]> gcc.gnu.org Git - gcc.git/blame - gcc/combine.c
re PR rtl-optimization/19296 (Range check on short miscompiled at -O)
[gcc.git] / gcc / combine.c
CommitLineData
230d793d 1/* Optimize by combining instructions for GNU compiler.
3c71940f 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
d9221e01 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
230d793d 4
1322177d 5This file is part of GCC.
230d793d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
230d793d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
230d793d
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
230d793d 21
230d793d
RS
22/* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
230d793d 56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
663522cb 57 removed because there is no way to know which register it was
230d793d
RS
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
230d793d 73#include "config.h"
670ee920 74#include "system.h"
4977bab6
ZW
75#include "coretypes.h"
76#include "tm.h"
c5c76735 77#include "rtl.h"
61f71b34 78#include "tree.h"
a091679a 79#include "tm_p.h"
230d793d
RS
80#include "flags.h"
81#include "regs.h"
55310dad 82#include "hard-reg-set.h"
230d793d
RS
83#include "basic-block.h"
84#include "insn-config.h"
49ad7cfa 85#include "function.h"
ec5c56db 86/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
d6f4ec51 87#include "expr.h"
230d793d
RS
88#include "insn-attr.h"
89#include "recog.h"
90#include "real.h"
2e107e9e 91#include "toplev.h"
61f71b34 92#include "target.h"
2f93eea8 93#include "rtlhooks-def.h"
64b8935d
RS
94/* Include output.h for dump_file. */
95#include "output.h"
f73ad30e 96
230d793d
RS
97/* Number of attempts to combine instructions in this function. */
98
99static int combine_attempts;
100
101/* Number of attempts that got as far as substitution in this function. */
102
103static int combine_merges;
104
105/* Number of instructions combined with added SETs in this function. */
106
107static int combine_extras;
108
109/* Number of instructions combined in this function. */
110
111static int combine_successes;
112
113/* Totals over entire compilation. */
114
115static int total_attempts, total_merges, total_extras, total_successes;
9210df58 116
230d793d
RS
117\f
118/* Vector mapping INSN_UIDs to cuids.
5089e22e 119 The cuids are like uids but increase monotonically always.
230d793d
RS
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
124
125static int *uid_cuid;
4255220d 126static int max_uid_cuid;
230d793d
RS
127
128/* Get the cuid of an insn. */
129
1427d6d2
RK
130#define INSN_CUID(INSN) \
131(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
230d793d 132
42a6ff51
AO
133/* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135
136#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
505ddab6 137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
42a6ff51 138
230d793d
RS
139/* Maximum register number, which is the size of the tables below. */
140
770ae6cc 141static unsigned int combine_max_regno;
230d793d 142
5eaad481
PB
143struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
230d793d 146
5eaad481
PB
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
230d793d 149
5eaad481
PB
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
230d793d 155
5eaad481
PB
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
158
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
162
163 Therefore, we maintain the following fields:
164
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
173
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
178
179 (The next two parameters are out of date).
180
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
183
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
188
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
192
193 /* Record last value assigned to (hard or pseudo) register n. */
194
195 rtx last_set_value;
196
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
199
200 int last_set_table_tick;
201
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
204
205 int last_set_label;
206
207 /* These fields are maintained in parallel with last_set_value and are
324a6c95 208 used to store the mode in which the register was last set, the bits
5eaad481
PB
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
211
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
215
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
219
220 char last_set_invalid;
221
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
226
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
231
232 If an entry is zero, it means that we don't know anything special. */
233
234 unsigned char sign_bit_copies;
235
236 unsigned HOST_WIDE_INT nonzero_bits;
237};
238
239static struct reg_stat *reg_stat;
230d793d
RS
240
241/* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
243
244static int mem_last_set;
245
246/* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
248
249static int last_call_cuid;
250
251/* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
256
257static rtx subst_insn;
258
259/* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
265
266static int subst_low_cuid;
267
6e25d159
RK
268/* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
270
271static HARD_REG_SET newpat_used_regs;
272
abe6e52f
RK
273/* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
276
277static rtx added_links_insn;
278
f6366fc7
ZD
279/* Basic block in which we are performing combines. */
280static basic_block this_basic_block;
715e7fbc 281
663522cb
KH
282/* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
715e7fbc
RH
284 those blocks as starting points. */
285static sbitmap refresh_blocks;
230d793d 286\f
6fd21094 287/* The following array records the insn_rtx_cost for every insn
64b8935d
RS
288 in the instruction stream. */
289
290static int *uid_insn_cost;
291
292/* Length of the currently allocated uid_insn_cost array. */
293
294static int last_insn_cost;
295
0f41302f 296/* Incremented for each label. */
230d793d 297
568356af 298static int label_tick;
230d793d 299
5eaad481
PB
300/* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
230d793d 302
951553af 303static enum machine_mode nonzero_bits_mode;
230d793d 304
5eaad481
PB
305/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
230d793d 310
951553af 311static int nonzero_sign_valid;
55310dad 312
230d793d
RS
313\f
314/* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
317
318struct undo
319{
241cea85 320 struct undo *next;
230d793d 321 int is_int;
3129af4c
RS
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
230d793d
RS
324};
325
326/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
328
230d793d 329 other_insn is nonzero if we have modified some other insn in the process
f1c6ba8b 330 of working on subst_insn. It must be verified too. */
230d793d
RS
331
332struct undobuf
333{
241cea85
RK
334 struct undo *undos;
335 struct undo *frees;
230d793d
RS
336 rtx other_insn;
337};
338
339static struct undobuf undobuf;
340
230d793d
RS
341/* Number of times the pseudo being substituted for
342 was found and replaced. */
343
344static int n_occurrences;
345
2f93eea8
PB
346static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
79a490a9
AJ
353static void do_SUBST (rtx *, rtx);
354static void do_SUBST_INT (int *, int);
5eaad481 355static void init_reg_last (void);
79a490a9
AJ
356static void setup_incoming_promotions (void);
357static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358static int cant_combine_insn_p (rtx);
359static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
79a490a9
AJ
360static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361static int contains_muldiv (rtx);
362static rtx try_combine (rtx, rtx, rtx, int *);
363static void undo_all (void);
364static void undo_commit (void);
365static rtx *find_split_point (rtx *, rtx);
366static rtx subst (rtx, rtx, rtx, int, int);
6621d78e 367static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
79a490a9
AJ
368static rtx simplify_if_then_else (rtx);
369static rtx simplify_set (rtx);
6621d78e 370static rtx simplify_logical (rtx);
79a490a9
AJ
371static rtx expand_compound_operation (rtx);
372static rtx expand_field_assignment (rtx);
373static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375static rtx extract_left_shift (rtx, int);
376static rtx make_compound_operation (rtx, enum rtx_code);
377static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381static rtx if_then_else_cond (rtx, rtx *, rtx *);
382static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383static int rtx_equal_for_field_assignment_p (rtx, rtx);
384static rtx make_field_assignment (rtx);
385static rtx apply_distributive_law (rtx);
386static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
79a490a9
AJ
388static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392static int recog_for_combine (rtx *, rtx, rtx *);
393static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
1999435c 394static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
79a490a9
AJ
395static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396static void update_table_tick (rtx);
397static void record_value_for_reg (rtx, rtx, rtx);
398static void check_promoted_subreg (rtx, rtx);
399static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400static void record_dead_and_set_regs (rtx);
401static int get_last_value_validate (rtx *, rtx, int, int);
402static rtx get_last_value (rtx);
403static int use_crosses_set_p (rtx, int);
404static void reg_dead_at_p_1 (rtx, rtx, void *);
405static int reg_dead_at_p (rtx, rtx);
406static void move_deaths (rtx, rtx, int, rtx, rtx *);
407static int reg_bitfield_target_p (rtx, rtx);
408static void distribute_notes (rtx, rtx, rtx, rtx);
409static void distribute_links (rtx);
410static void mark_used_regs_combine (rtx);
411static int insn_cuid (rtx);
412static void record_promoted_value (rtx, rtx);
413static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414static enum rtx_code combine_reversed_comparison_code (rtx);
67962db5
RS
415static int unmentioned_reg_p_1 (rtx *, void *);
416static bool unmentioned_reg_p (rtx, rtx);
2f93eea8
PB
417\f
418
419/* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421#undef RTL_HOOKS_GEN_LOWPART
422#define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
423
424#undef RTL_HOOKS_REG_NONZERO_REG_BITS
425#define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
426
427#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
429
430static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
431
230d793d 432\f
76095e2f
RH
433/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
438
439static void
79a490a9 440do_SUBST (rtx *into, rtx newval)
76095e2f
RH
441{
442 struct undo *buf;
443 rtx oldval = *into;
444
445 if (oldval == newval)
446 return;
447
4161da12
AO
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
455 {
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
341c100f
NS
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
4161da12
AO
460
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
341c100f
NS
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
e869aa39 471 }
4161da12 472
76095e2f
RH
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
703ad42b 476 buf = xmalloc (sizeof (struct undo));
76095e2f
RH
477
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
482
483 buf->next = undobuf.undos, undobuf.undos = buf;
484}
485
486#define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
487
488/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
491
492static void
79a490a9 493do_SUBST_INT (int *into, int newval)
76095e2f
RH
494{
495 struct undo *buf;
3129af4c 496 int oldval = *into;
76095e2f
RH
497
498 if (oldval == newval)
499 return;
500
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
703ad42b 504 buf = xmalloc (sizeof (struct undo));
76095e2f
RH
505
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
510
511 buf->next = undobuf.undos, undobuf.undos = buf;
512}
513
514#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
515\f
64b8935d 516/* Subroutine of try_combine. Determine whether the combine replacement
6fd21094 517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
64b8935d
RS
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
522
523static bool
524combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
525{
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
529
6fd21094 530 /* Lookup the original insn_rtx_costs. */
64b8935d
RS
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
535
536 if (i1)
537 {
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
542 }
543 else
544 {
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
547 }
548
6fd21094
RS
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
64b8935d
RS
551 if (newi2pat)
552 {
6fd21094 553 new_i2_cost = insn_rtx_cost (newi2pat);
64b8935d
RS
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
556 }
557 else
558 {
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
561 }
562
6bd26f0b
ILT
563 if (undobuf.other_insn)
564 {
565 int old_other_cost, new_other_cost;
566
567 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
568 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
569 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
570 if (old_other_cost > 0 && new_other_cost > 0)
571 {
572 old_cost += old_other_cost;
573 new_cost += new_other_cost;
574 }
575 else
576 old_cost = 0;
577 }
578
64b8935d
RS
579 /* Disallow this recombination if both new_cost and old_cost are
580 greater than zero, and new_cost is greater than old cost. */
6bd26f0b 581 if (old_cost > 0
64b8935d
RS
582 && new_cost > old_cost)
583 {
584 if (dump_file)
585 {
586 if (i1)
587 {
588 fprintf (dump_file,
589 "rejecting combination of insns %d, %d and %d\n",
590 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
591 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
592 i1_cost, i2_cost, i3_cost, old_cost);
593 }
594 else
595 {
596 fprintf (dump_file,
597 "rejecting combination of insns %d and %d\n",
598 INSN_UID (i2), INSN_UID (i3));
599 fprintf (dump_file, "original costs %d + %d = %d\n",
600 i2_cost, i3_cost, old_cost);
601 }
602
603 if (newi2pat)
604 {
605 fprintf (dump_file, "replacement costs %d + %d = %d\n",
606 new_i2_cost, new_i3_cost, new_cost);
607 }
608 else
609 fprintf (dump_file, "replacement cost %d\n", new_cost);
610 }
611
612 return false;
613 }
614
615 /* Update the uid_insn_cost array with the replacement costs. */
616 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
617 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
618 if (i1)
619 uid_insn_cost[INSN_UID (i1)] = 0;
620
621 return true;
622}
623\f
230d793d 624/* Main entry point for combiner. F is the first insn of the function.
663522cb 625 NREGS is the first unused pseudo-reg number.
230d793d 626
da7d8304 627 Return nonzero if the combiner has turned an indirect jump
44a76fc8
AG
628 instruction into a direct jump. */
629int
79a490a9 630combine_instructions (rtx f, unsigned int nregs)
230d793d 631{
b3694847 632 rtx insn, next;
b729186a 633#ifdef HAVE_cc0
b3694847 634 rtx prev;
b729186a 635#endif
b3694847
SS
636 int i;
637 rtx links, nextlinks;
230d793d 638
44a76fc8
AG
639 int new_direct_jump_p = 0;
640
230d793d
RS
641 combine_attempts = 0;
642 combine_merges = 0;
643 combine_extras = 0;
644 combine_successes = 0;
645
646 combine_max_regno = nregs;
647
2f93eea8 648 rtl_hooks = combine_rtl_hooks;
4de249d9 649
5eaad481 650 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
230d793d
RS
651
652 init_recog_no_volatile ();
653
654 /* Compute maximum uid value so uid_cuid can be allocated. */
655
656 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
657 if (INSN_UID (insn) > i)
658 i = INSN_UID (insn);
659
703ad42b 660 uid_cuid = xmalloc ((i + 1) * sizeof (int));
4255220d 661 max_uid_cuid = i;
230d793d 662
951553af 663 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
230d793d 664
5eaad481
PB
665 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
666 problems when, for example, we have j <<= 1 in a loop. */
230d793d 667
951553af 668 nonzero_sign_valid = 0;
230d793d
RS
669
670 /* Compute the mapping from uids to cuids.
671 Cuids are numbers assigned to insns, like uids,
663522cb 672 except that cuids increase monotonically through the code.
230d793d
RS
673
674 Scan all SETs and see if we can deduce anything about what
951553af 675 bits are known to be zero for some registers and how many copies
d79f08e0
RK
676 of the sign bit are known to exist for those registers.
677
678 Also set any known values so that we can use it while searching
679 for what bits are known to be set. */
680
681 label_tick = 1;
230d793d 682
7988fd36
RK
683 setup_incoming_promotions ();
684
d55bc081 685 refresh_blocks = sbitmap_alloc (last_basic_block);
715e7fbc 686 sbitmap_zero (refresh_blocks);
715e7fbc 687
6fd21094 688 /* Allocate array of current insn_rtx_costs. */
64b8935d
RS
689 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
690 last_insn_cost = max_uid_cuid;
691
230d793d
RS
692 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
693 {
4255220d 694 uid_cuid[INSN_UID (insn)] = ++i;
d79f08e0
RK
695 subst_low_cuid = i;
696 subst_insn = insn;
697
2c3c49de 698 if (INSN_P (insn))
d79f08e0 699 {
663522cb 700 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
84832317 701 NULL);
d79f08e0 702 record_dead_and_set_regs (insn);
2dab894a
RK
703
704#ifdef AUTO_INC_DEC
705 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
706 if (REG_NOTE_KIND (links) == REG_INC)
84832317
MM
707 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
708 NULL);
2dab894a 709#endif
64b8935d 710
6fd21094
RS
711 /* Record the current insn_rtx_cost of this instruction. */
712 if (NONJUMP_INSN_P (insn))
713 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
64b8935d
RS
714 if (dump_file)
715 fprintf(dump_file, "insn_cost %d: %d\n",
716 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
d79f08e0
RK
717 }
718
4b4bf941 719 if (LABEL_P (insn))
d79f08e0 720 label_tick++;
230d793d
RS
721 }
722
951553af 723 nonzero_sign_valid = 1;
230d793d
RS
724
725 /* Now scan all the insns in forward order. */
726
727 label_tick = 1;
728 last_call_cuid = 0;
729 mem_last_set = 0;
5eaad481 730 init_reg_last ();
7988fd36
RK
731 setup_incoming_promotions ();
732
e0082a72 733 FOR_EACH_BB (this_basic_block)
230d793d 734 {
a813c111
SB
735 for (insn = BB_HEAD (this_basic_block);
736 insn != NEXT_INSN (BB_END (this_basic_block));
e0082a72 737 insn = next ? next : NEXT_INSN (insn))
230d793d 738 {
e0082a72 739 next = 0;
aabb6c74 740
4b4bf941 741 if (LABEL_P (insn))
e0082a72 742 label_tick++;
aabb6c74 743
e0082a72 744 else if (INSN_P (insn))
0b17ab2f 745 {
e0082a72
ZD
746 /* See if we know about function return values before this
747 insn based upon SUBREG flags. */
748 check_promoted_subreg (insn, PATTERN (insn));
230d793d 749
e0082a72 750 /* Try this insn with each insn it links back to. */
230d793d 751
e0082a72
ZD
752 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
753 if ((next = try_combine (insn, XEXP (links, 0),
754 NULL_RTX, &new_direct_jump_p)) != 0)
230d793d 755 goto retry;
0b17ab2f 756
e0082a72
ZD
757 /* Try each sequence of three linked insns ending with this one. */
758
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
760 {
761 rtx link = XEXP (links, 0);
762
763 /* If the linked insn has been replaced by a note, then there
764 is no point in pursuing this chain any further. */
4b4bf941 765 if (NOTE_P (link))
e0082a72
ZD
766 continue;
767
768 for (nextlinks = LOG_LINKS (link);
769 nextlinks;
770 nextlinks = XEXP (nextlinks, 1))
771 if ((next = try_combine (insn, link,
772 XEXP (nextlinks, 0),
773 &new_direct_jump_p)) != 0)
774 goto retry;
775 }
230d793d 776
9b89393b 777#ifdef HAVE_cc0
e0082a72
ZD
778 /* Try to combine a jump insn that uses CC0
779 with a preceding insn that sets CC0, and maybe with its
780 logical predecessor as well.
781 This is how we make decrement-and-branch insns.
782 We need this special code because data flow connections
783 via CC0 do not get entered in LOG_LINKS. */
784
4b4bf941 785 if (JUMP_P (insn)
e0082a72 786 && (prev = prev_nonnote_insn (insn)) != 0
4b4bf941 787 && NONJUMP_INSN_P (prev)
e0082a72
ZD
788 && sets_cc0_p (PATTERN (prev)))
789 {
790 if ((next = try_combine (insn, prev,
791 NULL_RTX, &new_direct_jump_p)) != 0)
792 goto retry;
793
794 for (nextlinks = LOG_LINKS (prev); nextlinks;
795 nextlinks = XEXP (nextlinks, 1))
796 if ((next = try_combine (insn, prev,
797 XEXP (nextlinks, 0),
798 &new_direct_jump_p)) != 0)
799 goto retry;
800 }
230d793d 801
e0082a72 802 /* Do the same for an insn that explicitly references CC0. */
4b4bf941 803 if (NONJUMP_INSN_P (insn)
e0082a72 804 && (prev = prev_nonnote_insn (insn)) != 0
4b4bf941 805 && NONJUMP_INSN_P (prev)
e0082a72
ZD
806 && sets_cc0_p (PATTERN (prev))
807 && GET_CODE (PATTERN (insn)) == SET
808 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
809 {
810 if ((next = try_combine (insn, prev,
811 NULL_RTX, &new_direct_jump_p)) != 0)
812 goto retry;
813
814 for (nextlinks = LOG_LINKS (prev); nextlinks;
815 nextlinks = XEXP (nextlinks, 1))
816 if ((next = try_combine (insn, prev,
817 XEXP (nextlinks, 0),
818 &new_direct_jump_p)) != 0)
819 goto retry;
820 }
230d793d 821
e0082a72
ZD
822 /* Finally, see if any of the insns that this insn links to
823 explicitly references CC0. If so, try this insn, that insn,
824 and its predecessor if it sets CC0. */
825 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
4b4bf941 826 if (NONJUMP_INSN_P (XEXP (links, 0))
e0082a72
ZD
827 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
828 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
829 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
4b4bf941 830 && NONJUMP_INSN_P (prev)
e0082a72
ZD
831 && sets_cc0_p (PATTERN (prev))
832 && (next = try_combine (insn, XEXP (links, 0),
833 prev, &new_direct_jump_p)) != 0)
834 goto retry;
9b89393b 835#endif
e0082a72
ZD
836
837 /* Try combining an insn with two different insns whose results it
838 uses. */
839 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
840 for (nextlinks = XEXP (links, 1); nextlinks;
841 nextlinks = XEXP (nextlinks, 1))
842 if ((next = try_combine (insn, XEXP (links, 0),
843 XEXP (nextlinks, 0),
844 &new_direct_jump_p)) != 0)
845 goto retry;
846
67962db5
RS
847 /* Try this insn with each REG_EQUAL note it links back to. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 {
850 rtx set, note;
851 rtx temp = XEXP (links, 0);
852 if ((set = single_set (temp)) != 0
853 && (note = find_reg_equal_equiv_note (temp)) != 0
854 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
855 /* Avoid using a register that may already been marked
856 dead by an earlier instruction. */
857 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
858 {
859 /* Temporarily replace the set's source with the
860 contents of the REG_EQUAL note. The insn will
861 be deleted or recognized by try_combine. */
862 rtx orig = SET_SRC (set);
863 SET_SRC (set) = XEXP (note, 0);
864 next = try_combine (insn, temp, NULL_RTX,
865 &new_direct_jump_p);
866 if (next)
867 goto retry;
868 SET_SRC (set) = orig;
869 }
870 }
871
4b4bf941 872 if (!NOTE_P (insn))
e0082a72
ZD
873 record_dead_and_set_regs (insn);
874
875 retry:
876 ;
877 }
230d793d
RS
878 }
879 }
c51d95ec 880 clear_bb_flags ();
230d793d 881
f6366fc7
ZD
882 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
883 BASIC_BLOCK (i)->flags |= BB_DIRTY);
c51d95ec 884 new_direct_jump_p |= purge_all_dead_edges (0);
827c06b6 885 delete_noop_moves ();
0005550b 886
c51d95ec
JH
887 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
888 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
889 | PROP_KILL_DEAD_CODE);
c05ddfa7
MM
890
891 /* Clean up. */
715e7fbc 892 sbitmap_free (refresh_blocks);
64b8935d 893 free (uid_insn_cost);
5eaad481 894 free (reg_stat);
c05ddfa7 895 free (uid_cuid);
715e7fbc 896
e7749837
RH
897 {
898 struct undo *undo, *next;
899 for (undo = undobuf.frees; undo; undo = next)
900 {
901 next = undo->next;
902 free (undo);
903 }
904 undobuf.frees = 0;
905 }
906
230d793d
RS
907 total_attempts += combine_attempts;
908 total_merges += combine_merges;
909 total_extras += combine_extras;
910 total_successes += combine_successes;
1a26b032 911
951553af 912 nonzero_sign_valid = 0;
2f93eea8 913 rtl_hooks = general_rtl_hooks;
972b320c
R
914
915 /* Make recognizer allow volatile MEMs again. */
916 init_recog ();
44a76fc8
AG
917
918 return new_direct_jump_p;
230d793d 919}
ef026f91 920
5eaad481 921/* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
ef026f91
RS
922
923static void
5eaad481 924init_reg_last (void)
ef026f91 925{
5eaad481
PB
926 unsigned int i;
927 for (i = 0; i < combine_max_regno; i++)
928 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
ef026f91 929}
230d793d 930\f
7988fd36
RK
931/* Set up any promoted values for incoming argument registers. */
932
ee791cc3 933static void
79a490a9 934setup_incoming_promotions (void)
7988fd36 935{
770ae6cc 936 unsigned int regno;
7988fd36
RK
937 rtx reg;
938 enum machine_mode mode;
939 int unsignedp;
940 rtx first = get_insns ();
941
61f71b34
DD
942 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
943 {
61f71b34
DD
944 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
945 /* Check whether this register can hold an incoming pointer
946 argument. FUNCTION_ARG_REGNO_P tests outgoing register
947 numbers, so translate if necessary due to register windows. */
948 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
949 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
950 {
951 record_value_for_reg
952 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
953 : SIGN_EXTEND),
954 GET_MODE (reg),
955 gen_rtx_CLOBBER (mode, const0_rtx)));
956 }
957 }
7988fd36
RK
958}
959\f
91102d5a
RK
960/* Called via note_stores. If X is a pseudo that is narrower than
961 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
230d793d
RS
962
963 If we are setting only a portion of X and we can't figure out what
964 portion, assume all bits will be used since we don't know what will
d0ab8cd3
RK
965 be happening.
966
967 Similarly, set how many bits of X are known to be copies of the sign bit
663522cb 968 at all locations in the function. This is the smallest number implied
d0ab8cd3 969 by any set of X. */
230d793d
RS
970
971static void
79a490a9
AJ
972set_nonzero_bits_and_sign_copies (rtx x, rtx set,
973 void *data ATTRIBUTE_UNUSED)
230d793d 974{
770ae6cc 975 unsigned int num;
d0ab8cd3 976
f8cfc6aa 977 if (REG_P (x)
230d793d 978 && REGNO (x) >= FIRST_PSEUDO_REGISTER
e8095e80
RK
979 /* If this register is undefined at the start of the file, we can't
980 say what its contents were. */
f6366fc7 981 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
5f4f0e22 982 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
230d793d 983 {
2dab894a 984 if (set == 0 || GET_CODE (set) == CLOBBER)
e8095e80 985 {
5eaad481
PB
986 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
987 reg_stat[REGNO (x)].sign_bit_copies = 1;
e8095e80
RK
988 return;
989 }
230d793d
RS
990
991 /* If this is a complex assignment, see if we can convert it into a
5089e22e 992 simple assignment. */
230d793d 993 set = expand_field_assignment (set);
d79f08e0
RK
994
995 /* If this is a simple assignment, or we have a paradoxical SUBREG,
996 set what we know about X. */
997
998 if (SET_DEST (set) == x
999 || (GET_CODE (SET_DEST (set)) == SUBREG
705c7b3b
JW
1000 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1001 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
d79f08e0 1002 && SUBREG_REG (SET_DEST (set)) == x))
d0ab8cd3 1003 {
9afa3d54
RK
1004 rtx src = SET_SRC (set);
1005
1006#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1007 /* If X is narrower than a word and SRC is a non-negative
1008 constant that would appear negative in the mode of X,
5eaad481 1009 sign-extend it for use in reg_stat[].nonzero_bits because some
9afa3d54 1010 machines (maybe most) will actually do the sign-extension
663522cb 1011 and this is the conservative approach.
9afa3d54
RK
1012
1013 ??? For 2.5, try to tighten up the MD files in this regard
1014 instead of this kludge. */
1015
1016 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1017 && GET_CODE (src) == CONST_INT
1018 && INTVAL (src) > 0
1019 && 0 != (INTVAL (src)
1020 & ((HOST_WIDE_INT) 1
9e69be8c 1021 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9afa3d54
RK
1022 src = GEN_INT (INTVAL (src)
1023 | ((HOST_WIDE_INT) (-1)
1024 << GET_MODE_BITSIZE (GET_MODE (x))));
1025#endif
1026
0a0440c9 1027 /* Don't call nonzero_bits if it cannot change anything. */
5eaad481
PB
1028 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1029 reg_stat[REGNO (x)].nonzero_bits
0a0440c9 1030 |= nonzero_bits (src, nonzero_bits_mode);
d0ab8cd3 1031 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
5eaad481
PB
1032 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1033 || reg_stat[REGNO (x)].sign_bit_copies > num)
1034 reg_stat[REGNO (x)].sign_bit_copies = num;
d0ab8cd3 1035 }
230d793d 1036 else
d0ab8cd3 1037 {
5eaad481
PB
1038 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1039 reg_stat[REGNO (x)].sign_bit_copies = 1;
d0ab8cd3 1040 }
230d793d
RS
1041 }
1042}
1043\f
1044/* See if INSN can be combined into I3. PRED and SUCC are optionally
1045 insns that were previously combined into I3 or that will be combined
1046 into the merger of INSN and I3.
1047
1048 Return 0 if the combination is not allowed for any reason.
1049
663522cb 1050 If the combination is allowed, *PDEST will be set to the single
230d793d
RS
1051 destination of INSN and *PSRC to the single source, and this function
1052 will return 1. */
1053
1054static int
79a490a9
AJ
1055can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1056 rtx *pdest, rtx *psrc)
230d793d
RS
1057{
1058 int i;
1059 rtx set = 0, src, dest;
b729186a
JL
1060 rtx p;
1061#ifdef AUTO_INC_DEC
76d31c63 1062 rtx link;
b729186a 1063#endif
230d793d
RS
1064 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1065 && next_active_insn (succ) == i3)
1066 : next_active_insn (insn) == i3);
1067
1068 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
663522cb 1069 or a PARALLEL consisting of such a SET and CLOBBERs.
230d793d
RS
1070
1071 If INSN has CLOBBER parallel parts, ignore them for our processing.
1072 By definition, these happen during the execution of the insn. When it
1073 is merged with another insn, all bets are off. If they are, in fact,
1074 needed and aren't also supplied in I3, they may be added by
663522cb 1075 recog_for_combine. Otherwise, it won't match.
230d793d
RS
1076
1077 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1078 note.
1079
663522cb 1080 Get the source and destination of INSN. If more than one, can't
230d793d 1081 combine. */
663522cb 1082
230d793d
RS
1083 if (GET_CODE (PATTERN (insn)) == SET)
1084 set = PATTERN (insn);
1085 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1086 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1087 {
1088 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1089 {
1090 rtx elt = XVECEXP (PATTERN (insn), 0, i);
da6fdad3 1091 rtx note;
230d793d
RS
1092
1093 switch (GET_CODE (elt))
1094 {
e3258cef
R
1095 /* This is important to combine floating point insns
1096 for the SH4 port. */
1097 case USE:
1098 /* Combining an isolated USE doesn't make sense.
d2604ae9 1099 We depend here on combinable_i3pat to reject them. */
e3258cef
R
1100 /* The code below this loop only verifies that the inputs of
1101 the SET in INSN do not change. We call reg_set_between_p
eaec9b3d 1102 to verify that the REG in the USE does not change between
e3258cef
R
1103 I3 and INSN.
1104 If the USE in INSN was for a pseudo register, the matching
1105 insn pattern will likely match any register; combining this
1106 with any other USE would only be safe if we knew that the
1107 used registers have identical values, or if there was
1108 something to tell them apart, e.g. different modes. For
eaec9b3d 1109 now, we forgo such complicated tests and simply disallow
e3258cef 1110 combining of USES of pseudo registers with any other USE. */
f8cfc6aa 1111 if (REG_P (XEXP (elt, 0))
e3258cef
R
1112 && GET_CODE (PATTERN (i3)) == PARALLEL)
1113 {
1114 rtx i3pat = PATTERN (i3);
1115 int i = XVECLEN (i3pat, 0) - 1;
770ae6cc
RK
1116 unsigned int regno = REGNO (XEXP (elt, 0));
1117
e3258cef
R
1118 do
1119 {
1120 rtx i3elt = XVECEXP (i3pat, 0, i);
770ae6cc 1121
e3258cef 1122 if (GET_CODE (i3elt) == USE
f8cfc6aa 1123 && REG_P (XEXP (i3elt, 0))
e3258cef
R
1124 && (REGNO (XEXP (i3elt, 0)) == regno
1125 ? reg_set_between_p (XEXP (elt, 0),
1126 PREV_INSN (insn), i3)
1127 : regno >= FIRST_PSEUDO_REGISTER))
1128 return 0;
1129 }
1130 while (--i >= 0);
1131 }
1132 break;
1133
230d793d
RS
1134 /* We can ignore CLOBBERs. */
1135 case CLOBBER:
1136 break;
1137
1138 case SET:
1139 /* Ignore SETs whose result isn't used but not those that
1140 have side-effects. */
1141 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
da6fdad3
AM
1142 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1143 || INTVAL (XEXP (note, 0)) <= 0)
230d793d
RS
1144 && ! side_effects_p (elt))
1145 break;
1146
1147 /* If we have already found a SET, this is a second one and
1148 so we cannot combine with this insn. */
1149 if (set)
1150 return 0;
1151
1152 set = elt;
1153 break;
1154
1155 default:
1156 /* Anything else means we can't combine. */
1157 return 0;
1158 }
1159 }
1160
1161 if (set == 0
1162 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1163 so don't do anything with it. */
1164 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1165 return 0;
1166 }
1167 else
1168 return 0;
1169
1170 if (set == 0)
1171 return 0;
1172
1173 set = expand_field_assignment (set);
1174 src = SET_SRC (set), dest = SET_DEST (set);
1175
1176 /* Don't eliminate a store in the stack pointer. */
1177 if (dest == stack_pointer_rtx
230d793d
RS
1178 /* Don't combine with an insn that sets a register to itself if it has
1179 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
5f4f0e22 1180 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
62f7f1f5
GK
1181 /* Can't merge an ASM_OPERANDS. */
1182 || GET_CODE (src) == ASM_OPERANDS
230d793d
RS
1183 /* Can't merge a function call. */
1184 || GET_CODE (src) == CALL
cd5e8f1f 1185 /* Don't eliminate a function call argument. */
4b4bf941 1186 || (CALL_P (i3)
4dca5ec5 1187 && (find_reg_fusage (i3, USE, dest)
f8cfc6aa 1188 || (REG_P (dest)
4dca5ec5
RK
1189 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1190 && global_regs[REGNO (dest)])))
230d793d
RS
1191 /* Don't substitute into an incremented register. */
1192 || FIND_REG_INC_NOTE (i3, dest)
1193 || (succ && FIND_REG_INC_NOTE (succ, dest))
2f39b6ca
UW
1194 /* Don't substitute into a non-local goto, this confuses CFG. */
1195 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
ec35104c 1196#if 0
230d793d 1197 /* Don't combine the end of a libcall into anything. */
ec35104c
JL
1198 /* ??? This gives worse code, and appears to be unnecessary, since no
1199 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1200 use REG_RETVAL notes for noconflict blocks, but other code here
1201 makes sure that those insns don't disappear. */
5f4f0e22 1202 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
ec35104c 1203#endif
230d793d
RS
1204 /* Make sure that DEST is not used after SUCC but before I3. */
1205 || (succ && ! all_adjacent
1206 && reg_used_between_p (dest, succ, i3))
1207 /* Make sure that the value that is to be substituted for the register
1208 does not use any registers whose values alter in between. However,
1209 If the insns are adjacent, a use can't cross a set even though we
1210 think it might (this can happen for a sequence of insns each setting
5eaad481 1211 the same destination; last_set of that register might point to
d81481d3
RK
1212 a NOTE). If INSN has a REG_EQUIV note, the register is always
1213 equivalent to the memory so the substitution is valid even if there
1214 are intervening stores. Also, don't move a volatile asm or
1215 UNSPEC_VOLATILE across any other insns. */
230d793d 1216 || (! all_adjacent
3c0cb5de 1217 && (((!MEM_P (src)
d81481d3
RK
1218 || ! find_reg_note (insn, REG_EQUIV, src))
1219 && use_crosses_set_p (src, INSN_CUID (insn)))
a66a10c7
RS
1220 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1221 || GET_CODE (src) == UNSPEC_VOLATILE))
230d793d
RS
1222 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1223 better register allocation by not doing the combine. */
1224 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1225 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1226 /* Don't combine across a CALL_INSN, because that would possibly
1227 change whether the life span of some REGs crosses calls or not,
1228 and it is a pain to update that information.
1229 Exception: if source is a constant, moving it later can't hurt.
1230 Accept that special case, because it helps -fforce-addr a lot. */
1231 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1232 return 0;
1233
1234 /* DEST must either be a REG or CC0. */
f8cfc6aa 1235 if (REG_P (dest))
230d793d
RS
1236 {
1237 /* If register alignment is being enforced for multi-word items in all
1238 cases except for parameters, it is possible to have a register copy
1239 insn referencing a hard register that is not allowed to contain the
1240 mode being copied and which would not be valid as an operand of most
1241 insns. Eliminate this problem by not combining with such an insn.
1242
1243 Also, on some machines we don't want to extend the life of a hard
53895717 1244 register. */
230d793d 1245
f8cfc6aa 1246 if (REG_P (src)
230d793d
RS
1247 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1248 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
c448a43e
RK
1249 /* Don't extend the life of a hard register unless it is
1250 user variable (if we have few registers) or it can't
1251 fit into the desired register (meaning something special
ecd40809
RK
1252 is going on).
1253 Also avoid substituting a return register into I3, because
1254 reload can't handle a conflict with constraints of other
1255 inputs. */
230d793d 1256 || (REGNO (src) < FIRST_PSEUDO_REGISTER
53895717 1257 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
230d793d
RS
1258 return 0;
1259 }
1260 else if (GET_CODE (dest) != CC0)
1261 return 0;
1262
45da19e3 1263
230d793d
RS
1264 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1265 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
45da19e3
UW
1266 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1267 {
1268 /* Don't substitute for a register intended as a clobberable
8c27b7d4 1269 operand. */
45da19e3
UW
1270 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1271 if (rtx_equal_p (reg, dest))
1272 return 0;
1273
1274 /* If the clobber represents an earlyclobber operand, we must not
1275 substitute an expression containing the clobbered register.
1276 As we do not analyse the constraint strings here, we have to
1277 make the conservative assumption. However, if the register is
1278 a fixed hard reg, the clobber cannot represent any operand;
1279 we leave it up to the machine description to either accept or
1280 reject use-and-clobber patterns. */
1281 if (!REG_P (reg)
1282 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1283 || !fixed_regs[REGNO (reg)])
1284 if (reg_overlap_mentioned_p (reg, src))
1285 return 0;
1286 }
230d793d
RS
1287
1288 /* If INSN contains anything volatile, or is an `asm' (whether volatile
d276f2bb 1289 or not), reject, unless nothing volatile comes between it and I3 */
230d793d
RS
1290
1291 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
d276f2bb
CM
1292 {
1293 /* Make sure succ doesn't contain a volatile reference. */
1294 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1295 return 0;
663522cb 1296
d276f2bb 1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2c3c49de 1298 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
cf0d9408 1299 return 0;
d276f2bb 1300 }
230d793d 1301
b79ee7eb
RH
1302 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1303 to be an explicit register variable, and was chosen for a reason. */
1304
1305 if (GET_CODE (src) == ASM_OPERANDS
f8cfc6aa 1306 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
b79ee7eb
RH
1307 return 0;
1308
4b2cb4a2
RS
1309 /* If there are any volatile insns between INSN and I3, reject, because
1310 they might affect machine state. */
1311
1312 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2c3c49de 1313 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
4b2cb4a2
RS
1314 return 0;
1315
230d793d
RS
1316 /* If INSN or I2 contains an autoincrement or autodecrement,
1317 make sure that register is not used between there and I3,
1318 and not already used in I3 either.
1319 Also insist that I3 not be a jump; if it were one
1320 and the incremented register were spilled, we would lose. */
1321
1322#ifdef AUTO_INC_DEC
1323 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1324 if (REG_NOTE_KIND (link) == REG_INC
4b4bf941 1325 && (JUMP_P (i3)
230d793d
RS
1326 || reg_used_between_p (XEXP (link, 0), insn, i3)
1327 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1328 return 0;
1329#endif
1330
1331#ifdef HAVE_cc0
1332 /* Don't combine an insn that follows a CC0-setting insn.
1333 An insn that uses CC0 must not be separated from the one that sets it.
1334 We do, however, allow I2 to follow a CC0-setting insn if that insn
1335 is passed as I1; in that case it will be deleted also.
1336 We also allow combining in this case if all the insns are adjacent
1337 because that would leave the two CC0 insns adjacent as well.
1338 It would be more logical to test whether CC0 occurs inside I1 or I2,
1339 but that would be much slower, and this ought to be equivalent. */
1340
1341 p = prev_nonnote_insn (insn);
4b4bf941 1342 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
230d793d
RS
1343 && ! all_adjacent)
1344 return 0;
1345#endif
1346
1347 /* If we get here, we have passed all the tests and the combination is
1348 to be allowed. */
1349
1350 *pdest = dest;
1351 *psrc = src;
1352
1353 return 1;
1354}
1355\f
1356/* LOC is the location within I3 that contains its pattern or the component
1357 of a PARALLEL of the pattern. We validate that it is valid for combining.
1358
1359 One problem is if I3 modifies its output, as opposed to replacing it
1360 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1361 so would produce an insn that is not equivalent to the original insns.
1362
1363 Consider:
1364
1365 (set (reg:DI 101) (reg:DI 100))
1366 (set (subreg:SI (reg:DI 101) 0) <foo>)
1367
1368 This is NOT equivalent to:
1369
1370 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
23190837 1371 (set (reg:DI 101) (reg:DI 100))])
230d793d
RS
1372
1373 Not only does this modify 100 (in which case it might still be valid
663522cb 1374 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
230d793d
RS
1375
1376 We can also run into a problem if I2 sets a register that I1
1377 uses and I1 gets directly substituted into I3 (not via I2). In that
1378 case, we would be getting the wrong value of I2DEST into I3, so we
1379 must reject the combination. This case occurs when I2 and I1 both
1380 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
da7d8304 1381 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
230d793d
RS
1382 of a SET must prevent combination from occurring.
1383
230d793d
RS
1384 Before doing the above check, we first try to expand a field assignment
1385 into a set of logical operations.
1386
da7d8304 1387 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
230d793d
RS
1388 we place a register that is both set and used within I3. If more than one
1389 such register is detected, we fail.
1390
1391 Return 1 if the combination is valid, zero otherwise. */
1392
1393static int
79a490a9
AJ
1394combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1395 int i1_not_in_src, rtx *pi3dest_killed)
230d793d
RS
1396{
1397 rtx x = *loc;
1398
1399 if (GET_CODE (x) == SET)
1400 {
73a39fc4 1401 rtx set = x ;
230d793d
RS
1402 rtx dest = SET_DEST (set);
1403 rtx src = SET_SRC (set);
29a82058 1404 rtx inner_dest = dest;
663522cb 1405
230d793d
RS
1406 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1407 || GET_CODE (inner_dest) == SUBREG
1408 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1409 inner_dest = XEXP (inner_dest, 0);
1410
0595d388
AO
1411 /* Check for the case where I3 modifies its output, as discussed
1412 above. We don't want to prevent pseudos from being combined
1413 into the address of a MEM, so only prevent the combination if
1414 i1 or i2 set the same MEM. */
1415 if ((inner_dest != dest &&
3c0cb5de 1416 (!MEM_P (inner_dest)
0595d388
AO
1417 || rtx_equal_p (i2dest, inner_dest)
1418 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
230d793d
RS
1419 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1420 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
956d6950 1421
53895717
BS
1422 /* This is the same test done in can_combine_p except we can't test
1423 all_adjacent; we don't have to, since this instruction will stay
1424 in place, thus we are not considering increasing the lifetime of
1425 INNER_DEST.
956d6950
JL
1426
1427 Also, if this insn sets a function argument, combining it with
1428 something that might need a spill could clobber a previous
1429 function argument; the all_adjacent test in can_combine_p also
1430 checks this; here, we do a more specific test for this case. */
663522cb 1431
f8cfc6aa 1432 || (REG_P (inner_dest)
dfbe1b2f 1433 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
c448a43e 1434 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
53895717 1435 GET_MODE (inner_dest))))
230d793d
RS
1436 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1437 return 0;
1438
1439 /* If DEST is used in I3, it is being killed in this insn,
663522cb 1440 so record that for later.
36a9c2e9
JL
1441 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1442 STACK_POINTER_REGNUM, since these are always considered to be
1443 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
f8cfc6aa 1444 if (pi3dest_killed && REG_P (dest)
36a9c2e9
JL
1445 && reg_referenced_p (dest, PATTERN (i3))
1446 && REGNO (dest) != FRAME_POINTER_REGNUM
6d7096b0
DE
1447#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1448 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1449#endif
36a9c2e9
JL
1450#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1451 && (REGNO (dest) != ARG_POINTER_REGNUM
1452 || ! fixed_regs [REGNO (dest)])
1453#endif
1454 && REGNO (dest) != STACK_POINTER_REGNUM)
230d793d
RS
1455 {
1456 if (*pi3dest_killed)
1457 return 0;
1458
1459 *pi3dest_killed = dest;
1460 }
1461 }
1462
1463 else if (GET_CODE (x) == PARALLEL)
1464 {
1465 int i;
1466
1467 for (i = 0; i < XVECLEN (x, 0); i++)
1468 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1469 i1_not_in_src, pi3dest_killed))
1470 return 0;
1471 }
1472
1473 return 1;
1474}
1475\f
14a774a9
RK
1476/* Return 1 if X is an arithmetic expression that contains a multiplication
1477 and division. We don't count multiplications by powers of two here. */
1478
1479static int
79a490a9 1480contains_muldiv (rtx x)
14a774a9
RK
1481{
1482 switch (GET_CODE (x))
1483 {
1484 case MOD: case DIV: case UMOD: case UDIV:
1485 return 1;
1486
1487 case MULT:
1488 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1489 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1490 default:
ec8e098d
PB
1491 if (BINARY_P (x))
1492 return contains_muldiv (XEXP (x, 0))
14a774a9
RK
1493 || contains_muldiv (XEXP (x, 1));
1494
ec8e098d
PB
1495 if (UNARY_P (x))
1496 return contains_muldiv (XEXP (x, 0));
14a774a9 1497
ec8e098d 1498 return 0;
14a774a9
RK
1499 }
1500}
1501\f
c3410241
BS
1502/* Determine whether INSN can be used in a combination. Return nonzero if
1503 not. This is used in try_combine to detect early some cases where we
1504 can't perform combinations. */
1505
1506static int
79a490a9 1507cant_combine_insn_p (rtx insn)
c3410241
BS
1508{
1509 rtx set;
1510 rtx src, dest;
23190837 1511
c3410241
BS
1512 /* If this isn't really an insn, we can't do anything.
1513 This can occur when flow deletes an insn that it has merged into an
1514 auto-increment address. */
1515 if (! INSN_P (insn))
1516 return 1;
1517
7f0ea82e
R
1518 /* Never combine loads and stores involving hard regs that are likely
1519 to be spilled. The register allocator can usually handle such
cafe096b 1520 reg-reg moves by tying. If we allow the combiner to make
7f0ea82e 1521 substitutions of likely-spilled regs, we may abort in reload.
c3410241
BS
1522 As an exception, we allow combinations involving fixed regs; these are
1523 not available to the register allocator so there's no risk involved. */
1524
1525 set = single_set (insn);
1526 if (! set)
1527 return 0;
1528 src = SET_SRC (set);
1529 dest = SET_DEST (set);
ad334b51
JH
1530 if (GET_CODE (src) == SUBREG)
1531 src = SUBREG_REG (src);
1532 if (GET_CODE (dest) == SUBREG)
1533 dest = SUBREG_REG (dest);
53895717
BS
1534 if (REG_P (src) && REG_P (dest)
1535 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
7f0ea82e
R
1536 && ! fixed_regs[REGNO (src)]
1537 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
53895717 1538 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
7f0ea82e
R
1539 && ! fixed_regs[REGNO (dest)]
1540 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
c3410241 1541 return 1;
53895717 1542
c3410241
BS
1543 return 0;
1544}
1545
8c03ca00
EB
1546/* Adjust INSN after we made a change to its destination.
1547
1548 Changing the destination can invalidate notes that say something about
1549 the results of the insn and a LOG_LINK pointing to the insn. */
1550
1551static void
1552adjust_for_new_dest (rtx insn)
1553{
1554 rtx *loc;
1555
1556 /* For notes, be conservative and simply remove them. */
1557 loc = &REG_NOTES (insn);
1558 while (*loc)
1559 {
1560 enum reg_note kind = REG_NOTE_KIND (*loc);
1561 if (kind == REG_EQUAL || kind == REG_EQUIV)
1562 *loc = XEXP (*loc, 1);
1563 else
1564 loc = &XEXP (*loc, 1);
1565 }
1566
1567 /* The new insn will have a destination that was previously the destination
1568 of an insn just above it. Call distribute_links to make a LOG_LINK from
1569 the next use of that destination. */
1570 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1571}
1572
230d793d
RS
1573/* Try to combine the insns I1 and I2 into I3.
1574 Here I1 and I2 appear earlier than I3.
1575 I1 can be zero; then we combine just I2 into I3.
663522cb 1576
04956a1a 1577 If we are combining three insns and the resulting insn is not recognized,
230d793d
RS
1578 try splitting it into two insns. If that happens, I2 and I3 are retained
1579 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1580 are pseudo-deleted.
1581
663522cb 1582 Return 0 if the combination does not work. Then nothing is changed.
abe6e52f 1583 If we did the combination, return the insn at which combine should
663522cb
KH
1584 resume scanning.
1585
da7d8304 1586 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
44a76fc8 1587 new direct jump instruction. */
230d793d
RS
1588
1589static rtx
79a490a9 1590try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
230d793d 1591{
02359929 1592 /* New patterns for I3 and I2, respectively. */
230d793d 1593 rtx newpat, newi2pat = 0;
cddd8b72 1594 int substed_i2 = 0, substed_i1 = 0;
230d793d
RS
1595 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1596 int added_sets_1, added_sets_2;
1597 /* Total number of SETs to put into I3. */
1598 int total_sets;
a1105617 1599 /* Nonzero if I2's body now appears in I3. */
230d793d
RS
1600 int i2_is_used;
1601 /* INSN_CODEs for new I3, new I2, and user of condition code. */
6a651371 1602 int insn_code_number, i2_code_number = 0, other_code_number = 0;
230d793d
RS
1603 /* Contains I3 if the destination of I3 is used in its source, which means
1604 that the old life of I3 is being killed. If that usage is placed into
1605 I2 and not in I3, a REG_DEAD note must be made. */
1606 rtx i3dest_killed = 0;
1607 /* SET_DEST and SET_SRC of I2 and I1. */
1608 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1609 /* PATTERN (I2), or a copy of it in certain cases. */
1610 rtx i2pat;
1611 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
c4e861e8 1612 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
230d793d
RS
1613 int i1_feeds_i3 = 0;
1614 /* Notes that must be added to REG_NOTES in I3 and I2. */
1615 rtx new_i3_notes, new_i2_notes;
176c9e6b
JW
1616 /* Notes that we substituted I3 into I2 instead of the normal case. */
1617 int i3_subst_into_i2 = 0;
df7d75de
RK
1618 /* Notes that I1, I2 or I3 is a MULT operation. */
1619 int have_mult = 0;
9e42ab3e 1620 int swap_i2i3 = 0;
230d793d
RS
1621
1622 int maxreg;
1623 rtx temp;
b3694847 1624 rtx link;
230d793d
RS
1625 int i;
1626
c3410241
BS
1627 /* Exit early if one of the insns involved can't be used for
1628 combinations. */
1629 if (cant_combine_insn_p (i3)
1630 || cant_combine_insn_p (i2)
1631 || (i1 && cant_combine_insn_p (i1))
1632 /* We also can't do anything if I3 has a
1633 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1634 libcall. */
ec35104c
JL
1635#if 0
1636 /* ??? This gives worse code, and appears to be unnecessary, since no
1637 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1638 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1639#endif
663522cb 1640 )
230d793d
RS
1641 return 0;
1642
1643 combine_attempts++;
230d793d
RS
1644 undobuf.other_insn = 0;
1645
6e25d159
RK
1646 /* Reset the hard register usage information. */
1647 CLEAR_HARD_REG_SET (newpat_used_regs);
1648
230d793d
RS
1649 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1650 code below, set I1 to be the earlier of the two insns. */
1651 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1652 temp = i1, i1 = i2, i2 = temp;
1653
abe6e52f 1654 added_links_insn = 0;
137e889e 1655
230d793d 1656 /* First check for one important special-case that the code below will
c7be4f66 1657 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
230d793d
RS
1658 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1659 we may be able to replace that destination with the destination of I3.
1660 This occurs in the common code where we compute both a quotient and
1661 remainder into a structure, in which case we want to do the computation
1662 directly into the structure to avoid register-register copies.
1663
c7be4f66
RK
1664 Note that this case handles both multiple sets in I2 and also
1665 cases where I2 has a number of CLOBBER or PARALLELs.
1666
230d793d
RS
1667 We make very conservative checks below and only try to handle the
1668 most common cases of this. For example, we only handle the case
1669 where I2 and I3 are adjacent to avoid making difficult register
1670 usage tests. */
1671
4b4bf941 1672 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
f8cfc6aa 1673 && REG_P (SET_SRC (PATTERN (i3)))
230d793d 1674 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
230d793d
RS
1675 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1676 && GET_CODE (PATTERN (i2)) == PARALLEL
1677 && ! side_effects_p (SET_DEST (PATTERN (i3)))
5089e22e
RS
1678 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1679 below would need to check what is inside (and reg_overlap_mentioned_p
1680 doesn't support those codes anyway). Don't allow those destinations;
1681 the resulting insn isn't likely to be recognized anyway. */
1682 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1683 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
230d793d
RS
1684 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1685 SET_DEST (PATTERN (i3)))
1686 && next_real_insn (i2) == i3)
5089e22e
RS
1687 {
1688 rtx p2 = PATTERN (i2);
1689
1690 /* Make sure that the destination of I3,
1691 which we are going to substitute into one output of I2,
1692 is not used within another output of I2. We must avoid making this:
1693 (parallel [(set (mem (reg 69)) ...)
1694 (set (reg 69) ...)])
1695 which is not well-defined as to order of actions.
1696 (Besides, reload can't handle output reloads for this.)
1697
1698 The problem can also happen if the dest of I3 is a memory ref,
1699 if another dest in I2 is an indirect memory ref. */
1700 for (i = 0; i < XVECLEN (p2, 0); i++)
7ca919b7
RK
1701 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1702 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
5089e22e
RS
1703 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1704 SET_DEST (XVECEXP (p2, 0, i))))
1705 break;
230d793d 1706
5089e22e
RS
1707 if (i == XVECLEN (p2, 0))
1708 for (i = 0; i < XVECLEN (p2, 0); i++)
481c7efa
FS
1709 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1710 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1711 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
5089e22e
RS
1712 {
1713 combine_merges++;
230d793d 1714
5089e22e
RS
1715 subst_insn = i3;
1716 subst_low_cuid = INSN_CUID (i2);
230d793d 1717
c4e861e8 1718 added_sets_2 = added_sets_1 = 0;
5089e22e 1719 i2dest = SET_SRC (PATTERN (i3));
230d793d 1720
5089e22e
RS
1721 /* Replace the dest in I2 with our dest and make the resulting
1722 insn the new pattern for I3. Then skip to where we
1723 validate the pattern. Everything was set up above. */
663522cb 1724 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
5089e22e
RS
1725 SET_DEST (PATTERN (i3)));
1726
1727 newpat = p2;
176c9e6b 1728 i3_subst_into_i2 = 1;
5089e22e
RS
1729 goto validate_replacement;
1730 }
1731 }
230d793d 1732
667c1c2c
RK
1733 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1734 one of those words to another constant, merge them by making a new
1735 constant. */
1736 if (i1 == 0
1737 && (temp = single_set (i2)) != 0
1738 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1739 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
f8cfc6aa 1740 && REG_P (SET_DEST (temp))
667c1c2c
RK
1741 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1742 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1743 && GET_CODE (PATTERN (i3)) == SET
1744 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1745 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1746 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1747 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1748 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1749 {
1750 HOST_WIDE_INT lo, hi;
1751
1752 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1753 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1754 else
1755 {
1756 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1757 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1758 }
1759
1760 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
48b4d901
AO
1761 {
1762 /* We don't handle the case of the target word being wider
1763 than a host wide int. */
341c100f 1764 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
48b4d901 1765
42a6ff51 1766 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
73a39fc4 1767 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
2ef1a7f9 1768 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
48b4d901
AO
1769 }
1770 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
667c1c2c 1771 hi = INTVAL (SET_SRC (PATTERN (i3)));
48b4d901
AO
1772 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1773 {
1774 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1775 >> (HOST_BITS_PER_WIDE_INT - 1));
1776
42a6ff51
AO
1777 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1778 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1779 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1780 (INTVAL (SET_SRC (PATTERN (i3)))));
48b4d901
AO
1781 if (hi == sign)
1782 hi = lo < 0 ? -1 : 0;
1783 }
1784 else
1785 /* We don't handle the case of the higher word not fitting
1786 entirely in either hi or lo. */
341c100f 1787 gcc_unreachable ();
667c1c2c
RK
1788
1789 combine_merges++;
1790 subst_insn = i3;
1791 subst_low_cuid = INSN_CUID (i2);
1792 added_sets_2 = added_sets_1 = 0;
1793 i2dest = SET_DEST (temp);
1794
1795 SUBST (SET_SRC (temp),
1796 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1797
1798 newpat = PATTERN (i2);
667c1c2c
RK
1799 goto validate_replacement;
1800 }
1801
230d793d
RS
1802#ifndef HAVE_cc0
1803 /* If we have no I1 and I2 looks like:
1804 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1805 (set Y OP)])
1806 make up a dummy I1 that is
1807 (set Y OP)
1808 and change I2 to be
1809 (set (reg:CC X) (compare:CC Y (const_int 0)))
1810
1811 (We can ignore any trailing CLOBBERs.)
