]> gcc.gnu.org Git - gcc.git/blame - gcc/config/alpha/alpha.h
(FUNCTION_PROFILER): Use $28 instead of $27.
[gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
34fa88ab 2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
24#define CPP_PREDEFINES "\
25-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 26-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 27
21798cd8
RK
28/* Write out the correct language type definition for the header files.
29 Unless we have assembler language, write out the symbols for C. */
1a94ca49 30#define CPP_SPEC "\
21798cd8 31%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 32%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
33%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
34%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
36%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38/* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
7981384f
RK
44/* No point in running CPP on our assembler output. */
45#define ASM_SPEC "-nocpp"
46
1c6c2b05 47/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 48
1c6c2b05 49#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
f987462f 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{!shared:-init __main} %{static:-non_shared} \
1c6c2b05 56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg}"
8877eb00 57
85d159a3 58#define STARTFILE_SPEC \
1c6c2b05 59 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 60
1a94ca49
RK
61/* Print subsidiary information on the compiler version in use. */
62#define TARGET_VERSION
63
64/* Define the location for the startup file on OSF/1 for Alpha. */
65
66#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
67
68/* Run-time compilation parameters selecting different hardware subsets. */
69
70extern int target_flags;
71
72/* This means that floating-point support exists in the target implementation
73 of the Alpha architecture. This is usually the default. */
74
75#define TARGET_FP (target_flags & 1)
76
77/* This means that floating-point registers are allowed to be used. Note
78 that Alpha implementations without FP operations are required to
79 provide the FP registers. */
80
03f8c4cc
RK
81#define TARGET_FPREGS (target_flags & 2)
82
83/* This means that gas is used to process the assembler file. */
84
85#define MASK_GAS 4
86#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
87
88/* Macro to define tables used to set the flags.
89 This is a list in braces of pairs in braces,
90 each pair being { "NAME", VALUE }
91 where VALUE is the bits to set or minus the bits to clear.
92 An empty string NAME is used to identify the default VALUE. */
93
94#define TARGET_SWITCHES \
95 { {"no-soft-float", 1}, \
96 {"soft-float", -1}, \
97 {"fp-regs", 2}, \
98 {"no-fp-regs", -3}, \
03f8c4cc
RK
99 {"alpha-as", -MASK_GAS}, \
100 {"gas", MASK_GAS}, \
88681624 101 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
102
103#define TARGET_DEFAULT 3
104
88681624
ILT
105#ifndef TARGET_CPU_DEFAULT
106#define TARGET_CPU_DEFAULT 0
107#endif
108
1a94ca49
RK
109/* Define this macro to change register usage conditional on target flags.
110
111 On the Alpha, we use this to disable the floating-point registers when
112 they don't exist. */
113
114#define CONDITIONAL_REGISTER_USAGE \
115 if (! TARGET_FPREGS) \
52a69200 116 for (i = 32; i < 63; i++) \
1a94ca49
RK
117 fixed_regs[i] = call_used_regs[i] = 1;
118
4f074454
RK
119/* Show we can debug even without a frame pointer. */
120#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
121\f
122/* target machine storage layout */
123
2700ac93
RS
124/* Define to enable software floating point emulation. */
125#define REAL_ARITHMETIC
126
1a94ca49
RK
127/* Define the size of `int'. The default is the same as the word size. */
128#define INT_TYPE_SIZE 32
129
130/* Define the size of `long long'. The default is the twice the word size. */
131#define LONG_LONG_TYPE_SIZE 64
132
133/* The two floating-point formats we support are S-floating, which is
134 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
135 and `long double' are T. */
136
137#define FLOAT_TYPE_SIZE 32
138#define DOUBLE_TYPE_SIZE 64
139#define LONG_DOUBLE_TYPE_SIZE 64
140
141#define WCHAR_TYPE "short unsigned int"
142#define WCHAR_TYPE_SIZE 16
143
13d39dbc 144/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
145 in a wider mode than that declared by the program. In such cases,
146 the value is constrained to be within the bounds of the declared
147 type, but kept valid in the wider mode. The signedness of the
148 extension may differ from that of the type.
149
150 For Alpha, we always store objects in a full register. 32-bit objects
151 are always sign-extended, but smaller objects retain their signedness. */
152
153#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
154 if (GET_MODE_CLASS (MODE) == MODE_INT \
155 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
156 { \
157 if ((MODE) == SImode) \
158 (UNSIGNEDP) = 0; \
159 (MODE) = DImode; \
160 }
161
162/* Define this if function arguments should also be promoted using the above
163 procedure. */
164
165#define PROMOTE_FUNCTION_ARGS
166
167/* Likewise, if the function return value is promoted. */
168
169#define PROMOTE_FUNCTION_RETURN
170
171/* Define this if most significant bit is lowest numbered
172 in instructions that operate on numbered bit-fields.
173
174 There are no such instructions on the Alpha, but the documentation
175 is little endian. */
176#define BITS_BIG_ENDIAN 0
177
178/* Define this if most significant byte of a word is the lowest numbered.
179 This is false on the Alpha. */
180#define BYTES_BIG_ENDIAN 0
181
182/* Define this if most significant word of a multiword number is lowest
183 numbered.
184
185 For Alpha we can decide arbitrarily since there are no machine instructions
186 for them. Might as well be consistent with bytes. */
187#define WORDS_BIG_ENDIAN 0
188
189/* number of bits in an addressable storage unit */
190#define BITS_PER_UNIT 8
191
192/* Width in bits of a "word", which is the contents of a machine register.
193 Note that this is not necessarily the width of data type `int';
194 if using 16-bit ints on a 68000, this would still be 32.
195 But on a machine with 16-bit registers, this would be 16. */
196#define BITS_PER_WORD 64
197
198/* Width of a word, in units (bytes). */
199#define UNITS_PER_WORD 8
200
201/* Width in bits of a pointer.
202 See also the macro `Pmode' defined below. */
203#define POINTER_SIZE 64
204
205/* Allocation boundary (in *bits*) for storing arguments in argument list. */
206#define PARM_BOUNDARY 64
207
208/* Boundary (in *bits*) on which stack pointer should be aligned. */
209#define STACK_BOUNDARY 64
210
211/* Allocation boundary (in *bits*) for the code of a function. */
212#define FUNCTION_BOUNDARY 64
213
214/* Alignment of field after `int : 0' in a structure. */
215#define EMPTY_FIELD_BOUNDARY 64
216
217/* Every structure's size must be a multiple of this. */
218#define STRUCTURE_SIZE_BOUNDARY 8
219
220/* A bitfield declared as `int' forces `int' alignment for the struct. */
221#define PCC_BITFIELD_TYPE_MATTERS 1
222
65823178
RK
223/* Align loop starts for optimal branching.
224
225 ??? Kludge this and the next macro for the moment by not doing anything if
226 we don't optimize and also if we are writing ECOFF symbols to work around
227 a bug in DEC's assembler. */
1a94ca49 228
130d2d72 229#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
230 if (optimize > 0 && write_symbols != SDB_DEBUG) \
231 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
232
233/* This is how to align an instruction for optimal branching.
234 On Alpha we'll get better performance by aligning on a quadword
235 boundary. */
130d2d72 236
1a94ca49 237#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
238 if (optimize > 0 && write_symbols != SDB_DEBUG) \
239 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
240
241/* No data type wants to be aligned rounder than this. */
242#define BIGGEST_ALIGNMENT 64
243
244/* Make strings word-aligned so strcpy from constants will be faster. */
245#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
246 (TREE_CODE (EXP) == STRING_CST \
247 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
248
249/* Make arrays of chars word-aligned for the same reasons. */
250#define DATA_ALIGNMENT(TYPE, ALIGN) \
251 (TREE_CODE (TYPE) == ARRAY_TYPE \
252 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
253 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
254
255/* Set this non-zero if move instructions will actually fail to work
256 when given unaligned data.
257
258 Since we get an error message when we do one, call them invalid. */
259
260#define STRICT_ALIGNMENT 1
261
262/* Set this non-zero if unaligned move instructions are extremely slow.
