)
302 $15 (frame pointer)
303 $29 (global pointer)
304 $30, $31, $f31 (stack pointer and always zero) */
305
306#define REG_ALLOC_ORDER \
307 {33, \
308 42, 43, 44, 45, \
309 54, 55, 56, 57, 58, 59, 60, 61, 62, \
310 53, 52, 51, 50, 49, 48, \
311 32, \
312 34, 35, 36, 37, 38, 39, 40, 41, \
313 1, 2, 3, 4, 5, 6, 7, 8, \
314 22, 23, 24, 25, \
315 28, \
316 0, \
317 21, 20, 19, 18, 17, 16, \
318 27, \
319 9, 10, 11, 12, 13, 14, \
320 26, \
321 15, \
322 29, \
323 30, 31, 63 }
324
325/* Return number of consecutive hard regs needed starting at reg REGNO
326 to hold something of mode MODE.
327 This is ordinarily the length in words of a value of mode MODE
328 but can be less for certain modes in special long registers. */
329
330#define HARD_REGNO_NREGS(REGNO, MODE) \
331 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
332
333/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
334 On Alpha, the integer registers can hold any mode. The floating-point
335 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
336 or 8-bit values. If we only allowed the larger integers into FP registers,
337 we'd have to say that QImode and SImode aren't tiable, which is a
338 pain. So say all registers can hold everything and see how that works. */
339
340#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
341
342/* Value is 1 if it is a good idea to tie two pseudo registers
343 when one has mode MODE1 and one has mode MODE2.
344 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
345 for any hard reg, then this must be 0 for correct output. */
346
347#define MODES_TIEABLE_P(MODE1, MODE2) 1
348
349/* Specify the registers used for certain standard purposes.
350 The values of these macros are register numbers. */
351
352/* Alpha pc isn't overloaded on a register that the compiler knows about. */
353/* #define PC_REGNUM */
354
355/* Register to use for pushing function arguments. */
356#define STACK_POINTER_REGNUM 30
357
358/* Base register for access to local variables of the function. */
359#define FRAME_POINTER_REGNUM 15
360
361/* Value should be nonzero if functions must have frame pointers.
362 Zero means the frame pointer need not be set up (and parms
363 may be accessed via the stack pointer) in functions that seem suitable.
364 This is computed in `reload', in reload1.c. */
365#define FRAME_POINTER_REQUIRED 0
366
367/* Base register for access to arguments of the function. */
368#define ARG_POINTER_REGNUM 15
369
370/* Register in which static-chain is passed to a function.
371
372 For the Alpha, this is based on an example; the calling sequence
373 doesn't seem to specify this. */
374#define STATIC_CHAIN_REGNUM 1
375
376/* Register in which address to store a structure value
377 arrives in the function. On the Alpha, the address is passed
378 as a hidden argument. */
379#define STRUCT_VALUE 0
380\f
381/* Define the classes of registers for register constraints in the
382 machine description. Also define ranges of constants.
383
384 One of the classes must always be named ALL_REGS and include all hard regs.
385 If there is more than one class, another class must be named NO_REGS
386 and contain no registers.
387
388 The name GENERAL_REGS must be the name of a class (or an alias for
389 another name such as ALL_REGS). This is the class of registers
390 that is allowed by "g" or "r" in a register constraint.
391 Also, registers outside this class are allocated only when
392 instructions express preferences for them.
393
394 The classes must be numbered in nondecreasing order; that is,
395 a larger-numbered class must never be contained completely
396 in a smaller-numbered class.
397
398 For any two classes, it is very desirable that there be another
399 class that represents their union. */
400
401enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
402 LIM_REG_CLASSES };
403
404#define N_REG_CLASSES (int) LIM_REG_CLASSES
405
406/* Give names of register classes as strings for dump file. */
407
408#define REG_CLASS_NAMES \
409 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
410
411/* Define which registers fit in which classes.
412 This is an initializer for a vector of HARD_REG_SET
413 of length N_REG_CLASSES. */
414
415#define REG_CLASS_CONTENTS \
416 { {0, 0}, {~0, 0}, {0, ~0}, {~0, ~0} }
417
418/* The same information, inverted:
419 Return the class number of the smallest class containing
420 reg number REGNO. This could be a conditional expression
421 or could index an array. */
422
423#define REGNO_REG_CLASS(REGNO) ((REGNO) >= 32 ? FLOAT_REGS : GENERAL_REGS)
424
425/* The class value for index registers, and the one for base regs. */
426#define INDEX_REG_CLASS NO_REGS
427#define BASE_REG_CLASS GENERAL_REGS
428
429/* Get reg_class from a letter such as appears in the machine description. */
430
431#define REG_CLASS_FROM_LETTER(C) \
432 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
433
434/* Define this macro to change register usage conditional on target flags. */
435/* #define CONDITIONAL_REGISTER_USAGE */
436
437/* The letters I, J, K, L, M, N, O, and P in a register constraint string
438 can be used to stand for particular ranges of immediate operands.
439 This macro defines what the ranges are.
440 C is the letter, and VALUE is a constant value.
441 Return 1 if VALUE is in the range specified by C.
442
443 For Alpha:
444 `I' is used for the range of constants most insns can contain.
445 `J' is the constant zero.
446 `K' is used for the constant in an LDA insn.
447 `L' is used for the constant in a LDAH insn.
