]>
Commit | Line | Data |
---|---|---|
230d793d | 1 | /* Optimize by combining instructions for GNU compiler. |
34c8be72 | 2 | Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc. |
230d793d RS |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | /* This module is essentially the "combiner" phase of the U. of Arizona | |
22 | Portable Optimizer, but redone to work on our list-structured | |
23 | representation for RTL instead of their string representation. | |
24 | ||
25 | The LOG_LINKS of each insn identify the most recent assignment | |
26 | to each REG used in the insn. It is a list of previous insns, | |
27 | each of which contains a SET for a REG that is used in this insn | |
28 | and not used or set in between. LOG_LINKs never cross basic blocks. | |
29 | They were set up by the preceding pass (lifetime analysis). | |
30 | ||
31 | We try to combine each pair of insns joined by a logical link. | |
32 | We also try to combine triples of insns A, B and C when | |
33 | C has a link back to B and B has a link back to A. | |
34 | ||
35 | LOG_LINKS does not have links for use of the CC0. They don't | |
36 | need to, because the insn that sets the CC0 is always immediately | |
37 | before the insn that tests it. So we always regard a branch | |
38 | insn as having a logical link to the preceding insn. The same is true | |
39 | for an insn explicitly using CC0. | |
40 | ||
41 | We check (with use_crosses_set_p) to avoid combining in such a way | |
42 | as to move a computation to a place where its value would be different. | |
43 | ||
44 | Combination is done by mathematically substituting the previous | |
45 | insn(s) values for the regs they set into the expressions in | |
46 | the later insns that refer to these regs. If the result is a valid insn | |
47 | for our target machine, according to the machine description, | |
48 | we install it, delete the earlier insns, and update the data flow | |
49 | information (LOG_LINKS and REG_NOTES) for what we did. | |
50 | ||
51 | There are a few exceptions where the dataflow information created by | |
52 | flow.c aren't completely updated: | |
53 | ||
54 | - reg_live_length is not updated | |
55 | - reg_n_refs is not adjusted in the rare case when a register is | |
56 | no longer required in a computation | |
57 | - there are extremely rare cases (see distribute_regnotes) when a | |
58 | REG_DEAD note is lost | |
59 | - a LOG_LINKS entry that refers to an insn with multiple SETs may be | |
60 | removed because there is no way to know which register it was | |
61 | linking | |
62 | ||
63 | To simplify substitution, we combine only when the earlier insn(s) | |
64 | consist of only a single assignment. To simplify updating afterward, | |
65 | we never combine when a subroutine call appears in the middle. | |
66 | ||
67 | Since we do not represent assignments to CC0 explicitly except when that | |
68 | is all an insn does, there is no LOG_LINKS entry in an insn that uses | |
69 | the condition code for the insn that set the condition code. | |
70 | Fortunately, these two insns must be consecutive. | |
71 | Therefore, every JUMP_INSN is taken to have an implicit logical link | |
72 | to the preceding insn. This is not quite right, since non-jumps can | |
73 | also use the condition code; but in practice such insns would not | |
74 | combine anyway. */ | |
75 | ||
230d793d | 76 | #include "config.h" |
4f90e4a0 | 77 | #ifdef __STDC__ |
04fe4385 | 78 | #include <stdarg.h> |
4f90e4a0 | 79 | #else |
04fe4385 | 80 | #include <varargs.h> |
4f90e4a0 | 81 | #endif |
dfa3449b | 82 | |
9c3b4c8b RS |
83 | /* Must precede rtl.h for FFS. */ |
84 | #include <stdio.h> | |
85 | ||
230d793d RS |
86 | #include "rtl.h" |
87 | #include "flags.h" | |
88 | #include "regs.h" | |
55310dad | 89 | #include "hard-reg-set.h" |
230d793d RS |
90 | #include "expr.h" |
91 | #include "basic-block.h" | |
92 | #include "insn-config.h" | |
93 | #include "insn-flags.h" | |
94 | #include "insn-codes.h" | |
95 | #include "insn-attr.h" | |
96 | #include "recog.h" | |
97 | #include "real.h" | |
98 | ||
99 | /* It is not safe to use ordinary gen_lowpart in combine. | |
100 | Use gen_lowpart_for_combine instead. See comments there. */ | |
101 | #define gen_lowpart dont_use_gen_lowpart_you_dummy | |
102 | ||
103 | /* Number of attempts to combine instructions in this function. */ | |
104 | ||
105 | static int combine_attempts; | |
106 | ||
107 | /* Number of attempts that got as far as substitution in this function. */ | |
108 | ||
109 | static int combine_merges; | |
110 | ||
111 | /* Number of instructions combined with added SETs in this function. */ | |
112 | ||
113 | static int combine_extras; | |
114 | ||
115 | /* Number of instructions combined in this function. */ | |
116 | ||
117 | static int combine_successes; | |
118 | ||
119 | /* Totals over entire compilation. */ | |
120 | ||
121 | static int total_attempts, total_merges, total_extras, total_successes; | |
9210df58 RK |
122 | |
123 | /* Define a defulat value for REVERSIBLE_CC_MODE. | |
124 | We can never assume that a condition code mode is safe to reverse unless | |
125 | the md tells us so. */ | |
126 | #ifndef REVERSIBLE_CC_MODE | |
127 | #define REVERSIBLE_CC_MODE(MODE) 0 | |
128 | #endif | |
230d793d RS |
129 | \f |
130 | /* Vector mapping INSN_UIDs to cuids. | |
5089e22e | 131 | The cuids are like uids but increase monotonically always. |
230d793d RS |
132 | Combine always uses cuids so that it can compare them. |
133 | But actually renumbering the uids, which we used to do, | |
134 | proves to be a bad idea because it makes it hard to compare | |
135 | the dumps produced by earlier passes with those from later passes. */ | |
136 | ||
137 | static int *uid_cuid; | |
4255220d | 138 | static int max_uid_cuid; |
230d793d RS |
139 | |
140 | /* Get the cuid of an insn. */ | |
141 | ||
4255220d JW |
142 | #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid_cuid \ |
143 | ? (abort(), 0) \ | |
144 | : uid_cuid[INSN_UID (INSN)]) | |
230d793d RS |
145 | |
146 | /* Maximum register number, which is the size of the tables below. */ | |
147 | ||
148 | static int combine_max_regno; | |
149 | ||
150 | /* Record last point of death of (hard or pseudo) register n. */ | |
151 | ||
152 | static rtx *reg_last_death; | |
153 | ||
154 | /* Record last point of modification of (hard or pseudo) register n. */ | |
155 | ||
156 | static rtx *reg_last_set; | |
157 | ||
158 | /* Record the cuid of the last insn that invalidated memory | |
159 | (anything that writes memory, and subroutine calls, but not pushes). */ | |
160 | ||
161 | static int mem_last_set; | |
162 | ||
163 | /* Record the cuid of the last CALL_INSN | |
164 | so we can tell whether a potential combination crosses any calls. */ | |
165 | ||
166 | static int last_call_cuid; | |
167 | ||
168 | /* When `subst' is called, this is the insn that is being modified | |
169 | (by combining in a previous insn). The PATTERN of this insn | |
170 | is still the old pattern partially modified and it should not be | |
171 | looked at, but this may be used to examine the successors of the insn | |
172 | to judge whether a simplification is valid. */ | |
173 | ||
174 | static rtx subst_insn; | |
175 | ||
176 | /* This is the lowest CUID that `subst' is currently dealing with. | |
177 | get_last_value will not return a value if the register was set at or | |
178 | after this CUID. If not for this mechanism, we could get confused if | |
179 | I2 or I1 in try_combine were an insn that used the old value of a register | |
180 | to obtain a new value. In that case, we might erroneously get the | |
181 | new value of the register when we wanted the old one. */ | |
182 | ||
183 | static int subst_low_cuid; | |
184 | ||
6e25d159 RK |
185 | /* This contains any hard registers that are used in newpat; reg_dead_at_p |
186 | must consider all these registers to be always live. */ | |
187 | ||
188 | static HARD_REG_SET newpat_used_regs; | |
189 | ||
abe6e52f RK |
190 | /* This is an insn to which a LOG_LINKS entry has been added. If this |
191 | insn is the earlier than I2 or I3, combine should rescan starting at | |
192 | that location. */ | |
193 | ||
194 | static rtx added_links_insn; | |
195 | ||
230d793d RS |
196 | /* This is the value of undobuf.num_undo when we started processing this |
197 | substitution. This will prevent gen_rtx_combine from re-used a piece | |
198 | from the previous expression. Doing so can produce circular rtl | |
199 | structures. */ | |
200 | ||
201 | static int previous_num_undos; | |
ca5c3ef4 | 202 | |
0d4d42c3 RK |
203 | /* Basic block number of the block in which we are performing combines. */ |
204 | static int this_basic_block; | |
230d793d RS |
205 | \f |
206 | /* The next group of arrays allows the recording of the last value assigned | |
207 | to (hard or pseudo) register n. We use this information to see if a | |
5089e22e | 208 | operation being processed is redundant given a prior operation performed |
230d793d RS |
209 | on the register. For example, an `and' with a constant is redundant if |
210 | all the zero bits are already known to be turned off. | |
211 | ||
212 | We use an approach similar to that used by cse, but change it in the | |
213 | following ways: | |
214 | ||
215 | (1) We do not want to reinitialize at each label. | |
216 | (2) It is useful, but not critical, to know the actual value assigned | |
217 | to a register. Often just its form is helpful. | |
218 | ||
219 | Therefore, we maintain the following arrays: | |
220 | ||
221 | reg_last_set_value the last value assigned | |
222 | reg_last_set_label records the value of label_tick when the | |
223 | register was assigned | |
224 | reg_last_set_table_tick records the value of label_tick when a | |
225 | value using the register is assigned | |
226 | reg_last_set_invalid set to non-zero when it is not valid | |
227 | to use the value of this register in some | |
228 | register's value | |
229 | ||
230 | To understand the usage of these tables, it is important to understand | |
231 | the distinction between the value in reg_last_set_value being valid | |
232 | and the register being validly contained in some other expression in the | |
233 | table. | |
234 | ||
235 | Entry I in reg_last_set_value is valid if it is non-zero, and either | |
236 | reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick. | |
237 | ||
238 | Register I may validly appear in any expression returned for the value | |
239 | of another register if reg_n_sets[i] is 1. It may also appear in the | |
240 | value for register J if reg_last_set_label[i] < reg_last_set_label[j] or | |
241 | reg_last_set_invalid[j] is zero. | |
242 | ||
243 | If an expression is found in the table containing a register which may | |
244 | not validly appear in an expression, the register is replaced by | |
245 | something that won't match, (clobber (const_int 0)). | |
246 | ||
247 | reg_last_set_invalid[i] is set non-zero when register I is being assigned | |
248 | to and reg_last_set_table_tick[i] == label_tick. */ | |
249 | ||
250 | /* Record last value assigned to (hard or pseudo) register n. */ | |
251 | ||
252 | static rtx *reg_last_set_value; | |
253 | ||
254 | /* Record the value of label_tick when the value for register n is placed in | |
255 | reg_last_set_value[n]. */ | |
256 | ||
568356af | 257 | static int *reg_last_set_label; |
230d793d RS |
258 | |
259 | /* Record the value of label_tick when an expression involving register n | |
260 | is placed in reg_last_set_value. */ | |
261 | ||
568356af | 262 | static int *reg_last_set_table_tick; |
230d793d RS |
263 | |
264 | /* Set non-zero if references to register n in expressions should not be | |
265 | used. */ | |
266 | ||
267 | static char *reg_last_set_invalid; | |
268 | ||
269 | /* Incremented for each label. */ | |
270 | ||
568356af | 271 | static int label_tick; |
230d793d RS |
272 | |
273 | /* Some registers that are set more than once and used in more than one | |
274 | basic block are nevertheless always set in similar ways. For example, | |
275 | a QImode register may be loaded from memory in two places on a machine | |
276 | where byte loads zero extend. | |
277 | ||
951553af | 278 | We record in the following array what we know about the nonzero |
230d793d RS |
279 | bits of a register, specifically which bits are known to be zero. |
280 | ||
281 | If an entry is zero, it means that we don't know anything special. */ | |
282 | ||
55310dad | 283 | static unsigned HOST_WIDE_INT *reg_nonzero_bits; |
230d793d | 284 | |
951553af | 285 | /* Mode used to compute significance in reg_nonzero_bits. It is the largest |
5f4f0e22 | 286 | integer mode that can fit in HOST_BITS_PER_WIDE_INT. */ |
230d793d | 287 | |
951553af | 288 | static enum machine_mode nonzero_bits_mode; |
230d793d | 289 | |
d0ab8cd3 RK |
290 | /* Nonzero if we know that a register has some leading bits that are always |
291 | equal to the sign bit. */ | |
292 | ||
293 | static char *reg_sign_bit_copies; | |
294 | ||
951553af | 295 | /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used. |
1a26b032 RK |
296 | It is zero while computing them and after combine has completed. This |
297 | former test prevents propagating values based on previously set values, | |
298 | which can be incorrect if a variable is modified in a loop. */ | |
230d793d | 299 | |
951553af | 300 | static int nonzero_sign_valid; |
55310dad RK |
301 | |
302 | /* These arrays are maintained in parallel with reg_last_set_value | |
303 | and are used to store the mode in which the register was last set, | |
304 | the bits that were known to be zero when it was last set, and the | |
305 | number of sign bits copies it was known to have when it was last set. */ | |
306 | ||
307 | static enum machine_mode *reg_last_set_mode; | |
308 | static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits; | |
309 | static char *reg_last_set_sign_bit_copies; | |
230d793d RS |
310 | \f |
311 | /* Record one modification to rtl structure | |
312 | to be undone by storing old_contents into *where. | |
313 | is_int is 1 if the contents are an int. */ | |
314 | ||
315 | struct undo | |
316 | { | |
230d793d | 317 | int is_int; |
f5393ab9 RS |
318 | union {rtx r; int i;} old_contents; |
319 | union {rtx *r; int *i;} where; | |
230d793d RS |
320 | }; |
321 | ||
322 | /* Record a bunch of changes to be undone, up to MAX_UNDO of them. | |
323 | num_undo says how many are currently recorded. | |
324 | ||
325 | storage is nonzero if we must undo the allocation of new storage. | |
326 | The value of storage is what to pass to obfree. | |
327 | ||
328 | other_insn is nonzero if we have modified some other insn in the process | |
329 | of working on subst_insn. It must be verified too. */ | |
330 | ||
331 | #define MAX_UNDO 50 | |
332 | ||
333 | struct undobuf | |
334 | { | |
335 | int num_undo; | |
336 | char *storage; | |
337 | struct undo undo[MAX_UNDO]; | |
338 | rtx other_insn; | |
339 | }; | |
340 | ||
341 | static struct undobuf undobuf; | |
342 | ||
cc876596 | 343 | /* Substitute NEWVAL, an rtx expression, into INTO, a place in some |
230d793d | 344 | insn. The substitution can be undone by undo_all. If INTO is already |
cc876596 RK |
345 | set to NEWVAL, do not record this change. Because computing NEWVAL might |
346 | also call SUBST, we have to compute it before we put anything into | |
347 | the undo table. */ | |
230d793d RS |
348 | |
349 | #define SUBST(INTO, NEWVAL) \ | |
cc876596 RK |
350 | do { rtx _new = (NEWVAL); \ |
351 | if (undobuf.num_undo < MAX_UNDO) \ | |
230d793d | 352 | { \ |
230d793d | 353 | undobuf.undo[undobuf.num_undo].is_int = 0; \ |
f5393ab9 RS |
354 | undobuf.undo[undobuf.num_undo].where.r = &INTO; \ |
355 | undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \ | |
cc876596 | 356 | INTO = _new; \ |
f5393ab9 | 357 | if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \ |
230d793d RS |
358 | undobuf.num_undo++; \ |
359 | } \ | |
360 | } while (0) | |
361 | ||
362 | /* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT | |
363 | expression. | |
364 | Note that substitution for the value of a CONST_INT is not safe. */ | |
365 | ||
366 | #define SUBST_INT(INTO, NEWVAL) \ | |
367 | do { if (undobuf.num_undo < MAX_UNDO) \ | |
368 | { \ | |
7c046e4e RK |
369 | undobuf.undo[undobuf.num_undo].is_int = 1; \ |
370 | undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \ | |
371 | undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \ | |
230d793d | 372 | INTO = NEWVAL; \ |
7c046e4e | 373 | if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \ |
230d793d RS |
374 | undobuf.num_undo++; \ |
375 | } \ | |
376 | } while (0) | |
377 | ||
378 | /* Number of times the pseudo being substituted for | |
379 | was found and replaced. */ | |
380 | ||
381 | static int n_occurrences; | |
382 | ||
ef026f91 | 383 | static void init_reg_last_arrays PROTO(()); |
fe2db4fb RK |
384 | static void setup_incoming_promotions PROTO(()); |
385 | static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx)); | |
386 | static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *)); | |
387 | static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *)); | |
388 | static rtx try_combine PROTO((rtx, rtx, rtx)); | |
389 | static void undo_all PROTO((void)); | |
390 | static rtx *find_split_point PROTO((rtx *, rtx)); | |
391 | static rtx subst PROTO((rtx, rtx, rtx, int, int)); | |
8079805d RK |
392 | static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int)); |
393 | static rtx simplify_if_then_else PROTO((rtx)); | |
394 | static rtx simplify_set PROTO((rtx)); | |
395 | static rtx simplify_logical PROTO((rtx, int)); | |
fe2db4fb RK |
396 | static rtx expand_compound_operation PROTO((rtx)); |
397 | static rtx expand_field_assignment PROTO((rtx)); | |
398 | static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int, | |
399 | int, int, int)); | |
71923da7 | 400 | static rtx extract_left_shift PROTO((rtx, int)); |
fe2db4fb RK |
401 | static rtx make_compound_operation PROTO((rtx, enum rtx_code)); |
402 | static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *)); | |
6139ff20 | 403 | static rtx force_to_mode PROTO((rtx, enum machine_mode, |
e3d616e3 | 404 | unsigned HOST_WIDE_INT, rtx, int)); |
abe6e52f | 405 | static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *)); |
fe2db4fb RK |
406 | static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx)); |
407 | static rtx make_field_assignment PROTO((rtx)); | |
408 | static rtx apply_distributive_law PROTO((rtx)); | |
409 | static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx, | |
410 | unsigned HOST_WIDE_INT)); | |
411 | static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode)); | |
412 | static int num_sign_bit_copies PROTO((rtx, enum machine_mode)); | |
413 | static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *, | |
414 | enum rtx_code, HOST_WIDE_INT, | |
415 | enum machine_mode, int *)); | |
416 | static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode, | |
417 | rtx, int)); | |
418 | static int recog_for_combine PROTO((rtx *, rtx, rtx *)); | |
419 | static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx)); | |
d18225c4 | 420 | static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode, |
4f90e4a0 | 421 | ...)); |
fe2db4fb RK |
422 | static rtx gen_binary PROTO((enum rtx_code, enum machine_mode, |
423 | rtx, rtx)); | |
0c1c8ea6 RK |
424 | static rtx gen_unary PROTO((enum rtx_code, enum machine_mode, |
425 | enum machine_mode, rtx)); | |
fe2db4fb RK |
426 | static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *)); |
427 | static int reversible_comparison_p PROTO((rtx)); | |
428 | static void update_table_tick PROTO((rtx)); | |
429 | static void record_value_for_reg PROTO((rtx, rtx, rtx)); | |
430 | static void record_dead_and_set_regs_1 PROTO((rtx, rtx)); | |
431 | static void record_dead_and_set_regs PROTO((rtx)); | |
432 | static int get_last_value_validate PROTO((rtx *, int, int)); | |
433 | static rtx get_last_value PROTO((rtx)); | |
434 | static int use_crosses_set_p PROTO((rtx, int)); | |
435 | static void reg_dead_at_p_1 PROTO((rtx, rtx)); | |
436 | static int reg_dead_at_p PROTO((rtx, rtx)); | |
437 | static void move_deaths PROTO((rtx, int, rtx, rtx *)); | |
438 | static int reg_bitfield_target_p PROTO((rtx, rtx)); | |
439 | static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx)); | |
440 | static void distribute_links PROTO((rtx)); | |
6e25d159 | 441 | static void mark_used_regs_combine PROTO((rtx)); |
230d793d RS |
442 | \f |
443 | /* Main entry point for combiner. F is the first insn of the function. | |
444 | NREGS is the first unused pseudo-reg number. */ | |
445 | ||
446 | void | |
447 | combine_instructions (f, nregs) | |
448 | rtx f; | |
449 | int nregs; | |
450 | { | |
451 | register rtx insn, next, prev; | |
452 | register int i; | |
453 | register rtx links, nextlinks; | |
454 | ||
455 | combine_attempts = 0; | |
456 | combine_merges = 0; | |
457 | combine_extras = 0; | |
458 | combine_successes = 0; | |
bef9925b | 459 | undobuf.num_undo = previous_num_undos = 0; |
230d793d RS |
460 | |
461 | combine_max_regno = nregs; | |
462 | ||
ef026f91 RS |
463 | reg_nonzero_bits |
464 | = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT)); | |
465 | reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char)); | |
466 | ||
4c9a05bc | 467 | bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT)); |
ef026f91 RS |
468 | bzero (reg_sign_bit_copies, nregs * sizeof (char)); |
469 | ||
230d793d RS |
470 | reg_last_death = (rtx *) alloca (nregs * sizeof (rtx)); |
471 | reg_last_set = (rtx *) alloca (nregs * sizeof (rtx)); | |
472 | reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx)); | |
568356af RK |
473 | reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int)); |
474 | reg_last_set_label = (int *) alloca (nregs * sizeof (int)); | |
5f4f0e22 | 475 | reg_last_set_invalid = (char *) alloca (nregs * sizeof (char)); |
55310dad RK |
476 | reg_last_set_mode |
477 | = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode)); | |
478 | reg_last_set_nonzero_bits | |
479 | = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT)); | |
480 | reg_last_set_sign_bit_copies | |
481 | = (char *) alloca (nregs * sizeof (char)); | |
482 | ||