263
264 On the Alpha, they trap. */
130d2d72
RK
265
266#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
267\f
268/* Standard register usage. */
269
270/* Number of actual hardware registers.
271 The hardware registers are assigned numbers for the compiler
272 from 0 to just below FIRST_PSEUDO_REGISTER.
273 All registers that the compiler knows about must be given numbers,
274 even those that are not normally considered general registers.
275
276 We define all 32 integer registers, even though $31 is always zero,
277 and all 32 floating-point registers, even though $f31 is also
278 always zero. We do not bother defining the FP status register and
130d2d72
RK
279 there are no other registers.
280
281 Since $31 is always zero, we will use register number 31 as the
282 argument pointer. It will never appear in the generated code
283 because we will always be eliminating it in favor of the stack
52a69200
RK
284 pointer or hardware frame pointer.
285
286 Likewise, we use $f31 for the frame pointer, which will always
287 be eliminated in favor of the hardware frame pointer or the
288 stack pointer. */
1a94ca49
RK
289
290#define FIRST_PSEUDO_REGISTER 64
291
292/* 1 for registers that have pervasive standard uses
293 and are not available for the register allocator. */
294
295#define FIXED_REGISTERS \
296 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
298 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
299 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
300
301/* 1 for registers not available across function calls.
302 These must include the FIXED_REGISTERS and also any
303 registers that can be used without being saved.
304 The latter must include the registers where values are returned
305 and the register where structure-value addresses are passed.
306 Aside from that, you can include as many other registers as you like. */
307#define CALL_USED_REGISTERS \
308 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
309 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
310 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
311 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
312
313/* List the order in which to allocate registers. Each register must be
314 listed once, even those in FIXED_REGISTERS.
315
316 We allocate in the following order:
317 $f1 (nonsaved floating-point register)
318 $f10-$f15 (likewise)
319 $f22-$f30 (likewise)
320 $f21-$f16 (likewise, but input args)
321 $f0 (nonsaved, but return value)
322 $f2-$f9 (saved floating-point registers)
323 $1-$8 (nonsaved integer registers)
324 $22-$25 (likewise)
325 $28 (likewise)
326 $0 (likewise, but return value)
327 $21-$16 (likewise, but input args)
328 $27 (procedure value)
329 $9-$14 (saved integer registers)
330 $26 (return PC)
331 $15 (frame pointer)
332 $29 (global pointer)
52a69200 333 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
334
335#define REG_ALLOC_ORDER \
336 {33, \
da01bc2c 337 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
338 54, 55, 56, 57, 58, 59, 60, 61, 62, \
339 53, 52, 51, 50, 49, 48, \
340 32, \
341 34, 35, 36, 37, 38, 39, 40, 41, \
342 1, 2, 3, 4, 5, 6, 7, 8, \
343 22, 23, 24, 25, \
344 28, \
345 0, \
346 21, 20, 19, 18, 17, 16, \
347 27, \
348 9, 10, 11, 12, 13, 14, \
349 26, \
350 15, \
351 29, \
352 30, 31, 63 }
353
354/* Return number of consecutive hard regs needed starting at reg REGNO
355 to hold something of mode MODE.
356 This is ordinarily the length in words of a value of mode MODE
357 but can be less for certain modes in special long registers. */
358
359#define HARD_REGNO_NREGS(REGNO, MODE) \
360 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
361
362/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
363 On Alpha, the integer registers can hold any mode. The floating-point
364 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
365 or 8-bit values. If we only allowed the larger integers into FP registers,
366 we'd have to say that QImode and SImode aren't tiable, which is a
367 pain. So say all registers can hold everything and see how that works. */
368
369#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
370
371/* Value is 1 if it is a good idea to tie two pseudo registers
372 when one has mode MODE1 and one has mode MODE2.
373 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
374 for any hard reg, then this must be 0 for correct output. */
375
376#define MODES_TIEABLE_P(MODE1, MODE2) 1
377
378/* Specify the registers used for certain standard purposes.
379 The values of these macros are register numbers. */
380
381/* Alpha pc isn't overloaded on a register that the compiler knows about. */
382/* #define PC_REGNUM */
383
384/* Register to use for pushing function arguments. */
385#define STACK_POINTER_REGNUM 30
386
387/* Base register for access to local variables of the function. */
52a69200 388#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
389
390/* Value should be nonzero if functions must have frame pointers.
391 Zero means the frame pointer need not be set up (and parms
392 may be accessed via the stack pointer) in functions that seem suitable.
393 This is computed in `reload', in reload1.c. */
394#define FRAME_POINTER_REQUIRED 0
395
396/* Base register for access to arguments of the function. */
130d2d72 397#define ARG_POINTER_REGNUM 31
1a94ca49 398
52a69200
RK
399/* Base register for access to local variables of function. */
400#define FRAME_POINTER_REGNUM 63
401
1a94ca49
RK
402/* Register in which static-chain is passed to a function.
403
404 For the Alpha, this is based on an example; the calling sequence
405 doesn't seem to specify this. */
406#define STATIC_CHAIN_REGNUM 1
407
408/* Register in which address to store a structure value
409 arrives in the function. On the Alpha, the address is passed
410 as a hidden argument. */
411#define STRUCT_VALUE 0
412\f
413/* Define the classes of registers for register constraints in the
414 machine description. Also define ranges of constants.
415
416 One of the classes must always be named ALL_REGS and include all hard regs.
417 If there is more than one class, another class must be named NO_REGS
418 and contain no registers.
419
420 The name GENERAL_REGS must be the name of a class (or an alias for
421 another name such as ALL_REGS). This is the class of registers
422 that is allowed by "g" or "r" in a register constraint.
423 Also, registers outside this class are allocated only when
424 instructions express preferences for them.
425
426 The classes must be numbered in nondecreasing order; that is,
427 a larger-numbered class must never be contained completely
428 in a smaller-numbered class.
429
430 For any two classes, it is very desirable that there be another
431 class that represents their union. */
432
433enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
434 LIM_REG_CLASSES };
435
436#define N_REG_CLASSES (int) LIM_REG_CLASSES
437
438/* Give names of register classes as strings for dump file. */
439
440#define REG_CLASS_NAMES \
441 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
442
443/* Define which registers fit in which classes.
444 This is an initializer for a vector of HARD_REG_SET
445 of length N_REG_CLASSES. */
446
447#define REG_CLASS_CONTENTS \
52a69200 448 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
449
450/* The same information, inverted:
451 Return the class number of the smallest class containing
452 reg number REGNO. This could be a conditional expression
453 or could index an array. */
454
52a69200
RK
455#define REGNO_REG_CLASS(REGNO) \
456 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
457
458/* The class value for index registers, and the one for base regs. */
459#define INDEX_REG_CLASS NO_REGS
460#define BASE_REG_CLASS GENERAL_REGS
461
462/* Get reg_class from a letter such as appears in the machine description. */
463
464#define REG_CLASS_FROM_LETTER(C) \
465 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
466
467/* Define this macro to change register usage conditional on target flags. */
468/* #define CONDITIONAL_REGISTER_USAGE */
469
470/* The letters I, J, K, L, M, N, O, and P in a register constraint string
471 can be used to stand for particular ranges of immediate operands.
472 This macro defines what the ranges are.
473 C is the letter, and VALUE is a constant value.
474 Return 1 if VALUE is in the range specified by C.
475
476 For Alpha:
477 `I' is used for the range of constants most insns can contain.
478 `J' is the constant zero.
479 `K' is used for the constant in an LDA insn.
480 `L' is used for the constant in a LDAH insn.
481 `M' is used for the constants that can be AND'ed with using a ZAP insn.
482 `N' is used for complemented 8-bit constants.
483 `O' is used for negated 8-bit constants.
484 `P' is used for the constants 1, 2 and 3. */
485
486#define CONST_OK_FOR_LETTER_P(VALUE, C) \
487 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
488 : (C) == 'J' ? (VALUE) == 0 \
489 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
490 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
491 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
492 : (C) == 'M' ? zap_mask (VALUE) \
493 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
494 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
495 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
496 : 0)
497
498/* Similar, but for floating or large integer constants, and defining letters
499 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
500
501 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
502 that is the operand of a ZAP insn. */
503
504#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
505 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
506 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
507 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
508 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
509 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
510 : 0)
511
e560f226
RK
512/* Optional extra constraints for this machine.