448 `M' is used for the constants that can be AND'ed with using a ZAP insn.
449 `N' is used for complemented 8-bit constants.
450 `O' is used for negated 8-bit constants.
451 `P' is used for the constants 1, 2 and 3. */
452
453#define CONST_OK_FOR_LETTER_P(VALUE, C) \
454 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
455 : (C) == 'J' ? (VALUE) == 0 \
456 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
457 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
458 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
459 : (C) == 'M' ? zap_mask (VALUE) \
460 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
461 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
462 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
463 : 0)
464
465/* Similar, but for floating or large integer constants, and defining letters
466 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
467
468 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
469 that is the operand of a ZAP insn. */
470
471#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
472 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
473 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
474 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
475 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
476 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
477 : 0)
478
479/* Given an rtx X being reloaded into a reg required to be
480 in class CLASS, return the class of reg to actually use.
481 In general this is just CLASS; but on some machines
482 in some cases it is preferable to use a more restrictive class.
483
484 On the Alpha, all constants except zero go into a floating-point
485 register via memory. */
486
487#define PREFERRED_RELOAD_CLASS(X, CLASS) \
488 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
489 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
490 : (CLASS))
491
492/* Loading and storing HImode or QImode values to and from memory
493 usually requires a scratch register. The exceptions are loading
494 QImode and HImode from an aligned address to a general register. */
495
496#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
497(((GET_CODE (IN) == MEM \
498 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
499 || (GET_CODE (IN) == SUBREG \
500 && (GET_CODE (SUBREG_REG (IN)) == MEM \
501 || (GET_CODE (SUBREG_REG (IN)) == REG \
502 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
503 && (((CLASS) == FLOAT_REGS \
504 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
505 || (((MODE) == QImode || (MODE) == HImode) \
506 && unaligned_memory_operand (IN, MODE)))) \
507 ? GENERAL_REGS : NO_REGS)
508
509#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
510(((GET_CODE (OUT) == MEM \
511 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
512 || (GET_CODE (OUT) == SUBREG \
513 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
514 || (GET_CODE (SUBREG_REG (OUT)) == REG \
515 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
516 && (((MODE) == HImode || (MODE) == QImode \
517 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
518 ? GENERAL_REGS : NO_REGS)
519
520/* If we are copying between general and FP registers, we need a memory
521 location. */
522
523#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
524
525/* Return the maximum number of consecutive registers
526 needed to represent mode MODE in a register of class CLASS. */
527
528#define CLASS_MAX_NREGS(CLASS, MODE) \
529 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
530
531/* Define the cost of moving between registers of various classes. Moving
532 between FLOAT_REGS and anything else except float regs is expensive.
533 In fact, we make it quite expensive because we really don't want to
534 do these moves unless it is clearly worth it. Optimizations may
535 reduce the impact of not being able to allocate a pseudo to a
536 hard register. */
537
538#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
539 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
540
541/* A C expressions returning the cost of moving data of MODE from a register to
542 or from memory.
543
544 On the Alpha, bump this up a bit. */
545
546#define MEMORY_MOVE_COST(MODE) 6
547
548/* Provide the cost of a branch. Exact meaning under development. */
549#define BRANCH_COST 5
550
551/* Adjust the cost of dependencies. */
552
553#define ADJUST_COST(INSN,LINK,DEP,COST) \
554 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
555\f
556/* Stack layout; function entry, exit and calling. */
557
558/* Define this if pushing a word on the stack
559 makes the stack pointer a smaller address. */
560#define STACK_GROWS_DOWNWARD
561
562/* Define this if the nominal address of the stack frame
563 is at the high-address end of the local variables;
564 that is, each additional local variable allocated
565 goes at a more negative offset in the frame. */
566#define FRAME_GROWS_DOWNWARD
567
568/* Offset within stack frame to start allocating local variables at.
569 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
570 first local allocated. Otherwise, it is the offset to the BEGINNING
571 of the first local allocated. */
572
573#define STARTING_FRAME_OFFSET (- current_function_pretend_args_size)
574
575/* If we generate an insn to push BYTES bytes,
576 this says how many the stack pointer really advances by.
577 On Alpha, don't define this because there are no push insns. */
578/* #define PUSH_ROUNDING(BYTES) */
579
580/* Define this if the maximum size of all the outgoing args is to be
581 accumulated and pushed during the prologue. The amount can be
582 found in the variable current_function_outgoing_args_size. */
583#define ACCUMULATE_OUTGOING_ARGS
584
585/* Offset of first parameter from the argument pointer register value. */
586
587#define FIRST_PARM_OFFSET(FNDECL) (- current_function_pretend_args_size)
588
589/* Definitions for register eliminations.
590
591 We have one register that can be eliminated on the Alpha. The
592 frame pointer register can often be eliminated in favor of the stack
593 pointer register.
594
595 In addition, we use the elimination mechanism to see if gp (r29) is needed.
596 Initially we assume that it isn't. If it is, we spill it. This is done
597 by making it an eliminable register. It doesn't matter what we replace
598 it with, since it will never occur in the rtl at this point. */
599
600/* This is an array of structures. Each structure initializes one pair
601 of eliminable registers. The "from" register number is given first,
602 followed by "to". Eliminations of the same "from" register are listed
603 in order of preference. */
604
605#define ELIMINABLE_REGS \
606{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
607 { 29, 0}}
608
609/* Given FROM and TO register numbers, say whether this elimination is allowed.