1812
1813 This undoes a previous combination and allows us to match a branch-and-
1814 decrement insn. */
1815
1816 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1817 && XVECLEN (PATTERN (i2), 0) >= 2
1818 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1819 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1820 == MODE_CC)
1821 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1822 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1823 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
f8cfc6aa 1824 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
230d793d
RS
1825 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1826 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1827 {
663522cb 1828 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
230d793d
RS
1829 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1830 break;
1831
1832 if (i == 1)
1833 {
1834 /* We make I1 with the same INSN_UID as I2. This gives it
1835 the same INSN_CUID for value tracking. Our fake I1 will
1836 never appear in the insn stream so giving it the same INSN_UID
1837 as I2 will not cause a problem. */
1838
4977bab6 1839 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
0435312e 1840 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
4977bab6
ZW
1841 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1842 NULL_RTX);
230d793d
RS
1843
1844 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1845 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1846 SET_DEST (PATTERN (i1)));
1847 }
1848 }
1849#endif
1850
1851 /* Verify that I2 and I1 are valid for combining. */
5f4f0e22
CH
1852 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1853 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
230d793d
RS
1854 {
1855 undo_all ();
1856 return 0;
1857 }
1858
1859 /* Record whether I2DEST is used in I2SRC and similarly for the other
1860 cases. Knowing this will help in register status updating below. */
1861 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1862 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1863 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1864
916f14f1 1865 /* See if I1 directly feeds into I3. It does if I1DEST is not used
230d793d
RS
1866 in I2SRC. */
1867 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1868
1869 /* Ensure that I3's pattern can be the destination of combines. */
1870 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1871 i1 && i2dest_in_i1src && i1_feeds_i3,
1872 &i3dest_killed))
1873 {
1874 undo_all ();
1875 return 0;
1876 }
1877
df7d75de
RK
1878 /* See if any of the insns is a MULT operation. Unless one is, we will
1879 reject a combination that is, since it must be slower. Be conservative
1880 here. */
1881 if (GET_CODE (i2src) == MULT
1882 || (i1 != 0 && GET_CODE (i1src) == MULT)
1883 || (GET_CODE (PATTERN (i3)) == SET
1884 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1885 have_mult = 1;
1886
230d793d
RS
1887 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1888 We used to do this EXCEPT in one case: I3 has a post-inc in an
1889 output operand. However, that exception can give rise to insns like
23190837 1890 mov r3,(r3)+
230d793d 1891 which is a famous insn on the PDP-11 where the value of r3 used as the
5089e22e 1892 source was model-dependent. Avoid this sort of thing. */
230d793d
RS
1893
1894#if 0
1895 if (!(GET_CODE (PATTERN (i3)) == SET
f8cfc6aa 1896 && REG_P (SET_SRC (PATTERN (i3)))
3c0cb5de 1897 && MEM_P (SET_DEST (PATTERN (i3)))
230d793d
RS
1898 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1899 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1900 /* It's not the exception. */
1901#endif
1902#ifdef AUTO_INC_DEC
1903 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1904 if (REG_NOTE_KIND (link) == REG_INC
1905 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1906 || (i1 != 0
1907 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1908 {
1909 undo_all ();
1910 return 0;
1911 }
1912#endif
1913
1914 /* See if the SETs in I1 or I2 need to be kept around in the merged
1915 instruction: whenever the value set there is still needed past I3.
1916 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1917
1918 For the SET in I1, we have two cases: If I1 and I2 independently
1919 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1920 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1921 in I1 needs to be kept around unless I1DEST dies or is set in either
1922 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1923 I1DEST. If so, we know I1 feeds into I2. */
1924
1925 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1926
1927 added_sets_1
1928 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1929 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1930
1931 /* If the set in I2 needs to be kept around, we must make a copy of
1932 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
5089e22e 1933 PATTERN (I2), we are only substituting for the original I1DEST, not into
230d793d
RS
1934 an already-substituted copy. This also prevents making self-referential
1935 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1936 I2DEST. */
1937
1938 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
38a448ca 1939 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
230d793d
RS
1940 : PATTERN (i2));
1941
1942 if (added_sets_2)
1943 i2pat = copy_rtx (i2pat);
1944
1945 combine_merges++;
1946
1947 /* Substitute in the latest insn for the regs set by the earlier ones. */
1948
1949 maxreg = max_reg_num ();
1950
1951 subst_insn = i3;
230d793d
RS
1952
1953 /* It is possible that the source of I2 or I1 may be performing an
1954 unneeded operation, such as a ZERO_EXTEND of something that is known
1955 to have the high part zero. Handle that case by letting subst look at
1956 the innermost one of them.
1957
1958 Another way to do this would be to have a function that tries to
1959 simplify a single insn instead of merging two or more insns. We don't
1960 do this because of the potential of infinite loops and because
1961 of the potential extra memory required. However, doing it the way
1962 we are is a bit of a kludge and doesn't catch all cases.
1963
1964 But only do this if -fexpensive-optimizations since it slows things down
1965 and doesn't usually win. */
1966
1967 if (flag_expensive_optimizations)
1968 {
9a5a17f3 1969 /* Pass pc_rtx so no substitutions are done, just simplifications. */
230d793d 1970 if (i1)
d0ab8cd3
RK
1971 {
1972 subst_low_cuid = INSN_CUID (i1);
1973 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1974 }
230d793d 1975 else
d0ab8cd3
RK
1976 {
1977 subst_low_cuid = INSN_CUID (i2);
1978 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1979 }
230d793d
RS
1980 }
1981
1982#ifndef HAVE_cc0
1983 /* Many machines that don't use CC0 have insns that can both perform an
1984 arithmetic operation and set the condition code. These operations will
1985 be represented as a PARALLEL with the first element of the vector
1986 being a COMPARE of an arithmetic operation with the constant zero.
1987 The second element of the vector will set some pseudo to the result
1988 of the same arithmetic operation. If we simplify the COMPARE, we won't
1989 match such a pattern and so will generate an extra insn. Here we test
1990 for this case, where both the comparison and the operation result are
1991 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1992 I2SRC. Later we will make the PARALLEL that contains I2. */
1993
1994 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1995 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1996 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1997 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1998 {
94134f42 1999#ifdef SELECT_CC_MODE
230d793d
RS
2000 rtx *cc_use;
2001 enum machine_mode compare_mode;
081f5e7e 2002#endif
230d793d
RS
2003
2004 newpat = PATTERN (i3);
2005 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2006
2007 i2_is_used = 1;
2008
94134f42 2009#ifdef SELECT_CC_MODE
230d793d
RS
2010 /* See if a COMPARE with the operand we substituted in should be done
2011 with the mode that is currently being used. If not, do the same
2012 processing we do in `subst' for a SET; namely, if the destination
2013 is used only once, try to replace it with a register of the proper
2014 mode and also replace the COMPARE. */
2015 if (undobuf.other_insn == 0
2016 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2017 &undobuf.other_insn))
77fa0940
RK
2018 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2019 i2src, const0_rtx))
230d793d
RS
2020 != GET_MODE (SET_DEST (newpat))))
2021 {
770ae6cc 2022 unsigned int regno = REGNO (SET_DEST (newpat));
38a448ca 2023 rtx new_dest = gen_rtx_REG (compare_mode, regno);
230d793d
RS
2024
2025 if (regno < FIRST_PSEUDO_REGISTER
b1f21e0a 2026 || (REG_N_SETS (regno) == 1 && ! added_sets_2
230d793d
RS
2027 && ! REG_USERVAR_P (SET_DEST (newpat))))
2028 {
2029 if (regno >= FIRST_PSEUDO_REGISTER)
2030 SUBST (regno_reg_rtx[regno], new_dest);
2031
2032 SUBST (SET_DEST (newpat), new_dest);
2033 SUBST (XEXP (*cc_use, 0), new_dest);
2034 SUBST (SET_SRC (newpat),
f1c6ba8b 2035 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
230d793d
RS
2036 }
2037 else
2038 undobuf.other_insn = 0;
2039 }
663522cb 2040#endif
230d793d
RS
2041 }
2042 else
2043#endif
2044 {
2045 n_occurrences = 0; /* `subst' counts here */
2046
2047 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2048 need to make a unique copy of I2SRC each time we substitute it
2049 to avoid self-referential rtl. */
2050
d0ab8cd3 2051 subst_low_cuid = INSN_CUID (i2);
230d793d
RS
2052 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2053 ! i1_feeds_i3 && i1dest_in_i1src);
cddd8b72 2054 substed_i2 = 1;
230d793d
RS
2055
2056 /* Record whether i2's body now appears within i3's body. */
2057 i2_is_used = n_occurrences;
2058 }
2059
2060 /* If we already got a failure, don't try to do more. Otherwise,
2061 try to substitute in I1 if we have it. */
2062
2063 if (i1 && GET_CODE (newpat) != CLOBBER)
2064 {
2065 /* Before we can do this substitution, we must redo the test done
2066 above (see detailed comments there) that ensures that I1DEST
0f41302f 2067 isn't mentioned in any SETs in NEWPAT that are field assignments. */
230d793d 2068
5f4f0e22 2069 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
cf0d9408 2070 0, (rtx*) 0))
230d793d
RS
2071 {
2072 undo_all ();
2073 return 0;
2074 }
2075
2076 n_occurrences = 0;
d0ab8cd3 2077 subst_low_cuid = INSN_CUID (i1);
230d793d 2078 newpat = subst (newpat, i1dest, i1src, 0, 0);
cddd8b72 2079 substed_i1 = 1;
230d793d
RS
2080 }
2081
916f14f1
RK
2082 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2083 to count all the ways that I2SRC and I1SRC can be used. */
5f4f0e22 2084 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
916f14f1 2085 && i2_is_used + added_sets_2 > 1)
5f4f0e22 2086 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
916f14f1
RK
2087 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2088 > 1))
230d793d
RS
2089 /* Fail if we tried to make a new register (we used to abort, but there's
2090 really no reason to). */
2091 || max_reg_num () != maxreg
2092 /* Fail if we couldn't do something and have a CLOBBER. */
df7d75de
RK
2093 || GET_CODE (newpat) == CLOBBER
2094 /* Fail if this new pattern is a MULT and we didn't have one before
2095 at the outer level. */
2096 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2097 && ! have_mult))
230d793d
RS
2098 {
2099 undo_all ();
2100 return 0;
2101 }
2102
2103 /* If the actions of the earlier insns must be kept
2104 in addition to substituting them into the latest one,
2105 we must make a new PARALLEL for the latest insn
2106 to hold additional the SETs. */
2107
2108 if (added_sets_1 || added_sets_2)
2109 {
2110 combine_extras++;
2111
2112 if (GET_CODE (newpat) == PARALLEL)
2113 {
2114 rtvec old = XVEC (newpat, 0);
2115 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
38a448ca 2116 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
d38a30c9
KG
2117 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2118 sizeof (old->elem[0]) * old->num_elem);
230d793d
RS
2119 }
2120 else
2121 {
2122 rtx old = newpat;
2123 total_sets = 1 + added_sets_1 + added_sets_2;
38a448ca 2124 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
230d793d
RS
2125 XVECEXP (newpat, 0, 0) = old;
2126 }
2127
cf0d9408
KH
2128 if (added_sets_1)
2129 XVECEXP (newpat, 0, --total_sets)
2130 = (GET_CODE (PATTERN (i1)) == PARALLEL
2131 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2132
2133 if (added_sets_2)
2134 {
2135 /* If there is no I1, use I2's body as is. We used to also not do
2136 the subst call below if I2 was substituted into I3,
2137 but that could lose a simplification. */
2138 if (i1 == 0)
2139 XVECEXP (newpat, 0, --total_sets) = i2pat;
2140 else
2141 /* See comment where i2pat is assigned. */
2142 XVECEXP (newpat, 0, --total_sets)
2143 = subst (i2pat, i1dest, i1src, 0, 0);
2144 }
230d793d
RS
2145 }
2146
2147 /* We come here when we are replacing a destination in I2 with the
2148 destination of I3. */
2149 validate_replacement:
2150
6e25d159
RK
2151 /* Note which hard regs this insn has as inputs. */
2152 mark_used_regs_combine (newpat);
2153
230d793d 2154 /* Is the result of combination a valid instruction? */
8e2f6e35 2155 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2156
2157 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
8051c2eb
AM
2158 the second SET's destination is a register that is unused and isn't
2159 marked as an instruction that might trap in an EH region. In that case,
230d793d
RS
2160 we just need the first SET. This can occur when simplifying a divmod
2161 insn. We *must* test for this case here because the code below that
2162 splits two independent SETs doesn't handle this case correctly when it
da6fdad3 2163 updates the register status.
230d793d 2164
da6fdad3
AM
2165 It's pointless doing this if we originally had two sets, one from
2166 i3, and one from i2. Combining then splitting the parallel results
2167 in the original i2 again plus an invalid insn (which we delete).
2168 The net effect is only to move instructions around, which makes
2169 debug info less accurate.
2170
2171 Also check the case where the first SET's destination is unused.
2172 That would not cause incorrect code, but does cause an unneeded
2173 insn to remain. */
2174
2175 if (insn_code_number < 0
2176 && !(added_sets_2 && i1 == 0)
2177 && GET_CODE (newpat) == PARALLEL
230d793d
RS
2178 && XVECLEN (newpat, 0) == 2
2179 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2180 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
230d793d
RS
2181 && asm_noperands (newpat) < 0)
2182 {
5c881655
KH
2183 rtx set0 = XVECEXP (newpat, 0, 0);
2184 rtx set1 = XVECEXP (newpat, 0, 1);
8051c2eb
AM
2185 rtx note;
2186
f8cfc6aa 2187 if (((REG_P (SET_DEST (set1))
8051c2eb
AM
2188 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2189 || (GET_CODE (SET_DEST (set1)) == SUBREG
2190 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2191 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2192 || INTVAL (XEXP (note, 0)) <= 0)
2193 && ! side_effects_p (SET_SRC (set1)))
2194 {
2195 newpat = set0;
2196 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2197 }
2198
f8cfc6aa 2199 else if (((REG_P (SET_DEST (set0))
8051c2eb
AM
2200 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2201 || (GET_CODE (SET_DEST (set0)) == SUBREG
2202 && find_reg_note (i3, REG_UNUSED,
2203 SUBREG_REG (SET_DEST (set0)))))
2204 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2205 || INTVAL (XEXP (note, 0)) <= 0)
2206 && ! side_effects_p (SET_SRC (set0)))
2207 {
2208 newpat = set1;
2209 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2210
2211 if (insn_code_number >= 0)
2212 {
2213 /* If we will be able to accept this, we have made a
2214 change to the destination of I3. This requires us to
2215 do a few adjustments. */
2216
2217 PATTERN (i3) = newpat;
2218 adjust_for_new_dest (i3);
2219 }
2220 }
230d793d
RS
2221 }
2222
2223 /* If we were combining three insns and the result is a simple SET
2224 with no ASM_OPERANDS that wasn't recognized, try to split it into two
663522cb 2225 insns. There are two ways to do this. It can be split using a
916f14f1
RK
2226 machine-specific method (like when you have an addition of a large
2227 constant) or by combine in the function find_split_point. */
2228
230d793d
RS
2229 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2230 && asm_noperands (newpat) < 0)
2231 {
916f14f1 2232 rtx m_split, *split;
42495ca0 2233 rtx ni2dest = i2dest;
916f14f1
RK
2234
2235 /* See if the MD file can split NEWPAT. If it can't, see if letting it
42495ca0
RK
2236 use I2DEST as a scratch register will help. In the latter case,
2237 convert I2DEST to the mode of the source of NEWPAT if we can. */
916f14f1
RK
2238
2239 m_split = split_insns (newpat, i3);
a70c61d9
JW
2240
2241 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2242 inputs of NEWPAT. */
2243
2244 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2245 possible to try that as a scratch reg. This would require adding
2246 more code to make it work though. */
2247
2248 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
42495ca0
RK
2249 {
2250 /* If I2DEST is a hard register or the only use of a pseudo,
2251 we can change its mode. */
2252 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
02f4ada4 2253 && GET_MODE (SET_DEST (newpat)) != VOIDmode
f8cfc6aa 2254 && REG_P (i2dest)
42495ca0 2255 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
b1f21e0a 2256 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
42495ca0 2257 && ! REG_USERVAR_P (i2dest))))
38a448ca 2258 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
c5c76735
JL
2259 REGNO (i2dest));
2260
2261 m_split = split_insns (gen_rtx_PARALLEL
2262 (VOIDmode,
2263 gen_rtvec (2, newpat,
2264 gen_rtx_CLOBBER (VOIDmode,
2265 ni2dest))),
2266 i3);
5dd3e650
R
2267 /* If the split with the mode-changed register didn't work, try
2268 the original register. */
2269 if (! m_split && ni2dest != i2dest)
c7ca5912
RK
2270 {
2271 ni2dest = i2dest;
2272 m_split = split_insns (gen_rtx_PARALLEL
2273 (VOIDmode,
2274 gen_rtvec (2, newpat,
2275 gen_rtx_CLOBBER (VOIDmode,
2276 i2dest))),
2277 i3);
2278 }
42495ca0 2279 }
916f14f1 2280
2f937369 2281 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
d340408c 2282 {
2f937369 2283 m_split = PATTERN (m_split);
d340408c
RH
2284 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2285 if (insn_code_number >= 0)
2286 newpat = m_split;
23190837 2287 }
2f937369 2288 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
d340408c 2289 && (next_real_insn (i2) == i3
2f937369 2290 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
916f14f1 2291 {
1a26b032 2292 rtx i2set, i3set;
2f937369
DM
2293 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2294 newi2pat = PATTERN (m_split);
916f14f1 2295
2f937369
DM
2296 i3set = single_set (NEXT_INSN (m_split));
2297 i2set = single_set (m_split);
1a26b032 2298
42495ca0
RK
2299 /* In case we changed the mode of I2DEST, replace it in the
2300 pseudo-register table here. We can't do it above in case this
2301 code doesn't get executed and we do a split the other way. */
2302
2303 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2304 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2305
8e2f6e35 2306 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1a26b032
RK
2307
2308 /* If I2 or I3 has multiple SETs, we won't know how to track
9cc96794
RK
2309 register status, so don't use these insns. If I2's destination
2310 is used between I2 and I3, we also can't use these insns. */
1a26b032 2311
9cc96794
RK
2312 if (i2_code_number >= 0 && i2set && i3set
2313 && (next_real_insn (i2) == i3
2314 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
8e2f6e35
BS
2315 insn_code_number = recog_for_combine (&newi3pat, i3,
2316 &new_i3_notes);
d0ab8cd3
RK
2317 if (insn_code_number >= 0)
2318 newpat = newi3pat;
2319
c767f54b 2320 /* It is possible that both insns now set the destination of I3.
22609cbf 2321 If so, we must show an extra use of it. */
c767f54b 2322
393de53f
RK
2323 if (insn_code_number >= 0)
2324 {
2325 rtx new_i3_dest = SET_DEST (i3set);
2326 rtx new_i2_dest = SET_DEST (i2set);
2327
2328 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2329 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2330 || GET_CODE (new_i3_dest) == SUBREG)
2331 new_i3_dest = XEXP (new_i3_dest, 0);
2332
d4096689
RK
2333 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2334 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2335 || GET_CODE (new_i2_dest) == SUBREG)
2336 new_i2_dest = XEXP (new_i2_dest, 0);
2337
f8cfc6aa
JQ
2338 if (REG_P (new_i3_dest)
2339 && REG_P (new_i2_dest)
393de53f 2340 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
b1f21e0a 2341 REG_N_SETS (REGNO (new_i2_dest))++;
393de53f 2342 }
916f14f1 2343 }
230d793d
RS
2344
2345 /* If we can split it and use I2DEST, go ahead and see if that
2346 helps things be recognized. Verify that none of the registers
2347 are set between I2 and I3. */
d0ab8cd3 2348 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
230d793d 2349#ifdef HAVE_cc0
f8cfc6aa 2350 && REG_P (i2dest)
230d793d
RS
2351#endif
2352 /* We need I2DEST in the proper mode. If it is a hard register
2353 or the only use of a pseudo, we can change its mode. */
2354 && (GET_MODE (*split) == GET_MODE (i2dest)
2355 || GET_MODE (*split) == VOIDmode
2356 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
b1f21e0a 2357 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
230d793d
RS
2358 && ! REG_USERVAR_P (i2dest)))
2359 && (next_real_insn (i2) == i3
2360 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2361 /* We can't overwrite I2DEST if its value is still used by
2362 NEWPAT. */
2363 && ! reg_referenced_p (i2dest, newpat))
2364 {
2365 rtx newdest = i2dest;
df7d75de
RK
2366 enum rtx_code split_code = GET_CODE (*split);
2367 enum machine_mode split_mode = GET_MODE (*split);
230d793d
RS
2368
2369 /* Get NEWDEST as a register in the proper mode. We have already
2370 validated that we can do this. */
df7d75de 2371 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
230d793d 2372 {
38a448ca 2373 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
230d793d
RS
2374
2375 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2376 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2377 }
2378
2379 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2380 an ASHIFT. This can occur if it was inside a PLUS and hence
2381 appeared to be a memory address. This is a kludge. */
df7d75de 2382 if (split_code == MULT
230d793d 2383 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1568d79b 2384 && INTVAL (XEXP (*split, 1)) > 0
230d793d 2385 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1dc8a823 2386 {
f1c6ba8b
RK
2387 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2388 XEXP (*split, 0), GEN_INT (i)));
1dc8a823
JW
2389 /* Update split_code because we may not have a multiply
2390 anymore. */
2391 split_code = GET_CODE (*split);
2392 }
230d793d
RS
2393
2394#ifdef INSN_SCHEDULING
2395 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2396 be written as a ZERO_EXTEND. */
3c0cb5de 2397 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
25c25947
R
2398 {
2399#ifdef LOAD_EXTEND_OP
2400 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2401 what it really is. */
2402 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2403 == SIGN_EXTEND)
2404 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2405 SUBREG_REG (*split)));
2406 else
2407#endif
2408 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2409 SUBREG_REG (*split)));
2410 }
230d793d
RS
2411#endif
2412
f1c6ba8b 2413 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
230d793d 2414 SUBST (*split, newdest);
8e2f6e35 2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
df7d75de
RK
2416
2417 /* If the split point was a MULT and we didn't have one before,
2418 don't use one now. */
2419 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
8e2f6e35 2420 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2421 }
2422 }
2423
2424 /* Check for a case where we loaded from memory in a narrow mode and
2425 then sign extended it, but we need both registers. In that case,
2426 we have a PARALLEL with both loads from the same memory location.
2427 We can split this into a load from memory followed by a register-register
2428 copy. This saves at least one insn, more if register allocation can
f0343c74
RK
2429 eliminate the copy.
2430
a9b2f059
JW
2431 We cannot do this if the destination of the first assignment is a
2432 condition code register or cc0. We eliminate this case by making sure
2433 the SET_DEST and SET_SRC have the same mode.
2434
f0343c74
RK
2435 We cannot do this if the destination of the second assignment is
2436 a register that we have already assumed is zero-extended. Similarly
2437 for a SUBREG of such a register. */
230d793d
RS
2438
2439 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2440 && GET_CODE (newpat) == PARALLEL
2441 && XVECLEN (newpat, 0) == 2
2442 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2443 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
a9b2f059
JW
2444 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2445 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
230d793d
RS
2446 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2447 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2448 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2449 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2450 INSN_CUID (i2))
2451 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2452 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
f0343c74 2453 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
f8cfc6aa 2454 (REG_P (temp)
5eaad481 2455 && reg_stat[REGNO (temp)].nonzero_bits != 0
f0343c74
RK
2456 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2457 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
5eaad481 2458 && (reg_stat[REGNO (temp)].nonzero_bits
f0343c74
RK
2459 != GET_MODE_MASK (word_mode))))
2460 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2461 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
f8cfc6aa 2462 (REG_P (temp)
5eaad481 2463 && reg_stat[REGNO (temp)].nonzero_bits != 0
f0343c74
RK
2464 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2465 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
5eaad481 2466 && (reg_stat[REGNO (temp)].nonzero_bits
f0343c74 2467 != GET_MODE_MASK (word_mode)))))
230d793d
RS
2468 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2469 SET_SRC (XVECEXP (newpat, 0, 1)))
2470 && ! find_reg_note (i3, REG_UNUSED,
2471 SET_DEST (XVECEXP (newpat, 0, 0))))
2472 {
472fbdd1
RK
2473 rtx ni2dest;
2474
230d793d 2475 newi2pat = XVECEXP (newpat, 0, 0);
472fbdd1 2476 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
230d793d
RS
2477 newpat = XVECEXP (newpat, 0, 1);
2478 SUBST (SET_SRC (newpat),
4de249d9 2479 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
8e2f6e35 2480 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
a29ca9db 2481
230d793d 2482 if (i2_code_number >= 0)
8e2f6e35 2483 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
5089e22e
RS
2484
2485 if (insn_code_number >= 0)
9e42ab3e 2486 swap_i2i3 = 1;
230d793d 2487 }
663522cb 2488
230d793d
RS
2489 /* Similarly, check for a case where we have a PARALLEL of two independent
2490 SETs but we started with three insns. In this case, we can do the sets
2491 as two separate insns. This case occurs when some SET allows two
2492 other insns to combine, but the destination of that SET is still live. */
2493
2494 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2495 && GET_CODE (newpat) == PARALLEL
2496 && XVECLEN (newpat, 0) == 2
2497 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2498 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2499 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2500 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2503 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2504 INSN_CUID (i2))
2505 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2506 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2508 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2509 XVECEXP (newpat, 0, 0))
2510 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
14a774a9
RK
2511 XVECEXP (newpat, 0, 1))
2512 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2513 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
230d793d 2514 {
e9a25f70
JL
2515 /* Normally, it doesn't matter which of the two is done first,
2516 but it does if one references cc0. In that case, it has to
2517 be first. */
2518#ifdef HAVE_cc0
2519 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2520 {
2521 newi2pat = XVECEXP (newpat, 0, 0);
2522 newpat = XVECEXP (newpat, 0, 1);
2523 }
2524 else
2525#endif
2526 {
2527 newi2pat = XVECEXP (newpat, 0, 1);
2528 newpat = XVECEXP (newpat, 0, 0);
2529 }
230d793d 2530
8e2f6e35 2531 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
a29ca9db 2532
230d793d 2533 if (i2_code_number >= 0)
8e2f6e35 2534 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2535 }
2536
2537 /* If it still isn't recognized, fail and change things back the way they
2538 were. */
2539 if ((insn_code_number < 0
2540 /* Is the result a reasonable ASM_OPERANDS? */
2541 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2542 {
2543 undo_all ();
2544 return 0;
2545 }
2546
2547 /* If we had to change another insn, make sure it is valid also. */
2548 if (undobuf.other_insn)
2549 {
230d793d
RS
2550 rtx other_pat = PATTERN (undobuf.other_insn);
2551 rtx new_other_notes;
2552 rtx note, next;
2553
6e25d159
RK
2554 CLEAR_HARD_REG_SET (newpat_used_regs);
2555
8e2f6e35
BS
2556 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2557 &new_other_notes);
230d793d
RS
2558
2559 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2560 {
2561 undo_all ();
2562 return 0;
2563 }
2564
2565 PATTERN (undobuf.other_insn) = other_pat;
2566
2567 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2568 are still valid. Then add any non-duplicate notes added by
2569 recog_for_combine. */
2570 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2571 {
2572 next = XEXP (note, 1);
2573
2574 if (REG_NOTE_KIND (note) == REG_UNUSED
2575 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
1a26b032 2576 {
f8cfc6aa 2577 if (REG_P (XEXP (note, 0)))
b1f21e0a 2578 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
1a26b032
RK
2579
2580 remove_note (undobuf.other_insn, note);
2581 }
230d793d
RS
2582 }
2583
1a26b032 2584 for (note = new_other_notes; note; note = XEXP (note, 1))
f8cfc6aa 2585 if (REG_P (XEXP (note, 0)))
b1f21e0a 2586 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
1a26b032 2587
230d793d 2588 distribute_notes (new_other_notes, undobuf.other_insn,
72531479 2589 undobuf.other_insn, NULL_RTX);
230d793d 2590 }
5ef17dd2 2591#ifdef HAVE_cc0
1f52178b 2592 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
ec5c56db 2593 they are adjacent to each other or not. */
5ef17dd2
CC
2594 {
2595 rtx p = prev_nonnote_insn (i3);
4b4bf941 2596 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
663522cb 2597 && sets_cc0_p (newi2pat))
5ef17dd2 2598 {
663522cb
KH
2599 undo_all ();
2600 return 0;
5ef17dd2 2601 }
663522cb
KH
2602 }
2603#endif
230d793d 2604
6fd21094 2605 /* Only allow this combination if insn_rtx_costs reports that the
64b8935d
RS
2606 replacement instructions are cheaper than the originals. */
2607 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2608 {
2609 undo_all ();
2610 return 0;
2611 }
2612
663522cb 2613 /* We now know that we can do this combination. Merge the insns and
230d793d
RS
2614 update the status of registers and LOG_LINKS. */
2615
9e42ab3e
RZ
2616 if (swap_i2i3)
2617 {
2618 rtx insn;
2619 rtx link;
2620 rtx ni2dest;
2621
2622 /* I3 now uses what used to be its destination and which is now
2623 I2's destination. This requires us to do a few adjustments. */
2624 PATTERN (i3) = newpat;
2625 adjust_for_new_dest (i3);
2626
2627 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2628 so we still will.
2629
2630 However, some later insn might be using I2's dest and have
2631 a LOG_LINK pointing at I3. We must remove this link.
2632 The simplest way to remove the link is to point it at I1,
2633 which we know will be a NOTE. */
2634
0b21d1dc
UW
2635 /* newi2pat is usually a SET here; however, recog_for_combine might
2636 have added some clobbers. */
2637 if (GET_CODE (newi2pat) == PARALLEL)
2638 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2639 else
2640 ni2dest = SET_DEST (newi2pat);
2641
9e42ab3e
RZ
2642 for (insn = NEXT_INSN (i3);
2643 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2644 || insn != BB_HEAD (this_basic_block->next_bb));
2645 insn = NEXT_INSN (insn))
2646 {
2647 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2648 {
2649 for (link = LOG_LINKS (insn); link;
2650 link = XEXP (link, 1))
2651 if (XEXP (link, 0) == i3)
2652 XEXP (link, 0) = i1;
2653
2654 break;
2655 }
2656 }
2657 }
2658
230d793d
RS
2659 {
2660 rtx i3notes, i2notes, i1notes = 0;
2661 rtx i3links, i2links, i1links = 0;
2662 rtx midnotes = 0;
770ae6cc 2663 unsigned int regno;
230d793d
RS
2664
2665 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2666 clear them. */
2667 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2668 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2669 if (i1)
2670 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2671
2672 /* Ensure that we do not have something that should not be shared but
2673 occurs multiple times in the new insns. Check this by first
5089e22e 2674 resetting all the `used' flags and then copying anything is shared. */
230d793d
RS
2675
2676 reset_used_flags (i3notes);
2677 reset_used_flags (i2notes);
2678 reset_used_flags (i1notes);
2679 reset_used_flags (newpat);
2680 reset_used_flags (newi2pat);
2681 if (undobuf.other_insn)
2682 reset_used_flags (PATTERN (undobuf.other_insn));
2683
2684 i3notes = copy_rtx_if_shared (i3notes);
2685 i2notes = copy_rtx_if_shared (i2notes);
2686 i1notes = copy_rtx_if_shared (i1notes);
2687 newpat = copy_rtx_if_shared (newpat);
2688 newi2pat = copy_rtx_if_shared (newi2pat);
2689 if (undobuf.other_insn)
2690 reset_used_flags (PATTERN (undobuf.other_insn));
2691
2692 INSN_CODE (i3) = insn_code_number;
2693 PATTERN (i3) = newpat;
cddd8b72 2694
4b4bf941 2695 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
cddd8b72
AO
2696 {
2697 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2698
2699 reset_used_flags (call_usage);
2700 call_usage = copy_rtx (call_usage);
2701
2702 if (substed_i2)
2703 replace_rtx (call_usage, i2dest, i2src);
2704
2705 if (substed_i1)
2706 replace_rtx (call_usage, i1dest, i1src);
2707
2708 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2709 }
2710
230d793d
RS
2711 if (undobuf.other_insn)
2712 INSN_CODE (undobuf.other_insn) = other_code_number;
2713
2714 /* We had one special case above where I2 had more than one set and
2715 we replaced a destination of one of those sets with the destination
2716 of I3. In that case, we have to update LOG_LINKS of insns later
176c9e6b
JW
2717 in this basic block. Note that this (expensive) case is rare.
2718
2719 Also, in this case, we must pretend that all REG_NOTEs for I2
2720 actually came from I3, so that REG_UNUSED notes from I2 will be
2721 properly handled. */
2722
c7be4f66 2723 if (i3_subst_into_i2)
176c9e6b 2724 {
1786009e 2725 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
95ac07b0 2726 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
f8cfc6aa 2727 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
1786009e
ZW
2728 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2729 && ! find_reg_note (i2, REG_UNUSED,
2730 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2731 for (temp = NEXT_INSN (i2);
f6366fc7 2732 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
a813c111 2733 || BB_HEAD (this_basic_block) != temp);
1786009e
ZW
2734 temp = NEXT_INSN (temp))
2735 if (temp != i3 && INSN_P (temp))
2736 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2737 if (XEXP (link, 0) == i2)
2738 XEXP (link, 0) = i3;
176c9e6b
JW
2739
2740 if (i3notes)
2741 {
2742 rtx link = i3notes;
2743 while (XEXP (link, 1))
2744 link = XEXP (link, 1);
2745 XEXP (link, 1) = i2notes;
2746 }
2747 else
2748 i3notes = i2notes;
2749 i2notes = 0;
2750 }
230d793d
RS
2751
2752 LOG_LINKS (i3) = 0;
2753 REG_NOTES (i3) = 0;
2754 LOG_LINKS (i2) = 0;
2755 REG_NOTES (i2) = 0;
2756
2757 if (newi2pat)
2758 {
2759 INSN_CODE (i2) = i2_code_number;
2760 PATTERN (i2) = newi2pat;
2761 }
2762 else
6773e15f 2763 SET_INSN_DELETED (i2);
230d793d
RS
2764
2765 if (i1)
2766 {
2767 LOG_LINKS (i1) = 0;
2768 REG_NOTES (i1) = 0;
6773e15f 2769 SET_INSN_DELETED (i1);
230d793d
RS
2770 }
2771
2772 /* Get death notes for everything that is now used in either I3 or
663522cb 2773 I2 and used to die in a previous insn. If we built two new
6eb12cef
RK
2774 patterns, move from I1 to I2 then I2 to I3 so that we get the
2775 proper movement on registers that I2 modifies. */
230d793d 2776
230d793d 2777 if (newi2pat)
6eb12cef
RK
2778 {
2779 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2780 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2781 }
2782 else
2783 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2784 i3, &midnotes);
230d793d
RS
2785
2786 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2787 if (i3notes)
72531479 2788 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
230d793d 2789 if (i2notes)
72531479 2790 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
230d793d 2791 if (i1notes)
72531479 2792 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
230d793d 2793 if (midnotes)
72531479 2794 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
230d793d
RS
2795
2796 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2797 know these are REG_UNUSED and want them to go to the desired insn,
663522cb 2798 so we always pass it as i3. We have not counted the notes in
1a26b032
RK
2799 reg_n_deaths yet, so we need to do so now. */
2800
230d793d 2801 if (newi2pat && new_i2_notes)
1a26b032
RK
2802 {
2803 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
f8cfc6aa 2804 if (REG_P (XEXP (temp, 0)))
b1f21e0a 2805 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
663522cb 2806
72531479 2807 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
1a26b032
RK
2808 }
2809
230d793d 2810 if (new_i3_notes)
1a26b032
RK
2811 {
2812 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
f8cfc6aa 2813 if (REG_P (XEXP (temp, 0)))
b1f21e0a 2814 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
663522cb 2815
72531479 2816 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
1a26b032 2817 }
230d793d
RS
2818
2819 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
e9a25f70
JL
2820 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2821 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2822 in that case, it might delete I2. Similarly for I2 and I1.
1a26b032
RK
2823 Show an additional death due to the REG_DEAD note we make here. If
2824 we discard it in distribute_notes, we will decrement it again. */
d0ab8cd3 2825
230d793d 2826 if (i3dest_killed)
1a26b032 2827 {
f8cfc6aa 2828 if (REG_P (i3dest_killed))
b1f21e0a 2829 REG_N_DEATHS (REGNO (i3dest_killed))++;
1a26b032 2830
e9a25f70 2831 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
38a448ca
RH
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2833 NULL_RTX),
72531479 2834 NULL_RTX, i2, NULL_RTX);
e9a25f70 2835 else
38a448ca
RH
2836 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2837 NULL_RTX),
72531479 2838 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
1a26b032 2839 }
58c8c593 2840
230d793d 2841 if (i2dest_in_i2src)
58c8c593 2842 {
f8cfc6aa 2843 if (REG_P (i2dest))
b1f21e0a 2844 REG_N_DEATHS (REGNO (i2dest))++;
1a26b032 2845
58c8c593 2846 if (newi2pat && reg_set_p (i2dest, newi2pat))
38a448ca 2847 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
72531479 2848 NULL_RTX, i2, NULL_RTX);
58c8c593 2849 else
38a448ca 2850 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
72531479 2851 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
58c8c593
RK
2852 }
2853
230d793d 2854 if (i1dest_in_i1src)
58c8c593 2855 {
f8cfc6aa 2856 if (REG_P (i1dest))
b1f21e0a 2857 REG_N_DEATHS (REGNO (i1dest))++;
1a26b032 2858
58c8c593 2859 if (newi2pat && reg_set_p (i1dest, newi2pat))
38a448ca 2860 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
72531479 2861 NULL_RTX, i2, NULL_RTX);
58c8c593 2862 else
38a448ca 2863 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
72531479 2864 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
58c8c593 2865 }
230d793d
RS
2866
2867 distribute_links (i3links);
2868 distribute_links (i2links);
2869 distribute_links (i1links);
2870
f8cfc6aa 2871 if (REG_P (i2dest))
230d793d 2872 {
d0ab8cd3
RK
2873 rtx link;
2874 rtx i2_insn = 0, i2_val = 0, set;
2875
2876 /* The insn that used to set this register doesn't exist, and
2877 this life of the register may not exist either. See if one of
663522cb 2878 I3's links points to an insn that sets I2DEST. If it does,
d0ab8cd3
RK
2879 that is now the last known value for I2DEST. If we don't update
2880 this and I2 set the register to a value that depended on its old
230d793d
RS
2881 contents, we will get confused. If this insn is used, thing
2882 will be set correctly in combine_instructions. */
d0ab8cd3
RK
2883
2884 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2885 if ((set = single_set (XEXP (link, 0))) != 0
2886 && rtx_equal_p (i2dest, SET_DEST (set)))
2887 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2888
2889 record_value_for_reg (i2dest, i2_insn, i2_val);
230d793d
RS
2890
2891 /* If the reg formerly set in I2 died only once and that was in I3,
2892 zero its use count so it won't make `reload' do any work. */
538fe8cd
ILT
2893 if (! added_sets_2
2894 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2895 && ! i2dest_in_i2src)
230d793d
RS
2896 {
2897 regno = REGNO (i2dest);
b1f21e0a 2898 REG_N_SETS (regno)--;
230d793d
RS
2899 }
2900 }
2901
f8cfc6aa 2902 if (i1 && REG_P (i1dest))
230d793d 2903 {
d0ab8cd3
RK
2904 rtx link;
2905 rtx i1_insn = 0, i1_val = 0, set;
2906
2907 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2908 if ((set = single_set (XEXP (link, 0))) != 0
2909 && rtx_equal_p (i1dest, SET_DEST (set)))
2910 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2911
2912 record_value_for_reg (i1dest, i1_insn, i1_val);
2913
230d793d 2914 regno = REGNO (i1dest);
5af91171 2915 if (! added_sets_1 && ! i1dest_in_i1src)
770ae6cc 2916 REG_N_SETS (regno)--;
230d793d
RS
2917 }
2918
5eaad481
PB
2919 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2920 been made to this insn. The order of
2921 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2922 can affect nonzero_bits of newpat */
22609cbf 2923 if (newi2pat)
84832317 2924 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
5fb7c247 2925 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
22609cbf 2926
44a76fc8
AG
2927 /* Set new_direct_jump_p if a new return or simple jump instruction
2928 has been created.
2929
663522cb 2930 If I3 is now an unconditional jump, ensure that it has a
230d793d 2931 BARRIER following it since it may have initially been a
381ee8af 2932 conditional jump. It may also be the last nonnote insn. */
663522cb 2933
f40f4c8e 2934 if (returnjump_p (i3) || any_uncondjump_p (i3))
44a76fc8
AG
2935 {
2936 *new_direct_jump_p = 1;
9143c6b7 2937 mark_jump_label (PATTERN (i3), i3, 0);
230d793d 2938
44a76fc8 2939 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
4b4bf941 2940 || !BARRIER_P (temp))
44a76fc8
AG
2941 emit_barrier_after (i3);
2942 }
f40f4c8e
RS
2943
2944 if (undobuf.other_insn != NULL_RTX
2945 && (returnjump_p (undobuf.other_insn)
2946 || any_uncondjump_p (undobuf.other_insn)))
2947 {
2948 *new_direct_jump_p = 1;
2949
2950 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
4b4bf941 2951 || !BARRIER_P (temp))
f40f4c8e
RS
2952 emit_barrier_after (undobuf.other_insn);
2953 }
73a39fc4 2954
592a6d1d
JH
2955 /* An NOOP jump does not need barrier, but it does need cleaning up
2956 of CFG. */
2957 if (GET_CODE (newpat) == SET
2958 && SET_SRC (newpat) == pc_rtx
2959 && SET_DEST (newpat) == pc_rtx)
2960 *new_direct_jump_p = 1;
230d793d
RS
2961 }
2962
2963 combine_successes++;
e7749837 2964 undo_commit ();
230d793d 2965
abe6e52f
RK
2966 if (added_links_insn
2967 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2968 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2969 return added_links_insn;
2970 else
2971 return newi2pat ? i2 : i3;
230d793d
RS
2972}
2973\f
2974/* Undo all the modifications recorded in undobuf. */
2975
2976static void
79a490a9 2977undo_all (void)
230d793d 2978{
241cea85
RK
2979 struct undo *undo, *next;
2980
2981 for (undo = undobuf.undos; undo; undo = next)
7c046e4e 2982 {
241cea85
RK
2983 next = undo->next;
2984 if (undo->is_int)
2985 *undo->where.i = undo->old_contents.i;
7c046e4e 2986 else
241cea85
RK
2987 *undo->where.r = undo->old_contents.r;
2988
2989 undo->next = undobuf.frees;
2990 undobuf.frees = undo;
7c046e4e 2991 }
230d793d 2992
f1c6ba8b 2993 undobuf.undos = 0;
230d793d 2994}
e7749837
RH
2995
2996/* We've committed to accepting the changes we made. Move all
2997 of the undos to the free list. */
2998
2999static void
79a490a9 3000undo_commit (void)
e7749837
RH
3001{
3002 struct undo *undo, *next;
3003
3004 for (undo = undobuf.undos; undo; undo = next)
3005 {
3006 next = undo->next;
3007 undo->next = undobuf.frees;
3008 undobuf.frees = undo;
3009 }
f1c6ba8b 3010 undobuf.undos = 0;
e7749837
RH
3011}
3012
230d793d
RS
3013\f
3014/* Find the innermost point within the rtx at LOC, possibly LOC itself,
d0ab8cd3
RK
3015 where we have an arithmetic expression and return that point. LOC will
3016 be inside INSN.
230d793d
RS
3017
3018 try_combine will call this function to see if an insn can be split into
3019 two insns. */
3020
3021static rtx *
79a490a9 3022find_split_point (rtx *loc, rtx insn)
230d793d
RS
3023{
3024 rtx x = *loc;
3025 enum rtx_code code = GET_CODE (x);
3026 rtx *split;
770ae6cc
RK
3027 unsigned HOST_WIDE_INT len = 0;
3028 HOST_WIDE_INT pos = 0;
3029 int unsignedp = 0;
6a651371 3030 rtx inner = NULL_RTX;
230d793d
RS
3031
3032 /* First special-case some codes. */
3033 switch (code)
3034 {
3035 case SUBREG:
3036#ifdef INSN_SCHEDULING
3037 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3038 point. */
3c0cb5de 3039 if (MEM_P (SUBREG_REG (x)))
230d793d
RS
3040 return loc;
3041#endif
d0ab8cd3 3042 return find_split_point (&SUBREG_REG (x), insn);
230d793d 3043
230d793d 3044 case MEM:
916f14f1 3045#ifdef HAVE_lo_sum
230d793d
RS
3046 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3047 using LO_SUM and HIGH. */
3048 if (GET_CODE (XEXP (x, 0)) == CONST
3049 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3050 {
3051 SUBST (XEXP (x, 0),
f1c6ba8b
RK
3052 gen_rtx_LO_SUM (Pmode,
3053 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3054 XEXP (x, 0)));
230d793d
RS
3055 return &XEXP (XEXP (x, 0), 0);
3056 }
230d793d
RS
3057#endif
3058
916f14f1
RK
3059 /* If we have a PLUS whose second operand is a constant and the
3060 address is not valid, perhaps will can split it up using
3061 the machine-specific way to split large constants. We use
ddd5a7c1 3062 the first pseudo-reg (one of the virtual regs) as a placeholder;
916f14f1
RK
3063 it will not remain in the result. */
3064 if (GET_CODE (XEXP (x, 0)) == PLUS
3065 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3066 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3067 {
3068 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
38a448ca 3069 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
916f14f1
RK
3070 subst_insn);
3071
3072 /* This should have produced two insns, each of which sets our
3073 placeholder. If the source of the second is a valid address,
3074 we can make put both sources together and make a split point
3075 in the middle. */
3076
2f937369
DM
3077 if (seq
3078 && NEXT_INSN (seq) != NULL_RTX
3079 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4b4bf941 3080 && NONJUMP_INSN_P (seq)
2f937369
DM
3081 && GET_CODE (PATTERN (seq)) == SET
3082 && SET_DEST (PATTERN (seq)) == reg
916f14f1 3083 && ! reg_mentioned_p (reg,
2f937369 3084 SET_SRC (PATTERN (seq)))
4b4bf941 3085 && NONJUMP_INSN_P (NEXT_INSN (seq))
2f937369
DM
3086 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3087 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
916f14f1 3088 && memory_address_p (GET_MODE (x),
2f937369 3089 SET_SRC (PATTERN (NEXT_INSN (seq)))))
916f14f1 3090 {
2f937369
DM
3091 rtx src1 = SET_SRC (PATTERN (seq));
3092 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
916f14f1
RK
3093
3094 /* Replace the placeholder in SRC2 with SRC1. If we can
3095 find where in SRC2 it was placed, that can become our
3096 split point and we can replace this address with SRC2.
3097 Just try two obvious places. */
3098
3099 src2 = replace_rtx (src2, reg, src1);
3100 split = 0;
3101 if (XEXP (src2, 0) == src1)
3102 split = &XEXP (src2, 0);
3103 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3104 && XEXP (XEXP (src2, 0), 0) == src1)
3105 split = &XEXP (XEXP (src2, 0), 0);
3106
3107 if (split)
3108 {
3109 SUBST (XEXP (x, 0), src2);
3110 return split;
3111 }
3112 }
663522cb 3113
1a26b032
RK
3114 /* If that didn't work, perhaps the first operand is complex and
3115 needs to be computed separately, so make a split point there.
3116 This will occur on machines that just support REG + CONST
3117 and have a constant moved through some previous computation. */
3118
ec8e098d 3119 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
1a26b032 3120 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
ec8e098d 3121 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
1a26b032 3122 return &XEXP (XEXP (x, 0), 0);
916f14f1
RK
3123 }
3124 break;
3125
230d793d
RS
3126 case SET:
3127#ifdef HAVE_cc0
3128 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3129 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3130 we need to put the operand into a register. So split at that
3131 point. */
3132
3133 if (SET_DEST (x) == cc0_rtx
3134 && GET_CODE (SET_SRC (x)) != COMPARE
3135 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
ec8e098d 3136 && !OBJECT_P (SET_SRC (x))
230d793d 3137 && ! (GET_CODE (SET_SRC (x)) == SUBREG
ec8e098d 3138 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
230d793d
RS
3139 return &SET_SRC (x);
3140#endif
3141
3142 /* See if we can split SET_SRC as it stands. */
d0ab8cd3 3143 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3144 if (split && split != &SET_SRC (x))
3145 return split;
3146
041d7180
JL
3147 /* See if we can split SET_DEST as it stands. */
3148 split = find_split_point (&SET_DEST (x), insn);
3149 if (split && split != &SET_DEST (x))
3150 return split;
3151
230d793d
RS
3152 /* See if this is a bitfield assignment with everything constant. If
3153 so, this is an IOR of an AND, so split it into that. */
3154 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
5f4f0e22 3156 <= HOST_BITS_PER_WIDE_INT)
230d793d
RS
3157 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3158 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3159 && GET_CODE (SET_SRC (x)) == CONST_INT
3160 && ((INTVAL (XEXP (SET_DEST (x), 1))
cf0d9408 3161 + INTVAL (XEXP (SET_DEST (x), 2)))
230d793d
RS
3162 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3163 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3164 {
770ae6cc
RK
3165 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3166 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3167 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
230d793d
RS
3168 rtx dest = XEXP (SET_DEST (x), 0);
3169 enum machine_mode mode = GET_MODE (dest);
5f4f0e22 3170 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
230d793d 3171
f76b9db2
ILT
3172 if (BITS_BIG_ENDIAN)
3173 pos = GET_MODE_BITSIZE (mode) - len - pos;
230d793d 3174
770ae6cc 3175 if (src == mask)
230d793d 3176 SUBST (SET_SRC (x),
1999435c 3177 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
230d793d 3178 else
1999435c
PB
3179 SUBST (SET_SRC (x),
3180 gen_binary (IOR, mode,
3181 gen_binary (AND, mode, dest,
3182 gen_int_mode (~(mask << pos),
3183 mode)),
3184 GEN_INT (src << pos)));
230d793d
RS
3185
3186 SUBST (SET_DEST (x), dest);
3187
d0ab8cd3 3188 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3189 if (split && split != &SET_SRC (x))
3190 return split;
3191 }
3192
3193 /* Otherwise, see if this is an operation that we can split into two.
3194 If so, try to split that. */
3195 code = GET_CODE (SET_SRC (x));
3196
3197 switch (code)
3198 {
d0ab8cd3
RK
3199 case AND:
3200 /* If we are AND'ing with a large constant that is only a single
3201 bit and the result is only being used in a context where we
da7d8304 3202 need to know if it is zero or nonzero, replace it with a bit
d0ab8cd3
RK
3203 extraction. This will avoid the large constant, which might
3204 have taken more than one insn to make. If the constant were
3205 not a valid argument to the AND but took only one insn to make,
3206 this is no worse, but if it took more than one insn, it will
3207 be better. */
3208
3209 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
f8cfc6aa 3210 && REG_P (XEXP (SET_SRC (x), 0))
d0ab8cd3 3211 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
f8cfc6aa 3212 && REG_P (SET_DEST (x))
cf0d9408 3213 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
d0ab8cd3
RK
3214 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3215 && XEXP (*split, 0) == SET_DEST (x)
3216 && XEXP (*split, 1) == const0_rtx)
3217 {
76184def
DE
3218 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3219 XEXP (SET_SRC (x), 0),
3220 pos, NULL_RTX, 1, 1, 0, 0);
3221 if (extraction != 0)
3222 {
3223 SUBST (SET_SRC (x), extraction);
3224 return find_split_point (loc, insn);
3225 }
d0ab8cd3
RK
3226 }
3227 break;
3228
1a6ec070 3229 case NE:
938d968e 3230 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
ec5c56db 3231 is known to be on, this can be converted into a NEG of a shift. */
1a6ec070
RK
3232 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3233 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4eb2cb10 3234 && 1 <= (pos = exact_log2
1a6ec070
RK
3235 (nonzero_bits (XEXP (SET_SRC (x), 0),
3236 GET_MODE (XEXP (SET_SRC (x), 0))))))
3237 {
3238 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3239
3240 SUBST (SET_SRC (x),
f1c6ba8b
RK
3241 gen_rtx_NEG (mode,
3242 gen_rtx_LSHIFTRT (mode,
3243 XEXP (SET_SRC (x), 0),
3244 GEN_INT (pos))));
1a6ec070
RK
3245
3246 split = find_split_point (&SET_SRC (x), insn);
3247 if (split && split != &SET_SRC (x))
3248 return split;
3249 }
3250 break;
3251
230d793d
RS
3252 case SIGN_EXTEND:
3253 inner = XEXP (SET_SRC (x), 0);
101c1a3d
JL
3254
3255 /* We can't optimize if either mode is a partial integer
3256 mode as we don't know how many bits are significant
3257 in those modes. */
3258 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3259 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3260 break;
3261
230d793d
RS
3262 pos = 0;
3263 len = GET_MODE_BITSIZE (GET_MODE (inner));
3264 unsignedp = 0;
3265 break;
3266
3267 case SIGN_EXTRACT:
3268 case ZERO_EXTRACT:
3269 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3270 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3271 {
3272 inner = XEXP (SET_SRC (x), 0);
3273 len = INTVAL (XEXP (SET_SRC (x), 1));
3274 pos = INTVAL (XEXP (SET_SRC (x), 2));
3275
f76b9db2
ILT
3276 if (BITS_BIG_ENDIAN)
3277 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
230d793d
RS
3278 unsignedp = (code == ZERO_EXTRACT);
3279 }
3280 break;
e9a25f70
JL
3281
3282 default:
3283 break;
230d793d
RS
3284 }
3285
3286 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3287 {
3288 enum machine_mode mode = GET_MODE (SET_SRC (x));
3289
d0ab8cd3
RK
3290 /* For unsigned, we have a choice of a shift followed by an
3291 AND or two shifts. Use two shifts for field sizes where the
3292 constant might be too large. We assume here that we can
3293 always at least get 8-bit constants in an AND insn, which is
3294 true for every current RISC. */
3295
3296 if (unsignedp && len <= 8)
230d793d
RS
3297 {
3298 SUBST (SET_SRC (x),
f1c6ba8b
RK
3299 gen_rtx_AND (mode,
3300 gen_rtx_LSHIFTRT
4de249d9 3301 (mode, gen_lowpart (mode, inner),
f1c6ba8b
RK
3302 GEN_INT (pos)),
3303 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
230d793d 3304
d0ab8cd3 3305 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3306 if (split && split != &SET_SRC (x))
3307 return split;
3308 }
3309 else
3310 {
3311 SUBST (SET_SRC (x),
f1c6ba8b 3312 gen_rtx_fmt_ee
d0ab8cd3 3313 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
f1c6ba8b 3314 gen_rtx_ASHIFT (mode,
4de249d9 3315 gen_lowpart (mode, inner),
f1c6ba8b
RK
3316 GEN_INT (GET_MODE_BITSIZE (mode)
3317 - len - pos)),
5f4f0e22 3318 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
230d793d 3319
d0ab8cd3 3320 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3321 if (split && split != &SET_SRC (x))
3322 return split;
3323 }
3324 }
3325
3326 /* See if this is a simple operation with a constant as the second
3327 operand. It might be that this constant is out of range and hence
3328 could be used as a split point. */
ec8e098d 3329 if (BINARY_P (SET_SRC (x))
230d793d 3330 && CONSTANT_P (XEXP (SET_SRC (x), 1))
ec8e098d 3331 && (OBJECT_P (XEXP (SET_SRC (x), 0))
230d793d 3332 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
ec8e098d 3333 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
230d793d
RS
3334 return &XEXP (SET_SRC (x), 1);
3335
3336 /* Finally, see if this is a simple operation with its first operand
3337 not in a register. The operation might require this operand in a
3338 register, so return it as a split point. We can always do this
3339 because if the first operand were another operation, we would have
3340 already found it as a split point. */
ec8e098d 3341 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
230d793d
RS
3342 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3343 return &XEXP (SET_SRC (x), 0);
3344
3345 return 0;
3346
3347 case AND:
3348 case IOR:
3349 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3350 it is better to write this as (not (ior A B)) so we can split it.