513
514 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
515 reference to an unaligned location.
516 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
517 function. */
e560f226
RK
518
519#define EXTRA_CONSTRAINT(OP, C) \
520 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 521 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
522 : 0)
523
1a94ca49
RK
524/* Given an rtx X being reloaded into a reg required to be
525 in class CLASS, return the class of reg to actually use.
526 In general this is just CLASS; but on some machines
527 in some cases it is preferable to use a more restrictive class.
528
529 On the Alpha, all constants except zero go into a floating-point
530 register via memory. */
531
532#define PREFERRED_RELOAD_CLASS(X, CLASS) \
533 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
534 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
535 : (CLASS))
536
537/* Loading and storing HImode or QImode values to and from memory
538 usually requires a scratch register. The exceptions are loading
e560f226
RK
539 QImode and HImode from an aligned address to a general register.
540 We also cannot load an unaligned address into an FP register. */
1a94ca49
RK
541
542#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
543(((GET_CODE (IN) == MEM \
544 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
545 || (GET_CODE (IN) == SUBREG \
546 && (GET_CODE (SUBREG_REG (IN)) == MEM \
547 || (GET_CODE (SUBREG_REG (IN)) == REG \
548 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
549 && (((CLASS) == FLOAT_REGS \
550 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
551 || (((MODE) == QImode || (MODE) == HImode) \
552 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
553 ? GENERAL_REGS \
554 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
555 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
556 : NO_REGS)
1a94ca49
RK
557
558#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
559(((GET_CODE (OUT) == MEM \
560 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
561 || (GET_CODE (OUT) == SUBREG \
562 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
563 || (GET_CODE (SUBREG_REG (OUT)) == REG \
564 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
565 && (((MODE) == HImode || (MODE) == QImode \
566 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
567 ? GENERAL_REGS \
568 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
569 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
570 : NO_REGS)
1a94ca49
RK
571
572/* If we are copying between general and FP registers, we need a memory
573 location. */
574
575#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
576
acd94aaf
RK
577/* Specify the mode to be used for memory when a secondary memory
578 location is needed. If MODE is floating-point, use it. Otherwise,
579 widen to a word like the default. This is needed because we always
580 store integers in FP registers in quadword format. This whole
581 area is very tricky! */
582#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
583 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
584 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
585
1a94ca49
RK
586/* Return the maximum number of consecutive registers
587 needed to represent mode MODE in a register of class CLASS. */
588
589#define CLASS_MAX_NREGS(CLASS, MODE) \
590 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
591
c31dfe4d
RK
592/* If defined, gives a class of registers that cannot be used as the
593 operand of a SUBREG that changes the size of the object. */
594
595#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
596
1a94ca49
RK
597/* Define the cost of moving between registers of various classes. Moving
598 between FLOAT_REGS and anything else except float regs is expensive.
599 In fact, we make it quite expensive because we really don't want to
600 do these moves unless it is clearly worth it. Optimizations may
601 reduce the impact of not being able to allocate a pseudo to a
602 hard register. */
603
604#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
605 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
606
607/* A C expressions returning the cost of moving data of MODE from a register to
608 or from memory.
609
610 On the Alpha, bump this up a bit. */
611
612#define MEMORY_MOVE_COST(MODE) 6
613
614/* Provide the cost of a branch. Exact meaning under development. */
615#define BRANCH_COST 5
616
617/* Adjust the cost of dependencies. */
618
619#define ADJUST_COST(INSN,LINK,DEP,COST) \
620 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
621\f
622/* Stack layout; function entry, exit and calling. */
623
624/* Define this if pushing a word on the stack
625 makes the stack pointer a smaller address. */
626#define STACK_GROWS_DOWNWARD
627
628/* Define this if the nominal address of the stack frame
629 is at the high-address end of the local variables;
630 that is, each additional local variable allocated
631 goes at a more negative offset in the frame. */
130d2d72 632/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
633
634/* Offset within stack frame to start allocating local variables at.
635 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
636 first local allocated. Otherwise, it is the offset to the BEGINNING
637 of the first local allocated. */
638
52a69200 639#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
640
641/* If we generate an insn to push BYTES bytes,
642 this says how many the stack pointer really advances by.
643 On Alpha, don't define this because there are no push insns. */
644/* #define PUSH_ROUNDING(BYTES) */
645
646/* Define this if the maximum size of all the outgoing args is to be
647 accumulated and pushed during the prologue. The amount can be
648 found in the variable current_function_outgoing_args_size. */
649#define ACCUMULATE_OUTGOING_ARGS
650
651/* Offset of first parameter from the argument pointer register value. */
652
130d2d72 653#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
654
655/* Definitions for register eliminations.
656
978e8952 657 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 658 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
659 pointer register. Secondly, the argument pointer register can always be
660 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
661
662/* This is an array of structures. Each structure initializes one pair
663 of eliminable registers. The "from" register number is given first,
664 followed by "to". Eliminations of the same "from" register are listed
665 in order of preference. */
666
52a69200
RK
667#define ELIMINABLE_REGS \
668{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
669 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
670 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
671 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
672
673/* Given FROM and TO register numbers, say whether this elimination is allowed.
674 Frame pointer elimination is automatically handled.
675
130d2d72 676 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
677 eliminated are already handled. */
678
130d2d72 679#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 680
52a69200
RK
681/* Round up to a multiple of 16 bytes. */
682#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
683
1a94ca49
RK
684/* Define the offset between two registers, one to be eliminated, and the other
685 its replacement, at the start of a routine. */
686#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
687{ if ((FROM) == FRAME_POINTER_REGNUM) \
688 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
689 + alpha_sa_size ()); \
690 else if ((FROM) == ARG_POINTER_REGNUM) \
691 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
692 + alpha_sa_size () \
d772039b
RK
693 + (ALPHA_ROUND (get_frame_size () \
694 + current_function_pretend_args_size) \
695 - current_function_pretend_args_size)); \
1a94ca49
RK
696}
697
698/* Define this if stack space is still allocated for a parameter passed
699 in a register. */
700/* #define REG_PARM_STACK_SPACE */
701
702/* Value is the number of bytes of arguments automatically
703 popped when returning from a subroutine call.
704 FUNTYPE is the data type of the function (as a tree),
705 or for a library call it is an identifier node for the subroutine name.
706 SIZE is the number of bytes of arguments passed on the stack. */
707
708#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
709
710/* Define how to find the value returned by a function.
711 VALTYPE is the data type of the value (as a tree).
712 If the precise function being called is known, FUNC is its FUNCTION_DECL;
713 otherwise, FUNC is 0.
714
715 On Alpha the value is found in $0 for integer functions and
716 $f0 for floating-point functions. */
717
718#define FUNCTION_VALUE(VALTYPE, FUNC) \
719 gen_rtx (REG, \
720 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
721 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
722 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
723 || TREE_CODE (VALTYPE) == CHAR_TYPE \
724 || TREE_CODE (VALTYPE) == POINTER_TYPE \
725 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
726 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
727 ? word_mode : TYPE_MODE (VALTYPE), \
728 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
729
730/* Define how to find the value returned by a library function
731 assuming the value has mode MODE. */
732
733#define LIBCALL_VALUE(MODE) \
734 gen_rtx (REG, MODE, \
735 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
736
130d2d72
RK
737/* The definition of this macro implies that there are cases where
738 a scalar value cannot be returned in registers.
739
740 For the Alpha, any structure or union type is returned in memory, as
741 are integers whose size is larger than 64 bits. */
742
743#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 744 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
745 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
746
1a94ca49
RK
747/* 1 if N is a possible register number for a function value
748 as seen by the caller. */
749
750#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
751
752/* 1 if N is a possible register number for function argument passing.
753 On Alpha, these are $16-$21 and $f16-$f21. */
754
755#define FUNCTION_ARG_REGNO_P(N) \
756 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
757\f
758/* Define a data type for recording info about an argument list
759 during the scan of that argument list. This data type should
760 hold all necessary information about the function itself
761 and about the args processed so far, enough to enable macros
762 such as FUNCTION_ARG to determine where the next arg should go.