610 Frame pointer elimination is automatically handled.
611
612 We need gp (r29) if we have calls or load symbols
613 (tested in alpha_need_gp).
614
615 All other eliminations are valid since the cases where FP can't be
616 eliminated are already handled. */
617
618#define CAN_ELIMINATE(FROM, TO) ((FROM) == 29 ? ! alpha_need_gp () : 1)
619
620/* Define the offset between two registers, one to be eliminated, and the other
621 its replacement, at the start of a routine. */
622#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
623{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
624 (OFFSET) = (get_frame_size () + current_function_outgoing_args_size \
625 + current_function_pretend_args_size \
626 + alpha_sa_size () + 15) & ~ 15; \
627}
628
629/* Define this if stack space is still allocated for a parameter passed
630 in a register. */
631/* #define REG_PARM_STACK_SPACE */
632
633/* Value is the number of bytes of arguments automatically
634 popped when returning from a subroutine call.
635 FUNTYPE is the data type of the function (as a tree),
636 or for a library call it is an identifier node for the subroutine name.
637 SIZE is the number of bytes of arguments passed on the stack. */
638
639#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
640
641/* Define how to find the value returned by a function.
642 VALTYPE is the data type of the value (as a tree).
643 If the precise function being called is known, FUNC is its FUNCTION_DECL;
644 otherwise, FUNC is 0.
645
646 On Alpha the value is found in $0 for integer functions and
647 $f0 for floating-point functions. */
648
649#define FUNCTION_VALUE(VALTYPE, FUNC) \
650 gen_rtx (REG, \
651 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
652 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
653 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
654 || TREE_CODE (VALTYPE) == CHAR_TYPE \
655 || TREE_CODE (VALTYPE) == POINTER_TYPE \
656 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
657 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
658 ? word_mode : TYPE_MODE (VALTYPE), \
659 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
660
661/* Define how to find the value returned by a library function
662 assuming the value has mode MODE. */
663
664#define LIBCALL_VALUE(MODE) \
665 gen_rtx (REG, MODE, \
666 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
667
668/* 1 if N is a possible register number for a function value
669 as seen by the caller. */
670
671#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
672
673/* 1 if N is a possible register number for function argument passing.
674 On Alpha, these are $16-$21 and $f16-$f21. */
675
676#define FUNCTION_ARG_REGNO_P(N) \
677 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
678\f
679/* Define a data type for recording info about an argument list
680 during the scan of that argument list. This data type should
681 hold all necessary information about the function itself
682 and about the args processed so far, enough to enable macros
683 such as FUNCTION_ARG to determine where the next arg should go.
684
685 On Alpha, this is a single integer, which is a number of words
686 of arguments scanned so far.
687 Thus 6 or more means all following args should go on the stack. */
688
689#define CUMULATIVE_ARGS int
690
691/* Initialize a variable CUM of type CUMULATIVE_ARGS
692 for a call to a function whose data type is FNTYPE.
693 For a library call, FNTYPE is 0. */
694
695#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
696
697/* Define intermediate macro to compute the size (in registers) of an argument
698 for the Alpha. */
699
700#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
701((MODE) != BLKmode \
702 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
703 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
704
705/* Update the data in CUM to advance over an argument
706 of mode MODE and data type TYPE.
707 (TYPE is null for libcalls where that information may not be available.) */
708
709#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
710 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
711 (CUM) = 6; \
712 else \
713 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
714
715/* Determine where to put an argument to a function.
716 Value is zero to push the argument on the stack,
717 or a hard register in which to store the argument.
718
719 MODE is the argument's machine mode.
720 TYPE is the data type of the argument (as a tree).
721 This is null for libcalls where that information may
722 not be available.
723 CUM is a variable of type CUMULATIVE_ARGS which gives info about
724 the preceding args and about the function being called.
725 NAMED is nonzero if this argument is a named parameter
726 (otherwise it is an extra parameter matching an ellipsis).
727
728 On Alpha the first 6 words of args are normally in registers
729 and the rest are pushed. */
730
731#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
732((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
733 ? gen_rtx(REG, (MODE), \
734 (CUM) + 16 + (TARGET_FPREGS \
735 && GET_MODE_CLASS (MODE) == MODE_FLOAT) * 32) : 0)
736
1a94ca49
RK
737/* Specify the padding direction of arguments.
738
739 On the Alpha, we must pad upwards in order to be able to pass args in
740 registers. */
741
742#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
743
744/* For an arg passed partly in registers and partly in memory,
745 this is the number of registers used.
746 For args passed entirely in registers or entirely in memory, zero. */
747
748#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
749((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
750 ? 6 - (CUM) : 0)
751
752/* Generate necessary RTL for __builtin_saveregs().
753 ARGLIST is the argument list; see expr.c. */
754extern struct rtx_def *alpha_builtin_saveregs ();
755#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
756
757/* Define the information needed to generate branch and scc insns. This is
758 stored from the compare operation. Note that we can't use "rtx" here
759 since it hasn't been defined! */
760
761extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
762extern int alpha_compare_fp_p;
763
764/* This macro produces the initial definition of a function name. On the
765 29k, we need to save the function name for the epilogue. */
766
767extern char *alpha_function_name;
768
769#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
770 { fprintf (FILE, "\t.ent %s 2\n", NAME); \
771 ASM_OUTPUT_LABEL (FILE, NAME); \
772 alpha_function_name = NAME; \
773}
774
775/* This macro generates the assembly code for function entry.