ef026f91 | 483 | init_reg_last_arrays (); |
230d793d RS |
484 | |
485 | init_recog_no_volatile (); | |
486 | ||
487 | /* Compute maximum uid value so uid_cuid can be allocated. */ | |
488 | ||
489 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) | |
490 | if (INSN_UID (insn) > i) | |
491 | i = INSN_UID (insn); | |
492 | ||
493 | uid_cuid = (int *) alloca ((i + 1) * sizeof (int)); | |
4255220d | 494 | max_uid_cuid = i; |
230d793d | 495 | |
951553af | 496 | nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0); |
230d793d | 497 | |
951553af | 498 | /* Don't use reg_nonzero_bits when computing it. This can cause problems |
230d793d RS |
499 | when, for example, we have j <<= 1 in a loop. */ |
500 | ||
951553af | 501 | nonzero_sign_valid = 0; |
230d793d RS |
502 | |
503 | /* Compute the mapping from uids to cuids. | |
504 | Cuids are numbers assigned to insns, like uids, | |
505 | except that cuids increase monotonically through the code. | |
506 | ||
507 | Scan all SETs and see if we can deduce anything about what | |
951553af | 508 | bits are known to be zero for some registers and how many copies |
d79f08e0 RK |
509 | of the sign bit are known to exist for those registers. |
510 | ||
511 | Also set any known values so that we can use it while searching | |
512 | for what bits are known to be set. */ | |
513 | ||
514 | label_tick = 1; | |
230d793d | 515 | |
7988fd36 RK |
516 | setup_incoming_promotions (); |
517 | ||
230d793d RS |
518 | for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) |
519 | { | |
4255220d | 520 | uid_cuid[INSN_UID (insn)] = ++i; |
d79f08e0 RK |
521 | subst_low_cuid = i; |
522 | subst_insn = insn; | |
523 | ||
230d793d | 524 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') |
d79f08e0 RK |
525 | { |
526 | note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies); | |
527 | record_dead_and_set_regs (insn); | |
528 | } | |
529 | ||
530 | if (GET_CODE (insn) == CODE_LABEL) | |
531 | label_tick++; | |
230d793d RS |
532 | } |
533 | ||
951553af | 534 | nonzero_sign_valid = 1; |
230d793d RS |
535 | |
536 | /* Now scan all the insns in forward order. */ | |
537 | ||
0d4d42c3 | 538 | this_basic_block = -1; |
230d793d RS |
539 | label_tick = 1; |
540 | last_call_cuid = 0; | |
541 | mem_last_set = 0; | |
ef026f91 | 542 | init_reg_last_arrays (); |
7988fd36 RK |
543 | setup_incoming_promotions (); |
544 | ||
230d793d RS |
545 | for (insn = f; insn; insn = next ? next : NEXT_INSN (insn)) |
546 | { | |
547 | next = 0; | |
548 | ||
0d4d42c3 | 549 | /* If INSN starts a new basic block, update our basic block number. */ |
f085c9cd | 550 | if (this_basic_block + 1 < n_basic_blocks |
0d4d42c3 RK |
551 | && basic_block_head[this_basic_block + 1] == insn) |
552 | this_basic_block++; | |
553 | ||
230d793d RS |
554 | if (GET_CODE (insn) == CODE_LABEL) |
555 | label_tick++; | |
556 | ||
0d4d42c3 | 557 | else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') |
230d793d RS |
558 | { |
559 | /* Try this insn with each insn it links back to. */ | |
560 | ||
561 | for (links = LOG_LINKS (insn); links; links = XEXP (links, 1)) | |
5f4f0e22 | 562 | if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0) |
230d793d RS |
563 | goto retry; |
564 | ||
565 | /* Try each sequence of three linked insns ending with this one. */ | |
566 | ||
567 | for (links = LOG_LINKS (insn); links; links = XEXP (links, 1)) | |
568 | for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks; | |
569 | nextlinks = XEXP (nextlinks, 1)) | |
570 | if ((next = try_combine (insn, XEXP (links, 0), | |
571 | XEXP (nextlinks, 0))) != 0) | |
572 | goto retry; | |
573 | ||
574 | #ifdef HAVE_cc0 | |
575 | /* Try to combine a jump insn that uses CC0 | |
576 | with a preceding insn that sets CC0, and maybe with its | |
577 | logical predecessor as well. | |
578 | This is how we make decrement-and-branch insns. | |
579 | We need this special code because data flow connections | |
580 | via CC0 do not get entered in LOG_LINKS. */ | |
581 | ||
582 | if (GET_CODE (insn) == JUMP_INSN | |
583 | && (prev = prev_nonnote_insn (insn)) != 0 | |
584 | && GET_CODE (prev) == INSN | |
585 | && sets_cc0_p (PATTERN (prev))) | |
586 | { | |
5f4f0e22 | 587 | if ((next = try_combine (insn, prev, NULL_RTX)) != 0) |
230d793d RS |
588 | goto retry; |
589 | ||
590 | for (nextlinks = LOG_LINKS (prev); nextlinks; | |
591 | nextlinks = XEXP (nextlinks, 1)) | |
592 | if ((next = try_combine (insn, prev, | |
593 | XEXP (nextlinks, 0))) != 0) | |
594 | goto retry; | |
595 | } | |
596 | ||
597 | /* Do the same for an insn that explicitly references CC0. */ | |
598 | if (GET_CODE (insn) == INSN | |
599 | && (prev = prev_nonnote_insn (insn)) != 0 | |
600 | && GET_CODE (prev) == INSN | |
601 | && sets_cc0_p (PATTERN (prev)) | |
602 | && GET_CODE (PATTERN (insn)) == SET | |
603 | && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn)))) | |
604 | { | |
5f4f0e22 | 605 | if ((next = try_combine (insn, prev, NULL_RTX)) != 0) |
230d793d RS |
606 | goto retry; |
607 | ||
608 | for (nextlinks = LOG_LINKS (prev); nextlinks; | |
609 | nextlinks = XEXP (nextlinks, 1)) | |
610 | if ((next = try_combine (insn, prev, | |
611 | XEXP (nextlinks, 0))) != 0) | |
612 | goto retry; | |
613 | } | |
614 | ||
615 | /* Finally, see if any of the insns that this insn links to | |
616 | explicitly references CC0. If so, try this insn, that insn, | |
5089e22e | 617 | and its predecessor if it sets CC0. */ |
230d793d RS |
618 | for (links = LOG_LINKS (insn); links; links = XEXP (links, 1)) |
619 | if (GET_CODE (XEXP (links, 0)) == INSN | |
620 | && GET_CODE (PATTERN (XEXP (links, 0))) == SET | |
621 | && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0)))) | |
622 | && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0 | |
623 | && GET_CODE (prev) == INSN | |
624 | && sets_cc0_p (PATTERN (prev)) | |
625 | && (next = try_combine (insn, XEXP (links, 0), prev)) != 0) | |
626 | goto retry; | |
627 | #endif | |
628 | ||
629 | /* Try combining an insn with two different insns whose results it | |
630 | uses. */ | |
631 | for (links = LOG_LINKS (insn); links; links = XEXP (links, 1)) | |
632 | for (nextlinks = XEXP (links, 1); nextlinks; | |
633 | nextlinks = XEXP (nextlinks, 1)) | |
634 | if ((next = try_combine (insn, XEXP (links, 0), | |
635 | XEXP (nextlinks, 0))) != 0) | |
636 | goto retry; | |
637 | ||
638 | if (GET_CODE (insn) != NOTE) | |
639 | record_dead_and_set_regs (insn); | |
640 | ||
641 | retry: | |
642 | ; | |
643 | } | |
644 | } | |
645 | ||
646 | total_attempts += combine_attempts; | |
647 | total_merges += combine_merges; | |
648 | total_extras += combine_extras; | |
649 | total_successes += combine_successes; | |
1a26b032 | 650 | |
951553af | 651 | nonzero_sign_valid = 0; |
230d793d | 652 | } |
ef026f91 RS |
653 | |
654 | /* Wipe the reg_last_xxx arrays in preparation for another pass. */ | |
655 | ||
656 | static void | |
657 | init_reg_last_arrays () | |
658 | { | |
659 | int nregs = combine_max_regno; | |
660 | ||
4c9a05bc RK |
661 | bzero ((char *) reg_last_death, nregs * sizeof (rtx)); |
662 | bzero ((char *) reg_last_set, nregs * sizeof (rtx)); | |
663 | bzero ((char *) reg_last_set_value, nregs * sizeof (rtx)); | |
664 | bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int)); | |
665 | bzero ((char *) reg_last_set_label, nregs * sizeof (int)); | |
ef026f91 | 666 | bzero (reg_last_set_invalid, nregs * sizeof (char)); |
4c9a05bc RK |
667 | bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode)); |
668 | bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT)); | |
ef026f91 RS |
669 | bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char)); |
670 | } | |
230d793d | 671 | \f |
7988fd36 RK |
672 | /* Set up any promoted values for incoming argument registers. */ |
673 | ||
ee791cc3 | 674 | static void |
7988fd36 RK |
675 | setup_incoming_promotions () |
676 | { | |
677 | #ifdef PROMOTE_FUNCTION_ARGS | |
678 | int regno; | |
679 | rtx reg; | |
680 | enum machine_mode mode; | |
681 | int unsignedp; | |
682 | rtx first = get_insns (); | |
683 | ||
684 | for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) | |
685 | if (FUNCTION_ARG_REGNO_P (regno) | |
686 | && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0) | |
687 | record_value_for_reg (reg, first, | |
688 | gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, | |
500c518b RK |
689 | GET_MODE (reg), |
690 | gen_rtx (CLOBBER, mode, const0_rtx))); | |
7988fd36 RK |
691 | #endif |
692 | } | |
693 | \f | |
230d793d | 694 | /* Called via note_stores. If X is a pseudo that is used in more than |
5f4f0e22 | 695 | one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being |
951553af | 696 | set, record what bits are known zero. If we are clobbering X, |
230d793d RS |
697 | ignore this "set" because the clobbered value won't be used. |
698 | ||
699 | If we are setting only a portion of X and we can't figure out what | |
700 | portion, assume all bits will be used since we don't know what will | |
d0ab8cd3 RK |
701 | be happening. |
702 | ||
703 | Similarly, set how many bits of X are known to be copies of the sign bit | |
704 | at all locations in the function. This is the smallest number implied | |
705 | by any set of X. */ | |
230d793d RS |
706 | |
707 | static void | |
951553af | 708 | set_nonzero_bits_and_sign_copies (x, set) |
230d793d RS |
709 | rtx x; |
710 | rtx set; | |
711 | { | |
d0ab8cd3 RK |
712 | int num; |
713 | ||
230d793d RS |
714 | if (GET_CODE (x) == REG |
715 | && REGNO (x) >= FIRST_PSEUDO_REGISTER | |
716 | && reg_n_sets[REGNO (x)] > 1 | |
717 | && reg_basic_block[REGNO (x)] < 0 | |
e8095e80 RK |
718 | /* If this register is undefined at the start of the file, we can't |
719 | say what its contents were. */ | |
720 | && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS] | |
721 | & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS))) | |
5f4f0e22 | 722 | && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT) |
230d793d RS |
723 | { |
724 | if (GET_CODE (set) == CLOBBER) | |
e8095e80 RK |
725 | { |
726 | reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x)); | |
727 | reg_sign_bit_copies[REGNO (x)] = 0; | |
728 | return; | |
729 | } | |
230d793d RS |
730 | |
731 | /* If this is a complex assignment, see if we can convert it into a | |
5089e22e | 732 | simple assignment. */ |
230d793d | 733 | set = expand_field_assignment (set); |
d79f08e0 RK |
734 | |
735 | /* If this is a simple assignment, or we have a paradoxical SUBREG, | |
736 | set what we know about X. */ | |
737 | ||
738 | if (SET_DEST (set) == x | |
739 | || (GET_CODE (SET_DEST (set)) == SUBREG | |
705c7b3b JW |
740 | && (GET_MODE_SIZE (GET_MODE (SET_DEST (set))) |
741 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set))))) | |
d79f08e0 | 742 | && SUBREG_REG (SET_DEST (set)) == x)) |
d0ab8cd3 | 743 | { |
9afa3d54 RK |
744 | rtx src = SET_SRC (set); |
745 | ||
746 | #ifdef SHORT_IMMEDIATES_SIGN_EXTEND | |
747 | /* If X is narrower than a word and SRC is a non-negative | |
748 | constant that would appear negative in the mode of X, | |
749 | sign-extend it for use in reg_nonzero_bits because some | |
750 | machines (maybe most) will actually do the sign-extension | |
751 | and this is the conservative approach. | |
752 | ||
753 | ??? For 2.5, try to tighten up the MD files in this regard | |
754 | instead of this kludge. */ | |
755 | ||
756 | if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD | |
757 | && GET_CODE (src) == CONST_INT | |
758 | && INTVAL (src) > 0 | |
759 | && 0 != (INTVAL (src) | |
760 | & ((HOST_WIDE_INT) 1 | |
9e69be8c | 761 | << (GET_MODE_BITSIZE (GET_MODE (x)) - 1)))) |
9afa3d54 RK |
762 | src = GEN_INT (INTVAL (src) |
763 | | ((HOST_WIDE_INT) (-1) | |
764 | << GET_MODE_BITSIZE (GET_MODE (x)))); | |
765 | #endif | |
766 | ||
951553af | 767 | reg_nonzero_bits[REGNO (x)] |
9afa3d54 | 768 | |= nonzero_bits (src, nonzero_bits_mode); |
d0ab8cd3 RK |
769 | num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x)); |
770 | if (reg_sign_bit_copies[REGNO (x)] == 0 | |
771 | || reg_sign_bit_copies[REGNO (x)] > num) | |
772 | reg_sign_bit_copies[REGNO (x)] = num; | |
773 | } | |
230d793d | 774 | else |
d0ab8cd3 | 775 | { |
951553af | 776 | reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x)); |
d0ab8cd3 RK |
777 | reg_sign_bit_copies[REGNO (x)] = 0; |
778 | } | |
230d793d RS |
779 | } |
780 | } | |
781 | \f | |
782 | /* See if INSN can be combined into I3. PRED and SUCC are optionally | |
783 | insns that were previously combined into I3 or that will be combined | |
784 | into the merger of INSN and I3. | |
785 | ||
786 | Return 0 if the combination is not allowed for any reason. | |
787 | ||
788 | If the combination is allowed, *PDEST will be set to the single | |
789 | destination of INSN and *PSRC to the single source, and this function | |
790 | will return 1. */ | |
791 | ||
792 | static int | |
793 | can_combine_p (insn, i3, pred, succ, pdest, psrc) | |
794 | rtx insn; | |
795 | rtx i3; | |
796 | rtx pred, succ; | |
797 | rtx *pdest, *psrc; | |
798 | { | |
799 | int i; | |
800 | rtx set = 0, src, dest; | |
801 | rtx p, link; | |
802 | int all_adjacent = (succ ? (next_active_insn (insn) == succ | |
803 | && next_active_insn (succ) == i3) | |
804 | : next_active_insn (insn) == i3); | |
805 | ||
806 | /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0. | |
807 | or a PARALLEL consisting of such a SET and CLOBBERs. | |
808 | ||
809 | If INSN has CLOBBER parallel parts, ignore them for our processing. | |
810 | By definition, these happen during the execution of the insn. When it | |
811 | is merged with another insn, all bets are off. If they are, in fact, | |
812 | needed and aren't also supplied in I3, they may be added by | |
813 | recog_for_combine. Otherwise, it won't match. | |
814 | ||
815 | We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED | |
816 | note. | |
817 | ||
818 | Get the source and destination of INSN. If more than one, can't | |
819 | combine. */ | |
820 | ||
821 | if (GET_CODE (PATTERN (insn)) == SET) | |
822 | set = PATTERN (insn); | |
823 | else if (GET_CODE (PATTERN (insn)) == PARALLEL | |
824 | && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) | |
825 | { | |
826 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
827 | { | |
828 | rtx elt = XVECEXP (PATTERN (insn), 0, i); | |
829 | ||
830 | switch (GET_CODE (elt)) | |
831 | { | |
832 | /* We can ignore CLOBBERs. */ | |
833 | case CLOBBER: | |
834 | break; | |
835 | ||
836 | case SET: | |
837 | /* Ignore SETs whose result isn't used but not those that | |
838 | have side-effects. */ | |
839 | if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt)) | |
840 | && ! side_effects_p (elt)) | |
841 | break; | |
842 | ||
843 | /* If we have already found a SET, this is a second one and | |
844 | so we cannot combine with this insn. */ | |
845 | if (set) | |
846 | return 0; | |
847 | ||
848 | set = elt; | |
849 | break; | |
850 | ||
851 | default: | |
852 | /* Anything else means we can't combine. */ | |
853 | return 0; | |
854 | } | |
855 | } | |
856 | ||
857 | if (set == 0 | |
858 | /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs, | |
859 | so don't do anything with it. */ | |
860 | || GET_CODE (SET_SRC (set)) == ASM_OPERANDS) | |
861 | return 0; | |
862 | } | |
863 | else | |
864 | return 0; | |
865 | ||
866 | if (set == 0) | |
867 | return 0; | |
868 | ||
869 | set = expand_field_assignment (set); | |
870 | src = SET_SRC (set), dest = SET_DEST (set); | |
871 | ||
872 | /* Don't eliminate a store in the stack pointer. */ | |
873 | if (dest == stack_pointer_rtx | |
230d793d RS |
874 | /* If we couldn't eliminate a field assignment, we can't combine. */ |
875 | || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART | |
876 | /* Don't combine with an insn that sets a register to itself if it has | |
877 | a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */ | |
5f4f0e22 | 878 | || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX)) |
230d793d RS |
879 | /* Can't merge a function call. */ |
880 | || GET_CODE (src) == CALL | |
cd5e8f1f | 881 | /* Don't eliminate a function call argument. */ |
4dca5ec5 RK |
882 | || (GET_CODE (i3) == CALL_INSN |
883 | && (find_reg_fusage (i3, USE, dest) | |
884 | || (GET_CODE (dest) == REG | |
885 | && REGNO (dest) < FIRST_PSEUDO_REGISTER | |
886 | && global_regs[REGNO (dest)]))) | |
230d793d RS |
887 | /* Don't substitute into an incremented register. */ |
888 | || FIND_REG_INC_NOTE (i3, dest) | |
889 | || (succ && FIND_REG_INC_NOTE (succ, dest)) | |
890 | /* Don't combine the end of a libcall into anything. */ | |
5f4f0e22 | 891 | || find_reg_note (insn, REG_RETVAL, NULL_RTX) |
230d793d RS |
892 | /* Make sure that DEST is not used after SUCC but before I3. */ |
893 | || (succ && ! all_adjacent | |
894 | && reg_used_between_p (dest, succ, i3)) | |
895 | /* Make sure that the value that is to be substituted for the register | |
896 | does not use any registers whose values alter in between. However, | |
897 | If the insns are adjacent, a use can't cross a set even though we | |
898 | think it might (this can happen for a sequence of insns each setting | |
899 | the same destination; reg_last_set of that register might point to | |
d81481d3 RK |
900 | a NOTE). If INSN has a REG_EQUIV note, the register is always |
901 | equivalent to the memory so the substitution is valid even if there | |
902 | are intervening stores. Also, don't move a volatile asm or | |
903 | UNSPEC_VOLATILE across any other insns. */ | |
230d793d | 904 | || (! all_adjacent |
d81481d3 RK |
905 | && (((GET_CODE (src) != MEM |
906 | || ! find_reg_note (insn, REG_EQUIV, src)) | |
907 | && use_crosses_set_p (src, INSN_CUID (insn))) | |
a66a10c7 RS |
908 | || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src)) |
909 | || GET_CODE (src) == UNSPEC_VOLATILE)) | |
230d793d RS |
910 | /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get |
911 | better register allocation by not doing the combine. */ | |
912 | || find_reg_note (i3, REG_NO_CONFLICT, dest) | |
913 | || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest)) | |
914 | /* Don't combine across a CALL_INSN, because that would possibly | |
915 | change whether the life span of some REGs crosses calls or not, | |
916 | and it is a pain to update that information. | |
917 | Exception: if source is a constant, moving it later can't hurt. | |
918 | Accept that special case, because it helps -fforce-addr a lot. */ | |
919 | || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src))) | |
920 | return 0; | |
921 | ||
922 | /* DEST must either be a REG or CC0. */ | |
923 | if (GET_CODE (dest) == REG) | |
924 | { | |
925 | /* If register alignment is being enforced for multi-word items in all | |
926 | cases except for parameters, it is possible to have a register copy | |
927 | insn referencing a hard register that is not allowed to contain the | |
928 | mode being copied and which would not be valid as an operand of most | |
929 | insns. Eliminate this problem by not combining with such an insn. | |
930 | ||
931 | Also, on some machines we don't want to extend the life of a hard | |
932 | register. */ | |
933 | ||
934 | if (GET_CODE (src) == REG | |
935 | && ((REGNO (dest) < FIRST_PSEUDO_REGISTER | |
936 | && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest))) | |
c448a43e RK |
937 | /* Don't extend the life of a hard register unless it is |
938 | user variable (if we have few registers) or it can't | |
939 | fit into the desired register (meaning something special | |
940 | is going on). */ | |
230d793d | 941 | || (REGNO (src) < FIRST_PSEUDO_REGISTER |
c448a43e RK |
942 | && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)) |
943 | #ifdef SMALL_REGISTER_CLASSES | |
944 | || ! REG_USERVAR_P (src) | |
230d793d | 945 | #endif |
c448a43e | 946 | )))) |
230d793d RS |
947 | return 0; |
948 | } | |
949 | else if (GET_CODE (dest) != CC0) | |
950 | return 0; | |
951 | ||
5f96750d RS |
952 | /* Don't substitute for a register intended as a clobberable operand. |
953 | Similarly, don't substitute an expression containing a register that | |
954 | will be clobbered in I3. */ | |
230d793d RS |
955 | if (GET_CODE (PATTERN (i3)) == PARALLEL) |
956 | for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--) | |
957 | if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER | |
5f96750d RS |
958 | && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), |
959 | src) | |
960 | || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest))) | |
230d793d RS |
961 | return 0; |
962 | ||
963 | /* If INSN contains anything volatile, or is an `asm' (whether volatile | |
964 | or not), reject, unless nothing volatile comes between it and I3, | |
965 | with the exception of SUCC. */ | |
966 | ||
967 | if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src)) | |
968 | for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p)) | |
969 | if (GET_RTX_CLASS (GET_CODE (p)) == 'i' | |
970 | && p != succ && volatile_refs_p (PATTERN (p))) | |
971 | return 0; | |
972 | ||
4b2cb4a2 RS |
973 | /* If there are any volatile insns between INSN and I3, reject, because |
974 | they might affect machine state. */ | |
975 | ||
976 | for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p)) | |
977 | if (GET_RTX_CLASS (GET_CODE (p)) == 'i' | |
978 | && p != succ && volatile_insn_p (PATTERN (p))) | |
979 | return 0; | |
980 | ||
230d793d RS |
981 | /* If INSN or I2 contains an autoincrement or autodecrement, |
982 | make sure that register is not used between there and I3, | |
983 | and not already used in I3 either. | |
984 | Also insist that I3 not be a jump; if it were one | |
985 | and the incremented register were spilled, we would lose. */ | |
986 | ||
987 | #ifdef AUTO_INC_DEC | |
988 | for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) | |
989 | if (REG_NOTE_KIND (link) == REG_INC | |
990 | && (GET_CODE (i3) == JUMP_INSN | |
991 | || reg_used_between_p (XEXP (link, 0), insn, i3) | |
992 | || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3)))) | |
993 | return 0; | |
994 | #endif | |
995 | ||
996 | #ifdef HAVE_cc0 | |
997 | /* Don't combine an insn that follows a CC0-setting insn. | |
998 | An insn that uses CC0 must not be separated from the one that sets it. | |