763
764 On Alpha, this is a single integer, which is a number of words
765 of arguments scanned so far.
766 Thus 6 or more means all following args should go on the stack. */
767
768#define CUMULATIVE_ARGS int
769
770/* Initialize a variable CUM of type CUMULATIVE_ARGS
771 for a call to a function whose data type is FNTYPE.
772 For a library call, FNTYPE is 0. */
773
774#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
775
776/* Define intermediate macro to compute the size (in registers) of an argument
777 for the Alpha. */
778
779#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
780((MODE) != BLKmode \
781 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
782 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
783
784/* Update the data in CUM to advance over an argument
785 of mode MODE and data type TYPE.
786 (TYPE is null for libcalls where that information may not be available.) */
787
788#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
789 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
790 (CUM) = 6; \
791 else \
792 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
793
794/* Determine where to put an argument to a function.
795 Value is zero to push the argument on the stack,
796 or a hard register in which to store the argument.
797
798 MODE is the argument's machine mode.
799 TYPE is the data type of the argument (as a tree).
800 This is null for libcalls where that information may
801 not be available.
802 CUM is a variable of type CUMULATIVE_ARGS which gives info about
803 the preceding args and about the function being called.
804 NAMED is nonzero if this argument is a named parameter
805 (otherwise it is an extra parameter matching an ellipsis).
806
807 On Alpha the first 6 words of args are normally in registers
808 and the rest are pushed. */
809
810#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
811((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
812 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
813 (CUM) + 16 + ((TARGET_FPREGS \
814 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
815 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
816 * 32)) \
817 : 0)
1a94ca49 818
1a94ca49
RK
819/* Specify the padding direction of arguments.
820
821 On the Alpha, we must pad upwards in order to be able to pass args in
822 registers. */
823
824#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
825
826/* For an arg passed partly in registers and partly in memory,
827 this is the number of registers used.
828 For args passed entirely in registers or entirely in memory, zero. */
829
830#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
831((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
832 ? 6 - (CUM) : 0)
833
130d2d72
RK
834/* Perform any needed actions needed for a function that is receiving a
835 variable number of arguments.
836
837 CUM is as above.
838
839 MODE and TYPE are the mode and type of the current parameter.
840
841 PRETEND_SIZE is a variable that should be set to the amount of stack
842 that must be pushed by the prolog to pretend that our caller pushed
843 it.
844
845 Normally, this macro will push all remaining incoming registers on the
846 stack and set PRETEND_SIZE to the length of the registers pushed.
847
848 On the Alpha, we allocate space for all 12 arg registers, but only
849 push those that are remaining.
850
851 However, if NO registers need to be saved, don't allocate any space.
852 This is not only because we won't need the space, but because AP includes
853 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
854 ap-relative addresses already made.
855
856 If we are not to use the floating-point registers, save the integer
857 registers where we would put the floating-point registers. This is
858 not the most efficient way to implement varargs with just one register
859 class, but it isn't worth doing anything more efficient in this rare
860 case. */
861
130d2d72
RK
862
863#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
864{ if ((CUM) < 6) \
865 { \
866 if (! (NO_RTL)) \
867 { \
868 move_block_from_reg \
869 (16 + CUM, \
870 gen_rtx (MEM, BLKmode, \
871 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 872 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 873 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 874 move_block_from_reg \
7a92339b 875 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
876 gen_rtx (MEM, BLKmode, \
877 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 878 (CUM) * UNITS_PER_WORD)), \
02892e06 879 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
880 } \
881 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
882 } \
883}
884
1a94ca49
RK
885/* Generate necessary RTL for __builtin_saveregs().
886 ARGLIST is the argument list; see expr.c. */
887extern struct rtx_def *alpha_builtin_saveregs ();
888#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
889
890/* Define the information needed to generate branch and scc insns. This is
891 stored from the compare operation. Note that we can't use "rtx" here
892 since it hasn't been defined! */
893
894extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
895extern int alpha_compare_fp_p;
896
897/* This macro produces the initial definition of a function name. On the
03f8c4cc 898 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
899
900extern char *alpha_function_name;
901
902#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 903{ \
1a94ca49
RK
904 alpha_function_name = NAME; \
905}
906
907/* This macro generates the assembly code for function entry.
908 FILE is a stdio stream to output the code to.
909 SIZE is an int: how many units of temporary storage to allocate.
910 Refer to the array `regs_ever_live' to determine which registers
911 to save; `regs_ever_live[I]' is nonzero if register number I
912 is ever used in the function. This macro is responsible for
913 knowing which registers should not be saved even if used. */
914
915#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
916
917/* Output assembler code to FILE to increment profiler label # LABELNO
85d159a3
RK
918 for profiling a function entry. Profiling for gprof does not
919 require LABELNO so we don't reference it at all. This does,
920 however, mean that -p won't work. But OSF/1 doesn't support the
921 traditional prof anyways, so there is no good reason to be
922 backwards compatible. */
923
924#define FUNCTION_PROFILER(FILE, LABELNO) \
925 do { \
1c6c2b05
RK
926 fputs ("\tlda $28,_mcount\n", (FILE)); \
927 fputs ("\tjsr $28,($28),_mcount\n", (FILE)); \
08b2cb48 928 fputs ("\tldgp $29,0($27)\n", (FILE)); \
85d159a3
RK
929 } while (0);
930
931
932/* Output assembler code to FILE to initialize this source file's
933 basic block profiling info, if that has not already been done.
934 This assumes that __bb_init_func doesn't garble a1-a5. */
935
936#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
937 do { \
938 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
939 fputs ("\tlda $16,$PBX32\n", (FILE)); \
940 fputs ("\tldq $26,0($16)\n", (FILE)); \
941 fputs ("\tbne $26,1f\n", (FILE)); \
942 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
943 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
944 fputs ("\tldgp $29,0($26)\n", (FILE)); \
945 fputs ("1:\n", (FILE)); \
85d159a3
RK
946 ASM_OUTPUT_REG_POP (FILE, 16); \
947 } while (0);
948
949/* Output assembler code to FILE to increment the entry-count for
950 the BLOCKNO'th basic block in this source file. */
951
952#define BLOCK_PROFILER(FILE, BLOCKNO) \
953 do { \
954 int blockn = (BLOCKNO); \
a62eb16f 955 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
956 fputs ("\tstq $26,0($30)\n", (FILE)); \
957 fputs ("\tstq $27,8($30)\n", (FILE)); \
958 fputs ("\tlda $26,$PBX34\n", (FILE)); \
959 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
960 fputs ("\taddq $27,1,$27\n", (FILE)); \
961 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
962 fputs ("\tldq $26,0($30)\n", (FILE)); \
963 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 964 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 965 } while (0)
1a94ca49 966
1a94ca49
RK
967
968/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
969 the stack pointer does not matter. The value is tested only in
970 functions that have frame pointers.
971 No definition is equivalent to always zero. */
972
973#define EXIT_IGNORE_STACK 1
974
975/* This macro generates the assembly code for function exit,
976 on machines that need it. If FUNCTION_EPILOGUE is not defined
977 then individual return instructions are generated for each
978 return statement. Args are same as for FUNCTION_PROLOGUE.
979
980 The function epilogue should not depend on the current stack pointer!
981 It should use the frame pointer only. This is mandatory because
982 of alloca; we also take advantage of it to omit stack adjustments
983 before returning. */
984
985#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
986
987\f
988/* Output assembler code for a block containing the constant parts
989 of a trampoline, leaving space for the variable parts.
990
991 The trampoline should set the static chain pointer to value placed
7981384f
RK
992 into the trampoline and should branch to the specified routine.
993 Note that $27 has been set to the address of the trampoline, so we can
994 use it for addressability of the two data items. Trampolines are always
995 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
996
997#define TRAMPOLINE_TEMPLATE(FILE) \
998{ \
7981384f 999 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1000 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1001 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1002 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1003 fprintf (FILE, "\t.quad 0,0\n"); \
1004}
1005
3a523eeb
RS
1006/* Section in which to place the trampoline. On Alpha, instructions
1007 may only be placed in a text segment. */
1008
1009#define TRAMPOLINE_SECTION text_section
1010
1a94ca49
RK
1011/* Length in units of the trampoline for entering a nested function. */
1012
7981384f 1013#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1014
1015/* Emit RTL insns to initialize the variable parts of a trampoline.