776 FILE is a stdio stream to output the code to.
777 SIZE is an int: how many units of temporary storage to allocate.
778 Refer to the array `regs_ever_live' to determine which registers
779 to save; `regs_ever_live[I]' is nonzero if register number I
780 is ever used in the function. This macro is responsible for
781 knowing which registers should not be saved even if used. */
782
783#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
784
785/* Output assembler code to FILE to increment profiler label # LABELNO
786 for profiling a function entry. */
787
788#define FUNCTION_PROFILER(FILE, LABELNO)
789
790/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
791 the stack pointer does not matter. The value is tested only in
792 functions that have frame pointers.
793 No definition is equivalent to always zero. */
794
795#define EXIT_IGNORE_STACK 1
796
797/* This macro generates the assembly code for function exit,
798 on machines that need it. If FUNCTION_EPILOGUE is not defined
799 then individual return instructions are generated for each
800 return statement. Args are same as for FUNCTION_PROLOGUE.
801
802 The function epilogue should not depend on the current stack pointer!
803 It should use the frame pointer only. This is mandatory because
804 of alloca; we also take advantage of it to omit stack adjustments
805 before returning. */
806
807#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
808
809\f
810/* Output assembler code for a block containing the constant parts
811 of a trampoline, leaving space for the variable parts.
812
813 The trampoline should set the static chain pointer to value placed
7981384f
RK
814 into the trampoline and should branch to the specified routine.
815 Note that $27 has been set to the address of the trampoline, so we can
816 use it for addressability of the two data items. Trampolines are always
817 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
818
819#define TRAMPOLINE_TEMPLATE(FILE) \
820{ \
7981384f 821 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 822 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
823 fprintf (FILE, "\tjmp $31,($27),0\n"); \
824 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
825 fprintf (FILE, "\t.quad 0,0\n"); \
826}
827
3a523eeb
RS
828/* Section in which to place the trampoline. On Alpha, instructions
829 may only be placed in a text segment. */
830
831#define TRAMPOLINE_SECTION text_section
832
1a94ca49
RK
833/* Length in units of the trampoline for entering a nested function. */
834
7981384f 835#define TRAMPOLINE_SIZE 32
1a94ca49
RK
836
837/* Emit RTL insns to initialize the variable parts of a trampoline.
838 FNADDR is an RTX for the address of the function's pure code.
839 CXT is an RTX for the static chain value for the function. We assume
840 here that a function will be called many more times than its address
841 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
842 to initialize the "hint" field in the JMP insn. Note that the hint
843 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
844
845#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
846{ \
847 rtx _temp, _temp1, _addr; \
848 \
849 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
850 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 851 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
852 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
853 \
7981384f
RK
854 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
855 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
856 OPTAB_WIDEN); \
857 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 858 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
859 _temp = expand_and (gen_lowpart (SImode, _temp), \
860 GEN_INT (0x3fff), 0); \
1a94ca49 861 \
7981384f 862 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 863 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 864 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
865 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
866 OPTAB_WIDEN); \
867 \
868 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
869 \
870 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
871 "__enable_execute_stack"), \
872 0, VOIDmode, 1,_addr, Pmode); \
873 \
874 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
875 gen_rtvec (1, const0_rtx), 0)); \
876}
877
878/* Attempt to turn on access permissions for the stack. */
879
880#define TRANSFER_FROM_TRAMPOLINE \
881 \
882void \
883__enable_execute_stack (addr) \
884 void *addr; \
885{ \
886 long size = getpagesize (); \
887 long mask = ~(size-1); \
888 char *page = (char *) (((long) addr) & mask); \
889 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
890 \
891 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
892 if (mprotect (page, end - page, 7) < 0) \
893 perror ("mprotect of trampoline code"); \
1a94ca49
RK
894}
895\f
896/* Addressing modes, and classification of registers for them. */
897
898/* #define HAVE_POST_INCREMENT */
899/* #define HAVE_POST_DECREMENT */
900
901/* #define HAVE_PRE_DECREMENT */
902/* #define HAVE_PRE_INCREMENT */
903
904/* Macros to check register numbers against specific register classes. */
905
906/* These assume that REGNO is a hard or pseudo reg number.
907 They give nonzero only if REGNO is a hard reg of the suitable class
908 or a pseudo reg currently allocated to a suitable hard reg.
909 Since they use reg_renumber, they are safe only once reg_renumber
910 has been allocated, which happens in local-alloc.c. */
911
912#define REGNO_OK_FOR_INDEX_P(REGNO) 0
913#define REGNO_OK_FOR_BASE_P(REGNO) \
914(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
915\f
916/* Maximum number of registers that can appear in a valid memory address. */
917#define MAX_REGS_PER_ADDRESS 1
918
919/* Recognize any constant value that is a valid address. For the Alpha,
920 there are only constants none since we want to use LDA to load any
921 symbolic addresses into registers. */
922
923#define CONSTANT_ADDRESS_P(X) \
924 (GET_CODE (X) == CONST_INT \
925 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
926
927/* Include all constant integers and constant doubles, but not
928 floating-point, except for floating-point zero. */
929
930#define LEGITIMATE_CONSTANT_P(X) \
931 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
932 || (X) == CONST0_RTX (GET_MODE (X)))
933
934/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
935 and check its validity for a certain class.