999 | We do, however, allow I2 to follow a CC0-setting insn if that insn | |
1000 | is passed as I1; in that case it will be deleted also. | |
1001 | We also allow combining in this case if all the insns are adjacent | |
1002 | because that would leave the two CC0 insns adjacent as well. | |
1003 | It would be more logical to test whether CC0 occurs inside I1 or I2, | |
1004 | but that would be much slower, and this ought to be equivalent. */ | |
1005 | ||
1006 | p = prev_nonnote_insn (insn); | |
1007 | if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p)) | |
1008 | && ! all_adjacent) | |
1009 | return 0; | |
1010 | #endif | |
1011 | ||
1012 | /* If we get here, we have passed all the tests and the combination is | |
1013 | to be allowed. */ | |
1014 | ||
1015 | *pdest = dest; | |
1016 | *psrc = src; | |
1017 | ||
1018 | return 1; | |
1019 | } | |
1020 | \f | |
1021 | /* LOC is the location within I3 that contains its pattern or the component | |
1022 | of a PARALLEL of the pattern. We validate that it is valid for combining. | |
1023 | ||
1024 | One problem is if I3 modifies its output, as opposed to replacing it | |
1025 | entirely, we can't allow the output to contain I2DEST or I1DEST as doing | |
1026 | so would produce an insn that is not equivalent to the original insns. | |
1027 | ||
1028 | Consider: | |
1029 | ||
1030 | (set (reg:DI 101) (reg:DI 100)) | |
1031 | (set (subreg:SI (reg:DI 101) 0) <foo>) | |
1032 | ||
1033 | This is NOT equivalent to: | |
1034 | ||
1035 | (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>) | |
1036 | (set (reg:DI 101) (reg:DI 100))]) | |
1037 | ||
1038 | Not only does this modify 100 (in which case it might still be valid | |
1039 | if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100. | |
1040 | ||
1041 | We can also run into a problem if I2 sets a register that I1 | |
1042 | uses and I1 gets directly substituted into I3 (not via I2). In that | |
1043 | case, we would be getting the wrong value of I2DEST into I3, so we | |
1044 | must reject the combination. This case occurs when I2 and I1 both | |
1045 | feed into I3, rather than when I1 feeds into I2, which feeds into I3. | |
1046 | If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source | |
1047 | of a SET must prevent combination from occurring. | |
1048 | ||
1049 | On machines where SMALL_REGISTER_CLASSES is defined, we don't combine | |
c448a43e RK |
1050 | if the destination of a SET is a hard register that isn't a user |
1051 | variable. | |
230d793d RS |
1052 | |
1053 | Before doing the above check, we first try to expand a field assignment | |
1054 | into a set of logical operations. | |
1055 | ||
1056 | If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which | |
1057 | we place a register that is both set and used within I3. If more than one | |
1058 | such register is detected, we fail. | |
1059 | ||
1060 | Return 1 if the combination is valid, zero otherwise. */ | |
1061 | ||
1062 | static int | |
1063 | combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed) | |
1064 | rtx i3; | |
1065 | rtx *loc; | |
1066 | rtx i2dest; | |
1067 | rtx i1dest; | |
1068 | int i1_not_in_src; | |
1069 | rtx *pi3dest_killed; | |
1070 | { | |
1071 | rtx x = *loc; | |
1072 | ||
1073 | if (GET_CODE (x) == SET) | |
1074 | { | |
1075 | rtx set = expand_field_assignment (x); | |
1076 | rtx dest = SET_DEST (set); | |
1077 | rtx src = SET_SRC (set); | |
1078 | rtx inner_dest = dest, inner_src = src; | |
1079 | ||
1080 | SUBST (*loc, set); | |
1081 | ||
1082 | while (GET_CODE (inner_dest) == STRICT_LOW_PART | |
1083 | || GET_CODE (inner_dest) == SUBREG | |
1084 | || GET_CODE (inner_dest) == ZERO_EXTRACT) | |
1085 | inner_dest = XEXP (inner_dest, 0); | |
1086 | ||
1087 | /* We probably don't need this any more now that LIMIT_RELOAD_CLASS | |
1088 | was added. */ | |
1089 | #if 0 | |
1090 | while (GET_CODE (inner_src) == STRICT_LOW_PART | |
1091 | || GET_CODE (inner_src) == SUBREG | |
1092 | || GET_CODE (inner_src) == ZERO_EXTRACT) | |
1093 | inner_src = XEXP (inner_src, 0); | |
1094 | ||
1095 | /* If it is better that two different modes keep two different pseudos, | |
1096 | avoid combining them. This avoids producing the following pattern | |
1097 | on a 386: | |
1098 | (set (subreg:SI (reg/v:QI 21) 0) | |
1099 | (lshiftrt:SI (reg/v:SI 20) | |
1100 | (const_int 24))) | |
1101 | If that were made, reload could not handle the pair of | |
1102 | reg 20/21, since it would try to get any GENERAL_REGS | |
1103 | but some of them don't handle QImode. */ | |
1104 | ||
1105 | if (rtx_equal_p (inner_src, i2dest) | |
1106 | && GET_CODE (inner_dest) == REG | |
1107 | && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest))) | |
1108 | return 0; | |
1109 | #endif | |
1110 | ||
1111 | /* Check for the case where I3 modifies its output, as | |
1112 | discussed above. */ | |
1113 | if ((inner_dest != dest | |
1114 | && (reg_overlap_mentioned_p (i2dest, inner_dest) | |
1115 | || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest)))) | |
3f508eca RK |
1116 | /* This is the same test done in can_combine_p except that we |
1117 | allow a hard register with SMALL_REGISTER_CLASSES if SRC is a | |
1118 | CALL operation. */ | |
230d793d | 1119 | || (GET_CODE (inner_dest) == REG |
dfbe1b2f | 1120 | && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER |
c448a43e RK |
1121 | && (! HARD_REGNO_MODE_OK (REGNO (inner_dest), |
1122 | GET_MODE (inner_dest)) | |
3f508eca | 1123 | #ifdef SMALL_REGISTER_CLASSES |
c448a43e | 1124 | || (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest)) |
230d793d | 1125 | #endif |
c448a43e | 1126 | )) |
230d793d RS |
1127 | || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))) |
1128 | return 0; | |
1129 | ||
1130 | /* If DEST is used in I3, it is being killed in this insn, | |
36a9c2e9 JL |
1131 | so record that for later. |
1132 | Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the | |
1133 | STACK_POINTER_REGNUM, since these are always considered to be | |
1134 | live. Similarly for ARG_POINTER_REGNUM if it is fixed. */ | |
230d793d | 1135 | if (pi3dest_killed && GET_CODE (dest) == REG |
36a9c2e9 JL |
1136 | && reg_referenced_p (dest, PATTERN (i3)) |
1137 | && REGNO (dest) != FRAME_POINTER_REGNUM | |
6d7096b0 DE |
1138 | #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM |
1139 | && REGNO (dest) != HARD_FRAME_POINTER_REGNUM | |
1140 | #endif | |
36a9c2e9 JL |
1141 | #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM |
1142 | && (REGNO (dest) != ARG_POINTER_REGNUM | |
1143 | || ! fixed_regs [REGNO (dest)]) | |
1144 | #endif | |
1145 | && REGNO (dest) != STACK_POINTER_REGNUM) | |
230d793d RS |
1146 | { |
1147 | if (*pi3dest_killed) | |
1148 | return 0; | |
1149 | ||
1150 | *pi3dest_killed = dest; | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | else if (GET_CODE (x) == PARALLEL) | |
1155 | { | |
1156 | int i; | |
1157 | ||
1158 | for (i = 0; i < XVECLEN (x, 0); i++) | |
1159 | if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, | |
1160 | i1_not_in_src, pi3dest_killed)) | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | return 1; | |
1165 | } | |
1166 | \f | |
1167 | /* Try to combine the insns I1 and I2 into I3. | |
1168 | Here I1 and I2 appear earlier than I3. | |
1169 | I1 can be zero; then we combine just I2 into I3. | |
1170 | ||
1171 | It we are combining three insns and the resulting insn is not recognized, | |
1172 | try splitting it into two insns. If that happens, I2 and I3 are retained | |
1173 | and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2 | |
1174 | are pseudo-deleted. | |
1175 | ||
abe6e52f RK |
1176 | Return 0 if the combination does not work. Then nothing is changed. |
1177 | If we did the combination, return the insn at which combine should | |
1178 | resume scanning. */ | |
230d793d RS |
1179 | |
1180 | static rtx | |
1181 | try_combine (i3, i2, i1) | |
1182 | register rtx i3, i2, i1; | |
1183 | { | |
1184 | /* New patterns for I3 and I3, respectively. */ | |
1185 | rtx newpat, newi2pat = 0; | |
1186 | /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */ | |
1187 | int added_sets_1, added_sets_2; | |
1188 | /* Total number of SETs to put into I3. */ | |
1189 | int total_sets; | |
1190 | /* Nonzero is I2's body now appears in I3. */ | |
1191 | int i2_is_used; | |
1192 | /* INSN_CODEs for new I3, new I2, and user of condition code. */ | |
1193 | int insn_code_number, i2_code_number, other_code_number; | |
1194 | /* Contains I3 if the destination of I3 is used in its source, which means | |
1195 | that the old life of I3 is being killed. If that usage is placed into | |
1196 | I2 and not in I3, a REG_DEAD note must be made. */ | |
1197 | rtx i3dest_killed = 0; | |
1198 | /* SET_DEST and SET_SRC of I2 and I1. */ | |
1199 | rtx i2dest, i2src, i1dest = 0, i1src = 0; | |
1200 | /* PATTERN (I2), or a copy of it in certain cases. */ | |
1201 | rtx i2pat; | |
1202 | /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */ | |
c4e861e8 | 1203 | int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0; |
230d793d RS |
1204 | int i1_feeds_i3 = 0; |
1205 | /* Notes that must be added to REG_NOTES in I3 and I2. */ | |
1206 | rtx new_i3_notes, new_i2_notes; | |
176c9e6b JW |
1207 | /* Notes that we substituted I3 into I2 instead of the normal case. */ |
1208 | int i3_subst_into_i2 = 0; | |
df7d75de RK |
1209 | /* Notes that I1, I2 or I3 is a MULT operation. */ |
1210 | int have_mult = 0; | |
230d793d RS |
1211 | |
1212 | int maxreg; | |
1213 | rtx temp; | |
1214 | register rtx link; | |
1215 | int i; | |
1216 | ||
1217 | /* If any of I1, I2, and I3 isn't really an insn, we can't do anything. | |
1218 | This can occur when flow deletes an insn that it has merged into an | |
1219 | auto-increment address. We also can't do anything if I3 has a | |
1220 | REG_LIBCALL note since we don't want to disrupt the contiguity of a | |
1221 | libcall. */ | |
1222 | ||
1223 | if (GET_RTX_CLASS (GET_CODE (i3)) != 'i' | |
1224 | || GET_RTX_CLASS (GET_CODE (i2)) != 'i' | |
1225 | || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i') | |
5f4f0e22 | 1226 | || find_reg_note (i3, REG_LIBCALL, NULL_RTX)) |
230d793d RS |
1227 | return 0; |
1228 | ||
1229 | combine_attempts++; | |
1230 | ||
1231 | undobuf.num_undo = previous_num_undos = 0; | |
1232 | undobuf.other_insn = 0; | |
1233 | ||
1234 | /* Save the current high-water-mark so we can free storage if we didn't | |
1235 | accept this combination. */ | |
1236 | undobuf.storage = (char *) oballoc (0); | |
1237 | ||
6e25d159 RK |
1238 | /* Reset the hard register usage information. */ |
1239 | CLEAR_HARD_REG_SET (newpat_used_regs); | |
1240 | ||
230d793d RS |
1241 | /* If I1 and I2 both feed I3, they can be in any order. To simplify the |
1242 | code below, set I1 to be the earlier of the two insns. */ | |
1243 | if (i1 && INSN_CUID (i1) > INSN_CUID (i2)) | |
1244 | temp = i1, i1 = i2, i2 = temp; | |
1245 | ||
abe6e52f | 1246 | added_links_insn = 0; |
137e889e | 1247 | |
230d793d RS |
1248 | /* First check for one important special-case that the code below will |
1249 | not handle. Namely, the case where I1 is zero, I2 has multiple sets, | |
1250 | and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case, | |
1251 | we may be able to replace that destination with the destination of I3. | |
1252 | This occurs in the common code where we compute both a quotient and | |
1253 | remainder into a structure, in which case we want to do the computation | |
1254 | directly into the structure to avoid register-register copies. | |
1255 | ||
1256 | We make very conservative checks below and only try to handle the | |
1257 | most common cases of this. For example, we only handle the case | |
1258 | where I2 and I3 are adjacent to avoid making difficult register | |
1259 | usage tests. */ | |
1260 | ||
1261 | if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET | |
1262 | && GET_CODE (SET_SRC (PATTERN (i3))) == REG | |
1263 | && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER | |
1264 | #ifdef SMALL_REGISTER_CLASSES | |
1265 | && (GET_CODE (SET_DEST (PATTERN (i3))) != REG | |
c448a43e RK |
1266 | || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER |
1267 | || REG_USERVAR_P (SET_DEST (PATTERN (i3)))) | |
230d793d RS |
1268 | #endif |
1269 | && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3))) | |
1270 | && GET_CODE (PATTERN (i2)) == PARALLEL | |
1271 | && ! side_effects_p (SET_DEST (PATTERN (i3))) | |
5089e22e RS |
1272 | /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code |
1273 | below would need to check what is inside (and reg_overlap_mentioned_p | |
1274 | doesn't support those codes anyway). Don't allow those destinations; | |
1275 | the resulting insn isn't likely to be recognized anyway. */ | |
1276 | && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT | |
1277 | && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART | |
230d793d RS |
1278 | && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)), |
1279 | SET_DEST (PATTERN (i3))) | |
1280 | && next_real_insn (i2) == i3) | |
5089e22e RS |
1281 | { |
1282 | rtx p2 = PATTERN (i2); | |
1283 | ||
1284 | /* Make sure that the destination of I3, | |
1285 | which we are going to substitute into one output of I2, | |
1286 | is not used within another output of I2. We must avoid making this: | |
1287 | (parallel [(set (mem (reg 69)) ...) | |
1288 | (set (reg 69) ...)]) | |
1289 | which is not well-defined as to order of actions. | |
1290 | (Besides, reload can't handle output reloads for this.) | |
1291 | ||
1292 | The problem can also happen if the dest of I3 is a memory ref, | |
1293 | if another dest in I2 is an indirect memory ref. */ | |
1294 | for (i = 0; i < XVECLEN (p2, 0); i++) | |
1295 | if (GET_CODE (XVECEXP (p2, 0, i)) == SET | |
1296 | && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)), | |
1297 | SET_DEST (XVECEXP (p2, 0, i)))) | |
1298 | break; | |
230d793d | 1299 | |
5089e22e RS |
1300 | if (i == XVECLEN (p2, 0)) |
1301 | for (i = 0; i < XVECLEN (p2, 0); i++) | |
1302 | if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3))) | |
1303 | { | |
1304 | combine_merges++; | |
230d793d | 1305 | |
5089e22e RS |
1306 | subst_insn = i3; |
1307 | subst_low_cuid = INSN_CUID (i2); | |
230d793d | 1308 | |
c4e861e8 | 1309 | added_sets_2 = added_sets_1 = 0; |
5089e22e | 1310 | i2dest = SET_SRC (PATTERN (i3)); |
230d793d | 1311 | |
5089e22e RS |
1312 | /* Replace the dest in I2 with our dest and make the resulting |
1313 | insn the new pattern for I3. Then skip to where we | |
1314 | validate the pattern. Everything was set up above. */ | |
1315 | SUBST (SET_DEST (XVECEXP (p2, 0, i)), | |
1316 | SET_DEST (PATTERN (i3))); | |
1317 | ||
1318 | newpat = p2; | |
176c9e6b | 1319 | i3_subst_into_i2 = 1; |
5089e22e RS |
1320 | goto validate_replacement; |
1321 | } | |
1322 | } | |
230d793d RS |
1323 | |
1324 | #ifndef HAVE_cc0 | |
1325 | /* If we have no I1 and I2 looks like: | |
1326 | (parallel [(set (reg:CC X) (compare:CC OP (const_int 0))) | |
1327 | (set Y OP)]) | |
1328 | make up a dummy I1 that is | |
1329 | (set Y OP) | |
1330 | and change I2 to be | |
1331 | (set (reg:CC X) (compare:CC Y (const_int 0))) | |
1332 | ||
1333 | (We can ignore any trailing CLOBBERs.) | |
1334 | ||
1335 | This undoes a previous combination and allows us to match a branch-and- | |
1336 | decrement insn. */ | |
1337 | ||
1338 | if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL | |
1339 | && XVECLEN (PATTERN (i2), 0) >= 2 | |
1340 | && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET | |
1341 | && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)))) | |
1342 | == MODE_CC) | |
1343 | && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE | |
1344 | && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx | |
1345 | && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET | |
1346 | && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG | |
1347 | && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0), | |
1348 | SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))) | |
1349 | { | |
1350 | for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--) | |
1351 | if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER) | |
1352 | break; | |
1353 | ||
1354 | if (i == 1) | |
1355 | { | |
1356 | /* We make I1 with the same INSN_UID as I2. This gives it | |
1357 | the same INSN_CUID for value tracking. Our fake I1 will | |
1358 | never appear in the insn stream so giving it the same INSN_UID | |
1359 | as I2 will not cause a problem. */ | |
1360 | ||
3adde2a5 RK |
1361 | i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2, |
1362 | XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0); | |
230d793d RS |
1363 | |
1364 | SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0)); | |
1365 | SUBST (XEXP (SET_SRC (PATTERN (i2)), 0), | |
1366 | SET_DEST (PATTERN (i1))); | |
1367 | } | |
1368 | } | |
1369 | #endif | |
1370 | ||
1371 | /* Verify that I2 and I1 are valid for combining. */ | |
5f4f0e22 CH |
1372 | if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src) |
1373 | || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src))) | |
230d793d RS |
1374 | { |
1375 | undo_all (); | |
1376 | return 0; | |
1377 | } | |
1378 | ||
1379 | /* Record whether I2DEST is used in I2SRC and similarly for the other | |
1380 | cases. Knowing this will help in register status updating below. */ | |
1381 | i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src); | |
1382 | i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src); | |
1383 | i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src); | |
1384 | ||
916f14f1 | 1385 | /* See if I1 directly feeds into I3. It does if I1DEST is not used |
230d793d RS |
1386 | in I2SRC. */ |
1387 | i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src); | |
1388 | ||
1389 | /* Ensure that I3's pattern can be the destination of combines. */ | |
1390 | if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, | |
1391 | i1 && i2dest_in_i1src && i1_feeds_i3, | |
1392 | &i3dest_killed)) | |
1393 | { | |
1394 | undo_all (); | |
1395 | return 0; | |
1396 | } | |
1397 | ||
df7d75de RK |
1398 | /* See if any of the insns is a MULT operation. Unless one is, we will |
1399 | reject a combination that is, since it must be slower. Be conservative | |
1400 | here. */ | |
1401 | if (GET_CODE (i2src) == MULT | |
1402 | || (i1 != 0 && GET_CODE (i1src) == MULT) | |
1403 | || (GET_CODE (PATTERN (i3)) == SET | |
1404 | && GET_CODE (SET_SRC (PATTERN (i3))) == MULT)) | |
1405 | have_mult = 1; | |
1406 | ||
230d793d RS |
1407 | /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd. |
1408 | We used to do this EXCEPT in one case: I3 has a post-inc in an | |
1409 | output operand. However, that exception can give rise to insns like | |
1410 | mov r3,(r3)+ | |
1411 | which is a famous insn on the PDP-11 where the value of r3 used as the | |
5089e22e | 1412 | source was model-dependent. Avoid this sort of thing. */ |
230d793d RS |
1413 | |
1414 | #if 0 | |
1415 | if (!(GET_CODE (PATTERN (i3)) == SET | |
1416 | && GET_CODE (SET_SRC (PATTERN (i3))) == REG | |
1417 | && GET_CODE (SET_DEST (PATTERN (i3))) == MEM | |
1418 | && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC | |
1419 | || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC))) | |
1420 | /* It's not the exception. */ | |
1421 | #endif | |
1422 | #ifdef AUTO_INC_DEC | |
1423 | for (link = REG_NOTES (i3); link; link = XEXP (link, 1)) | |
1424 | if (REG_NOTE_KIND (link) == REG_INC | |
1425 | && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2)) | |
1426 | || (i1 != 0 | |
1427 | && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1))))) | |
1428 | { | |
1429 | undo_all (); | |
1430 | return 0; | |
1431 | } | |
1432 | #endif | |
1433 | ||
1434 | /* See if the SETs in I1 or I2 need to be kept around in the merged | |
1435 | instruction: whenever the value set there is still needed past I3. | |
1436 | For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3. | |
1437 | ||
1438 | For the SET in I1, we have two cases: If I1 and I2 independently | |
1439 | feed into I3, the set in I1 needs to be kept around if I1DEST dies | |
1440 | or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set | |
1441 | in I1 needs to be kept around unless I1DEST dies or is set in either | |
1442 | I2 or I3. We can distinguish these cases by seeing if I2SRC mentions | |
1443 | I1DEST. If so, we know I1 feeds into I2. */ | |
1444 | ||
1445 | added_sets_2 = ! dead_or_set_p (i3, i2dest); | |
1446 | ||
1447 | added_sets_1 | |
1448 | = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest) | |
1449 | : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest))); | |
1450 | ||
1451 | /* If the set in I2 needs to be kept around, we must make a copy of | |
1452 | PATTERN (I2), so that when we substitute I1SRC for I1DEST in | |
5089e22e | 1453 | PATTERN (I2), we are only substituting for the original I1DEST, not into |
230d793d RS |
1454 | an already-substituted copy. This also prevents making self-referential |
1455 | rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to | |
1456 | I2DEST. */ | |
1457 | ||
1458 | i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL | |
1459 | ? gen_rtx (SET, VOIDmode, i2dest, i2src) | |
1460 | : PATTERN (i2)); | |
1461 | ||
1462 | if (added_sets_2) | |
1463 | i2pat = copy_rtx (i2pat); | |
1464 | ||
1465 | combine_merges++; | |
1466 | ||
1467 | /* Substitute in the latest insn for the regs set by the earlier ones. */ | |
1468 | ||
1469 | maxreg = max_reg_num (); | |
1470 | ||
1471 | subst_insn = i3; | |
230d793d RS |
1472 | |
1473 | /* It is possible that the source of I2 or I1 may be performing an | |
1474 | unneeded operation, such as a ZERO_EXTEND of something that is known | |
1475 | to have the high part zero. Handle that case by letting subst look at | |
1476 | the innermost one of them. | |
1477 | ||
1478 | Another way to do this would be to have a function that tries to | |
1479 | simplify a single insn instead of merging two or more insns. We don't | |
1480 | do this because of the potential of infinite loops and because | |
1481 | of the potential extra memory required. However, doing it the way | |
1482 | we are is a bit of a kludge and doesn't catch all cases. | |
1483 | ||
1484 | But only do this if -fexpensive-optimizations since it slows things down | |