1016 FNADDR is an RTX for the address of the function's pure code.
1017 CXT is an RTX for the static chain value for the function. We assume
1018 here that a function will be called many more times than its address
1019 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1020 to initialize the "hint" field in the JMP insn. Note that the hint
1021 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1022
1023#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1024{ \
1025 rtx _temp, _temp1, _addr; \
1026 \
1027 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1028 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1029 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1030 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1031 \
7981384f
RK
1032 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1033 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1034 OPTAB_WIDEN); \
1035 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1036 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1037 _temp = expand_and (gen_lowpart (SImode, _temp), \
1038 GEN_INT (0x3fff), 0); \
1a94ca49 1039 \
7981384f 1040 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1041 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1042 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1043 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1044 OPTAB_WIDEN); \
1045 \
1046 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1047 \
1048 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1049 "__enable_execute_stack"), \
1050 0, VOIDmode, 1,_addr, Pmode); \
1051 \
1052 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1053 gen_rtvec (1, const0_rtx), 0)); \
1054}
1055
1056/* Attempt to turn on access permissions for the stack. */
1057
1058#define TRANSFER_FROM_TRAMPOLINE \
1059 \
1060void \
1061__enable_execute_stack (addr) \
1062 void *addr; \
1063{ \
1064 long size = getpagesize (); \
1065 long mask = ~(size-1); \
1066 char *page = (char *) (((long) addr) & mask); \
1067 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1068 \
1069 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1070 if (mprotect (page, end - page, 7) < 0) \
1071 perror ("mprotect of trampoline code"); \
1a94ca49
RK
1072}
1073\f
1074/* Addressing modes, and classification of registers for them. */
1075
1076/* #define HAVE_POST_INCREMENT */
1077/* #define HAVE_POST_DECREMENT */
1078
1079/* #define HAVE_PRE_DECREMENT */
1080/* #define HAVE_PRE_INCREMENT */
1081
1082/* Macros to check register numbers against specific register classes. */
1083
1084/* These assume that REGNO is a hard or pseudo reg number.
1085 They give nonzero only if REGNO is a hard reg of the suitable class
1086 or a pseudo reg currently allocated to a suitable hard reg.
1087 Since they use reg_renumber, they are safe only once reg_renumber
1088 has been allocated, which happens in local-alloc.c. */
1089
1090#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1091#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1092((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1093 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1094\f
1095/* Maximum number of registers that can appear in a valid memory address. */
1096#define MAX_REGS_PER_ADDRESS 1
1097
1098/* Recognize any constant value that is a valid address. For the Alpha,
1099 there are only constants none since we want to use LDA to load any
1100 symbolic addresses into registers. */
1101
1102#define CONSTANT_ADDRESS_P(X) \
1103 (GET_CODE (X) == CONST_INT \
1104 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1105
1106/* Include all constant integers and constant doubles, but not
1107 floating-point, except for floating-point zero. */
1108
1109#define LEGITIMATE_CONSTANT_P(X) \
1110 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1111 || (X) == CONST0_RTX (GET_MODE (X)))
1112
1113/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1114 and check its validity for a certain class.
1115 We have two alternate definitions for each of them.
1116 The usual definition accepts all pseudo regs; the other rejects
1117 them unless they have been allocated suitable hard regs.
1118 The symbol REG_OK_STRICT causes the latter definition to be used.
1119
1120 Most source files want to accept pseudo regs in the hope that
1121 they will get allocated to the class that the insn wants them to be in.
1122 Source files for reload pass need to be strict.
1123 After reload, it makes no difference, since pseudo regs have
1124 been eliminated by then. */
1125
1126#ifndef REG_OK_STRICT
1127
1128/* Nonzero if X is a hard reg that can be used as an index
1129 or if it is a pseudo reg. */
1130#define REG_OK_FOR_INDEX_P(X) 0
1131/* Nonzero if X is a hard reg that can be used as a base reg
1132 or if it is a pseudo reg. */
1133#define REG_OK_FOR_BASE_P(X) \
52a69200 1134 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1135
1136#else
1137
1138/* Nonzero if X is a hard reg that can be used as an index. */
1139#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1140/* Nonzero if X is a hard reg that can be used as a base reg. */
1141#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1142
1143#endif
1144\f
1145/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1146 that is a valid memory address for an instruction.
1147 The MODE argument is the machine mode for the MEM expression
1148 that wants to use this address.
1149
1150 For Alpha, we have either a constant address or the sum of a register
1151 and a constant address, or just a register. For DImode, any of those
1152 forms can be surrounded with an AND that clear the low-order three bits;
1153 this is an "unaligned" access.
1154
1155 We also allow a SYMBOL_REF that is the name of the current function as
1156 valid address. This is for CALL_INSNs. It cannot be used in any other
1157 context.
1158
1159 First define the basic valid address. */
1160
1161#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1162{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1163 goto ADDR; \
1164 if (CONSTANT_ADDRESS_P (X)) \
1165 goto ADDR; \
1166 if (GET_CODE (X) == PLUS \
1167 && REG_P (XEXP (X, 0)) \
1168 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1169 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1170 goto ADDR; \
1171}
1172
1173/* Now accept the simple address, or, for DImode only, an AND of a simple
1174 address that turns off the low three bits. */
1175
1176extern char *current_function_name;
1177
1178#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1179{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1180 if ((MODE) == DImode \
1181 && GET_CODE (X) == AND \
1182 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1183 && INTVAL (XEXP (X, 1)) == -8) \
1184 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1185 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1186 && ! strcmp (XSTR (X, 0), current_function_name)) \
1187 goto ADDR; \
1188}
1189
1190/* Try machine-dependent ways of modifying an illegitimate address
1191 to be legitimate. If we find one, return the new, valid address.
1192 This macro is used in only one place: `memory_address' in explow.c.
1193
1194 OLDX is the address as it was before break_out_memory_refs was called.
1195 In some cases it is useful to look at this to decide what needs to be done.
1196
1197 MODE and WIN are passed so that this macro can use
1198 GO_IF_LEGITIMATE_ADDRESS.
1199
1200 It is always safe for this macro to do nothing. It exists to recognize
1201 opportunities to optimize the output.
1202
1203 For the Alpha, there are three cases we handle:
1204
1205 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1206 valid offset, compute the high part of the constant and add it to the
1207 register. Then our address is (plus temp low-part-const).
1208 (2) If the address is (const (plus FOO const_int)), find the low-order
1209 part of the CONST_INT. Then load FOO plus any high-order part of the
1210 CONST_INT into a register. Our address is (plus reg low-part-const).
1211 This is done to reduce the number of GOT entries.
1212 (3) If we have a (plus reg const), emit the load as in (2), then add
1213 the two registers, and finally generate (plus reg low-part-const) as
1214 our address. */
1215
1216#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1217{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1218 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1219 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1220 { \
1221 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1222 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1223 HOST_WIDE_INT highpart = val - lowpart; \
1224 rtx high = GEN_INT (highpart); \
1225 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1226 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1227 \
1228 (X) = plus_constant (temp, lowpart); \
1229 goto WIN; \
1230 } \
1231 else if (GET_CODE (X) == CONST \
1232 && GET_CODE (XEXP (X, 0)) == PLUS \
1233 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1234 { \
1235 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1236 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1237 HOST_WIDE_INT highpart = val - lowpart; \
1238 rtx high = XEXP (XEXP (X, 0), 0); \
1239 \
1240 if (highpart) \
1241 high = plus_constant (high, highpart); \
1242 \
1243 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1244 goto WIN; \
1245 } \
1246 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1247 && GET_CODE (XEXP (X, 1)) == CONST \
1248 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1249 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1250 { \
1251 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1252 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1253 HOST_WIDE_INT highpart = val - lowpart; \
1254 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1255 \
1256 if (highpart) \
1257 high = plus_constant (high, highpart); \
1258 \
1259 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1260 force_reg (Pmode, high), \
80f251fe 1261 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1262 (X) = plus_constant (high, lowpart); \
1263 goto WIN; \
1264 } \
1265}
1266
1267/* Go to LABEL if ADDR (a legitimate address expression)
1268 has an effect that depends on the machine mode it is used for.