936 We have two alternate definitions for each of them.
937 The usual definition accepts all pseudo regs; the other rejects
938 them unless they have been allocated suitable hard regs.
939 The symbol REG_OK_STRICT causes the latter definition to be used.
940
941 Most source files want to accept pseudo regs in the hope that
942 they will get allocated to the class that the insn wants them to be in.
943 Source files for reload pass need to be strict.
944 After reload, it makes no difference, since pseudo regs have
945 been eliminated by then. */
946
947#ifndef REG_OK_STRICT
948
949/* Nonzero if X is a hard reg that can be used as an index
950 or if it is a pseudo reg. */
951#define REG_OK_FOR_INDEX_P(X) 0
952/* Nonzero if X is a hard reg that can be used as a base reg
953 or if it is a pseudo reg. */
954#define REG_OK_FOR_BASE_P(X) \
955 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
956
957#else
958
959/* Nonzero if X is a hard reg that can be used as an index. */
960#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
961/* Nonzero if X is a hard reg that can be used as a base reg. */
962#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
963
964#endif
965\f
966/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
967 that is a valid memory address for an instruction.
968 The MODE argument is the machine mode for the MEM expression
969 that wants to use this address.
970
971 For Alpha, we have either a constant address or the sum of a register
972 and a constant address, or just a register. For DImode, any of those
973 forms can be surrounded with an AND that clear the low-order three bits;
974 this is an "unaligned" access.
975
976 We also allow a SYMBOL_REF that is the name of the current function as
977 valid address. This is for CALL_INSNs. It cannot be used in any other
978 context.
979
980 First define the basic valid address. */
981
982#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
983{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
984 goto ADDR; \
985 if (CONSTANT_ADDRESS_P (X)) \
986 goto ADDR; \
987 if (GET_CODE (X) == PLUS \
988 && REG_P (XEXP (X, 0)) \
989 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
990 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
991 goto ADDR; \
992}
993
994/* Now accept the simple address, or, for DImode only, an AND of a simple
995 address that turns off the low three bits. */
996
997extern char *current_function_name;
998
999#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1000{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1001 if ((MODE) == DImode \
1002 && GET_CODE (X) == AND \
1003 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1004 && INTVAL (XEXP (X, 1)) == -8) \
1005 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1006 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1007 && ! strcmp (XSTR (X, 0), current_function_name)) \
1008 goto ADDR; \
1009}
1010
1011/* Try machine-dependent ways of modifying an illegitimate address
1012 to be legitimate. If we find one, return the new, valid address.
1013 This macro is used in only one place: `memory_address' in explow.c.
1014
1015 OLDX is the address as it was before break_out_memory_refs was called.
1016 In some cases it is useful to look at this to decide what needs to be done.
1017
1018 MODE and WIN are passed so that this macro can use
1019 GO_IF_LEGITIMATE_ADDRESS.
1020
1021 It is always safe for this macro to do nothing. It exists to recognize
1022 opportunities to optimize the output.
1023
1024 For the Alpha, there are three cases we handle:
1025
1026 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1027 valid offset, compute the high part of the constant and add it to the
1028 register. Then our address is (plus temp low-part-const).
1029 (2) If the address is (const (plus FOO const_int)), find the low-order
1030 part of the CONST_INT. Then load FOO plus any high-order part of the
1031 CONST_INT into a register. Our address is (plus reg low-part-const).
1032 This is done to reduce the number of GOT entries.
1033 (3) If we have a (plus reg const), emit the load as in (2), then add
1034 the two registers, and finally generate (plus reg low-part-const) as
1035 our address. */
1036
1037#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1038{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1039 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1040 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1041 { \
1042 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1043 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1044 HOST_WIDE_INT highpart = val - lowpart; \
1045 rtx high = GEN_INT (highpart); \
1046 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1047 high, 0, OPTAB_LIB_WIDEN); \
1048 \
1049 (X) = plus_constant (temp, lowpart); \
1050 goto WIN; \
1051 } \
1052 else if (GET_CODE (X) == CONST \
1053 && GET_CODE (XEXP (X, 0)) == PLUS \
1054 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1055 { \
1056 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1057 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1058 HOST_WIDE_INT highpart = val - lowpart; \
1059 rtx high = XEXP (XEXP (X, 0), 0); \
1060 \
1061 if (highpart) \
1062 high = plus_constant (high, highpart); \
1063 \
1064 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1065 goto WIN; \
1066 } \
1067 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1068 && GET_CODE (XEXP (X, 1)) == CONST \
1069 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1070 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1071 { \
1072 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1073 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1074 HOST_WIDE_INT highpart = val - lowpart; \
1075 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1076 \
1077 if (highpart) \
1078 high = plus_constant (high, highpart); \
1079 \
1080 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1081 force_reg (Pmode, high), \
1082 high, OPTAB_LIB_WIDEN); \
1083 (X) = plus_constant (high, lowpart); \
1084 goto WIN; \
1085 } \
1086}
1087
1088/* Go to LABEL if ADDR (a legitimate address expression)
1089 has an effect that depends on the machine mode it is used for.