1485 | and doesn't usually win. */ | |
1486 | ||
1487 | if (flag_expensive_optimizations) | |
1488 | { | |
1489 | /* Pass pc_rtx so no substitutions are done, just simplifications. | |
1490 | The cases that we are interested in here do not involve the few | |
1491 | cases were is_replaced is checked. */ | |
1492 | if (i1) | |
d0ab8cd3 RK |
1493 | { |
1494 | subst_low_cuid = INSN_CUID (i1); | |
1495 | i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0); | |
1496 | } | |
230d793d | 1497 | else |
d0ab8cd3 RK |
1498 | { |
1499 | subst_low_cuid = INSN_CUID (i2); | |
1500 | i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0); | |
1501 | } | |
230d793d RS |
1502 | |
1503 | previous_num_undos = undobuf.num_undo; | |
1504 | } | |
1505 | ||
1506 | #ifndef HAVE_cc0 | |
1507 | /* Many machines that don't use CC0 have insns that can both perform an | |
1508 | arithmetic operation and set the condition code. These operations will | |
1509 | be represented as a PARALLEL with the first element of the vector | |
1510 | being a COMPARE of an arithmetic operation with the constant zero. | |
1511 | The second element of the vector will set some pseudo to the result | |
1512 | of the same arithmetic operation. If we simplify the COMPARE, we won't | |
1513 | match such a pattern and so will generate an extra insn. Here we test | |
1514 | for this case, where both the comparison and the operation result are | |
1515 | needed, and make the PARALLEL by just replacing I2DEST in I3SRC with | |
1516 | I2SRC. Later we will make the PARALLEL that contains I2. */ | |
1517 | ||
1518 | if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET | |
1519 | && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE | |
1520 | && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx | |
1521 | && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest)) | |
1522 | { | |
1523 | rtx *cc_use; | |
1524 | enum machine_mode compare_mode; | |
1525 | ||
1526 | newpat = PATTERN (i3); | |
1527 | SUBST (XEXP (SET_SRC (newpat), 0), i2src); | |
1528 | ||
1529 | i2_is_used = 1; | |
1530 | ||
1531 | #ifdef EXTRA_CC_MODES | |
1532 | /* See if a COMPARE with the operand we substituted in should be done | |
1533 | with the mode that is currently being used. If not, do the same | |
1534 | processing we do in `subst' for a SET; namely, if the destination | |
1535 | is used only once, try to replace it with a register of the proper | |
1536 | mode and also replace the COMPARE. */ | |
1537 | if (undobuf.other_insn == 0 | |
1538 | && (cc_use = find_single_use (SET_DEST (newpat), i3, | |
1539 | &undobuf.other_insn)) | |
77fa0940 RK |
1540 | && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use), |
1541 | i2src, const0_rtx)) | |
230d793d RS |
1542 | != GET_MODE (SET_DEST (newpat)))) |
1543 | { | |
1544 | int regno = REGNO (SET_DEST (newpat)); | |
1545 | rtx new_dest = gen_rtx (REG, compare_mode, regno); | |
1546 | ||
1547 | if (regno < FIRST_PSEUDO_REGISTER | |
1548 | || (reg_n_sets[regno] == 1 && ! added_sets_2 | |
1549 | && ! REG_USERVAR_P (SET_DEST (newpat)))) | |
1550 | { | |
1551 | if (regno >= FIRST_PSEUDO_REGISTER) | |
1552 | SUBST (regno_reg_rtx[regno], new_dest); | |
1553 | ||
1554 | SUBST (SET_DEST (newpat), new_dest); | |
1555 | SUBST (XEXP (*cc_use, 0), new_dest); | |
1556 | SUBST (SET_SRC (newpat), | |
1557 | gen_rtx_combine (COMPARE, compare_mode, | |
1558 | i2src, const0_rtx)); | |
1559 | } | |
1560 | else | |
1561 | undobuf.other_insn = 0; | |
1562 | } | |
1563 | #endif | |
1564 | } | |
1565 | else | |
1566 | #endif | |
1567 | { | |
1568 | n_occurrences = 0; /* `subst' counts here */ | |
1569 | ||
1570 | /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we | |
1571 | need to make a unique copy of I2SRC each time we substitute it | |
1572 | to avoid self-referential rtl. */ | |
1573 | ||
d0ab8cd3 | 1574 | subst_low_cuid = INSN_CUID (i2); |
230d793d RS |
1575 | newpat = subst (PATTERN (i3), i2dest, i2src, 0, |
1576 | ! i1_feeds_i3 && i1dest_in_i1src); | |
1577 | previous_num_undos = undobuf.num_undo; | |
1578 | ||
1579 | /* Record whether i2's body now appears within i3's body. */ | |
1580 | i2_is_used = n_occurrences; | |
1581 | } | |
1582 | ||
1583 | /* If we already got a failure, don't try to do more. Otherwise, | |
1584 | try to substitute in I1 if we have it. */ | |
1585 | ||
1586 | if (i1 && GET_CODE (newpat) != CLOBBER) | |
1587 | { | |
1588 | /* Before we can do this substitution, we must redo the test done | |
1589 | above (see detailed comments there) that ensures that I1DEST | |
1590 | isn't mentioned in any SETs in NEWPAT that are field assignments. */ | |
1591 | ||
5f4f0e22 CH |
1592 | if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, |
1593 | 0, NULL_PTR)) | |
230d793d RS |
1594 | { |
1595 | undo_all (); | |
1596 | return 0; | |
1597 | } | |
1598 | ||
1599 | n_occurrences = 0; | |
d0ab8cd3 | 1600 | subst_low_cuid = INSN_CUID (i1); |
230d793d RS |
1601 | newpat = subst (newpat, i1dest, i1src, 0, 0); |
1602 | previous_num_undos = undobuf.num_undo; | |
1603 | } | |
1604 | ||
916f14f1 RK |
1605 | /* Fail if an autoincrement side-effect has been duplicated. Be careful |
1606 | to count all the ways that I2SRC and I1SRC can be used. */ | |
5f4f0e22 | 1607 | if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0 |
916f14f1 | 1608 | && i2_is_used + added_sets_2 > 1) |
5f4f0e22 | 1609 | || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0 |
916f14f1 RK |
1610 | && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3) |
1611 | > 1)) | |
230d793d RS |
1612 | /* Fail if we tried to make a new register (we used to abort, but there's |
1613 | really no reason to). */ | |
1614 | || max_reg_num () != maxreg | |
1615 | /* Fail if we couldn't do something and have a CLOBBER. */ | |
df7d75de RK |
1616 | || GET_CODE (newpat) == CLOBBER |
1617 | /* Fail if this new pattern is a MULT and we didn't have one before | |
1618 | at the outer level. */ | |
1619 | || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT | |
1620 | && ! have_mult)) | |
230d793d RS |
1621 | { |
1622 | undo_all (); | |
1623 | return 0; | |
1624 | } | |
1625 | ||
1626 | /* If the actions of the earlier insns must be kept | |
1627 | in addition to substituting them into the latest one, | |
1628 | we must make a new PARALLEL for the latest insn | |
1629 | to hold additional the SETs. */ | |
1630 | ||
1631 | if (added_sets_1 || added_sets_2) | |
1632 | { | |
1633 | combine_extras++; | |
1634 | ||
1635 | if (GET_CODE (newpat) == PARALLEL) | |
1636 | { | |
1637 | rtvec old = XVEC (newpat, 0); | |
1638 | total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2; | |
1639 | newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets)); | |
4c9a05bc | 1640 | bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0), |
230d793d RS |
1641 | sizeof (old->elem[0]) * old->num_elem); |
1642 | } | |
1643 | else | |
1644 | { | |
1645 | rtx old = newpat; | |
1646 | total_sets = 1 + added_sets_1 + added_sets_2; | |
1647 | newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets)); | |
1648 | XVECEXP (newpat, 0, 0) = old; | |
1649 | } | |
1650 | ||
1651 | if (added_sets_1) | |
1652 | XVECEXP (newpat, 0, --total_sets) | |
1653 | = (GET_CODE (PATTERN (i1)) == PARALLEL | |
1654 | ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1)); | |
1655 | ||
1656 | if (added_sets_2) | |
1657 | { | |
1658 | /* If there is no I1, use I2's body as is. We used to also not do | |
1659 | the subst call below if I2 was substituted into I3, | |
1660 | but that could lose a simplification. */ | |
1661 | if (i1 == 0) | |
1662 | XVECEXP (newpat, 0, --total_sets) = i2pat; | |
1663 | else | |
1664 | /* See comment where i2pat is assigned. */ | |
1665 | XVECEXP (newpat, 0, --total_sets) | |
1666 | = subst (i2pat, i1dest, i1src, 0, 0); | |
1667 | } | |
1668 | } | |
1669 | ||
1670 | /* We come here when we are replacing a destination in I2 with the | |
1671 | destination of I3. */ | |
1672 | validate_replacement: | |
1673 | ||
6e25d159 RK |
1674 | /* Note which hard regs this insn has as inputs. */ |
1675 | mark_used_regs_combine (newpat); | |
1676 | ||
230d793d RS |
1677 | /* Is the result of combination a valid instruction? */ |
1678 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); | |
1679 | ||
1680 | /* If the result isn't valid, see if it is a PARALLEL of two SETs where | |
1681 | the second SET's destination is a register that is unused. In that case, | |
1682 | we just need the first SET. This can occur when simplifying a divmod | |
1683 | insn. We *must* test for this case here because the code below that | |
1684 | splits two independent SETs doesn't handle this case correctly when it | |
1685 | updates the register status. Also check the case where the first | |
1686 | SET's destination is unused. That would not cause incorrect code, but | |
1687 | does cause an unneeded insn to remain. */ | |
1688 | ||
1689 | if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL | |
1690 | && XVECLEN (newpat, 0) == 2 | |
1691 | && GET_CODE (XVECEXP (newpat, 0, 0)) == SET | |
1692 | && GET_CODE (XVECEXP (newpat, 0, 1)) == SET | |
1693 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG | |
1694 | && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1))) | |
1695 | && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1))) | |
1696 | && asm_noperands (newpat) < 0) | |
1697 | { | |
1698 | newpat = XVECEXP (newpat, 0, 0); | |
1699 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); | |
1700 | } | |
1701 | ||
1702 | else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL | |
1703 | && XVECLEN (newpat, 0) == 2 | |
1704 | && GET_CODE (XVECEXP (newpat, 0, 0)) == SET | |
1705 | && GET_CODE (XVECEXP (newpat, 0, 1)) == SET | |
1706 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG | |
1707 | && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0))) | |
1708 | && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0))) | |
1709 | && asm_noperands (newpat) < 0) | |
1710 | { | |
1711 | newpat = XVECEXP (newpat, 0, 1); | |
1712 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); | |
1713 | } | |
1714 | ||
1715 | /* If we were combining three insns and the result is a simple SET | |
1716 | with no ASM_OPERANDS that wasn't recognized, try to split it into two | |
916f14f1 RK |
1717 | insns. There are two ways to do this. It can be split using a |
1718 | machine-specific method (like when you have an addition of a large | |
1719 | constant) or by combine in the function find_split_point. */ | |
1720 | ||
230d793d RS |
1721 | if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET |
1722 | && asm_noperands (newpat) < 0) | |
1723 | { | |
916f14f1 | 1724 | rtx m_split, *split; |
42495ca0 | 1725 | rtx ni2dest = i2dest; |
916f14f1 RK |
1726 | |
1727 | /* See if the MD file can split NEWPAT. If it can't, see if letting it | |
42495ca0 RK |
1728 | use I2DEST as a scratch register will help. In the latter case, |
1729 | convert I2DEST to the mode of the source of NEWPAT if we can. */ | |
916f14f1 RK |
1730 | |
1731 | m_split = split_insns (newpat, i3); | |
a70c61d9 JW |
1732 | |
1733 | /* We can only use I2DEST as a scratch reg if it doesn't overlap any | |
1734 | inputs of NEWPAT. */ | |
1735 | ||
1736 | /* ??? If I2DEST is not safe, and I1DEST exists, then it would be | |
1737 | possible to try that as a scratch reg. This would require adding | |
1738 | more code to make it work though. */ | |
1739 | ||
1740 | if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat)) | |
42495ca0 RK |
1741 | { |
1742 | /* If I2DEST is a hard register or the only use of a pseudo, | |
1743 | we can change its mode. */ | |
1744 | if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest) | |
02f4ada4 | 1745 | && GET_MODE (SET_DEST (newpat)) != VOIDmode |
60654f77 | 1746 | && GET_CODE (i2dest) == REG |
42495ca0 RK |
1747 | && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER |
1748 | || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2 | |
1749 | && ! REG_USERVAR_P (i2dest)))) | |
1750 | ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)), | |
1751 | REGNO (i2dest)); | |
1752 | ||
1753 | m_split = split_insns (gen_rtx (PARALLEL, VOIDmode, | |
1754 | gen_rtvec (2, newpat, | |
1755 | gen_rtx (CLOBBER, | |
1756 | VOIDmode, | |
1757 | ni2dest))), | |
1758 | i3); | |
1759 | } | |
916f14f1 RK |
1760 | |
1761 | if (m_split && GET_CODE (m_split) == SEQUENCE | |
3f508eca RK |
1762 | && XVECLEN (m_split, 0) == 2 |
1763 | && (next_real_insn (i2) == i3 | |
1764 | || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)), | |
1765 | INSN_CUID (i2)))) | |
916f14f1 | 1766 | { |
1a26b032 | 1767 | rtx i2set, i3set; |
d0ab8cd3 | 1768 | rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1)); |
916f14f1 | 1769 | newi2pat = PATTERN (XVECEXP (m_split, 0, 0)); |
916f14f1 | 1770 | |
e4ba89be RK |
1771 | i3set = single_set (XVECEXP (m_split, 0, 1)); |
1772 | i2set = single_set (XVECEXP (m_split, 0, 0)); | |
1a26b032 | 1773 | |
42495ca0 RK |
1774 | /* In case we changed the mode of I2DEST, replace it in the |
1775 | pseudo-register table here. We can't do it above in case this | |
1776 | code doesn't get executed and we do a split the other way. */ | |
1777 | ||
1778 | if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER) | |
1779 | SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest); | |
1780 | ||
916f14f1 | 1781 | i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); |
1a26b032 RK |
1782 | |
1783 | /* If I2 or I3 has multiple SETs, we won't know how to track | |
1784 | register status, so don't use these insns. */ | |
1785 | ||
1786 | if (i2_code_number >= 0 && i2set && i3set) | |
8888fada RK |
1787 | insn_code_number = recog_for_combine (&newi3pat, i3, |
1788 | &new_i3_notes); | |
c767f54b | 1789 | |
d0ab8cd3 RK |
1790 | if (insn_code_number >= 0) |
1791 | newpat = newi3pat; | |
1792 | ||
c767f54b | 1793 | /* It is possible that both insns now set the destination of I3. |
22609cbf | 1794 | If so, we must show an extra use of it. */ |
c767f54b | 1795 | |
1a26b032 RK |
1796 | if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG |
1797 | && GET_CODE (SET_DEST (i2set)) == REG | |
1798 | && REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set))) | |
22609cbf | 1799 | reg_n_sets[REGNO (SET_DEST (i2set))]++; |
916f14f1 | 1800 | } |
230d793d RS |
1801 | |
1802 | /* If we can split it and use I2DEST, go ahead and see if that | |
1803 | helps things be recognized. Verify that none of the registers | |
1804 | are set between I2 and I3. */ | |
d0ab8cd3 | 1805 | if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0 |
230d793d RS |
1806 | #ifdef HAVE_cc0 |
1807 | && GET_CODE (i2dest) == REG | |
1808 | #endif | |
1809 | /* We need I2DEST in the proper mode. If it is a hard register | |
1810 | or the only use of a pseudo, we can change its mode. */ | |
1811 | && (GET_MODE (*split) == GET_MODE (i2dest) | |
1812 | || GET_MODE (*split) == VOIDmode | |
1813 | || REGNO (i2dest) < FIRST_PSEUDO_REGISTER | |
1814 | || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2 | |
1815 | && ! REG_USERVAR_P (i2dest))) | |
1816 | && (next_real_insn (i2) == i3 | |
1817 | || ! use_crosses_set_p (*split, INSN_CUID (i2))) | |
1818 | /* We can't overwrite I2DEST if its value is still used by | |
1819 | NEWPAT. */ | |
1820 | && ! reg_referenced_p (i2dest, newpat)) | |
1821 | { | |
1822 | rtx newdest = i2dest; | |
df7d75de RK |
1823 | enum rtx_code split_code = GET_CODE (*split); |
1824 | enum machine_mode split_mode = GET_MODE (*split); | |
230d793d RS |
1825 | |
1826 | /* Get NEWDEST as a register in the proper mode. We have already | |
1827 | validated that we can do this. */ | |
df7d75de | 1828 | if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode) |
230d793d | 1829 | { |
df7d75de | 1830 | newdest = gen_rtx (REG, split_mode, REGNO (i2dest)); |
230d793d RS |
1831 | |
1832 | if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER) | |
1833 | SUBST (regno_reg_rtx[REGNO (i2dest)], newdest); | |
1834 | } | |
1835 | ||
1836 | /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to | |
1837 | an ASHIFT. This can occur if it was inside a PLUS and hence | |
1838 | appeared to be a memory address. This is a kludge. */ | |
df7d75de | 1839 | if (split_code == MULT |
230d793d RS |
1840 | && GET_CODE (XEXP (*split, 1)) == CONST_INT |
1841 | && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0) | |
1dc8a823 JW |
1842 | { |
1843 | SUBST (*split, gen_rtx_combine (ASHIFT, split_mode, | |
1844 | XEXP (*split, 0), GEN_INT (i))); | |
1845 | /* Update split_code because we may not have a multiply | |
1846 | anymore. */ | |
1847 | split_code = GET_CODE (*split); | |
1848 | } | |
230d793d RS |
1849 | |
1850 | #ifdef INSN_SCHEDULING | |
1851 | /* If *SPLIT is a paradoxical SUBREG, when we split it, it should | |
1852 | be written as a ZERO_EXTEND. */ | |
df7d75de RK |
1853 | if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM) |
1854 | SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode, | |
230d793d RS |
1855 | XEXP (*split, 0))); |
1856 | #endif | |
1857 | ||
1858 | newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split); | |
1859 | SUBST (*split, newdest); | |
1860 | i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); | |
df7d75de RK |
1861 | |
1862 | /* If the split point was a MULT and we didn't have one before, | |
1863 | don't use one now. */ | |
1864 | if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult)) | |
230d793d RS |
1865 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); |
1866 | } | |
1867 | } | |
1868 | ||
1869 | /* Check for a case where we loaded from memory in a narrow mode and | |
1870 | then sign extended it, but we need both registers. In that case, | |
1871 | we have a PARALLEL with both loads from the same memory location. | |
1872 | We can split this into a load from memory followed by a register-register | |
1873 | copy. This saves at least one insn, more if register allocation can | |
f0343c74 RK |
1874 | eliminate the copy. |
1875 | ||
1876 | We cannot do this if the destination of the second assignment is | |
1877 | a register that we have already assumed is zero-extended. Similarly | |
1878 | for a SUBREG of such a register. */ | |
230d793d RS |
1879 | |
1880 | else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0 | |
1881 | && GET_CODE (newpat) == PARALLEL | |
1882 | && XVECLEN (newpat, 0) == 2 | |
1883 | && GET_CODE (XVECEXP (newpat, 0, 0)) == SET | |
1884 | && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND | |
1885 | && GET_CODE (XVECEXP (newpat, 0, 1)) == SET | |
1886 | && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)), | |
1887 | XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0)) | |
1888 | && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)), | |
1889 | INSN_CUID (i2)) | |
1890 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT | |
1891 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART | |
f0343c74 RK |
1892 | && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)), |
1893 | (GET_CODE (temp) == REG | |
1894 | && reg_nonzero_bits[REGNO (temp)] != 0 | |
1895 | && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD | |
1896 | && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT | |
1897 | && (reg_nonzero_bits[REGNO (temp)] | |
1898 | != GET_MODE_MASK (word_mode)))) | |
1899 | && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG | |
1900 | && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))), | |
1901 | (GET_CODE (temp) == REG | |
1902 | && reg_nonzero_bits[REGNO (temp)] != 0 | |
1903 | && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD | |
1904 | && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT | |
1905 | && (reg_nonzero_bits[REGNO (temp)] | |
1906 | != GET_MODE_MASK (word_mode))))) | |
230d793d RS |
1907 | && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)), |
1908 | SET_SRC (XVECEXP (newpat, 0, 1))) | |
1909 | && ! find_reg_note (i3, REG_UNUSED, | |
1910 | SET_DEST (XVECEXP (newpat, 0, 0)))) | |
1911 | { | |
472fbdd1 RK |
1912 | rtx ni2dest; |
1913 | ||
230d793d | 1914 | newi2pat = XVECEXP (newpat, 0, 0); |
472fbdd1 | 1915 | ni2dest = SET_DEST (XVECEXP (newpat, 0, 0)); |
230d793d RS |
1916 | newpat = XVECEXP (newpat, 0, 1); |
1917 | SUBST (SET_SRC (newpat), | |
472fbdd1 | 1918 | gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest)); |
230d793d RS |
1919 | i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); |
1920 | if (i2_code_number >= 0) | |
1921 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); | |
5089e22e RS |
1922 | |
1923 | if (insn_code_number >= 0) | |
1924 | { | |
1925 | rtx insn; | |
1926 | rtx link; | |
1927 | ||
1928 | /* If we will be able to accept this, we have made a change to the | |
1929 | destination of I3. This can invalidate a LOG_LINKS pointing | |
1930 | to I3. No other part of combine.c makes such a transformation. | |
1931 | ||
1932 | The new I3 will have a destination that was previously the | |
1933 | destination of I1 or I2 and which was used in i2 or I3. Call | |
1934 | distribute_links to make a LOG_LINK from the next use of | |
1935 | that destination. */ | |
1936 | ||
1937 | PATTERN (i3) = newpat; | |
5f4f0e22 | 1938 | distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX)); |
5089e22e RS |
1939 | |
1940 | /* I3 now uses what used to be its destination and which is | |
1941 | now I2's destination. That means we need a LOG_LINK from | |
1942 | I3 to I2. But we used to have one, so we still will. | |
1943 | ||
1944 | However, some later insn might be using I2's dest and have | |
1945 | a LOG_LINK pointing at I3. We must remove this link. | |
1946 | The simplest way to remove the link is to point it at I1, | |
1947 | which we know will be a NOTE. */ | |
1948 | ||
1949 | for (insn = NEXT_INSN (i3); | |
0d4d42c3 RK |
1950 | insn && (this_basic_block == n_basic_blocks - 1 |
1951 | || insn != basic_block_head[this_basic_block + 1]); | |
5089e22e RS |
1952 | insn = NEXT_INSN (insn)) |
1953 | { | |
1954 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i' | |
472fbdd1 | 1955 | && reg_referenced_p (ni2dest, PATTERN (insn))) |
5089e22e RS |
1956 | { |
1957 | for (link = LOG_LINKS (insn); link; | |
1958 | link = XEXP (link, 1)) | |
1959 | if (XEXP (link, 0) == i3) | |
1960 | XEXP (link, 0) = i1; | |