3351 Similarly for IOR. */
3352 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3353 {
3354 SUBST (*loc,
f1c6ba8b
RK
3355 gen_rtx_NOT (GET_MODE (x),
3356 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3357 GET_MODE (x),
3358 XEXP (XEXP (x, 0), 0),
3359 XEXP (XEXP (x, 1), 0))));
d0ab8cd3 3360 return find_split_point (loc, insn);
230d793d
RS
3361 }
3362
3363 /* Many RISC machines have a large set of logical insns. If the
3364 second operand is a NOT, put it first so we will try to split the
3365 other operand first. */
3366 if (GET_CODE (XEXP (x, 1)) == NOT)
3367 {
3368 rtx tem = XEXP (x, 0);
3369 SUBST (XEXP (x, 0), XEXP (x, 1));
3370 SUBST (XEXP (x, 1), tem);
3371 }
3372 break;
e9a25f70
JL
3373
3374 default:
3375 break;
230d793d
RS
3376 }
3377
3378 /* Otherwise, select our actions depending on our rtx class. */
3379 switch (GET_RTX_CLASS (code))
3380 {
ec8e098d
PB
3381 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3382 case RTX_TERNARY:
d0ab8cd3 3383 split = find_split_point (&XEXP (x, 2), insn);
230d793d
RS
3384 if (split)
3385 return split;
0f41302f 3386 /* ... fall through ... */
ec8e098d
PB
3387 case RTX_BIN_ARITH:
3388 case RTX_COMM_ARITH:
3389 case RTX_COMPARE:
3390 case RTX_COMM_COMPARE:
d0ab8cd3 3391 split = find_split_point (&XEXP (x, 1), insn);
230d793d
RS
3392 if (split)
3393 return split;
0f41302f 3394 /* ... fall through ... */
ec8e098d 3395 case RTX_UNARY:
230d793d
RS
3396 /* Some machines have (and (shift ...) ...) insns. If X is not
3397 an AND, but XEXP (X, 0) is, use it as our split point. */
3398 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3399 return &XEXP (x, 0);
3400
d0ab8cd3 3401 split = find_split_point (&XEXP (x, 0), insn);
230d793d
RS
3402 if (split)
3403 return split;
3404 return loc;
230d793d 3405
ec8e098d
PB
3406 default:
3407 /* Otherwise, we don't have a split point. */
3408 return 0;
3409 }
230d793d
RS
3410}
3411\f
3412/* Throughout X, replace FROM with TO, and return the result.
3413 The result is TO if X is FROM;
3414 otherwise the result is X, but its contents may have been modified.
3415 If they were modified, a record was made in undobuf so that
3416 undo_all will (among other things) return X to its original state.
3417
3418 If the number of changes necessary is too much to record to undo,
3419 the excess changes are not made, so the result is invalid.
3420 The changes already made can still be undone.
3421 undobuf.num_undo is incremented for such changes, so by testing that
3422 the caller can tell whether the result is valid.
3423
3424 `n_occurrences' is incremented each time FROM is replaced.
663522cb 3425
da7d8304 3426 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
230d793d 3427
da7d8304
KH
3428 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3429 by copying if `n_occurrences' is nonzero. */
230d793d
RS
3430
3431static rtx
79a490a9 3432subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
230d793d 3433{
b3694847 3434 enum rtx_code code = GET_CODE (x);
230d793d 3435 enum machine_mode op0_mode = VOIDmode;
b3694847
SS
3436 const char *fmt;
3437 int len, i;
8079805d 3438 rtx new;
230d793d
RS
3439
3440/* Two expressions are equal if they are identical copies of a shared
3441 RTX or if they are both registers with the same register number
3442 and mode. */
3443
3444#define COMBINE_RTX_EQUAL_P(X,Y) \
3445 ((X) == (Y) \
f8cfc6aa 3446 || (REG_P (X) && REG_P (Y) \
230d793d
RS
3447 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3448
3449 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3450 {
3451 n_occurrences++;
3452 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3453 }
3454
3455 /* If X and FROM are the same register but different modes, they will
663522cb 3456 not have been seen as equal above. However, flow.c will make a
230d793d
RS
3457 LOG_LINKS entry for that case. If we do nothing, we will try to
3458 rerecognize our original insn and, when it succeeds, we will
3459 delete the feeding insn, which is incorrect.
3460
3461 So force this insn not to match in this (rare) case. */
f8cfc6aa 3462 if (! in_dest && code == REG && REG_P (from)
230d793d 3463 && REGNO (x) == REGNO (from))
38a448ca 3464 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
3465
3466 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3467 of which may contain things that can be combined. */
ec8e098d 3468 if (code != MEM && code != LO_SUM && OBJECT_P (x))
230d793d
RS
3469 return x;
3470
3471 /* It is possible to have a subexpression appear twice in the insn.
3472 Suppose that FROM is a register that appears within TO.
3473 Then, after that subexpression has been scanned once by `subst',
3474 the second time it is scanned, TO may be found. If we were
3475 to scan TO here, we would find FROM within it and create a
3476 self-referent rtl structure which is completely wrong. */
3477 if (COMBINE_RTX_EQUAL_P (x, to))
3478 return to;
3479
4f4b3679
RH
3480 /* Parallel asm_operands need special attention because all of the
3481 inputs are shared across the arms. Furthermore, unsharing the
3482 rtl results in recognition failures. Failure to handle this case
3483 specially can result in circular rtl.
3484
3485 Solve this by doing a normal pass across the first entry of the
3486 parallel, and only processing the SET_DESTs of the subsequent
3487 entries. Ug. */
3488
3489 if (code == PARALLEL
3490 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3491 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
230d793d 3492 {
4f4b3679
RH
3493 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3494
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx)
3498 return new;
3499
3500 SUBST (XVECEXP (x, 0, 0), new);
3501
3502 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
230d793d 3503 {
4f4b3679 3504 rtx dest = SET_DEST (XVECEXP (x, 0, i));
663522cb 3505
f8cfc6aa 3506 if (!REG_P (dest)
4f4b3679
RH
3507 && GET_CODE (dest) != CC0
3508 && GET_CODE (dest) != PC)
230d793d 3509 {
4f4b3679 3510 new = subst (dest, from, to, 0, unique_copy);
230d793d 3511
4f4b3679
RH
3512 /* If this substitution failed, this whole thing fails. */
3513 if (GET_CODE (new) == CLOBBER
3514 && XEXP (new, 0) == const0_rtx)
3515 return new;
230d793d 3516
4f4b3679 3517 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
230d793d
RS
3518 }
3519 }
4f4b3679
RH
3520 }
3521 else
3522 {
3523 len = GET_RTX_LENGTH (code);
3524 fmt = GET_RTX_FORMAT (code);
3525
3526 /* We don't need to process a SET_DEST that is a register, CC0,
3527 or PC, so set up to skip this common case. All other cases
3528 where we want to suppress replacing something inside a
3529 SET_SRC are handled via the IN_DEST operand. */
3530 if (code == SET
f8cfc6aa 3531 && (REG_P (SET_DEST (x))
4f4b3679
RH
3532 || GET_CODE (SET_DEST (x)) == CC0
3533 || GET_CODE (SET_DEST (x)) == PC))
3534 fmt = "ie";
3535
3536 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3537 constant. */
3538 if (fmt[0] == 'e')
3539 op0_mode = GET_MODE (XEXP (x, 0));
3540
3541 for (i = 0; i < len; i++)
230d793d 3542 {
4f4b3679 3543 if (fmt[i] == 'E')
230d793d 3544 {
b3694847 3545 int j;
4f4b3679
RH
3546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3547 {
3548 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3549 {
3550 new = (unique_copy && n_occurrences
3551 ? copy_rtx (to) : to);
3552 n_occurrences++;
3553 }
3554 else
3555 {
3556 new = subst (XVECEXP (x, i, j), from, to, 0,
3557 unique_copy);
3558
3559 /* If this substitution failed, this whole thing
3560 fails. */
3561 if (GET_CODE (new) == CLOBBER
3562 && XEXP (new, 0) == const0_rtx)
3563 return new;
3564 }
3565
3566 SUBST (XVECEXP (x, i, j), new);
3567 }
3568 }
3569 else if (fmt[i] == 'e')
3570 {
0a33d11e
RH
3571 /* If this is a register being set, ignore it. */
3572 new = XEXP (x, i);
3573 if (in_dest
0a33d11e 3574 && i == 0
b78b8bd8
JJ
3575 && (((code == SUBREG || code == ZERO_EXTRACT)
3576 && REG_P (new))
3577 || code == STRICT_LOW_PART))
0a33d11e
RH
3578 ;
3579
3580 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4f4b3679
RH
3581 {
3582 /* In general, don't install a subreg involving two
3583 modes not tieable. It can worsen register
3584 allocation, and can even make invalid reload
3585 insns, since the reg inside may need to be copied
3586 from in the outside mode, and that may be invalid
3587 if it is an fp reg copied in integer mode.
3588
3589 We allow two exceptions to this: It is valid if
3590 it is inside another SUBREG and the mode of that
3591 SUBREG and the mode of the inside of TO is
3592 tieable and it is valid if X is a SET that copies
3593 FROM to CC0. */
3594
3595 if (GET_CODE (to) == SUBREG
3596 && ! MODES_TIEABLE_P (GET_MODE (to),
3597 GET_MODE (SUBREG_REG (to)))
3598 && ! (code == SUBREG
3599 && MODES_TIEABLE_P (GET_MODE (x),
3600 GET_MODE (SUBREG_REG (to))))
42301240 3601#ifdef HAVE_cc0
4f4b3679 3602 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
42301240 3603#endif
4f4b3679
RH
3604 )
3605 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
42301240 3606
cff9f8d5 3607#ifdef CANNOT_CHANGE_MODE_CLASS
ed8afe3a 3608 if (code == SUBREG
f8cfc6aa 3609 && REG_P (to)
ed8afe3a 3610 && REGNO (to) < FIRST_PSEUDO_REGISTER
cff9f8d5
AH
3611 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3612 GET_MODE (to),
3613 GET_MODE (x)))
ed8afe3a
GK
3614 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3615#endif
3616
4f4b3679
RH
3617 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3618 n_occurrences++;
3619 }
3620 else
3621 /* If we are in a SET_DEST, suppress most cases unless we
3622 have gone inside a MEM, in which case we want to
3623 simplify the address. We assume here that things that
3624 are actually part of the destination have their inner
663522cb 3625 parts in the first expression. This is true for SUBREG,
4f4b3679
RH
3626 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3627 things aside from REG and MEM that should appear in a
3628 SET_DEST. */
3629 new = subst (XEXP (x, i), from, to,
3630 (((in_dest
3631 && (code == SUBREG || code == STRICT_LOW_PART
3632 || code == ZERO_EXTRACT))
3633 || code == SET)
3634 && i == 0), unique_copy);
3635
3636 /* If we found that we will have to reject this combination,
3637 indicate that by returning the CLOBBER ourselves, rather than
3638 an expression containing it. This will speed things up as
3639 well as prevent accidents where two CLOBBERs are considered
3640 to be equal, thus producing an incorrect simplification. */
3641
3642 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3643 return new;
3644
cc8c96fd
RS
3645 if (GET_CODE (x) == SUBREG
3646 && (GET_CODE (new) == CONST_INT
3647 || GET_CODE (new) == CONST_DOUBLE))
4161da12 3648 {
b0dd4808 3649 enum machine_mode mode = GET_MODE (x);
2e676d78 3650
4161da12
AO
3651 x = simplify_subreg (GET_MODE (x), new,
3652 GET_MODE (SUBREG_REG (x)),
3653 SUBREG_BYTE (x));
3654 if (! x)
b0dd4808 3655 x = gen_rtx_CLOBBER (mode, const0_rtx);
4161da12
AO
3656 }
3657 else if (GET_CODE (new) == CONST_INT
3658 && GET_CODE (x) == ZERO_EXTEND)
3659 {
3660 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3661 new, GET_MODE (XEXP (x, 0)));
341c100f 3662 gcc_assert (x);
4161da12
AO
3663 }
3664 else
3665 SUBST (XEXP (x, i), new);
230d793d 3666 }
230d793d
RS
3667 }
3668 }
3669
8079805d
RK
3670 /* Try to simplify X. If the simplification changed the code, it is likely
3671 that further simplification will help, so loop, but limit the number
3672 of repetitions that will be performed. */
3673
3674 for (i = 0; i < 4; i++)
3675 {
3676 /* If X is sufficiently simple, don't bother trying to do anything
3677 with it. */
3678 if (code != CONST_INT && code != REG && code != CLOBBER)
6621d78e 3679 x = combine_simplify_rtx (x, op0_mode, in_dest);
d0ab8cd3 3680
8079805d
RK
3681 if (GET_CODE (x) == code)
3682 break;
d0ab8cd3 3683
8079805d 3684 code = GET_CODE (x);
eeb43d32 3685
8079805d
RK
3686 /* We no longer know the original mode of operand 0 since we
3687 have changed the form of X) */
3688 op0_mode = VOIDmode;
3689 }
eeb43d32 3690
8079805d
RK
3691 return x;
3692}
3693\f
3694/* Simplify X, a piece of RTL. We just operate on the expression at the
3695 outer level; call `subst' to simplify recursively. Return the new
3696 expression.
3697
6621d78e
PB
3698 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3699 if we are inside a SET_DEST. */
eeb43d32 3700
8079805d 3701static rtx
6621d78e 3702combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
8079805d
RK
3703{
3704 enum rtx_code code = GET_CODE (x);
3705 enum machine_mode mode = GET_MODE (x);
3706 rtx temp;
9a915772 3707 rtx reversed;
8079805d 3708 int i;
d0ab8cd3 3709
230d793d
RS
3710 /* If this is a commutative operation, put a constant last and a complex
3711 expression first. We don't need to do this for comparisons here. */
ec8e098d 3712 if (COMMUTATIVE_ARITH_P (x)
e5c56fd9 3713 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
230d793d
RS
3714 {
3715 temp = XEXP (x, 0);
3716 SUBST (XEXP (x, 0), XEXP (x, 1));
3717 SUBST (XEXP (x, 1), temp);
3718 }
3719
22609cbf
RK
3720 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3721 sign extension of a PLUS with a constant, reverse the order of the sign
3722 extension and the addition. Note that this not the same as the original
3723 code, but overflow is undefined for signed values. Also note that the
3724 PLUS will have been partially moved "inside" the sign-extension, so that
3725 the first operand of X will really look like:
3726 (ashiftrt (plus (ashift A C4) C5) C4).
3727 We convert this to
3728 (plus (ashiftrt (ashift A C4) C2) C4)
3729 and replace the first operand of X with that expression. Later parts
3730 of this function may simplify the expression further.
3731
3732 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3733 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3734 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3735
3736 We do this to simplify address expressions. */
3737
3738 if ((code == PLUS || code == MINUS || code == MULT)
3739 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3740 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3741 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3742 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3743 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3744 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3745 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3746 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3747 XEXP (XEXP (XEXP (x, 0), 0), 1),
3748 XEXP (XEXP (x, 0), 1))) != 0)
3749 {
3750 rtx new
3751 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3752 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3753 INTVAL (XEXP (XEXP (x, 0), 1)));
3754
3755 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3756 INTVAL (XEXP (XEXP (x, 0), 1)));
3757
1999435c 3758 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
22609cbf
RK
3759 }
3760
663522cb 3761 /* If this is a simple operation applied to an IF_THEN_ELSE, try
d0ab8cd3 3762 applying it to the arms of the IF_THEN_ELSE. This often simplifies
abe6e52f
RK
3763 things. Check for cases where both arms are testing the same
3764 condition.
3765
3766 Don't do anything if all operands are very simple. */
3767
ec8e098d
PB
3768 if ((BINARY_P (x)
3769 && ((!OBJECT_P (XEXP (x, 0))
abe6e52f 3770 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
ec8e098d
PB
3771 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3772 || (!OBJECT_P (XEXP (x, 1))
abe6e52f 3773 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
ec8e098d
PB
3774 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3775 || (UNARY_P (x)
3776 && (!OBJECT_P (XEXP (x, 0))
abe6e52f 3777 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
ec8e098d 3778 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
d0ab8cd3 3779 {
d6edb99e 3780 rtx cond, true_rtx, false_rtx;
abe6e52f 3781
d6edb99e 3782 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
0802d516
RK
3783 if (cond != 0
3784 /* If everything is a comparison, what we have is highly unlikely
3785 to be simpler, so don't use it. */
ec8e098d
PB
3786 && ! (COMPARISON_P (x)
3787 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
abe6e52f
RK
3788 {
3789 rtx cop1 = const0_rtx;
3790 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3791
ec8e098d 3792 if (cond_code == NE && COMPARISON_P (cond))
15448afc
RK
3793 return x;
3794
663522cb 3795 /* Simplify the alternative arms; this may collapse the true and
c6279378
UW
3796 false arms to store-flag values. Be careful to use copy_rtx
3797 here since true_rtx or false_rtx might share RTL with x as a
3798 result of the if_then_else_cond call above. */
3799 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3800 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
9210df58 3801
d6edb99e 3802 /* If true_rtx and false_rtx are not general_operands, an if_then_else
085f1714 3803 is unlikely to be simpler. */
d6edb99e
ZW
3804 if (general_operand (true_rtx, VOIDmode)
3805 && general_operand (false_rtx, VOIDmode))
085f1714 3806 {
434c87d4
JH
3807 enum rtx_code reversed;
3808
085f1714
RH
3809 /* Restarting if we generate a store-flag expression will cause
3810 us to loop. Just drop through in this case. */
3811
3812 /* If the result values are STORE_FLAG_VALUE and zero, we can
3813 just make the comparison operation. */
d6edb99e 3814 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
1999435c 3815 x = gen_binary (cond_code, mode, cond, cop1);
fa4e13e0 3816 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
434c87d4 3817 && ((reversed = reversed_comparison_code_parts
79a490a9 3818 (cond_code, cond, cop1, NULL))
434c87d4 3819 != UNKNOWN))
1999435c 3820 x = gen_binary (reversed, mode, cond, cop1);
085f1714
RH
3821
3822 /* Likewise, we can make the negate of a comparison operation
3823 if the result values are - STORE_FLAG_VALUE and zero. */
d6edb99e
ZW
3824 else if (GET_CODE (true_rtx) == CONST_INT
3825 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3826 && false_rtx == const0_rtx)
f1c6ba8b 3827 x = simplify_gen_unary (NEG, mode,
1999435c
PB
3828 gen_binary (cond_code, mode, cond,
3829 cop1),
f1c6ba8b 3830 mode);
d6edb99e
ZW
3831 else if (GET_CODE (false_rtx) == CONST_INT
3832 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
434c87d4
JH
3833 && true_rtx == const0_rtx
3834 && ((reversed = reversed_comparison_code_parts
79a490a9 3835 (cond_code, cond, cop1, NULL))
434c87d4 3836 != UNKNOWN))
f1c6ba8b 3837 x = simplify_gen_unary (NEG, mode,
1999435c
PB
3838 gen_binary (reversed, mode,
3839 cond, cop1),
f1c6ba8b 3840 mode);
085f1714
RH
3841 else
3842 return gen_rtx_IF_THEN_ELSE (mode,
1999435c
PB
3843 gen_binary (cond_code, VOIDmode,
3844 cond, cop1),
d6edb99e 3845 true_rtx, false_rtx);
5109d49f 3846
085f1714
RH
3847 code = GET_CODE (x);
3848 op0_mode = VOIDmode;
3849 }
abe6e52f 3850 }
d0ab8cd3
RK
3851 }
3852
230d793d
RS
3853 /* Try to fold this expression in case we have constants that weren't
3854 present before. */
3855 temp = 0;
3856 switch (GET_RTX_CLASS (code))
3857 {
ec8e098d 3858 case RTX_UNARY:
c0657872
RS
3859 if (op0_mode == VOIDmode)
3860 op0_mode = GET_MODE (XEXP (x, 0));
230d793d
RS
3861 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3862 break;
ec8e098d
PB
3863 case RTX_COMPARE:
3864 case RTX_COMM_COMPARE:
47b1e19b
JH
3865 {
3866 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3867 if (cmp_mode == VOIDmode)
1cac8785
DD
3868 {
3869 cmp_mode = GET_MODE (XEXP (x, 1));
3870 if (cmp_mode == VOIDmode)
3871 cmp_mode = op0_mode;
3872 }
7ce3e360 3873 temp = simplify_relational_operation (code, mode, cmp_mode,
47b1e19b
JH
3874 XEXP (x, 0), XEXP (x, 1));
3875 }
230d793d 3876 break;
ec8e098d
PB
3877 case RTX_COMM_ARITH:
3878 case RTX_BIN_ARITH:
230d793d
RS
3879 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3880 break;
ec8e098d
PB
3881 case RTX_BITFIELD_OPS:
3882 case RTX_TERNARY:
230d793d
RS
3883 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3884 XEXP (x, 1), XEXP (x, 2));
3885 break;
ec8e098d
PB
3886 default:
3887 break;
230d793d
RS
3888 }
3889
3890 if (temp)
4531c1c7
DN
3891 {
3892 x = temp;
3893 code = GET_CODE (temp);
3894 op0_mode = VOIDmode;
3895 mode = GET_MODE (temp);
3896 }
230d793d 3897
230d793d 3898 /* First see if we can apply the inverse distributive law. */
224eeff2
RK
3899 if (code == PLUS || code == MINUS
3900 || code == AND || code == IOR || code == XOR)
230d793d
RS
3901 {
3902 x = apply_distributive_law (x);
3903 code = GET_CODE (x);
6e20204f 3904 op0_mode = VOIDmode;
230d793d
RS
3905 }
3906
3907 /* If CODE is an associative operation not otherwise handled, see if we
3908 can associate some operands. This can win if they are constants or
e0e08ac2 3909 if they are logically related (i.e. (a & b) & a). */
493efd37
TM
3910 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3911 || code == AND || code == IOR || code == XOR
230d793d 3912 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
493efd37 3913 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4ba5f925 3914 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
230d793d
RS
3915 {
3916 if (GET_CODE (XEXP (x, 0)) == code)
3917 {
3918 rtx other = XEXP (XEXP (x, 0), 0);
3919 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3920 rtx inner_op1 = XEXP (x, 1);
3921 rtx inner;
663522cb 3922
230d793d
RS
3923 /* Make sure we pass the constant operand if any as the second
3924 one if this is a commutative operation. */
ec8e098d 3925 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
230d793d
RS
3926 {
3927 rtx tem = inner_op0;
3928 inner_op0 = inner_op1;
3929 inner_op1 = tem;
3930 }
3931 inner = simplify_binary_operation (code == MINUS ? PLUS
3932 : code == DIV ? MULT
230d793d
RS
3933 : code,
3934 mode, inner_op0, inner_op1);
3935
3936 /* For commutative operations, try the other pair if that one
3937 didn't simplify. */
ec8e098d 3938 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
230d793d
RS
3939 {
3940 other = XEXP (XEXP (x, 0), 1);
3941 inner = simplify_binary_operation (code, mode,
3942 XEXP (XEXP (x, 0), 0),
3943 XEXP (x, 1));
3944 }
3945
3946 if (inner)
1999435c 3947 return gen_binary (code, mode, other, inner);
230d793d
RS
3948 }
3949 }
3950
3951 /* A little bit of algebraic simplification here. */
3952 switch (code)
3953 {
3954 case MEM:
3955 /* Ensure that our address has any ASHIFTs converted to MULT in case
3956 address-recognizing predicates are called later. */
3957 temp = make_compound_operation (XEXP (x, 0), MEM);
3958 SUBST (XEXP (x, 0), temp);
3959 break;
3960
3961 case SUBREG:
eea50aa0
JH
3962 if (op0_mode == VOIDmode)
3963 op0_mode = GET_MODE (SUBREG_REG (x));
230d793d 3964
4de249d9 3965 /* See if this can be moved to simplify_subreg. */
3c99d5ff 3966 if (CONSTANT_P (SUBREG_REG (x))
156755ac 3967 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4de249d9 3968 /* Don't call gen_lowpart if the inner mode
156755ac
JJ
3969 is VOIDmode and we cannot simplify it, as SUBREG without
3970 inner mode is invalid. */
3971 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3972 || gen_lowpart_common (mode, SUBREG_REG (x))))
4de249d9 3973 return gen_lowpart (mode, SUBREG_REG (x));
230d793d 3974
a13287e1
AM
3975 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3976 break;
eea50aa0
JH
3977 {
3978 rtx temp;
3979 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
23190837 3980 SUBREG_BYTE (x));
eea50aa0
JH
3981 if (temp)
3982 return temp;
3983 }
b65c1b5b 3984
30984c57 3985 /* Don't change the mode of the MEM if that would change the meaning
bf08edc1
HPN
3986 of the address. Similarly, don't allow widening, as that may
3987 access memory outside the defined object or using an address
3988 that is invalid for a wider mode. */
3c0cb5de 3989 if (MEM_P (SUBREG_REG (x))
30984c57 3990 && (MEM_VOLATILE_P (SUBREG_REG (x))
bf08edc1
HPN
3991 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))
3992 || (GET_MODE_SIZE (mode)
3993 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))))
30984c57
JJ
3994 return gen_rtx_CLOBBER (mode, const0_rtx);
3995
87e3e0c1
RK
3996 /* Note that we cannot do any narrowing for non-constants since
3997 we might have been counting on using the fact that some bits were
3998 zero. We now do this in the SET. */
3999
230d793d
RS
4000 break;
4001
4002 case NOT:
230d793d
RS
4003 if (GET_CODE (XEXP (x, 0)) == SUBREG
4004 && subreg_lowpart_p (XEXP (x, 0))
4005 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4006 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4007 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4008 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4009 {
4010 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4011
38a448ca 4012 x = gen_rtx_ROTATE (inner_mode,
f1c6ba8b
RK
4013 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4014 inner_mode),
38a448ca 4015 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4de249d9 4016 return gen_lowpart (mode, x);
230d793d 4017 }
663522cb 4018
230d793d 4019 /* Apply De Morgan's laws to reduce number of patterns for machines
23190837
AJ
4020 with negating logical insns (and-not, nand, etc.). If result has
4021 only one NOT, put it first, since that is how the patterns are
4022 coded. */
230d793d
RS
4023
4024 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
23190837 4025 {
663522cb 4026 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
5bd60ce6 4027 enum machine_mode op_mode;
230d793d 4028
5bd60ce6 4029 op_mode = GET_MODE (in1);
f1c6ba8b 4030 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
230d793d 4031
5bd60ce6
RH
4032 op_mode = GET_MODE (in2);
4033 if (op_mode == VOIDmode)
4034 op_mode = mode;
f1c6ba8b 4035 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
663522cb 4036
5bd60ce6 4037 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
663522cb
KH
4038 {
4039 rtx tem = in2;
4040 in2 = in1; in1 = tem;
4041 }
4042
f1c6ba8b
RK
4043 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4044 mode, in1, in2);
663522cb 4045 }
230d793d
RS
4046 break;
4047
4048 case NEG:
0f41302f 4049 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4f61b3b7
RS
4050 if (GET_CODE (XEXP (x, 0)) == XOR
4051 && XEXP (XEXP (x, 0), 1) == const1_rtx
951553af 4052 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
1999435c 4053 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
d0ab8cd3 4054
230d793d
RS
4055 temp = expand_compound_operation (XEXP (x, 0));
4056
4057 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
23190837 4058 replaced by (lshiftrt X C). This will convert
230d793d
RS
4059 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4060
4061 if (GET_CODE (temp) == ASHIFTRT
4062 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4063 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
8079805d
RK
4064 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4065 INTVAL (XEXP (temp, 1)));
230d793d 4066
951553af 4067 /* If X has only a single bit that might be nonzero, say, bit I, convert
230d793d
RS
4068 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4069 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4070 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4071 or a SUBREG of one since we'd be making the expression more
4072 complex if it was just a register. */
4073
f8cfc6aa 4074 if (!REG_P (temp)
230d793d 4075 && ! (GET_CODE (temp) == SUBREG
f8cfc6aa 4076 && REG_P (SUBREG_REG (temp)))
951553af 4077 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
230d793d
RS
4078 {
4079 rtx temp1 = simplify_shift_const
5f4f0e22
CH
4080 (NULL_RTX, ASHIFTRT, mode,
4081 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
230d793d
RS
4082 GET_MODE_BITSIZE (mode) - 1 - i),
4083 GET_MODE_BITSIZE (mode) - 1 - i);
4084
4085 /* If all we did was surround TEMP with the two shifts, we
4086 haven't improved anything, so don't use it. Otherwise,
4087 we are better off with TEMP1. */
4088 if (GET_CODE (temp1) != ASHIFTRT
4089 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4090 || XEXP (XEXP (temp1, 0), 0) != temp)
8079805d 4091 return temp1;
230d793d
RS
4092 }
4093 break;
4094
2ca9ae17 4095 case TRUNCATE:
e30fb98f
JL
4096 /* We can't handle truncation to a partial integer mode here
4097 because we don't know the real bitsize of the partial
4098 integer mode. */
4099 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4100 break;
4101
80608e27
JL
4102 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4103 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4104 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
2ca9ae17
JW
4105 SUBST (XEXP (x, 0),
4106 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4107 GET_MODE_MASK (mode), NULL_RTX, 0));
0f13a422
ILT
4108
4109 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4110 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4111 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4112 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4113 return XEXP (XEXP (x, 0), 0);
4114
4115 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4116 (OP:SI foo:SI) if OP is NEG or ABS. */
4117 if ((GET_CODE (XEXP (x, 0)) == ABS
4118 || GET_CODE (XEXP (x, 0)) == NEG)
4119 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4120 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4121 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
f1c6ba8b
RK
4122 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4123 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
0f13a422
ILT
4124
4125 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4126 (truncate:SI x). */
4127 if (GET_CODE (XEXP (x, 0)) == SUBREG
4128 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4129 && subreg_lowpart_p (XEXP (x, 0)))
4130 return SUBREG_REG (XEXP (x, 0));
4131
4132 /* If we know that the value is already truncated, we can
14a774a9
RK
4133 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4134 is nonzero for the corresponding modes. But don't do this
4135 for an (LSHIFTRT (MULT ...)) since this will cause problems
4136 with the umulXi3_highpart patterns. */
6a992214
JL
4137 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4138 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4139 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
26c34780 4140 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
14a774a9 4141 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
23190837 4142 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4de249d9 4143 return gen_lowpart (mode, XEXP (x, 0));
0f13a422
ILT
4144
4145 /* A truncate of a comparison can be replaced with a subreg if
4146 STORE_FLAG_VALUE permits. This is like the previous test,
4147 but it works even if the comparison is done in a mode larger
4148 than HOST_BITS_PER_WIDE_INT. */
4149 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
ec8e098d 4150 && COMPARISON_P (XEXP (x, 0))
663522cb 4151 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4de249d9 4152 return gen_lowpart (mode, XEXP (x, 0));
0f13a422
ILT
4153
4154 /* Similarly, a truncate of a register whose value is a
4155 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4156 permits. */
4157 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
663522cb 4158 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
0f13a422 4159 && (temp = get_last_value (XEXP (x, 0)))
ec8e098d 4160 && COMPARISON_P (temp))
4de249d9 4161 return gen_lowpart (mode, XEXP (x, 0));
0f13a422 4162
2ca9ae17
JW
4163 break;
4164
230d793d
RS
4165 case FLOAT_TRUNCATE:
4166 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4167 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4168 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
663522cb 4169 return XEXP (XEXP (x, 0), 0);
4635f748 4170
73a39fc4
EC
4171 /* (float_truncate:SF (float_truncate:DF foo:XF))
4172 = (float_truncate:SF foo:XF).
e0bb17a8 4173 This may eliminate double rounding, so it is unsafe.
949824fe 4174
73a39fc4
EC
4175 (float_truncate:SF (float_extend:XF foo:DF))
4176 = (float_truncate:SF foo:DF).
949824fe 4177
73a39fc4 4178 (float_truncate:DF (float_extend:XF foo:SF))
3dc575ff 4179 = (float_extend:SF foo:DF). */
949824fe
JH
4180 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4181 && flag_unsafe_math_optimizations)
4182 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4183 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
79a490a9
AJ
4184 0)))
4185 > GET_MODE_SIZE (mode)
949824fe 4186 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
79a490a9 4187 mode,
cb119f82 4188 XEXP (XEXP (x, 0), 0), mode);
949824fe
JH
4189
4190 /* (float_truncate (float x)) is (float x) */
4191 if (GET_CODE (XEXP (x, 0)) == FLOAT
4192 && (flag_unsafe_math_optimizations
4193 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4194 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4195 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4196 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4197 return simplify_gen_unary (FLOAT, mode,
4198 XEXP (XEXP (x, 0), 0),
4199 GET_MODE (XEXP (XEXP (x, 0), 0)));
4200
4635f748
RK
4201 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4202 (OP:SF foo:SF) if OP is NEG or ABS. */
4203 if ((GET_CODE (XEXP (x, 0)) == ABS
4204 || GET_CODE (XEXP (x, 0)) == NEG)
4205 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4206 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
f1c6ba8b
RK
4207 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4208 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
1d12df72
RK
4209
4210 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4211 is (float_truncate:SF x). */
4212 if (GET_CODE (XEXP (x, 0)) == SUBREG
4213 && subreg_lowpart_p (XEXP (x, 0))
4214 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4215 return SUBREG_REG (XEXP (x, 0));
663522cb 4216 break;
949824fe
JH
4217 case FLOAT_EXTEND:
4218 /* (float_extend (float_extend x)) is (float_extend x)
73a39fc4 4219
949824fe 4220 (float_extend (float x)) is (float x) assuming that double
73a39fc4 4221 rounding can't happen.
949824fe
JH
4222 */
4223 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4224 || (GET_CODE (XEXP (x, 0)) == FLOAT
4225 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4226 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4227 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4228 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4229 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4230 XEXP (XEXP (x, 0), 0),
4231 GET_MODE (XEXP (XEXP (x, 0), 0)));
230d793d 4232
949824fe 4233 break;
230d793d
RS
4234#ifdef HAVE_cc0
4235 case COMPARE:
4236 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4237 using cc0, in which case we want to leave it as a COMPARE
4238 so we can distinguish it from a register-register-copy. */
4239 if (XEXP (x, 1) == const0_rtx)
4240 return XEXP (x, 0);
4241
71925bc0
RS
4242 /* x - 0 is the same as x unless x's mode has signed zeros and
4243 allows rounding towards -infinity. Under those conditions,
4244 0 - 0 is -0. */
4245 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4246 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
230d793d
RS
4247 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4248 return XEXP (x, 0);
4249 break;
4250#endif
4251
4252 case CONST:
4253 /* (const (const X)) can become (const X). Do it this way rather than
4254 returning the inner CONST since CONST can be shared with a
4255 REG_EQUAL note. */
4256 if (GET_CODE (XEXP (x, 0)) == CONST)
4257 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4258 break;
4259
4260#ifdef HAVE_lo_sum
4261 case LO_SUM:
4262 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4263 can add in an offset. find_split_point will split this address up
4264 again if it doesn't match. */
4265 if (GET_CODE (XEXP (x, 0)) == HIGH
4266 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4267 return XEXP (x, 1);
4268 break;
4269#endif
4270
4271 case PLUS:
16823694
GK
4272 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4273 */
73a39fc4 4274 if (GET_CODE (XEXP (x, 0)) == MULT
16823694
GK
4275 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4276 {
4277 rtx in1, in2;
73a39fc4 4278
16823694
GK
4279 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4280 in2 = XEXP (XEXP (x, 0), 1);
1999435c
PB
4281 return gen_binary (MINUS, mode, XEXP (x, 1),
4282 gen_binary (MULT, mode, in1, in2));
16823694
GK
4283 }
4284
230d793d
RS
4285 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4286 outermost. That's because that's the way indexed addresses are
4287 supposed to appear. This code used to check many more cases, but
4288 they are now checked elsewhere. */
4289 if (GET_CODE (XEXP (x, 0)) == PLUS
4290 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
1999435c
PB
4291 return gen_binary (PLUS, mode,
4292 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4293 XEXP (x, 1)),
4294 XEXP (XEXP (x, 0), 1));
230d793d
RS
4295
4296 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4297 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4298 bit-field and can be replaced by either a sign_extend or a
e6380233
JL
4299 sign_extract. The `and' may be a zero_extend and the two
4300 <c>, -<c> constants may be reversed. */
230d793d
RS
4301 if (GET_CODE (XEXP (x, 0)) == XOR
4302 && GET_CODE (XEXP (x, 1)) == CONST_INT
4303 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
663522cb 4304 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
e6380233
JL
4305 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4306 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5f4f0e22 4307 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
230d793d
RS
4308 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4309 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4310 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5f4f0e22 4311 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
230d793d
RS
4312 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4313 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
770ae6cc 4314 == (unsigned int) i + 1))))
8079805d
RK
4315 return simplify_shift_const
4316 (NULL_RTX, ASHIFTRT, mode,
4317 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4318 XEXP (XEXP (XEXP (x, 0), 0), 0),
4319 GET_MODE_BITSIZE (mode) - (i + 1)),
4320 GET_MODE_BITSIZE (mode) - (i + 1));
230d793d 4321
bc0776c6
RK
4322 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4323 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4324 is 1. This produces better code than the alternative immediately
4325 below. */
ec8e098d 4326 if (COMPARISON_P (XEXP (x, 0))
bc0776c6 4327 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
9a915772
JH
4328 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4329 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4330 XEXP (XEXP (x, 0), 0),
4331 XEXP (XEXP (x, 0), 1))))
8079805d 4332 return
f1c6ba8b 4333 simplify_gen_unary (NEG, mode, reversed, mode);
bc0776c6
RK
4334
4335 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
230d793d
RS
4336 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4337 the bitsize of the mode - 1. This allows simplification of
4338 "a = (b & 8) == 0;" */
4339 if (XEXP (x, 1) == constm1_rtx
f8cfc6aa 4340 && !REG_P (XEXP (x, 0))
e869aa39 4341 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
f8cfc6aa 4342 && REG_P (SUBREG_REG (XEXP (x, 0))))
951553af 4343 && nonzero_bits (XEXP (x, 0), mode) == 1)
8079805d
RK
4344 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4345 simplify_shift_const (NULL_RTX, ASHIFT, mode,
f1c6ba8b 4346 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
8079805d
RK
4347 GET_MODE_BITSIZE (mode) - 1),
4348 GET_MODE_BITSIZE (mode) - 1);
02f4ada4
RK
4349
4350 /* If we are adding two things that have no bits in common, convert
4351 the addition into an IOR. This will often be further simplified,
4352 for example in cases like ((a & 1) + (a & 2)), which can
4353 become a & 3. */
4354
ac49a949 4355 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
951553af
RK
4356 && (nonzero_bits (XEXP (x, 0), mode)
4357 & nonzero_bits (XEXP (x, 1), mode)) == 0)
085f1714
RH
4358 {
4359 /* Try to simplify the expression further. */
1999435c 4360 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6621d78e 4361 temp = combine_simplify_rtx (tor, mode, in_dest);
085f1714
RH
4362
4363 /* If we could, great. If not, do not go ahead with the IOR
4364 replacement, since PLUS appears in many special purpose
4365 address arithmetic instructions. */
4366 if (GET_CODE (temp) != CLOBBER && temp != tor)
4367 return temp;
4368 }
230d793d
RS
4369 break;
4370
4371 case MINUS:
0802d516
RK
4372 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4373 by reversing the comparison code if valid. */
4374 if (STORE_FLAG_VALUE == 1
4375 && XEXP (x, 0) == const1_rtx
ec8e098d 4376 && COMPARISON_P (XEXP (x, 1))
9a915772
JH
4377 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4378 XEXP (XEXP (x, 1), 0),
4379 XEXP (XEXP (x, 1), 1))))
4380 return reversed;
5109d49f 4381
230d793d
RS
4382 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4383 (and <foo> (const_int pow2-1)) */
4384 if (GET_CODE (XEXP (x, 1)) == AND
4385 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
663522cb 4386 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
230d793d 4387 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
8079805d 4388 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
663522cb 4389 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
7bef8680 4390
16823694
GK
4391 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4392 */
73a39fc4 4393 if (GET_CODE (XEXP (x, 1)) == MULT
16823694
GK
4394 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4395 {
4396 rtx in1, in2;
73a39fc4 4397
16823694
GK
4398 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4399 in2 = XEXP (XEXP (x, 1), 1);
1999435c
PB
4400 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4401 XEXP (x, 0));
16823694
GK
4402 }
4403
73a39fc4 4404 /* Canonicalize (minus (neg A) (mult B C)) to
e869aa39 4405 (minus (mult (neg B) C) A). */
73a39fc4 4406 if (GET_CODE (XEXP (x, 1)) == MULT
16823694
GK
4407 && GET_CODE (XEXP (x, 0)) == NEG)
4408 {
4409 rtx in1, in2;
73a39fc4 4410
16823694
GK
4411 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4412 in2 = XEXP (XEXP (x, 1), 1);
1999435c
PB
4413 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4414 XEXP (XEXP (x, 0), 0));
16823694
GK
4415 }
4416
7bef8680
RK
4417 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4418 integers. */
4419 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
1999435c
PB
4420 return gen_binary (MINUS, mode,
4421 gen_binary (MINUS, mode, XEXP (x, 0),
4422 XEXP (XEXP (x, 1), 0)),
4423 XEXP (XEXP (x, 1), 1));
230d793d
RS
4424 break;
4425
4426 case MULT:
4427 /* If we have (mult (plus A B) C), apply the distributive law and then
4428 the inverse distributive law to see if things simplify. This
4429 occurs mostly in addresses, often when unrolling loops. */
4430
4431 if (GET_CODE (XEXP (x, 0)) == PLUS)
4432 {
1999435c
PB
4433 x = apply_distributive_law
4434 (gen_binary (PLUS, mode,
4435 gen_binary (MULT, mode,
4436 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4437 gen_binary (MULT, mode,
4438 XEXP (XEXP (x, 0), 1),
4439 copy_rtx (XEXP (x, 1)))));
4440
4441 if (GET_CODE (x) != MULT)
4442 return x;
230d793d 4443 }
4ba5f925
JH
4444 /* Try simplify a*(b/c) as (a*b)/c. */
4445 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4446 && GET_CODE (XEXP (x, 0)) == DIV)
4447 {
4448 rtx tem = simplify_binary_operation (MULT, mode,
4449 XEXP (XEXP (x, 0), 0),
4450 XEXP (x, 1));
4451 if (tem)
1999435c 4452 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4ba5f925 4453 }
230d793d
RS
4454 break;
4455
4456 case UDIV:
4457 /* If this is a divide by a power of two, treat it as a shift if
4458 its first operand is a shift. */
4459 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4460 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4461 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4462 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4463 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4464 || GET_CODE (XEXP (x, 0)) == ROTATE
4465 || GET_CODE (XEXP (x, 0)) == ROTATERT))
8079805d 4466 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
230d793d
RS
4467 break;
4468
4469 case EQ: case NE:
4470 case GT: case GTU: case GE: case GEU:
4471 case LT: case LTU: case LE: case LEU:
69bc0a1f 4472 case UNEQ: case LTGT:
23190837
AJ
4473 case UNGT: case UNGE:
4474 case UNLT: case UNLE:
69bc0a1f 4475 case UNORDERED: case ORDERED:
230d793d
RS
4476 /* If the first operand is a condition code, we can't do anything
4477 with it. */
4478 if (GET_CODE (XEXP (x, 0)) == COMPARE
4479 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
8beccec8 4480 && ! CC0_P (XEXP (x, 0))))
230d793d
RS
4481 {
4482 rtx op0 = XEXP (x, 0);
4483 rtx op1 = XEXP (x, 1);
4484 enum rtx_code new_code;
4485
4486 if (GET_CODE (op0) == COMPARE)
4487 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4488
4489 /* Simplify our comparison, if possible. */
4490 new_code = simplify_comparison (code, &op0, &op1);
4491
230d793d 4492 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
951553af 4493 if only the low-order bit is possibly nonzero in X (such as when
5109d49f
RK
4494 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4495 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4496 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4497 (plus X 1).
4498
4499 Remove any ZERO_EXTRACT we made when thinking this was a
4500 comparison. It may now be simpler to use, e.g., an AND. If a
4501 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4502 the call to make_compound_operation in the SET case. */
4503
0802d516
RK
4504 if (STORE_FLAG_VALUE == 1
4505 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
a191f0ee
RH
4506 && op1 == const0_rtx
4507 && mode == GET_MODE (op0)
4508 && nonzero_bits (op0, mode) == 1)
4de249d9
PB
4509 return gen_lowpart (mode,
4510 expand_compound_operation (op0));
5109d49f 4511
0802d516
RK
4512 else if (STORE_FLAG_VALUE == 1
4513 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4514 && op1 == const0_rtx
a191f0ee 4515 && mode == GET_MODE (op0)
5109d49f
RK
4516 && (num_sign_bit_copies (op0, mode)
4517 == GET_MODE_BITSIZE (mode)))
4518 {
4519 op0 = expand_compound_operation (op0);
f1c6ba8b 4520 return simplify_gen_unary (NEG, mode,
4de249d9 4521 gen_lowpart (mode, op0),
f1c6ba8b 4522 mode);
5109d49f
RK
4523 }
4524
0802d516
RK
4525 else if (STORE_FLAG_VALUE == 1
4526 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
230d793d 4527 && op1 == const0_rtx
a191f0ee 4528 && mode == GET_MODE (op0)
5109d49f 4529 && nonzero_bits (op0, mode) == 1)
818b11b9
RK
4530 {
4531 op0 = expand_compound_operation (op0);
1999435c
PB
4532 return gen_binary (XOR, mode,
4533 gen_lowpart (mode, op0),
4534 const1_rtx);
5109d49f 4535 }
818b11b9 4536
0802d516
RK
4537 else if (STORE_FLAG_VALUE == 1
4538 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4539 && op1 == const0_rtx
a191f0ee 4540 && mode == GET_MODE (op0)
5109d49f
RK
4541 && (num_sign_bit_copies (op0, mode)
4542 == GET_MODE_BITSIZE (mode)))
4543 {
4544 op0 = expand_compound_operation (op0);
4de249d9 4545 return plus_constant (gen_lowpart (mode, op0), 1);
818b11b9 4546 }
230d793d 4547
5109d49f
RK
4548 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4549 those above. */
0802d516
RK
4550 if (STORE_FLAG_VALUE == -1
4551 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
230d793d 4552 && op1 == const0_rtx
5109d49f
RK
4553 && (num_sign_bit_copies (op0, mode)
4554 == GET_MODE_BITSIZE (mode)))
4de249d9
PB
4555 return gen_lowpart (mode,
4556 expand_compound_operation (op0));
5109d49f 4557
0802d516
RK
4558 else if (STORE_FLAG_VALUE == -1
4559 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4560 && op1 == const0_rtx
a191f0ee 4561 && mode == GET_MODE (op0)
5109d49f
RK
4562 && nonzero_bits (op0, mode) == 1)
4563 {
4564 op0 = expand_compound_operation (op0);
f1c6ba8b 4565 return simplify_gen_unary (NEG, mode,
4de249d9 4566 gen_lowpart (mode, op0),
f1c6ba8b 4567 mode);
5109d49f
RK
4568 }
4569
0802d516
RK
4570 else if (STORE_FLAG_VALUE == -1
4571 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4572 && op1 == const0_rtx
a191f0ee 4573 && mode == GET_MODE (op0)
5109d49f
RK
4574 && (num_sign_bit_copies (op0, mode)
4575 == GET_MODE_BITSIZE (mode)))
230d793d 4576 {
818b11b9 4577 op0 = expand_compound_operation (op0);
f1c6ba8b 4578 return simplify_gen_unary (NOT, mode,
4de249d9 4579 gen_lowpart (mode, op0),
f1c6ba8b 4580 mode);
5109d49f
RK
4581 }
4582
4583 /* If X is 0/1, (eq X 0) is X-1. */
0802d516
RK
4584 else if (STORE_FLAG_VALUE == -1
4585 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4586 && op1 == const0_rtx
a191f0ee 4587 && mode == GET_MODE (op0)
5109d49f
RK
4588 && nonzero_bits (op0, mode) == 1)
4589 {
4590 op0 = expand_compound_operation (op0);
4de249d9 4591 return plus_constant (gen_lowpart (mode, op0), -1);
230d793d 4592 }
230d793d
RS
4593
4594 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
951553af
RK
4595 one bit that might be nonzero, we can convert (ne x 0) to
4596 (ashift x c) where C puts the bit in the sign bit. Remove any
4597 AND with STORE_FLAG_VALUE when we are done, since we are only
4598 going to test the sign bit. */
3f508eca 4599 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5f4f0e22 4600 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
0802d516 4601 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
e869aa39 4602 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
230d793d
RS
4603 && op1 == const0_rtx
4604 && mode == GET_MODE (op0)
5109d49f 4605 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
230d793d 4606 {
818b11b9
RK
4607 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4608 expand_compound_operation (op0),
230d793d
RS
4609 GET_MODE_BITSIZE (mode) - 1 - i);
4610 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4611 return XEXP (x, 0);
4612 else
4613 return x;
4614 }
4615
4616 /* If the code changed, return a whole new comparison. */
4617 if (new_code != code)
f1c6ba8b 4618 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
230d793d 4619
663522cb 4620 /* Otherwise, keep this operation, but maybe change its operands.