1090 On the Alpha this is true only for the unaligned modes. We can
1091 simplify this test since we know that the address must be valid. */
1092
1093#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1094{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1095
1096/* Compute the cost of an address. For the Alpha, all valid addresses are
1097 the same cost. */
1098
1099#define ADDRESS_COST(X) 0
1100
1101/* Define this if some processing needs to be done immediately before
1102 emitting code for an insn. */
1103
1104/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1105\f
1106/* Specify the machine mode that this machine uses
1107 for the index in the tablejump instruction. */
1108#define CASE_VECTOR_MODE SImode
1109
1110/* Define this if the tablejump instruction expects the table
1111 to contain offsets from the address of the table.
1112 Do not define this if the table should contain absolute addresses. */
1113/* #define CASE_VECTOR_PC_RELATIVE */
1114
1115/* Specify the tree operation to be used to convert reals to integers. */
1116#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1117
1118/* This is the kind of divide that is easiest to do in the general case. */
1119#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1120
1121/* Define this as 1 if `char' should by default be signed; else as 0. */
1122#define DEFAULT_SIGNED_CHAR 1
1123
1124/* This flag, if defined, says the same insns that convert to a signed fixnum
1125 also convert validly to an unsigned one.
1126
1127 We actually lie a bit here as overflow conditions are different. But
1128 they aren't being checked anyway. */
1129
1130#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1131
1132/* Max number of bytes we can move to or from memory
1133 in one reasonably fast instruction. */
1134
1135#define MOVE_MAX 8
1136
1137/* Largest number of bytes of an object that can be placed in a register.
1138 On the Alpha we have plenty of registers, so use TImode. */
1139#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1140
1141/* Nonzero if access to memory by bytes is no faster than for words.
1142 Also non-zero if doing byte operations (specifically shifts) in registers
1143 is undesirable.
1144
1145 On the Alpha, we want to not use the byte operation and instead use
1146 masking operations to access fields; these will save instructions. */
1147
1148#define SLOW_BYTE_ACCESS 1
1149
1150/* Define if normal loads of shorter-than-word items from memory clears
1151 the rest of the bits in the register. */
1152/* #define BYTE_LOADS_ZERO_EXTEND */
1153
1154/* Define if normal loads of shorter-than-word items from memory sign-extends
1155 the rest of the bits in the register. */
1156#define BYTE_LOADS_SIGN_EXTEND
1157
1158/* We aren't doing ANYTHING about debugging for now. */
1159/* #define SDB_DEBUGGING_INFO */
1160
1161/* Do not break .stabs pseudos into continuations. */
1162#define DBX_CONTIN_LENGTH 0
1163
1164/* Don't try to use the `x' type-cross-reference character in DBX data.
1165 Also has the consequence of putting each struct, union or enum
1166 into a separate .stabs, containing only cross-refs to the others. */
1167#define DBX_NO_XREFS
1168
1169/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1170 is done just by pretending it is already truncated. */
1171#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1172
1173/* We assume that the store-condition-codes instructions store 0 for false
1174 and some other value for true. This is the value stored for true. */
1175
1176#define STORE_FLAG_VALUE 1
1177
1178/* Define the value returned by a floating-point comparison instruction. */
1179
1180#define FLOAT_STORE_FLAG_VALUE 0.5
1181
1182/* Specify the machine mode that pointers have.
1183 After generation of rtl, the compiler makes no further distinction
1184 between pointers and any other objects of this machine mode. */
1185#define Pmode DImode
1186
1187/* Mode of a function address in a call instruction (for indexing purposes). */
1188
1189#define FUNCTION_MODE Pmode
1190
1191/* Define this if addresses of constant functions
1192 shouldn't be put through pseudo regs where they can be cse'd.
1193 Desirable on machines where ordinary constants are expensive
1194 but a CALL with constant address is cheap.
1195
1196 We define this on the Alpha so that gen_call and gen_call_value
1197 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1198 then copy it into a register, thus actually letting the address be
1199 cse'ed. */
1200
1201#define NO_FUNCTION_CSE
1202
1203/* Define this if shift instructions ignore all but the low-order
1204 few bits. */
1205#define SHIFT_COUNT_TRUNCATED
1206
1207/* Compute the cost of computing a constant rtl expression RTX
1208 whose rtx-code is CODE. The body of this macro is a portion
1209 of a switch statement. If the code is computed here,
1210 return it with a return statement. Otherwise, break from the switch.