1961 | ||
1962 | break; | |
1963 | } | |
1964 | } | |
1965 | } | |
230d793d RS |
1966 | } |
1967 | ||
1968 | /* Similarly, check for a case where we have a PARALLEL of two independent | |
1969 | SETs but we started with three insns. In this case, we can do the sets | |
1970 | as two separate insns. This case occurs when some SET allows two | |
1971 | other insns to combine, but the destination of that SET is still live. */ | |
1972 | ||
1973 | else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0 | |
1974 | && GET_CODE (newpat) == PARALLEL | |
1975 | && XVECLEN (newpat, 0) == 2 | |
1976 | && GET_CODE (XVECEXP (newpat, 0, 0)) == SET | |
1977 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT | |
1978 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART | |
1979 | && GET_CODE (XVECEXP (newpat, 0, 1)) == SET | |
1980 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT | |
1981 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART | |
1982 | && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)), | |
1983 | INSN_CUID (i2)) | |
1984 | /* Don't pass sets with (USE (MEM ...)) dests to the following. */ | |
1985 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE | |
1986 | && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE | |
1987 | && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)), | |
1988 | XVECEXP (newpat, 0, 0)) | |
1989 | && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)), | |
1990 | XVECEXP (newpat, 0, 1))) | |
1991 | { | |
1992 | newi2pat = XVECEXP (newpat, 0, 1); | |
1993 | newpat = XVECEXP (newpat, 0, 0); | |
1994 | ||
1995 | i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); | |
1996 | if (i2_code_number >= 0) | |
1997 | insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); | |
1998 | } | |
1999 | ||
2000 | /* If it still isn't recognized, fail and change things back the way they | |
2001 | were. */ | |
2002 | if ((insn_code_number < 0 | |
2003 | /* Is the result a reasonable ASM_OPERANDS? */ | |
2004 | && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2))) | |
2005 | { | |
2006 | undo_all (); | |
2007 | return 0; | |
2008 | } | |
2009 | ||
2010 | /* If we had to change another insn, make sure it is valid also. */ | |
2011 | if (undobuf.other_insn) | |
2012 | { | |
230d793d RS |
2013 | rtx other_pat = PATTERN (undobuf.other_insn); |
2014 | rtx new_other_notes; | |
2015 | rtx note, next; | |
2016 | ||
6e25d159 RK |
2017 | CLEAR_HARD_REG_SET (newpat_used_regs); |
2018 | ||
230d793d RS |
2019 | other_code_number = recog_for_combine (&other_pat, undobuf.other_insn, |
2020 | &new_other_notes); | |
2021 | ||
2022 | if (other_code_number < 0 && ! check_asm_operands (other_pat)) | |
2023 | { | |
2024 | undo_all (); | |
2025 | return 0; | |
2026 | } | |
2027 | ||
2028 | PATTERN (undobuf.other_insn) = other_pat; | |
2029 | ||
2030 | /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they | |
2031 | are still valid. Then add any non-duplicate notes added by | |
2032 | recog_for_combine. */ | |
2033 | for (note = REG_NOTES (undobuf.other_insn); note; note = next) | |
2034 | { | |
2035 | next = XEXP (note, 1); | |
2036 | ||
2037 | if (REG_NOTE_KIND (note) == REG_UNUSED | |
2038 | && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn))) | |
1a26b032 RK |
2039 | { |
2040 | if (GET_CODE (XEXP (note, 0)) == REG) | |
2041 | reg_n_deaths[REGNO (XEXP (note, 0))]--; | |
2042 | ||
2043 | remove_note (undobuf.other_insn, note); | |
2044 | } | |
230d793d RS |
2045 | } |
2046 | ||
1a26b032 RK |
2047 | for (note = new_other_notes; note; note = XEXP (note, 1)) |
2048 | if (GET_CODE (XEXP (note, 0)) == REG) | |
2049 | reg_n_deaths[REGNO (XEXP (note, 0))]++; | |
2050 | ||
230d793d | 2051 | distribute_notes (new_other_notes, undobuf.other_insn, |
5f4f0e22 | 2052 | undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX); |
230d793d RS |
2053 | } |
2054 | ||
2055 | /* We now know that we can do this combination. Merge the insns and | |
2056 | update the status of registers and LOG_LINKS. */ | |
2057 | ||
2058 | { | |
2059 | rtx i3notes, i2notes, i1notes = 0; | |
2060 | rtx i3links, i2links, i1links = 0; | |
2061 | rtx midnotes = 0; | |
230d793d RS |
2062 | register int regno; |
2063 | /* Compute which registers we expect to eliminate. */ | |
2064 | rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src | |
2065 | ? 0 : i2dest); | |
2066 | rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest; | |
2067 | ||
2068 | /* Get the old REG_NOTES and LOG_LINKS from all our insns and | |
2069 | clear them. */ | |
2070 | i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3); | |
2071 | i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2); | |
2072 | if (i1) | |
2073 | i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1); | |
2074 | ||
2075 | /* Ensure that we do not have something that should not be shared but | |
2076 | occurs multiple times in the new insns. Check this by first | |
5089e22e | 2077 | resetting all the `used' flags and then copying anything is shared. */ |
230d793d RS |
2078 | |
2079 | reset_used_flags (i3notes); | |
2080 | reset_used_flags (i2notes); | |
2081 | reset_used_flags (i1notes); | |
2082 | reset_used_flags (newpat); | |
2083 | reset_used_flags (newi2pat); | |
2084 | if (undobuf.other_insn) | |
2085 | reset_used_flags (PATTERN (undobuf.other_insn)); | |
2086 | ||
2087 | i3notes = copy_rtx_if_shared (i3notes); | |
2088 | i2notes = copy_rtx_if_shared (i2notes); | |
2089 | i1notes = copy_rtx_if_shared (i1notes); | |
2090 | newpat = copy_rtx_if_shared (newpat); | |
2091 | newi2pat = copy_rtx_if_shared (newi2pat); | |
2092 | if (undobuf.other_insn) | |
2093 | reset_used_flags (PATTERN (undobuf.other_insn)); | |
2094 | ||
2095 | INSN_CODE (i3) = insn_code_number; | |
2096 | PATTERN (i3) = newpat; | |
2097 | if (undobuf.other_insn) | |
2098 | INSN_CODE (undobuf.other_insn) = other_code_number; | |
2099 | ||
2100 | /* We had one special case above where I2 had more than one set and | |
2101 | we replaced a destination of one of those sets with the destination | |
2102 | of I3. In that case, we have to update LOG_LINKS of insns later | |
176c9e6b JW |
2103 | in this basic block. Note that this (expensive) case is rare. |
2104 | ||
2105 | Also, in this case, we must pretend that all REG_NOTEs for I2 | |
2106 | actually came from I3, so that REG_UNUSED notes from I2 will be | |
2107 | properly handled. */ | |
2108 | ||
2109 | if (i3_subst_into_i2) | |
2110 | { | |
2111 | for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++) | |
2112 | if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG | |
2113 | && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest | |
2114 | && ! find_reg_note (i2, REG_UNUSED, | |
2115 | SET_DEST (XVECEXP (PATTERN (i2), 0, i)))) | |
2116 | for (temp = NEXT_INSN (i2); | |
2117 | temp && (this_basic_block == n_basic_blocks - 1 | |
2118 | || basic_block_head[this_basic_block] != temp); | |
2119 | temp = NEXT_INSN (temp)) | |
2120 | if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i') | |
2121 | for (link = LOG_LINKS (temp); link; link = XEXP (link, 1)) | |
2122 | if (XEXP (link, 0) == i2) | |
2123 | XEXP (link, 0) = i3; | |
2124 | ||
2125 | if (i3notes) | |
2126 | { | |
2127 | rtx link = i3notes; | |
2128 | while (XEXP (link, 1)) | |
2129 | link = XEXP (link, 1); | |
2130 | XEXP (link, 1) = i2notes; | |
2131 | } | |
2132 | else | |
2133 | i3notes = i2notes; | |
2134 | i2notes = 0; | |
2135 | } | |
230d793d RS |
2136 | |
2137 | LOG_LINKS (i3) = 0; | |
2138 | REG_NOTES (i3) = 0; | |
2139 | LOG_LINKS (i2) = 0; | |
2140 | REG_NOTES (i2) = 0; | |
2141 | ||
2142 | if (newi2pat) | |
2143 | { | |
2144 | INSN_CODE (i2) = i2_code_number; | |
2145 | PATTERN (i2) = newi2pat; | |
2146 | } | |
2147 | else | |
2148 | { | |
2149 | PUT_CODE (i2, NOTE); | |
2150 | NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED; | |
2151 | NOTE_SOURCE_FILE (i2) = 0; | |
2152 | } | |
2153 | ||
2154 | if (i1) | |
2155 | { | |
2156 | LOG_LINKS (i1) = 0; | |
2157 | REG_NOTES (i1) = 0; | |
2158 | PUT_CODE (i1, NOTE); | |
2159 | NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED; | |
2160 | NOTE_SOURCE_FILE (i1) = 0; | |
2161 | } | |
2162 | ||
2163 | /* Get death notes for everything that is now used in either I3 or | |
2164 | I2 and used to die in a previous insn. */ | |
2165 | ||
2166 | move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes); | |
2167 | if (newi2pat) | |
2168 | move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes); | |
2169 | ||
2170 | /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */ | |
2171 | if (i3notes) | |
5f4f0e22 CH |
2172 | distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX, |
2173 | elim_i2, elim_i1); | |
230d793d | 2174 | if (i2notes) |
5f4f0e22 CH |
2175 | distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX, |
2176 | elim_i2, elim_i1); | |
230d793d | 2177 | if (i1notes) |
5f4f0e22 CH |
2178 | distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX, |
2179 | elim_i2, elim_i1); | |
230d793d | 2180 | if (midnotes) |
5f4f0e22 CH |
2181 | distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX, |
2182 | elim_i2, elim_i1); | |
230d793d RS |
2183 | |
2184 | /* Distribute any notes added to I2 or I3 by recog_for_combine. We | |
2185 | know these are REG_UNUSED and want them to go to the desired insn, | |
1a26b032 RK |
2186 | so we always pass it as i3. We have not counted the notes in |
2187 | reg_n_deaths yet, so we need to do so now. */ | |
2188 | ||
230d793d | 2189 | if (newi2pat && new_i2_notes) |
1a26b032 RK |
2190 | { |
2191 | for (temp = new_i2_notes; temp; temp = XEXP (temp, 1)) | |
2192 | if (GET_CODE (XEXP (temp, 0)) == REG) | |
2193 | reg_n_deaths[REGNO (XEXP (temp, 0))]++; | |
2194 | ||
2195 | distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX); | |
2196 | } | |
2197 | ||
230d793d | 2198 | if (new_i3_notes) |
1a26b032 RK |
2199 | { |
2200 | for (temp = new_i3_notes; temp; temp = XEXP (temp, 1)) | |
2201 | if (GET_CODE (XEXP (temp, 0)) == REG) | |
2202 | reg_n_deaths[REGNO (XEXP (temp, 0))]++; | |
2203 | ||
2204 | distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX); | |
2205 | } | |
230d793d RS |
2206 | |
2207 | /* If I3DEST was used in I3SRC, it really died in I3. We may need to | |
1a26b032 RK |
2208 | put a REG_DEAD note for it somewhere. Similarly for I2 and I1. |
2209 | Show an additional death due to the REG_DEAD note we make here. If | |
2210 | we discard it in distribute_notes, we will decrement it again. */ | |
d0ab8cd3 | 2211 | |
230d793d | 2212 | if (i3dest_killed) |
1a26b032 RK |
2213 | { |
2214 | if (GET_CODE (i3dest_killed) == REG) | |
2215 | reg_n_deaths[REGNO (i3dest_killed)]++; | |
2216 | ||
2217 | distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed, | |
2218 | NULL_RTX), | |
2219 | NULL_RTX, i3, newi2pat ? i2 : NULL_RTX, | |
2220 | NULL_RTX, NULL_RTX); | |
2221 | } | |
58c8c593 RK |
2222 | |
2223 | /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets | |
2224 | I2DEST or I1DEST, the death must be somewhere before I2, not I3. If | |
2225 | we passed I3 in that case, it might delete I2. */ | |
2226 | ||
230d793d | 2227 | if (i2dest_in_i2src) |
58c8c593 | 2228 | { |
1a26b032 RK |
2229 | if (GET_CODE (i2dest) == REG) |
2230 | reg_n_deaths[REGNO (i2dest)]++; | |
2231 | ||
58c8c593 RK |
2232 | if (newi2pat && reg_set_p (i2dest, newi2pat)) |
2233 | distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX), | |
2234 | NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX); | |
2235 | else | |
2236 | distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX), | |
2237 | NULL_RTX, i3, newi2pat ? i2 : NULL_RTX, | |
2238 | NULL_RTX, NULL_RTX); | |
2239 | } | |
2240 | ||
230d793d | 2241 | if (i1dest_in_i1src) |
58c8c593 | 2242 | { |
1a26b032 RK |
2243 | if (GET_CODE (i1dest) == REG) |
2244 | reg_n_deaths[REGNO (i1dest)]++; | |
2245 | ||
58c8c593 RK |
2246 | if (newi2pat && reg_set_p (i1dest, newi2pat)) |
2247 | distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX), | |
2248 | NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX); | |
2249 | else | |
2250 | distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX), | |
2251 | NULL_RTX, i3, newi2pat ? i2 : NULL_RTX, | |
2252 | NULL_RTX, NULL_RTX); | |
2253 | } | |
230d793d RS |
2254 | |
2255 | distribute_links (i3links); | |
2256 | distribute_links (i2links); | |
2257 | distribute_links (i1links); | |
2258 | ||
2259 | if (GET_CODE (i2dest) == REG) | |
2260 | { | |
d0ab8cd3 RK |
2261 | rtx link; |
2262 | rtx i2_insn = 0, i2_val = 0, set; | |
2263 | ||
2264 | /* The insn that used to set this register doesn't exist, and | |
2265 | this life of the register may not exist either. See if one of | |
2266 | I3's links points to an insn that sets I2DEST. If it does, | |
2267 | that is now the last known value for I2DEST. If we don't update | |
2268 | this and I2 set the register to a value that depended on its old | |
230d793d RS |
2269 | contents, we will get confused. If this insn is used, thing |
2270 | will be set correctly in combine_instructions. */ | |
d0ab8cd3 RK |
2271 | |
2272 | for (link = LOG_LINKS (i3); link; link = XEXP (link, 1)) | |
2273 | if ((set = single_set (XEXP (link, 0))) != 0 | |
2274 | && rtx_equal_p (i2dest, SET_DEST (set))) | |
2275 | i2_insn = XEXP (link, 0), i2_val = SET_SRC (set); | |
2276 | ||
2277 | record_value_for_reg (i2dest, i2_insn, i2_val); | |
230d793d RS |
2278 | |
2279 | /* If the reg formerly set in I2 died only once and that was in I3, | |
2280 | zero its use count so it won't make `reload' do any work. */ | |
5af91171 | 2281 | if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src) |
230d793d RS |
2282 | { |
2283 | regno = REGNO (i2dest); | |
2284 | reg_n_sets[regno]--; | |
2285 | if (reg_n_sets[regno] == 0 | |
5f4f0e22 CH |
2286 | && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS] |
2287 | & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)))) | |
230d793d RS |
2288 | reg_n_refs[regno] = 0; |
2289 | } | |
2290 | } | |
2291 | ||
2292 | if (i1 && GET_CODE (i1dest) == REG) | |
2293 | { | |
d0ab8cd3 RK |
2294 | rtx link; |
2295 | rtx i1_insn = 0, i1_val = 0, set; | |
2296 | ||
2297 | for (link = LOG_LINKS (i3); link; link = XEXP (link, 1)) | |
2298 | if ((set = single_set (XEXP (link, 0))) != 0 | |
2299 | && rtx_equal_p (i1dest, SET_DEST (set))) | |
2300 | i1_insn = XEXP (link, 0), i1_val = SET_SRC (set); | |
2301 | ||
2302 | record_value_for_reg (i1dest, i1_insn, i1_val); | |
2303 | ||
230d793d | 2304 | regno = REGNO (i1dest); |
5af91171 | 2305 | if (! added_sets_1 && ! i1dest_in_i1src) |
230d793d RS |
2306 | { |
2307 | reg_n_sets[regno]--; | |
2308 | if (reg_n_sets[regno] == 0 | |
5f4f0e22 CH |
2309 | && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS] |
2310 | & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)))) | |
230d793d RS |
2311 | reg_n_refs[regno] = 0; |
2312 | } | |
2313 | } | |
2314 | ||
951553af | 2315 | /* Update reg_nonzero_bits et al for any changes that may have been made |
22609cbf RK |
2316 | to this insn. */ |
2317 | ||
951553af | 2318 | note_stores (newpat, set_nonzero_bits_and_sign_copies); |
22609cbf | 2319 | if (newi2pat) |
951553af | 2320 | note_stores (newi2pat, set_nonzero_bits_and_sign_copies); |
22609cbf | 2321 | |
230d793d RS |
2322 | /* If I3 is now an unconditional jump, ensure that it has a |
2323 | BARRIER following it since it may have initially been a | |
381ee8af | 2324 | conditional jump. It may also be the last nonnote insn. */ |
230d793d RS |
2325 | |
2326 | if ((GET_CODE (newpat) == RETURN || simplejump_p (i3)) | |
381ee8af TW |
2327 | && ((temp = next_nonnote_insn (i3)) == NULL_RTX |
2328 | || GET_CODE (temp) != BARRIER)) | |
230d793d RS |
2329 | emit_barrier_after (i3); |
2330 | } | |
2331 | ||
2332 | combine_successes++; | |
2333 | ||
abe6e52f RK |
2334 | if (added_links_insn |
2335 | && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2)) | |
2336 | && INSN_CUID (added_links_insn) < INSN_CUID (i3)) | |
2337 | return added_links_insn; | |
2338 | else | |
2339 | return newi2pat ? i2 : i3; | |
230d793d RS |
2340 | } |
2341 | \f | |
2342 | /* Undo all the modifications recorded in undobuf. */ | |
2343 | ||
2344 | static void | |
2345 | undo_all () | |
2346 | { | |
2347 | register int i; | |
2348 | if (undobuf.num_undo > MAX_UNDO) | |
2349 | undobuf.num_undo = MAX_UNDO; | |
2350 | for (i = undobuf.num_undo - 1; i >= 0; i--) | |
7c046e4e RK |
2351 | { |
2352 | if (undobuf.undo[i].is_int) | |
2353 | *undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i; | |
2354 | else | |
f5393ab9 | 2355 | *undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r; |
7c046e4e RK |
2356 | |
2357 | } | |
230d793d RS |
2358 | |
2359 | obfree (undobuf.storage); | |
2360 | undobuf.num_undo = 0; | |
2361 | } | |
2362 | \f | |
2363 | /* Find the innermost point within the rtx at LOC, possibly LOC itself, | |
d0ab8cd3 RK |
2364 | where we have an arithmetic expression and return that point. LOC will |
2365 | be inside INSN. | |
230d793d RS |
2366 | |
2367 | try_combine will call this function to see if an insn can be split into | |
2368 | two insns. */ | |
2369 | ||
2370 | static rtx * | |
d0ab8cd3 | 2371 | find_split_point (loc, insn) |
230d793d | 2372 | rtx *loc; |
d0ab8cd3 | 2373 | rtx insn; |
230d793d RS |
2374 | { |
2375 | rtx x = *loc; | |
2376 | enum rtx_code code = GET_CODE (x); | |
2377 | rtx *split; | |
2378 | int len = 0, pos, unsignedp; | |
2379 | rtx inner; | |
2380 | ||
2381 | /* First special-case some codes. */ | |
2382 | switch (code) | |
2383 | { | |
2384 | case SUBREG: | |
2385 | #ifdef INSN_SCHEDULING | |
2386 | /* If we are making a paradoxical SUBREG invalid, it becomes a split | |
2387 | point. */ | |
2388 | if (GET_CODE (SUBREG_REG (x)) == MEM) | |
2389 | return loc; | |
2390 | #endif | |
d0ab8cd3 | 2391 | return find_split_point (&SUBREG_REG (x), insn); |
230d793d | 2392 | |
230d793d | 2393 | case MEM: |
916f14f1 | 2394 | #ifdef HAVE_lo_sum |
230d793d RS |
2395 | /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it |
2396 | using LO_SUM and HIGH. */ | |
2397 | if (GET_CODE (XEXP (x, 0)) == CONST | |
2398 | || GET_CODE (XEXP (x, 0)) == SYMBOL_REF) | |
2399 | { | |
2400 | SUBST (XEXP (x, 0), | |
2401 | gen_rtx_combine (LO_SUM, Pmode, | |
2402 | gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)), | |
2403 | XEXP (x, 0))); | |
2404 | return &XEXP (XEXP (x, 0), 0); | |
2405 | } | |
230d793d RS |
2406 | #endif |
2407 | ||
916f14f1 RK |
2408 | /* If we have a PLUS whose second operand is a constant and the |
2409 | address is not valid, perhaps will can split it up using | |
2410 | the machine-specific way to split large constants. We use | |
d0ab8cd3 | 2411 | the first psuedo-reg (one of the virtual regs) as a placeholder; |
916f14f1 RK |
2412 | it will not remain in the result. */ |
2413 | if (GET_CODE (XEXP (x, 0)) == PLUS | |
2414 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
2415 | && ! memory_address_p (GET_MODE (x), XEXP (x, 0))) | |
2416 | { | |
2417 | rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER]; | |
2418 | rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)), | |
2419 | subst_insn); | |
2420 | ||
2421 | /* This should have produced two insns, each of which sets our | |
2422 | placeholder. If the source of the second is a valid address, | |
2423 | we can make put both sources together and make a split point | |
2424 | in the middle. */ | |
2425 | ||
2426 | if (seq && XVECLEN (seq, 0) == 2 | |
2427 | && GET_CODE (XVECEXP (seq, 0, 0)) == INSN | |
2428 | && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET | |
2429 | && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg | |
2430 | && ! reg_mentioned_p (reg, | |
2431 | SET_SRC (PATTERN (XVECEXP (seq, 0, 0)))) | |
2432 | && GET_CODE (XVECEXP (seq, 0, 1)) == INSN | |
2433 | && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET | |
2434 | && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg | |
2435 | && memory_address_p (GET_MODE (x), | |
2436 | SET_SRC (PATTERN (XVECEXP (seq, 0, 1))))) | |
2437 | { | |
2438 | rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0))); | |
2439 | rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1))); | |
2440 | ||
2441 | /* Replace the placeholder in SRC2 with SRC1. If we can | |
2442 | find where in SRC2 it was placed, that can become our | |
2443 | split point and we can replace this address with SRC2. | |
2444 | Just try two obvious places. */ | |
2445 | ||
2446 | src2 = replace_rtx (src2, reg, src1); | |
2447 | split = 0; | |
2448 | if (XEXP (src2, 0) == src1) | |
2449 | split = &XEXP (src2, 0); | |
2450 | else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e' | |
2451 | && XEXP (XEXP (src2, 0), 0) == src1) | |
2452 | split = &XEXP (XEXP (src2, 0), 0); | |
2453 | ||
2454 | if (split) | |
2455 | { | |
2456 | SUBST (XEXP (x, 0), src2); | |
2457 | return split; | |
2458 | } | |
2459 | } | |
1a26b032 RK |
2460 | |
2461 | /* If that didn't work, perhaps the first operand is complex and | |
2462 | needs to be computed separately, so make a split point there. | |
2463 | This will occur on machines that just support REG + CONST | |
2464 | and have a constant moved through some previous computation. */ | |
2465 | ||
2466 | else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o' | |
2467 | && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG | |
2468 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0)))) | |
2469 | == 'o'))) | |
2470 | return &XEXP (XEXP (x, 0), 0); | |
916f14f1 RK |
2471 | } |
2472 | break; | |
2473 | ||
230d793d RS |
2474 | case SET: |
2475 | #ifdef HAVE_cc0 | |
2476 | /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a | |
2477 | ZERO_EXTRACT, the most likely reason why this doesn't match is that | |
2478 | we need to put the operand into a register. So split at that | |
2479 | point. */ | |
2480 | ||
2481 | if (SET_DEST (x) == cc0_rtx | |
2482 | && GET_CODE (SET_SRC (x)) != COMPARE | |
2483 | && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT | |
2484 | && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o' | |
2485 | && ! (GET_CODE (SET_SRC (x)) == SUBREG | |
2486 | && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o')) | |
2487 | return &SET_SRC (x); | |
2488 | #endif | |
2489 | ||
2490 | /* See if we can split SET_SRC as it stands. */ | |