230d793d
RS
4621 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4622 SUBST (XEXP (x, 0), op0);
4623 SUBST (XEXP (x, 1), op1);
4624 }
4625 break;
663522cb 4626
230d793d 4627 case IF_THEN_ELSE:
8079805d 4628 return simplify_if_then_else (x);
9210df58 4629
8079805d
RK
4630 case ZERO_EXTRACT:
4631 case SIGN_EXTRACT:
4632 case ZERO_EXTEND:
4633 case SIGN_EXTEND:
0f41302f 4634 /* If we are processing SET_DEST, we are done. */
8079805d
RK
4635 if (in_dest)
4636 return x;
d0ab8cd3 4637
8079805d 4638 return expand_compound_operation (x);
d0ab8cd3 4639
8079805d
RK
4640 case SET:
4641 return simplify_set (x);
1a26b032 4642
8079805d
RK
4643 case AND:
4644 case IOR:
4645 case XOR:
6621d78e 4646 return simplify_logical (x);
d0ab8cd3 4647
663522cb 4648 case ABS:
8079805d
RK
4649 /* (abs (neg <foo>)) -> (abs <foo>) */
4650 if (GET_CODE (XEXP (x, 0)) == NEG)
4651 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
1a26b032 4652
b472527b
JL
4653 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4654 do nothing. */
4655 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4656 break;
f40421ce 4657
8079805d
RK
4658 /* If operand is something known to be positive, ignore the ABS. */
4659 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4660 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4661 <= HOST_BITS_PER_WIDE_INT)
4662 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4663 & ((HOST_WIDE_INT) 1
4664 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4665 == 0)))
4666 return XEXP (x, 0);
1a26b032 4667
8079805d
RK
4668 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4669 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
f1c6ba8b 4670 return gen_rtx_NEG (mode, XEXP (x, 0));
1a26b032 4671
8079805d 4672 break;
1a26b032 4673
8079805d
RK
4674 case FFS:
4675 /* (ffs (*_extend <X>)) = (ffs <X>) */
4676 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4677 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4678 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4679 break;
1a26b032 4680
2928cd7a
RH
4681 case POPCOUNT:
4682 case PARITY:
4683 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4684 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4685 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4686 break;
4687
8079805d
RK
4688 case FLOAT:
4689 /* (float (sign_extend <X>)) = (float <X>). */
4690 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4691 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4692 break;
1a26b032 4693
8079805d
RK
4694 case ASHIFT:
4695 case LSHIFTRT:
4696 case ASHIFTRT:
4697 case ROTATE:
4698 case ROTATERT:
4699 /* If this is a shift by a constant amount, simplify it. */
4700 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
663522cb 4701 return simplify_shift_const (x, code, mode, XEXP (x, 0),
8079805d
RK
4702 INTVAL (XEXP (x, 1)));
4703
f8cfc6aa 4704 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
8079805d 4705 SUBST (XEXP (x, 1),
f1b1186f 4706 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
663522cb 4707 ((HOST_WIDE_INT) 1
8079805d
RK
4708 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4709 - 1,
4710 NULL_RTX, 0));
8079805d 4711 break;
e9a25f70 4712
82be40f7
BS
4713 case VEC_SELECT:
4714 {
4715 rtx op0 = XEXP (x, 0);
4716 rtx op1 = XEXP (x, 1);
4717 int len;
4718
341c100f 4719 gcc_assert (GET_CODE (op1) == PARALLEL);
82be40f7
BS
4720 len = XVECLEN (op1, 0);
4721 if (len == 1
4722 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4723 && GET_CODE (op0) == VEC_CONCAT)
4724 {
4725 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4726
4727 /* Try to find the element in the VEC_CONCAT. */
4728 for (;;)
4729 {
4730 if (GET_MODE (op0) == GET_MODE (x))
4731 return op0;
4732 if (GET_CODE (op0) == VEC_CONCAT)
4733 {
4734 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4735 if (op0_size < offset)
4736 op0 = XEXP (op0, 0);
4737 else
4738 {
4739 offset -= op0_size;
4740 op0 = XEXP (op0, 1);
4741 }
4742 }
4743 else
4744 break;
4745 }
4746 }
4747 }
4748
4749 break;
23190837 4750
e9a25f70
JL
4751 default:
4752 break;
8079805d
RK
4753 }
4754
4755 return x;
4756}
4757\f
4758/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5109d49f 4759
8079805d 4760static rtx
79a490a9 4761simplify_if_then_else (rtx x)
8079805d
RK
4762{
4763 enum machine_mode mode = GET_MODE (x);
4764 rtx cond = XEXP (x, 0);
d6edb99e
ZW
4765 rtx true_rtx = XEXP (x, 1);
4766 rtx false_rtx = XEXP (x, 2);
8079805d 4767 enum rtx_code true_code = GET_CODE (cond);
ec8e098d 4768 int comparison_p = COMPARISON_P (cond);
8079805d
RK
4769 rtx temp;
4770 int i;
9a915772
JH
4771 enum rtx_code false_code;
4772 rtx reversed;
8079805d 4773
0f41302f 4774 /* Simplify storing of the truth value. */
d6edb99e 4775 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
1999435c 4776 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
663522cb 4777
0f41302f 4778 /* Also when the truth value has to be reversed. */
9a915772 4779 if (comparison_p
d6edb99e 4780 && true_rtx == const0_rtx && false_rtx == const_true_rtx
9a915772
JH
4781 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4782 XEXP (cond, 1))))
4783 return reversed;
8079805d
RK
4784
4785 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4786 in it is being compared against certain values. Get the true and false
4787 comparisons and see if that says anything about the value of each arm. */
4788
9a915772
JH
4789 if (comparison_p
4790 && ((false_code = combine_reversed_comparison_code (cond))
4791 != UNKNOWN)
f8cfc6aa 4792 && REG_P (XEXP (cond, 0)))
8079805d
RK
4793 {
4794 HOST_WIDE_INT nzb;
4795 rtx from = XEXP (cond, 0);
8079805d
RK
4796 rtx true_val = XEXP (cond, 1);
4797 rtx false_val = true_val;
4798 int swapped = 0;
9210df58 4799
8079805d 4800 /* If FALSE_CODE is EQ, swap the codes and arms. */
5109d49f 4801
8079805d 4802 if (false_code == EQ)
1a26b032 4803 {
8079805d 4804 swapped = 1, true_code = EQ, false_code = NE;
d6edb99e 4805 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
8079805d 4806 }
5109d49f 4807
8079805d
RK
4808 /* If we are comparing against zero and the expression being tested has
4809 only a single bit that might be nonzero, that is its value when it is
4810 not equal to zero. Similarly if it is known to be -1 or 0. */
4811
4812 if (true_code == EQ && true_val == const0_rtx
4813 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4814 false_code = EQ, false_val = GEN_INT (nzb);
4815 else if (true_code == EQ && true_val == const0_rtx
4816 && (num_sign_bit_copies (from, GET_MODE (from))
4817 == GET_MODE_BITSIZE (GET_MODE (from))))
4818 false_code = EQ, false_val = constm1_rtx;
4819
4820 /* Now simplify an arm if we know the value of the register in the
4821 branch and it is used in the arm. Be careful due to the potential
4822 of locally-shared RTL. */
4823
d6edb99e
ZW
4824 if (reg_mentioned_p (from, true_rtx))
4825 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4826 from, true_val),
8079805d 4827 pc_rtx, pc_rtx, 0, 0);
d6edb99e
ZW
4828 if (reg_mentioned_p (from, false_rtx))
4829 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
8079805d
RK
4830 from, false_val),
4831 pc_rtx, pc_rtx, 0, 0);
4832
d6edb99e
ZW
4833 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4834 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
8079805d 4835
d6edb99e
ZW
4836 true_rtx = XEXP (x, 1);
4837 false_rtx = XEXP (x, 2);
4838 true_code = GET_CODE (cond);
8079805d 4839 }
5109d49f 4840
8079805d
RK
4841 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4842 reversed, do so to avoid needing two sets of patterns for
4843 subtract-and-branch insns. Similarly if we have a constant in the true
4844 arm, the false arm is the same as the first operand of the comparison, or
4845 the false arm is more complicated than the true arm. */
4846
9a915772
JH
4847 if (comparison_p
4848 && combine_reversed_comparison_code (cond) != UNKNOWN
d6edb99e
ZW
4849 && (true_rtx == pc_rtx
4850 || (CONSTANT_P (true_rtx)
4851 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4852 || true_rtx == const0_rtx
ec8e098d
PB
4853 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4854 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4855 && !OBJECT_P (false_rtx))
d6edb99e
ZW
4856 || reg_mentioned_p (true_rtx, false_rtx)
4857 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
8079805d 4858 {
9a915772 4859 true_code = reversed_comparison_code (cond, NULL);
8079805d 4860 SUBST (XEXP (x, 0),
9a915772
JH
4861 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4862 XEXP (cond, 1)));
5109d49f 4863
d6edb99e
ZW
4864 SUBST (XEXP (x, 1), false_rtx);
4865 SUBST (XEXP (x, 2), true_rtx);
1a26b032 4866
d6edb99e
ZW
4867 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4868 cond = XEXP (x, 0);
bb821298 4869
0f41302f 4870 /* It is possible that the conditional has been simplified out. */
bb821298 4871 true_code = GET_CODE (cond);
ec8e098d 4872 comparison_p = COMPARISON_P (cond);
8079805d 4873 }
abe6e52f 4874
8079805d 4875 /* If the two arms are identical, we don't need the comparison. */
1a26b032 4876
d6edb99e
ZW
4877 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4878 return true_rtx;
1a26b032 4879
5be669c7
RK
4880 /* Convert a == b ? b : a to "a". */
4881 if (true_code == EQ && ! side_effects_p (cond)
73e42cf3 4882 && !HONOR_NANS (mode)
d6edb99e
ZW
4883 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4884 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4885 return false_rtx;
5be669c7 4886 else if (true_code == NE && ! side_effects_p (cond)
73e42cf3 4887 && !HONOR_NANS (mode)
d6edb99e
ZW
4888 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4889 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4890 return true_rtx;
5be669c7 4891
8079805d
RK
4892 /* Look for cases where we have (abs x) or (neg (abs X)). */
4893
4894 if (GET_MODE_CLASS (mode) == MODE_INT
d6edb99e
ZW
4895 && GET_CODE (false_rtx) == NEG
4896 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
8079805d 4897 && comparison_p
d6edb99e
ZW
4898 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4899 && ! side_effects_p (true_rtx))
8079805d
RK
4900 switch (true_code)
4901 {
4902 case GT:
4903 case GE:
f1c6ba8b 4904 return simplify_gen_unary (ABS, mode, true_rtx, mode);
8079805d
RK
4905 case LT:
4906 case LE:
f1c6ba8b
RK
4907 return
4908 simplify_gen_unary (NEG, mode,
4909 simplify_gen_unary (ABS, mode, true_rtx, mode),
4910 mode);
cf0d9408
KH
4911 default:
4912 break;
8079805d
RK
4913 }
4914
4915 /* Look for MIN or MAX. */
4916
de6c5979 4917 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
8079805d 4918 && comparison_p
d6edb99e
ZW
4919 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4920 && rtx_equal_p (XEXP (cond, 1), false_rtx)
8079805d
RK
4921 && ! side_effects_p (cond))
4922 switch (true_code)
4923 {
4924 case GE:
4925 case GT:
1999435c 4926 return gen_binary (SMAX, mode, true_rtx, false_rtx);
8079805d
RK
4927 case LE:
4928 case LT:
1999435c 4929 return gen_binary (SMIN, mode, true_rtx, false_rtx);
8079805d
RK
4930 case GEU:
4931 case GTU:
1999435c 4932 return gen_binary (UMAX, mode, true_rtx, false_rtx);
8079805d
RK
4933 case LEU:
4934 case LTU:
1999435c 4935 return gen_binary (UMIN, mode, true_rtx, false_rtx);
e9a25f70
JL
4936 default:
4937 break;
8079805d 4938 }
663522cb 4939
8079805d
RK
4940 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4941 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4942 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4943 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4944 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
0802d516 4945 neither 1 or -1, but it isn't worth checking for. */
8079805d 4946
0802d516 4947 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
02484af9
EB
4948 && comparison_p
4949 && GET_MODE_CLASS (mode) == MODE_INT
4950 && ! side_effects_p (x))
8079805d 4951 {
d6edb99e
ZW
4952 rtx t = make_compound_operation (true_rtx, SET);
4953 rtx f = make_compound_operation (false_rtx, SET);
8079805d
RK
4954 rtx cond_op0 = XEXP (cond, 0);
4955 rtx cond_op1 = XEXP (cond, 1);
f822d252 4956 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
8079805d 4957 enum machine_mode m = mode;
6a651371 4958 rtx z = 0, c1 = NULL_RTX;
8079805d 4959
8079805d
RK
4960 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4961 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4962 || GET_CODE (t) == ASHIFT
4963 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4964 && rtx_equal_p (XEXP (t, 0), f))
4965 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4966
4967 /* If an identity-zero op is commutative, check whether there
0f41302f 4968 would be a match if we swapped the operands. */
8079805d
RK
4969 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4970 || GET_CODE (t) == XOR)
4971 && rtx_equal_p (XEXP (t, 1), f))
4972 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4973 else if (GET_CODE (t) == SIGN_EXTEND
4974 && (GET_CODE (XEXP (t, 0)) == PLUS
4975 || GET_CODE (XEXP (t, 0)) == MINUS
4976 || GET_CODE (XEXP (t, 0)) == IOR
4977 || GET_CODE (XEXP (t, 0)) == XOR
4978 || GET_CODE (XEXP (t, 0)) == ASHIFT
4979 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4980 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4981 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4982 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4983 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4984 && (num_sign_bit_copies (f, GET_MODE (f))
26c34780
RS
4985 > (unsigned int)
4986 (GET_MODE_BITSIZE (mode)
8079805d
RK
4987 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4988 {
4989 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4990 extend_op = SIGN_EXTEND;
4991 m = GET_MODE (XEXP (t, 0));
1a26b032 4992 }
8079805d
RK
4993 else if (GET_CODE (t) == SIGN_EXTEND
4994 && (GET_CODE (XEXP (t, 0)) == PLUS
4995 || GET_CODE (XEXP (t, 0)) == IOR
4996 || GET_CODE (XEXP (t, 0)) == XOR)
4997 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4998 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4999 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5000 && (num_sign_bit_copies (f, GET_MODE (f))
26c34780
RS
5001 > (unsigned int)
5002 (GET_MODE_BITSIZE (mode)
8079805d
RK
5003 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5004 {
5005 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5006 extend_op = SIGN_EXTEND;
5007 m = GET_MODE (XEXP (t, 0));
5008 }
5009 else if (GET_CODE (t) == ZERO_EXTEND
5010 && (GET_CODE (XEXP (t, 0)) == PLUS
5011 || GET_CODE (XEXP (t, 0)) == MINUS
5012 || GET_CODE (XEXP (t, 0)) == IOR
5013 || GET_CODE (XEXP (t, 0)) == XOR
5014 || GET_CODE (XEXP (t, 0)) == ASHIFT
5015 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5016 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5017 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5018 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5019 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5020 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5021 && ((nonzero_bits (f, GET_MODE (f))
663522cb 5022 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
8079805d
RK
5023 == 0))
5024 {
5025 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5026 extend_op = ZERO_EXTEND;
5027 m = GET_MODE (XEXP (t, 0));
5028 }
5029 else if (GET_CODE (t) == ZERO_EXTEND
5030 && (GET_CODE (XEXP (t, 0)) == PLUS
5031 || GET_CODE (XEXP (t, 0)) == IOR
5032 || GET_CODE (XEXP (t, 0)) == XOR)
5033 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5034 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5035 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5036 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5037 && ((nonzero_bits (f, GET_MODE (f))
663522cb 5038 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
8079805d
RK
5039 == 0))
5040 {
5041 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5042 extend_op = ZERO_EXTEND;
5043 m = GET_MODE (XEXP (t, 0));
5044 }
663522cb 5045
8079805d
RK
5046 if (z)
5047 {
1999435c 5048 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
8079805d 5049 pc_rtx, pc_rtx, 0, 0);
1999435c
PB
5050 temp = gen_binary (MULT, m, temp,
5051 gen_binary (MULT, m, c1, const_true_rtx));
8079805d 5052 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
1999435c 5053 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
8079805d 5054
f822d252 5055 if (extend_op != UNKNOWN)
f1c6ba8b 5056 temp = simplify_gen_unary (extend_op, mode, temp, m);
8079805d
RK
5057
5058 return temp;
5059 }
5060 }
224eeff2 5061
8079805d
RK
5062 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5063 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5064 negation of a single bit, we can convert this operation to a shift. We
5065 can actually do this more generally, but it doesn't seem worth it. */
5066
5067 if (true_code == NE && XEXP (cond, 1) == const0_rtx
d6edb99e 5068 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
8079805d 5069 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
d6edb99e 5070 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
8079805d
RK
5071 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5072 == GET_MODE_BITSIZE (mode))
d6edb99e 5073 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
8079805d
RK
5074 return
5075 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4de249d9 5076 gen_lowpart (mode, XEXP (cond, 0)), i);
230d793d 5077
83588a9d
JH
5078 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5079 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5080 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
db33236e 5081 && GET_MODE (XEXP (cond, 0)) == mode
83588a9d
JH
5082 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5083 == nonzero_bits (XEXP (cond, 0), mode)
5084 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5085 return XEXP (cond, 0);
5086
8079805d
RK
5087 return x;
5088}
5089\f
5090/* Simplify X, a SET expression. Return the new expression. */
230d793d 5091
8079805d 5092static rtx
79a490a9 5093simplify_set (rtx x)
8079805d
RK
5094{
5095 rtx src = SET_SRC (x);
5096 rtx dest = SET_DEST (x);
5097 enum machine_mode mode
5098 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5099 rtx other_insn;
5100 rtx *cc_use;
5101
5102 /* (set (pc) (return)) gets written as (return). */
5103 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5104 return src;
230d793d 5105
87e3e0c1
RK
5106 /* Now that we know for sure which bits of SRC we are using, see if we can
5107 simplify the expression for the object knowing that we only need the
5108 low-order bits. */
5109
855c3a2e
IS
5110 if (GET_MODE_CLASS (mode) == MODE_INT
5111 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
c5c76735 5112 {
e8dc6d50 5113 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
c5c76735
JL
5114 SUBST (SET_SRC (x), src);
5115 }
87e3e0c1 5116
8079805d
RK
5117 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5118 the comparison result and try to simplify it unless we already have used
5119 undobuf.other_insn. */
dbf4f1a2
RS
5120 if ((GET_MODE_CLASS (mode) == MODE_CC
5121 || GET_CODE (src) == COMPARE
5122 || CC0_P (dest))
8079805d
RK
5123 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5124 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
ec8e098d 5125 && COMPARISON_P (*cc_use)
c0d3ac4d 5126 && rtx_equal_p (XEXP (*cc_use, 0), dest))
8079805d
RK
5127 {
5128 enum rtx_code old_code = GET_CODE (*cc_use);
5129 enum rtx_code new_code;
f40f4c8e 5130 rtx op0, op1, tmp;
8079805d
RK
5131 int other_changed = 0;
5132 enum machine_mode compare_mode = GET_MODE (dest);
5133
5134 if (GET_CODE (src) == COMPARE)
5135 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5136 else
8abcb0f7 5137 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
230d793d 5138
c6fb08ad
PB
5139 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5140 op0, op1);
5141 if (!tmp)
5142 new_code = old_code;
5143 else if (!CONSTANT_P (tmp))
5144 {
5145 new_code = GET_CODE (tmp);
5146 op0 = XEXP (tmp, 0);
5147 op1 = XEXP (tmp, 1);
5148 }
f40f4c8e 5149 else
f40f4c8e
RS
5150 {
5151 rtx pat = PATTERN (other_insn);
5152 undobuf.other_insn = other_insn;
5153 SUBST (*cc_use, tmp);
5154
5155 /* Attempt to simplify CC user. */
5156 if (GET_CODE (pat) == SET)
5157 {
5158 rtx new = simplify_rtx (SET_SRC (pat));
5159 if (new != NULL_RTX)
5160 SUBST (SET_SRC (pat), new);
5161 }
5162
5163 /* Convert X into a no-op move. */
5164 SUBST (SET_DEST (x), pc_rtx);
5165 SUBST (SET_SRC (x), pc_rtx);
5166 return x;
5167 }
5168
8079805d 5169 /* Simplify our comparison, if possible. */
c6fb08ad 5170 new_code = simplify_comparison (new_code, &op0, &op1);
230d793d 5171
94134f42 5172#ifdef SELECT_CC_MODE
8079805d
RK
5173 /* If this machine has CC modes other than CCmode, check to see if we
5174 need to use a different CC mode here. */
c6fb08ad
PB
5175 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5176 compare_mode = GET_MODE (op0);
5177 else
5178 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
230d793d 5179
94134f42 5180#ifndef HAVE_cc0
8079805d
RK
5181 /* If the mode changed, we have to change SET_DEST, the mode in the
5182 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5183 a hard register, just build new versions with the proper mode. If it
5184 is a pseudo, we lose unless it is only time we set the pseudo, in
5185 which case we can safely change its mode. */
5186 if (compare_mode != GET_MODE (dest))
5187 {
770ae6cc 5188 unsigned int regno = REGNO (dest);
38a448ca 5189 rtx new_dest = gen_rtx_REG (compare_mode, regno);
8079805d
RK
5190
5191 if (regno < FIRST_PSEUDO_REGISTER
b1f21e0a 5192 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
230d793d 5193 {
8079805d
RK
5194 if (regno >= FIRST_PSEUDO_REGISTER)
5195 SUBST (regno_reg_rtx[regno], new_dest);
230d793d 5196
8079805d
RK
5197 SUBST (SET_DEST (x), new_dest);
5198 SUBST (XEXP (*cc_use, 0), new_dest);
5199 other_changed = 1;
230d793d 5200
8079805d 5201 dest = new_dest;
230d793d 5202 }
8079805d 5203 }
94134f42
ZW
5204#endif /* cc0 */
5205#endif /* SELECT_CC_MODE */
230d793d 5206
8079805d
RK
5207 /* If the code changed, we have to build a new comparison in
5208 undobuf.other_insn. */
5209 if (new_code != old_code)
5210 {
2051c897 5211 int other_changed_previously = other_changed;
8079805d
RK
5212 unsigned HOST_WIDE_INT mask;
5213
f1c6ba8b
RK
5214 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5215 dest, const0_rtx));
2051c897 5216 other_changed = 1;
8079805d
RK
5217
5218 /* If the only change we made was to change an EQ into an NE or
5219 vice versa, OP0 has only one bit that might be nonzero, and OP1
5220 is zero, check if changing the user of the condition code will
5221 produce a valid insn. If it won't, we can keep the original code
5222 in that insn by surrounding our operation with an XOR. */
5223
5224 if (((old_code == NE && new_code == EQ)
5225 || (old_code == EQ && new_code == NE))
2051c897 5226 && ! other_changed_previously && op1 == const0_rtx
8079805d
RK
5227 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5228 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
230d793d 5229 {
8079805d 5230 rtx pat = PATTERN (other_insn), note = 0;
230d793d 5231
8e2f6e35 5232 if ((recog_for_combine (&pat, other_insn, &note) < 0
8079805d
RK
5233 && ! check_asm_operands (pat)))
5234 {
5235 PUT_CODE (*cc_use, old_code);
2051c897 5236 other_changed = 0;
230d793d 5237
1999435c 5238 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
230d793d 5239 }
230d793d 5240 }
8079805d
RK
5241 }
5242
5243 if (other_changed)
5244 undobuf.other_insn = other_insn;
230d793d
RS
5245
5246#ifdef HAVE_cc0
8079805d
RK
5247 /* If we are now comparing against zero, change our source if
5248 needed. If we do not use cc0, we always have a COMPARE. */
5249 if (op1 == const0_rtx && dest == cc0_rtx)
5250 {
5251 SUBST (SET_SRC (x), op0);
5252 src = op0;
5253 }
5254 else
230d793d
RS
5255#endif
5256
8079805d
RK
5257 /* Otherwise, if we didn't previously have a COMPARE in the
5258 correct mode, we need one. */
5259 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5260 {
f1c6ba8b 5261 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
8079805d 5262 src = SET_SRC (x);
230d793d
RS
5263 }
5264 else
5265 {
8079805d
RK
5266 /* Otherwise, update the COMPARE if needed. */
5267 SUBST (XEXP (src, 0), op0);
5268 SUBST (XEXP (src, 1), op1);
230d793d 5269 }
8079805d
RK
5270 }
5271 else
5272 {
5273 /* Get SET_SRC in a form where we have placed back any
5274 compound expressions. Then do the checks below. */
5275 src = make_compound_operation (src, SET);
5276 SUBST (SET_SRC (x), src);
5277 }
230d793d 5278
8079805d
RK
5279 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5280 and X being a REG or (subreg (reg)), we may be able to convert this to
663522cb 5281 (set (subreg:m2 x) (op)).
df62f951 5282
5c881655
KH
5283 We can always do this if M1 is narrower than M2 because that means that
5284 we only care about the low bits of the result.
df62f951 5285
5c881655
KH
5286 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5287 perform a narrower operation than requested since the high-order bits will
5288 be undefined. On machine where it is defined, this transformation is safe
5289 as long as M1 and M2 have the same number of words. */
663522cb 5290
8079805d 5291 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
ec8e098d 5292 && !OBJECT_P (SUBREG_REG (src))
8079805d
RK
5293 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5294 / UNITS_PER_WORD)
5295 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5296 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5c881655
KH
5297#ifndef WORD_REGISTER_OPERATIONS
5298 && (GET_MODE_SIZE (GET_MODE (src))
5299 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5300#endif
cff9f8d5 5301#ifdef CANNOT_CHANGE_MODE_CLASS
f8cfc6aa 5302 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
cff9f8d5 5303 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
73a39fc4 5304 GET_MODE (SUBREG_REG (src)),
b0c42aed 5305 GET_MODE (src)))
663522cb 5306#endif
f8cfc6aa 5307 && (REG_P (dest)
8079805d 5308 || (GET_CODE (dest) == SUBREG
f8cfc6aa 5309 && REG_P (SUBREG_REG (dest)))))
8079805d
RK
5310 {
5311 SUBST (SET_DEST (x),
4de249d9 5312 gen_lowpart (GET_MODE (SUBREG_REG (src)),
8079805d
RK
5313 dest));
5314 SUBST (SET_SRC (x), SUBREG_REG (src));
5315
5316 src = SET_SRC (x), dest = SET_DEST (x);
5317 }
df62f951 5318
8c1d52a3
KH
5319#ifdef HAVE_cc0
5320 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5321 in SRC. */
5322 if (dest == cc0_rtx
5323 && GET_CODE (src) == SUBREG
5324 && subreg_lowpart_p (src)
5325 && (GET_MODE_BITSIZE (GET_MODE (src))
5326 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5327 {
5328 rtx inner = SUBREG_REG (src);
5329 enum machine_mode inner_mode = GET_MODE (inner);
5330
5331 /* Here we make sure that we don't have a sign bit on. */
5332 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5333 && (nonzero_bits (inner, inner_mode)
5334 < ((unsigned HOST_WIDE_INT) 1
ff076520 5335 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
8c1d52a3
KH
5336 {
5337 SUBST (SET_SRC (x), inner);
5338 src = SET_SRC (x);
5339 }
5340 }
5341#endif
5342
8baf60bb 5343#ifdef LOAD_EXTEND_OP
8079805d
RK
5344 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5345 would require a paradoxical subreg. Replace the subreg with a
0f41302f 5346 zero_extend to avoid the reload that would otherwise be required. */
8079805d
RK
5347
5348 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
f822d252 5349 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
ddef6bc7 5350 && SUBREG_BYTE (src) == 0
8079805d
RK
5351 && (GET_MODE_SIZE (GET_MODE (src))
5352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
3c0cb5de 5353 && MEM_P (SUBREG_REG (src)))
8079805d
RK
5354 {
5355 SUBST (SET_SRC (x),
2fb00d7f
KH
5356 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5357 GET_MODE (src), SUBREG_REG (src)));
8079805d
RK
5358
5359 src = SET_SRC (x);
5360 }
230d793d
RS
5361#endif
5362
8079805d
RK
5363 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5364 are comparing an item known to be 0 or -1 against 0, use a logical
5365 operation instead. Check for one of the arms being an IOR of the other
5366 arm with some value. We compute three terms to be IOR'ed together. In
5367 practice, at most two will be nonzero. Then we do the IOR's. */
5368
5369 if (GET_CODE (dest) != PC
5370 && GET_CODE (src) == IF_THEN_ELSE
36b8d792 5371 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
8079805d
RK
5372 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5373 && XEXP (XEXP (src, 0), 1) == const0_rtx
6dd49058 5374 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
ea414472
DE
5375#ifdef HAVE_conditional_move
5376 && ! can_conditionally_move_p (GET_MODE (src))
5377#endif
8079805d
RK
5378 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5379 GET_MODE (XEXP (XEXP (src, 0), 0)))
5380 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5381 && ! side_effects_p (src))
5382 {
d6edb99e 5383 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
8079805d 5384 ? XEXP (src, 1) : XEXP (src, 2));
d6edb99e 5385 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
8079805d
RK
5386 ? XEXP (src, 2) : XEXP (src, 1));
5387 rtx term1 = const0_rtx, term2, term3;
5388
d6edb99e
ZW
5389 if (GET_CODE (true_rtx) == IOR
5390 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
e869aa39 5391 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
d6edb99e
ZW
5392 else if (GET_CODE (true_rtx) == IOR
5393 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
e869aa39 5394 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
d6edb99e
ZW
5395 else if (GET_CODE (false_rtx) == IOR
5396 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
e869aa39 5397 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
d6edb99e
ZW
5398 else if (GET_CODE (false_rtx) == IOR
5399 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
e869aa39 5400 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
d6edb99e 5401
1999435c
PB
5402 term2 = gen_binary (AND, GET_MODE (src),
5403 XEXP (XEXP (src, 0), 0), true_rtx);
5404 term3 = gen_binary (AND, GET_MODE (src),
5405 simplify_gen_unary (NOT, GET_MODE (src),
5406 XEXP (XEXP (src, 0), 0),
5407 GET_MODE (src)),
5408 false_rtx);
8079805d
RK
5409
5410 SUBST (SET_SRC (x),
1999435c
PB
5411 gen_binary (IOR, GET_MODE (src),
5412 gen_binary (IOR, GET_MODE (src), term1, term2),
5413 term3));
8079805d
RK
5414
5415 src = SET_SRC (x);
5416 }
230d793d 5417
246e00f2
RK
5418 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5419 whole thing fail. */
5420 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5421 return src;
5422 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5423 return dest;
5424 else
5425 /* Convert this into a field assignment operation, if possible. */
5426 return make_field_assignment (x);
8079805d
RK
5427}
5428\f
5429/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6621d78e 5430 result. */
8079805d
RK
5431
5432static rtx
6621d78e 5433simplify_logical (rtx x)
8079805d
RK
5434{
5435 enum machine_mode mode = GET_MODE (x);
5436 rtx op0 = XEXP (x, 0);
5437 rtx op1 = XEXP (x, 1);
9a915772 5438 rtx reversed;
8079805d
RK
5439
5440 switch (GET_CODE (x))
5441 {
230d793d 5442 case AND:
663522cb 5443 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
8079805d
RK
5444 insn (and may simplify more). */
5445 if (GET_CODE (op0) == XOR
5446 && rtx_equal_p (XEXP (op0, 0), op1)
5447 && ! side_effects_p (op1))
1999435c
PB
5448 x = gen_binary (AND, mode,
5449 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5450 op1);
8079805d
RK
5451
5452 if (GET_CODE (op0) == XOR
5453 && rtx_equal_p (XEXP (op0, 1), op1)
5454 && ! side_effects_p (op1))
1999435c
PB
5455 x = gen_binary (AND, mode,
5456 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5457 op1);
8079805d 5458
663522cb 5459 /* Similarly for (~(A ^ B)) & A. */
8079805d
RK
5460 if (GET_CODE (op0) == NOT
5461 && GET_CODE (XEXP (op0, 0)) == XOR
5462 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5463 && ! side_effects_p (op1))
1999435c 5464 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
8079805d
RK
5465
5466 if (GET_CODE (op0) == NOT
5467 && GET_CODE (XEXP (op0, 0)) == XOR
5468 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5469 && ! side_effects_p (op1))
1999435c 5470 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
8079805d 5471
2e8f9abf
DM
5472 /* We can call simplify_and_const_int only if we don't lose
5473 any (sign) bits when converting INTVAL (op1) to
5474 "unsigned HOST_WIDE_INT". */
5475 if (GET_CODE (op1) == CONST_INT
5476 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5477 || INTVAL (op1) > 0))
230d793d 5478 {
8079805d 5479 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
230d793d
RS
5480
5481 /* If we have (ior (and (X C1) C2)) and the next restart would be
5482 the last, simplify this by making C1 as small as possible
6621d78e
PB
5483 and then exit. Only do this if C1 actually changes: for now
5484 this only saves memory but, should this transformation be
5485 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5486 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
8079805d 5487 && GET_CODE (XEXP (op0, 1)) == CONST_INT
6621d78e
PB
5488 && GET_CODE (op1) == CONST_INT
5489 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
1999435c
PB
5490 return gen_binary (IOR, mode,
5491 gen_binary (AND, mode, XEXP (op0, 0),
8079805d 5492 GEN_INT (INTVAL (XEXP (op0, 1))
663522cb 5493 & ~INTVAL (op1))), op1);
230d793d
RS
5494
5495 if (GET_CODE (x) != AND)
8079805d 5496 return x;
0e32506c 5497
ec8e098d
PB
5498 op0 = XEXP (x, 0);
5499 op1 = XEXP (x, 1);
230d793d
RS
5500 }
5501
5502 /* Convert (A | B) & A to A. */
8079805d
RK
5503 if (GET_CODE (op0) == IOR
5504 && (rtx_equal_p (XEXP (op0, 0), op1)
5505 || rtx_equal_p (XEXP (op0, 1), op1))
5506 && ! side_effects_p (XEXP (op0, 0))
5507 && ! side_effects_p (XEXP (op0, 1)))
5508 return op1;
230d793d 5509
1999435c
PB
5510 /* In the following group of tests (and those in case IOR below),
5511 we start with some combination of logical operations and apply
5512 the distributive law followed by the inverse distributive law.
5513 Most of the time, this results in no change. However, if some of
5514 the operands are the same or inverses of each other, simplifications
5515 will result.
5516
5517 For example, (and (ior A B) (not B)) can occur as the result of
5518 expanding a bit field assignment. When we apply the distributive
5519 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5520 which then simplifies to (and (A (not B))).
5521
5522 If we have (and (ior A B) C), apply the distributive law and then
5523 the inverse distributive law to see if things simplify. */
5524
5525 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
230d793d 5526 {
1999435c
PB
5527 x = apply_distributive_law
5528 (gen_binary (GET_CODE (op0), mode,
5529 gen_binary (AND, mode, XEXP (op0, 0), op1),
5530 gen_binary (AND, mode, XEXP (op0, 1),
5531 copy_rtx (op1))));
5532 if (GET_CODE (x) != AND)
5533 return x;
230d793d 5534 }
1999435c
PB
5535
5536 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5537 return apply_distributive_law
5538 (gen_binary (GET_CODE (op1), mode,
5539 gen_binary (AND, mode, XEXP (op1, 0), op0),
5540 gen_binary (AND, mode, XEXP (op1, 1),
5541 copy_rtx (op0))));
5542
5543 /* Similarly, taking advantage of the fact that
5544 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5545
5546 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5547 return apply_distributive_law
5548 (gen_binary (XOR, mode,
5549 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5550 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5551 XEXP (op1, 1))));
5552
5553 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5554 return apply_distributive_law
5555 (gen_binary (XOR, mode,
5556 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5557 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
230d793d
RS
5558 break;
5559
5560 case IOR:
951553af 5561 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
8079805d 5562 if (GET_CODE (op1) == CONST_INT
ac49a949 5563 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
663522cb 5564 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
8079805d 5565 return op1;
d0ab8cd3 5566
230d793d 5567 /* Convert (A & B) | A to A. */
8079805d
RK
5568 if (GET_CODE (op0) == AND
5569 && (rtx_equal_p (XEXP (op0, 0), op1)
5570 || rtx_equal_p (XEXP (op0, 1), op1))
5571 && ! side_effects_p (XEXP (op0, 0))
5572 && ! side_effects_p (XEXP (op0, 1)))
5573 return op1;
230d793d
RS
5574
5575 /* If we have (ior (and A B) C), apply the distributive law and then
5576 the inverse distributive law to see if things simplify. */
5577
1999435c
PB
5578 if (GET_CODE (op0) == AND)
5579 {
5580 x = apply_distributive_law
5581 (gen_binary (AND, mode,
5582 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5583 gen_binary (IOR, mode, XEXP (op0, 1),
5584 copy_rtx (op1))));
5585
5586 if (GET_CODE (x) != IOR)
5587 return x;
5588 }
5589
5590 if (GET_CODE (op1) == AND)
230d793d 5591 {
1999435c
PB
5592 x = apply_distributive_law
5593 (gen_binary (AND, mode,
5594 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5595 gen_binary (IOR, mode, XEXP (op1, 1),
5596 copy_rtx (op0))));
5597
5598 if (GET_CODE (x) != IOR)
5599 return x;
230d793d
RS
5600 }
5601
5602 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5603 mode size to (rotate A CX). */
5604
8079805d
RK
5605 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5606 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5607 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5608 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5609 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5610 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
230d793d 5611 == GET_MODE_BITSIZE (mode)))
38a448ca
RH
5612 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5613 (GET_CODE (op0) == ASHIFT
5614 ? XEXP (op0, 1) : XEXP (op1, 1)));
230d793d 5615
71923da7
RK
5616 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5617 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5618 does not affect any of the bits in OP1, it can really be done
5619 as a PLUS and we can associate. We do this by seeing if OP1
5620 can be safely shifted left C bits. */
5621 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5622 && GET_CODE (XEXP (op0, 0)) == PLUS
5623 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5624 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5625 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5626 {
5627 int count = INTVAL (XEXP (op0, 1));
5628 HOST_WIDE_INT mask = INTVAL (op1) << count;
5629
5630 if (mask >> count == INTVAL (op1)
5631 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5632 {
5633 SUBST (XEXP (XEXP (op0, 0), 1),
5634 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5635 return op0;
5636 }
5637 }
230d793d
RS
5638 break;
5639
5640 case XOR:
79e8185c
JH
5641 /* If we are XORing two things that have no bits in common,
5642 convert them into an IOR. This helps to detect rotation encoded
5643 using those methods and possibly other simplifications. */
5644
5645 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5646 && (nonzero_bits (op0, mode)
5647 & nonzero_bits (op1, mode)) == 0)
1999435c 5648 return (gen_binary (IOR, mode, op0, op1));
79e8185c 5649
230d793d
RS
5650 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5651 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5652 (NOT y). */
5653 {
5654 int num_negated = 0;
230d793d 5655
8079805d
RK
5656 if (GET_CODE (op0) == NOT)
5657 num_negated++, op0 = XEXP (op0, 0);
5658 if (GET_CODE (op1) == NOT)
5659 num_negated++, op1 = XEXP (op1, 0);
230d793d
RS
5660
5661 if (num_negated == 2)
5662 {
8079805d
RK
5663 SUBST (XEXP (x, 0), op0);
5664 SUBST (XEXP (x, 1), op1);
230d793d
RS
5665 }
5666 else if (num_negated == 1)
f1c6ba8b 5667 return
1999435c 5668 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
f1c6ba8b 5669 mode);
230d793d
RS
5670 }
5671
5672 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5673 correspond to a machine insn or result in further simplifications
5674 if B is a constant. */
5675
8079805d
RK
5676 if (GET_CODE (op0) == AND
5677 && rtx_equal_p (XEXP (op0, 1), op1)
5678 && ! side_effects_p (op1))
1999435c
PB
5679 return gen_binary (AND, mode,
5680 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5681 op1);
230d793d 5682
8079805d
RK
5683 else if (GET_CODE (op0) == AND
5684 && rtx_equal_p (XEXP (op0, 0), op1)
5685 && ! side_effects_p (op1))
1999435c
PB
5686 return gen_binary (AND, mode,
5687 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5688 op1);
230d793d 5689
230d793d 5690 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
0802d516
RK
5691 comparison if STORE_FLAG_VALUE is 1. */
5692 if (STORE_FLAG_VALUE == 1
5693 && op1 == const1_rtx
ec8e098d 5694 && COMPARISON_P (op0)
9a915772
JH
5695 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5696 XEXP (op0, 1))))
5697 return reversed;
500c518b
RK
5698
5699 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5700 is (lt foo (const_int 0)), so we can perform the above
0802d516 5701 simplification if STORE_FLAG_VALUE is 1. */
500c518b 5702
0802d516
RK
5703 if (STORE_FLAG_VALUE == 1
5704 && op1 == const1_rtx
8079805d
RK
5705 && GET_CODE (op0) == LSHIFTRT
5706 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5707 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
f1c6ba8b 5708 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
230d793d
RS
5709
5710 /* (xor (comparison foo bar) (const_int sign-bit))
5711 when STORE_FLAG_VALUE is the sign bit. */
5f4f0e22 5712 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
0802d516 5713 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
e51712db 5714 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
8079805d 5715 && op1 == const_true_rtx
ec8e098d 5716 && COMPARISON_P (op0)
9a915772
JH
5717 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5718 XEXP (op0, 1))))
5719 return reversed;
0918eca0 5720
230d793d 5721 break;
e9a25f70
JL
5722
5723 default:
341c100f 5724 gcc_unreachable ();
230d793d
RS
5725 }
5726
5727 return x;
5728}
5729\f
5730/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5731 operations" because they can be replaced with two more basic operations.
5732 ZERO_EXTEND is also considered "compound" because it can be replaced with
5733 an AND operation, which is simpler, though only one operation.
5734
5735 The function expand_compound_operation is called with an rtx expression
663522cb 5736 and will convert it to the appropriate shifts and AND operations,
230d793d
RS
5737 simplifying at each stage.
5738
5739 The function make_compound_operation is called to convert an expression
5740 consisting of shifts and ANDs into the equivalent compound expression.
5741 It is the inverse of this function, loosely speaking. */
5742
5743static rtx
79a490a9 5744expand_compound_operation (rtx x)
230d793d 5745{
770ae6cc 5746 unsigned HOST_WIDE_INT pos = 0, len;
230d793d 5747 int unsignedp = 0;
770ae6cc 5748 unsigned int modewidth;
230d793d
RS
5749 rtx tem;
5750
5751 switch (GET_CODE (x))
5752 {
5753 case ZERO_EXTEND:
5754 unsignedp = 1;
5755 case SIGN_EXTEND:
75473182
RS
5756 /* We can't necessarily use a const_int for a multiword mode;
5757 it depends on implicitly extending the value.
5758 Since we don't know the right way to extend it,
5759 we can't tell whether the implicit way is right.
5760
5761 Even for a mode that is no wider than a const_int,
5762 we can't win, because we need to sign extend one of its bits through
5763 the rest of it, and we don't know which bit. */
230d793d 5764 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
75473182 5765 return x;
230d793d 5766
8079805d
RK
5767 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5768 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5769 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5770 reloaded. If not for that, MEM's would very rarely be safe.
5771
5772 Reject MODEs bigger than a word, because we might not be able
5773 to reference a two-register group starting with an arbitrary register
5774 (and currently gen_lowpart might crash for a SUBREG). */
663522cb 5775
8079805d 5776 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
230d793d
RS
5777 return x;
5778
71012d97
GK
5779 /* Reject MODEs that aren't scalar integers because turning vector
5780 or complex modes into shifts causes problems. */
5781
5782 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5783 return x;
5784
230d793d
RS
5785 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5786 /* If the inner object has VOIDmode (the only way this can happen
e0a2f705 5787 is if it is an ASM_OPERANDS), we can't do anything since we don't
230d793d
RS
5788 know how much masking to do. */
5789 if (len == 0)
5790 return x;
5791
5792 break;
5793
5794 case ZERO_EXTRACT:
5795 unsignedp = 1;
46d096a3
SB
5796
5797 /* ... fall through ... */
5798
230d793d
RS
5799 case SIGN_EXTRACT:
5800 /* If the operand is a CLOBBER, just return it. */
5801 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5802 return XEXP (x, 0);
5803
5804 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5805 || GET_CODE (XEXP (x, 2)) != CONST_INT
5806 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5807 return x;
5808
71012d97
GK
5809 /* Reject MODEs that aren't scalar integers because turning vector
5810 or complex modes into shifts causes problems. */
5811
5812 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5813 return x;
5814
230d793d
RS
5815 len = INTVAL (XEXP (x, 1));
5816 pos = INTVAL (XEXP (x, 2));
5817
5818 /* If this goes outside the object being extracted, replace the object
5819 with a (use (mem ...)) construct that only combine understands
5820 and is used only for this purpose. */
5821 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
38a448ca 5822 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
230d793d 5823
f76b9db2
ILT
5824 if (BITS_BIG_ENDIAN)
5825 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5826
230d793d
RS
5827 break;
5828
5829 default:
5830 return x;
5831 }
0f808b6f
JH
5832 /* Convert sign extension to zero extension, if we know that the high
5833 bit is not set, as this is easier to optimize. It will be converted
5834 back to cheaper alternative in make_extraction. */
5835 if (GET_CODE (x) == SIGN_EXTEND
5836 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5837 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
663522cb 5838 & ~(((unsigned HOST_WIDE_INT)
0f808b6f
JH
5839 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5840 >> 1))
5841 == 0)))
5842 {
5843 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
3dcd7d45
EC
5844 rtx temp2 = expand_compound_operation (temp);
5845
5846 /* Make sure this is a profitable operation. */
5847 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5848 return temp2;
5849 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5850 return temp;
5851 else
5852 return x;
0f808b6f 5853 }
230d793d 5854
0f13a422
ILT
5855 /* We can optimize some special cases of ZERO_EXTEND. */
5856 if (GET_CODE (x) == ZERO_EXTEND)
5857 {
5858 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5859 know that the last value didn't have any inappropriate bits
5860 set. */
5861 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5862 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5864 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
663522cb 5865 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5866 return XEXP (XEXP (x, 0), 0);
5867
5868 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5869 if (GET_CODE (XEXP (x, 0)) == SUBREG
5870 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5871 && subreg_lowpart_p (XEXP (x, 0))
5872 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5873 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
663522cb 5874 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5875 return SUBREG_REG (XEXP (x, 0));
5876
5877 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5878 is a comparison and STORE_FLAG_VALUE permits. This is like
5879 the first case, but it works even when GET_MODE (x) is larger
5880 than HOST_WIDE_INT. */
5881 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5882 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
ec8e098d 5883 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
0f13a422
ILT
5884 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5885 <= HOST_BITS_PER_WIDE_INT)
23190837 5886 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
663522cb 5887 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5888 return XEXP (XEXP (x, 0), 0);
5889
5890 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5891 if (GET_CODE (XEXP (x, 0)) == SUBREG
5892 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5893 && subreg_lowpart_p (XEXP (x, 0))
ec8e098d 5894 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
0f13a422
ILT
5895 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5896 <= HOST_BITS_PER_WIDE_INT)
5897 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
663522cb 5898 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5899 return SUBREG_REG (XEXP (x, 0));
5900
0f13a422
ILT
5901 }
5902
230d793d
RS
5903 /* If we reach here, we want to return a pair of shifts. The inner
5904 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5905 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5906 logical depending on the value of UNSIGNEDP.
5907
5908 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5909 converted into an AND of a shift.
5910
5911 We must check for the case where the left shift would have a negative
5912 count. This can happen in a case like (x >> 31) & 255 on machines
5913 that can't shift by a constant. On those machines, we would first
663522cb 5914 combine the shift with the AND to produce a variable-position
230d793d
RS
5915 extraction. Then the constant of 31 would be substituted in to produce
5916 a such a position. */
5917
5918 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
770ae6cc 5919 if (modewidth + len >= pos)
5f4f0e22 5920 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
230d793d 5921 GET_MODE (x),
5f4f0e22
CH
5922 simplify_shift_const (NULL_RTX, ASHIFT,
5923 GET_MODE (x),
230d793d
RS
5924 XEXP (x, 0),
5925 modewidth - pos - len),
5926 modewidth - len);
5927
5f4f0e22
CH
5928 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5929 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5930 simplify_shift_const (NULL_RTX, LSHIFTRT,
230d793d
RS
5931 GET_MODE (x),
5932 XEXP (x, 0), pos),
5f4f0e22 5933 ((HOST_WIDE_INT) 1 << len) - 1);
230d793d
RS
5934 else
5935 /* Any other cases we can't handle. */
5936 return x;
230d793d
RS
5937
5938 /* If we couldn't do this for some reason, return the original
5939 expression. */
5940 if (GET_CODE (tem) == CLOBBER)
5941 return x;
5942
5943 return tem;
5944}
5945\f
5946/* X is a SET which contains an assignment of one object into
5947 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5948 or certain SUBREGS). If possible, convert it into a series of
5949 logical operations.
5950
5951 We half-heartedly support variable positions, but do not at all
5952 support variable lengths. */
5953
5954static rtx
79a490a9 5955expand_field_assignment (rtx x)
230d793d
RS
5956{
5957 rtx inner;
0f41302f 5958 rtx pos; /* Always counts from low bit. */
230d793d 5959 int len;
1999435c 5960 rtx mask;
230d793d
RS
5961 enum machine_mode compute_mode;
5962
5963 /* Loop until we find something we can't simplify. */
5964 while (1)
5965 {
5966 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5967 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5968 {
5969 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5970 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
47073a38 5971 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
230d793d
RS
5972 }
5973 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5974 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5975 {
5976 inner = XEXP (SET_DEST (x), 0);
5977 len = INTVAL (XEXP (SET_DEST (x), 1));
5978 pos = XEXP (SET_DEST (x), 2);
5979
5980 /* If the position is constant and spans the width of INNER,
5981 surround INNER with a USE to indicate this. */
5982 if (GET_CODE (pos) == CONST_INT
5983 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
38a448ca 5984 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
230d793d 5985
f76b9db2
ILT
5986 if (BITS_BIG_ENDIAN)
5987 {
5988 if (GET_CODE (pos) == CONST_INT)
5989 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5990 - INTVAL (pos));
5991 else if (GET_CODE (pos) == MINUS
5992 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5993 && (INTVAL (XEXP (pos, 1))
5994 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5995 /* If position is ADJUST - X, new position is X. */
5996 pos = XEXP (pos, 0);
5997 else
1999435c
PB
5998 pos = gen_binary (MINUS, GET_MODE (pos),
5999 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6000 - len),
6001 pos);
f76b9db2 6002 }
230d793d
RS
6003 }
6004
6005 /* A SUBREG between two modes that occupy the same numbers of words
6006 can be done by moving the SUBREG to the source. */
6007 else if (GET_CODE (SET_DEST (x)) == SUBREG
b1e9c8a9
AO
6008 /* We need SUBREGs to compute nonzero_bits properly. */
6009 && nonzero_sign_valid
230d793d
RS
6010 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6011 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6012 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6013 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6014 {
38a448ca 6015 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
4de249d9 6016 gen_lowpart
c5c76735
JL
6017 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6018 SET_SRC (x)));
230d793d
RS
6019 continue;
6020 }
6021 else
6022 break;
6023
6024 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6025 inner = SUBREG_REG (inner);
6026
6027 compute_mode = GET_MODE (inner);
6028
71012d97
GK
6029 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6030 if (! SCALAR_INT_MODE_P (compute_mode))
861556b4
RH
6031 {
6032 enum machine_mode imode;
6033
71012d97 6034 /* Don't do anything for vector or complex integral types. */
861556b4
RH
6035 if (! FLOAT_MODE_P (compute_mode))
6036 break;
6037
6038 /* Try to find an integral mode to pun with. */
6039 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6040 if (imode == BLKmode)
6041 break;
6042
6043 compute_mode = imode;
4de249d9 6044 inner = gen_lowpart (imode, inner);
861556b4
RH
6045 }
6046
230d793d 6047 /* Compute a mask of LEN bits, if we can do this on the host machine. */
1999435c
PB
6048 if (len < HOST_BITS_PER_WIDE_INT)
6049 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6050 else
230d793d
RS
6051 break;
6052
6053 /* Now compute the equivalent expression. Make a copy of INNER
6054 for the SET_DEST in case it is a MEM into which we will substitute;
6055 we don't want shared RTL in that case. */
1999435c
PB
6056 x = gen_rtx_SET
6057 (VOIDmode, copy_rtx (inner),
6058 gen_binary (IOR, compute_mode,
6059 gen_binary (AND, compute_mode,
6060 simplify_gen_unary (NOT, compute_mode,
6061 gen_binary (ASHIFT,
6062 compute_mode,
6063 mask, pos),
6064 compute_mode),
6065 inner),
6066 gen_binary (ASHIFT, compute_mode,
6067 gen_binary (AND, compute_mode,
6068 gen_lowpart
6069 (compute_mode, SET_SRC (x)),
6070 mask),
6071 pos)));
230d793d
RS
6072 }
6073
6074 return x;
6075}
6076\f
8999a12e
RK
6077/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6078 it is an RTX that represents a variable starting position; otherwise,
6079 POS is the (constant) starting bit position (counted from the LSB).
230d793d
RS
6080
6081 INNER may be a USE. This will occur when we started with a bitfield
6082 that went outside the boundary of the object in memory, which is
6083 allowed on most machines. To isolate this case, we produce a USE
6084 whose mode is wide enough and surround the MEM with it. The only
6085 code that understands the USE is this routine. If it is not removed,
6086 it will cause the resulting insn not to match.
6087
da7d8304 6088 UNSIGNEDP is nonzero for an unsigned reference and zero for a
230d793d
RS
6089 signed reference.
6090
da7d8304
KH
6091 IN_DEST is nonzero if this is a reference in the destination of a
6092 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
230d793d
RS
6093 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6094 be used.
6095
da7d8304 6096 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
230d793d
RS
6097 ZERO_EXTRACT should be built even for bits starting at bit 0.
6098
76184def
DE
6099 MODE is the desired mode of the result (if IN_DEST == 0).
6100
6101 The result is an RTX for the extraction or NULL_RTX if the target
6102 can't handle it. */
230d793d
RS
6103
6104static rtx
79a490a9
AJ
6105make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6106 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6107 int in_dest, int in_compare)
230d793d 6108{
94b4b17a
RS
6109 /* This mode describes the size of the storage area
6110 to fetch the overall value from. Within that, we
6111 ignore the POS lowest bits, etc. */
230d793d
RS
6112 enum machine_mode is_mode = GET_MODE (inner);
6113 enum machine_mode inner_mode;
d7cd794f
RK
6114 enum machine_mode wanted_inner_mode = byte_mode;
6115 enum machine_mode wanted_inner_reg_mode = word_mode;
230d793d
RS
6116 enum machine_mode pos_mode = word_mode;
6117 enum machine_mode extraction_mode = word_mode;
6118 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6119 int spans_byte = 0;
6120 rtx new = 0;
8999a12e 6121 rtx orig_pos_rtx = pos_rtx;
770ae6cc 6122 HOST_WIDE_INT orig_pos;
230d793d
RS
6123
6124 /* Get some information about INNER and get the innermost object. */
6125 if (GET_CODE (inner) == USE)
94b4b17a 6126 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
230d793d
RS
6127 /* We don't need to adjust the position because we set up the USE
6128 to pretend that it was a full-word object. */
6129 spans_byte = 1, inner = XEXP (inner, 0);
6130 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
94b4b17a
RS
6131 {
6132 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6133 consider just the QI as the memory to extract from.
6134 The subreg adds or removes high bits; its mode is
6135 irrelevant to the meaning of this extraction,
6136 since POS and LEN count from the lsb. */
3c0cb5de 6137 if (MEM_P (SUBREG_REG (inner)))
94b4b17a
RS
6138 is_mode = GET_MODE (SUBREG_REG (inner));
6139 inner = SUBREG_REG (inner);
6140 }
988ef418
RS
6141 else if (GET_CODE (inner) == ASHIFT
6142 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6143 && pos_rtx == 0 && pos == 0
3129af4c 6144 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
988ef418
RS
6145 {
6146 /* We're extracting the least significant bits of an rtx
6147 (ashift X (const_int C)), where LEN > C. Extract the
6148 least significant (LEN - C) bits of X, giving an rtx
6149 whose mode is MODE, then shift it left C times. */
6150 new = make_extraction (mode, XEXP (inner, 0),
6151 0, 0, len - INTVAL (XEXP (inner, 1)),
6152 unsignedp, in_dest, in_compare);
6153 if (new != 0)
6154 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6155 }
230d793d
RS
6156
6157 inner_mode = GET_MODE (inner);
6158
6159 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
8999a12e 6160 pos = INTVAL (pos_rtx), pos_rtx = 0;
230d793d
RS
6161
6162 /* See if this can be done without an extraction. We never can if the
6163 width of the field is not the same as that of some integer mode. For
6164 registers, we can only avoid the extraction if the position is at the
6165 low-order bit and this is either not in the destination or we have the
6166 appropriate STRICT_LOW_PART operation available.
6167
6168 For MEM, we can avoid an extract if the field starts on an appropriate
6169 boundary and we can change the mode of the memory reference. However,
6170 we cannot directly access the MEM if we have a USE and the underlying
6171 MEM is not TMODE. This combination means that MEM was being used in a
6172 context where bits outside its mode were being referenced; that is only
6173 valid in bit-field insns. */
6174
6175 if (tmode != BLKmode
6176 && ! (spans_byte && inner_mode != tmode)
4d9cfc7b 6177 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
3c0cb5de 6178 && !MEM_P (inner)
230d793d 6179 && (! in_dest
f8cfc6aa 6180 || (REG_P (inner)
ef89d648 6181 && have_insn_for (STRICT_LOW_PART, tmode))))
3c0cb5de 6182 || (MEM_P (inner) && pos_rtx == 0
dfbe1b2f
RK
6183 && (pos
6184 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6185 : BITS_PER_UNIT)) == 0
230d793d
RS
6186 /* We can't do this if we are widening INNER_MODE (it
6187 may not be aligned, for one thing). */
6188 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6189 && (inner_mode == tmode
6190 || (! mode_dependent_address_p (XEXP (inner, 0))
6191 && ! MEM_VOLATILE_P (inner))))))
6192 {
230d793d
RS
6193 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6194 field. If the original and current mode are the same, we need not
663522cb 6195 adjust the offset. Otherwise, we do if bytes big endian.
230d793d 6196
4d9cfc7b
RK
6197 If INNER is not a MEM, get a piece consisting of just the field
6198 of interest (in this case POS % BITS_PER_WORD must be 0). */
230d793d 6199
3c0cb5de 6200 if (MEM_P (inner))
230d793d 6201 {
f1ec5147
RK
6202 HOST_WIDE_INT offset;
6203
94b4b17a
RS
6204 /* POS counts from lsb, but make OFFSET count in memory order. */
6205 if (BYTES_BIG_ENDIAN)
6206 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6207 else
6208 offset = pos / BITS_PER_UNIT;
230d793d 6209
f1ec5147 6210 new = adjust_address_nv (inner, tmode, offset);
230d793d 6211 }
f8cfc6aa 6212 else if (REG_P (inner))
c0d3ac4d 6213 {
c0d3ac4d 6214 if (tmode != inner_mode)
ddef6bc7 6215 {
4de249d9 6216 /* We can't call gen_lowpart in a DEST since we
91f8389c
EB
6217 always want a SUBREG (see below) and it would sometimes
6218 return a new hard register. */
6219 if (pos || in_dest)
54c2fc72 6220 {
54c2fc72
JW
6221 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6222
6223 if (WORDS_BIG_ENDIAN
6224 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6225 final_word = ((GET_MODE_SIZE (inner_mode)
6226 - GET_MODE_SIZE (tmode))
6227 / UNITS_PER_WORD) - final_word;
6228
6229 final_word *= UNITS_PER_WORD;
6230 if (BYTES_BIG_ENDIAN &&
6231 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6232 final_word += (GET_MODE_SIZE (inner_mode)
6233 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6234
6235 /* Avoid creating invalid subregs, for example when
6236 simplifying (x>>32)&255. */
6237 if (final_word >= GET_MODE_SIZE (inner_mode))
6238 return NULL_RTX;
6239
6240 new = gen_rtx_SUBREG (tmode, inner, final_word);
6241 }
6242 else
4de249d9 6243 new = gen_lowpart (tmode, inner);
ddef6bc7 6244 }
23190837
AJ
6245 else
6246 new = inner;
6247 }
230d793d 6248 else
6139ff20
RK
6249 new = force_to_mode (inner, tmode,
6250 len >= HOST_BITS_PER_WIDE_INT
0345195a 6251 ? ~(unsigned HOST_WIDE_INT) 0
729a2125 6252 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
e3d616e3 6253 NULL_RTX, 0);
230d793d 6254
663522cb 6255 /* If this extraction is going into the destination of a SET,
230d793d
RS
6256 make a STRICT_LOW_PART unless we made a MEM. */
6257
6258 if (in_dest)
3c0cb5de 6259 return (MEM_P (new) ? new
77fa0940 6260 : (GET_CODE (new) != SUBREG
38a448ca 6261 ? gen_rtx_CLOBBER (tmode, const0_rtx)
f1c6ba8b 6262 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
230d793d 6263
0f808b6f
JH
6264 if (mode == tmode)
6265 return new;
6266
0a7ec763 6267 if (GET_CODE (new) == CONST_INT)
2496c7bd 6268 return gen_int_mode (INTVAL (new), mode);
0a7ec763 6269
0f808b6f
JH
6270 /* If we know that no extraneous bits are set, and that the high
6271 bit is not set, convert the extraction to the cheaper of
6272 sign and zero extension, that are equivalent in these cases. */
6273 if (flag_expensive_optimizations
6274 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6275 && ((nonzero_bits (new, tmode)
663522cb
KH
6276 & ~(((unsigned HOST_WIDE_INT)
6277 GET_MODE_MASK (tmode))
6278 >> 1))
0f808b6f
JH
6279 == 0)))
6280 {
6281 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6282 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6283
6284 /* Prefer ZERO_EXTENSION, since it gives more information to
6285 backends. */
25ffb1f6 6286 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
0f808b6f
JH
6287 return temp;
6288 return temp1;
6289 }
6290
230d793d
RS
6291 /* Otherwise, sign- or zero-extend unless we already are in the
6292 proper mode. */
6293
f1c6ba8b
RK
6294 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6295 mode, new));
230d793d
RS
6296 }
6297
cc471082
RS
6298 /* Unless this is a COMPARE or we have a funny memory reference,
6299 don't do anything with zero-extending field extracts starting at
6300 the low-order bit since they are simple AND operations. */
8999a12e
RK
6301 if (pos_rtx == 0 && pos == 0 && ! in_dest
6302 && ! in_compare && ! spans_byte && unsignedp)
230d793d
RS
6303 return 0;
6304
c5c76735
JL
6305 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6306 we would be spanning bytes or if the position is not a constant and the
6307 length is not 1. In all other cases, we would only be going outside
6308 our object in cases when an original shift would have been
e7373556 6309 undefined. */
3c0cb5de 6310 if (! spans_byte && MEM_P (inner)
e7373556
RK
6311 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6312 || (pos_rtx != 0 && len != 1)))
6313 return 0;
6314
d7cd794f 6315 /* Get the mode to use should INNER not be a MEM, the mode for the position,
230d793d 6316 and the mode for the result. */
505ddab6 6317 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
230d793d 6318 {
da920570
ZW
6319 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6320 pos_mode = mode_for_extraction (EP_insv, 2);
6321 extraction_mode = mode_for_extraction (EP_insv, 3);
230d793d 6322 }
230d793d 6323
da920570
ZW
6324 if (! in_dest && unsignedp
6325 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
230d793d 6326 {
da920570
ZW
6327 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6328 pos_mode = mode_for_extraction (EP_extzv, 3);
6329 extraction_mode = mode_for_extraction (EP_extzv, 0);
230d793d 6330 }
230d793d 6331
da920570
ZW
6332 if (! in_dest && ! unsignedp
6333 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
230d793d 6334 {
da920570
ZW
6335 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6336 pos_mode = mode_for_extraction (EP_extv, 3);
6337 extraction_mode = mode_for_extraction (EP_extv, 0);
230d793d 6338 }
230d793d
RS
6339
6340 /* Never narrow an object, since that might not be safe. */
6341
6342 if (mode != VOIDmode
6343 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6344 extraction_mode = mode;
6345
6346 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6347 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6348 pos_mode = GET_MODE (pos_rtx);
6349
d7cd794f
RK
6350 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6351 if we have to change the mode of memory and cannot, the desired mode is
6352 EXTRACTION_MODE. */
3c0cb5de 6353 if (!MEM_P (inner))
d7cd794f
RK
6354 wanted_inner_mode = wanted_inner_reg_mode;
6355 else if (inner_mode != wanted_inner_mode
6356 && (mode_dependent_address_p (XEXP (inner, 0))
6357 || MEM_VOLATILE_P (inner)))
6358 wanted_inner_mode = extraction_mode;
230d793d 6359
6139ff20
RK
6360 orig_pos = pos;
6361
f76b9db2
ILT
6362 if (BITS_BIG_ENDIAN)
6363 {
cf54c2cd
DE
6364 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6365 BITS_BIG_ENDIAN style. If position is constant, compute new
6366 position. Otherwise, build subtraction.