1269 On the Alpha this is true only for the unaligned modes. We can
1270 simplify this test since we know that the address must be valid. */
1271
1272#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1273{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1274
1275/* Compute the cost of an address. For the Alpha, all valid addresses are
1276 the same cost. */
1277
1278#define ADDRESS_COST(X) 0
1279
1280/* Define this if some processing needs to be done immediately before
1281 emitting code for an insn. */
1282
1283/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1284\f
1285/* Specify the machine mode that this machine uses
1286 for the index in the tablejump instruction. */
1287#define CASE_VECTOR_MODE SImode
1288
1289/* Define this if the tablejump instruction expects the table
1290 to contain offsets from the address of the table.
260ced47
RK
1291 Do not define this if the table should contain absolute addresses.
1292 On the Alpha, the table is really GP-relative, not relative to the PC
1293 of the table, but we pretend that it is PC-relative; this should be OK,
1294 but we hsould try to find some better way sometime. */
1295#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1296
1297/* Specify the tree operation to be used to convert reals to integers. */
1298#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1299
1300/* This is the kind of divide that is easiest to do in the general case. */
1301#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1302
1303/* Define this as 1 if `char' should by default be signed; else as 0. */
1304#define DEFAULT_SIGNED_CHAR 1
1305
1306/* This flag, if defined, says the same insns that convert to a signed fixnum
1307 also convert validly to an unsigned one.
1308
1309 We actually lie a bit here as overflow conditions are different. But
1310 they aren't being checked anyway. */
1311
1312#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1313
1314/* Max number of bytes we can move to or from memory
1315 in one reasonably fast instruction. */
1316
1317#define MOVE_MAX 8
1318
1319/* Largest number of bytes of an object that can be placed in a register.
1320 On the Alpha we have plenty of registers, so use TImode. */
1321#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1322
1323/* Nonzero if access to memory by bytes is no faster than for words.
1324 Also non-zero if doing byte operations (specifically shifts) in registers
1325 is undesirable.
1326
1327 On the Alpha, we want to not use the byte operation and instead use
1328 masking operations to access fields; these will save instructions. */
1329
1330#define SLOW_BYTE_ACCESS 1
1331
9a63901f
RK
1332/* Define if operations between registers always perform the operation
1333 on the full register even if a narrower mode is specified. */
1334#define WORD_REGISTER_OPERATIONS
1335
1336/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1337 will either zero-extend or sign-extend. The value of this macro should
1338 be the code that says which one of the two operations is implicitly
1339 done, NIL if none. */
1340#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1341
225211e2
RK
1342/* Define if loading short immediate values into registers sign extends. */
1343#define SHORT_IMMEDIATES_SIGN_EXTEND
1344
1a94ca49
RK
1345/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1346 is done just by pretending it is already truncated. */
1347#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1348
1349/* We assume that the store-condition-codes instructions store 0 for false
1350 and some other value for true. This is the value stored for true. */
1351
1352#define STORE_FLAG_VALUE 1
1353
1354/* Define the value returned by a floating-point comparison instruction. */
1355
1356#define FLOAT_STORE_FLAG_VALUE 0.5
1357
35bb77fd
RK
1358/* Canonicalize a comparison from one we don't have to one we do have. */
1359
1360#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1361 do { \
1362 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1363 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1364 { \
1365 rtx tem = (OP0); \
1366 (OP0) = (OP1); \
1367 (OP1) = tem; \
1368 (CODE) = swap_condition (CODE); \
1369 } \
1370 if (((CODE) == LT || (CODE) == LTU) \
1371 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1372 { \
1373 (CODE) = (CODE) == LT ? LE : LEU; \
1374 (OP1) = GEN_INT (255); \
1375 } \
1376 } while (0)
1377
1a94ca49
RK
1378/* Specify the machine mode that pointers have.
1379 After generation of rtl, the compiler makes no further distinction
1380 between pointers and any other objects of this machine mode. */
1381#define Pmode DImode
1382
1383/* Mode of a function address in a call instruction (for indexing purposes). */
1384
1385#define FUNCTION_MODE Pmode
1386
1387/* Define this if addresses of constant functions
1388 shouldn't be put through pseudo regs where they can be cse'd.
1389 Desirable on machines where ordinary constants are expensive
1390 but a CALL with constant address is cheap.
1391
1392 We define this on the Alpha so that gen_call and gen_call_value
1393 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1394 then copy it into a register, thus actually letting the address be
1395 cse'ed. */
1396
1397#define NO_FUNCTION_CSE
1398
d969caf8 1399/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1400 few bits. */
d969caf8 1401#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1402
d721b776
RK
1403/* Use atexit for static constructors/destructors, instead of defining
1404 our own exit function. */
1405#define HAVE_ATEXIT
1406
1a94ca49
RK
1407/* Compute the cost of computing a constant rtl expression RTX
1408 whose rtx-code is CODE. The body of this macro is a portion
1409 of a switch statement. If the code is computed here,
1410 return it with a return statement. Otherwise, break from the switch.
1411
8b7b2e36
RK
1412 If this is an 8-bit constant, return zero since it can be used
1413 nearly anywhere with no cost. If it is a valid operand for an
1414 ADD or AND, likewise return 0 if we know it will be used in that
1415 context. Otherwise, return 2 since it might be used there later.
1416 All other constants take at least two insns. */
1a94ca49
RK
1417
1418#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1419 case CONST_INT: \
06eb8e92 1420 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1421 return 0; \
1a94ca49 1422 case CONST_DOUBLE: \
8b7b2e36
RK
1423 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1424 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1425 return 0; \
1426 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1427 return 2; \
1428 else \
1429 return COSTS_N_INSNS (2); \
1a94ca49
RK
1430 case CONST: \
1431 case SYMBOL_REF: \
1432 case LABEL_REF: \
8b7b2e36 1433 return COSTS_N_INSNS (3);
1a94ca49
RK
1434
1435/* Provide the costs of a rtl expression. This is in the body of a
1436 switch on CODE. */
1437
1438#define RTX_COSTS(X,CODE,OUTER_CODE) \
1439 case PLUS: \
1440 case MINUS: \
1441 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1442 return COSTS_N_INSNS (6); \
b49e978e
RK
1443 else if (GET_CODE (XEXP (X, 0)) == MULT \
1444 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1445 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1446 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1447 break; \
1448 case MULT: \
1449 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1450 return COSTS_N_INSNS (6); \
919ea6a5 1451 return COSTS_N_INSNS (23); \
b49e978e
RK
1452 case ASHIFT: \
1453 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1454 && INTVAL (XEXP (X, 1)) <= 3) \
1455 break; \
1456 /* ... fall through ... */ \
1457 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1458 return COSTS_N_INSNS (2); \
1a94ca49
RK
1459 case DIV: \
1460 case UDIV: \
1461 case MOD: \
1462 case UMOD: \
1463 if (GET_MODE (X) == SFmode) \
1464 return COSTS_N_INSNS (34); \
1465 else if (GET_MODE (X) == DFmode) \
1466 return COSTS_N_INSNS (63); \
1467 else \
1468 return COSTS_N_INSNS (70); \
1469 case MEM: \
1470 return COSTS_N_INSNS (3);
1471\f
1472/* Control the assembler format that we output. */
1473
1474/* Output at beginning of assembler file. */
1475
1476#define ASM_FILE_START(FILE) \
03f8c4cc 1477{ \
130d2d72
RK
1478 alpha_write_verstamp (FILE); \
1479 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1480 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1481 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1482 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1483}
1484
1485/* Output to assembler file text saying following lines
1486 may contain character constants, extra white space, comments, etc. */
1487
1488#define ASM_APP_ON ""
1489
1490/* Output to assembler file text saying following lines
1491 no longer contain unusual constructs. */
1492
1493#define ASM_APP_OFF ""
1494
1495#define TEXT_SECTION_ASM_OP ".text"
1496
1497/* Output before read-only data. */
1498
1499#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1500
1501/* Output before writable data. */
1502
1503#define DATA_SECTION_ASM_OP ".data"
1504
1505/* Define an extra section for read-only data, a routine to enter it, and
1506 indicate that it is for read-only data. */
1507
1508#define EXTRA_SECTIONS readonly_data
1509
1510#define EXTRA_SECTION_FUNCTIONS \
1511void \
1512literal_section () \
1513{ \
1514 if (in_section != readonly_data) \
1515 { \
1516 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1517 in_section = readonly_data; \
1518 } \
1519} \
1520
1521#define READONLY_DATA_SECTION literal_section
1522
ac030a7b
RK
1523/* If we are referencing a function that is static, make the SYMBOL_REF
1524 special. We use this to see indicate we can branch to this function
1525 without setting PV or restoring GP. */
130d2d72
RK
1526
1527#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1528 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1529 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1530
1a94ca49
RK
1531/* How to refer to registers in assembler output.