1211
1212 We only care about the cost if it is valid in an insn, so all constants
1213 are cheap. */
1214
1215#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1216 case CONST_INT: \
1217 case CONST_DOUBLE: \
1218 return 0; \
1219 case CONST: \
1220 case SYMBOL_REF: \
1221 case LABEL_REF: \
1222 return 6; \
1223
1224/* Provide the costs of a rtl expression. This is in the body of a
1225 switch on CODE. */
1226
1227#define RTX_COSTS(X,CODE,OUTER_CODE) \
1228 case PLUS: \
1229 case MINUS: \
1230 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1231 return COSTS_N_INSNS (6); \
1232 break; \
1233 case MULT: \
1234 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1235 return COSTS_N_INSNS (6); \
1236 else \
1237 return COSTS_N_INSNS (21); \
1238 case DIV: \
1239 case UDIV: \
1240 case MOD: \
1241 case UMOD: \
1242 if (GET_MODE (X) == SFmode) \
1243 return COSTS_N_INSNS (34); \
1244 else if (GET_MODE (X) == DFmode) \
1245 return COSTS_N_INSNS (63); \
1246 else \
1247 return COSTS_N_INSNS (70); \
1248 case MEM: \
1249 return COSTS_N_INSNS (3);
1250\f
1251/* Control the assembler format that we output. */
1252
1253/* Output at beginning of assembler file. */
1254
1255#define ASM_FILE_START(FILE) \
1256{ extern char *version_string; \
1257 char *p, *after_dir = main_input_filename; \
1258 \
df065f1d 1259 fprintf (FILE, "\t.verstamp 10 0 "); \
92df5bd6 1260 for (p = version_string; *p != ' ' && *p != 0; p++) \
1a94ca49 1261 fprintf (FILE, "%c", *p == '.' ? ' ' : *p); \
92df5bd6 1262 fprintf (FILE, "\n\t.set noreorder\n"); \
1a94ca49
RK
1263 fprintf (FILE, "\t.set noat\n"); \
1264 for (p = main_input_filename; *p; p++) \
1265 if (*p == '/') \
1266 after_dir = p + 1; \
1267 fprintf (FILE, "\n\t.file 2 \"%s\"\n", after_dir); \
1268}
1269
1270/* Output to assembler file text saying following lines
1271 may contain character constants, extra white space, comments, etc. */
1272
1273#define ASM_APP_ON ""
1274
1275/* Output to assembler file text saying following lines
1276 no longer contain unusual constructs. */
1277
1278#define ASM_APP_OFF ""
1279
1280#define TEXT_SECTION_ASM_OP ".text"
1281
1282/* Output before read-only data. */
1283
1284#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1285
1286/* Output before writable data. */
1287
1288#define DATA_SECTION_ASM_OP ".data"
1289
1290/* Define an extra section for read-only data, a routine to enter it, and
1291 indicate that it is for read-only data. */
1292
1293#define EXTRA_SECTIONS readonly_data
1294
1295#define EXTRA_SECTION_FUNCTIONS \
1296void \
1297literal_section () \
1298{ \
1299 if (in_section != readonly_data) \
1300 { \
1301 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1302 in_section = readonly_data; \
1303 } \
1304} \
1305
1306#define READONLY_DATA_SECTION literal_section
1307
1308/* How to refer to registers in assembler output.
1309 This sequence is indexed by compiler's hard-register-number (see above). */
1310
1311#define REGISTER_NAMES \
1312{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1313 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1314 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1315 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31", \
1316 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1317 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1318 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1319 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"}
1320
1321/* How to renumber registers for dbx and gdb. */
1322
1323#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1324
1325/* This is how to output the definition of a user-level label named NAME,
1326 such as the label on a static function or variable NAME. */
1327
1328#define ASM_OUTPUT_LABEL(FILE,NAME) \
1329 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1330
1331/* This is how to output a command to make the user-level label named NAME
1332 defined for reference from other files. */
1333
1334#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1335 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1336
1337/* This is how to output a reference to a user-level label named NAME.
1338 `assemble_name' uses this. */
1339
1340#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1341 fprintf (FILE, "%s", NAME)
1342
1343/* This is how to output an internal numbered label where
1344 PREFIX is the class of label and NUM is the number within the class. */
1345
1346#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1347 if ((PREFIX)[0] == 'L') \
1348 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1349 else \
1350 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1351
1352/* This is how to output a label for a jump table. Arguments are the same as
1353 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1354 passed. */
1355
1356#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1357{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1358
1359/* This is how to store into the string LABEL
1360 the symbol_ref name of an internal numbered label where
1361 PREFIX is the class of label and NUM is the number within the class.
1362 This is suitable for output with `assemble_name'. */
1363
1364#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1365 if ((PREFIX)[0] == 'L') \
1366 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1367 else \
1368 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1369
1370/* This is how to output an assembler line defining a `double' constant. */
1371
1372#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1373 fprintf (FILE, "\t.t_floating %.20e\n", (VALUE))
1374
1375/* This is how to output an assembler line defining a `float' constant. */
1376
1377#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1378 fprintf (FILE, "\t.s_floating %.20e\n", (VALUE))
1379
1380/* This is how to output an assembler line defining an `int' constant. */
1381
1382#define ASM_OUTPUT_INT(FILE,VALUE) \
1383( fprintf (FILE, "\t.long "), \
1384 output_addr_const (FILE, (VALUE)), \
1385 fprintf (FILE, "\n"))
1386
1387/* This is how to output an assembler line defining a `long' constant. */
1388
1389#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1390( fprintf (FILE, "\t.quad "), \
1391 output_addr_const (FILE, (VALUE)), \
1392 fprintf (FILE, "\n"))
1393
1394/* Likewise for `char' and `short' constants. */
1395
1396#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1397( fprintf (FILE, "\t.word "), \
1398 output_addr_const (FILE, (VALUE)), \
1399 fprintf (FILE, "\n"))
1400
1401#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1402( fprintf (FILE, "\t.byte "), \
1403 output_addr_const (FILE, (VALUE)), \
1404 fprintf (FILE, "\n"))
1405
1406/* We use the default ASCII-output routine, except that we don't write more
1407 than 50 characters since the assembler doesn't support very long lines. */
1408
1409#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1410 do { \
1411 FILE *_hide_asm_out_file = (MYFILE); \
1412 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1413 int _hide_thissize = (MYLENGTH); \
1414 int _size_so_far = 0; \
1415 { \
1416 FILE *asm_out_file = _hide_asm_out_file; \
1417 unsigned char *p = _hide_p; \
1418 int thissize = _hide_thissize; \
1419 int i; \
1420 fprintf (asm_out_file, "\t.ascii \""); \
1421 \
1422 for (i = 0; i < thissize; i++) \
1423 { \
1424 register int c = p[i]; \
1425 \
1426 if (_size_so_far ++ > 50 && i < thissize - 4) \
1427 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1428 \
1429 if (c == '\"' || c == '\\') \
1430 putc ('\\', asm_out_file); \
1431 if (c >= ' ' && c < 0177) \
1432 putc (c, asm_out_file); \
1433 else \
1434 { \
1435 fprintf (asm_out_file, "\\%o", c); \
1436 /* After an octal-escape, if a digit follows, \
1437 terminate one string constant and start another. \
1438 The Vax assembler fails to stop reading the escape \
1439 after three digits, so this is the only way we \
1440 can get it to parse the data properly. */ \
1441 if (i < thissize - 1 \
1442 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1443 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1444 } \
1445 } \
1446 fprintf (asm_out_file, "\"\n"); \
1447 } \
1448 } \
1449 while (0)
1450/* This is how to output an insn to push a register on the stack.