6367 Note that POS is relative to the mode of the original argument.
6368 If it's a MEM we need to recompute POS relative to that.
6369 However, if we're extracting from (or inserting into) a register,
6370 we want to recompute POS relative to wanted_inner_mode. */
3c0cb5de 6371 int width = (MEM_P (inner)
cf54c2cd
DE
6372 ? GET_MODE_BITSIZE (is_mode)
6373 : GET_MODE_BITSIZE (wanted_inner_mode));
6374
f76b9db2 6375 if (pos_rtx == 0)
cf54c2cd 6376 pos = width - len - pos;
f76b9db2
ILT
6377 else
6378 pos_rtx
f1c6ba8b 6379 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
cf54c2cd 6380 /* POS may be less than 0 now, but we check for that below.
3c0cb5de 6381 Note that it can only be less than 0 if !MEM_P (inner). */
f76b9db2 6382 }
230d793d
RS
6383
6384 /* If INNER has a wider mode, make it smaller. If this is a constant
6385 extract, try to adjust the byte to point to the byte containing
6386 the value. */
d7cd794f
RK
6387 if (wanted_inner_mode != VOIDmode
6388 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
3c0cb5de 6389 && ((MEM_P (inner)
d7cd794f 6390 && (inner_mode == wanted_inner_mode
230d793d
RS
6391 || (! mode_dependent_address_p (XEXP (inner, 0))
6392 && ! MEM_VOLATILE_P (inner))))))
6393 {
6394 int offset = 0;
6395
6396 /* The computations below will be correct if the machine is big
6397 endian in both bits and bytes or little endian in bits and bytes.
6398 If it is mixed, we must adjust. */
663522cb 6399
230d793d 6400 /* If bytes are big endian and we had a paradoxical SUBREG, we must
0f41302f 6401 adjust OFFSET to compensate. */
f76b9db2
ILT
6402 if (BYTES_BIG_ENDIAN
6403 && ! spans_byte
230d793d
RS
6404 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6405 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
230d793d
RS
6406
6407 /* If this is a constant position, we can move to the desired byte. */
8999a12e 6408 if (pos_rtx == 0)
230d793d
RS
6409 {
6410 offset += pos / BITS_PER_UNIT;
d7cd794f 6411 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
230d793d
RS
6412 }
6413
f76b9db2
ILT
6414 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6415 && ! spans_byte
d7cd794f 6416 && is_mode != wanted_inner_mode)
c6b3f1f2 6417 offset = (GET_MODE_SIZE (is_mode)
d7cd794f 6418 - GET_MODE_SIZE (wanted_inner_mode) - offset);
c6b3f1f2 6419
d7cd794f 6420 if (offset != 0 || inner_mode != wanted_inner_mode)
f1ec5147 6421 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
230d793d
RS
6422 }
6423
9e74dc41
RK
6424 /* If INNER is not memory, we can always get it into the proper mode. If we
6425 are changing its mode, POS must be a constant and smaller than the size
6426 of the new mode. */
3c0cb5de 6427 else if (!MEM_P (inner))
9e74dc41
RK
6428 {
6429 if (GET_MODE (inner) != wanted_inner_mode
6430 && (pos_rtx != 0
6431 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6432 return 0;
6433
6434 inner = force_to_mode (inner, wanted_inner_mode,
6435 pos_rtx
6436 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
0345195a 6437 ? ~(unsigned HOST_WIDE_INT) 0
729a2125
RK
6438 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6439 << orig_pos),
9e74dc41
RK
6440 NULL_RTX, 0);
6441 }
230d793d
RS
6442
6443 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6444 have to zero extend. Otherwise, we can just use a SUBREG. */
8999a12e 6445 if (pos_rtx != 0
230d793d 6446 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
0f808b6f 6447 {
f1c6ba8b 6448 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
0f808b6f
JH
6449
6450 /* If we know that no extraneous bits are set, and that the high
eaec9b3d 6451 bit is not set, convert extraction to cheaper one - either
0f808b6f
JH
6452 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6453 cases. */
6454 if (flag_expensive_optimizations
6455 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6456 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
663522cb
KH
6457 & ~(((unsigned HOST_WIDE_INT)
6458 GET_MODE_MASK (GET_MODE (pos_rtx)))
6459 >> 1))
0f808b6f
JH
6460 == 0)))
6461 {
6462 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6463
25ffb1f6 6464 /* Prefer ZERO_EXTENSION, since it gives more information to
0f808b6f
JH
6465 backends. */
6466 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6467 temp = temp1;
6468 }
6469 pos_rtx = temp;
6470 }
8999a12e 6471 else if (pos_rtx != 0
230d793d 6472 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
4de249d9 6473 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
230d793d 6474
8999a12e
RK
6475 /* Make POS_RTX unless we already have it and it is correct. If we don't
6476 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
0f41302f 6477 be a CONST_INT. */
8999a12e
RK
6478 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6479 pos_rtx = orig_pos_rtx;
6480
6481 else if (pos_rtx == 0)
5f4f0e22 6482 pos_rtx = GEN_INT (pos);
230d793d
RS
6483
6484 /* Make the required operation. See if we can use existing rtx. */
f1c6ba8b 6485 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5f4f0e22 6486 extraction_mode, inner, GEN_INT (len), pos_rtx);
230d793d 6487 if (! in_dest)
4de249d9 6488 new = gen_lowpart (mode, new);
230d793d
RS
6489
6490 return new;
6491}
6492\f
71923da7
RK
6493/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6494 with any other operations in X. Return X without that shift if so. */
6495
6496static rtx
79a490a9 6497extract_left_shift (rtx x, int count)
71923da7
RK
6498{
6499 enum rtx_code code = GET_CODE (x);
6500 enum machine_mode mode = GET_MODE (x);
6501 rtx tem;
6502
6503 switch (code)
6504 {
6505 case ASHIFT:
6506 /* This is the shift itself. If it is wide enough, we will return
6507 either the value being shifted if the shift count is equal to
6508 COUNT or a shift for the difference. */
6509 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6510 && INTVAL (XEXP (x, 1)) >= count)
6511 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6512 INTVAL (XEXP (x, 1)) - count);
6513 break;
6514
6515 case NEG: case NOT:
6516 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
f1c6ba8b 6517 return simplify_gen_unary (code, mode, tem, mode);
71923da7
RK
6518
6519 break;
6520
6521 case PLUS: case IOR: case XOR: case AND:
6522 /* If we can safely shift this constant and we find the inner shift,
6523 make a new operation. */
e869aa39 6524 if (GET_CODE (XEXP (x, 1)) == CONST_INT
b729186a 6525 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
71923da7 6526 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
1999435c
PB
6527 return gen_binary (code, mode, tem,
6528 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
71923da7
RK
6529
6530 break;
663522cb 6531
e9a25f70
JL
6532 default:
6533 break;
71923da7
RK
6534 }
6535
6536 return 0;
6537}
6538\f
230d793d
RS
6539/* Look at the expression rooted at X. Look for expressions
6540 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6541 Form these expressions.
6542
6543 Return the new rtx, usually just X.
6544
8aeea6e6 6545 Also, for machines like the VAX that don't have logical shift insns,
230d793d
RS
6546 try to convert logical to arithmetic shift operations in cases where
6547 they are equivalent. This undoes the canonicalizations to logical
6548 shifts done elsewhere.
6549
6550 We try, as much as possible, to re-use rtl expressions to save memory.
6551
6552 IN_CODE says what kind of expression we are processing. Normally, it is
42495ca0
RK
6553 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6554 being kludges), it is MEM. When processing the arguments of a comparison
230d793d
RS
6555 or a COMPARE against zero, it is COMPARE. */
6556
6557static rtx
79a490a9 6558make_compound_operation (rtx x, enum rtx_code in_code)
230d793d
RS
6559{
6560 enum rtx_code code = GET_CODE (x);
6561 enum machine_mode mode = GET_MODE (x);
6562 int mode_width = GET_MODE_BITSIZE (mode);
71923da7 6563 rtx rhs, lhs;
230d793d 6564 enum rtx_code next_code;
f24ad0e4 6565 int i;
230d793d 6566 rtx new = 0;
280f58ba 6567 rtx tem;
6f7d635c 6568 const char *fmt;
230d793d
RS
6569
6570 /* Select the code to be used in recursive calls. Once we are inside an
6571 address, we stay there. If we have a comparison, set to COMPARE,
6572 but once inside, go back to our default of SET. */
6573
42495ca0 6574 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
ec8e098d 6575 : ((code == COMPARE || COMPARISON_P (x))
230d793d
RS
6576 && XEXP (x, 1) == const0_rtx) ? COMPARE
6577 : in_code == COMPARE ? SET : in_code);
6578
6579 /* Process depending on the code of this operation. If NEW is set
da7d8304 6580 nonzero, it will be returned. */
230d793d
RS
6581
6582 switch (code)
6583 {
6584 case ASHIFT:
230d793d
RS
6585 /* Convert shifts by constants into multiplications if inside
6586 an address. */
6587 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5f4f0e22 6588 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
230d793d 6589 && INTVAL (XEXP (x, 1)) >= 0)
280f58ba
RK
6590 {
6591 new = make_compound_operation (XEXP (x, 0), next_code);
f1c6ba8b
RK
6592 new = gen_rtx_MULT (mode, new,
6593 GEN_INT ((HOST_WIDE_INT) 1
6594 << INTVAL (XEXP (x, 1))));
280f58ba 6595 }
230d793d
RS
6596 break;
6597
6598 case AND:
6599 /* If the second operand is not a constant, we can't do anything
6600 with it. */
6601 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6602 break;
6603
6604 /* If the constant is a power of two minus one and the first operand
6605 is a logical right shift, make an extraction. */
6606 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6608 {
6609 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6610 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6611 0, in_code == COMPARE);
6612 }
dfbe1b2f 6613
230d793d
RS
6614 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6615 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6616 && subreg_lowpart_p (XEXP (x, 0))
6617 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6618 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6619 {
6620 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6621 next_code);
2f99f437 6622 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
280f58ba
RK
6623 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6624 0, in_code == COMPARE);
6625 }
45620ed4 6626 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
c2f9f64e
JW
6627 else if ((GET_CODE (XEXP (x, 0)) == XOR
6628 || GET_CODE (XEXP (x, 0)) == IOR)
6629 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6630 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6631 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6632 {
6633 /* Apply the distributive law, and then try to make extractions. */
f1c6ba8b
RK
6634 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6635 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6636 XEXP (x, 1)),
6637 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6638 XEXP (x, 1)));
c2f9f64e
JW
6639 new = make_compound_operation (new, in_code);
6640 }
a7c99304
RK
6641
6642 /* If we are have (and (rotate X C) M) and C is larger than the number
6643 of bits in M, this is an extraction. */
6644
6645 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6646 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6647 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6648 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
280f58ba
RK
6649 {
6650 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6651 new = make_extraction (mode, new,
6652 (GET_MODE_BITSIZE (mode)
6653 - INTVAL (XEXP (XEXP (x, 0), 1))),
6654 NULL_RTX, i, 1, 0, in_code == COMPARE);
6655 }
a7c99304
RK
6656
6657 /* On machines without logical shifts, if the operand of the AND is
230d793d
RS
6658 a logical shift and our mask turns off all the propagated sign
6659 bits, we can replace the logical shift with an arithmetic shift. */
ef89d648
ZW
6660 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6661 && !have_insn_for (LSHIFTRT, mode)
6662 && have_insn_for (ASHIFTRT, mode)
230d793d
RS
6663 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6664 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5f4f0e22
CH
6665 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6666 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 6667 {
5f4f0e22 6668 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
6669
6670 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6671 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6672 SUBST (XEXP (x, 0),
f1c6ba8b
RK
6673 gen_rtx_ASHIFTRT (mode,
6674 make_compound_operation
6675 (XEXP (XEXP (x, 0), 0), next_code),
6676 XEXP (XEXP (x, 0), 1)));
230d793d
RS
6677 }
6678
6679 /* If the constant is one less than a power of two, this might be
6680 representable by an extraction even if no shift is present.
6681 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6682 we are in a COMPARE. */
6683 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6684 new = make_extraction (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
230d793d
RS
6688
6689 /* If we are in a comparison and this is an AND with a power of two,
6690 convert this into the appropriate bit extract. */
6691 else if (in_code == COMPARE
6692 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
280f58ba
RK
6693 new = make_extraction (mode,
6694 make_compound_operation (XEXP (x, 0),
6695 next_code),
6696 i, NULL_RTX, 1, 1, 0, 1);
230d793d
RS
6697
6698 break;
6699
6700 case LSHIFTRT:
6701 /* If the sign bit is known to be zero, replace this with an
6702 arithmetic shift. */
ef89d648
ZW
6703 if (have_insn_for (ASHIFTRT, mode)
6704 && ! have_insn_for (LSHIFTRT, mode)
5f4f0e22 6705 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 6706 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
230d793d 6707 {
f1c6ba8b
RK
6708 new = gen_rtx_ASHIFTRT (mode,
6709 make_compound_operation (XEXP (x, 0),
6710 next_code),
6711 XEXP (x, 1));
230d793d
RS
6712 break;
6713 }
6714
0f41302f 6715 /* ... fall through ... */
230d793d
RS
6716
6717 case ASHIFTRT:
71923da7
RK
6718 lhs = XEXP (x, 0);
6719 rhs = XEXP (x, 1);
6720
230d793d
RS
6721 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6722 this is a SIGN_EXTRACT. */
71923da7
RK
6723 if (GET_CODE (rhs) == CONST_INT
6724 && GET_CODE (lhs) == ASHIFT
6725 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6726 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
280f58ba 6727 {
71923da7 6728 new = make_compound_operation (XEXP (lhs, 0), next_code);
280f58ba 6729 new = make_extraction (mode, new,
71923da7
RK
6730 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6731 NULL_RTX, mode_width - INTVAL (rhs),
d0ab8cd3 6732 code == LSHIFTRT, 0, in_code == COMPARE);
8231ad94 6733 break;
d0ab8cd3
RK
6734 }
6735
71923da7
RK
6736 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6737 If so, try to merge the shifts into a SIGN_EXTEND. We could
6738 also do this for some cases of SIGN_EXTRACT, but it doesn't
6739 seem worth the effort; the case checked for occurs on Alpha. */
663522cb 6740
ec8e098d 6741 if (!OBJECT_P (lhs)
71923da7 6742 && ! (GET_CODE (lhs) == SUBREG
ec8e098d 6743 && (OBJECT_P (SUBREG_REG (lhs))))
71923da7
RK
6744 && GET_CODE (rhs) == CONST_INT
6745 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6746 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6747 new = make_extraction (mode, make_compound_operation (new, next_code),
6748 0, NULL_RTX, mode_width - INTVAL (rhs),
6749 code == LSHIFTRT, 0, in_code == COMPARE);
663522cb 6750
230d793d 6751 break;
280f58ba
RK
6752
6753 case SUBREG:
6754 /* Call ourselves recursively on the inner expression. If we are
6755 narrowing the object and it has a different RTL code from
6756 what it originally did, do this SUBREG as a force_to_mode. */
6757
0a5cbff6 6758 tem = make_compound_operation (SUBREG_REG (x), in_code);
280f58ba
RK
6759 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6760 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6761 && subreg_lowpart_p (x))
0a5cbff6 6762 {
e8dc6d50
JH
6763 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6764 NULL_RTX, 0);
0a5cbff6
RK
6765
6766 /* If we have something other than a SUBREG, we might have
eaec9b3d 6767 done an expansion, so rerun ourselves. */
0a5cbff6
RK
6768 if (GET_CODE (newer) != SUBREG)
6769 newer = make_compound_operation (newer, in_code);
6770
6771 return newer;
6772 }
6f28d3e9
RH
6773
6774 /* If this is a paradoxical subreg, and the new code is a sign or
6775 zero extension, omit the subreg and widen the extension. If it
6776 is a regular subreg, we can still get rid of the subreg by not
6777 widening so much, or in fact removing the extension entirely. */
6778 if ((GET_CODE (tem) == SIGN_EXTEND
6779 || GET_CODE (tem) == ZERO_EXTEND)
6780 && subreg_lowpart_p (x))
6781 {
6782 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6783 || (GET_MODE_SIZE (mode) >
6784 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
b10f2187 6785 {
ab5ecb01 6786 if (! SCALAR_INT_MODE_P (mode))
b10f2187
R
6787 break;
6788 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6789 }
6f28d3e9 6790 else
4de249d9 6791 tem = gen_lowpart (mode, XEXP (tem, 0));
6f28d3e9
RH
6792 return tem;
6793 }
e9a25f70 6794 break;
663522cb 6795
e9a25f70
JL
6796 default:
6797 break;
230d793d
RS
6798 }
6799
6800 if (new)
6801 {
4de249d9 6802 x = gen_lowpart (mode, new);
230d793d
RS
6803 code = GET_CODE (x);
6804 }
6805
6806 /* Now recursively process each operand of this operation. */
6807 fmt = GET_RTX_FORMAT (code);
6808 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6809 if (fmt[i] == 'e')
6810 {
6811 new = make_compound_operation (XEXP (x, i), next_code);
6812 SUBST (XEXP (x, i), new);
6813 }
6814
6815 return x;
6816}
6817\f
6818/* Given M see if it is a value that would select a field of bits
663522cb
KH
6819 within an item, but not the entire word. Return -1 if not.
6820 Otherwise, return the starting position of the field, where 0 is the
6821 low-order bit.
230d793d
RS
6822
6823 *PLEN is set to the length of the field. */
6824
6825static int
79a490a9 6826get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
230d793d
RS
6827{
6828 /* Get the bit number of the first 1 bit from the right, -1 if none. */
663522cb 6829 int pos = exact_log2 (m & -m);
6de9cd9a 6830 int len = 0;
230d793d 6831
6de9cd9a
DN
6832 if (pos >= 0)
6833 /* Now shift off the low-order zero bits and see if we have a
6834 power of two minus 1. */
6835 len = exact_log2 ((m >> pos) + 1);
230d793d 6836
d3bc8938 6837 if (len <= 0)
6de9cd9a 6838 pos = -1;
230d793d 6839
d3bc8938 6840 *plen = len;
230d793d
RS
6841 return pos;
6842}
6843\f
6139ff20
RK
6844/* See if X can be simplified knowing that we will only refer to it in
6845 MODE and will only refer to those bits that are nonzero in MASK.
6846 If other bits are being computed or if masking operations are done
6847 that select a superset of the bits in MASK, they can sometimes be
6848 ignored.
6849
6850 Return a possibly simplified expression, but always convert X to
6851 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
dfbe1b2f 6852
da7d8304 6853 Also, if REG is nonzero and X is a register equal in value to REG,
e3d616e3
RK
6854 replace X with REG.
6855
6856 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6857 are all off in X. This is used when X will be complemented, by either
180b8e4b 6858 NOT, NEG, or XOR. */
dfbe1b2f
RK
6859
6860static rtx
79a490a9
AJ
6861force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6862 rtx reg, int just_select)
dfbe1b2f
RK
6863{
6864 enum rtx_code code = GET_CODE (x);
180b8e4b 6865 int next_select = just_select || code == XOR || code == NOT || code == NEG;
ef026f91
RS
6866 enum machine_mode op_mode;
6867 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6139ff20
RK
6868 rtx op0, op1, temp;
6869
132d2040
RK
6870 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6871 code below will do the wrong thing since the mode of such an
663522cb 6872 expression is VOIDmode.
be3d27d6
CI
6873
6874 Also do nothing if X is a CLOBBER; this can happen if X was
4de249d9 6875 the return value from a call to gen_lowpart. */
be3d27d6 6876 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
246e00f2
RK
6877 return x;
6878
6139ff20
RK
6879 /* We want to perform the operation is its present mode unless we know
6880 that the operation is valid in MODE, in which case we do the operation
6881 in MODE. */
1c75dfa4 6882 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
ef89d648 6883 && have_insn_for (code, mode))
ef026f91 6884 ? mode : GET_MODE (x));
e3d616e3 6885
aa988991
RS
6886 /* It is not valid to do a right-shift in a narrower mode
6887 than the one it came in with. */
6888 if ((code == LSHIFTRT || code == ASHIFTRT)
6889 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6890 op_mode = GET_MODE (x);
ef026f91
RS
6891
6892 /* Truncate MASK to fit OP_MODE. */
6893 if (op_mode)
6894 mask &= GET_MODE_MASK (op_mode);
6139ff20
RK
6895
6896 /* When we have an arithmetic operation, or a shift whose count we
50b29dbb 6897 do not know, we need to assume that all bits up to the highest-order
6139ff20 6898 bit in MASK will be needed. This is how we form such a mask. */
50b29dbb
ILT
6899 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6900 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
ef026f91 6901 else
50b29dbb
ILT
6902 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6903 - 1);
ef026f91
RS
6904
6905 /* Determine what bits of X are guaranteed to be (non)zero. */
6906 nonzero = nonzero_bits (x, mode);
6139ff20
RK
6907
6908 /* If none of the bits in X are needed, return a zero. */
e3d616e3 6909 if (! just_select && (nonzero & mask) == 0)
ccf7aef4 6910 x = const0_rtx;
dfbe1b2f 6911
6139ff20
RK
6912 /* If X is a CONST_INT, return a new one. Do this here since the
6913 test below will fail. */
6914 if (GET_CODE (x) == CONST_INT)
ccf7aef4
RH
6915 {
6916 if (SCALAR_INT_MODE_P (mode))
6917 return gen_int_mode (INTVAL (x) & mask, mode);
6918 else
6919 {
6920 x = GEN_INT (INTVAL (x) & mask);
6921 return gen_lowpart_common (mode, x);
6922 }
6923 }
dfbe1b2f 6924
180b8e4b
RK
6925 /* If X is narrower than MODE and we want all the bits in X's mode, just
6926 get X in the proper mode. */
6927 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
663522cb 6928 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
4de249d9 6929 return gen_lowpart (mode, x);
dfbe1b2f
RK
6930
6931 switch (code)
6932 {
6139ff20
RK
6933 case CLOBBER:
6934 /* If X is a (clobber (const_int)), return it since we know we are
0f41302f 6935 generating something that won't match. */
6139ff20
RK
6936 return x;
6937
6139ff20
RK
6938 case USE:
6939 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6940 spanned the boundary of the MEM. If we are now masking so it is
6941 within that boundary, we don't need the USE any more. */
f76b9db2 6942 if (! BITS_BIG_ENDIAN
663522cb 6943 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
e3d616e3 6944 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
f76b9db2 6945 break;
6139ff20 6946
dfbe1b2f
RK
6947 case SIGN_EXTEND:
6948 case ZERO_EXTEND:
6949 case ZERO_EXTRACT:
6950 case SIGN_EXTRACT:
6951 x = expand_compound_operation (x);
6952 if (GET_CODE (x) != code)
e3d616e3 6953 return force_to_mode (x, mode, mask, reg, next_select);
dfbe1b2f
RK
6954 break;
6955
6956 case REG:
6957 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6958 || rtx_equal_p (reg, get_last_value (x))))
6959 x = reg;
6960 break;
6961
dfbe1b2f 6962 case SUBREG:
6139ff20 6963 if (subreg_lowpart_p (x)
180b8e4b
RK
6964 /* We can ignore the effect of this SUBREG if it narrows the mode or
6965 if the constant masks to zero all the bits the mode doesn't
6966 have. */
6139ff20
RK
6967 && ((GET_MODE_SIZE (GET_MODE (x))
6968 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6139ff20
RK
6969 || (0 == (mask
6970 & GET_MODE_MASK (GET_MODE (x))
663522cb 6971 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
e3d616e3 6972 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
dfbe1b2f
RK
6973 break;
6974
6975 case AND:
6139ff20
RK
6976 /* If this is an AND with a constant, convert it into an AND
6977 whose constant is the AND of that constant with MASK. If it
6978 remains an AND of MASK, delete it since it is redundant. */
dfbe1b2f 6979
2ca9ae17 6980 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
dfbe1b2f 6981 {
6139ff20
RK
6982 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6983 mask & INTVAL (XEXP (x, 1)));
dfbe1b2f
RK
6984
6985 /* If X is still an AND, see if it is an AND with a mask that
71923da7
RK
6986 is just some low-order bits. If so, and it is MASK, we don't
6987 need it. */
dfbe1b2f
RK
6988
6989 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
d0c9db30 6990 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
3129af4c 6991 == mask))
dfbe1b2f 6992 x = XEXP (x, 0);
d0ab8cd3 6993
71923da7
RK
6994 /* If it remains an AND, try making another AND with the bits
6995 in the mode mask that aren't in MASK turned on. If the
6996 constant in the AND is wide enough, this might make a
6997 cheaper constant. */
6998
6999 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
2ca9ae17
JW
7000 && GET_MODE_MASK (GET_MODE (x)) != mask
7001 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
71923da7
RK
7002 {
7003 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
663522cb 7004 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
71923da7
RK
7005 int width = GET_MODE_BITSIZE (GET_MODE (x));
7006 rtx y;
7007
71cc389b 7008 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
71923da7
RK
7009 number, sign extend it. */
7010 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7011 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7012 cval |= (HOST_WIDE_INT) -1 << width;
7013
1999435c 7014 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
71923da7
RK
7015 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7016 x = y;
7017 }
7018
d0ab8cd3 7019 break;
dfbe1b2f
RK
7020 }
7021
6139ff20 7022 goto binop;
dfbe1b2f
RK
7023
7024 case PLUS:
6139ff20
RK
7025 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7026 low-order bits (as in an alignment operation) and FOO is already
7027 aligned to that boundary, mask C1 to that boundary as well.
7028 This may eliminate that PLUS and, later, the AND. */
9fa6d012
TG
7029
7030 {
770ae6cc 7031 unsigned int width = GET_MODE_BITSIZE (mode);
9fa6d012
TG
7032 unsigned HOST_WIDE_INT smask = mask;
7033
7034 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7035 number, sign extend it. */
7036
7037 if (width < HOST_BITS_PER_WIDE_INT
7038 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7039 smask |= (HOST_WIDE_INT) -1 << width;
7040
7041 if (GET_CODE (XEXP (x, 1)) == CONST_INT
563c12b0
RH
7042 && exact_log2 (- smask) >= 0
7043 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7044 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7045 return force_to_mode (plus_constant (XEXP (x, 0),
7046 (INTVAL (XEXP (x, 1)) & smask)),
7047 mode, smask, reg, next_select);
9fa6d012 7048 }
6139ff20 7049
0f41302f 7050 /* ... fall through ... */
6139ff20 7051
dfbe1b2f 7052 case MULT:
6139ff20
RK
7053 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7054 most significant bit in MASK since carries from those bits will
7055 affect the bits we are interested in. */
7056 mask = fuller_mask;
7057 goto binop;
7058
d41638e4
RH
7059 case MINUS:
7060 /* If X is (minus C Y) where C's least set bit is larger than any bit
7061 in the mask, then we may replace with (neg Y). */
7062 if (GET_CODE (XEXP (x, 0)) == CONST_INT
0345195a
RK
7063 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7064 & -INTVAL (XEXP (x, 0))))
7065 > mask))
d41638e4 7066 {
f1c6ba8b
RK
7067 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7068 GET_MODE (x));
d41638e4
RH
7069 return force_to_mode (x, mode, mask, reg, next_select);
7070 }
7071
bc02f8d3 7072 /* Similarly, if C contains every bit in the fuller_mask, then we may
d41638e4
RH
7073 replace with (not Y). */
7074 if (GET_CODE (XEXP (x, 0)) == CONST_INT
bc02f8d3 7075 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
0345195a 7076 == INTVAL (XEXP (x, 0))))
d41638e4 7077 {
f1c6ba8b
RK
7078 x = simplify_gen_unary (NOT, GET_MODE (x),
7079 XEXP (x, 1), GET_MODE (x));
d41638e4
RH
7080 return force_to_mode (x, mode, mask, reg, next_select);
7081 }
7082
7083 mask = fuller_mask;
7084 goto binop;
7085
dfbe1b2f
RK
7086 case IOR:
7087 case XOR:
6139ff20
RK
7088 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7089 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7090 operation which may be a bitfield extraction. Ensure that the
7091 constant we form is not wider than the mode of X. */
7092
7093 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7094 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7095 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7096 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7097 && GET_CODE (XEXP (x, 1)) == CONST_INT
7098 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7099 + floor_log2 (INTVAL (XEXP (x, 1))))
7100 < GET_MODE_BITSIZE (GET_MODE (x)))
7101 && (INTVAL (XEXP (x, 1))
663522cb 7102 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6139ff20
RK
7103 {
7104 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
663522cb 7105 << INTVAL (XEXP (XEXP (x, 0), 1)));
1999435c
PB
7106 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7107 XEXP (XEXP (x, 0), 0), temp);
7108 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7109 XEXP (XEXP (x, 0), 1));
e3d616e3 7110 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7111 }
7112
7113 binop:
dfbe1b2f 7114 /* For most binary operations, just propagate into the operation and
6d2f8887 7115 change the mode if we have an operation of that mode. */
6139ff20 7116
4de249d9
PB
7117 op0 = gen_lowpart (op_mode,
7118 force_to_mode (XEXP (x, 0), mode, mask,
7119 reg, next_select));
7120 op1 = gen_lowpart (op_mode,
7121 force_to_mode (XEXP (x, 1), mode, mask,
7122 reg, next_select));
6139ff20
RK
7123
7124 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
1999435c 7125 x = gen_binary (code, op_mode, op0, op1);
d0ab8cd3 7126 break;
dfbe1b2f
RK
7127
7128 case ASHIFT:
dfbe1b2f 7129 /* For left shifts, do the same, but just for the first operand.
f6785026
RK
7130 However, we cannot do anything with shifts where we cannot
7131 guarantee that the counts are smaller than the size of the mode
7132 because such a count will have a different meaning in a
6139ff20 7133 wider mode. */
f6785026
RK
7134
7135 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6139ff20 7136 && INTVAL (XEXP (x, 1)) >= 0
f6785026
RK
7137 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7138 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7139 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
adb7a1cb 7140 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
f6785026 7141 break;
663522cb 7142
6139ff20
RK
7143 /* If the shift count is a constant and we can do arithmetic in
7144 the mode of the shift, refine which bits we need. Otherwise, use the
7145 conservative form of the mask. */
7146 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7147 && INTVAL (XEXP (x, 1)) >= 0
7148 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7149 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7150 mask >>= INTVAL (XEXP (x, 1));
7151 else
7152 mask = fuller_mask;
7153
4de249d9
PB
7154 op0 = gen_lowpart (op_mode,
7155 force_to_mode (XEXP (x, 0), op_mode,
7156 mask, reg, next_select));
6139ff20
RK
7157
7158 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
1999435c 7159 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
d0ab8cd3 7160 break;
dfbe1b2f
RK
7161
7162 case LSHIFTRT:
1347292b
JW
7163 /* Here we can only do something if the shift count is a constant,
7164 this shift constant is valid for the host, and we can do arithmetic
7165 in OP_MODE. */
dfbe1b2f
RK
7166
7167 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1347292b 7168 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6139ff20 7169 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
d0ab8cd3 7170 {
6139ff20 7171 rtx inner = XEXP (x, 0);
402b6c2a 7172 unsigned HOST_WIDE_INT inner_mask;
6139ff20
RK
7173
7174 /* Select the mask of the bits we need for the shift operand. */
402b6c2a 7175 inner_mask = mask << INTVAL (XEXP (x, 1));
d0ab8cd3 7176
6139ff20 7177 /* We can only change the mode of the shift if we can do arithmetic
402b6c2a 7178 in the mode of the shift and INNER_MASK is no wider than the
f3b2657c
JJ
7179 width of X's mode. */
7180 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
d0ab8cd3
RK
7181 op_mode = GET_MODE (x);
7182
402b6c2a 7183 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6139ff20
RK
7184
7185 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
1999435c 7186 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
d0ab8cd3 7187 }
6139ff20
RK
7188
7189 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7190 shift and AND produces only copies of the sign bit (C2 is one less
7191 than a power of two), we can do this with just a shift. */
7192
7193 if (GET_CODE (x) == LSHIFTRT
7194 && GET_CODE (XEXP (x, 1)) == CONST_INT
cfff35c1
JW
7195 /* The shift puts one of the sign bit copies in the least significant
7196 bit. */
6139ff20
RK
7197 && ((INTVAL (XEXP (x, 1))
7198 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7199 >= GET_MODE_BITSIZE (GET_MODE (x)))
7200 && exact_log2 (mask + 1) >= 0
cfff35c1
JW
7201 /* Number of bits left after the shift must be more than the mask
7202 needs. */
7203 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7204 <= GET_MODE_BITSIZE (GET_MODE (x)))
7205 /* Must be more sign bit copies than the mask needs. */
770ae6cc 7206 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6139ff20 7207 >= exact_log2 (mask + 1)))
1999435c
PB
7208 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7209 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7210 - exact_log2 (mask + 1)));
fae2db47
JW
7211
7212 goto shiftrt;
d0ab8cd3
RK
7213
7214 case ASHIFTRT:
6139ff20
RK
7215 /* If we are just looking for the sign bit, we don't need this shift at
7216 all, even if it has a variable count. */
9bf22b75 7217 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
e51712db 7218 && (mask == ((unsigned HOST_WIDE_INT) 1
9bf22b75 7219 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
e3d616e3 7220 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6139ff20
RK
7221
7222 /* If this is a shift by a constant, get a mask that contains those bits
7223 that are not copies of the sign bit. We then have two cases: If
7224 MASK only includes those bits, this can be a logical shift, which may
7225 allow simplifications. If MASK is a single-bit field not within
7226 those bits, we are requesting a copy of the sign bit and hence can
7227 shift the sign bit to the appropriate location. */
7228
7229 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7230 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7231 {
7232 int i = -1;
7233
3e92902c 7234 /* If the considered data is wider than HOST_WIDE_INT, we can't
b69960ac
RK
7235 represent a mask for all its bits in a single scalar.
7236 But we only care about the lower bits, so calculate these. */
7237
6a11342f 7238 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
b69960ac 7239 {
663522cb 7240 nonzero = ~(HOST_WIDE_INT) 0;
b69960ac
RK
7241
7242 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7243 is the number of bits a full-width mask would have set.
7244 We need only shift if these are fewer than nonzero can
7245 hold. If not, we must keep all bits set in nonzero. */
7246
7247 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7248 < HOST_BITS_PER_WIDE_INT)
7249 nonzero >>= INTVAL (XEXP (x, 1))
7250 + HOST_BITS_PER_WIDE_INT
7251 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7252 }
7253 else
7254 {
7255 nonzero = GET_MODE_MASK (GET_MODE (x));
7256 nonzero >>= INTVAL (XEXP (x, 1));
7257 }
6139ff20 7258
663522cb 7259 if ((mask & ~nonzero) == 0
6139ff20
RK
7260 || (i = exact_log2 (mask)) >= 0)
7261 {
7262 x = simplify_shift_const
7263 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7264 i < 0 ? INTVAL (XEXP (x, 1))
7265 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7266
7267 if (GET_CODE (x) != ASHIFTRT)
e3d616e3 7268 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7269 }
7270 }
7271
e0a2f705 7272 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
6139ff20
RK
7273 even if the shift count isn't a constant. */
7274 if (mask == 1)
1999435c 7275 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6139ff20 7276
fae2db47
JW
7277 shiftrt:
7278
7279 /* If this is a zero- or sign-extension operation that just affects bits
4c002f29
RK
7280 we don't care about, remove it. Be sure the call above returned
7281 something that is still a shift. */
d0ab8cd3 7282
4c002f29
RK
7283 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7284 && GET_CODE (XEXP (x, 1)) == CONST_INT
d0ab8cd3 7285 && INTVAL (XEXP (x, 1)) >= 0
6139ff20
RK
7286 && (INTVAL (XEXP (x, 1))
7287 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
d0ab8cd3 7288 && GET_CODE (XEXP (x, 0)) == ASHIFT
fa9ea255 7289 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
e3d616e3
RK
7290 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7291 reg, next_select);
6139ff20 7292
dfbe1b2f
RK
7293 break;
7294
6139ff20
RK
7295 case ROTATE:
7296 case ROTATERT:
7297 /* If the shift count is constant and we can do computations
7298 in the mode of X, compute where the bits we care about are.
7299 Otherwise, we can't do anything. Don't change the mode of
7300 the shift or propagate MODE into the shift, though. */
7301 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7302 && INTVAL (XEXP (x, 1)) >= 0)
7303 {
7304 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7305 GET_MODE (x), GEN_INT (mask),
7306 XEXP (x, 1));
e869aa39 7307 if (temp && GET_CODE (temp) == CONST_INT)
6139ff20
RK
7308 SUBST (XEXP (x, 0),
7309 force_to_mode (XEXP (x, 0), GET_MODE (x),
e3d616e3 7310 INTVAL (temp), reg, next_select));
6139ff20
RK
7311 }
7312 break;
663522cb 7313
dfbe1b2f 7314 case NEG:
180b8e4b 7315 /* If we just want the low-order bit, the NEG isn't needed since it
3ef42a0c 7316 won't change the low-order bit. */
180b8e4b
RK
7317 if (mask == 1)
7318 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7319
6139ff20
RK
7320 /* We need any bits less significant than the most significant bit in
7321 MASK since carries from those bits will affect the bits we are
7322 interested in. */
7323 mask = fuller_mask;
7324 goto unop;
7325
dfbe1b2f 7326 case NOT:
6139ff20
RK
7327 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7328 same as the XOR case above. Ensure that the constant we form is not
7329 wider than the mode of X. */
7330
7331 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7332 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7333 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7334 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7335 < GET_MODE_BITSIZE (GET_MODE (x)))
7336 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7337 {
6a04f4e0
AM
7338 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7339 GET_MODE (x));
1999435c
PB
7340 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7341 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6139ff20 7342
e3d616e3 7343 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7344 }
7345
f82da7d2
JW
7346 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7347 use the full mask inside the NOT. */
7348 mask = fuller_mask;
7349
6139ff20 7350 unop:
4de249d9
PB
7351 op0 = gen_lowpart (op_mode,
7352 force_to_mode (XEXP (x, 0), mode, mask,
7353 reg, next_select));
6139ff20 7354 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
f1c6ba8b 7355 x = simplify_gen_unary (code, op_mode, op0, op_mode);
6139ff20
RK
7356 break;
7357
7358 case NE:
7359 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
3aceff0d 7360 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
1a6ec070 7361 which is equal to STORE_FLAG_VALUE. */
663522cb 7362 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7d103eb5 7363 && GET_MODE (XEXP (x, 0)) == mode
3aceff0d 7364 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
43196589
AS
7365 && (nonzero_bits (XEXP (x, 0), mode)
7366 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
e3d616e3 7367 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6139ff20 7368
d0ab8cd3
RK
7369 break;
7370
7371 case IF_THEN_ELSE:
7372 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7373 written in a narrower mode. We play it safe and do not do so. */
7374
7375 SUBST (XEXP (x, 1),
4de249d9 7376 gen_lowpart (GET_MODE (x),
d0ab8cd3 7377 force_to_mode (XEXP (x, 1), mode,
e3d616e3 7378 mask, reg, next_select)));
d0ab8cd3 7379 SUBST (XEXP (x, 2),
4de249d9 7380 gen_lowpart (GET_MODE (x),
d0ab8cd3 7381 force_to_mode (XEXP (x, 2), mode,
e869aa39 7382 mask, reg, next_select)));
d0ab8cd3 7383 break;
663522cb 7384
e9a25f70
JL
7385 default:
7386 break;
dfbe1b2f
RK
7387 }
7388
d0ab8cd3 7389 /* Ensure we return a value of the proper mode. */
4de249d9 7390 return gen_lowpart (mode, x);
dfbe1b2f
RK
7391}
7392\f
abe6e52f
RK
7393/* Return nonzero if X is an expression that has one of two values depending on
7394 whether some other value is zero or nonzero. In that case, we return the
7395 value that is being tested, *PTRUE is set to the value if the rtx being
7396 returned has a nonzero value, and *PFALSE is set to the other alternative.
7397
7398 If we return zero, we set *PTRUE and *PFALSE to X. */
7399
7400static rtx
79a490a9 7401if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
abe6e52f
RK
7402{
7403 enum machine_mode mode = GET_MODE (x);
7404 enum rtx_code code = GET_CODE (x);
abe6e52f
RK
7405 rtx cond0, cond1, true0, true1, false0, false1;
7406 unsigned HOST_WIDE_INT nz;
7407
14a774a9
RK
7408 /* If we are comparing a value against zero, we are done. */
7409 if ((code == NE || code == EQ)
87d9741e 7410 && XEXP (x, 1) == const0_rtx)
14a774a9 7411 {
e8758a3a
JL
7412 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7413 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
14a774a9
RK
7414 return XEXP (x, 0);
7415 }
7416
abe6e52f
RK
7417 /* If this is a unary operation whose operand has one of two values, apply
7418 our opcode to compute those values. */
ec8e098d 7419 else if (UNARY_P (x)
14a774a9 7420 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
abe6e52f 7421 {
f1c6ba8b
RK
7422 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7423 *pfalse = simplify_gen_unary (code, mode, false0,
7424 GET_MODE (XEXP (x, 0)));
abe6e52f
RK
7425 return cond0;
7426 }
7427
3a19aabc 7428 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
ddd5a7c1 7429 make can't possibly match and would suppress other optimizations. */
3a19aabc
RK
7430 else if (code == COMPARE)
7431 ;
7432
abe6e52f
RK
7433 /* If this is a binary operation, see if either side has only one of two
7434 values. If either one does or if both do and they are conditional on
7435 the same value, compute the new true and false values. */
ec8e098d 7436 else if (BINARY_P (x))
abe6e52f
RK
7437 {
7438 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7439 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7440
7441 if ((cond0 != 0 || cond1 != 0)
7442 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7443 {
987e845a
JW
7444 /* If if_then_else_cond returned zero, then true/false are the
7445 same rtl. We must copy one of them to prevent invalid rtl
7446 sharing. */
7447 if (cond0 == 0)
7448 true0 = copy_rtx (true0);
7449 else if (cond1 == 0)
7450 true1 = copy_rtx (true1);
7451
1999435c
PB
7452 *ptrue = gen_binary (code, mode, true0, true1);
7453 *pfalse = gen_binary (code, mode, false0, false1);
abe6e52f
RK
7454 return cond0 ? cond0 : cond1;
7455 }
9210df58 7456
9210df58 7457 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
da7d8304 7458 operands is zero when the other is nonzero, and vice-versa,
0802d516 7459 and STORE_FLAG_VALUE is 1 or -1. */
9210df58 7460
0802d516
RK
7461 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7462 && (code == PLUS || code == IOR || code == XOR || code == MINUS
663522cb 7463 || code == UMAX)
9210df58
RK
7464 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7465 {
7466 rtx op0 = XEXP (XEXP (x, 0), 1);
7467 rtx op1 = XEXP (XEXP (x, 1), 1);
7468
7469 cond0 = XEXP (XEXP (x, 0), 0);
7470 cond1 = XEXP (XEXP (x, 1), 0);
7471
ec8e098d
PB
7472 if (COMPARISON_P (cond0)
7473 && COMPARISON_P (cond1)
9a915772 7474 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
9210df58
RK
7475 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7476 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7477 || ((swap_condition (GET_CODE (cond0))
9a915772 7478 == combine_reversed_comparison_code (cond1))
9210df58
RK
7479 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7480 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7481 && ! side_effects_p (x))
7482 {
1999435c
PB
7483 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7484 *pfalse = gen_binary (MULT, mode,
7485 (code == MINUS
7486 ? simplify_gen_unary (NEG, mode, op1,
7487 mode)
7488 : op1),
7489 const_true_rtx);
9210df58
RK
7490 return cond0;
7491 }
7492 }
7493
eaec9b3d 7494 /* Similarly for MULT, AND and UMIN, except that for these the result
9210df58 7495 is always zero. */
0802d516
RK
7496 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7497 && (code == MULT || code == AND || code == UMIN)
9210df58
RK
7498 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7499 {
7500 cond0 = XEXP (XEXP (x, 0), 0);
7501 cond1 = XEXP (XEXP (x, 1), 0);
7502
ec8e098d
PB
7503 if (COMPARISON_P (cond0)
7504 && COMPARISON_P (cond1)
9a915772 7505 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
9210df58
RK
7506 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7507 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7508 || ((swap_condition (GET_CODE (cond0))
9a915772 7509 == combine_reversed_comparison_code (cond1))
9210df58
RK
7510 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7511 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7512 && ! side_effects_p (x))
7513 {
7514 *ptrue = *pfalse = const0_rtx;
7515 return cond0;
7516 }
7517 }
abe6e52f
RK
7518 }
7519
7520 else if (code == IF_THEN_ELSE)
7521 {
7522 /* If we have IF_THEN_ELSE already, extract the condition and
7523 canonicalize it if it is NE or EQ. */
7524 cond0 = XEXP (x, 0);
7525 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7526 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7527 return XEXP (cond0, 0);
7528 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7529 {
7530 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7531 return XEXP (cond0, 0);
7532 }
7533 else
7534 return cond0;
7535 }
7536
0631e0bf
JH
7537 /* If X is a SUBREG, we can narrow both the true and false values
7538 if the inner expression, if there is a condition. */
7539 else if (code == SUBREG
abe6e52f
RK
7540 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7541 &true0, &false0)))
7542 {
bbe708a3
UW
7543 true0 = simplify_gen_subreg (mode, true0,
7544 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7545 false0 = simplify_gen_subreg (mode, false0,
0631e0bf 7546 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
bbe708a3
UW
7547 if (true0 && false0)
7548 {
7549 *ptrue = true0;
7550 *pfalse = false0;
7551 return cond0;
7552 }
abe6e52f
RK
7553 }
7554
7555 /* If X is a constant, this isn't special and will cause confusions
7556 if we treat it as such. Likewise if it is equivalent to a constant. */
7557 else if (CONSTANT_P (x)
7558 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7559 ;
7560
1f3f36d1
RH
7561 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7562 will be least confusing to the rest of the compiler. */
7563 else if (mode == BImode)
7564 {
7565 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7566 return x;
7567 }
7568
663522cb 7569 /* If X is known to be either 0 or -1, those are the true and
abe6e52f 7570 false values when testing X. */
49219895
JH
7571 else if (x == constm1_rtx || x == const0_rtx
7572 || (mode != VOIDmode
7573 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
abe6e52f
RK
7574 {
7575 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7576 return x;
7577 }
7578
7579 /* Likewise for 0 or a single bit. */
9eb54558 7580 else if (SCALAR_INT_MODE_P (mode)
49219895
JH
7581 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7582 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
abe6e52f 7583 {
578fc63d 7584 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
abe6e52f
RK
7585 return x;
7586 }
7587
7588 /* Otherwise fail; show no condition with true and false values the same. */
7589 *ptrue = *pfalse = x;
7590 return 0;
7591}
7592\f
1a26b032
RK
7593/* Return the value of expression X given the fact that condition COND
7594 is known to be true when applied to REG as its first operand and VAL
7595 as its second. X is known to not be shared and so can be modified in
7596 place.
7597
7598 We only handle the simplest cases, and specifically those cases that
7599 arise with IF_THEN_ELSE expressions. */
7600
7601static rtx
79a490a9 7602known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
1a26b032
RK
7603{
7604 enum rtx_code code = GET_CODE (x);
f24ad0e4 7605 rtx temp;
6f7d635c 7606 const char *fmt;
1a26b032
RK
7607 int i, j;
7608
7609 if (side_effects_p (x))
7610 return x;
7611
805f1694
JL
7612 /* If either operand of the condition is a floating point value,
7613 then we have to avoid collapsing an EQ comparison. */
7614 if (cond == EQ
7615 && rtx_equal_p (x, reg)
7616 && ! FLOAT_MODE_P (GET_MODE (x))
7617 && ! FLOAT_MODE_P (GET_MODE (val)))
69bc0a1f 7618 return val;
805f1694 7619
69bc0a1f 7620 if (cond == UNEQ && rtx_equal_p (x, reg))
1a26b032
RK
7621 return val;
7622
7623 /* If X is (abs REG) and we know something about REG's relationship
7624 with zero, we may be able to simplify this. */
7625
7626 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7627 switch (cond)
7628 {
7629 case GE: case GT: case EQ:
7630 return XEXP (x, 0);
7631 case LT: case LE:
f1c6ba8b
RK
7632 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7633 XEXP (x, 0),
7634 GET_MODE (XEXP (x, 0)));
e9a25f70
JL
7635 default:
7636 break;
1a26b032
RK
7637 }
7638
7639 /* The only other cases we handle are MIN, MAX, and comparisons if the
7640 operands are the same as REG and VAL. */
7641
ec8e098d 7642 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
1a26b032
RK
7643 {
7644 if (rtx_equal_p (XEXP (x, 0), val))
7645 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7646
7647 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7648 {
ec8e098d 7649 if (COMPARISON_P (x))
1eb8759b
RH
7650 {
7651 if (comparison_dominates_p (cond, code))
7652 return const_true_rtx;
1a26b032 7653
9a915772 7654 code = combine_reversed_comparison_code (x);
1eb8759b
RH
7655 if (code != UNKNOWN
7656 && comparison_dominates_p (cond, code))
7657 return const0_rtx;
7658 else
7659 return x;
7660 }
1a26b032
RK
7661 else if (code == SMAX || code == SMIN
7662 || code == UMIN || code == UMAX)
7663 {
7664 int unsignedp = (code == UMIN || code == UMAX);
7665
ac4cdf40
JE
7666 /* Do not reverse the condition when it is NE or EQ.
7667 This is because we cannot conclude anything about
7668 the value of 'SMAX (x, y)' when x is not equal to y,
23190837 7669 but we can when x equals y. */
ac4cdf40
JE
7670 if ((code == SMAX || code == UMAX)
7671 && ! (cond == EQ || cond == NE))
1a26b032
RK
7672 cond = reverse_condition (cond);
7673
7674 switch (cond)
7675 {
7676 case GE: case GT:
7677 return unsignedp ? x : XEXP (x, 1);
7678 case LE: case LT:
7679 return unsignedp ? x : XEXP (x, 0);
7680 case GEU: case GTU:
7681 return unsignedp ? XEXP (x, 1) : x;
7682 case LEU: case LTU:
7683 return unsignedp ? XEXP (x, 0) : x;
e9a25f70
JL
7684 default:
7685 break;
1a26b032
RK
7686 }
7687 }
7688 }
7689 }
9a360704
AO
7690 else if (code == SUBREG)
7691 {
7692 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7693 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7694
7695 if (SUBREG_REG (x) != r)
7696 {
7697 /* We must simplify subreg here, before we lose track of the
7698 original inner_mode. */
7699 new = simplify_subreg (GET_MODE (x), r,
7700 inner_mode, SUBREG_BYTE (x));
7701 if (new)
7702 return new;
7703 else
7704 SUBST (SUBREG_REG (x), r);
7705 }
7706
7707 return x;
7708 }
4161da12
AO
7709 /* We don't have to handle SIGN_EXTEND here, because even in the
7710 case of replacing something with a modeless CONST_INT, a
7711 CONST_INT is already (supposed to be) a valid sign extension for
7712 its narrower mode, which implies it's already properly
7713 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7714 story is different. */
7715 else if (code == ZERO_EXTEND)
7716 {
7717 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7718 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7719
7720 if (XEXP (x, 0) != r)
7721 {
7722 /* We must simplify the zero_extend here, before we lose
7723 track of the original inner_mode. */
7724 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7725 r, inner_mode);
7726 if (new)
7727 return new;
7728 else
7729 SUBST (XEXP (x, 0), r);
7730 }
7731
7732 return x;
7733 }
1a26b032
RK
7734
7735 fmt = GET_RTX_FORMAT (code);
7736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7737 {
7738 if (fmt[i] == 'e')
7739 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7740 else if (fmt[i] == 'E')
7741 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7742 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7743 cond, reg, val));
7744 }
7745
7746 return x;
7747}
7748\f
e11fa86f
RK
7749/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7750 assignment as a field assignment. */
7751
7752static int
79a490a9 7753rtx_equal_for_field_assignment_p (rtx x, rtx y)
e11fa86f 7754{
e11fa86f
RK
7755 if (x == y || rtx_equal_p (x, y))
7756 return 1;
7757
7758 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7759 return 0;
7760
7761 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7762 Note that all SUBREGs of MEM are paradoxical; otherwise they
7763 would have been rewritten. */
3c0cb5de
JQ
7764 if (MEM_P (x) && GET_CODE (y) == SUBREG
7765 && MEM_P (SUBREG_REG (y))
e11fa86f 7766 && rtx_equal_p (SUBREG_REG (y),
4de249d9 7767 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
e11fa86f
RK
7768 return 1;
7769
3c0cb5de
JQ
7770 if (MEM_P (y) && GET_CODE (x) == SUBREG
7771 && MEM_P (SUBREG_REG (x))
e11fa86f 7772 && rtx_equal_p (SUBREG_REG (x),
4de249d9 7773 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
e11fa86f
RK
7774 return 1;
7775
9ec36da5
JL
7776 /* We used to see if get_last_value of X and Y were the same but that's
7777 not correct. In one direction, we'll cause the assignment to have
7778 the wrong destination and in the case, we'll import a register into this
7779 insn that might have already have been dead. So fail if none of the
7780 above cases are true. */
7781 return 0;
e11fa86f
RK
7782}
7783\f
230d793d
RS
7784/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7785 Return that assignment if so.