d0ab8cd3 | 2491 | split = find_split_point (&SET_SRC (x), insn); |
230d793d RS |
2492 | if (split && split != &SET_SRC (x)) |
2493 | return split; | |
2494 | ||
2495 | /* See if this is a bitfield assignment with everything constant. If | |
2496 | so, this is an IOR of an AND, so split it into that. */ | |
2497 | if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT | |
2498 | && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))) | |
5f4f0e22 | 2499 | <= HOST_BITS_PER_WIDE_INT) |
230d793d RS |
2500 | && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT |
2501 | && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT | |
2502 | && GET_CODE (SET_SRC (x)) == CONST_INT | |
2503 | && ((INTVAL (XEXP (SET_DEST (x), 1)) | |
2504 | + INTVAL (XEXP (SET_DEST (x), 2))) | |
2505 | <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))) | |
2506 | && ! side_effects_p (XEXP (SET_DEST (x), 0))) | |
2507 | { | |
2508 | int pos = INTVAL (XEXP (SET_DEST (x), 2)); | |
2509 | int len = INTVAL (XEXP (SET_DEST (x), 1)); | |
2510 | int src = INTVAL (SET_SRC (x)); | |
2511 | rtx dest = XEXP (SET_DEST (x), 0); | |
2512 | enum machine_mode mode = GET_MODE (dest); | |
5f4f0e22 | 2513 | unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1; |
230d793d | 2514 | |
f76b9db2 ILT |
2515 | if (BITS_BIG_ENDIAN) |
2516 | pos = GET_MODE_BITSIZE (mode) - len - pos; | |
230d793d RS |
2517 | |
2518 | if (src == mask) | |
2519 | SUBST (SET_SRC (x), | |
5f4f0e22 | 2520 | gen_binary (IOR, mode, dest, GEN_INT (src << pos))); |
230d793d RS |
2521 | else |
2522 | SUBST (SET_SRC (x), | |
2523 | gen_binary (IOR, mode, | |
2524 | gen_binary (AND, mode, dest, | |
5f4f0e22 CH |
2525 | GEN_INT (~ (mask << pos) |
2526 | & GET_MODE_MASK (mode))), | |
2527 | GEN_INT (src << pos))); | |
230d793d RS |
2528 | |
2529 | SUBST (SET_DEST (x), dest); | |
2530 | ||
d0ab8cd3 | 2531 | split = find_split_point (&SET_SRC (x), insn); |
230d793d RS |
2532 | if (split && split != &SET_SRC (x)) |
2533 | return split; | |
2534 | } | |
2535 | ||
2536 | /* Otherwise, see if this is an operation that we can split into two. | |
2537 | If so, try to split that. */ | |
2538 | code = GET_CODE (SET_SRC (x)); | |
2539 | ||
2540 | switch (code) | |
2541 | { | |
d0ab8cd3 RK |
2542 | case AND: |
2543 | /* If we are AND'ing with a large constant that is only a single | |
2544 | bit and the result is only being used in a context where we | |
2545 | need to know if it is zero or non-zero, replace it with a bit | |
2546 | extraction. This will avoid the large constant, which might | |
2547 | have taken more than one insn to make. If the constant were | |
2548 | not a valid argument to the AND but took only one insn to make, | |
2549 | this is no worse, but if it took more than one insn, it will | |
2550 | be better. */ | |
2551 | ||
2552 | if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT | |
2553 | && GET_CODE (XEXP (SET_SRC (x), 0)) == REG | |
2554 | && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7 | |
2555 | && GET_CODE (SET_DEST (x)) == REG | |
2556 | && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0 | |
2557 | && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE) | |
2558 | && XEXP (*split, 0) == SET_DEST (x) | |
2559 | && XEXP (*split, 1) == const0_rtx) | |
2560 | { | |
2561 | SUBST (SET_SRC (x), | |
2562 | make_extraction (GET_MODE (SET_DEST (x)), | |
2563 | XEXP (SET_SRC (x), 0), | |
2564 | pos, NULL_RTX, 1, 1, 0, 0)); | |
2565 | return find_split_point (loc, insn); | |
2566 | } | |
2567 | break; | |
2568 | ||
230d793d RS |
2569 | case SIGN_EXTEND: |
2570 | inner = XEXP (SET_SRC (x), 0); | |
2571 | pos = 0; | |
2572 | len = GET_MODE_BITSIZE (GET_MODE (inner)); | |
2573 | unsignedp = 0; | |
2574 | break; | |
2575 | ||
2576 | case SIGN_EXTRACT: | |
2577 | case ZERO_EXTRACT: | |
2578 | if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT | |
2579 | && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT) | |
2580 | { | |
2581 | inner = XEXP (SET_SRC (x), 0); | |
2582 | len = INTVAL (XEXP (SET_SRC (x), 1)); | |
2583 | pos = INTVAL (XEXP (SET_SRC (x), 2)); | |
2584 | ||
f76b9db2 ILT |
2585 | if (BITS_BIG_ENDIAN) |
2586 | pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos; | |
230d793d RS |
2587 | unsignedp = (code == ZERO_EXTRACT); |
2588 | } | |
2589 | break; | |
2590 | } | |
2591 | ||
2592 | if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner))) | |
2593 | { | |
2594 | enum machine_mode mode = GET_MODE (SET_SRC (x)); | |
2595 | ||
d0ab8cd3 RK |
2596 | /* For unsigned, we have a choice of a shift followed by an |
2597 | AND or two shifts. Use two shifts for field sizes where the | |
2598 | constant might be too large. We assume here that we can | |
2599 | always at least get 8-bit constants in an AND insn, which is | |
2600 | true for every current RISC. */ | |
2601 | ||
2602 | if (unsignedp && len <= 8) | |
230d793d RS |
2603 | { |
2604 | SUBST (SET_SRC (x), | |
2605 | gen_rtx_combine | |
2606 | (AND, mode, | |
2607 | gen_rtx_combine (LSHIFTRT, mode, | |
2608 | gen_lowpart_for_combine (mode, inner), | |
5f4f0e22 CH |
2609 | GEN_INT (pos)), |
2610 | GEN_INT (((HOST_WIDE_INT) 1 << len) - 1))); | |
230d793d | 2611 | |
d0ab8cd3 | 2612 | split = find_split_point (&SET_SRC (x), insn); |
230d793d RS |
2613 | if (split && split != &SET_SRC (x)) |
2614 | return split; | |
2615 | } | |
2616 | else | |
2617 | { | |
2618 | SUBST (SET_SRC (x), | |
2619 | gen_rtx_combine | |
d0ab8cd3 | 2620 | (unsignedp ? LSHIFTRT : ASHIFTRT, mode, |
230d793d RS |
2621 | gen_rtx_combine (ASHIFT, mode, |
2622 | gen_lowpart_for_combine (mode, inner), | |
5f4f0e22 CH |
2623 | GEN_INT (GET_MODE_BITSIZE (mode) |
2624 | - len - pos)), | |
2625 | GEN_INT (GET_MODE_BITSIZE (mode) - len))); | |
230d793d | 2626 | |
d0ab8cd3 | 2627 | split = find_split_point (&SET_SRC (x), insn); |
230d793d RS |
2628 | if (split && split != &SET_SRC (x)) |
2629 | return split; | |
2630 | } | |
2631 | } | |
2632 | ||
2633 | /* See if this is a simple operation with a constant as the second | |
2634 | operand. It might be that this constant is out of range and hence | |
2635 | could be used as a split point. */ | |
2636 | if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2' | |
2637 | || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c' | |
2638 | || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<') | |
2639 | && CONSTANT_P (XEXP (SET_SRC (x), 1)) | |
2640 | && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o' | |
2641 | || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG | |
2642 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0)))) | |
2643 | == 'o')))) | |
2644 | return &XEXP (SET_SRC (x), 1); | |
2645 | ||
2646 | /* Finally, see if this is a simple operation with its first operand | |
2647 | not in a register. The operation might require this operand in a | |
2648 | register, so return it as a split point. We can always do this | |
2649 | because if the first operand were another operation, we would have | |
2650 | already found it as a split point. */ | |
2651 | if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2' | |
2652 | || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c' | |
2653 | || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<' | |
2654 | || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1') | |
2655 | && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode)) | |
2656 | return &XEXP (SET_SRC (x), 0); | |
2657 | ||
2658 | return 0; | |
2659 | ||
2660 | case AND: | |
2661 | case IOR: | |
2662 | /* We write NOR as (and (not A) (not B)), but if we don't have a NOR, | |
2663 | it is better to write this as (not (ior A B)) so we can split it. | |
2664 | Similarly for IOR. */ | |
2665 | if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT) | |
2666 | { | |
2667 | SUBST (*loc, | |
2668 | gen_rtx_combine (NOT, GET_MODE (x), | |
2669 | gen_rtx_combine (code == IOR ? AND : IOR, | |
2670 | GET_MODE (x), | |
2671 | XEXP (XEXP (x, 0), 0), | |
2672 | XEXP (XEXP (x, 1), 0)))); | |
d0ab8cd3 | 2673 | return find_split_point (loc, insn); |
230d793d RS |
2674 | } |
2675 | ||
2676 | /* Many RISC machines have a large set of logical insns. If the | |
2677 | second operand is a NOT, put it first so we will try to split the | |
2678 | other operand first. */ | |
2679 | if (GET_CODE (XEXP (x, 1)) == NOT) | |
2680 | { | |
2681 | rtx tem = XEXP (x, 0); | |
2682 | SUBST (XEXP (x, 0), XEXP (x, 1)); | |
2683 | SUBST (XEXP (x, 1), tem); | |
2684 | } | |
2685 | break; | |
2686 | } | |
2687 | ||
2688 | /* Otherwise, select our actions depending on our rtx class. */ | |
2689 | switch (GET_RTX_CLASS (code)) | |
2690 | { | |
2691 | case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */ | |
2692 | case '3': | |
d0ab8cd3 | 2693 | split = find_split_point (&XEXP (x, 2), insn); |
230d793d RS |
2694 | if (split) |
2695 | return split; | |
2696 | /* ... fall through ... */ | |
2697 | case '2': | |
2698 | case 'c': | |
2699 | case '<': | |
d0ab8cd3 | 2700 | split = find_split_point (&XEXP (x, 1), insn); |
230d793d RS |
2701 | if (split) |
2702 | return split; | |
2703 | /* ... fall through ... */ | |
2704 | case '1': | |
2705 | /* Some machines have (and (shift ...) ...) insns. If X is not | |
2706 | an AND, but XEXP (X, 0) is, use it as our split point. */ | |
2707 | if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND) | |
2708 | return &XEXP (x, 0); | |
2709 | ||
d0ab8cd3 | 2710 | split = find_split_point (&XEXP (x, 0), insn); |
230d793d RS |
2711 | if (split) |
2712 | return split; | |
2713 | return loc; | |
2714 | } | |
2715 | ||
2716 | /* Otherwise, we don't have a split point. */ | |
2717 | return 0; | |
2718 | } | |
2719 | \f | |
2720 | /* Throughout X, replace FROM with TO, and return the result. | |
2721 | The result is TO if X is FROM; | |
2722 | otherwise the result is X, but its contents may have been modified. | |
2723 | If they were modified, a record was made in undobuf so that | |
2724 | undo_all will (among other things) return X to its original state. | |
2725 | ||
2726 | If the number of changes necessary is too much to record to undo, | |
2727 | the excess changes are not made, so the result is invalid. | |
2728 | The changes already made can still be undone. | |
2729 | undobuf.num_undo is incremented for such changes, so by testing that | |
2730 | the caller can tell whether the result is valid. | |
2731 | ||
2732 | `n_occurrences' is incremented each time FROM is replaced. | |
2733 | ||
2734 | IN_DEST is non-zero if we are processing the SET_DEST of a SET. | |
2735 | ||
5089e22e | 2736 | UNIQUE_COPY is non-zero if each substitution must be unique. We do this |
230d793d RS |
2737 | by copying if `n_occurrences' is non-zero. */ |
2738 | ||
2739 | static rtx | |
2740 | subst (x, from, to, in_dest, unique_copy) | |
2741 | register rtx x, from, to; | |
2742 | int in_dest; | |
2743 | int unique_copy; | |
2744 | { | |
f24ad0e4 | 2745 | register enum rtx_code code = GET_CODE (x); |
230d793d | 2746 | enum machine_mode op0_mode = VOIDmode; |
8079805d RK |
2747 | register char *fmt; |
2748 | register int len, i; | |
2749 | rtx new; | |
230d793d RS |
2750 | |
2751 | /* Two expressions are equal if they are identical copies of a shared | |
2752 | RTX or if they are both registers with the same register number | |
2753 | and mode. */ | |
2754 | ||
2755 | #define COMBINE_RTX_EQUAL_P(X,Y) \ | |
2756 | ((X) == (Y) \ | |
2757 | || (GET_CODE (X) == REG && GET_CODE (Y) == REG \ | |
2758 | && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y))) | |
2759 | ||
2760 | if (! in_dest && COMBINE_RTX_EQUAL_P (x, from)) | |
2761 | { | |
2762 | n_occurrences++; | |
2763 | return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to); | |
2764 | } | |
2765 | ||
2766 | /* If X and FROM are the same register but different modes, they will | |
2767 | not have been seen as equal above. However, flow.c will make a | |
2768 | LOG_LINKS entry for that case. If we do nothing, we will try to | |
2769 | rerecognize our original insn and, when it succeeds, we will | |
2770 | delete the feeding insn, which is incorrect. | |
2771 | ||
2772 | So force this insn not to match in this (rare) case. */ | |
2773 | if (! in_dest && code == REG && GET_CODE (from) == REG | |
2774 | && REGNO (x) == REGNO (from)) | |
2775 | return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx); | |
2776 | ||
2777 | /* If this is an object, we are done unless it is a MEM or LO_SUM, both | |
2778 | of which may contain things that can be combined. */ | |
2779 | if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o') | |
2780 | return x; | |
2781 | ||
2782 | /* It is possible to have a subexpression appear twice in the insn. | |
2783 | Suppose that FROM is a register that appears within TO. | |
2784 | Then, after that subexpression has been scanned once by `subst', | |
2785 | the second time it is scanned, TO may be found. If we were | |
2786 | to scan TO here, we would find FROM within it and create a | |
2787 | self-referent rtl structure which is completely wrong. */ | |
2788 | if (COMBINE_RTX_EQUAL_P (x, to)) | |
2789 | return to; | |
2790 | ||
2791 | len = GET_RTX_LENGTH (code); | |
2792 | fmt = GET_RTX_FORMAT (code); | |
2793 | ||
2794 | /* We don't need to process a SET_DEST that is a register, CC0, or PC, so | |
2795 | set up to skip this common case. All other cases where we want to | |
2796 | suppress replacing something inside a SET_SRC are handled via the | |
2797 | IN_DEST operand. */ | |
2798 | if (code == SET | |
2799 | && (GET_CODE (SET_DEST (x)) == REG | |
2800 | || GET_CODE (SET_DEST (x)) == CC0 | |
2801 | || GET_CODE (SET_DEST (x)) == PC)) | |
2802 | fmt = "ie"; | |
2803 | ||
2804 | /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */ | |
2805 | if (fmt[0] == 'e') | |
2806 | op0_mode = GET_MODE (XEXP (x, 0)); | |
2807 | ||
2808 | for (i = 0; i < len; i++) | |
2809 | { | |
2810 | if (fmt[i] == 'E') | |
2811 | { | |
2812 | register int j; | |
2813 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
2814 | { | |
230d793d RS |
2815 | if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from)) |
2816 | { | |
2817 | new = (unique_copy && n_occurrences ? copy_rtx (to) : to); | |
2818 | n_occurrences++; | |
2819 | } | |
2820 | else | |
2821 | { | |
2822 | new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy); | |
2823 | ||
2824 | /* If this substitution failed, this whole thing fails. */ | |
2825 | if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx) | |
2826 | return new; | |
2827 | } | |
2828 | ||
2829 | SUBST (XVECEXP (x, i, j), new); | |
2830 | } | |
2831 | } | |
2832 | else if (fmt[i] == 'e') | |
2833 | { | |
230d793d RS |
2834 | if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from)) |
2835 | { | |
42301240 RK |
2836 | /* In general, don't install a subreg involving two modes not |
2837 | tieable. It can worsen register allocation, and can even | |
2838 | make invalid reload insns, since the reg inside may need to | |
2839 | be copied from in the outside mode, and that may be invalid | |
2840 | if it is an fp reg copied in integer mode. | |
2841 | ||
2842 | We allow two exceptions to this: It is valid if it is inside | |
2843 | another SUBREG and the mode of that SUBREG and the mode of | |
2844 | the inside of TO is tieable and it is valid if X is a SET | |
2845 | that copies FROM to CC0. */ | |
2846 | if (GET_CODE (to) == SUBREG | |
2847 | && ! MODES_TIEABLE_P (GET_MODE (to), | |
2848 | GET_MODE (SUBREG_REG (to))) | |
2849 | && ! (code == SUBREG | |
8079805d RK |
2850 | && MODES_TIEABLE_P (GET_MODE (x), |
2851 | GET_MODE (SUBREG_REG (to)))) | |
42301240 RK |
2852 | #ifdef HAVE_cc0 |
2853 | && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx) | |
2854 | #endif | |
2855 | ) | |
2856 | return gen_rtx (CLOBBER, VOIDmode, const0_rtx); | |
2857 | ||
230d793d RS |
2858 | new = (unique_copy && n_occurrences ? copy_rtx (to) : to); |
2859 | n_occurrences++; | |
2860 | } | |
2861 | else | |
2862 | /* If we are in a SET_DEST, suppress most cases unless we | |
2863 | have gone inside a MEM, in which case we want to | |
2864 | simplify the address. We assume here that things that | |
2865 | are actually part of the destination have their inner | |
2866 | parts in the first expression. This is true for SUBREG, | |
2867 | STRICT_LOW_PART, and ZERO_EXTRACT, which are the only | |
2868 | things aside from REG and MEM that should appear in a | |
2869 | SET_DEST. */ | |
2870 | new = subst (XEXP (x, i), from, to, | |
2871 | (((in_dest | |
2872 | && (code == SUBREG || code == STRICT_LOW_PART | |
2873 | || code == ZERO_EXTRACT)) | |
2874 | || code == SET) | |
2875 | && i == 0), unique_copy); | |
2876 | ||
2877 | /* If we found that we will have to reject this combination, | |
2878 | indicate that by returning the CLOBBER ourselves, rather than | |
2879 | an expression containing it. This will speed things up as | |
2880 | well as prevent accidents where two CLOBBERs are considered | |
2881 | to be equal, thus producing an incorrect simplification. */ | |
2882 | ||
2883 | if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx) | |
2884 | return new; | |
2885 | ||
2886 | SUBST (XEXP (x, i), new); | |
2887 | } | |
2888 | } | |
2889 | ||
8079805d RK |
2890 | /* Try to simplify X. If the simplification changed the code, it is likely |
2891 | that further simplification will help, so loop, but limit the number | |
2892 | of repetitions that will be performed. */ | |
2893 | ||
2894 | for (i = 0; i < 4; i++) | |
2895 | { | |
2896 | /* If X is sufficiently simple, don't bother trying to do anything | |
2897 | with it. */ | |
2898 | if (code != CONST_INT && code != REG && code != CLOBBER) | |
2899 | x = simplify_rtx (x, op0_mode, i == 3, in_dest); | |
d0ab8cd3 | 2900 | |
8079805d RK |
2901 | if (GET_CODE (x) == code) |
2902 | break; | |
d0ab8cd3 | 2903 | |
8079805d | 2904 | code = GET_CODE (x); |
eeb43d32 | 2905 | |
8079805d RK |
2906 | /* We no longer know the original mode of operand 0 since we |
2907 | have changed the form of X) */ | |
2908 | op0_mode = VOIDmode; | |
2909 | } | |
eeb43d32 | 2910 | |
8079805d RK |
2911 | return x; |
2912 | } | |
2913 | \f | |
2914 | /* Simplify X, a piece of RTL. We just operate on the expression at the | |
2915 | outer level; call `subst' to simplify recursively. Return the new | |
2916 | expression. | |
2917 | ||
2918 | OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this | |
2919 | will be the iteration even if an expression with a code different from | |
2920 | X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */ | |
eeb43d32 | 2921 | |
8079805d RK |
2922 | static rtx |
2923 | simplify_rtx (x, op0_mode, last, in_dest) | |
2924 | rtx x; | |
2925 | enum machine_mode op0_mode; | |
2926 | int last; | |
2927 | int in_dest; | |
2928 | { | |
2929 | enum rtx_code code = GET_CODE (x); | |
2930 | enum machine_mode mode = GET_MODE (x); | |
2931 | rtx temp; | |
2932 | int i; | |
d0ab8cd3 | 2933 | |
230d793d RS |
2934 | /* If this is a commutative operation, put a constant last and a complex |
2935 | expression first. We don't need to do this for comparisons here. */ | |
2936 | if (GET_RTX_CLASS (code) == 'c' | |
2937 | && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT) | |
2938 | || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o' | |
2939 | && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o') | |
2940 | || (GET_CODE (XEXP (x, 0)) == SUBREG | |
2941 | && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o' | |
2942 | && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'))) | |
2943 | { | |
2944 | temp = XEXP (x, 0); | |
2945 | SUBST (XEXP (x, 0), XEXP (x, 1)); | |
2946 | SUBST (XEXP (x, 1), temp); | |
2947 | } | |
2948 | ||
22609cbf RK |
2949 | /* If this is a PLUS, MINUS, or MULT, and the first operand is the |
2950 | sign extension of a PLUS with a constant, reverse the order of the sign | |
2951 | extension and the addition. Note that this not the same as the original | |
2952 | code, but overflow is undefined for signed values. Also note that the | |
2953 | PLUS will have been partially moved "inside" the sign-extension, so that | |
2954 | the first operand of X will really look like: | |
2955 | (ashiftrt (plus (ashift A C4) C5) C4). | |
2956 | We convert this to | |
2957 | (plus (ashiftrt (ashift A C4) C2) C4) | |
2958 | and replace the first operand of X with that expression. Later parts | |
2959 | of this function may simplify the expression further. | |
2960 | ||
2961 | For example, if we start with (mult (sign_extend (plus A C1)) C2), | |
2962 | we swap the SIGN_EXTEND and PLUS. Later code will apply the | |
2963 | distributive law to produce (plus (mult (sign_extend X) C1) C3). | |
2964 | ||
2965 | We do this to simplify address expressions. */ | |
2966 | ||
2967 | if ((code == PLUS || code == MINUS || code == MULT) | |
2968 | && GET_CODE (XEXP (x, 0)) == ASHIFTRT | |
2969 | && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS | |
2970 | && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT | |
2971 | && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT | |
2972 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
2973 | && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1) | |
2974 | && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT | |
2975 | && (temp = simplify_binary_operation (ASHIFTRT, mode, | |
2976 | XEXP (XEXP (XEXP (x, 0), 0), 1), | |
2977 | XEXP (XEXP (x, 0), 1))) != 0) | |
2978 | { | |
2979 | rtx new | |
2980 | = simplify_shift_const (NULL_RTX, ASHIFT, mode, | |
2981 | XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0), | |
2982 | INTVAL (XEXP (XEXP (x, 0), 1))); | |
2983 | ||
2984 | new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new, | |
2985 | INTVAL (XEXP (XEXP (x, 0), 1))); | |
2986 | ||
2987 | SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp)); | |
2988 | } | |
2989 | ||
d0ab8cd3 RK |
2990 | /* If this is a simple operation applied to an IF_THEN_ELSE, try |
2991 | applying it to the arms of the IF_THEN_ELSE. This often simplifies | |
abe6e52f RK |
2992 | things. Check for cases where both arms are testing the same |
2993 | condition. | |
2994 | ||
2995 | Don't do anything if all operands are very simple. */ | |
2996 | ||
2997 | if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c' | |
2998 | || GET_RTX_CLASS (code) == '<') | |