1451 It need not be very fast code. */
1452
1453#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1454 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1455 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1456 (REGNO) & 31);
1457
1458/* This is how to output an insn to pop a register from the stack.
1459 It need not be very fast code. */
1460
1461#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1462 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1463 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1464 (REGNO) & 31);
1465
1466/* This is how to output an assembler line for a numeric constant byte. */
1467
1468#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1469 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1470
1471/* This is how to output an element of a case-vector that is absolute. */
1472
1473#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1474 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1475
1476/* This is how to output an element of a case-vector that is relative.
1477 (Alpha does not use such vectors, but we must define this macro anyway.) */
1478
1479#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1480
1481/* This is how to output an assembler line
1482 that says to advance the location counter
1483 to a multiple of 2**LOG bytes. */
1484
1485#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1486 if ((LOG) != 0) \
1487 fprintf (FILE, "\t.align %d\n", LOG);
1488
1489/* This is how to advance the location counter by SIZE bytes. */
1490
1491#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1492 fprintf (FILE, "\t.space %d\n", (SIZE))
1493
1494/* This says how to output an assembler line
1495 to define a global common symbol. */
1496
1497#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1498( fputs ("\t.comm ", (FILE)), \
1499 assemble_name ((FILE), (NAME)), \
1500 fprintf ((FILE), ",%d\n", (SIZE)))
1501
1502/* This says how to output an assembler line
1503 to define a local common symbol. */
1504
1505#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1506( fputs ("\t.lcomm ", (FILE)), \
1507 assemble_name ((FILE), (NAME)), \
1508 fprintf ((FILE), ",%d\n", (SIZE)))
1509
1510/* Store in OUTPUT a string (made with alloca) containing
1511 an assembler-name for a local static variable named NAME.
1512 LABELNO is an integer which is different for each call. */
1513
1514#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1515( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1516 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1517
1518/* Define the parentheses used to group arithmetic operations
1519 in assembler code. */
1520
1521#define ASM_OPEN_PAREN "("
1522#define ASM_CLOSE_PAREN ")"
1523
1524/* Define results of standard character escape sequences. */
1525#define TARGET_BELL 007
1526#define TARGET_BS 010
1527#define TARGET_TAB 011
1528#define TARGET_NEWLINE 012
1529#define TARGET_VT 013
1530#define TARGET_FF 014
1531#define TARGET_CR 015
1532
1533/* Print operand X (an rtx) in assembler syntax to file FILE.
1534 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1535 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1536
1537#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1538
1539/* Determine which codes are valid without a following integer. These must
1540 not be alphabetic. */
1541
1542#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1543\f
1544/* Print a memory address as an operand to reference that memory location. */
1545
1546#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1547{ rtx addr = (ADDR); \
1548 int basereg = 31; \
1549 HOST_WIDE_INT offset = 0; \
1550 \
1551 if (GET_CODE (addr) == AND) \
1552 addr = XEXP (addr, 0); \
1553 \
1554 if (GET_CODE (addr) == REG) \
1555 basereg = REGNO (addr); \
1556 else if (GET_CODE (addr) == CONST_INT) \
1557 offset = INTVAL (addr); \
1558 else if (GET_CODE (addr) == PLUS \
1559 && GET_CODE (XEXP (addr, 0)) == REG \
1560 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1561 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1562 else \
1563 abort (); \
1564 \
1565 fprintf (FILE, "%d($%d)", offset, basereg); \
1566}
1567/* Define the codes that are matched by predicates in alpha.c. */
1568
1569#define PREDICATE_CODES \
1570 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1571 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1572 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1573 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1574 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1575 {"const48_operand", {CONST_INT}}, \
1576 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1577 {"mode_mask_operand", {CONST_INT}}, \
1578 {"mul8_operand", {CONST_INT}}, \
1579 {"mode_width_operand", {CONST_INT}}, \
1580 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1581 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1582 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1583 {"fp0_operand", {CONST_DOUBLE}}, \
1584 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1585 SYMBOL_REF, CONST, LABEL_REF}}, \
1586 {"aligned_memory_operand", {MEM}}, \
1587 {"unaligned_memory_operand", {MEM}}, \
1588 {"any_memory_operand", {MEM}},
This page took 0.197966 seconds and 5 git commands to generate.