7786
7787 We only handle the most common cases. */
7788
7789static rtx
79a490a9 7790make_field_assignment (rtx x)
230d793d
RS
7791{
7792 rtx dest = SET_DEST (x);
7793 rtx src = SET_SRC (x);
dfbe1b2f 7794 rtx assign;
e11fa86f 7795 rtx rhs, lhs;
5f4f0e22 7796 HOST_WIDE_INT c1;
770ae6cc
RK
7797 HOST_WIDE_INT pos;
7798 unsigned HOST_WIDE_INT len;
dfbe1b2f
RK
7799 rtx other;
7800 enum machine_mode mode;
230d793d
RS
7801
7802 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7803 a clear of a one-bit field. We will have changed it to
7804 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7805 for a SUBREG. */
7806
7807 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7808 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7809 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
e11fa86f 7810 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7811 {
8999a12e 7812 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
230d793d 7813 1, 1, 1, 0);
76184def 7814 if (assign != 0)
38a448ca 7815 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
76184def 7816 return x;
230d793d
RS
7817 }
7818
7819 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7820 && subreg_lowpart_p (XEXP (src, 0))
663522cb 7821 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
230d793d
RS
7822 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7823 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
b9dc9cf1 7824 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
230d793d 7825 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
e11fa86f 7826 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7827 {
8999a12e 7828 assign = make_extraction (VOIDmode, dest, 0,
230d793d
RS
7829 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7830 1, 1, 1, 0);
76184def 7831 if (assign != 0)
38a448ca 7832 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
76184def 7833 return x;
230d793d
RS
7834 }
7835
9dd11dcb 7836 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
230d793d
RS
7837 one-bit field. */
7838 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7839 && XEXP (XEXP (src, 0), 0) == const1_rtx
e11fa86f 7840 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7841 {
8999a12e 7842 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
230d793d 7843 1, 1, 1, 0);
76184def 7844 if (assign != 0)
38a448ca 7845 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
76184def 7846 return x;
230d793d
RS
7847 }
7848
dfbe1b2f 7849 /* The other case we handle is assignments into a constant-position
9dd11dcb 7850 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
dfbe1b2f
RK
7851 a mask that has all one bits except for a group of zero bits and
7852 OTHER is known to have zeros where C1 has ones, this is such an
7853 assignment. Compute the position and length from C1. Shift OTHER
7854 to the appropriate position, force it to the required mode, and
7855 make the extraction. Check for the AND in both operands. */
7856
9dd11dcb 7857 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
e11fa86f
RK
7858 return x;
7859
7860 rhs = expand_compound_operation (XEXP (src, 0));
7861 lhs = expand_compound_operation (XEXP (src, 1));
7862
7863 if (GET_CODE (rhs) == AND
7864 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7865 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7866 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7867 else if (GET_CODE (lhs) == AND
7868 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7869 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7870 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
dfbe1b2f
RK
7871 else
7872 return x;
230d793d 7873
663522cb 7874 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
dfbe1b2f 7875 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
e5e809f4
JL
7876 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7877 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
dfbe1b2f 7878 return x;
230d793d 7879
5f4f0e22 7880 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
76184def
DE
7881 if (assign == 0)
7882 return x;
230d793d 7883
dfbe1b2f
RK
7884 /* The mode to use for the source is the mode of the assignment, or of
7885 what is inside a possible STRICT_LOW_PART. */
663522cb 7886 mode = (GET_CODE (assign) == STRICT_LOW_PART
dfbe1b2f 7887 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
230d793d 7888
dfbe1b2f
RK
7889 /* Shift OTHER right POS places and make it the source, restricting it
7890 to the proper length and mode. */
230d793d 7891
5f4f0e22
CH
7892 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7893 GET_MODE (src), other, pos),
6139ff20
RK
7894 mode,
7895 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
0345195a 7896 ? ~(unsigned HOST_WIDE_INT) 0
729a2125 7897 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
e3d616e3 7898 dest, 0);
230d793d 7899
6e814b8d
KH
7900 /* If SRC is masked by an AND that does not make a difference in
7901 the value being stored, strip it. */
7902 if (GET_CODE (assign) == ZERO_EXTRACT
7903 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7904 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7905 && GET_CODE (src) == AND
7906 && GET_CODE (XEXP (src, 1)) == CONST_INT
c5c15353 7907 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
6e814b8d
KH
7908 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7909 src = XEXP (src, 0);
7910
f1c6ba8b 7911 return gen_rtx_SET (VOIDmode, assign, src);
230d793d
RS
7912}
7913\f
7914/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7915 if so. */
7916
7917static rtx
79a490a9 7918apply_distributive_law (rtx x)
230d793d
RS
7919{
7920 enum rtx_code code = GET_CODE (x);
2981fafe 7921 enum rtx_code inner_code;
230d793d
RS
7922 rtx lhs, rhs, other;
7923 rtx tem;
230d793d 7924
2981fafe
RS
7925 /* Distributivity is not true for floating point as it can change the
7926 value. So we don't do it unless -funsafe-math-optimizations. */
7927 if (FLOAT_MODE_P (GET_MODE (x))
7928 && ! flag_unsafe_math_optimizations)
d8a8a4da
RS
7929 return x;
7930
230d793d
RS
7931 /* The outer operation can only be one of the following: */
7932 if (code != IOR && code != AND && code != XOR
7933 && code != PLUS && code != MINUS)
7934 return x;
7935
2981fafe
RS
7936 lhs = XEXP (x, 0);
7937 rhs = XEXP (x, 1);
230d793d 7938
0f41302f
MS
7939 /* If either operand is a primitive we can't do anything, so get out
7940 fast. */
ec8e098d 7941 if (OBJECT_P (lhs) || OBJECT_P (rhs))
230d793d
RS
7942 return x;
7943
7944 lhs = expand_compound_operation (lhs);
7945 rhs = expand_compound_operation (rhs);
7946 inner_code = GET_CODE (lhs);
7947 if (inner_code != GET_CODE (rhs))
7948 return x;
7949
7950 /* See if the inner and outer operations distribute. */
7951 switch (inner_code)
7952 {
7953 case LSHIFTRT:
7954 case ASHIFTRT:
7955 case AND:
7956 case IOR:
7957 /* These all distribute except over PLUS. */
7958 if (code == PLUS || code == MINUS)
7959 return x;
7960 break;
7961
7962 case MULT:
7963 if (code != PLUS && code != MINUS)
7964 return x;
7965 break;
7966
7967 case ASHIFT:
45620ed4 7968 /* This is also a multiply, so it distributes over everything. */
230d793d
RS
7969 break;
7970
7971 case SUBREG:
dfbe1b2f 7972 /* Non-paradoxical SUBREGs distributes over all operations, provided
ddef6bc7 7973 the inner modes and byte offsets are the same, this is an extraction
2b4bd1bc
JW
7974 of a low-order part, we don't convert an fp operation to int or
7975 vice versa, and we would not be converting a single-word
dfbe1b2f 7976 operation into a multi-word operation. The latter test is not
2b4bd1bc 7977 required, but it prevents generating unneeded multi-word operations.
dfbe1b2f
RK
7978 Some of the previous tests are redundant given the latter test, but
7979 are retained because they are required for correctness.
7980
7981 We produce the result slightly differently in this case. */
7982
7983 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
ddef6bc7 7984 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
dfbe1b2f 7985 || ! subreg_lowpart_p (lhs)
2b4bd1bc
JW
7986 || (GET_MODE_CLASS (GET_MODE (lhs))
7987 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
dfbe1b2f 7988 || (GET_MODE_SIZE (GET_MODE (lhs))
8af24e26 7989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
dfbe1b2f 7990 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
230d793d
RS
7991 return x;
7992
1999435c
PB
7993 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7994 SUBREG_REG (lhs), SUBREG_REG (rhs));
4de249d9 7995 return gen_lowpart (GET_MODE (x), tem);
230d793d
RS
7996
7997 default:
7998 return x;
7999 }
8000
8001 /* Set LHS and RHS to the inner operands (A and B in the example
8002 above) and set OTHER to the common operand (C in the example).
ec8e098d 8003 There is only one way to do this unless the inner operation is
230d793d 8004 commutative. */
ec8e098d 8005 if (COMMUTATIVE_ARITH_P (lhs)
230d793d
RS
8006 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8007 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
ec8e098d 8008 else if (COMMUTATIVE_ARITH_P (lhs)
230d793d
RS
8009 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8010 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
ec8e098d 8011 else if (COMMUTATIVE_ARITH_P (lhs)
230d793d
RS
8012 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8013 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8014 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8015 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8016 else
8017 return x;
8018
8019 /* Form the new inner operation, seeing if it simplifies first. */
1999435c 8020 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
230d793d
RS
8021
8022 /* There is one exception to the general way of distributing:
a0209ac2 8023 (a | c) ^ (b | c) -> (a ^ b) & ~c */
230d793d
RS
8024 if (code == XOR && inner_code == IOR)
8025 {
8026 inner_code = AND;
f1c6ba8b 8027 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
230d793d
RS
8028 }
8029
8030 /* We may be able to continuing distributing the result, so call
8031 ourselves recursively on the inner operation before forming the
8032 outer operation, which we return. */
1999435c
PB
8033 return gen_binary (inner_code, GET_MODE (x),
8034 apply_distributive_law (tem), other);
230d793d
RS
8035}
8036\f
8037/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8038 in MODE.
8039
8040 Return an equivalent form, if different from X. Otherwise, return X. If
8041 X is zero, we are to always construct the equivalent form. */
8042
8043static rtx
79a490a9
AJ
8044simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8045 unsigned HOST_WIDE_INT constop)
230d793d 8046{
951553af 8047 unsigned HOST_WIDE_INT nonzero;
42301240 8048 int i;
230d793d 8049
6139ff20 8050 /* Simplify VAROP knowing that we will be only looking at some of the
8bc52806
JL
8051 bits in it.
8052
8053 Note by passing in CONSTOP, we guarantee that the bits not set in
8054 CONSTOP are not significant and will never be examined. We must
8055 ensure that is the case by explicitly masking out those bits
8056 before returning. */
e3d616e3 8057 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
230d793d 8058
8bc52806
JL
8059 /* If VAROP is a CLOBBER, we will fail so return it. */
8060 if (GET_CODE (varop) == CLOBBER)
6139ff20 8061 return varop;
230d793d 8062
8bc52806
JL
8063 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8064 to VAROP and return the new constant. */
8065 if (GET_CODE (varop) == CONST_INT)
8066 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8067
fc06d7aa
RK
8068 /* See what bits may be nonzero in VAROP. Unlike the general case of
8069 a call to nonzero_bits, here we don't care about bits outside
8070 MODE. */
8071
8072 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9fa6d012 8073
230d793d 8074 /* Turn off all bits in the constant that are known to already be zero.
951553af 8075 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
230d793d
RS
8076 which is tested below. */
8077
951553af 8078 constop &= nonzero;
230d793d
RS
8079
8080 /* If we don't have any bits left, return zero. */
8081 if (constop == 0)
8082 return const0_rtx;
8083
42301240 8084 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
e0a2f705 8085 a power of two, we can replace this with an ASHIFT. */
42301240
RK
8086 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8087 && (i = exact_log2 (constop)) >= 0)
8088 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
663522cb 8089
6139ff20
RK
8090 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8091 or XOR, then try to apply the distributive law. This may eliminate
8092 operations if either branch can be simplified because of the AND.
8093 It may also make some cases more complex, but those cases probably
8094 won't match a pattern either with or without this. */
8095
8096 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8097 return
4de249d9 8098 gen_lowpart
6139ff20
RK
8099 (mode,
8100 apply_distributive_law
1999435c
PB
8101 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8102 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8103 XEXP (varop, 0), constop),
8104 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8105 XEXP (varop, 1), constop))));
6139ff20 8106
8deb7514
RH
8107 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8108 the AND and see if one of the operands simplifies to zero. If so, we
8109 may eliminate it. */
8110
8111 if (GET_CODE (varop) == PLUS
8112 && exact_log2 (constop + 1) >= 0)
8113 {
8114 rtx o0, o1;
8115
8116 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8117 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8118 if (o0 == const0_rtx)
8119 return o1;
8120 if (o1 == const0_rtx)
8121 return o0;
8122 }
8123
230d793d
RS
8124 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8125 if we already had one (just check for the simplest cases). */
8126 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8127 && GET_MODE (XEXP (x, 0)) == mode
8128 && SUBREG_REG (XEXP (x, 0)) == varop)
8129 varop = XEXP (x, 0);
8130 else
4de249d9 8131 varop = gen_lowpart (mode, varop);
230d793d 8132
0f41302f 8133 /* If we can't make the SUBREG, try to return what we were given. */
230d793d
RS
8134 if (GET_CODE (varop) == CLOBBER)
8135 return x ? x : varop;
8136
8137 /* If we are only masking insignificant bits, return VAROP. */
951553af 8138 if (constop == nonzero)
230d793d 8139 x = varop;
230d793d
RS
8140 else
8141 {
d0c9db30 8142 /* Otherwise, return an AND. */
3b5708e7 8143 constop = trunc_int_for_mode (constop, mode);
d0c9db30
AM
8144 /* See how much, if any, of X we can use. */
8145 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
1999435c 8146 x = gen_binary (AND, mode, varop, GEN_INT (constop));
230d793d 8147
d0c9db30
AM
8148 else
8149 {
8150 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8151 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8152 SUBST (XEXP (x, 1), GEN_INT (constop));
8153
8154 SUBST (XEXP (x, 0), varop);
8155 }
230d793d
RS
8156 }
8157
8158 return x;
8159}
8160\f
2f93eea8 8161/* Given a REG, X, compute which bits in X can be nonzero.
230d793d
RS
8162 We don't care about bits outside of those defined in MODE.
8163
8164 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8165 a shift, AND, or zero_extract, we can do better. */
8166
2f93eea8
PB
8167static rtx
8168reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8169 rtx known_x ATTRIBUTE_UNUSED,
8170 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8171 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8172 unsigned HOST_WIDE_INT *nonzero)
230d793d 8173{
230d793d
RS
8174 rtx tem;
8175
2f93eea8
PB
8176 /* If X is a register whose nonzero bits value is current, use it.
8177 Otherwise, if X is a register whose value we can find, use that
8178 value. Otherwise, use the previously-computed global nonzero bits
8179 for this register. */
8180
8181 if (reg_stat[REGNO (x)].last_set_value != 0
8182 && (reg_stat[REGNO (x)].last_set_mode == mode
8183 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8184 && GET_MODE_CLASS (mode) == MODE_INT))
8185 && (reg_stat[REGNO (x)].last_set_label == label_tick
8186 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8187 && REG_N_SETS (REGNO (x)) == 1
8188 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8189 REGNO (x))))
8190 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
230d793d 8191 {
2f93eea8
PB
8192 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8193 return NULL;
230d793d
RS
8194 }
8195
2f93eea8 8196 tem = get_last_value (x);
230d793d 8197
2f93eea8 8198 if (tem)
0840fd91 8199 {
9afa3d54 8200#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
2f93eea8
PB
8201 /* If X is narrower than MODE and TEM is a non-negative
8202 constant that would appear negative in the mode of X,
8203 sign-extend it for use in reg_nonzero_bits because some
8204 machines (maybe most) will actually do the sign-extension
8205 and this is the conservative approach.
8206
8207 ??? For 2.5, try to tighten up the MD files in this regard
8208 instead of this kludge. */
8209
8210 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8211 && GET_CODE (tem) == CONST_INT
8212 && INTVAL (tem) > 0
8213 && 0 != (INTVAL (tem)
8214 & ((HOST_WIDE_INT) 1
8215 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8216 tem = GEN_INT (INTVAL (tem)
8217 | ((HOST_WIDE_INT) (-1)
8218 << GET_MODE_BITSIZE (GET_MODE (x))));
230d793d 8219#endif
2f93eea8 8220 return tem;
230d793d 8221 }
2f93eea8 8222 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8fd73754 8223 {
2f93eea8 8224 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8fd73754 8225
2f93eea8
PB
8226 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8227 /* We don't know anything about the upper bits. */
8228 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8229 *nonzero &= mask;
8fd73754
AN
8230 }
8231
2f93eea8 8232 return NULL;
8fd73754
AN
8233}
8234
d0ab8cd3 8235/* Return the number of bits at the high-order end of X that are known to
5109d49f
RK
8236 be equal to the sign bit. X will be used in mode MODE; if MODE is
8237 VOIDmode, X will be used in its own mode. The returned value will always
8238 be between 1 and the number of bits in MODE. */
d0ab8cd3 8239
2f93eea8
PB
8240static rtx
8241reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8242 rtx known_x ATTRIBUTE_UNUSED,
8243 enum machine_mode known_mode
8244 ATTRIBUTE_UNUSED,
8245 unsigned int known_ret ATTRIBUTE_UNUSED,
8246 unsigned int *result)
d0ab8cd3 8247{
d0ab8cd3
RK
8248 rtx tem;
8249
2f93eea8
PB
8250 if (reg_stat[REGNO (x)].last_set_value != 0
8251 && reg_stat[REGNO (x)].last_set_mode == mode
8252 && (reg_stat[REGNO (x)].last_set_label == label_tick
8253 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8254 && REG_N_SETS (REGNO (x)) == 1
8255 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8256 REGNO (x))))
8257 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
770ae6cc 8258 {
2f93eea8
PB
8259 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8260 return NULL;
d0ab8cd3
RK
8261 }
8262
2f93eea8
PB
8263 tem = get_last_value (x);
8264 if (tem != 0)
8265 return tem;
d0ab8cd3 8266
2f93eea8
PB
8267 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8268 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8269 *result = reg_stat[REGNO (x)].sign_bit_copies;
8270
8271 return NULL;
d0ab8cd3
RK
8272}
8273\f
1a26b032
RK
8274/* Return the number of "extended" bits there are in X, when interpreted
8275 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8276 unsigned quantities, this is the number of high-order zero bits.
8277 For signed quantities, this is the number of copies of the sign bit
8278 minus 1. In both case, this function returns the number of "spare"
8279 bits. For example, if two quantities for which this function returns
8280 at least 1 are added, the addition is known not to overflow.
8281
8282 This function will always return 0 unless called during combine, which
8283 implies that it must be called from a define_split. */
8284
770ae6cc 8285unsigned int
79a490a9 8286extended_count (rtx x, enum machine_mode mode, int unsignedp)
1a26b032 8287{
951553af 8288 if (nonzero_sign_valid == 0)
1a26b032
RK
8289 return 0;
8290
8291 return (unsignedp
ac49a949 8292 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
26c34780
RS
8293 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8294 - floor_log2 (nonzero_bits (x, mode)))
770ae6cc 8295 : 0)
1a26b032
RK
8296 : num_sign_bit_copies (x, mode) - 1);
8297}
8298\f
230d793d
RS
8299/* This function is called from `simplify_shift_const' to merge two
8300 outer operations. Specifically, we have already found that we need
8301 to perform operation *POP0 with constant *PCONST0 at the outermost
8302 position. We would now like to also perform OP1 with constant CONST1
8303 (with *POP0 being done last).
8304
8305 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
663522cb 8306 the resulting operation. *PCOMP_P is set to 1 if we would need to
230d793d
RS
8307 complement the innermost operand, otherwise it is unchanged.
8308
8309 MODE is the mode in which the operation will be done. No bits outside
8310 the width of this mode matter. It is assumed that the width of this mode
5f4f0e22 8311 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
230d793d 8312
f822d252 8313 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
230d793d
RS
8314 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8315 result is simply *PCONST0.
8316
8317 If the resulting operation cannot be expressed as one operation, we
8318 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8319
8320static int
79a490a9 8321merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
230d793d
RS
8322{
8323 enum rtx_code op0 = *pop0;
5f4f0e22 8324 HOST_WIDE_INT const0 = *pconst0;
230d793d
RS
8325
8326 const0 &= GET_MODE_MASK (mode);
8327 const1 &= GET_MODE_MASK (mode);
8328
8329 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8330 if (op0 == AND)
8331 const1 &= const0;
8332
f822d252 8333 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
230d793d
RS
8334 if OP0 is SET. */
8335
f822d252 8336 if (op1 == UNKNOWN || op0 == SET)
230d793d
RS
8337 return 1;
8338
f822d252 8339 else if (op0 == UNKNOWN)
230d793d
RS
8340 op0 = op1, const0 = const1;
8341
8342 else if (op0 == op1)
8343 {
8344 switch (op0)
8345 {
8346 case AND:
8347 const0 &= const1;
8348 break;
8349 case IOR:
8350 const0 |= const1;
8351 break;
8352 case XOR:
8353 const0 ^= const1;
8354 break;
8355 case PLUS:
8356 const0 += const1;
8357 break;
8358 case NEG:
f822d252 8359 op0 = UNKNOWN;
230d793d 8360 break;
e9a25f70
JL
8361 default:
8362 break;
230d793d
RS
8363 }
8364 }
8365
8366 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8367 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8368 return 0;
8369
8370 /* If the two constants aren't the same, we can't do anything. The
8371 remaining six cases can all be done. */
8372 else if (const0 != const1)
8373 return 0;
8374
8375 else
8376 switch (op0)
8377 {
8378 case IOR:
8379 if (op1 == AND)
8380 /* (a & b) | b == b */
8381 op0 = SET;
8382 else /* op1 == XOR */
8383 /* (a ^ b) | b == a | b */
b729186a 8384 {;}
230d793d
RS
8385 break;
8386
8387 case XOR:
8388 if (op1 == AND)
8389 /* (a & b) ^ b == (~a) & b */
8390 op0 = AND, *pcomp_p = 1;
8391 else /* op1 == IOR */
8392 /* (a | b) ^ b == a & ~b */
7d4444ea 8393 op0 = AND, const0 = ~const0;
230d793d
RS
8394 break;
8395
8396 case AND:
8397 if (op1 == IOR)
8398 /* (a | b) & b == b */
8399 op0 = SET;
8400 else /* op1 == XOR */
8401 /* (a ^ b) & b) == (~a) & b */
8402 *pcomp_p = 1;
8403 break;
e9a25f70
JL
8404 default:
8405 break;
230d793d
RS
8406 }
8407
8408 /* Check for NO-OP cases. */
8409 const0 &= GET_MODE_MASK (mode);
8410 if (const0 == 0
8411 && (op0 == IOR || op0 == XOR || op0 == PLUS))
f822d252 8412 op0 = UNKNOWN;
230d793d
RS
8413 else if (const0 == 0 && op0 == AND)
8414 op0 = SET;
e51712db
KG
8415 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8416 && op0 == AND)
f822d252 8417 op0 = UNKNOWN;
230d793d 8418
7e4ce834
RH
8419 /* ??? Slightly redundant with the above mask, but not entirely.
8420 Moving this above means we'd have to sign-extend the mode mask
8421 for the final test. */
8422 const0 = trunc_int_for_mode (const0, mode);
9fa6d012 8423
230d793d
RS
8424 *pop0 = op0;
8425 *pconst0 = const0;
8426
8427 return 1;
8428}
8429\f
8430/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
da7d8304 8431 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
230d793d
RS
8432 that we started with.
8433
8434 The shift is normally computed in the widest mode we find in VAROP, as
8435 long as it isn't a different number of words than RESULT_MODE. Exceptions
8436 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8437
8438static rtx
79a490a9
AJ
8439simplify_shift_const (rtx x, enum rtx_code code,
8440 enum machine_mode result_mode, rtx varop,
8441 int orig_count)
230d793d
RS
8442{
8443 enum rtx_code orig_code = code;
770ae6cc
RK
8444 unsigned int count;
8445 int signed_count;
230d793d
RS
8446 enum machine_mode mode = result_mode;
8447 enum machine_mode shift_mode, tmode;
770ae6cc 8448 unsigned int mode_words
230d793d
RS
8449 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8450 /* We form (outer_op (code varop count) (outer_const)). */
f822d252 8451 enum rtx_code outer_op = UNKNOWN;
c4e861e8 8452 HOST_WIDE_INT outer_const = 0;
230d793d
RS
8453 rtx const_rtx;
8454 int complement_p = 0;
8455 rtx new;
8456
0051b6ca
RH
8457 /* Make sure and truncate the "natural" shift on the way in. We don't
8458 want to do this inside the loop as it makes it more difficult to
8459 combine shifts. */
0051b6ca
RH
8460 if (SHIFT_COUNT_TRUNCATED)
8461 orig_count &= GET_MODE_BITSIZE (mode) - 1;
0051b6ca 8462
230d793d
RS
8463 /* If we were given an invalid count, don't do anything except exactly
8464 what was requested. */
8465
0051b6ca 8466 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
230d793d
RS
8467 {
8468 if (x)
8469 return x;
8470
0051b6ca 8471 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
230d793d
RS
8472 }
8473
0051b6ca 8474 count = orig_count;
853d8828 8475
230d793d
RS
8476 /* Unless one of the branches of the `if' in this loop does a `continue',
8477 we will `break' the loop after the `if'. */
8478
8479 while (count != 0)
8480 {
8481 /* If we have an operand of (clobber (const_int 0)), just return that
8482 value. */
8483 if (GET_CODE (varop) == CLOBBER)
8484 return varop;
8485
8486 /* If we discovered we had to complement VAROP, leave. Making a NOT
8487 here would cause an infinite loop. */
8488 if (complement_p)
8489 break;
8490
abc95ed3 8491 /* Convert ROTATERT to ROTATE. */
230d793d 8492 if (code == ROTATERT)
ad9df12f
IS
8493 {
8494 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8495 code = ROTATE;
8496 if (VECTOR_MODE_P (result_mode))
8497 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8498 else
8499 count = bitsize - count;
8500 }
230d793d 8501
230d793d 8502 /* We need to determine what mode we will do the shift in. If the
f6789c77
RK
8503 shift is a right shift or a ROTATE, we must always do it in the mode
8504 it was originally done in. Otherwise, we can do it in MODE, the
0f41302f 8505 widest mode encountered. */
f6789c77
RK
8506 shift_mode
8507 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8508 ? result_mode : mode);
230d793d
RS
8509
8510 /* Handle cases where the count is greater than the size of the mode
853d8828
RH
8511 minus 1. For ASHIFT, use the size minus one as the count (this can
8512 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8513 take the count modulo the size. For other shifts, the result is
8514 zero.
230d793d
RS
8515
8516 Since these shifts are being produced by the compiler by combining
8517 multiple operations, each of which are defined, we know what the
8518 result is supposed to be. */
663522cb 8519
26c34780 8520 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
230d793d
RS
8521 {
8522 if (code == ASHIFTRT)
8523 count = GET_MODE_BITSIZE (shift_mode) - 1;
8524 else if (code == ROTATE || code == ROTATERT)
8525 count %= GET_MODE_BITSIZE (shift_mode);
8526 else
8527 {
8528 /* We can't simply return zero because there may be an
8529 outer op. */
8530 varop = const0_rtx;
8531 count = 0;
8532 break;
8533 }
8534 }
8535
312def2e
RK
8536 /* An arithmetic right shift of a quantity known to be -1 or 0
8537 is a no-op. */
8538 if (code == ASHIFTRT
8539 && (num_sign_bit_copies (varop, shift_mode)
8540 == GET_MODE_BITSIZE (shift_mode)))
d0ab8cd3 8541 {
312def2e
RK
8542 count = 0;
8543 break;
8544 }
d0ab8cd3 8545
312def2e
RK
8546 /* If we are doing an arithmetic right shift and discarding all but
8547 the sign bit copies, this is equivalent to doing a shift by the
8548 bitsize minus one. Convert it into that shift because it will often
8549 allow other simplifications. */
500c518b 8550
312def2e
RK
8551 if (code == ASHIFTRT
8552 && (count + num_sign_bit_copies (varop, shift_mode)
8553 >= GET_MODE_BITSIZE (shift_mode)))
8554 count = GET_MODE_BITSIZE (shift_mode) - 1;
500c518b 8555
230d793d
RS
8556 /* We simplify the tests below and elsewhere by converting
8557 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
e0a2f705
KH
8558 `make_compound_operation' will convert it to an ASHIFTRT for
8559 those machines (such as VAX) that don't have an LSHIFTRT. */
5f4f0e22 8560 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
230d793d 8561 && code == ASHIFTRT
951553af 8562 && ((nonzero_bits (varop, shift_mode)
5f4f0e22
CH
8563 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8564 == 0))
230d793d
RS
8565 code = LSHIFTRT;
8566
b9422b69
JH
8567 if (code == LSHIFTRT
8568 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8569 && !(nonzero_bits (varop, shift_mode) >> count))
2d21f7d6 8570 varop = const0_rtx;
b9422b69
JH
8571 if (code == ASHIFT
8572 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8573 && !((nonzero_bits (varop, shift_mode) << count)
8574 & GET_MODE_MASK (shift_mode)))
2d21f7d6 8575 varop = const0_rtx;
b9422b69 8576
230d793d
RS
8577 switch (GET_CODE (varop))
8578 {
8579 case SIGN_EXTEND:
8580 case ZERO_EXTEND:
8581 case SIGN_EXTRACT:
8582 case ZERO_EXTRACT:
8583 new = expand_compound_operation (varop);
8584 if (new != varop)
8585 {
8586 varop = new;
8587 continue;
8588 }
8589 break;
8590
8591 case MEM:
8592 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8593 minus the width of a smaller mode, we can do this with a
8594 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8595 if ((code == ASHIFTRT || code == LSHIFTRT)
8596 && ! mode_dependent_address_p (XEXP (varop, 0))
8597 && ! MEM_VOLATILE_P (varop)
8598 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8599 MODE_INT, 1)) != BLKmode)
8600 {
f1ec5147
RK
8601 new = adjust_address_nv (varop, tmode,
8602 BYTES_BIG_ENDIAN ? 0
8603 : count / BITS_PER_UNIT);
bf49b139 8604
f1c6ba8b
RK
8605 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8606 : ZERO_EXTEND, mode, new);
230d793d
RS
8607 count = 0;
8608 continue;
8609 }
8610 break;
8611
8612 case USE:
8613 /* Similar to the case above, except that we can only do this if
8614 the resulting mode is the same as that of the underlying
8615 MEM and adjust the address depending on the *bits* endianness
8616 because of the way that bit-field extract insns are defined. */
8617 if ((code == ASHIFTRT || code == LSHIFTRT)
8618 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8619 MODE_INT, 1)) != BLKmode
8620 && tmode == GET_MODE (XEXP (varop, 0)))
8621 {
f76b9db2
ILT
8622 if (BITS_BIG_ENDIAN)
8623 new = XEXP (varop, 0);
8624 else
8625 {
8626 new = copy_rtx (XEXP (varop, 0));
663522cb 8627 SUBST (XEXP (new, 0),
f76b9db2
ILT
8628 plus_constant (XEXP (new, 0),
8629 count / BITS_PER_UNIT));
8630 }
230d793d 8631
f1c6ba8b
RK
8632 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8633 : ZERO_EXTEND, mode, new);
230d793d
RS
8634 count = 0;
8635 continue;
8636 }
8637 break;
8638
8639 case SUBREG:
8640 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8641 the same number of words as what we've seen so far. Then store
8642 the widest mode in MODE. */
f9e67232
RS
8643 if (subreg_lowpart_p (varop)
8644 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8645 > GET_MODE_SIZE (GET_MODE (varop)))
26c34780
RS
8646 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8647 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8648 == mode_words)
230d793d
RS
8649 {
8650 varop = SUBREG_REG (varop);
8651 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8652 mode = GET_MODE (varop);
8653 continue;
8654 }
8655 break;
8656
8657 case MULT:
8658 /* Some machines use MULT instead of ASHIFT because MULT
8659 is cheaper. But it is still better on those machines to
8660 merge two shifts into one. */
8661 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8662 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8663 {
770ae6cc 8664 varop
1999435c
PB
8665 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8666 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
230d793d
RS
8667 continue;
8668 }
8669 break;
8670
8671 case UDIV:
8672 /* Similar, for when divides are cheaper. */
8673 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8674 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8675 {
770ae6cc 8676 varop
1999435c
PB
8677 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8678 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
230d793d
RS
8679 continue;
8680 }
8681 break;
8682
8683 case ASHIFTRT:
8f8d8d6e
AO
8684 /* If we are extracting just the sign bit of an arithmetic
8685 right shift, that shift is not needed. However, the sign
8686 bit of a wider mode may be different from what would be
8687 interpreted as the sign bit in a narrower mode, so, if
8688 the result is narrower, don't discard the shift. */
26c34780
RS
8689 if (code == LSHIFTRT
8690 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8f8d8d6e
AO
8691 && (GET_MODE_BITSIZE (result_mode)
8692 >= GET_MODE_BITSIZE (GET_MODE (varop))))
230d793d
RS
8693 {
8694 varop = XEXP (varop, 0);
8695 continue;
8696 }
8697
0f41302f 8698 /* ... fall through ... */
230d793d
RS
8699
8700 case LSHIFTRT:
8701 case ASHIFT:
230d793d
RS
8702 case ROTATE:
8703 /* Here we have two nested shifts. The result is usually the
8704 AND of a new shift with a mask. We compute the result below. */
8705 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8706 && INTVAL (XEXP (varop, 1)) >= 0
8707 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
5f4f0e22
CH
8708 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8709 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
230d793d
RS
8710 {
8711 enum rtx_code first_code = GET_CODE (varop);
770ae6cc 8712 unsigned int first_count = INTVAL (XEXP (varop, 1));
5f4f0e22 8713 unsigned HOST_WIDE_INT mask;
230d793d 8714 rtx mask_rtx;
230d793d 8715
230d793d
RS
8716 /* We have one common special case. We can't do any merging if
8717 the inner code is an ASHIFTRT of a smaller mode. However, if
8718 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8719 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8720 we can convert it to
8721 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8722 This simplifies certain SIGN_EXTEND operations. */
8723 if (code == ASHIFT && first_code == ASHIFTRT
26c34780
RS
8724 && count == (unsigned int)
8725 (GET_MODE_BITSIZE (result_mode)
8726 - GET_MODE_BITSIZE (GET_MODE (varop))))
230d793d
RS
8727 {
8728 /* C3 has the low-order C1 bits zero. */
663522cb 8729
5f4f0e22 8730 mask = (GET_MODE_MASK (mode)
663522cb 8731 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
230d793d 8732
5f4f0e22 8733 varop = simplify_and_const_int (NULL_RTX, result_mode,
230d793d 8734 XEXP (varop, 0), mask);
5f4f0e22 8735 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
230d793d
RS
8736 varop, count);
8737 count = first_count;
8738 code = ASHIFTRT;
8739 continue;
8740 }
663522cb 8741
d0ab8cd3
RK
8742 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8743 than C1 high-order bits equal to the sign bit, we can convert
e0a2f705 8744 this to either an ASHIFT or an ASHIFTRT depending on the
663522cb 8745 two counts.
230d793d
RS
8746
8747 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8748
8749 if (code == ASHIFTRT && first_code == ASHIFT
8750 && GET_MODE (varop) == shift_mode
d0ab8cd3
RK
8751 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8752 > first_count))
230d793d 8753 {
d0ab8cd3 8754 varop = XEXP (varop, 0);
770ae6cc
RK
8755
8756 signed_count = count - first_count;
8757 if (signed_count < 0)
663522cb 8758 count = -signed_count, code = ASHIFT;
770ae6cc
RK
8759 else
8760 count = signed_count;
8761
d0ab8cd3 8762 continue;
230d793d
RS
8763 }
8764
8765 /* There are some cases we can't do. If CODE is ASHIFTRT,
8766 we can only do this if FIRST_CODE is also ASHIFTRT.
8767
8768 We can't do the case when CODE is ROTATE and FIRST_CODE is
8769 ASHIFTRT.
8770
8771 If the mode of this shift is not the mode of the outer shift,
bdaae9a0 8772 we can't do this if either shift is a right shift or ROTATE.
230d793d
RS
8773
8774 Finally, we can't do any of these if the mode is too wide
8775 unless the codes are the same.
8776
8777 Handle the case where the shift codes are the same
8778 first. */
8779
8780 if (code == first_code)
8781 {
8782 if (GET_MODE (varop) != result_mode
bdaae9a0
RK
8783 && (code == ASHIFTRT || code == LSHIFTRT
8784 || code == ROTATE))
230d793d
RS
8785 break;
8786
8787 count += first_count;
8788 varop = XEXP (varop, 0);
8789 continue;
8790 }
8791
8792 if (code == ASHIFTRT
8793 || (code == ROTATE && first_code == ASHIFTRT)
5f4f0e22 8794 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
230d793d 8795 || (GET_MODE (varop) != result_mode
bdaae9a0
RK
8796 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8797 || first_code == ROTATE
230d793d
RS
8798 || code == ROTATE)))
8799 break;
8800
8801 /* To compute the mask to apply after the shift, shift the
663522cb 8802 nonzero bits of the inner shift the same way the
230d793d
RS
8803 outer shift will. */
8804
951553af 8805 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
230d793d
RS
8806
8807 mask_rtx
8808 = simplify_binary_operation (code, result_mode, mask_rtx,
5f4f0e22 8809 GEN_INT (count));
663522cb 8810
230d793d
RS
8811 /* Give up if we can't compute an outer operation to use. */
8812 if (mask_rtx == 0
8813 || GET_CODE (mask_rtx) != CONST_INT
8814 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8815 INTVAL (mask_rtx),
8816 result_mode, &complement_p))
8817 break;
8818
8819 /* If the shifts are in the same direction, we add the
8820 counts. Otherwise, we subtract them. */
770ae6cc 8821 signed_count = count;
230d793d
RS
8822 if ((code == ASHIFTRT || code == LSHIFTRT)
8823 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
770ae6cc 8824 signed_count += first_count;
230d793d 8825 else
770ae6cc 8826 signed_count -= first_count;
230d793d 8827
663522cb 8828 /* If COUNT is positive, the new shift is usually CODE,
230d793d
RS
8829 except for the two exceptions below, in which case it is
8830 FIRST_CODE. If the count is negative, FIRST_CODE should
8831 always be used */
770ae6cc 8832 if (signed_count > 0
230d793d
RS
8833 && ((first_code == ROTATE && code == ASHIFT)
8834 || (first_code == ASHIFTRT && code == LSHIFTRT)))
770ae6cc
RK
8835 code = first_code, count = signed_count;
8836 else if (signed_count < 0)
663522cb 8837 code = first_code, count = -signed_count;
770ae6cc
RK
8838 else
8839 count = signed_count;
230d793d
RS
8840
8841 varop = XEXP (varop, 0);
8842 continue;
8843 }
8844
8845 /* If we have (A << B << C) for any shift, we can convert this to
8846 (A << C << B). This wins if A is a constant. Only try this if
8847 B is not a constant. */
8848
8849 else if (GET_CODE (varop) == code
8850 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8851 && 0 != (new
8852 = simplify_binary_operation (code, mode,
8853 XEXP (varop, 0),
5f4f0e22 8854 GEN_INT (count))))
230d793d 8855 {
f1c6ba8b 8856 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
230d793d
RS
8857 count = 0;
8858 continue;
8859 }
8860 break;
8861
8862 case NOT:
8863 /* Make this fit the case below. */
f1c6ba8b
RK
8864 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8865 GEN_INT (GET_MODE_MASK (mode)));
230d793d
RS
8866 continue;
8867
8868 case IOR:
8869 case AND:
8870 case XOR:
8871 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8872 with C the size of VAROP - 1 and the shift is logical if
8873 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8874 we have an (le X 0) operation. If we have an arithmetic shift
8875 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8876 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8877
8878 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8879 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8880 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8881 && (code == LSHIFTRT || code == ASHIFTRT)
26c34780
RS
8882 && count == (unsigned int)
8883 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
230d793d
RS
8884 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8885 {
8886 count = 0;
f1c6ba8b
RK
8887 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8888 const0_rtx);
230d793d
RS
8889
8890 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
f1c6ba8b 8891 varop = gen_rtx_NEG (GET_MODE (varop), varop);
230d793d
RS
8892
8893 continue;
8894 }
8895
8896 /* If we have (shift (logical)), move the logical to the outside
8897 to allow it to possibly combine with another logical and the
8898 shift to combine with another shift. This also canonicalizes to
8899 what a ZERO_EXTRACT looks like. Also, some machines have
8900 (and (shift)) insns. */
8901
8902 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
39a44a4e
RK
8903 /* We can't do this if we have (ashiftrt (xor)) and the
8904 constant has its sign bit set in shift_mode. */
8905 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8906 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8907 shift_mode))
230d793d
RS
8908 && (new = simplify_binary_operation (code, result_mode,
8909 XEXP (varop, 1),
5f4f0e22 8910 GEN_INT (count))) != 0
663522cb 8911 && GET_CODE (new) == CONST_INT
230d793d
RS
8912 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8913 INTVAL (new), result_mode, &complement_p))
8914 {
8915 varop = XEXP (varop, 0);
8916 continue;
8917 }
8918
8919 /* If we can't do that, try to simplify the shift in each arm of the
8920 logical expression, make a new logical expression, and apply
39a44a4e
RK
8921 the inverse distributive law. This also can't be done
8922 for some (ashiftrt (xor)). */
446f52f4
GS
8923 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8924 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8925 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8926 shift_mode)))
39a44a4e
RK
8927 {
8928 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8929 XEXP (varop, 0), count);
8930 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8931 XEXP (varop, 1), count);
230d793d 8932
1999435c 8933 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
39a44a4e 8934 varop = apply_distributive_law (varop);
230d793d 8935
39a44a4e 8936 count = 0;
446f52f4 8937 continue;
39a44a4e 8938 }
230d793d
RS
8939 break;
8940
8941 case EQ:
beb235f8 8942 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
230d793d 8943 says that the sign bit can be tested, FOO has mode MODE, C is
45620ed4
RK
8944 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8945 that may be nonzero. */
8946 if (code == LSHIFTRT
230d793d
RS
8947 && XEXP (varop, 1) == const0_rtx
8948 && GET_MODE (XEXP (varop, 0)) == result_mode
26c34780 8949 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
5f4f0e22 8950 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
230d793d 8951 && ((STORE_FLAG_VALUE
663522cb 8952 & ((HOST_WIDE_INT) 1
770ae6cc 8953 < (GET_MODE_BITSIZE (result_mode) - 1))))
951553af 8954 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
5f4f0e22
CH
8955 && merge_outer_ops (&outer_op, &outer_const, XOR,
8956 (HOST_WIDE_INT) 1, result_mode,
8957 &complement_p))
230d793d
RS
8958 {
8959 varop = XEXP (varop, 0);
8960 count = 0;
8961 continue;
8962 }
8963 break;
8964
8965 case NEG:
d0ab8cd3
RK
8966 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8967 than the number of bits in the mode is equivalent to A. */
26c34780
RS
8968 if (code == LSHIFTRT
8969 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
951553af 8970 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
230d793d 8971 {
d0ab8cd3 8972 varop = XEXP (varop, 0);
230d793d
RS
8973 count = 0;
8974 continue;
8975 }
8976
8977 /* NEG commutes with ASHIFT since it is multiplication. Move the
8978 NEG outside to allow shifts to combine. */
8979 if (code == ASHIFT
5f4f0e22
CH
8980 && merge_outer_ops (&outer_op, &outer_const, NEG,
8981 (HOST_WIDE_INT) 0, result_mode,
8982 &complement_p))
230d793d
RS
8983 {
8984 varop = XEXP (varop, 0);
8985 continue;
8986 }
8987 break;
8988
8989 case PLUS:
d0ab8cd3
RK
8990 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8991 is one less than the number of bits in the mode is
8992 equivalent to (xor A 1). */
26c34780
RS
8993 if (code == LSHIFTRT
8994 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
230d793d 8995 && XEXP (varop, 1) == constm1_rtx
951553af 8996 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
5f4f0e22
CH
8997 && merge_outer_ops (&outer_op, &outer_const, XOR,
8998 (HOST_WIDE_INT) 1, result_mode,
8999 &complement_p))
230d793d
RS
9000 {
9001 count = 0;
9002 varop = XEXP (varop, 0);
9003 continue;
9004 }
9005
3f508eca 9006 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
951553af 9007 that might be nonzero in BAR are those being shifted out and those
3f508eca
RK
9008 bits are known zero in FOO, we can replace the PLUS with FOO.
9009 Similarly in the other operand order. This code occurs when
9010 we are computing the size of a variable-size array. */
9011
9012 if ((code == ASHIFTRT || code == LSHIFTRT)
5f4f0e22 9013 && count < HOST_BITS_PER_WIDE_INT
951553af
RK
9014 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9015 && (nonzero_bits (XEXP (varop, 1), result_mode)
9016 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
3f508eca
RK
9017 {
9018 varop = XEXP (varop, 0);
9019 continue;
9020 }
9021 else if ((code == ASHIFTRT || code == LSHIFTRT)
5f4f0e22 9022 && count < HOST_BITS_PER_WIDE_INT
ac49a949 9023 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
951553af 9024 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
3f508eca 9025 >> count)
951553af
RK
9026 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9027 & nonzero_bits (XEXP (varop, 1),
3f508eca
RK
9028 result_mode)))
9029 {
9030 varop = XEXP (varop, 1);
9031 continue;
9032 }
9033
230d793d
RS
9034 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9035 if (code == ASHIFT
9036 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9037 && (new = simplify_binary_operation (ASHIFT, result_mode,
9038 XEXP (varop, 1),
5f4f0e22 9039 GEN_INT (count))) != 0
770ae6cc 9040 && GET_CODE (new) == CONST_INT
230d793d
RS
9041 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9042 INTVAL (new), result_mode, &complement_p))
9043 {
9044 varop = XEXP (varop, 0);
9045 continue;
9046 }
b757b9f8
PH
9047
9048 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9049 signbit', and attempt to change the PLUS to an XOR and move it to
9050 the outer operation as is done above in the AND/IOR/XOR case
9051 leg for shift(logical). See details in logical handling above
471854f8 9052 for reasoning in doing so. */
b757b9f8
PH
9053 if (code == LSHIFTRT
9054 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9055 && mode_signbit_p (result_mode, XEXP (varop, 1))
9056 && (new = simplify_binary_operation (code, result_mode,
9057 XEXP (varop, 1),
9058 GEN_INT (count))) != 0
9059 && GET_CODE (new) == CONST_INT
9060 && merge_outer_ops (&outer_op, &outer_const, XOR,
9061 INTVAL (new), result_mode, &complement_p))
9062 {
9063 varop = XEXP (varop, 0);
9064 continue;
9065 }
9066
230d793d
RS
9067 break;
9068
9069 case MINUS:
9070 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9071 with C the size of VAROP - 1 and the shift is logical if
9072 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9073 we have a (gt X 0) operation. If the shift is arithmetic with
9074 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9075 we have a (neg (gt X 0)) operation. */
9076
0802d516
RK
9077 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9078 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
26c34780
RS
9079 && count == (unsigned int)
9080 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
230d793d
RS
9081 && (code == LSHIFTRT || code == ASHIFTRT)
9082 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
26c34780
RS
9083 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9084 == count
230d793d
RS
9085 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9086 {
9087 count = 0;
f1c6ba8b
RK
9088 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9089 const0_rtx);
230d793d
RS
9090
9091 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
f1c6ba8b 9092 varop = gen_rtx_NEG (GET_MODE (varop), varop);
230d793d
RS
9093
9094 continue;
9095 }
9096 break;
6e0ef100
JC
9097
9098 case TRUNCATE:
9099 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9100 if the truncate does not affect the value. */
9101 if (code == LSHIFTRT
9102 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9103 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9104 && (INTVAL (XEXP (XEXP (varop, 0), 1))
b577a8ff
JL
9105 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9106 - GET_MODE_BITSIZE (GET_MODE (varop)))))
6e0ef100
JC
9107 {
9108 rtx varop_inner = XEXP (varop, 0);
9109
770ae6cc 9110 varop_inner
f1c6ba8b
RK
9111 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9112 XEXP (varop_inner, 0),
9113 GEN_INT
9114 (count + INTVAL (XEXP (varop_inner, 1))));
9115 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
6e0ef100
JC
9116 count = 0;
9117 continue;
9118 }
9119 break;
663522cb 9120
e9a25f70
JL
9121 default:
9122 break;
230d793d
RS
9123 }
9124
9125 break;
9126 }
9127
9128 /* We need to determine what mode to do the shift in. If the shift is
f6789c77
RK
9129 a right shift or ROTATE, we must always do it in the mode it was
9130 originally done in. Otherwise, we can do it in MODE, the widest mode
9131 encountered. The code we care about is that of the shift that will
9132 actually be done, not the shift that was originally requested. */
9133 shift_mode
9134 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9135 ? result_mode : mode);
230d793d
RS
9136
9137 /* We have now finished analyzing the shift. The result should be
9138 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
f822d252 9139 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
230d793d
RS
9140 to the result of the shift. OUTER_CONST is the relevant constant,
9141 but we must turn off all bits turned off in the shift.
9142
9143 If we were passed a value for X, see if we can use any pieces of
9144 it. If not, make new rtx. */
9145
ec8e098d 9146 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
230d793d 9147 && GET_CODE (XEXP (x, 1)) == CONST_INT
26c34780 9148 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
230d793d
RS
9149 const_rtx = XEXP (x, 1);
9150 else
5f4f0e22 9151 const_rtx = GEN_INT (count);
230d793d
RS
9152
9153 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9154 && GET_MODE (XEXP (x, 0)) == shift_mode
9155 && SUBREG_REG (XEXP (x, 0)) == varop)
9156 varop = XEXP (x, 0);
9157 else if (GET_MODE (varop) != shift_mode)
4de249d9 9158 varop = gen_lowpart (shift_mode, varop);
230d793d 9159
0f41302f 9160 /* If we can't make the SUBREG, try to return what we were given. */
230d793d
RS
9161 if (GET_CODE (varop) == CLOBBER)
9162 return x ? x : varop;
9163
9164 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9165 if (new != 0)
9166 x = new;
9167 else
6c2d03d0 9168 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
230d793d 9169
224eeff2
RK
9170 /* If we have an outer operation and we just made a shift, it is
9171 possible that we could have simplified the shift were it not
9172 for the outer operation. So try to do the simplification
9173 recursively. */
9174
f822d252 9175 if (outer_op != UNKNOWN && GET_CODE (x) == code
224eeff2
RK
9176 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9177 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9178 INTVAL (XEXP (x, 1)));
9179
e0a2f705 9180 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
230d793d
RS
9181 turn off all the bits that the shift would have turned off. */
9182 if (orig_code == LSHIFTRT && result_mode != shift_mode)
5f4f0e22 9183 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
230d793d 9184 GET_MODE_MASK (result_mode) >> orig_count);
663522cb 9185
230d793d 9186 /* Do the remainder of the processing in RESULT_MODE. */
4de249d9 9187 x = gen_lowpart (result_mode, x);
230d793d
RS
9188
9189 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9190 operation. */
9191 if (complement_p)
e869aa39 9192 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
230d793d 9193
f822d252 9194 if (outer_op != UNKNOWN)
230d793d 9195 {
5f4f0e22 9196 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
7e4ce834 9197 outer_const = trunc_int_for_mode (outer_const, result_mode);
230d793d
RS
9198
9199 if (outer_op == AND)
5f4f0e22 9200 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
230d793d
RS
9201 else if (outer_op == SET)
9202 /* This means that we have determined that the result is
9203 equivalent to a constant. This should be rare. */
5f4f0e22 9204 x = GEN_INT (outer_const);
ec8e098d 9205 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
f1c6ba8b 9206 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
230d793d 9207 else
1999435c 9208 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
230d793d
RS
9209 }
9210
9211 return x;
663522cb 9212}
230d793d
RS
9213\f
9214/* Like recog, but we receive the address of a pointer to a new pattern.
9215 We try to match the rtx that the pointer points to.
9216 If that fails, we may try to modify or replace the pattern,
9217 storing the replacement into the same pointer object.
9218
9219 Modifications include deletion or addition of CLOBBERs.
9220
9221 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9222 the CLOBBERs are placed.
9223
9224 The value is the final insn code from the pattern ultimately matched,
9225 or -1. */
9226
9227static int
79a490a9 9228recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
230d793d 9229{
b3694847 9230 rtx pat = *pnewpat;
230d793d
RS
9231 int insn_code_number;
9232 int num_clobbers_to_add = 0;
9233 int i;
9234 rtx notes = 0;
e6d83128 9235 rtx old_notes, old_pat;
230d793d 9236
974f4146
RK
9237 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9238 we use to indicate that something didn't match. If we find such a
9239 thing, force rejection. */
d96023cf 9240 if (GET_CODE (pat) == PARALLEL)
974f4146 9241 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
d96023cf
RK
9242 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9243 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
974f4146
RK
9244 return -1;
9245
e6d83128
JH
9246 old_pat = PATTERN (insn);
9247 old_notes = REG_NOTES (insn);
9248 PATTERN (insn) = pat;
9249 REG_NOTES (insn) = 0;
c1194d74 9250
e6d83128 9251 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
230d793d
RS
9252
9253 /* If it isn't, there is the possibility that we previously had an insn
9254 that clobbered some register as a side effect, but the combined
9255 insn doesn't need to do that. So try once more without the clobbers
9256 unless this represents an ASM insn. */
9257
9258 if (insn_code_number < 0 && ! check_asm_operands (pat)
9259 && GET_CODE (pat) == PARALLEL)
9260 {
9261 int pos;
9262
9263 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9264 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9265 {
9266 if (i != pos)
9267 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9268 pos++;
9269 }
9270
9271 SUBST_INT (XVECLEN (pat, 0), pos);
9272
9273 if (pos == 1)
9274 pat = XVECEXP (pat, 0, 0);
9275
e6d83128
JH
9276 PATTERN (insn) = pat;
9277 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
230d793d 9278 }
e6d83128
JH
9279 PATTERN (insn) = old_pat;
9280 REG_NOTES (insn) = old_notes;
230d793d 9281
b5832b43
JH
9282 /* Recognize all noop sets, these will be killed by followup pass. */
9283 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9284 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9285
230d793d
RS
9286 /* If we had any clobbers to add, make a new pattern than contains
9287 them. Then check to make sure that all of them are dead. */
9288 if (num_clobbers_to_add)
9289 {
38a448ca 9290 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
bf103ec2
R
9291 rtvec_alloc (GET_CODE (pat) == PARALLEL
9292 ? (XVECLEN (pat, 0)
9293 + num_clobbers_to_add)
9294 : num_clobbers_to_add + 1));
230d793d
RS
9295
9296 if (GET_CODE (pat) == PARALLEL)
9297 for (i = 0; i < XVECLEN (pat, 0); i++)
9298 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9299 else
9300 XVECEXP (newpat, 0, 0) = pat;
9301
9302 add_clobbers (newpat, insn_code_number);
9303
9304 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9305 i < XVECLEN (newpat, 0); i++)
9306 {
f8cfc6aa 9307 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
230d793d
RS
9308 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9309 return -1;
38a448ca
RH
9310 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9311 XEXP (XVECEXP (newpat, 0, i), 0), notes);
230d793d
RS
9312 }
9313 pat = newpat;
9314 }
9315
9316 *pnewpat = pat;
9317 *pnotes = notes;
9318
9319 return insn_code_number;
9320}
9321\f
4de249d9
PB
9322/* Like gen_lowpart_general but for use by combine. In combine it
9323 is not possible to create any new pseudoregs. However, it is
9324 safe to create invalid memory addresses, because combine will
9325 try to recognize them and all they will do is make the combine
9326 attempt fail.
230d793d
RS
9327
9328 If for some reason this cannot do its job, an rtx
9329 (clobber (const_int 0)) is returned.