2999 | && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o' | |
3000 | && ! (GET_CODE (XEXP (x, 0)) == SUBREG | |
3001 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) | |
3002 | == 'o'))) | |
3003 | || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o' | |
3004 | && ! (GET_CODE (XEXP (x, 1)) == SUBREG | |
3005 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1)))) | |
3006 | == 'o'))))) | |
3007 | || (GET_RTX_CLASS (code) == '1' | |
3008 | && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o' | |
3009 | && ! (GET_CODE (XEXP (x, 0)) == SUBREG | |
3010 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) | |
3011 | == 'o')))))) | |
d0ab8cd3 | 3012 | { |
abe6e52f RK |
3013 | rtx cond, true, false; |
3014 | ||
3015 | cond = if_then_else_cond (x, &true, &false); | |
3016 | if (cond != 0) | |
3017 | { | |
3018 | rtx cop1 = const0_rtx; | |
3019 | enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1); | |
3020 | ||
9210df58 RK |
3021 | /* Simplify the alternative arms; this may collapse the true and |
3022 | false arms to store-flag values. */ | |
3023 | true = subst (true, pc_rtx, pc_rtx, 0, 0); | |
3024 | false = subst (false, pc_rtx, pc_rtx, 0, 0); | |
3025 | ||
3026 | /* Restarting if we generate a store-flag expression will cause | |
3027 | us to loop. Just drop through in this case. */ | |
3028 | ||
abe6e52f RK |
3029 | /* If the result values are STORE_FLAG_VALUE and zero, we can |
3030 | just make the comparison operation. */ | |
3031 | if (true == const_true_rtx && false == const0_rtx) | |
3032 | x = gen_binary (cond_code, mode, cond, cop1); | |
3033 | else if (true == const0_rtx && false == const_true_rtx) | |
3034 | x = gen_binary (reverse_condition (cond_code), mode, cond, cop1); | |
3035 | ||
3036 | /* Likewise, we can make the negate of a comparison operation | |
3037 | if the result values are - STORE_FLAG_VALUE and zero. */ | |
3038 | else if (GET_CODE (true) == CONST_INT | |
3039 | && INTVAL (true) == - STORE_FLAG_VALUE | |
3040 | && false == const0_rtx) | |
0c1c8ea6 | 3041 | x = gen_unary (NEG, mode, mode, |
abe6e52f RK |
3042 | gen_binary (cond_code, mode, cond, cop1)); |
3043 | else if (GET_CODE (false) == CONST_INT | |
3044 | && INTVAL (false) == - STORE_FLAG_VALUE | |
3045 | && true == const0_rtx) | |
0c1c8ea6 | 3046 | x = gen_unary (NEG, mode, mode, |
abe6e52f RK |
3047 | gen_binary (reverse_condition (cond_code), |
3048 | mode, cond, cop1)); | |
3049 | else | |
8079805d RK |
3050 | return gen_rtx (IF_THEN_ELSE, mode, |
3051 | gen_binary (cond_code, VOIDmode, cond, cop1), | |
3052 | true, false); | |
5109d49f | 3053 | |
9210df58 RK |
3054 | code = GET_CODE (x); |
3055 | op0_mode = VOIDmode; | |
abe6e52f | 3056 | } |
d0ab8cd3 RK |
3057 | } |
3058 | ||
230d793d RS |
3059 | /* Try to fold this expression in case we have constants that weren't |
3060 | present before. */ | |
3061 | temp = 0; | |
3062 | switch (GET_RTX_CLASS (code)) | |
3063 | { | |
3064 | case '1': | |
3065 | temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode); | |
3066 | break; | |
3067 | case '<': | |
3068 | temp = simplify_relational_operation (code, op0_mode, | |
3069 | XEXP (x, 0), XEXP (x, 1)); | |
77fa0940 RK |
3070 | #ifdef FLOAT_STORE_FLAG_VALUE |
3071 | if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) | |
3072 | temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x)) | |
3073 | : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x))); | |
3074 | #endif | |
230d793d RS |
3075 | break; |
3076 | case 'c': | |
3077 | case '2': | |
3078 | temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1)); | |
3079 | break; | |
3080 | case 'b': | |
3081 | case '3': | |
3082 | temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0), | |
3083 | XEXP (x, 1), XEXP (x, 2)); | |
3084 | break; | |
3085 | } | |
3086 | ||
3087 | if (temp) | |
d0ab8cd3 | 3088 | x = temp, code = GET_CODE (temp); |
230d793d | 3089 | |
230d793d | 3090 | /* First see if we can apply the inverse distributive law. */ |
224eeff2 RK |
3091 | if (code == PLUS || code == MINUS |
3092 | || code == AND || code == IOR || code == XOR) | |
230d793d RS |
3093 | { |
3094 | x = apply_distributive_law (x); | |
3095 | code = GET_CODE (x); | |
3096 | } | |
3097 | ||
3098 | /* If CODE is an associative operation not otherwise handled, see if we | |
3099 | can associate some operands. This can win if they are constants or | |
3100 | if they are logically related (i.e. (a & b) & a. */ | |
3101 | if ((code == PLUS || code == MINUS | |
3102 | || code == MULT || code == AND || code == IOR || code == XOR | |
3103 | || code == DIV || code == UDIV | |
3104 | || code == SMAX || code == SMIN || code == UMAX || code == UMIN) | |
3ad2180a | 3105 | && INTEGRAL_MODE_P (mode)) |
230d793d RS |
3106 | { |
3107 | if (GET_CODE (XEXP (x, 0)) == code) | |
3108 | { | |
3109 | rtx other = XEXP (XEXP (x, 0), 0); | |
3110 | rtx inner_op0 = XEXP (XEXP (x, 0), 1); | |
3111 | rtx inner_op1 = XEXP (x, 1); | |
3112 | rtx inner; | |
3113 | ||
3114 | /* Make sure we pass the constant operand if any as the second | |
3115 | one if this is a commutative operation. */ | |
3116 | if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c') | |
3117 | { | |
3118 | rtx tem = inner_op0; | |
3119 | inner_op0 = inner_op1; | |
3120 | inner_op1 = tem; | |
3121 | } | |
3122 | inner = simplify_binary_operation (code == MINUS ? PLUS | |
3123 | : code == DIV ? MULT | |
3124 | : code == UDIV ? MULT | |
3125 | : code, | |
3126 | mode, inner_op0, inner_op1); | |
3127 | ||
3128 | /* For commutative operations, try the other pair if that one | |
3129 | didn't simplify. */ | |
3130 | if (inner == 0 && GET_RTX_CLASS (code) == 'c') | |
3131 | { | |
3132 | other = XEXP (XEXP (x, 0), 1); | |
3133 | inner = simplify_binary_operation (code, mode, | |
3134 | XEXP (XEXP (x, 0), 0), | |
3135 | XEXP (x, 1)); | |
3136 | } | |
3137 | ||
3138 | if (inner) | |
8079805d | 3139 | return gen_binary (code, mode, other, inner); |
230d793d RS |
3140 | } |
3141 | } | |
3142 | ||
3143 | /* A little bit of algebraic simplification here. */ | |
3144 | switch (code) | |
3145 | { | |
3146 | case MEM: | |
3147 | /* Ensure that our address has any ASHIFTs converted to MULT in case | |
3148 | address-recognizing predicates are called later. */ | |
3149 | temp = make_compound_operation (XEXP (x, 0), MEM); | |
3150 | SUBST (XEXP (x, 0), temp); | |
3151 | break; | |
3152 | ||
3153 | case SUBREG: | |
3154 | /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG | |
3155 | is paradoxical. If we can't do that safely, then it becomes | |
3156 | something nonsensical so that this combination won't take place. */ | |
3157 | ||
3158 | if (GET_CODE (SUBREG_REG (x)) == MEM | |
3159 | && (GET_MODE_SIZE (mode) | |
3160 | <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) | |
3161 | { | |
3162 | rtx inner = SUBREG_REG (x); | |
3163 | int endian_offset = 0; | |
3164 | /* Don't change the mode of the MEM | |
3165 | if that would change the meaning of the address. */ | |
3166 | if (MEM_VOLATILE_P (SUBREG_REG (x)) | |
3167 | || mode_dependent_address_p (XEXP (inner, 0))) | |
3168 | return gen_rtx (CLOBBER, mode, const0_rtx); | |
3169 | ||
f76b9db2 ILT |
3170 | if (BYTES_BIG_ENDIAN) |
3171 | { | |
3172 | if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) | |
3173 | endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode); | |
3174 | if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD) | |
3175 | endian_offset -= (UNITS_PER_WORD | |
3176 | - GET_MODE_SIZE (GET_MODE (inner))); | |
3177 | } | |
230d793d RS |
3178 | /* Note if the plus_constant doesn't make a valid address |
3179 | then this combination won't be accepted. */ | |
3180 | x = gen_rtx (MEM, mode, | |
3181 | plus_constant (XEXP (inner, 0), | |
3182 | (SUBREG_WORD (x) * UNITS_PER_WORD | |
3183 | + endian_offset))); | |
3184 | MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner); | |
3185 | RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner); | |
3186 | MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner); | |
3187 | return x; | |
3188 | } | |
3189 | ||
3190 | /* If we are in a SET_DEST, these other cases can't apply. */ | |
3191 | if (in_dest) | |
3192 | return x; | |
3193 | ||
3194 | /* Changing mode twice with SUBREG => just change it once, | |
3195 | or not at all if changing back to starting mode. */ | |
3196 | if (GET_CODE (SUBREG_REG (x)) == SUBREG) | |
3197 | { | |
3198 | if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x))) | |
3199 | && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0) | |
3200 | return SUBREG_REG (SUBREG_REG (x)); | |
3201 | ||
3202 | SUBST_INT (SUBREG_WORD (x), | |
3203 | SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x))); | |
3204 | SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x))); | |
3205 | } | |
3206 | ||
3207 | /* SUBREG of a hard register => just change the register number | |
3208 | and/or mode. If the hard register is not valid in that mode, | |
26ecfc76 RK |
3209 | suppress this combination. If the hard register is the stack, |
3210 | frame, or argument pointer, leave this as a SUBREG. */ | |
230d793d RS |
3211 | |
3212 | if (GET_CODE (SUBREG_REG (x)) == REG | |
26ecfc76 RK |
3213 | && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER |
3214 | && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM | |
6d7096b0 DE |
3215 | #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM |
3216 | && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM | |
3217 | #endif | |
26ecfc76 RK |
3218 | #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
3219 | && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM | |
3220 | #endif | |
3221 | && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM) | |
230d793d RS |
3222 | { |
3223 | if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x), | |
3224 | mode)) | |
3225 | return gen_rtx (REG, mode, | |
3226 | REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)); | |
3227 | else | |
3228 | return gen_rtx (CLOBBER, mode, const0_rtx); | |
3229 | } | |
3230 | ||
3231 | /* For a constant, try to pick up the part we want. Handle a full | |
a4bde0b1 RK |
3232 | word and low-order part. Only do this if we are narrowing |
3233 | the constant; if it is being widened, we have no idea what | |
3234 | the extra bits will have been set to. */ | |
230d793d RS |
3235 | |
3236 | if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode | |
3237 | && GET_MODE_SIZE (mode) == UNITS_PER_WORD | |
a4bde0b1 | 3238 | && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD |
230d793d RS |
3239 | && GET_MODE_CLASS (mode) == MODE_INT) |
3240 | { | |
3241 | temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x), | |
5f4f0e22 | 3242 | 0, op0_mode); |
230d793d RS |
3243 | if (temp) |
3244 | return temp; | |
3245 | } | |
3246 | ||
19808e22 RS |
3247 | /* If we want a subreg of a constant, at offset 0, |
3248 | take the low bits. On a little-endian machine, that's | |
3249 | always valid. On a big-endian machine, it's valid | |
3250 | only if the constant's mode fits in one word. */ | |
a4bde0b1 | 3251 | if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x) |
19808e22 | 3252 | && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode) |
f76b9db2 ILT |
3253 | && (! WORDS_BIG_ENDIAN |
3254 | || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD)) | |
230d793d RS |
3255 | return gen_lowpart_for_combine (mode, SUBREG_REG (x)); |
3256 | ||
b65c1b5b RK |
3257 | /* A paradoxical SUBREG of a VOIDmode constant is the same constant, |
3258 | since we are saying that the high bits don't matter. */ | |
3259 | if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode | |
3260 | && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode)) | |
3261 | return SUBREG_REG (x); | |
3262 | ||
87e3e0c1 RK |
3263 | /* Note that we cannot do any narrowing for non-constants since |
3264 | we might have been counting on using the fact that some bits were | |
3265 | zero. We now do this in the SET. */ | |
3266 | ||
230d793d RS |
3267 | break; |
3268 | ||
3269 | case NOT: | |
3270 | /* (not (plus X -1)) can become (neg X). */ | |
3271 | if (GET_CODE (XEXP (x, 0)) == PLUS | |
3272 | && XEXP (XEXP (x, 0), 1) == constm1_rtx) | |
8079805d | 3273 | return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0)); |
230d793d RS |
3274 | |
3275 | /* Similarly, (not (neg X)) is (plus X -1). */ | |
3276 | if (GET_CODE (XEXP (x, 0)) == NEG) | |
8079805d RK |
3277 | return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), |
3278 | constm1_rtx); | |
230d793d | 3279 | |
d0ab8cd3 RK |
3280 | /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */ |
3281 | if (GET_CODE (XEXP (x, 0)) == XOR | |
3282 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
3283 | && (temp = simplify_unary_operation (NOT, mode, | |
3284 | XEXP (XEXP (x, 0), 1), | |
3285 | mode)) != 0) | |
787745f5 | 3286 | return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp); |
d0ab8cd3 | 3287 | |
230d793d RS |
3288 | /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands |
3289 | other than 1, but that is not valid. We could do a similar | |
3290 | simplification for (not (lshiftrt C X)) where C is just the sign bit, | |
3291 | but this doesn't seem common enough to bother with. */ | |
3292 | if (GET_CODE (XEXP (x, 0)) == ASHIFT | |
3293 | && XEXP (XEXP (x, 0), 0) == const1_rtx) | |
0c1c8ea6 | 3294 | return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx), |
8079805d | 3295 | XEXP (XEXP (x, 0), 1)); |
230d793d RS |
3296 | |
3297 | if (GET_CODE (XEXP (x, 0)) == SUBREG | |
3298 | && subreg_lowpart_p (XEXP (x, 0)) | |
3299 | && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) | |
3300 | < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0))))) | |
3301 | && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT | |
3302 | && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx) | |
3303 | { | |
3304 | enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0))); | |
3305 | ||
3306 | x = gen_rtx (ROTATE, inner_mode, | |
0c1c8ea6 | 3307 | gen_unary (NOT, inner_mode, inner_mode, const1_rtx), |
230d793d | 3308 | XEXP (SUBREG_REG (XEXP (x, 0)), 1)); |
8079805d | 3309 | return gen_lowpart_for_combine (mode, x); |
230d793d RS |
3310 | } |
3311 | ||
3312 | #if STORE_FLAG_VALUE == -1 | |
3313 | /* (not (comparison foo bar)) can be done by reversing the comparison | |
3314 | code if valid. */ | |
3315 | if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<' | |
3316 | && reversible_comparison_p (XEXP (x, 0))) | |
3317 | return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))), | |
3318 | mode, XEXP (XEXP (x, 0), 0), | |
3319 | XEXP (XEXP (x, 0), 1)); | |
500c518b RK |
3320 | |
3321 | /* (ashiftrt foo C) where C is the number of bits in FOO minus 1 | |
3322 | is (lt foo (const_int 0)), so we can perform the above | |
3323 | simplification. */ | |
3324 | ||
3325 | if (XEXP (x, 1) == const1_rtx | |
3326 | && GET_CODE (XEXP (x, 0)) == ASHIFTRT | |
3327 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
3328 | && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1) | |
3329 | return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx); | |
230d793d RS |
3330 | #endif |
3331 | ||
3332 | /* Apply De Morgan's laws to reduce number of patterns for machines | |
3333 | with negating logical insns (and-not, nand, etc.). If result has | |
3334 | only one NOT, put it first, since that is how the patterns are | |
3335 | coded. */ | |
3336 | ||
3337 | if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND) | |
3338 | { | |
3339 | rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1); | |
3340 | ||
3341 | if (GET_CODE (in1) == NOT) | |
3342 | in1 = XEXP (in1, 0); | |
3343 | else | |
3344 | in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1); | |
3345 | ||
3346 | if (GET_CODE (in2) == NOT) | |
3347 | in2 = XEXP (in2, 0); | |
3348 | else if (GET_CODE (in2) == CONST_INT | |
5f4f0e22 CH |
3349 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) |
3350 | in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2)); | |
230d793d RS |
3351 | else |
3352 | in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2); | |
3353 | ||
3354 | if (GET_CODE (in2) == NOT) | |
3355 | { | |
3356 | rtx tem = in2; | |
3357 | in2 = in1; in1 = tem; | |
3358 | } | |
3359 | ||
8079805d RK |
3360 | return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR, |
3361 | mode, in1, in2); | |
230d793d RS |
3362 | } |
3363 | break; | |
3364 | ||
3365 | case NEG: | |
3366 | /* (neg (plus X 1)) can become (not X). */ | |
3367 | if (GET_CODE (XEXP (x, 0)) == PLUS | |
3368 | && XEXP (XEXP (x, 0), 1) == const1_rtx) | |
8079805d | 3369 | return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0)); |
230d793d RS |
3370 | |
3371 | /* Similarly, (neg (not X)) is (plus X 1). */ | |
3372 | if (GET_CODE (XEXP (x, 0)) == NOT) | |
8079805d | 3373 | return plus_constant (XEXP (XEXP (x, 0), 0), 1); |
230d793d | 3374 | |
230d793d RS |
3375 | /* (neg (minus X Y)) can become (minus Y X). */ |
3376 | if (GET_CODE (XEXP (x, 0)) == MINUS | |
3ad2180a | 3377 | && (! FLOAT_MODE_P (mode) |
230d793d | 3378 | /* x-y != -(y-x) with IEEE floating point. */ |
7e2a0d8e RK |
3379 | || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT |
3380 | || flag_fast_math)) | |
8079805d RK |
3381 | return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1), |
3382 | XEXP (XEXP (x, 0), 0)); | |
230d793d | 3383 | |
d0ab8cd3 RK |
3384 | /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */ |
3385 | if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx | |
951553af | 3386 | && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1) |
8079805d | 3387 | return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx); |
d0ab8cd3 | 3388 | |
230d793d RS |
3389 | /* NEG commutes with ASHIFT since it is multiplication. Only do this |
3390 | if we can then eliminate the NEG (e.g., | |
3391 | if the operand is a constant). */ | |
3392 | ||
3393 | if (GET_CODE (XEXP (x, 0)) == ASHIFT) | |
3394 | { | |
3395 | temp = simplify_unary_operation (NEG, mode, | |
3396 | XEXP (XEXP (x, 0), 0), mode); | |
3397 | if (temp) | |
3398 | { | |
3399 | SUBST (XEXP (XEXP (x, 0), 0), temp); | |
3400 | return XEXP (x, 0); | |
3401 | } | |
3402 | } | |
3403 | ||
3404 | temp = expand_compound_operation (XEXP (x, 0)); | |
3405 | ||
3406 | /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be | |
3407 | replaced by (lshiftrt X C). This will convert | |
3408 | (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */ | |
3409 | ||
3410 | if (GET_CODE (temp) == ASHIFTRT | |
3411 | && GET_CODE (XEXP (temp, 1)) == CONST_INT | |
3412 | && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1) | |
8079805d RK |
3413 | return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0), |
3414 | INTVAL (XEXP (temp, 1))); | |
230d793d | 3415 | |
951553af | 3416 | /* If X has only a single bit that might be nonzero, say, bit I, convert |
230d793d RS |
3417 | (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of |
3418 | MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to | |
3419 | (sign_extract X 1 Y). But only do this if TEMP isn't a register | |
3420 | or a SUBREG of one since we'd be making the expression more | |
3421 | complex if it was just a register. */ | |
3422 | ||
3423 | if (GET_CODE (temp) != REG | |
3424 | && ! (GET_CODE (temp) == SUBREG | |
3425 | && GET_CODE (SUBREG_REG (temp)) == REG) | |
951553af | 3426 | && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0) |
230d793d RS |
3427 | { |
3428 | rtx temp1 = simplify_shift_const | |
5f4f0e22 CH |
3429 | (NULL_RTX, ASHIFTRT, mode, |
3430 | simplify_shift_const (NULL_RTX, ASHIFT, mode, temp, | |
230d793d RS |
3431 | GET_MODE_BITSIZE (mode) - 1 - i), |
3432 | GET_MODE_BITSIZE (mode) - 1 - i); | |
3433 | ||
3434 | /* If all we did was surround TEMP with the two shifts, we | |
3435 | haven't improved anything, so don't use it. Otherwise, | |
3436 | we are better off with TEMP1. */ | |
3437 | if (GET_CODE (temp1) != ASHIFTRT | |
3438 | || GET_CODE (XEXP (temp1, 0)) != ASHIFT | |
3439 | || XEXP (XEXP (temp1, 0), 0) != temp) | |
8079805d | 3440 | return temp1; |
230d793d RS |
3441 | } |
3442 | break; | |
3443 | ||
3444 | case FLOAT_TRUNCATE: | |
3445 | /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */ | |
3446 | if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND | |
3447 | && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode) | |
3448 | return XEXP (XEXP (x, 0), 0); | |
4635f748 RK |
3449 | |
3450 | /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is | |
3451 | (OP:SF foo:SF) if OP is NEG or ABS. */ | |
3452 | if ((GET_CODE (XEXP (x, 0)) == ABS | |
3453 | || GET_CODE (XEXP (x, 0)) == NEG) | |
3454 | && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND | |
3455 | && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode) | |
0c1c8ea6 RK |
3456 | return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode, |
3457 | XEXP (XEXP (XEXP (x, 0), 0), 0)); | |
1d12df72 RK |
3458 | |
3459 | /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0)) | |
3460 | is (float_truncate:SF x). */ | |
3461 | if (GET_CODE (XEXP (x, 0)) == SUBREG | |
3462 | && subreg_lowpart_p (XEXP (x, 0)) | |
3463 | && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE) | |
3464 | return SUBREG_REG (XEXP (x, 0)); | |
230d793d RS |
3465 | break; |
3466 | ||
3467 | #ifdef HAVE_cc0 | |
3468 | case COMPARE: | |
3469 | /* Convert (compare FOO (const_int 0)) to FOO unless we aren't | |
3470 | using cc0, in which case we want to leave it as a COMPARE | |
3471 | so we can distinguish it from a register-register-copy. */ | |
3472 | if (XEXP (x, 1) == const0_rtx) | |
3473 | return XEXP (x, 0); | |
3474 | ||
3475 | /* In IEEE floating point, x-0 is not the same as x. */ | |
3476 | if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT | |
7e2a0d8e RK |
3477 | || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))) |
3478 | || flag_fast_math) | |
230d793d RS |
3479 | && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0)))) |
3480 | return XEXP (x, 0); | |
3481 | break; | |
3482 | #endif | |
3483 | ||
3484 | case CONST: | |
3485 | /* (const (const X)) can become (const X). Do it this way rather than | |
3486 | returning the inner CONST since CONST can be shared with a | |
3487 | REG_EQUAL note. */ | |
3488 | if (GET_CODE (XEXP (x, 0)) == CONST) | |