1532 This sequence is indexed by compiler's hard-register-number (see above). */
1533
1534#define REGISTER_NAMES \
1535{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1536 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1537 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1538 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1539 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1540 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1541 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1542 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1543
1544/* How to renumber registers for dbx and gdb. */
1545
1546#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1547
1548/* This is how to output the definition of a user-level label named NAME,
1549 such as the label on a static function or variable NAME. */
1550
1551#define ASM_OUTPUT_LABEL(FILE,NAME) \
1552 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1553
1554/* This is how to output a command to make the user-level label named NAME
1555 defined for reference from other files. */
1556
1557#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1558 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1559
1560/* This is how to output a reference to a user-level label named NAME.
1561 `assemble_name' uses this. */
1562
1563#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1564 fprintf (FILE, "%s", NAME)
1565
1566/* This is how to output an internal numbered label where
1567 PREFIX is the class of label and NUM is the number within the class. */
1568
1569#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1570 if ((PREFIX)[0] == 'L') \
1571 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1572 else \
1573 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1574
1575/* This is how to output a label for a jump table. Arguments are the same as
1576 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1577 passed. */
1578
1579#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1580{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1581
1582/* This is how to store into the string LABEL
1583 the symbol_ref name of an internal numbered label where
1584 PREFIX is the class of label and NUM is the number within the class.
1585 This is suitable for output with `assemble_name'. */
1586
1587#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1588 if ((PREFIX)[0] == 'L') \
1589 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1590 else \
1591 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1592
1593/* This is how to output an assembler line defining a `double' constant. */
1594
e99300f1
RS
1595#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1596 { \
1597 if (REAL_VALUE_ISINF (VALUE) \
1598 || REAL_VALUE_ISNAN (VALUE) \
1599 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1600 { \
1601 long t[2]; \
1602 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1603 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1604 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1605 } \
1606 else \
1607 { \
1608 char str[30]; \
1609 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1610 fprintf (FILE, "\t.t_floating %s\n", str); \
1611 } \
1612 }
1a94ca49
RK
1613
1614/* This is how to output an assembler line defining a `float' constant. */
1615
e99300f1
RS
1616#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1617 { \
1618 if (REAL_VALUE_ISINF (VALUE) \
1619 || REAL_VALUE_ISNAN (VALUE) \
1620 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1621 { \
1622 long t; \
1623 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1624 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1625 } \
1626 else \
1627 { \
1628 char str[30]; \
1629 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1630 fprintf (FILE, "\t.s_floating %s\n", str); \
1631 } \
1632 }
2700ac93 1633
1a94ca49
RK
1634/* This is how to output an assembler line defining an `int' constant. */
1635
1636#define ASM_OUTPUT_INT(FILE,VALUE) \
45c45e79
RK
1637 fprintf (FILE, "\t.long %d\n", \
1638 (GET_CODE (VALUE) == CONST_INT \
1639 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1a94ca49
RK
1640
1641/* This is how to output an assembler line defining a `long' constant. */
1642
1643#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1644( fprintf (FILE, "\t.quad "), \
1645 output_addr_const (FILE, (VALUE)), \
1646 fprintf (FILE, "\n"))
1647
1648/* Likewise for `char' and `short' constants. */
1649
1650#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1651 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1652 (GET_CODE (VALUE) == CONST_INT \
1653 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1654
1655#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1656 fprintf (FILE, "\t.byte %d\n", \
1657 (GET_CODE (VALUE) == CONST_INT \
1658 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1659
1660/* We use the default ASCII-output routine, except that we don't write more
1661 than 50 characters since the assembler doesn't support very long lines. */
1662
1663#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1664 do { \
1665 FILE *_hide_asm_out_file = (MYFILE); \
1666 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1667 int _hide_thissize = (MYLENGTH); \
1668 int _size_so_far = 0; \
1669 { \
1670 FILE *asm_out_file = _hide_asm_out_file; \
1671 unsigned char *p = _hide_p; \
1672 int thissize = _hide_thissize; \
1673 int i; \
1674 fprintf (asm_out_file, "\t.ascii \""); \
1675 \
1676 for (i = 0; i < thissize; i++) \
1677 { \
1678 register int c = p[i]; \
1679 \
1680 if (_size_so_far ++ > 50 && i < thissize - 4) \
1681 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1682 \
1683 if (c == '\"' || c == '\\') \
1684 putc ('\\', asm_out_file); \
1685 if (c >= ' ' && c < 0177) \
1686 putc (c, asm_out_file); \
1687 else \
1688 { \
1689 fprintf (asm_out_file, "\\%o", c); \
1690 /* After an octal-escape, if a digit follows, \
1691 terminate one string constant and start another. \
1692 The Vax assembler fails to stop reading the escape \
1693 after three digits, so this is the only way we \
1694 can get it to parse the data properly. */ \
1695 if (i < thissize - 1 \
1696 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1697 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1698 } \
1699 } \
1700 fprintf (asm_out_file, "\"\n"); \
1701 } \
1702 } \
1703 while (0)
52a69200 1704
1a94ca49
RK
1705/* This is how to output an insn to push a register on the stack.
1706 It need not be very fast code. */
1707
1708#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1709 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1710 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1711 (REGNO) & 31);
1712
1713/* This is how to output an insn to pop a register from the stack.
1714 It need not be very fast code. */
1715
1716#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1717 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1718 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1719 (REGNO) & 31);
1720
1721/* This is how to output an assembler line for a numeric constant byte. */
1722
1723#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1724 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1725
260ced47
RK
1726/* This is how to output an element of a case-vector that is absolute.
1727 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1728
260ced47 1729#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1730
260ced47 1731/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1732
260ced47
RK
1733#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1734 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1a94ca49
RK
1735
1736/* This is how to output an assembler line
1737 that says to advance the location counter
1738 to a multiple of 2**LOG bytes. */
1739
1740#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1741 if ((LOG) != 0) \
1742 fprintf (FILE, "\t.align %d\n", LOG);
1743
1744/* This is how to advance the location counter by SIZE bytes. */
1745
1746#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1747 fprintf (FILE, "\t.space %d\n", (SIZE))
1748
1749/* This says how to output an assembler line
1750 to define a global common symbol. */
1751
1752#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1753( fputs ("\t.comm ", (FILE)), \
1754 assemble_name ((FILE), (NAME)), \
1755 fprintf ((FILE), ",%d\n", (SIZE)))
1756
1757/* This says how to output an assembler line
1758 to define a local common symbol. */
1759
1760#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1761( fputs ("\t.lcomm ", (FILE)), \
1762 assemble_name ((FILE), (NAME)), \
1763 fprintf ((FILE), ",%d\n", (SIZE)))
1764
1765/* Store in OUTPUT a string (made with alloca) containing
1766 an assembler-name for a local static variable named NAME.