9330 An insn containing that will not be recognized. */
9331
230d793d 9332static rtx
7a32a925 9333gen_lowpart_for_combine (enum machine_mode omode, rtx x)
230d793d 9334{
7a32a925
RH
9335 enum machine_mode imode = GET_MODE (x);
9336 unsigned int osize = GET_MODE_SIZE (omode);
9337 unsigned int isize = GET_MODE_SIZE (imode);
230d793d
RS
9338 rtx result;
9339
7a32a925 9340 if (omode == imode)
230d793d
RS
9341 return x;
9342
7a32a925
RH
9343 /* Return identity if this is a CONST or symbolic reference. */
9344 if (omode == Pmode
cafe096b
EC
9345 && (GET_CODE (x) == CONST
9346 || GET_CODE (x) == SYMBOL_REF
9347 || GET_CODE (x) == LABEL_REF))
9348 return x;
9349
eae957a8
RK
9350 /* We can only support MODE being wider than a word if X is a
9351 constant integer or has a mode the same size. */
7a32a925
RH
9352 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9353 && ! ((imode == VOIDmode
eae957a8
RK
9354 && (GET_CODE (x) == CONST_INT
9355 || GET_CODE (x) == CONST_DOUBLE))
7a32a925
RH
9356 || isize == osize))
9357 goto fail;
230d793d
RS
9358
9359 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9360 won't know what to do. So we will strip off the SUBREG here and
9361 process normally. */
3c0cb5de 9362 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
230d793d
RS
9363 {
9364 x = SUBREG_REG (x);
32f2ce02
HPN
9365
9366 /* For use in case we fall down into the address adjustments
9367 further below, we need to adjust the known mode and size of
9368 x; imode and isize, since we just adjusted x. */
9369 imode = GET_MODE (x);
9370
9371 if (imode == omode)
230d793d 9372 return x;
32f2ce02
HPN
9373
9374 isize = GET_MODE_SIZE (imode);
230d793d
RS
9375 }
9376
7a32a925
RH
9377 result = gen_lowpart_common (omode, x);
9378
cff9f8d5 9379#ifdef CANNOT_CHANGE_MODE_CLASS
41bf2a8b
RH
9380 if (result != 0 && GET_CODE (result) == SUBREG)
9381 record_subregs_of_mode (result);
02188693 9382#endif
64bf47a2 9383
230d793d
RS
9384 if (result)
9385 return result;
9386
3c0cb5de 9387 if (MEM_P (x))
230d793d 9388 {
b3694847 9389 int offset = 0;
230d793d
RS
9390
9391 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9392 address. */
9393 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
7a32a925 9394 goto fail;
230d793d
RS
9395
9396 /* If we want to refer to something bigger than the original memref,
9a5a17f3 9397 generate a paradoxical subreg instead. That will force a reload
230d793d 9398 of the original memref X. */
7a32a925
RH
9399 if (isize < osize)
9400 return gen_rtx_SUBREG (omode, x, 0);
230d793d 9401
f76b9db2 9402 if (WORDS_BIG_ENDIAN)
7a32a925 9403 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
c5c76735 9404
7a32a925 9405 /* Adjust the address so that the address-after-the-data is unchanged. */
f76b9db2 9406 if (BYTES_BIG_ENDIAN)
7a32a925 9407 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
f1ec5147 9408
7a32a925 9409 return adjust_address_nv (x, omode, offset);
230d793d
RS
9410 }
9411
9412 /* If X is a comparison operator, rewrite it in a new mode. This
9413 probably won't match, but may allow further simplifications. */
ec8e098d 9414 else if (COMPARISON_P (x))
7a32a925 9415 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
230d793d
RS
9416
9417 /* If we couldn't simplify X any other way, just enclose it in a
9418 SUBREG. Normally, this SUBREG won't match, but some patterns may
a7c99304 9419 include an explicit SUBREG or we may simplify it further in combine. */
230d793d 9420 else
dfbe1b2f 9421 {
ddef6bc7 9422 int offset = 0;
e0e08ac2 9423 rtx res;
dfbe1b2f 9424
7a32a925
RH
9425 offset = subreg_lowpart_offset (omode, imode);
9426 if (imode == VOIDmode)
80ba02b1 9427 {
7a32a925
RH
9428 imode = int_mode_for_mode (omode);
9429 x = gen_lowpart_common (imode, x);
9430 if (x == NULL)
9431 goto fail;
80ba02b1 9432 }
7a32a925 9433 res = simplify_gen_subreg (omode, x, imode, offset);
e0e08ac2
JH
9434 if (res)
9435 return res;
dfbe1b2f 9436 }
7a32a925
RH
9437
9438 fail:
9439 return gen_rtx_CLOBBER (imode, const0_rtx);
230d793d
RS
9440}
9441\f
1999435c
PB
9442/* These routines make binary and unary operations by first seeing if they
9443 fold; if not, a new expression is allocated. */
9444
9445static rtx
9446gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9447{
9448 rtx result;
9449 rtx tem;
9450
9451 if (GET_CODE (op0) == CLOBBER)
9452 return op0;
9453 else if (GET_CODE (op1) == CLOBBER)
9454 return op1;
9455
9456 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9457 && swap_commutative_operands_p (op0, op1))
9458 tem = op0, op0 = op1, op1 = tem;
9459
9460 if (GET_RTX_CLASS (code) == RTX_COMPARE
9461 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9462 {
9463 enum machine_mode op_mode = GET_MODE (op0);
9464
9465 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9466 just (REL_OP X Y). */
9467 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9468 {
9469 op1 = XEXP (op0, 1);
9470 op0 = XEXP (op0, 0);
9471 op_mode = GET_MODE (op0);
9472 }
9473
9474 if (op_mode == VOIDmode)
9475 op_mode = GET_MODE (op1);
9476 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9477 }
9478 else
9479 result = simplify_binary_operation (code, mode, op0, op1);
9480
9481 if (result)
9482 return result;
9483
9484 /* Put complex operands first and constants second. */
9485 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9486 && swap_commutative_operands_p (op0, op1))
9487 return gen_rtx_fmt_ee (code, mode, op1, op0);
9488
9489 /* If we are turning off bits already known off in OP0, we need not do
9490 an AND. */
9491 else if (code == AND && GET_CODE (op1) == CONST_INT
9492 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9493 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9494 return op0;
9495
9496 return gen_rtx_fmt_ee (code, mode, op0, op1);
9497}
9498\f
230d793d
RS
9499/* Simplify a comparison between *POP0 and *POP1 where CODE is the
9500 comparison code that will be tested.
9501
9502 The result is a possibly different comparison code to use. *POP0 and
9503 *POP1 may be updated.
9504
9505 It is possible that we might detect that a comparison is either always
9506 true or always false. However, we do not perform general constant
5089e22e 9507 folding in combine, so this knowledge isn't useful. Such tautologies
230d793d
RS
9508 should have been detected earlier. Hence we ignore all such cases. */
9509
9510static enum rtx_code
79a490a9 9511simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
230d793d
RS
9512{
9513 rtx op0 = *pop0;
9514 rtx op1 = *pop1;
9515 rtx tem, tem1;
9516 int i;
9517 enum machine_mode mode, tmode;
9518
9519 /* Try a few ways of applying the same transformation to both operands. */
9520 while (1)
9521 {
3a19aabc
RK
9522#ifndef WORD_REGISTER_OPERATIONS
9523 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9524 so check specially. */
9525 if (code != GTU && code != GEU && code != LTU && code != LEU
9526 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9527 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9528 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9529 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9530 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9531 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
ad25ba17 9532 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
3a19aabc 9533 && GET_CODE (XEXP (op0, 1)) == CONST_INT
fa9ea255
KH
9534 && XEXP (op0, 1) == XEXP (op1, 1)
9535 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9536 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
3a19aabc
RK
9537 && (INTVAL (XEXP (op0, 1))
9538 == (GET_MODE_BITSIZE (GET_MODE (op0))
9539 - (GET_MODE_BITSIZE
9540 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9541 {
9542 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9543 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9544 }
9545#endif
9546
230d793d
RS
9547 /* If both operands are the same constant shift, see if we can ignore the
9548 shift. We can if the shift is a rotate or if the bits shifted out of
951553af 9549 this shift are known to be zero for both inputs and if the type of
230d793d 9550 comparison is compatible with the shift. */
67232b23
RK
9551 if (GET_CODE (op0) == GET_CODE (op1)
9552 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9553 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
45620ed4 9554 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
67232b23
RK
9555 && (code != GT && code != LT && code != GE && code != LE))
9556 || (GET_CODE (op0) == ASHIFTRT
9557 && (code != GTU && code != LTU
99dc5306 9558 && code != GEU && code != LEU)))
67232b23
RK
9559 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9560 && INTVAL (XEXP (op0, 1)) >= 0
9561 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9562 && XEXP (op0, 1) == XEXP (op1, 1))
230d793d
RS
9563 {
9564 enum machine_mode mode = GET_MODE (op0);
5f4f0e22 9565 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
9566 int shift_count = INTVAL (XEXP (op0, 1));
9567
9568 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9569 mask &= (mask >> shift_count) << shift_count;
45620ed4 9570 else if (GET_CODE (op0) == ASHIFT)
230d793d
RS
9571 mask = (mask & (mask << shift_count)) >> shift_count;
9572
663522cb
KH
9573 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9574 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
230d793d
RS
9575 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9576 else
9577 break;
9578 }
9579
9580 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9581 SUBREGs are of the same mode, and, in both cases, the AND would
9582 be redundant if the comparison was done in the narrower mode,
9583 do the comparison in the narrower mode (e.g., we are AND'ing with 1
951553af
RK
9584 and the operand's possibly nonzero bits are 0xffffff01; in that case
9585 if we only care about QImode, we don't need the AND). This case
9586 occurs if the output mode of an scc insn is not SImode and
7e4dc511
RK
9587 STORE_FLAG_VALUE == 1 (e.g., the 386).
9588
9589 Similarly, check for a case where the AND's are ZERO_EXTEND
9590 operations from some narrower mode even though a SUBREG is not
9591 present. */
230d793d 9592
663522cb
KH
9593 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9594 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9595 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
230d793d 9596 {
7e4dc511
RK
9597 rtx inner_op0 = XEXP (op0, 0);
9598 rtx inner_op1 = XEXP (op1, 0);
9599 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9600 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9601 int changed = 0;
663522cb 9602
7e4dc511
RK
9603 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9604 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9605 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9606 && (GET_MODE (SUBREG_REG (inner_op0))
9607 == GET_MODE (SUBREG_REG (inner_op1)))
729a2bc6 9608 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
7e4dc511 9609 <= HOST_BITS_PER_WIDE_INT)
01c82bbb 9610 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
729a2bc6 9611 GET_MODE (SUBREG_REG (inner_op0)))))
01c82bbb
RK
9612 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9613 GET_MODE (SUBREG_REG (inner_op1))))))
7e4dc511
RK
9614 {
9615 op0 = SUBREG_REG (inner_op0);
9616 op1 = SUBREG_REG (inner_op1);
9617
9618 /* The resulting comparison is always unsigned since we masked
0f41302f 9619 off the original sign bit. */
7e4dc511
RK
9620 code = unsigned_condition (code);
9621
9622 changed = 1;
9623 }
230d793d 9624
7e4dc511
RK
9625 else if (c0 == c1)
9626 for (tmode = GET_CLASS_NARROWEST_MODE
9627 (GET_MODE_CLASS (GET_MODE (op0)));
9628 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
e51712db 9629 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
7e4dc511 9630 {
4de249d9
PB
9631 op0 = gen_lowpart (tmode, inner_op0);
9632 op1 = gen_lowpart (tmode, inner_op1);
66415c8b 9633 code = unsigned_condition (code);
7e4dc511
RK
9634 changed = 1;
9635 break;
9636 }
9637
9638 if (! changed)
9639 break;
230d793d 9640 }
3a19aabc 9641
ad25ba17
RK
9642 /* If both operands are NOT, we can strip off the outer operation
9643 and adjust the comparison code for swapped operands; similarly for
9644 NEG, except that this must be an equality comparison. */
9645 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9646 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9647 && (code == EQ || code == NE)))
9648 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
3a19aabc 9649
230d793d
RS
9650 else
9651 break;
9652 }
663522cb 9653
230d793d 9654 /* If the first operand is a constant, swap the operands and adjust the
3aceff0d
RK
9655 comparison code appropriately, but don't do this if the second operand
9656 is already a constant integer. */
8c9864f3 9657 if (swap_commutative_operands_p (op0, op1))
230d793d
RS
9658 {
9659 tem = op0, op0 = op1, op1 = tem;
9660 code = swap_condition (code);
9661 }
9662
9663 /* We now enter a loop during which we will try to simplify the comparison.
9664 For the most part, we only are concerned with comparisons with zero,
9665 but some things may really be comparisons with zero but not start
9666 out looking that way. */
9667
9668 while (GET_CODE (op1) == CONST_INT)
9669 {
9670 enum machine_mode mode = GET_MODE (op0);
770ae6cc 9671 unsigned int mode_width = GET_MODE_BITSIZE (mode);
5f4f0e22 9672 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
9673 int equality_comparison_p;
9674 int sign_bit_comparison_p;
9675 int unsigned_comparison_p;
5f4f0e22 9676 HOST_WIDE_INT const_op;
230d793d
RS
9677
9678 /* We only want to handle integral modes. This catches VOIDmode,
9679 CCmode, and the floating-point modes. An exception is that we
9680 can handle VOIDmode if OP0 is a COMPARE or a comparison
9681 operation. */
9682
9683 if (GET_MODE_CLASS (mode) != MODE_INT
9684 && ! (mode == VOIDmode
ec8e098d 9685 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
230d793d
RS
9686 break;
9687
9688 /* Get the constant we are comparing against and turn off all bits
9689 not on in our mode. */
71012d97
GK
9690 const_op = INTVAL (op1);
9691 if (mode != VOIDmode)
9692 const_op = trunc_int_for_mode (const_op, mode);
b4fbaca7 9693 op1 = GEN_INT (const_op);
230d793d
RS
9694
9695 /* If we are comparing against a constant power of two and the value
951553af 9696 being compared can only have that single bit nonzero (e.g., it was
230d793d
RS
9697 `and'ed with that bit), we can replace this with a comparison
9698 with zero. */
9699 if (const_op
9700 && (code == EQ || code == NE || code == GE || code == GEU
9701 || code == LT || code == LTU)
5f4f0e22 9702 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d 9703 && exact_log2 (const_op) >= 0
e51712db 9704 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
230d793d
RS
9705 {
9706 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9707 op1 = const0_rtx, const_op = 0;
9708 }
9709
d0ab8cd3
RK
9710 /* Similarly, if we are comparing a value known to be either -1 or
9711 0 with -1, change it to the opposite comparison against zero. */
9712
9713 if (const_op == -1
9714 && (code == EQ || code == NE || code == GT || code == LE
9715 || code == GEU || code == LTU)
9716 && num_sign_bit_copies (op0, mode) == mode_width)
9717 {
9718 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9719 op1 = const0_rtx, const_op = 0;
9720 }
9721
230d793d 9722 /* Do some canonicalizations based on the comparison code. We prefer
663522cb 9723 comparisons against zero and then prefer equality comparisons.
4803a34a 9724 If we can reduce the size of a constant, we will do that too. */
230d793d
RS
9725
9726 switch (code)
9727 {
9728 case LT:
4803a34a
RK
9729 /* < C is equivalent to <= (C - 1) */
9730 if (const_op > 0)
230d793d 9731 {
4803a34a 9732 const_op -= 1;
5f4f0e22 9733 op1 = GEN_INT (const_op);
230d793d
RS
9734 code = LE;
9735 /* ... fall through to LE case below. */
9736 }
9737 else
9738 break;
9739
9740 case LE:
4803a34a
RK
9741 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9742 if (const_op < 0)
9743 {
9744 const_op += 1;
5f4f0e22 9745 op1 = GEN_INT (const_op);
4803a34a
RK
9746 code = LT;
9747 }
230d793d
RS
9748
9749 /* If we are doing a <= 0 comparison on a value known to have
9750 a zero sign bit, we can replace this with == 0. */
9751 else if (const_op == 0
5f4f0e22 9752 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 9753 && (nonzero_bits (op0, mode)
5f4f0e22 9754 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
230d793d
RS
9755 code = EQ;
9756 break;
9757
9758 case GE:
0f41302f 9759 /* >= C is equivalent to > (C - 1). */
4803a34a 9760 if (const_op > 0)
230d793d 9761 {
4803a34a 9762 const_op -= 1;
5f4f0e22 9763 op1 = GEN_INT (const_op);
230d793d
RS
9764 code = GT;
9765 /* ... fall through to GT below. */
9766 }
9767 else
9768 break;
9769
9770 case GT:
663522cb 9771 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
4803a34a
RK
9772 if (const_op < 0)
9773 {
9774 const_op += 1;
5f4f0e22 9775 op1 = GEN_INT (const_op);
4803a34a
RK
9776 code = GE;
9777 }
230d793d
RS
9778
9779 /* If we are doing a > 0 comparison on a value known to have
9780 a zero sign bit, we can replace this with != 0. */
9781 else if (const_op == 0
5f4f0e22 9782 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 9783 && (nonzero_bits (op0, mode)
5f4f0e22 9784 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
230d793d
RS
9785 code = NE;
9786 break;
9787
230d793d 9788 case LTU:
4803a34a
RK
9789 /* < C is equivalent to <= (C - 1). */
9790 if (const_op > 0)
9791 {
9792 const_op -= 1;
5f4f0e22 9793 op1 = GEN_INT (const_op);
4803a34a 9794 code = LEU;
0f41302f 9795 /* ... fall through ... */
4803a34a 9796 }
d0ab8cd3
RK
9797
9798 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
f77aada2
JW
9799 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9800 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
d0ab8cd3
RK
9801 {
9802 const_op = 0, op1 = const0_rtx;
9803 code = GE;
9804 break;
9805 }
4803a34a
RK
9806 else
9807 break;
230d793d
RS
9808
9809 case LEU:
9810 /* unsigned <= 0 is equivalent to == 0 */
9811 if (const_op == 0)
9812 code = EQ;
d0ab8cd3 9813
0f41302f 9814 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
f77aada2
JW
9815 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9816 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
d0ab8cd3
RK
9817 {
9818 const_op = 0, op1 = const0_rtx;
9819 code = GE;
9820 }
230d793d
RS
9821 break;
9822
4803a34a 9823 case GEU:
b8ff6ca0 9824 /* >= C is equivalent to > (C - 1). */
4803a34a
RK
9825 if (const_op > 1)
9826 {
9827 const_op -= 1;
5f4f0e22 9828 op1 = GEN_INT (const_op);
4803a34a 9829 code = GTU;
0f41302f 9830 /* ... fall through ... */
4803a34a 9831 }
d0ab8cd3
RK
9832
9833 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
f77aada2
JW
9834 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9835 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
d0ab8cd3
RK
9836 {
9837 const_op = 0, op1 = const0_rtx;
9838 code = LT;
8b2e69e1 9839 break;
d0ab8cd3 9840 }
4803a34a
RK
9841 else
9842 break;
9843
230d793d
RS
9844 case GTU:
9845 /* unsigned > 0 is equivalent to != 0 */
9846 if (const_op == 0)
9847 code = NE;
d0ab8cd3
RK
9848
9849 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
f77aada2 9850 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
e869aa39 9851 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
d0ab8cd3
RK
9852 {
9853 const_op = 0, op1 = const0_rtx;
9854 code = LT;
9855 }
230d793d 9856 break;
e9a25f70
JL
9857
9858 default:
9859 break;
230d793d
RS
9860 }
9861
9862 /* Compute some predicates to simplify code below. */
9863
9864 equality_comparison_p = (code == EQ || code == NE);
9865 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9866 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
d5010e66 9867 || code == GEU);
230d793d 9868
6139ff20
RK
9869 /* If this is a sign bit comparison and we can do arithmetic in
9870 MODE, say that we will only be needing the sign bit of OP0. */
9871 if (sign_bit_comparison_p
9872 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9873 op0 = force_to_mode (op0, mode,
9874 ((HOST_WIDE_INT) 1
9875 << (GET_MODE_BITSIZE (mode) - 1)),
e3d616e3 9876 NULL_RTX, 0);
6139ff20 9877
230d793d
RS
9878 /* Now try cases based on the opcode of OP0. If none of the cases
9879 does a "continue", we exit this loop immediately after the
9880 switch. */
9881
9882 switch (GET_CODE (op0))
9883 {
9884 case ZERO_EXTRACT:
9885 /* If we are extracting a single bit from a variable position in
9886 a constant that has only a single bit set and are comparing it
663522cb 9887 with zero, we can convert this into an equality comparison
d7cd794f 9888 between the position and the location of the single bit. */
a475bff7
RH
9889 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9890 have already reduced the shift count modulo the word size. */
9891 if (!SHIFT_COUNT_TRUNCATED
9892 && GET_CODE (XEXP (op0, 0)) == CONST_INT
230d793d
RS
9893 && XEXP (op0, 1) == const1_rtx
9894 && equality_comparison_p && const_op == 0
d7cd794f 9895 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
230d793d 9896 {
f76b9db2 9897 if (BITS_BIG_ENDIAN)
0d8e55d8 9898 {
da920570
ZW
9899 enum machine_mode new_mode
9900 = mode_for_extraction (EP_extzv, 1);
9901 if (new_mode == MAX_MACHINE_MODE)
9902 i = BITS_PER_WORD - 1 - i;
9903 else
9904 {
9905 mode = new_mode;
9906 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9907 }
0d8e55d8 9908 }
230d793d
RS
9909
9910 op0 = XEXP (op0, 2);
5f4f0e22 9911 op1 = GEN_INT (i);
230d793d
RS
9912 const_op = i;
9913
9914 /* Result is nonzero iff shift count is equal to I. */
9915 code = reverse_condition (code);
9916 continue;
9917 }
230d793d 9918
0f41302f 9919 /* ... fall through ... */
230d793d
RS
9920
9921 case SIGN_EXTRACT:
9922 tem = expand_compound_operation (op0);
9923 if (tem != op0)
9924 {
9925 op0 = tem;
9926 continue;
9927 }
9928 break;
9929
9930 case NOT:
9931 /* If testing for equality, we can take the NOT of the constant. */
9932 if (equality_comparison_p
9933 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9934 {
9935 op0 = XEXP (op0, 0);
9936 op1 = tem;
9937 continue;
9938 }
9939
9940 /* If just looking at the sign bit, reverse the sense of the
9941 comparison. */
9942 if (sign_bit_comparison_p)
9943 {
9944 op0 = XEXP (op0, 0);
9945 code = (code == GE ? LT : GE);
9946 continue;
9947 }
9948 break;
9949
9950 case NEG:
9951 /* If testing for equality, we can take the NEG of the constant. */
9952 if (equality_comparison_p
9953 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9954 {
9955 op0 = XEXP (op0, 0);
9956 op1 = tem;
9957 continue;
9958 }
9959
9960 /* The remaining cases only apply to comparisons with zero. */
9961 if (const_op != 0)
9962 break;
9963
9964 /* When X is ABS or is known positive,
9965 (neg X) is < 0 if and only if X != 0. */
9966
9967 if (sign_bit_comparison_p
9968 && (GET_CODE (XEXP (op0, 0)) == ABS
5f4f0e22 9969 || (mode_width <= HOST_BITS_PER_WIDE_INT
951553af 9970 && (nonzero_bits (XEXP (op0, 0), mode)
5f4f0e22 9971 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
230d793d
RS
9972 {
9973 op0 = XEXP (op0, 0);
9974 code = (code == LT ? NE : EQ);
9975 continue;
9976 }
9977
3bed8141 9978 /* If we have NEG of something whose two high-order bits are the
0f41302f 9979 same, we know that "(-a) < 0" is equivalent to "a > 0". */
3bed8141 9980 if (num_sign_bit_copies (op0, mode) >= 2)
230d793d
RS
9981 {
9982 op0 = XEXP (op0, 0);
9983 code = swap_condition (code);
9984 continue;
9985 }
9986 break;
9987
9988 case ROTATE:
9989 /* If we are testing equality and our count is a constant, we
9990 can perform the inverse operation on our RHS. */
9991 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9992 && (tem = simplify_binary_operation (ROTATERT, mode,
9993 op1, XEXP (op0, 1))) != 0)
9994 {
9995 op0 = XEXP (op0, 0);
9996 op1 = tem;
9997 continue;
9998 }
9999
10000 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10001 a particular bit. Convert it to an AND of a constant of that
10002 bit. This will be converted into a ZERO_EXTRACT. */
10003 if (const_op == 0 && sign_bit_comparison_p
10004 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10005 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 10006 {
5f4f0e22
CH
10007 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10008 ((HOST_WIDE_INT) 1
10009 << (mode_width - 1
10010 - INTVAL (XEXP (op0, 1)))));
230d793d
RS
10011 code = (code == LT ? NE : EQ);
10012 continue;
10013 }
10014
663522cb 10015 /* Fall through. */
230d793d
RS
10016
10017 case ABS:
10018 /* ABS is ignorable inside an equality comparison with zero. */
10019 if (const_op == 0 && equality_comparison_p)
10020 {
10021 op0 = XEXP (op0, 0);
10022 continue;
10023 }
10024 break;
230d793d
RS
10025
10026 case SIGN_EXTEND:
10027 /* Can simplify (compare (zero/sign_extend FOO) CONST)
663522cb 10028 to (compare FOO CONST) if CONST fits in FOO's mode and we
230d793d
RS
10029 are either testing inequality or have an unsigned comparison
10030 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10031 if (! unsigned_comparison_p
10032 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
5f4f0e22
CH
10033 <= HOST_BITS_PER_WIDE_INT)
10034 && ((unsigned HOST_WIDE_INT) const_op
e51712db 10035 < (((unsigned HOST_WIDE_INT) 1
5f4f0e22 10036 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
230d793d
RS
10037 {
10038 op0 = XEXP (op0, 0);
10039 continue;
10040 }
10041 break;
10042
10043 case SUBREG:
f917ae96
EB
10044 /* Check for the case where we are comparing A - C1 with C2, that is
10045
10046 (subreg:MODE (plus (A) (-C1))) op (C2)
10047
10048 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10049 comparison in the wider mode. One of the following two conditions
10050 must be true in order for this to be valid:
10051
10052 1. The mode extension results in the same bit pattern being added
10053 on both sides and the comparison is equality or unsigned. As
10054 C2 has been truncated to fit in MODE, the pattern can only be
10055 all 0s or all 1s.
10056
10057 2. The mode extension results in the sign bit being copied on
10058 each side.
10059
10060 The difficulty here is that we have predicates for A but not for
10061 (A - C1) so we need to check that C1 is within proper bounds so
10062 as to perturbate A as little as possible. */
a687e897
RK
10063
10064 if (mode_width <= HOST_BITS_PER_WIDE_INT
10065 && subreg_lowpart_p (op0)
f917ae96 10066 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
a687e897 10067 && GET_CODE (SUBREG_REG (op0)) == PLUS
f917ae96 10068 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
a687e897 10069 {
f917ae96
EB
10070 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10071 rtx a = XEXP (SUBREG_REG (op0), 0);
10072 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10073
10074 if ((c1 > 0
10075 && (unsigned HOST_WIDE_INT) c1
10076 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10077 && (equality_comparison_p || unsigned_comparison_p)
10078 /* (A - C1) zero-extends if it is positive and sign-extends
10079 if it is negative, C2 both zero- and sign-extends. */
10080 && ((0 == (nonzero_bits (a, inner_mode)
10081 & ~GET_MODE_MASK (mode))
10082 && const_op >= 0)
10083 /* (A - C1) sign-extends if it is positive and 1-extends
10084 if it is negative, C2 both sign- and 1-extends. */
10085 || (num_sign_bit_copies (a, inner_mode)
10086 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10087 - mode_width)
10088 && const_op < 0)))
10089 || ((unsigned HOST_WIDE_INT) c1
10090 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10091 /* (A - C1) always sign-extends, like C2. */
10092 && num_sign_bit_copies (a, inner_mode)
10093 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10094 - mode_width - 1)))
10095 {
10096 op0 = SUBREG_REG (op0);
10097 continue;
10098 }
a687e897
RK
10099 }
10100
fe0cf571
RK
10101 /* If the inner mode is narrower and we are extracting the low part,
10102 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10103 if (subreg_lowpart_p (op0)
89f1c7f2
RS
10104 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10105 /* Fall through */ ;
10106 else
230d793d
RS
10107 break;
10108
0f41302f 10109 /* ... fall through ... */
230d793d
RS
10110
10111 case ZERO_EXTEND:
10112 if ((unsigned_comparison_p || equality_comparison_p)
10113 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
5f4f0e22
CH
10114 <= HOST_BITS_PER_WIDE_INT)
10115 && ((unsigned HOST_WIDE_INT) const_op
230d793d
RS
10116 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10117 {
10118 op0 = XEXP (op0, 0);
10119 continue;
10120 }
10121 break;
10122
10123 case PLUS:
20fdd649 10124 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
5089e22e 10125 this for equality comparisons due to pathological cases involving
230d793d 10126 overflows. */
20fdd649
RK
10127 if (equality_comparison_p
10128 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10129 op1, XEXP (op0, 1))))
230d793d
RS
10130 {
10131 op0 = XEXP (op0, 0);
10132 op1 = tem;
10133 continue;
10134 }
10135
10136 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10137 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10138 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10139 {
10140 op0 = XEXP (XEXP (op0, 0), 0);
10141 code = (code == LT ? EQ : NE);
10142 continue;
10143 }
10144 break;
10145
10146 case MINUS:
65945ec1
HPN
10147 /* We used to optimize signed comparisons against zero, but that
10148 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10149 arrive here as equality comparisons, or (GEU, LTU) are
10150 optimized away. No need to special-case them. */
0bd4b461 10151
20fdd649
RK
10152 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10153 (eq B (minus A C)), whichever simplifies. We can only do
10154 this for equality comparisons due to pathological cases involving
10155 overflows. */
10156 if (equality_comparison_p
10157 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10158 XEXP (op0, 1), op1)))
10159 {
10160 op0 = XEXP (op0, 0);
10161 op1 = tem;
10162 continue;
10163 }
10164
10165 if (equality_comparison_p
10166 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10167 XEXP (op0, 0), op1)))
10168 {
10169 op0 = XEXP (op0, 1);
10170 op1 = tem;
10171 continue;
10172 }
10173
230d793d
RS
10174 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10175 of bits in X minus 1, is one iff X > 0. */
10176 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10177 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
26c34780
RS
10178 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10179 == mode_width - 1
230d793d
RS
10180 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10181 {
10182 op0 = XEXP (op0, 1);
10183 code = (code == GE ? LE : GT);
10184 continue;
10185 }
10186 break;
10187
10188 case XOR:
10189 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10190 if C is zero or B is a constant. */
10191 if (equality_comparison_p
10192 && 0 != (tem = simplify_binary_operation (XOR, mode,
10193 XEXP (op0, 1), op1)))
10194 {
10195 op0 = XEXP (op0, 0);
10196 op1 = tem;
10197 continue;
10198 }
10199 break;
10200
10201 case EQ: case NE:
69bc0a1f
JH
10202 case UNEQ: case LTGT:
10203 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10204 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10205 case UNORDERED: case ORDERED:
230d793d
RS
10206 /* We can't do anything if OP0 is a condition code value, rather
10207 than an actual data value. */
10208 if (const_op != 0
8beccec8 10209 || CC0_P (XEXP (op0, 0))
230d793d
RS
10210 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10211 break;
10212
10213 /* Get the two operands being compared. */
10214 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10215 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10216 else
10217 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10218
10219 /* Check for the cases where we simply want the result of the
10220 earlier test or the opposite of that result. */
9a915772 10221 if (code == NE || code == EQ
5f4f0e22 10222 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
3f508eca 10223 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
230d793d 10224 && (STORE_FLAG_VALUE
5f4f0e22
CH
10225 & (((HOST_WIDE_INT) 1
10226 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
aa6683f7 10227 && (code == LT || code == GE)))
230d793d 10228 {
aa6683f7
GK
10229 enum rtx_code new_code;
10230 if (code == LT || code == NE)
10231 new_code = GET_CODE (op0);
10232 else
10233 new_code = combine_reversed_comparison_code (op0);
23190837 10234
aa6683f7 10235 if (new_code != UNKNOWN)
9a915772 10236 {
aa6683f7
GK
10237 code = new_code;
10238 op0 = tem;
10239 op1 = tem1;
9a915772
JH
10240 continue;
10241 }
230d793d
RS
10242 }
10243 break;
10244
10245 case IOR:
da7d8304 10246 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
230d793d
RS
10247 iff X <= 0. */
10248 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10249 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10250 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10251 {
10252 op0 = XEXP (op0, 1);
10253 code = (code == GE ? GT : LE);
10254 continue;
10255 }
10256 break;
10257
10258 case AND:
10259 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10260 will be converted to a ZERO_EXTRACT later. */
10261 if (const_op == 0 && equality_comparison_p
45620ed4 10262 && GET_CODE (XEXP (op0, 0)) == ASHIFT
230d793d
RS
10263 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10264 {
10265 op0 = simplify_and_const_int
f1c6ba8b
RK
10266 (op0, mode, gen_rtx_LSHIFTRT (mode,
10267 XEXP (op0, 1),
10268 XEXP (XEXP (op0, 0), 1)),
5f4f0e22 10269 (HOST_WIDE_INT) 1);
230d793d
RS
10270 continue;
10271 }
10272
10273 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10274 zero and X is a comparison and C1 and C2 describe only bits set
10275 in STORE_FLAG_VALUE, we can compare with X. */
10276 if (const_op == 0 && equality_comparison_p
5f4f0e22 10277 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d
RS
10278 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10279 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10280 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10281 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
5f4f0e22 10282 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
230d793d
RS
10283 {
10284 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10285 << INTVAL (XEXP (XEXP (op0, 0), 1)));
663522cb 10286 if ((~STORE_FLAG_VALUE & mask) == 0
ec8e098d 10287 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
230d793d 10288 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
ec8e098d 10289 && COMPARISON_P (tem))))
230d793d
RS
10290 {
10291 op0 = XEXP (XEXP (op0, 0), 0);
10292 continue;
10293 }
10294 }
10295
10296 /* If we are doing an equality comparison of an AND of a bit equal
10297 to the sign bit, replace this with a LT or GE comparison of
10298 the underlying value. */
10299 if (equality_comparison_p
10300 && const_op == 0
10301 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10302 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d 10303 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
e51712db 10304 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
230d793d
RS
10305 {
10306 op0 = XEXP (op0, 0);
10307 code = (code == EQ ? GE : LT);
10308 continue;
10309 }
10310
10311 /* If this AND operation is really a ZERO_EXTEND from a narrower
10312 mode, the constant fits within that mode, and this is either an
10313 equality or unsigned comparison, try to do this comparison in
10314 the narrower mode. */
10315 if ((equality_comparison_p || unsigned_comparison_p)
10316 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10317 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10318 & GET_MODE_MASK (mode))
10319 + 1)) >= 0
10320 && const_op >> i == 0
10321 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10322 {
4de249d9 10323 op0 = gen_lowpart (tmode, XEXP (op0, 0));
230d793d
RS
10324 continue;
10325 }
e5e809f4 10326
70e1b8fc
AM
10327 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10328 fits in both M1 and M2 and the SUBREG is either paradoxical
10329 or represents the low part, permute the SUBREG and the AND
10330 and try again. */
10331 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10332 {
10333 unsigned HOST_WIDE_INT c1;
10334 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
678e68fc
JW
10335 /* Require an integral mode, to avoid creating something like
10336 (AND:SF ...). */
70e1b8fc
AM
10337 if (SCALAR_INT_MODE_P (tmode)
10338 /* It is unsafe to commute the AND into the SUBREG if the
10339 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10340 not defined. As originally written the upper bits
10341 have a defined value due to the AND operation.
10342 However, if we commute the AND inside the SUBREG then
10343 they no longer have defined values and the meaning of
10344 the code has been changed. */
10345 && (0
9ec36da5 10346#ifdef WORD_REGISTER_OPERATIONS
70e1b8fc
AM
10347 || (mode_width > GET_MODE_BITSIZE (tmode)
10348 && mode_width <= BITS_PER_WORD)
9ec36da5 10349#endif
70e1b8fc
AM
10350 || (mode_width <= GET_MODE_BITSIZE (tmode)
10351 && subreg_lowpart_p (XEXP (op0, 0))))
10352 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10353 && mode_width <= HOST_BITS_PER_WIDE_INT
10354 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10355 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10356 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10357 && c1 != mask
10358 && c1 != GET_MODE_MASK (tmode))
10359 {
1999435c
PB
10360 op0 = gen_binary (AND, tmode,
10361 SUBREG_REG (XEXP (op0, 0)),
10362 gen_int_mode (c1, tmode));
4de249d9 10363 op0 = gen_lowpart (mode, op0);
70e1b8fc
AM
10364 continue;
10365 }
e5e809f4
JL
10366 }
10367
34ed3bb0
KH
10368 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10369 if (const_op == 0 && equality_comparison_p
10370 && XEXP (op0, 1) == const1_rtx
10371 && GET_CODE (XEXP (op0, 0)) == NOT)
10372 {
10373 op0 = simplify_and_const_int
e5686da7 10374 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
34ed3bb0
KH
10375 code = (code == NE ? EQ : NE);
10376 continue;
10377 }
10378
9f8e169e 10379 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
5565e874
KH
10380 (eq (and (lshiftrt X) 1) 0).
10381 Also handle the case where (not X) is expressed using xor. */
9f8e169e
RH
10382 if (const_op == 0 && equality_comparison_p
10383 && XEXP (op0, 1) == const1_rtx
5565e874 10384 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
9f8e169e 10385 {
5565e874
KH
10386 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10387 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10388
10389 if (GET_CODE (shift_op) == NOT
10390 || (GET_CODE (shift_op) == XOR
10391 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10392 && GET_CODE (shift_count) == CONST_INT
10393 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10394 && (INTVAL (XEXP (shift_op, 1))
10395 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10396 {
10397 op0 = simplify_and_const_int
10398 (NULL_RTX, mode,
10399 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10400 (HOST_WIDE_INT) 1);
10401 code = (code == NE ? EQ : NE);
10402 continue;
10403 }
9f8e169e 10404 }
230d793d
RS
10405 break;
10406
10407 case ASHIFT:
45620ed4 10408 /* If we have (compare (ashift FOO N) (const_int C)) and
230d793d 10409 the high order N bits of FOO (N+1 if an inequality comparison)
951553af 10410 are known to be zero, we can do this by comparing FOO with C
230d793d
RS
10411 shifted right N bits so long as the low-order N bits of C are
10412 zero. */
10413 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10414 && INTVAL (XEXP (op0, 1)) >= 0
10415 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
5f4f0e22
CH
10416 < HOST_BITS_PER_WIDE_INT)
10417 && ((const_op
34785d05 10418 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
5f4f0e22 10419 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10420 && (nonzero_bits (XEXP (op0, 0), mode)
663522cb
KH
10421 & ~(mask >> (INTVAL (XEXP (op0, 1))
10422 + ! equality_comparison_p))) == 0)
230d793d 10423 {
7ce787fe
NC
10424 /* We must perform a logical shift, not an arithmetic one,
10425 as we want the top N bits of C to be zero. */
aaaec114 10426 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
663522cb 10427
7ce787fe 10428 temp >>= INTVAL (XEXP (op0, 1));
2496c7bd 10429 op1 = gen_int_mode (temp, mode);
230d793d
RS
10430 op0 = XEXP (op0, 0);
10431 continue;
10432 }
10433
dfbe1b2f 10434 /* If we are doing a sign bit comparison, it means we are testing
230d793d 10435 a particular bit. Convert it to the appropriate AND. */
dfbe1b2f 10436 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10437 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 10438 {
5f4f0e22
CH
10439 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10440 ((HOST_WIDE_INT) 1
10441 << (mode_width - 1
10442 - INTVAL (XEXP (op0, 1)))));
230d793d
RS
10443 code = (code == LT ? NE : EQ);
10444 continue;
10445 }
dfbe1b2f
RK
10446
10447 /* If this an equality comparison with zero and we are shifting
10448 the low bit to the sign bit, we can convert this to an AND of the
10449 low-order bit. */
10450 if (const_op == 0 && equality_comparison_p
10451 && GET_CODE (XEXP (op0, 1)) == CONST_INT
26c34780
RS
10452 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10453 == mode_width - 1)
dfbe1b2f 10454 {
5f4f0e22
CH
10455 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10456 (HOST_WIDE_INT) 1);
dfbe1b2f
RK
10457 continue;
10458 }
230d793d
RS
10459 break;
10460
10461 case ASHIFTRT:
d0ab8cd3
RK
10462 /* If this is an equality comparison with zero, we can do this
10463 as a logical shift, which might be much simpler. */
10464 if (equality_comparison_p && const_op == 0
10465 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10466 {
10467 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10468 XEXP (op0, 0),
10469 INTVAL (XEXP (op0, 1)));
10470 continue;
10471 }
10472
230d793d
RS
10473 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10474 do the comparison in a narrower mode. */
10475 if (! unsigned_comparison_p
10476 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10477 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10478 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10479 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
22331794 10480 MODE_INT, 1)) != BLKmode
67e469d7
AM
10481 && (((unsigned HOST_WIDE_INT) const_op
10482 + (GET_MODE_MASK (tmode) >> 1) + 1)
10483 <= GET_MODE_MASK (tmode)))
230d793d 10484 {
4de249d9 10485 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
230d793d
RS
10486 continue;
10487 }
10488
14a774a9
RK
10489 /* Likewise if OP0 is a PLUS of a sign extension with a
10490 constant, which is usually represented with the PLUS
10491 between the shifts. */
10492 if (! unsigned_comparison_p
10493 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10494 && GET_CODE (XEXP (op0, 0)) == PLUS
10495 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10496 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10497 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10498 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10499 MODE_INT, 1)) != BLKmode
67e469d7
AM
10500 && (((unsigned HOST_WIDE_INT) const_op
10501 + (GET_MODE_MASK (tmode) >> 1) + 1)
10502 <= GET_MODE_MASK (tmode)))
14a774a9
RK
10503 {
10504 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10505 rtx add_const = XEXP (XEXP (op0, 0), 1);
1999435c
PB
10506 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10507 XEXP (op0, 1));
14a774a9 10508
1999435c
PB
10509 op0 = gen_binary (PLUS, tmode,
10510 gen_lowpart (tmode, inner),
10511 new_const);
14a774a9
RK
10512 continue;
10513 }
10514
0f41302f 10515 /* ... fall through ... */
230d793d
RS
10516 case LSHIFTRT:
10517 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
951553af 10518 the low order N bits of FOO are known to be zero, we can do this
230d793d
RS
10519 by comparing FOO with C shifted left N bits so long as no
10520 overflow occurs. */
10521 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10522 && INTVAL (XEXP (op0, 1)) >= 0
5f4f0e22
CH
10523 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10524 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10525 && (nonzero_bits (XEXP (op0, 0), mode)
5f4f0e22 10526 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
67e469d7
AM
10527 && (((unsigned HOST_WIDE_INT) const_op
10528 + (GET_CODE (op0) != LSHIFTRT
10529 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10530 + 1)
10531 : 0))
10532 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
230d793d 10533 {
145d3bf2
RE
10534 /* If the shift was logical, then we must make the condition
10535 unsigned. */
10536 if (GET_CODE (op0) == LSHIFTRT)
10537 code = unsigned_condition (code);
10538
230d793d 10539 const_op <<= INTVAL (XEXP (op0, 1));
5f4f0e22 10540 op1 = GEN_INT (const_op);
230d793d
RS
10541 op0 = XEXP (op0, 0);
10542 continue;
10543 }
10544
10545 /* If we are using this shift to extract just the sign bit, we
10546 can replace this with an LT or GE comparison. */
10547 if (const_op == 0
10548 && (equality_comparison_p || sign_bit_comparison_p)
10549 && GET_CODE (XEXP (op0, 1)) == CONST_INT
26c34780
RS
10550 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10551 == mode_width - 1)
230d793d
RS
10552 {
10553 op0 = XEXP (op0, 0);
10554 code = (code == NE || code == GT ? LT : GE);
10555 continue;
10556 }
10557 break;
663522cb 10558
e9a25f70
JL
10559 default:
10560 break;
230d793d
RS
10561 }
10562
10563 break;
10564 }
10565
10566 /* Now make any compound operations involved in this comparison. Then,
76d31c63 10567 check for an outmost SUBREG on OP0 that is not doing anything or is
5add6d1a
JL
10568 paradoxical. The latter transformation must only be performed when
10569 it is known that the "extra" bits will be the same in op0 and op1 or
10570 that they don't matter. There are three cases to consider:
10571
10572 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10573 care bits and we can assume they have any convenient value. So
10574 making the transformation is safe.
10575
10576 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10577 In this case the upper bits of op0 are undefined. We should not make
10578 the simplification in that case as we do not know the contents of
10579 those bits.
10580
10581 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
f822d252 10582 UNKNOWN. In that case we know those bits are zeros or ones. We must
5add6d1a
JL
10583 also be sure that they are the same as the upper bits of op1.
10584
10585 We can never remove a SUBREG for a non-equality comparison because
10586 the sign bit is in a different place in the underlying object. */
230d793d
RS
10587
10588 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10589 op1 = make_compound_operation (op1, SET);
10590
10591 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10592 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
fa4e13e0 10593 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
5add6d1a 10594 && (code == NE || code == EQ))
230d793d 10595 {
5add6d1a
JL
10596 if (GET_MODE_SIZE (GET_MODE (op0))
10597 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10598 {
dc5c3188
UW
10599 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10600 implemented. */
f8cfc6aa 10601 if (REG_P (SUBREG_REG (op0)))
dc5c3188
UW
10602 {
10603 op0 = SUBREG_REG (op0);
4de249d9 10604 op1 = gen_lowpart (GET_MODE (op0), op1);
dc5c3188 10605 }
5add6d1a
JL
10606 }
10607 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10608 <= HOST_BITS_PER_WIDE_INT)
10609 && (nonzero_bits (SUBREG_REG (op0),
10610 GET_MODE (SUBREG_REG (op0)))
10611 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10612 {
4de249d9 10613 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
230d793d 10614
5add6d1a
JL
10615 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10616 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10617 op0 = SUBREG_REG (op0), op1 = tem;
10618 }
10619 }
230d793d
RS
10620
10621 /* We now do the opposite procedure: Some machines don't have compare
10622 insns in all modes. If OP0's mode is an integer mode smaller than a
10623 word and we can't do a compare in that mode, see if there is a larger
a687e897
RK
10624 mode for which we can do the compare. There are a number of cases in
10625 which we can use the wider mode. */
230d793d
RS
10626
10627 mode = GET_MODE (op0);
10628 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10629 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
ef89d648 10630 && ! have_insn_for (COMPARE, mode))
230d793d 10631 for (tmode = GET_MODE_WIDER_MODE (mode);
5f4f0e22
CH
10632 (tmode != VOIDmode
10633 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
230d793d 10634 tmode = GET_MODE_WIDER_MODE (tmode))
ef89d648 10635 if (have_insn_for (COMPARE, tmode))
230d793d 10636 {
d4c5ac1f
AM
10637 int zero_extended;
10638
951553af 10639 /* If the only nonzero bits in OP0 and OP1 are those in the
a687e897
RK
10640 narrower mode and this is an equality or unsigned comparison,
10641 we can use the wider mode. Similarly for sign-extended
7e4dc511 10642 values, in which case it is true for all comparisons. */
d4c5ac1f
AM
10643 zero_extended = ((code == EQ || code == NE
10644 || code == GEU || code == GTU
10645 || code == LEU || code == LTU)
10646 && (nonzero_bits (op0, tmode)
10647 & ~GET_MODE_MASK (mode)) == 0
10648 && ((GET_CODE (op1) == CONST_INT
10649 || (nonzero_bits (op1, tmode)
10650 & ~GET_MODE_MASK (mode)) == 0)));
10651
10652 if (zero_extended
7e4dc511 10653 || ((num_sign_bit_copies (op0, tmode)
26c34780
RS
10654 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10655 - GET_MODE_BITSIZE (mode)))
a687e897 10656 && (num_sign_bit_copies (op1, tmode)
26c34780
RS
10657 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10658 - GET_MODE_BITSIZE (mode)))))
a687e897 10659 {
14a774a9
RK
10660 /* If OP0 is an AND and we don't have an AND in MODE either,
10661 make a new AND in the proper mode. */
10662 if (GET_CODE (op0) == AND
ef89d648 10663 && !have_insn_for (AND, mode))
1999435c
PB
10664 op0 = gen_binary (AND, tmode,
10665 gen_lowpart (tmode,
10666 XEXP (op0, 0)),
10667 gen_lowpart (tmode,
10668 XEXP (op0, 1)));
14a774a9 10669
4de249d9 10670 op0 = gen_lowpart (tmode, op0);
d4c5ac1f
AM
10671 if (zero_extended && GET_CODE (op1) == CONST_INT)
10672 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
4de249d9 10673 op1 = gen_lowpart (tmode, op1);
a687e897
RK
10674 break;
10675 }
230d793d 10676
a687e897
RK
10677 /* If this is a test for negative, we can make an explicit
10678 test of the sign bit. */
10679
10680 if (op1 == const0_rtx && (code == LT || code == GE)
10681 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
230d793d 10682 {
1999435c
PB
10683 op0 = gen_binary (AND, tmode,
10684 gen_lowpart (tmode, op0),
10685 GEN_INT ((HOST_WIDE_INT) 1
10686 << (GET_MODE_BITSIZE (mode) - 1)));
230d793d 10687 code = (code == LT) ? NE : EQ;
a687e897 10688 break;
230d793d 10689 }
230d793d
RS
10690 }
10691
b7a775b2
RK
10692#ifdef CANONICALIZE_COMPARISON
10693 /* If this machine only supports a subset of valid comparisons, see if we
10694 can convert an unsupported one into a supported one. */
10695 CANONICALIZE_COMPARISON (code, op0, op1);
10696#endif
10697
230d793d
RS
10698 *pop0 = op0;
10699 *pop1 = op1;
10700
10701 return code;
10702}
10703\f
9a915772
JH
10704/* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10705 searching backward. */
c3ffea50 10706static enum rtx_code
79a490a9 10707combine_reversed_comparison_code (rtx exp)
230d793d 10708{
cf0d9408
KH
10709 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10710 rtx x;
10711
10712 if (code1 != UNKNOWN
10713 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10714 return code1;
10715 /* Otherwise try and find where the condition codes were last set and
10716 use that. */
10717 x = get_last_value (XEXP (exp, 0));
10718 if (!x || GET_CODE (x) != COMPARE)
10719 return UNKNOWN;
10720 return reversed_comparison_code_parts (GET_CODE (exp),
10721 XEXP (x, 0), XEXP (x, 1), NULL);
9a915772 10722}
e869aa39 10723
9a915772
JH
10724/* Return comparison with reversed code of EXP and operands OP0 and OP1.
10725 Return NULL_RTX in case we fail to do the reversal. */
10726static rtx
79a490a9 10727reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
9a915772
JH
10728{
10729 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10730 if (reversed_code == UNKNOWN)
10731 return NULL_RTX;
10732 else
1999435c 10733 return gen_binary (reversed_code, mode, op0, op1);
230d793d
RS
10734}
10735\f
10736/* Utility function for following routine. Called when X is part of a value
5eaad481 10737 being stored into last_set_value. Sets last_set_table_tick
230d793d
RS
10738 for each register mentioned. Similar to mention_regs in cse.c */
10739
10740static void
79a490a9 10741update_table_tick (rtx x)
230d793d 10742{
b3694847
SS
10743 enum rtx_code code = GET_CODE (x);
10744 const char *fmt = GET_RTX_FORMAT (code);
10745 int i;
230d793d
RS
10746
10747 if (code == REG)
10748 {
770ae6cc
RK
10749 unsigned int regno = REGNO (x);
10750 unsigned int endregno
10751 = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 10752 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
770ae6cc 10753 unsigned int r;
230d793d 10754
770ae6cc 10755 for (r = regno; r < endregno; r++)
5eaad481 10756 reg_stat[r].last_set_table_tick = label_tick;
230d793d
RS
10757
10758 return;
10759 }
663522cb 10760
230d793d
RS
10761 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10762 /* Note that we can't have an "E" in values stored; see
10763 get_last_value_validate. */
10764 if (fmt[i] == 'e')
8fd73754
AN
10765 {
10766 /* Check for identical subexpressions. If x contains
10767 identical subexpression we only have to traverse one of
10768 them. */
ec8e098d 10769 if (i == 0 && ARITHMETIC_P (x))
8fd73754
AN
10770 {
10771 /* Note that at this point x1 has already been
10772 processed. */
10773 rtx x0 = XEXP (x, 0);
10774 rtx x1 = XEXP (x, 1);
10775
10776 /* If x0 and x1 are identical then there is no need to
10777 process x0. */
10778 if (x0 == x1)
10779 break;
10780
10781 /* If x0 is identical to a subexpression of x1 then while
10782 processing x1, x0 has already been processed. Thus we
10783 are done with x. */
ec8e098d 10784 if (ARITHMETIC_P (x1)
8fd73754
AN
10785 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10786 break;
10787
10788 /* If x1 is identical to a subexpression of x0 then we
10789 still have to process the rest of x0. */
ec8e098d 10790 if (ARITHMETIC_P (x0)
8fd73754
AN
10791 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10792 {
10793 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10794 break;
10795 }
10796 }
73a39fc4 10797
8fd73754
AN
10798 update_table_tick (XEXP (x, i));
10799 }
230d793d
RS
10800}
10801
10802/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10803 are saying that the register is clobbered and we no longer know its
5eaad481
PB
10804 value. If INSN is zero, don't update reg_stat[].last_set; this is
10805 only permitted with VALUE also zero and is used to invalidate the
10806 register. */
230d793d
RS
10807
10808static void
79a490a9 10809record_value_for_reg (rtx reg, rtx insn, rtx value)
230d793d 10810{
770ae6cc
RK
10811 unsigned int regno = REGNO (reg);
10812 unsigned int endregno
10813 = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 10814 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
770ae6cc 10815 unsigned int i;
230d793d
RS
10816
10817 /* If VALUE contains REG and we have a previous value for REG, substitute
10818 the previous value. */
10819 if (value && insn && reg_overlap_mentioned_p (reg, value))
10820 {
10821 rtx tem;
10822
10823 /* Set things up so get_last_value is allowed to see anything set up to
10824 our insn. */
10825 subst_low_cuid = INSN_CUID (insn);
663522cb 10826 tem = get_last_value (reg);
230d793d 10827
14a774a9
RK
10828 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10829 it isn't going to be useful and will take a lot of time to process,
10830 so just use the CLOBBER. */
10831
230d793d 10832 if (tem)
14a774a9 10833 {
ec8e098d 10834 if (ARITHMETIC_P (tem)
14a774a9
RK
10835 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10836 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10837 tem = XEXP (tem, 0);
10838
10839 value = replace_rtx (copy_rtx (value), reg, tem);
10840 }
230d793d
RS
10841 }
10842
10843 /* For each register modified, show we don't know its value, that
ef026f91
RS
10844 we don't know about its bitwise content, that its value has been
10845 updated, and that we don't know the location of the death of the
10846 register. */
770ae6cc 10847 for (i = regno; i < endregno; i++)
230d793d
RS
10848 {
10849 if (insn)
5eaad481 10850 reg_stat[i].last_set = insn;
770ae6cc 10851
5eaad481
PB
10852 reg_stat[i].last_set_value = 0;
10853 reg_stat[i].last_set_mode = 0;
10854 reg_stat[i].last_set_nonzero_bits = 0;
10855 reg_stat[i].last_set_sign_bit_copies = 0;
10856 reg_stat[i].last_death = 0;
230d793d
RS
10857 }
10858
10859 /* Mark registers that are being referenced in this value. */
10860 if (value)
10861 update_table_tick (value);
10862
10863 /* Now update the status of each register being set.