1767 LABELNO is an integer which is different for each call. */
1768
1769#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1770( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1771 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1772
1773/* Define the parentheses used to group arithmetic operations
1774 in assembler code. */
1775
1776#define ASM_OPEN_PAREN "("
1777#define ASM_CLOSE_PAREN ")"
1778
1779/* Define results of standard character escape sequences. */
1780#define TARGET_BELL 007
1781#define TARGET_BS 010
1782#define TARGET_TAB 011
1783#define TARGET_NEWLINE 012
1784#define TARGET_VT 013
1785#define TARGET_FF 014
1786#define TARGET_CR 015
1787
1788/* Print operand X (an rtx) in assembler syntax to file FILE.
1789 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1790 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1791
1792#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1793
1794/* Determine which codes are valid without a following integer. These must
1795 not be alphabetic. */
1796
1797#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1798\f
1799/* Print a memory address as an operand to reference that memory location. */
1800
1801#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1802{ rtx addr = (ADDR); \
1803 int basereg = 31; \
1804 HOST_WIDE_INT offset = 0; \
1805 \
1806 if (GET_CODE (addr) == AND) \
1807 addr = XEXP (addr, 0); \
1808 \
1809 if (GET_CODE (addr) == REG) \
1810 basereg = REGNO (addr); \
1811 else if (GET_CODE (addr) == CONST_INT) \
1812 offset = INTVAL (addr); \
1813 else if (GET_CODE (addr) == PLUS \
1814 && GET_CODE (XEXP (addr, 0)) == REG \
1815 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1816 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1817 else \
1818 abort (); \
1819 \
1820 fprintf (FILE, "%d($%d)", offset, basereg); \
1821}
1822/* Define the codes that are matched by predicates in alpha.c. */
1823
1824#define PREDICATE_CODES \
1825 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1826 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1827 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1828 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1829 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1830 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1831 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1832 {"const48_operand", {CONST_INT}}, \
1833 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1834 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1835 {"mode_mask_operand", {CONST_INT}}, \
1836 {"mul8_operand", {CONST_INT}}, \
1837 {"mode_width_operand", {CONST_INT}}, \
1838 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1839 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1840 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1841 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1842 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1843 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1844 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1845 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1846 SYMBOL_REF, CONST, LABEL_REF}}, \
1847 {"aligned_memory_operand", {MEM}}, \
1848 {"unaligned_memory_operand", {MEM}}, \
1849 {"any_memory_operand", {MEM}},
03f8c4cc 1850\f
34fa88ab
RK
1851/* Tell collect that the object format is ECOFF. */
1852#define OBJECT_FORMAT_COFF
1853#define EXTENDED_COFF
1854
1855/* If we use NM, pass -g to it so it only lists globals. */
1856#define NM_FLAGS "-pg"
1857
03f8c4cc
RK
1858/* Definitions for debugging. */
1859
1860#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1861#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1862#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1863
1864#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
1865#define PREFERRED_DEBUGGING_TYPE \
1866 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
1867#endif
1868
1869
1870/* Correct the offset of automatic variables and arguments. Note that
1871 the Alpha debug format wants all automatic variables and arguments
1872 to be in terms of two different offsets from the virtual frame pointer,
1873 which is the stack pointer before any adjustment in the function.
1874 The offset for the argument pointer is fixed for the native compiler,
1875 it is either zero (for the no arguments case) or large enough to hold
1876 all argument registers.
1877 The offset for the auto pointer is the fourth argument to the .frame
1878 directive (local_offset).
1879 To stay compatible with the native tools we use the same offsets
1880 from the virtual frame pointer and adjust the debugger arg/auto offsets
1881 accordingly. These debugger offsets are set up in output_prolog. */
1882
1883long alpha_arg_offset;
1884long alpha_auto_offset;
1885#define DEBUGGER_AUTO_OFFSET(X) \
1886 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1887#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1888
1889
1890#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1891 alpha_output_lineno (STREAM, LINE)
1892extern void alpha_output_lineno ();
1893
1894#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1895 alpha_output_filename (STREAM, NAME)
1896extern void alpha_output_filename ();
1897
1898
ab8b8941
RK
1899/* mips-tfile.c limits us to strings of one page. */
1900#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1901
1902/* By default, turn on GDB extensions. */
1903#define DEFAULT_GDB_EXTENSIONS 1
1904
1905/* If we are smuggling stabs through the ALPHA ECOFF object
1906 format, put a comment in front of the .stab<x> operation so
1907 that the ALPHA assembler does not choke. The mips-tfile program
1908 will correctly put the stab into the object file. */
1909
1910#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1911#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1912#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1913
1914/* Forward references to tags are allowed. */
1915#define SDB_ALLOW_FORWARD_REFERENCES
1916
1917/* Unknown tags are also allowed. */
1918#define SDB_ALLOW_UNKNOWN_REFERENCES
1919
1920#define PUT_SDB_DEF(a) \
1921do { \
1922 fprintf (asm_out_file, "\t%s.def\t", \
1923 (TARGET_GAS) ? "" : "#"); \
1924 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1925 fputc (';', asm_out_file); \
1926} while (0)
1927
1928#define PUT_SDB_PLAIN_DEF(a) \
1929do { \
1930 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1931 (TARGET_GAS) ? "" : "#", (a)); \
1932} while (0)
1933
1934#define PUT_SDB_TYPE(a) \
1935do { \
1936 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1937} while (0)
1938
1939/* For block start and end, we create labels, so that
1940 later we can figure out where the correct offset is.
1941 The normal .ent/.end serve well enough for functions,
1942 so those are just commented out. */
1943
1944extern int sdb_label_count; /* block start/end next label # */
1945
1946#define PUT_SDB_BLOCK_START(LINE) \
1947do { \
1948 fprintf (asm_out_file, \
1949 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1950 sdb_label_count, \
1951 (TARGET_GAS) ? "" : "#", \
1952 sdb_label_count, \
1953 (LINE)); \
1954 sdb_label_count++; \
1955} while (0)
1956
1957#define PUT_SDB_BLOCK_END(LINE) \
1958do { \
1959 fprintf (asm_out_file, \
1960 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1961 sdb_label_count, \
1962 (TARGET_GAS) ? "" : "#", \
1963 sdb_label_count, \
1964 (LINE)); \
1965 sdb_label_count++; \
1966} while (0)
1967
1968#define PUT_SDB_FUNCTION_START(LINE)
1969
1970#define PUT_SDB_FUNCTION_END(LINE)
1971
1972#define PUT_SDB_EPILOGUE_END(NAME)
1973
1974/* Specify to run a post-processor, mips-tfile after the assembler
1975 has run to stuff the ecoff debug information into the object file.
1976 This is needed because the Alpha assembler provides no way
1977 of specifying such information in the assembly file. */
1978
88681624 1979#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
1980
1981#define ASM_FINAL_SPEC "\
1982%{malpha-as: %{!mno-mips-tfile: \
1983 \n mips-tfile %{v*: -v} \
1984 %{K: -I %b.o~} \
1985 %{!K: %{save-temps: -I %b.o~}} \
1986 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1987 %{.s:%i} %{!.s:%g.s}}}"
1988
1989#else
1990#define ASM_FINAL_SPEC "\
1991%{!mgas: %{!mno-mips-tfile: \
1992 \n mips-tfile %{v*: -v} \
1993 %{K: -I %b.o~} \
1994 %{!K: %{save-temps: -I %b.o~}} \
1995 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1996 %{.s:%i} %{!.s:%g.s}}}"
1997
1998#endif
1999
2000/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2001 mips-tdump.c to print them out.
2002
2003 These must match the corresponding definitions in gdb/mipsread.c.
2004 Unfortunately, gcc and gdb do not currently share any directories. */
2005
2006#define CODE_MASK 0x8F300
2007#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2008#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2009#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2010
2011/* Override some mips-tfile definitions. */
2012
2013#define SHASH_SIZE 511
2014#define THASH_SIZE 55
1e6c6f11
RK
2015
2016/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2017
2018#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2019
2020/* The system headers under OSF/1 are C++-aware. */
2021#define NO_IMPLICIT_EXTERN_C
54190234
JM
2022
2023/* The linker will stick __main into the .init section. */
2024#define HAS_INIT_SECTION
f987462f
JM
2025#define INIT_NAME_FORMAT "__init_%s"
2026#define FINI_NAME_FORMAT "__fini_%s"
This page took 0.355503 seconds and 5 git commands to generate.