10864 If someone is using this register in this block, set this register
10865 to invalid since we will get confused between the two lives in this
10866 basic block. This makes using this register always invalid. In cse, we
10867 scan the table to invalidate all entries using this register, but this
10868 is too much work for us. */
10869
10870 for (i = regno; i < endregno; i++)
10871 {
5eaad481
PB
10872 reg_stat[i].last_set_label = label_tick;
10873 if (value && reg_stat[i].last_set_table_tick == label_tick)
10874 reg_stat[i].last_set_invalid = 1;
230d793d 10875 else
5eaad481 10876 reg_stat[i].last_set_invalid = 0;
230d793d
RS
10877 }
10878
10879 /* The value being assigned might refer to X (like in "x++;"). In that
10880 case, we must replace it with (clobber (const_int 0)) to prevent
10881 infinite loops. */
9a893315 10882 if (value && ! get_last_value_validate (&value, insn,
5eaad481 10883 reg_stat[regno].last_set_label, 0))
230d793d
RS
10884 {
10885 value = copy_rtx (value);
9a893315 10886 if (! get_last_value_validate (&value, insn,
5eaad481 10887 reg_stat[regno].last_set_label, 1))
230d793d
RS
10888 value = 0;
10889 }
10890
55310dad
RK
10891 /* For the main register being modified, update the value, the mode, the
10892 nonzero bits, and the number of sign bit copies. */
10893
5eaad481 10894 reg_stat[regno].last_set_value = value;
230d793d 10895
55310dad
RK
10896 if (value)
10897 {
0a0440c9 10898 enum machine_mode mode = GET_MODE (reg);
2afabb48 10899 subst_low_cuid = INSN_CUID (insn);
5eaad481 10900 reg_stat[regno].last_set_mode = mode;
0a0440c9
JJ
10901 if (GET_MODE_CLASS (mode) == MODE_INT
10902 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10903 mode = nonzero_bits_mode;
5eaad481
PB
10904 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10905 reg_stat[regno].last_set_sign_bit_copies
55310dad
RK
10906 = num_sign_bit_copies (value, GET_MODE (reg));
10907 }
230d793d
RS
10908}
10909
230d793d 10910/* Called via note_stores from record_dead_and_set_regs to handle one
84832317
MM
10911 SET or CLOBBER in an insn. DATA is the instruction in which the
10912 set is occurring. */
230d793d
RS
10913
10914static void
79a490a9 10915record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
230d793d 10916{
84832317
MM
10917 rtx record_dead_insn = (rtx) data;
10918
ca89d290
RK
10919 if (GET_CODE (dest) == SUBREG)
10920 dest = SUBREG_REG (dest);
10921
f8cfc6aa 10922 if (REG_P (dest))
230d793d
RS
10923 {
10924 /* If we are setting the whole register, we know its value. Otherwise
10925 show that we don't know the value. We can handle SUBREG in
10926 some cases. */
10927 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10928 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10929 else if (GET_CODE (setter) == SET
10930 && GET_CODE (SET_DEST (setter)) == SUBREG
10931 && SUBREG_REG (SET_DEST (setter)) == dest
90bf8081 10932 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
230d793d 10933 && subreg_lowpart_p (SET_DEST (setter)))
d0ab8cd3 10934 record_value_for_reg (dest, record_dead_insn,
4de249d9 10935 gen_lowpart (GET_MODE (dest),
d0ab8cd3 10936 SET_SRC (setter)));
230d793d 10937 else
5f4f0e22 10938 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
230d793d 10939 }
3c0cb5de 10940 else if (MEM_P (dest)
230d793d
RS
10941 /* Ignore pushes, they clobber nothing. */
10942 && ! push_operand (dest, GET_MODE (dest)))
10943 mem_last_set = INSN_CUID (record_dead_insn);
10944}
10945
10946/* Update the records of when each REG was most recently set or killed
10947 for the things done by INSN. This is the last thing done in processing
10948 INSN in the combiner loop.
10949
5eaad481
PB
10950 We update reg_stat[], in particular fields last_set, last_set_value,
10951 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10952 last_death, and also the similar information mem_last_set (which insn
10953 most recently modified memory) and last_call_cuid (which insn was the
10954 most recent subroutine call). */
230d793d
RS
10955
10956static void
79a490a9 10957record_dead_and_set_regs (rtx insn)
230d793d 10958{
b3694847 10959 rtx link;
770ae6cc 10960 unsigned int i;
55310dad 10961
230d793d
RS
10962 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10963 {
dbc131f3 10964 if (REG_NOTE_KIND (link) == REG_DEAD
f8cfc6aa 10965 && REG_P (XEXP (link, 0)))
dbc131f3 10966 {
770ae6cc
RK
10967 unsigned int regno = REGNO (XEXP (link, 0));
10968 unsigned int endregno
dbc131f3 10969 = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 10970 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
dbc131f3 10971 : 1);
dbc131f3
RK
10972
10973 for (i = regno; i < endregno; i++)
5eaad481 10974 reg_stat[i].last_death = insn;
dbc131f3 10975 }
230d793d 10976 else if (REG_NOTE_KIND (link) == REG_INC)
5f4f0e22 10977 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
230d793d
RS
10978 }
10979
4b4bf941 10980 if (CALL_P (insn))
55310dad
RK
10981 {
10982 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
29655d3d 10983 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
55310dad 10984 {
5eaad481
PB
10985 reg_stat[i].last_set_value = 0;
10986 reg_stat[i].last_set_mode = 0;
10987 reg_stat[i].last_set_nonzero_bits = 0;
10988 reg_stat[i].last_set_sign_bit_copies = 0;
10989 reg_stat[i].last_death = 0;
55310dad
RK
10990 }
10991
10992 last_call_cuid = mem_last_set = INSN_CUID (insn);
29655d3d
ZW
10993
10994 /* Don't bother recording what this insn does. It might set the
10995 return value register, but we can't combine into a call
10996 pattern anyway, so there's no point trying (and it may cause
10997 a crash, if e.g. we wind up asking for last_set_value of a
10998 SUBREG of the return value register). */
10999 return;
55310dad 11000 }
230d793d 11001
84832317 11002 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
230d793d 11003}
732f2ac9 11004
732f2ac9
JJ
11005/* If a SUBREG has the promoted bit set, it is in fact a property of the
11006 register present in the SUBREG, so for each such SUBREG go back and
11007 adjust nonzero and sign bit information of the registers that are
11008 known to have some zero/sign bits set.
11009
11010 This is needed because when combine blows the SUBREGs away, the
11011 information on zero/sign bits is lost and further combines can be
11012 missed because of that. */
11013
11014static void
79a490a9 11015record_promoted_value (rtx insn, rtx subreg)
732f2ac9 11016{
4a71b24f 11017 rtx links, set;
770ae6cc 11018 unsigned int regno = REGNO (SUBREG_REG (subreg));
732f2ac9
JJ
11019 enum machine_mode mode = GET_MODE (subreg);
11020
25af74a0 11021 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
732f2ac9
JJ
11022 return;
11023
663522cb 11024 for (links = LOG_LINKS (insn); links;)
732f2ac9
JJ
11025 {
11026 insn = XEXP (links, 0);
11027 set = single_set (insn);
11028
f8cfc6aa 11029 if (! set || !REG_P (SET_DEST (set))
732f2ac9
JJ
11030 || REGNO (SET_DEST (set)) != regno
11031 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11032 {
11033 links = XEXP (links, 1);
11034 continue;
11035 }
11036
5eaad481 11037 if (reg_stat[regno].last_set == insn)
663522cb 11038 {
7879b81e 11039 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
5eaad481 11040 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
663522cb 11041 }
732f2ac9 11042
f8cfc6aa 11043 if (REG_P (SET_SRC (set)))
732f2ac9
JJ
11044 {
11045 regno = REGNO (SET_SRC (set));
11046 links = LOG_LINKS (insn);
11047 }
11048 else
11049 break;
11050 }
11051}
11052
11053/* Scan X for promoted SUBREGs. For each one found,
11054 note what it implies to the registers used in it. */
11055
11056static void
79a490a9 11057check_promoted_subreg (rtx insn, rtx x)
732f2ac9
JJ
11058{
11059 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
f8cfc6aa 11060 && REG_P (SUBREG_REG (x)))
732f2ac9
JJ
11061 record_promoted_value (insn, x);
11062 else
11063 {
11064 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11065 int i, j;
11066
11067 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
663522cb 11068 switch (format[i])
732f2ac9
JJ
11069 {
11070 case 'e':
11071 check_promoted_subreg (insn, XEXP (x, i));
11072 break;
11073 case 'V':
11074 case 'E':
11075 if (XVEC (x, i) != 0)
11076 for (j = 0; j < XVECLEN (x, i); j++)
11077 check_promoted_subreg (insn, XVECEXP (x, i, j));
11078 break;
11079 }
11080 }
11081}
230d793d
RS
11082\f
11083/* Utility routine for the following function. Verify that all the registers
11084 mentioned in *LOC are valid when *LOC was part of a value set when
11085 label_tick == TICK. Return 0 if some are not.
11086
da7d8304 11087 If REPLACE is nonzero, replace the invalid reference with
230d793d
RS
11088 (clobber (const_int 0)) and return 1. This replacement is useful because
11089 we often can get useful information about the form of a value (e.g., if
11090 it was produced by a shift that always produces -1 or 0) even though
11091 we don't know exactly what registers it was produced from. */
11092
11093static int
79a490a9 11094get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
230d793d
RS
11095{
11096 rtx x = *loc;
6f7d635c 11097 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
230d793d
RS
11098 int len = GET_RTX_LENGTH (GET_CODE (x));
11099 int i;
11100
f8cfc6aa 11101 if (REG_P (x))
230d793d 11102 {
770ae6cc
RK
11103 unsigned int regno = REGNO (x);
11104 unsigned int endregno
11105 = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 11106 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
770ae6cc 11107 unsigned int j;
230d793d
RS
11108
11109 for (j = regno; j < endregno; j++)
5eaad481 11110 if (reg_stat[j].last_set_invalid
57cf50a4
GRK
11111 /* If this is a pseudo-register that was only set once and not
11112 live at the beginning of the function, it is always valid. */
663522cb 11113 || (! (regno >= FIRST_PSEUDO_REGISTER
57cf50a4 11114 && REG_N_SETS (regno) == 1
770ae6cc 11115 && (! REGNO_REG_SET_P
f6366fc7 11116 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
5eaad481 11117 && reg_stat[j].last_set_label > tick))
230d793d
RS
11118 {
11119 if (replace)
38a448ca 11120 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
11121 return replace;
11122 }
11123
11124 return 1;
11125 }
9a893315
JW
11126 /* If this is a memory reference, make sure that there were
11127 no stores after it that might have clobbered the value. We don't
11128 have alias info, so we assume any store invalidates it. */
389fdba0 11129 else if (MEM_P (x) && !MEM_READONLY_P (x)
9a893315
JW
11130 && INSN_CUID (insn) <= mem_last_set)
11131 {
11132 if (replace)
38a448ca 11133 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9a893315
JW
11134 return replace;
11135 }
230d793d
RS
11136
11137 for (i = 0; i < len; i++)
8fd73754
AN
11138 {
11139 if (fmt[i] == 'e')
11140 {
11141 /* Check for identical subexpressions. If x contains
11142 identical subexpression we only have to traverse one of
11143 them. */
ec8e098d 11144 if (i == 1 && ARITHMETIC_P (x))
8fd73754
AN
11145 {
11146 /* Note that at this point x0 has already been checked
11147 and found valid. */
11148 rtx x0 = XEXP (x, 0);
11149 rtx x1 = XEXP (x, 1);
11150
11151 /* If x0 and x1 are identical then x is also valid. */
11152 if (x0 == x1)
11153 return 1;
11154
11155 /* If x1 is identical to a subexpression of x0 then
11156 while checking x0, x1 has already been checked. Thus
11157 it is valid and so as x. */
ec8e098d 11158 if (ARITHMETIC_P (x0)
8fd73754
AN
11159 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11160 return 1;
11161
11162 /* If x0 is identical to a subexpression of x1 then x is
11163 valid iff the rest of x1 is valid. */
ec8e098d 11164 if (ARITHMETIC_P (x1)
8fd73754
AN
11165 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11166 return
11167 get_last_value_validate (&XEXP (x1,
11168 x0 == XEXP (x1, 0) ? 1 : 0),
11169 insn, tick, replace);
11170 }
11171
11172 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11173 replace) == 0)
11174 return 0;
11175 }
11176 /* Don't bother with these. They shouldn't occur anyway. */
11177 else if (fmt[i] == 'E')
11178 return 0;
11179 }
230d793d
RS
11180
11181 /* If we haven't found a reason for it to be invalid, it is valid. */
11182 return 1;
11183}
11184
11185/* Get the last value assigned to X, if known. Some registers
11186 in the value may be replaced with (clobber (const_int 0)) if their value
11187 is known longer known reliably. */
11188
11189static rtx
79a490a9 11190get_last_value (rtx x)
230d793d 11191{
770ae6cc 11192 unsigned int regno;
230d793d
RS
11193 rtx value;
11194
11195 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11196 then convert it to the desired mode. If this is a paradoxical SUBREG,
0f41302f 11197 we cannot predict what values the "extra" bits might have. */
230d793d
RS
11198 if (GET_CODE (x) == SUBREG
11199 && subreg_lowpart_p (x)
11200 && (GET_MODE_SIZE (GET_MODE (x))
11201 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11202 && (value = get_last_value (SUBREG_REG (x))) != 0)
4de249d9 11203 return gen_lowpart (GET_MODE (x), value);
230d793d 11204
f8cfc6aa 11205 if (!REG_P (x))
230d793d
RS
11206 return 0;
11207
11208 regno = REGNO (x);
5eaad481 11209 value = reg_stat[regno].last_set_value;
230d793d 11210
57cf50a4
GRK
11211 /* If we don't have a value, or if it isn't for this basic block and
11212 it's either a hard register, set more than once, or it's a live
663522cb 11213 at the beginning of the function, return 0.
57cf50a4 11214
eaec9b3d 11215 Because if it's not live at the beginning of the function then the reg
57cf50a4
GRK
11216 is always set before being used (is never used without being set).
11217 And, if it's set only once, and it's always set before use, then all
11218 uses must have the same last value, even if it's not from this basic
11219 block. */
230d793d
RS
11220
11221 if (value == 0
5eaad481 11222 || (reg_stat[regno].last_set_label != label_tick
57cf50a4
GRK
11223 && (regno < FIRST_PSEUDO_REGISTER
11224 || REG_N_SETS (regno) != 1
770ae6cc 11225 || (REGNO_REG_SET_P
f6366fc7 11226 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
230d793d
RS
11227 return 0;
11228
4255220d 11229 /* If the value was set in a later insn than the ones we are processing,
ca4cd906 11230 we can't use it even if the register was only set once. */
5eaad481 11231 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
ca4cd906 11232 return 0;
d0ab8cd3
RK
11233
11234 /* If the value has all its registers valid, return it. */
5eaad481
PB
11235 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11236 reg_stat[regno].last_set_label, 0))
230d793d
RS
11237 return value;
11238
11239 /* Otherwise, make a copy and replace any invalid register with
11240 (clobber (const_int 0)). If that fails for some reason, return 0. */
11241
11242 value = copy_rtx (value);
5eaad481
PB
11243 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11244 reg_stat[regno].last_set_label, 1))
230d793d
RS
11245 return value;
11246
11247 return 0;
11248}
11249\f
11250/* Return nonzero if expression X refers to a REG or to memory
11251 that is set in an instruction more recent than FROM_CUID. */
11252
11253static int
79a490a9 11254use_crosses_set_p (rtx x, int from_cuid)
230d793d 11255{
b3694847
SS
11256 const char *fmt;
11257 int i;
11258 enum rtx_code code = GET_CODE (x);
230d793d
RS
11259
11260 if (code == REG)
11261 {
770ae6cc
RK
11262 unsigned int regno = REGNO (x);
11263 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 11264 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
663522cb 11265
230d793d
RS
11266#ifdef PUSH_ROUNDING
11267 /* Don't allow uses of the stack pointer to be moved,
11268 because we don't know whether the move crosses a push insn. */
f73ad30e 11269 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
230d793d
RS
11270 return 1;
11271#endif
770ae6cc 11272 for (; regno < endreg; regno++)
5eaad481
PB
11273 if (reg_stat[regno].last_set
11274 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
e28f5732
RK
11275 return 1;
11276 return 0;
230d793d
RS
11277 }
11278
11279 if (code == MEM && mem_last_set > from_cuid)
11280 return 1;
11281
11282 fmt = GET_RTX_FORMAT (code);
11283
11284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11285 {
11286 if (fmt[i] == 'E')
11287 {
b3694847 11288 int j;
230d793d
RS
11289 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11290 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11291 return 1;
11292 }
11293 else if (fmt[i] == 'e'
11294 && use_crosses_set_p (XEXP (x, i), from_cuid))
11295 return 1;
11296 }
11297 return 0;
11298}
11299\f
11300/* Define three variables used for communication between the following
11301 routines. */
11302
770ae6cc 11303static unsigned int reg_dead_regno, reg_dead_endregno;
230d793d
RS
11304static int reg_dead_flag;
11305
11306/* Function called via note_stores from reg_dead_at_p.
11307
663522cb 11308 If DEST is within [reg_dead_regno, reg_dead_endregno), set
230d793d
RS
11309 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11310
11311static void
79a490a9 11312reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
230d793d 11313{
770ae6cc 11314 unsigned int regno, endregno;
230d793d 11315
f8cfc6aa 11316 if (!REG_P (dest))
230d793d
RS
11317 return;
11318
11319 regno = REGNO (dest);
663522cb 11320 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
66fd46b6 11321 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
230d793d
RS
11322
11323 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11324 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11325}
11326
da7d8304 11327/* Return nonzero if REG is known to be dead at INSN.
230d793d
RS
11328
11329 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11330 referencing REG, it is dead. If we hit a SET referencing REG, it is
11331 live. Otherwise, see if it is live or dead at the start of the basic
6e25d159
RK
11332 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11333 must be assumed to be always live. */
230d793d
RS
11334
11335static int
79a490a9 11336reg_dead_at_p (rtx reg, rtx insn)
230d793d 11337{
e0082a72 11338 basic_block block;
770ae6cc 11339 unsigned int i;
230d793d
RS
11340
11341 /* Set variables for reg_dead_at_p_1. */
11342 reg_dead_regno = REGNO (reg);
11343 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
66fd46b6
JH
11344 ? hard_regno_nregs[reg_dead_regno]
11345 [GET_MODE (reg)]
230d793d
RS
11346 : 1);
11347
11348 reg_dead_flag = 0;
11349
45da19e3
UW
11350 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11351 we allow the machine description to decide whether use-and-clobber
11352 patterns are OK. */
6e25d159
RK
11353 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11354 {
11355 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
45da19e3 11356 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
6e25d159
RK
11357 return 0;
11358 }
11359
230d793d
RS
11360 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11361 beginning of function. */
4b4bf941 11362 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
230d793d
RS
11363 insn = prev_nonnote_insn (insn))
11364 {
84832317 11365 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
230d793d
RS
11366 if (reg_dead_flag)
11367 return reg_dead_flag == 1 ? 1 : 0;
11368
11369 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11370 return 1;
11371 }
11372
e0082a72 11373 /* Get the basic block that we were in. */
230d793d 11374 if (insn == 0)
e0082a72 11375 block = ENTRY_BLOCK_PTR->next_bb;
230d793d
RS
11376 else
11377 {
e0082a72 11378 FOR_EACH_BB (block)
a813c111 11379 if (insn == BB_HEAD (block))
230d793d
RS
11380 break;
11381
e0082a72 11382 if (block == EXIT_BLOCK_PTR)
230d793d
RS
11383 return 0;
11384 }
11385
11386 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
e0082a72 11387 if (REGNO_REG_SET_P (block->global_live_at_start, i))
230d793d
RS
11388 return 0;
11389
11390 return 1;
11391}
6e25d159
RK
11392\f
11393/* Note hard registers in X that are used. This code is similar to
11394 that in flow.c, but much simpler since we don't care about pseudos. */
11395
11396static void
79a490a9 11397mark_used_regs_combine (rtx x)
6e25d159 11398{
770ae6cc
RK
11399 RTX_CODE code = GET_CODE (x);
11400 unsigned int regno;
6e25d159
RK
11401 int i;
11402
11403 switch (code)
11404 {
11405 case LABEL_REF:
11406 case SYMBOL_REF:
11407 case CONST_INT:
11408 case CONST:
11409 case CONST_DOUBLE:
69ef87e2 11410 case CONST_VECTOR:
6e25d159
RK
11411 case PC:
11412 case ADDR_VEC:
11413 case ADDR_DIFF_VEC:
11414 case ASM_INPUT:
11415#ifdef HAVE_cc0
11416 /* CC0 must die in the insn after it is set, so we don't need to take
11417 special note of it here. */
11418 case CC0:
11419#endif
11420 return;
11421
11422 case CLOBBER:
11423 /* If we are clobbering a MEM, mark any hard registers inside the
11424 address as used. */
3c0cb5de 11425 if (MEM_P (XEXP (x, 0)))
6e25d159
RK
11426 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11427 return;
11428
11429 case REG:
11430 regno = REGNO (x);
11431 /* A hard reg in a wide mode may really be multiple registers.
11432 If so, mark all of them just like the first. */
11433 if (regno < FIRST_PSEUDO_REGISTER)
11434 {
770ae6cc
RK
11435 unsigned int endregno, r;
11436
3eae4643 11437 /* None of this applies to the stack, frame or arg pointers. */
6e25d159
RK
11438 if (regno == STACK_POINTER_REGNUM
11439#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11440 || regno == HARD_FRAME_POINTER_REGNUM
11441#endif
11442#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11443 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11444#endif
11445 || regno == FRAME_POINTER_REGNUM)
11446 return;
11447
66fd46b6 11448 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc
RK
11449 for (r = regno; r < endregno; r++)
11450 SET_HARD_REG_BIT (newpat_used_regs, r);
6e25d159
RK
11451 }
11452 return;
11453
11454 case SET:
11455 {
11456 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11457 the address. */
b3694847 11458 rtx testreg = SET_DEST (x);
6e25d159 11459
e048778f
RK
11460 while (GET_CODE (testreg) == SUBREG
11461 || GET_CODE (testreg) == ZERO_EXTRACT
e048778f 11462 || GET_CODE (testreg) == STRICT_LOW_PART)
6e25d159
RK
11463 testreg = XEXP (testreg, 0);
11464
3c0cb5de 11465 if (MEM_P (testreg))
6e25d159
RK
11466 mark_used_regs_combine (XEXP (testreg, 0));
11467
11468 mark_used_regs_combine (SET_SRC (x));
6e25d159 11469 }
e9a25f70
JL
11470 return;
11471
11472 default:
11473 break;
6e25d159
RK
11474 }
11475
11476 /* Recursively scan the operands of this expression. */
11477
11478 {
b3694847 11479 const char *fmt = GET_RTX_FORMAT (code);
6e25d159
RK
11480
11481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11482 {
663522cb 11483 if (fmt[i] == 'e')
6e25d159 11484 mark_used_regs_combine (XEXP (x, i));
663522cb
KH
11485 else if (fmt[i] == 'E')
11486 {
b3694847 11487 int j;
6e25d159 11488
663522cb
KH
11489 for (j = 0; j < XVECLEN (x, i); j++)
11490 mark_used_regs_combine (XVECEXP (x, i, j));
11491 }
6e25d159
RK
11492 }
11493 }
11494}
230d793d
RS
11495\f
11496/* Remove register number REGNO from the dead registers list of INSN.
11497
11498 Return the note used to record the death, if there was one. */
11499
11500rtx
79a490a9 11501remove_death (unsigned int regno, rtx insn)
230d793d 11502{
b3694847 11503 rtx note = find_regno_note (insn, REG_DEAD, regno);
230d793d
RS
11504
11505 if (note)
1a26b032 11506 {
b1f21e0a 11507 REG_N_DEATHS (regno)--;
1a26b032
RK
11508 remove_note (insn, note);
11509 }
230d793d
RS
11510
11511 return note;
11512}
11513
11514/* For each register (hardware or pseudo) used within expression X, if its
11515 death is in an instruction with cuid between FROM_CUID (inclusive) and
11516 TO_INSN (exclusive), put a REG_DEAD note for that register in the
663522cb 11517 list headed by PNOTES.
230d793d 11518
6eb12cef
RK
11519 That said, don't move registers killed by maybe_kill_insn.
11520
230d793d
RS
11521 This is done when X is being merged by combination into TO_INSN. These
11522 notes will then be distributed as needed. */
11523
11524static void
79a490a9
AJ
11525move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11526 rtx *pnotes)
230d793d 11527{
b3694847
SS
11528 const char *fmt;
11529 int len, i;
11530 enum rtx_code code = GET_CODE (x);
230d793d
RS
11531
11532 if (code == REG)
11533 {
770ae6cc 11534 unsigned int regno = REGNO (x);
5eaad481 11535 rtx where_dead = reg_stat[regno].last_death;
b3694847 11536 rtx before_dead, after_dead;
e340018d 11537
3eae4643 11538 /* Don't move the register if it gets killed in between from and to. */
6eb12cef 11539 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
770ae6cc 11540 && ! reg_referenced_p (x, maybe_kill_insn))
6eb12cef
RK
11541 return;
11542
e340018d
JW
11543 /* WHERE_DEAD could be a USE insn made by combine, so first we
11544 make sure that we have insns with valid INSN_CUID values. */
11545 before_dead = where_dead;
11546 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11547 before_dead = PREV_INSN (before_dead);
770ae6cc 11548
e340018d
JW
11549 after_dead = where_dead;
11550 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11551 after_dead = NEXT_INSN (after_dead);
11552
11553 if (before_dead && after_dead
11554 && INSN_CUID (before_dead) >= from_cuid
11555 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11556 || (where_dead != after_dead
11557 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
230d793d 11558 {
dbc131f3 11559 rtx note = remove_death (regno, where_dead);
230d793d
RS
11560
11561 /* It is possible for the call above to return 0. This can occur
5eaad481 11562 when last_death points to I2 or I1 that we combined with.
dbc131f3
RK
11563 In that case make a new note.
11564
11565 We must also check for the case where X is a hard register
11566 and NOTE is a death note for a range of hard registers
11567 including X. In that case, we must put REG_DEAD notes for
11568 the remaining registers in place of NOTE. */
11569
11570 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11571 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
24e46fc4 11572 > GET_MODE_SIZE (GET_MODE (x))))
dbc131f3 11573 {
770ae6cc
RK
11574 unsigned int deadregno = REGNO (XEXP (note, 0));
11575 unsigned int deadend
66fd46b6
JH
11576 = (deadregno + hard_regno_nregs[deadregno]
11577 [GET_MODE (XEXP (note, 0))]);
770ae6cc 11578 unsigned int ourend
66fd46b6 11579 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 11580 unsigned int i;
dbc131f3
RK
11581
11582 for (i = deadregno; i < deadend; i++)
11583 if (i < regno || i >= ourend)
11584 REG_NOTES (where_dead)
38a448ca 11585 = gen_rtx_EXPR_LIST (REG_DEAD,
e50126e8 11586 regno_reg_rtx[i],
38a448ca 11587 REG_NOTES (where_dead));
dbc131f3 11588 }
770ae6cc 11589
24e46fc4
JW
11590 /* If we didn't find any note, or if we found a REG_DEAD note that
11591 covers only part of the given reg, and we have a multi-reg hard
fabd69e8
RK
11592 register, then to be safe we must check for REG_DEAD notes
11593 for each register other than the first. They could have
11594 their own REG_DEAD notes lying around. */
24e46fc4
JW
11595 else if ((note == 0
11596 || (note != 0
11597 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11598 < GET_MODE_SIZE (GET_MODE (x)))))
11599 && regno < FIRST_PSEUDO_REGISTER
66fd46b6 11600 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
fabd69e8 11601 {
770ae6cc 11602 unsigned int ourend
66fd46b6 11603 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 11604 unsigned int i, offset;
fabd69e8
RK
11605 rtx oldnotes = 0;
11606
24e46fc4 11607 if (note)
66fd46b6 11608 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
24e46fc4
JW
11609 else
11610 offset = 1;
11611
11612 for (i = regno + offset; i < ourend; i++)
e50126e8 11613 move_deaths (regno_reg_rtx[i],
6eb12cef 11614 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
fabd69e8 11615 }
230d793d 11616
dbc131f3 11617 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
230d793d
RS
11618 {
11619 XEXP (note, 1) = *pnotes;
11620 *pnotes = note;
11621 }
11622 else
38a448ca 11623 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
1a26b032 11624
b1f21e0a 11625 REG_N_DEATHS (regno)++;
230d793d
RS
11626 }
11627
11628 return;
11629 }
11630
11631 else if (GET_CODE (x) == SET)
11632 {
11633 rtx dest = SET_DEST (x);
11634
6eb12cef 11635 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
230d793d 11636
a7c99304
RK
11637 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11638 that accesses one word of a multi-word item, some
11639 piece of everything register in the expression is used by
11640 this insn, so remove any old death. */
ddef6bc7 11641 /* ??? So why do we test for equality of the sizes? */
a7c99304
RK
11642
11643 if (GET_CODE (dest) == ZERO_EXTRACT
11644 || GET_CODE (dest) == STRICT_LOW_PART
11645 || (GET_CODE (dest) == SUBREG
11646 && (((GET_MODE_SIZE (GET_MODE (dest))
11647 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11648 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11649 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
230d793d 11650 {
6eb12cef 11651 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
a7c99304 11652 return;
230d793d
RS
11653 }
11654
a7c99304
RK
11655 /* If this is some other SUBREG, we know it replaces the entire
11656 value, so use that as the destination. */
11657 if (GET_CODE (dest) == SUBREG)
11658 dest = SUBREG_REG (dest);
11659
11660 /* If this is a MEM, adjust deaths of anything used in the address.
11661 For a REG (the only other possibility), the entire value is
11662 being replaced so the old value is not used in this insn. */
230d793d 11663
3c0cb5de 11664 if (MEM_P (dest))
6eb12cef
RK
11665 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11666 to_insn, pnotes);
230d793d
RS
11667 return;
11668 }
11669
11670 else if (GET_CODE (x) == CLOBBER)
11671 return;
11672
11673 len = GET_RTX_LENGTH (code);
11674 fmt = GET_RTX_FORMAT (code);
11675
11676 for (i = 0; i < len; i++)
11677 {
11678 if (fmt[i] == 'E')
11679 {
b3694847 11680 int j;
230d793d 11681 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6eb12cef
RK
11682 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11683 to_insn, pnotes);
230d793d
RS
11684 }
11685 else if (fmt[i] == 'e')
6eb12cef 11686 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
230d793d
RS
11687 }
11688}
11689\f
a7c99304
RK
11690/* Return 1 if X is the target of a bit-field assignment in BODY, the
11691 pattern of an insn. X must be a REG. */
230d793d
RS
11692
11693static int
79a490a9 11694reg_bitfield_target_p (rtx x, rtx body)
230d793d
RS
11695{
11696 int i;
11697
11698 if (GET_CODE (body) == SET)
a7c99304
RK
11699 {
11700 rtx dest = SET_DEST (body);
11701 rtx target;
770ae6cc 11702 unsigned int regno, tregno, endregno, endtregno;
a7c99304
RK
11703
11704 if (GET_CODE (dest) == ZERO_EXTRACT)
11705 target = XEXP (dest, 0);
11706 else if (GET_CODE (dest) == STRICT_LOW_PART)
11707 target = SUBREG_REG (XEXP (dest, 0));
11708 else
11709 return 0;
11710
11711 if (GET_CODE (target) == SUBREG)
11712 target = SUBREG_REG (target);
11713
f8cfc6aa 11714 if (!REG_P (target))
a7c99304
RK
11715 return 0;
11716
11717 tregno = REGNO (target), regno = REGNO (x);
11718 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11719 return target == x;
11720
66fd46b6
JH
11721 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11722 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
a7c99304
RK
11723
11724 return endregno > tregno && regno < endtregno;
11725 }
230d793d
RS
11726
11727 else if (GET_CODE (body) == PARALLEL)
11728 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
a7c99304 11729 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
230d793d
RS
11730 return 1;
11731
11732 return 0;
663522cb 11733}
230d793d
RS
11734\f
11735/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11736 as appropriate. I3 and I2 are the insns resulting from the combination
11737 insns including FROM (I2 may be zero).
11738
230d793d
RS
11739 Each note in the list is either ignored or placed on some insns, depending
11740 on the type of note. */
11741
11742static void
79a490a9 11743distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
230d793d
RS
11744{
11745 rtx note, next_note;
11746 rtx tem;
11747
11748 for (note = notes; note; note = next_note)
11749 {
11750 rtx place = 0, place2 = 0;
11751
11752 /* If this NOTE references a pseudo register, ensure it references
11753 the latest copy of that register. */
f8cfc6aa 11754 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
230d793d
RS
11755 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11756 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11757
11758 next_note = XEXP (note, 1);
11759 switch (REG_NOTE_KIND (note))
11760 {
c9903b44 11761 case REG_BR_PROB:
4db384c9 11762 case REG_BR_PRED:
c9903b44
DE
11763 /* Doesn't matter much where we put this, as long as it's somewhere.
11764 It is preferable to keep these notes on branches, which is most
11765 likely to be i3. */
4a8d0c9c
RH
11766 place = i3;
11767 break;
11768
6e885ee3
ZD
11769 case REG_VALUE_PROFILE:
11770 /* Just get rid of this note, as it is unused later anyway. */
11771 break;
11772
f7cfa78d 11773 case REG_NON_LOCAL_GOTO:
4b4bf941 11774 if (JUMP_P (i3))
f7cfa78d 11775 place = i3;
f7cfa78d 11776 else
341c100f
NS
11777 {
11778 gcc_assert (i2 && JUMP_P (i2));
11779 place = i2;
11780 }
f7cfa78d
GS
11781 break;
11782
4b7c585f 11783 case REG_EH_REGION:
662795a8 11784 /* These notes must remain with the call or trapping instruction. */
4b4bf941 11785 if (CALL_P (i3))
662795a8 11786 place = i3;
4b4bf941 11787 else if (i2 && CALL_P (i2))
662795a8 11788 place = i2;
341c100f 11789 else
662795a8 11790 {
341c100f 11791 gcc_assert (flag_non_call_exceptions);
662795a8
RH
11792 if (may_trap_p (i3))
11793 place = i3;
11794 else if (i2 && may_trap_p (i2))
11795 place = i2;
11796 /* ??? Otherwise assume we've combined things such that we
11797 can now prove that the instructions can't trap. Drop the
11798 note in this case. */
11799 }
662795a8
RH
11800 break;
11801
b01e3e38 11802 case REG_ALWAYS_RETURN:
ca3920ad 11803 case REG_NORETURN:
ab61c93f 11804 case REG_SETJMP:
0e403ec3
AS
11805 /* These notes must remain with the call. It should not be
11806 possible for both I2 and I3 to be a call. */
4b4bf941 11807 if (CALL_P (i3))
4b7c585f 11808 place = i3;
4b7c585f 11809 else
341c100f
NS
11810 {
11811 gcc_assert (i2 && CALL_P (i2));
11812 place = i2;
11813 }
4b7c585f
JL
11814 break;
11815
230d793d 11816 case REG_UNUSED:
07d0cbdd 11817 /* Any clobbers for i3 may still exist, and so we must process
176c9e6b
JW
11818 REG_UNUSED notes from that insn.
11819
11820 Any clobbers from i2 or i1 can only exist if they were added by
11821 recog_for_combine. In that case, recog_for_combine created the
11822 necessary REG_UNUSED notes. Trying to keep any original
11823 REG_UNUSED notes from these insns can cause incorrect output
11824 if it is for the same register as the original i3 dest.
11825 In that case, we will notice that the register is set in i3,
11826 and then add a REG_UNUSED note for the destination of i3, which
07d0cbdd
JW
11827 is wrong. However, it is possible to have REG_UNUSED notes from
11828 i2 or i1 for register which were both used and clobbered, so
11829 we keep notes from i2 or i1 if they will turn into REG_DEAD
11830 notes. */
176c9e6b 11831
230d793d
RS
11832 /* If this register is set or clobbered in I3, put the note there
11833 unless there is one already. */
07d0cbdd 11834 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
230d793d 11835 {
07d0cbdd
JW
11836 if (from_insn != i3)
11837 break;
11838
f8cfc6aa 11839 if (! (REG_P (XEXP (note, 0))
230d793d
RS
11840 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11841 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11842 place = i3;
11843 }
11844 /* Otherwise, if this register is used by I3, then this register
11845 now dies here, so we must put a REG_DEAD note here unless there
11846 is one already. */
11847 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
f8cfc6aa 11848 && ! (REG_P (XEXP (note, 0))
770ae6cc
RK
11849 ? find_regno_note (i3, REG_DEAD,
11850 REGNO (XEXP (note, 0)))
230d793d
RS
11851 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11852 {
11853 PUT_REG_NOTE_KIND (note, REG_DEAD);
11854 place = i3;
11855 }
11856 break;
11857
11858 case REG_EQUAL:
11859 case REG_EQUIV:
9ae8ffe7 11860 case REG_NOALIAS:
230d793d
RS
11861 /* These notes say something about results of an insn. We can
11862 only support them if they used to be on I3 in which case they
a687e897
RK
11863 remain on I3. Otherwise they are ignored.
11864
11865 If the note refers to an expression that is not a constant, we
11866 must also ignore the note since we cannot tell whether the
11867 equivalence is still true. It might be possible to do
11868 slightly better than this (we only have a problem if I2DEST
11869 or I1DEST is present in the expression), but it doesn't
11870 seem worth the trouble. */
11871
11872 if (from_insn == i3
11873 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
230d793d
RS
11874 place = i3;
11875 break;
11876
11877 case REG_INC:
11878 case REG_NO_CONFLICT:
230d793d
RS
11879 /* These notes say something about how a register is used. They must
11880 be present on any use of the register in I2 or I3. */
11881 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11882 place = i3;
11883
11884 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11885 {
11886 if (place)
11887 place2 = i2;
11888 else
11889 place = i2;
11890 }
11891 break;
11892
e55b4486
RH
11893 case REG_LABEL:
11894 /* This can show up in several ways -- either directly in the
11895 pattern, or hidden off in the constant pool with (or without?)
11896 a REG_EQUAL note. */
11897 /* ??? Ignore the without-reg_equal-note problem for now. */
11898 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11899 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11900 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11901 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11902 place = i3;
11903
11904 if (i2
11905 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
663522cb 11906 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
e55b4486
RH
11907 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11908 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11909 {
11910 if (place)
11911 place2 = i2;
11912 else
11913 place = i2;
11914 }
2a3b43b6 11915
b54567e2
RZ
11916 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11917 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11918 if (place && JUMP_P (place))
2a3b43b6 11919 {
341c100f
NS
11920 rtx label = JUMP_LABEL (place);
11921
11922 if (!label)
b54567e2 11923 JUMP_LABEL (place) = XEXP (note, 0);
341c100f
NS
11924 else
11925 {
11926 gcc_assert (label == XEXP (note, 0));
11927 if (LABEL_P (label))
11928 LABEL_NUSES (label)--;
11929 }
2a3b43b6
JJ
11930 place = 0;
11931 }
b54567e2 11932 if (place2 && JUMP_P (place2))
2a3b43b6 11933 {
341c100f
NS
11934 rtx label = JUMP_LABEL (place2);
11935
11936 if (!label)
b54567e2 11937 JUMP_LABEL (place2) = XEXP (note, 0);
341c100f
NS
11938 else
11939 {
11940 gcc_assert (label == XEXP (note, 0));
11941 if (LABEL_P (label))
11942 LABEL_NUSES (label)--;
11943 }
2a3b43b6
JJ
11944 place2 = 0;
11945 }
e55b4486
RH
11946 break;
11947
c1194d74 11948 case REG_NONNEG:
6001794d 11949 /* This note says something about the value of a register prior
c1194d74
JW
11950 to the execution of an insn. It is too much trouble to see
11951 if the note is still correct in all situations. It is better
11952 to simply delete it. */
230d793d
RS
11953 break;
11954
11955 case REG_RETVAL:
11956 /* If the insn previously containing this note still exists,
11957 put it back where it was. Otherwise move it to the previous
11958 insn. Adjust the corresponding REG_LIBCALL note. */
4b4bf941 11959 if (!NOTE_P (from_insn))
230d793d
RS
11960 place = from_insn;
11961 else
11962 {
5f4f0e22 11963 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
230d793d
RS
11964 place = prev_real_insn (from_insn);
11965 if (tem && place)
11966 XEXP (tem, 0) = place;
c71e1201
AO
11967 /* If we're deleting the last remaining instruction of a
11968 libcall sequence, don't add the notes. */
11969 else if (XEXP (note, 0) == from_insn)
11970 tem = place = 0;
e51f9159
KK
11971 /* Don't add the dangling REG_RETVAL note. */
11972 else if (! tem)
11973 place = 0;
230d793d
RS
11974 }
11975 break;
11976
11977 case REG_LIBCALL:
11978 /* This is handled similarly to REG_RETVAL. */
4b4bf941 11979 if (!NOTE_P (from_insn))
230d793d
RS
11980 place = from_insn;
11981 else
11982 {
5f4f0e22 11983 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
230d793d
RS
11984 place = next_real_insn (from_insn);
11985 if (tem && place)
11986 XEXP (tem, 0) = place;
c71e1201
AO
11987 /* If we're deleting the last remaining instruction of a
11988 libcall sequence, don't add the notes. */
11989 else if (XEXP (note, 0) == from_insn)
11990 tem = place = 0;
e51f9159
KK
11991 /* Don't add the dangling REG_LIBCALL note. */
11992 else if (! tem)
11993 place = 0;
230d793d
RS
11994 }
11995 break;
11996
11997 case REG_DEAD:
11998 /* If the register is used as an input in I3, it dies there.
da7d8304 11999 Similarly for I2, if it is nonzero and adjacent to I3.
230d793d
RS
12000
12001 If the register is not used as an input in either I3 or I2
12002 and it is not one of the registers we were supposed to eliminate,
12003 there are two possibilities. We might have a non-adjacent I2
12004 or we might have somehow eliminated an additional register
12005 from a computation. For example, we might have had A & B where
12006 we discover that B will always be zero. In this case we will
12007 eliminate the reference to A.
12008
12009 In both cases, we must search to see if we can find a previous
12010 use of A and put the death note there. */
12011
6e2d1486 12012 if (from_insn
4b4bf941 12013 && CALL_P (from_insn)
663522cb 12014 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
6e2d1486
RK
12015 place = from_insn;
12016 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
230d793d
RS
12017 place = i3;
12018 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12019 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12020 place = i2;
12021
230d793d 12022 if (place == 0)
38d8473f 12023 {
f6366fc7 12024 basic_block bb = this_basic_block;
d3a923ee
RH
12025
12026 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
38d8473f 12027 {
2c3c49de 12028 if (! INSN_P (tem))
d3a923ee 12029 {
a813c111 12030 if (tem == BB_HEAD (bb))
d3a923ee
RH
12031 break;
12032 continue;
12033 }
12034
38d8473f
RK
12035 /* If the register is being set at TEM, see if that is all
12036 TEM is doing. If so, delete TEM. Otherwise, make this
de7c79cc
EC
12037 into a REG_UNUSED note instead. Don't delete sets to
12038 global register vars. */
2cd54c2a
ZW
12039 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12040 || !global_regs[REGNO (XEXP (note, 0))])
12041 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
38d8473f
RK
12042 {
12043 rtx set = single_set (tem);
e5e809f4 12044 rtx inner_dest = 0;
e51712db 12045#ifdef HAVE_cc0
f5c97640 12046 rtx cc0_setter = NULL_RTX;
e51712db 12047#endif
e5e809f4
JL
12048
12049 if (set != 0)
12050 for (inner_dest = SET_DEST (set);
663522cb
KH
12051 (GET_CODE (inner_dest) == STRICT_LOW_PART
12052 || GET_CODE (inner_dest) == SUBREG
12053 || GET_CODE (inner_dest) == ZERO_EXTRACT);
e5e809f4
JL
12054 inner_dest = XEXP (inner_dest, 0))
12055 ;
38d8473f
RK
12056
12057 /* Verify that it was the set, and not a clobber that
663522cb 12058 modified the register.
f5c97640
RH
12059
12060 CC0 targets must be careful to maintain setter/user
12061 pairs. If we cannot delete the setter due to side
12062 effects, mark the user with an UNUSED note instead
12063 of deleting it. */
38d8473f
RK
12064
12065 if (set != 0 && ! side_effects_p (SET_SRC (set))
f5c97640
RH
12066 && rtx_equal_p (XEXP (note, 0), inner_dest)
12067#ifdef HAVE_cc0
12068 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12069 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12070 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12071#endif
12072 )
38d8473f
RK
12073 {
12074 /* Move the notes and links of TEM elsewhere.
663522cb 12075 This might delete other dead insns recursively.
38d8473f
RK
12076 First set the pattern to something that won't use
12077 any register. */
f9af39d0 12078 rtx old_notes = REG_NOTES (tem);
38d8473f
RK
12079
12080 PATTERN (tem) = pc_rtx;
f9af39d0 12081 REG_NOTES (tem) = NULL;
38d8473f 12082
f9af39d0 12083 distribute_notes (old_notes, tem, tem, NULL_RTX);
38d8473f
RK
12084 distribute_links (LOG_LINKS (tem));
12085
6773e15f 12086 SET_INSN_DELETED (tem);
f5c97640
RH
12087
12088#ifdef HAVE_cc0
12089 /* Delete the setter too. */
12090 if (cc0_setter)
12091 {
12092 PATTERN (cc0_setter) = pc_rtx;
f9af39d0
RE
12093 old_notes = REG_NOTES (cc0_setter);
12094 REG_NOTES (cc0_setter) = NULL;
f5c97640 12095
f9af39d0
RE
12096 distribute_notes (old_notes, cc0_setter,
12097 cc0_setter, NULL_RTX);
f5c97640
RH
12098 distribute_links (LOG_LINKS (cc0_setter));
12099
6773e15f 12100 SET_INSN_DELETED (cc0_setter);
f5c97640
RH
12101 }
12102#endif
38d8473f
RK
12103 }
12104 else
12105 {
12106 PUT_REG_NOTE_KIND (note, REG_UNUSED);
663522cb 12107
38d8473f 12108 /* If there isn't already a REG_UNUSED note, put one
b30e1617
DJ
12109 here. Do not place a REG_DEAD note, even if
12110 the register is also used here; that would not
12111 match the algorithm used in lifetime analysis
12112 and can cause the consistency check in the
12113 scheduler to fail. */
38d8473f
RK
12114 if (! find_regno_note (tem, REG_UNUSED,
12115 REGNO (XEXP (note, 0))))
12116 place = tem;
12117 break;
d3a923ee
RH
12118 }
12119 }
12120 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
4b4bf941 12121 || (CALL_P (tem)
d3a923ee
RH
12122 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12123 {
12124 place = tem;
12125
12126 /* If we are doing a 3->2 combination, and we have a
12127 register which formerly died in i3 and was not used
12128 by i2, which now no longer dies in i3 and is used in
12129 i2 but does not die in i2, and place is between i2
12130 and i3, then we may need to move a link from place to
12131 i2. */
12132 if (i2 && INSN_UID (place) <= max_uid_cuid
12133 && INSN_CUID (place) > INSN_CUID (i2)
663522cb
KH
12134 && from_insn
12135 && INSN_CUID (from_insn) > INSN_CUID (i2)
d3a923ee
RH
12136 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12137 {
12138 rtx links = LOG_LINKS (place);
12139 LOG_LINKS (place) = 0;
12140 distribute_links (links);
12141 }
12142 break;
12143 }
12144
a813c111 12145 if (tem == BB_HEAD (bb))
230d793d 12146 break;
38d8473f 12147 }
663522cb 12148
d3a923ee
RH
12149 /* We haven't found an insn for the death note and it
12150 is still a REG_DEAD note, but we have hit the beginning
12151 of the block. If the existing life info says the reg
715e7fbc 12152 was dead, there's nothing left to do. Otherwise, we'll
e7139885
RH
12153 need to do a global life update after combine. */
12154 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12155 && REGNO_REG_SET_P (bb->global_live_at_start,
12156 REGNO (XEXP (note, 0))))
4977bab6 12157 SET_BIT (refresh_blocks, this_basic_block->index);
38d8473f 12158 }
230d793d
RS
12159
12160 /* If the register is set or already dead at PLACE, we needn't do
e5e809f4 12161 anything with this note if it is still a REG_DEAD note.
e8679703 12162 We check here if it is set at all, not if is it totally replaced,
e5e809f4
JL
12163 which is what `dead_or_set_p' checks, so also check for it being
12164 set partially. */
12165
230d793d
RS
12166 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12167 {
770ae6cc 12168 unsigned int regno = REGNO (XEXP (note, 0));
230d793d 12169
e7139885
RH
12170 /* Similarly, if the instruction on which we want to place
12171 the note is a noop, we'll need do a global live update
12172 after we remove them in delete_noop_moves. */
12173 if (noop_move_p (place))
4977bab6 12174 SET_BIT (refresh_blocks, this_basic_block->index);
e7139885 12175
230d793d
RS
12176 if (dead_or_set_p (place, XEXP (note, 0))
12177 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12178 {
12179 /* Unless the register previously died in PLACE, clear
5eaad481 12180 last_death. [I no longer understand why this is
230d793d 12181 being done.] */
5eaad481
PB
12182 if (reg_stat[regno].last_death != place)
12183 reg_stat[regno].last_death = 0;
230d793d
RS
12184 place = 0;
12185 }
12186 else
5eaad481 12187 reg_stat[regno].last_death = place;
230d793d
RS
12188
12189 /* If this is a death note for a hard reg that is occupying
12190 multiple registers, ensure that we are still using all
12191 parts of the object. If we find a piece of the object
03afaf36
R
12192 that is unused, we must arrange for an appropriate REG_DEAD
12193 note to be added for it. However, we can't just emit a USE
12194 and tag the note to it, since the register might actually
12195 be dead; so we recourse, and the recursive call then finds
12196 the previous insn that used this register. */
230d793d
RS
12197
12198 if (place && regno < FIRST_PSEUDO_REGISTER
66fd46b6 12199 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
230d793d 12200 {
770ae6cc 12201 unsigned int endregno
66fd46b6
JH
12202 = regno + hard_regno_nregs[regno]
12203 [GET_MODE (XEXP (note, 0))];
230d793d 12204 int all_used = 1;
770ae6cc 12205 unsigned int i;
230d793d
RS
12206
12207 for (i = regno; i < endregno; i++)
03afaf36
R
12208 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12209 && ! find_regno_fusage (place, USE, i))
12210 || dead_or_set_regno_p (place, i))
12211 all_used = 0;
a394b17b 12212
230d793d
RS
12213 if (! all_used)
12214 {
12215 /* Put only REG_DEAD notes for pieces that are
03afaf36 12216 not already dead or set. */
230d793d 12217
03afaf36 12218 for (i = regno; i < endregno;
66fd46b6 12219 i += hard_regno_nregs[i][reg_raw_mode[i]])
230d793d 12220 {
e50126e8 12221 rtx piece = regno_reg_rtx[i];
f6366fc7 12222 basic_block bb = this_basic_block;
230d793d 12223
03afaf36 12224 if (! dead_or_set_p (place, piece)
230d793d
RS
12225 && ! reg_bitfield_target_p (piece,
12226 PATTERN (place)))
03afaf36
R
12227 {
12228 rtx new_note
12229 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12230
12231 distribute_notes (new_note, place, place,
72531479 12232 NULL_RTX);
03afaf36 12233 }
c762163e
R
12234 else if (! refers_to_regno_p (i, i + 1,
12235 PATTERN (place), 0)
12236 && ! find_regno_fusage (place, USE, i))
12237 for (tem = PREV_INSN (place); ;
12238 tem = PREV_INSN (tem))
12239 {
12240 if (! INSN_P (tem))
12241 {
a813c111 12242 if (tem == BB_HEAD (bb))
c762163e
R
12243 {
12244 SET_BIT (refresh_blocks,
f6366fc7 12245 this_basic_block->index);
c762163e
R
12246 break;
12247 }
12248 continue;
12249 }
12250 if (dead_or_set_p (tem, piece)
12251 || reg_bitfield_target_p (piece,
12252 PATTERN (tem)))
12253 {
12254 REG_NOTES (tem)
71fd5a51 12255 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
c762163e
R
12256 REG_NOTES (tem));
12257 break;
12258 }
12259 }
12260
230d793d
RS
12261 }
12262
12263 place = 0;
12264 }
12265 }
12266 }
12267 break;
12268
12269 default:
12270 /* Any other notes should not be present at this point in the
12271 compilation. */
341c100f 12272 gcc_unreachable ();
230d793d
RS
12273 }
12274
12275 if (place)
12276 {
12277 XEXP (note, 1) = REG_NOTES (place);
12278 REG_NOTES (place) = note;
12279 }
1a26b032
RK
12280 else if ((REG_NOTE_KIND (note) == REG_DEAD
12281 || REG_NOTE_KIND (note) == REG_UNUSED)
f8cfc6aa 12282 && REG_P (XEXP (note, 0)))
b1f21e0a 12283 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
230d793d
RS
12284
12285 if (place2)
1a26b032
RK
12286 {
12287 if ((REG_NOTE_KIND (note) == REG_DEAD
12288 || REG_NOTE_KIND (note) == REG_UNUSED)
f8cfc6aa 12289 && REG_P (XEXP (note, 0)))
b1f21e0a 12290 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
1a26b032 12291
38a448ca
RH
12292 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12293 REG_NOTE_KIND (note),
12294 XEXP (note, 0),
12295 REG_NOTES (place2));
1a26b032 12296 }
230d793d
RS
12297 }
12298}
12299\f
12300/* Similarly to above, distribute the LOG_LINKS that used to be present on
8c03ca00
EB
12301 I3, I2, and I1 to new locations. This is also called to add a link
12302 pointing at I3 when I3's destination is changed. */
230d793d
RS
12303
12304static void
79a490a9 12305distribute_links (rtx links)
230d793d
RS
12306{
12307 rtx link, next_link;
12308
12309 for (link = links; link; link = next_link)
12310 {
12311 rtx place = 0;
12312 rtx insn;
12313 rtx set, reg;
12314
12315 next_link = XEXP (link, 1);
12316
12317 /* If the insn that this link points to is a NOTE or isn't a single
12318 set, ignore it. In the latter case, it isn't clear what we
663522cb 12319 can do other than ignore the link, since we can't tell which
230d793d
RS
12320 register it was for. Such links wouldn't be used by combine
12321 anyway.
12322
12323 It is not possible for the destination of the target of the link to
12324 have been changed by combine. The only potential of this is if we
12325 replace I3, I2, and I1 by I3 and I2. But in that case the
12326 destination of I2 also remains unchanged. */
12327
4b4bf941 12328 if (NOTE_P (XEXP (link, 0))
230d793d
RS
12329 || (set = single_set (XEXP (link, 0))) == 0)
12330 continue;
12331
12332 reg = SET_DEST (set);
12333 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
230d793d
RS
12334 || GET_CODE (reg) == STRICT_LOW_PART)
12335 reg = XEXP (reg, 0);
12336
12337 /* A LOG_LINK is defined as being placed on the first insn that uses
12338 a register and points to the insn that sets the register. Start
12339 searching at the next insn after the target of the link and stop
12340 when we reach a set of the register or the end of the basic block.
12341
12342 Note that this correctly handles the link that used to point from
5089e22e 12343 I3 to I2. Also note that not much searching is typically done here
230d793d
RS
12344 since most links don't point very far away. */
12345
12346 for (insn = NEXT_INSN (XEXP (link, 0));
f6366fc7 12347 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
a813c111 12348 || BB_HEAD (this_basic_block->next_bb) != insn));
230d793d 12349 insn = NEXT_INSN (insn))
2c3c49de 12350 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
230d793d
RS
12351 {
12352 if (reg_referenced_p (reg, PATTERN (insn)))
12353 place = insn;
12354 break;
12355 }
4b4bf941 12356 else if (CALL_P (insn)
663522cb 12357 && find_reg_fusage (insn, USE, reg))
6e2d1486
RK
12358 {
12359 place = insn;
12360 break;
12361 }
892c9f1f
RK
12362 else if (INSN_P (insn) && reg_set_p (reg, insn))
12363 break;
230d793d
RS
12364
12365 /* If we found a place to put the link, place it there unless there
12366 is already a link to the same insn as LINK at that point. */
12367
12368 if (place)
12369 {
12370 rtx link2;
12371
12372 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12373 if (XEXP (link2, 0) == XEXP (link, 0))
12374 break;
12375
12376 if (link2 == 0)
12377 {
12378 XEXP (link, 1) = LOG_LINKS (place);
12379 LOG_LINKS (place) = link;
abe6e52f
RK
12380
12381 /* Set added_links_insn to the earliest insn we added a
12382 link to. */
663522cb 12383 if (added_links_insn == 0
abe6e52f
RK
12384 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12385 added_links_insn = place;
230d793d
RS
12386 }
12387 }
12388 }
12389}
12390\f
67962db5
RS
12391/* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12392 Check whether the expression pointer to by LOC is a register or
12393 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12394 Otherwise return zero. */
12395
12396static int
12397unmentioned_reg_p_1 (rtx *loc, void *expr)
12398{
12399 rtx x = *loc;
12400
12401 if (x != NULL_RTX
3c0cb5de 12402 && (REG_P (x) || MEM_P (x))
67962db5
RS
12403 && ! reg_mentioned_p (x, (rtx) expr))
12404 return 1;
12405 return 0;
12406}
12407
12408/* Check for any register or memory mentioned in EQUIV that is not
12409 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12410 of EXPR where some registers may have been replaced by constants. */
12411
12412static bool
12413unmentioned_reg_p (rtx equiv, rtx expr)
12414{
12415 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12416}
12417\f
1427d6d2
RK
12418/* Compute INSN_CUID for INSN, which is an insn made by combine. */
12419
12420static int
79a490a9 12421insn_cuid (rtx insn)
1427d6d2
RK
12422{
12423 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
4b4bf941 12424 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
1427d6d2
RK
12425 insn = NEXT_INSN (insn);
12426
341c100f 12427 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
1427d6d2
RK
12428
12429 return INSN_CUID (insn);
12430}
12431\f
230d793d 12432void
79a490a9 12433dump_combine_stats (FILE *file)
230d793d 12434{
ab87f8c8 12435 fnotice
230d793d
RS
12436 (file,
12437 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12438 combine_attempts, combine_merges, combine_extras, combine_successes);
12439}
12440
12441void
79a490a9 12442dump_combine_total_stats (FILE *file)
230d793d 12443{
ab87f8c8 12444 fnotice
230d793d
RS
12445 (file,
12446 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12447 total_attempts, total_merges, total_extras, total_successes);
12448}
This page took 4.670249 seconds and 5 git commands to generate.