3489 | SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0)); | |
3490 | break; | |
3491 | ||
3492 | #ifdef HAVE_lo_sum | |
3493 | case LO_SUM: | |
3494 | /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we | |
3495 | can add in an offset. find_split_point will split this address up | |
3496 | again if it doesn't match. */ | |
3497 | if (GET_CODE (XEXP (x, 0)) == HIGH | |
3498 | && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))) | |
3499 | return XEXP (x, 1); | |
3500 | break; | |
3501 | #endif | |
3502 | ||
3503 | case PLUS: | |
3504 | /* If we have (plus (plus (A const) B)), associate it so that CONST is | |
3505 | outermost. That's because that's the way indexed addresses are | |
3506 | supposed to appear. This code used to check many more cases, but | |
3507 | they are now checked elsewhere. */ | |
3508 | if (GET_CODE (XEXP (x, 0)) == PLUS | |
3509 | && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1))) | |
3510 | return gen_binary (PLUS, mode, | |
3511 | gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), | |
3512 | XEXP (x, 1)), | |
3513 | XEXP (XEXP (x, 0), 1)); | |
3514 | ||
3515 | /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>) | |
3516 | when c is (const_int (pow2 + 1) / 2) is a sign extension of a | |
3517 | bit-field and can be replaced by either a sign_extend or a | |
3518 | sign_extract. The `and' may be a zero_extend. */ | |
3519 | if (GET_CODE (XEXP (x, 0)) == XOR | |
3520 | && GET_CODE (XEXP (x, 1)) == CONST_INT | |
3521 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
3522 | && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1)) | |
3523 | && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0 | |
5f4f0e22 | 3524 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
230d793d RS |
3525 | && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND |
3526 | && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT | |
3527 | && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)) | |
5f4f0e22 | 3528 | == ((HOST_WIDE_INT) 1 << (i + 1)) - 1)) |
230d793d RS |
3529 | || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND |
3530 | && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0))) | |
3531 | == i + 1)))) | |
8079805d RK |
3532 | return simplify_shift_const |
3533 | (NULL_RTX, ASHIFTRT, mode, | |
3534 | simplify_shift_const (NULL_RTX, ASHIFT, mode, | |
3535 | XEXP (XEXP (XEXP (x, 0), 0), 0), | |
3536 | GET_MODE_BITSIZE (mode) - (i + 1)), | |
3537 | GET_MODE_BITSIZE (mode) - (i + 1)); | |
230d793d | 3538 | |
bc0776c6 RK |
3539 | /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if |
3540 | C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE | |
3541 | is 1. This produces better code than the alternative immediately | |
3542 | below. */ | |
3543 | if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<' | |
3544 | && reversible_comparison_p (XEXP (x, 0)) | |
3545 | && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx) | |
3546 | || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))) | |
8079805d | 3547 | return |
0c1c8ea6 | 3548 | gen_unary (NEG, mode, mode, |
8079805d RK |
3549 | gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))), |
3550 | mode, XEXP (XEXP (x, 0), 0), | |
3551 | XEXP (XEXP (x, 0), 1))); | |
bc0776c6 RK |
3552 | |
3553 | /* If only the low-order bit of X is possibly nonzero, (plus x -1) | |
230d793d RS |
3554 | can become (ashiftrt (ashift (xor x 1) C) C) where C is |
3555 | the bitsize of the mode - 1. This allows simplification of | |
3556 | "a = (b & 8) == 0;" */ | |
3557 | if (XEXP (x, 1) == constm1_rtx | |
3558 | && GET_CODE (XEXP (x, 0)) != REG | |
3559 | && ! (GET_CODE (XEXP (x,0)) == SUBREG | |
3560 | && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG) | |
951553af | 3561 | && nonzero_bits (XEXP (x, 0), mode) == 1) |
8079805d RK |
3562 | return simplify_shift_const (NULL_RTX, ASHIFTRT, mode, |
3563 | simplify_shift_const (NULL_RTX, ASHIFT, mode, | |
3564 | gen_rtx_combine (XOR, mode, | |
3565 | XEXP (x, 0), const1_rtx), | |
3566 | GET_MODE_BITSIZE (mode) - 1), | |
3567 | GET_MODE_BITSIZE (mode) - 1); | |
02f4ada4 RK |
3568 | |
3569 | /* If we are adding two things that have no bits in common, convert | |
3570 | the addition into an IOR. This will often be further simplified, | |
3571 | for example in cases like ((a & 1) + (a & 2)), which can | |
3572 | become a & 3. */ | |
3573 | ||
ac49a949 | 3574 | if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
951553af RK |
3575 | && (nonzero_bits (XEXP (x, 0), mode) |
3576 | & nonzero_bits (XEXP (x, 1), mode)) == 0) | |
8079805d | 3577 | return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1)); |
230d793d RS |
3578 | break; |
3579 | ||
3580 | case MINUS: | |
5109d49f RK |
3581 | #if STORE_FLAG_VALUE == 1 |
3582 | /* (minus 1 (comparison foo bar)) can be done by reversing the comparison | |
3583 | code if valid. */ | |
3584 | if (XEXP (x, 0) == const1_rtx | |
3585 | && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<' | |
3586 | && reversible_comparison_p (XEXP (x, 1))) | |
3587 | return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))), | |
3588 | mode, XEXP (XEXP (x, 1), 0), | |
3589 | XEXP (XEXP (x, 1), 1)); | |
3590 | #endif | |
3591 | ||
230d793d RS |
3592 | /* (minus <foo> (and <foo> (const_int -pow2))) becomes |
3593 | (and <foo> (const_int pow2-1)) */ | |
3594 | if (GET_CODE (XEXP (x, 1)) == AND | |
3595 | && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT | |
3596 | && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0 | |
3597 | && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0))) | |
8079805d RK |
3598 | return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0), |
3599 | - INTVAL (XEXP (XEXP (x, 1), 1)) - 1); | |
7bef8680 RK |
3600 | |
3601 | /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for | |
3602 | integers. */ | |
3603 | if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode)) | |
8079805d RK |
3604 | return gen_binary (MINUS, mode, |
3605 | gen_binary (MINUS, mode, XEXP (x, 0), | |
3606 | XEXP (XEXP (x, 1), 0)), | |
3607 | XEXP (XEXP (x, 1), 1)); | |
230d793d RS |
3608 | break; |
3609 | ||
3610 | case MULT: | |
3611 | /* If we have (mult (plus A B) C), apply the distributive law and then | |
3612 | the inverse distributive law to see if things simplify. This | |
3613 | occurs mostly in addresses, often when unrolling loops. */ | |
3614 | ||
3615 | if (GET_CODE (XEXP (x, 0)) == PLUS) | |
3616 | { | |
3617 | x = apply_distributive_law | |
3618 | (gen_binary (PLUS, mode, | |
3619 | gen_binary (MULT, mode, | |
3620 | XEXP (XEXP (x, 0), 0), XEXP (x, 1)), | |
3621 | gen_binary (MULT, mode, | |
3622 | XEXP (XEXP (x, 0), 1), XEXP (x, 1)))); | |
3623 | ||
3624 | if (GET_CODE (x) != MULT) | |
8079805d | 3625 | return x; |
230d793d | 3626 | } |
230d793d RS |
3627 | break; |
3628 | ||
3629 | case UDIV: | |
3630 | /* If this is a divide by a power of two, treat it as a shift if | |
3631 | its first operand is a shift. */ | |
3632 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
3633 | && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0 | |
3634 | && (GET_CODE (XEXP (x, 0)) == ASHIFT | |
3635 | || GET_CODE (XEXP (x, 0)) == LSHIFTRT | |
3636 | || GET_CODE (XEXP (x, 0)) == ASHIFTRT | |
3637 | || GET_CODE (XEXP (x, 0)) == ROTATE | |
3638 | || GET_CODE (XEXP (x, 0)) == ROTATERT)) | |
8079805d | 3639 | return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i); |
230d793d RS |
3640 | break; |
3641 | ||
3642 | case EQ: case NE: | |
3643 | case GT: case GTU: case GE: case GEU: | |
3644 | case LT: case LTU: case LE: case LEU: | |
3645 | /* If the first operand is a condition code, we can't do anything | |
3646 | with it. */ | |
3647 | if (GET_CODE (XEXP (x, 0)) == COMPARE | |
3648 | || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC | |
3649 | #ifdef HAVE_cc0 | |
3650 | && XEXP (x, 0) != cc0_rtx | |
3651 | #endif | |
3652 | )) | |
3653 | { | |
3654 | rtx op0 = XEXP (x, 0); | |
3655 | rtx op1 = XEXP (x, 1); | |
3656 | enum rtx_code new_code; | |
3657 | ||
3658 | if (GET_CODE (op0) == COMPARE) | |
3659 | op1 = XEXP (op0, 1), op0 = XEXP (op0, 0); | |
3660 | ||
3661 | /* Simplify our comparison, if possible. */ | |
3662 | new_code = simplify_comparison (code, &op0, &op1); | |
3663 | ||
3664 | #if STORE_FLAG_VALUE == 1 | |
3665 | /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X | |
951553af | 3666 | if only the low-order bit is possibly nonzero in X (such as when |
5109d49f RK |
3667 | X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to |
3668 | (xor X 1) or (minus 1 X); we use the former. Finally, if X is | |
3669 | known to be either 0 or -1, NE becomes a NEG and EQ becomes | |
3670 | (plus X 1). | |
3671 | ||
3672 | Remove any ZERO_EXTRACT we made when thinking this was a | |
3673 | comparison. It may now be simpler to use, e.g., an AND. If a | |
3674 | ZERO_EXTRACT is indeed appropriate, it will be placed back by | |
3675 | the call to make_compound_operation in the SET case. */ | |
3676 | ||
3f508eca | 3677 | if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT |
230d793d | 3678 | && op1 == const0_rtx |
5109d49f | 3679 | && nonzero_bits (op0, mode) == 1) |
818b11b9 RK |
3680 | return gen_lowpart_for_combine (mode, |
3681 | expand_compound_operation (op0)); | |
5109d49f RK |
3682 | |
3683 | else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT | |
3684 | && op1 == const0_rtx | |
3685 | && (num_sign_bit_copies (op0, mode) | |
3686 | == GET_MODE_BITSIZE (mode))) | |
3687 | { | |
3688 | op0 = expand_compound_operation (op0); | |
0c1c8ea6 | 3689 | return gen_unary (NEG, mode, mode, |
8079805d | 3690 | gen_lowpart_for_combine (mode, op0)); |
5109d49f RK |
3691 | } |
3692 | ||
3f508eca | 3693 | else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT |
230d793d | 3694 | && op1 == const0_rtx |
5109d49f | 3695 | && nonzero_bits (op0, mode) == 1) |
818b11b9 RK |
3696 | { |
3697 | op0 = expand_compound_operation (op0); | |
8079805d RK |
3698 | return gen_binary (XOR, mode, |
3699 | gen_lowpart_for_combine (mode, op0), | |
3700 | const1_rtx); | |
5109d49f | 3701 | } |
818b11b9 | 3702 | |
5109d49f RK |
3703 | else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT |
3704 | && op1 == const0_rtx | |
3705 | && (num_sign_bit_copies (op0, mode) | |
3706 | == GET_MODE_BITSIZE (mode))) | |
3707 | { | |
3708 | op0 = expand_compound_operation (op0); | |
8079805d | 3709 | return plus_constant (gen_lowpart_for_combine (mode, op0), 1); |
818b11b9 | 3710 | } |
230d793d RS |
3711 | #endif |
3712 | ||
3713 | #if STORE_FLAG_VALUE == -1 | |
5109d49f RK |
3714 | /* If STORE_FLAG_VALUE is -1, we have cases similar to |
3715 | those above. */ | |
3f508eca | 3716 | if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT |
230d793d | 3717 | && op1 == const0_rtx |
5109d49f RK |
3718 | && (num_sign_bit_copies (op0, mode) |
3719 | == GET_MODE_BITSIZE (mode))) | |
3720 | return gen_lowpart_for_combine (mode, | |
3721 | expand_compound_operation (op0)); | |
3722 | ||
3723 | else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT | |
3724 | && op1 == const0_rtx | |
3725 | && nonzero_bits (op0, mode) == 1) | |
3726 | { | |
3727 | op0 = expand_compound_operation (op0); | |
0c1c8ea6 | 3728 | return gen_unary (NEG, mode, mode, |
8079805d | 3729 | gen_lowpart_for_combine (mode, op0)); |
5109d49f RK |
3730 | } |
3731 | ||
3732 | else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT | |
3733 | && op1 == const0_rtx | |
3734 | && (num_sign_bit_copies (op0, mode) | |
3735 | == GET_MODE_BITSIZE (mode))) | |
230d793d | 3736 | { |
818b11b9 | 3737 | op0 = expand_compound_operation (op0); |
0c1c8ea6 | 3738 | return gen_unary (NOT, mode, mode, |
8079805d | 3739 | gen_lowpart_for_combine (mode, op0)); |
5109d49f RK |
3740 | } |
3741 | ||
3742 | /* If X is 0/1, (eq X 0) is X-1. */ | |
3743 | else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT | |
3744 | && op1 == const0_rtx | |
3745 | && nonzero_bits (op0, mode) == 1) | |
3746 | { | |
3747 | op0 = expand_compound_operation (op0); | |
8079805d | 3748 | return plus_constant (gen_lowpart_for_combine (mode, op0), -1); |
230d793d RS |
3749 | } |
3750 | #endif | |
3751 | ||
3752 | /* If STORE_FLAG_VALUE says to just test the sign bit and X has just | |
951553af RK |
3753 | one bit that might be nonzero, we can convert (ne x 0) to |
3754 | (ashift x c) where C puts the bit in the sign bit. Remove any | |
3755 | AND with STORE_FLAG_VALUE when we are done, since we are only | |
3756 | going to test the sign bit. */ | |
3f508eca | 3757 | if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT |
5f4f0e22 CH |
3758 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
3759 | && (STORE_FLAG_VALUE | |
3760 | == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)) | |
230d793d RS |
3761 | && op1 == const0_rtx |
3762 | && mode == GET_MODE (op0) | |
5109d49f | 3763 | && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0) |
230d793d | 3764 | { |
818b11b9 RK |
3765 | x = simplify_shift_const (NULL_RTX, ASHIFT, mode, |
3766 | expand_compound_operation (op0), | |
230d793d RS |
3767 | GET_MODE_BITSIZE (mode) - 1 - i); |
3768 | if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx) | |
3769 | return XEXP (x, 0); | |
3770 | else | |
3771 | return x; | |
3772 | } | |
3773 | ||
3774 | /* If the code changed, return a whole new comparison. */ | |
3775 | if (new_code != code) | |
3776 | return gen_rtx_combine (new_code, mode, op0, op1); | |
3777 | ||
3778 | /* Otherwise, keep this operation, but maybe change its operands. | |
3779 | This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */ | |
3780 | SUBST (XEXP (x, 0), op0); | |
3781 | SUBST (XEXP (x, 1), op1); | |
3782 | } | |
3783 | break; | |
3784 | ||
3785 | case IF_THEN_ELSE: | |
8079805d | 3786 | return simplify_if_then_else (x); |
9210df58 | 3787 | |
8079805d RK |
3788 | case ZERO_EXTRACT: |
3789 | case SIGN_EXTRACT: | |
3790 | case ZERO_EXTEND: | |
3791 | case SIGN_EXTEND: | |
3792 | /* If we are processing SET_DEST, we are done. */ | |
3793 | if (in_dest) | |
3794 | return x; | |
d0ab8cd3 | 3795 | |
8079805d | 3796 | return expand_compound_operation (x); |
d0ab8cd3 | 3797 | |
8079805d RK |
3798 | case SET: |
3799 | return simplify_set (x); | |
1a26b032 | 3800 | |
8079805d RK |
3801 | case AND: |
3802 | case IOR: | |
3803 | case XOR: | |
3804 | return simplify_logical (x, last); | |
d0ab8cd3 | 3805 | |
8079805d RK |
3806 | case ABS: |
3807 | /* (abs (neg <foo>)) -> (abs <foo>) */ | |
3808 | if (GET_CODE (XEXP (x, 0)) == NEG) | |
3809 | SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0)); | |
1a26b032 | 3810 | |
8079805d RK |
3811 | /* If operand is something known to be positive, ignore the ABS. */ |
3812 | if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS | |
3813 | || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) | |
3814 | <= HOST_BITS_PER_WIDE_INT) | |
3815 | && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0))) | |
3816 | & ((HOST_WIDE_INT) 1 | |
3817 | << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))) | |
3818 | == 0))) | |
3819 | return XEXP (x, 0); | |
1a26b032 | 3820 | |
1a26b032 | 3821 | |
8079805d RK |
3822 | /* If operand is known to be only -1 or 0, convert ABS to NEG. */ |
3823 | if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode)) | |
3824 | return gen_rtx_combine (NEG, mode, XEXP (x, 0)); | |
1a26b032 | 3825 | |
8079805d | 3826 | break; |
1a26b032 | 3827 | |
8079805d RK |
3828 | case FFS: |
3829 | /* (ffs (*_extend <X>)) = (ffs <X>) */ | |
3830 | if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND | |
3831 | || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND) | |
3832 | SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0)); | |
3833 | break; | |
1a26b032 | 3834 | |
8079805d RK |
3835 | case FLOAT: |
3836 | /* (float (sign_extend <X>)) = (float <X>). */ | |
3837 | if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) | |
3838 | SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0)); | |
3839 | break; | |
1a26b032 | 3840 | |
8079805d RK |
3841 | case ASHIFT: |
3842 | case LSHIFTRT: | |
3843 | case ASHIFTRT: | |
3844 | case ROTATE: | |
3845 | case ROTATERT: | |
3846 | /* If this is a shift by a constant amount, simplify it. */ | |
3847 | if (GET_CODE (XEXP (x, 1)) == CONST_INT) | |
3848 | return simplify_shift_const (x, code, mode, XEXP (x, 0), | |
3849 | INTVAL (XEXP (x, 1))); | |
3850 | ||
3851 | #ifdef SHIFT_COUNT_TRUNCATED | |
3852 | else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG) | |
3853 | SUBST (XEXP (x, 1), | |
3854 | force_to_mode (XEXP (x, 1), GET_MODE (x), | |
3855 | ((HOST_WIDE_INT) 1 | |
3856 | << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x)))) | |
3857 | - 1, | |
3858 | NULL_RTX, 0)); | |
3859 | #endif | |
3860 | ||
3861 | break; | |
3862 | } | |
3863 | ||
3864 | return x; | |
3865 | } | |
3866 | \f | |
3867 | /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */ | |
5109d49f | 3868 | |
8079805d RK |
3869 | static rtx |
3870 | simplify_if_then_else (x) | |
3871 | rtx x; | |
3872 | { | |
3873 | enum machine_mode mode = GET_MODE (x); | |
3874 | rtx cond = XEXP (x, 0); | |
3875 | rtx true = XEXP (x, 1); | |
3876 | rtx false = XEXP (x, 2); | |
3877 | enum rtx_code true_code = GET_CODE (cond); | |
3878 | int comparison_p = GET_RTX_CLASS (true_code) == '<'; | |
3879 | rtx temp; | |
3880 | int i; | |
3881 | ||
3882 | /* Simplify storing of the truth value. */ | |
3883 | if (comparison_p && true == const_true_rtx && false == const0_rtx) | |
3884 | return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1)); | |
3885 | ||
3886 | /* Also when the truth value has to be reversed. */ | |
3887 | if (comparison_p && reversible_comparison_p (cond) | |
3888 | && true == const0_rtx && false == const_true_rtx) | |
3889 | return gen_binary (reverse_condition (true_code), | |
3890 | mode, XEXP (cond, 0), XEXP (cond, 1)); | |
3891 | ||
3892 | /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used | |
3893 | in it is being compared against certain values. Get the true and false | |
3894 | comparisons and see if that says anything about the value of each arm. */ | |
3895 | ||
3896 | if (comparison_p && reversible_comparison_p (cond) | |
3897 | && GET_CODE (XEXP (cond, 0)) == REG) | |
3898 | { | |
3899 | HOST_WIDE_INT nzb; | |
3900 | rtx from = XEXP (cond, 0); | |
3901 | enum rtx_code false_code = reverse_condition (true_code); | |
3902 | rtx true_val = XEXP (cond, 1); | |
3903 | rtx false_val = true_val; | |
3904 | int swapped = 0; | |
9210df58 | 3905 | |
8079805d | 3906 | /* If FALSE_CODE is EQ, swap the codes and arms. */ |
5109d49f | 3907 | |
8079805d | 3908 | if (false_code == EQ) |
1a26b032 | 3909 | { |
8079805d RK |
3910 | swapped = 1, true_code = EQ, false_code = NE; |
3911 | temp = true, true = false, false = temp; | |
3912 | } | |
5109d49f | 3913 | |
8079805d RK |
3914 | /* If we are comparing against zero and the expression being tested has |
3915 | only a single bit that might be nonzero, that is its value when it is | |
3916 | not equal to zero. Similarly if it is known to be -1 or 0. */ | |
3917 | ||
3918 | if (true_code == EQ && true_val == const0_rtx | |
3919 | && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0) | |
3920 | false_code = EQ, false_val = GEN_INT (nzb); | |
3921 | else if (true_code == EQ && true_val == const0_rtx | |
3922 | && (num_sign_bit_copies (from, GET_MODE (from)) | |
3923 | == GET_MODE_BITSIZE (GET_MODE (from)))) | |
3924 | false_code = EQ, false_val = constm1_rtx; | |
3925 | ||
3926 | /* Now simplify an arm if we know the value of the register in the | |
3927 | branch and it is used in the arm. Be careful due to the potential | |
3928 | of locally-shared RTL. */ | |
3929 | ||
3930 | if (reg_mentioned_p (from, true)) | |
3931 | true = subst (known_cond (copy_rtx (true), true_code, from, true_val), | |
3932 | pc_rtx, pc_rtx, 0, 0); | |
3933 | if (reg_mentioned_p (from, false)) | |
3934 | false = subst (known_cond (copy_rtx (false), false_code, | |
3935 | from, false_val), | |
3936 | pc_rtx, pc_rtx, 0, 0); | |
3937 | ||
3938 | SUBST (XEXP (x, 1), swapped ? false : true); | |
3939 | SUBST (XEXP (x, 2), swapped ? true : false); | |
3940 | ||
3941 | true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond); | |
3942 | } | |
5109d49f | 3943 | |
8079805d RK |
3944 | /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be |
3945 | reversed, do so to avoid needing two sets of patterns for | |
3946 | subtract-and-branch insns. Similarly if we have a constant in the true | |
3947 | arm, the false arm is the same as the first operand of the comparison, or | |
3948 | the false arm is more complicated than the true arm. */ | |
3949 | ||
3950 | if (comparison_p && reversible_comparison_p (cond) | |
3951 | && (true == pc_rtx | |
3952 | || (CONSTANT_P (true) | |
3953 | && GET_CODE (false) != CONST_INT && false != pc_rtx) | |
3954 | || true == const0_rtx | |
3955 | || (GET_RTX_CLASS (GET_CODE (true)) == 'o' | |
3956 | && GET_RTX_CLASS (GET_CODE (false)) != 'o') | |
3957 | || (GET_CODE (true) == SUBREG | |
3958 | && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o' | |
3959 | && GET_RTX_CLASS (GET_CODE (false)) != 'o') | |
3960 | || reg_mentioned_p (true, false) | |
3961 | || rtx_equal_p (false, XEXP (cond, 0)))) | |
3962 | { | |
3963 | true_code = reverse_condition (true_code); | |
3964 | SUBST (XEXP (x, 0), | |
3965 | gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0), | |
3966 | XEXP (cond, 1))); | |
5109d49f | 3967 | |
8079805d RK |
3968 | SUBST (XEXP (x, 1), false); |
3969 | SUBST (XEXP (x, 2), true); | |
1a26b032 | 3970 | |
8079805d RK |
3971 | temp = true, true = false, false = temp, cond = XEXP (x, 0); |
3972 | } | |
abe6e52f | 3973 | |
8079805d | 3974 | /* If the two arms are identical, we don't need the comparison. */ |
1a26b032 | 3975 | |
8079805d RK |
3976 | if (rtx_equal_p (true, false) && ! side_effects_p (cond)) |
3977 | return true; | |
1a26b032 | 3978 | |
8079805d RK |
3979 | /* Look for cases where we have (abs x) or (neg (abs X)). */ |
3980 | ||
3981 | if (GET_MODE_CLASS (mode) == MODE_INT | |
3982 | && GET_CODE (false) == NEG | |
3983 | && rtx_equal_p (true, XEXP (false, 0)) | |
3984 | && comparison_p | |
3985 | && rtx_equal_p (true, XEXP (cond, 0)) | |
3986 | && ! side_effects_p (true)) | |
3987 | switch (true_code) | |
3988 | { | |
3989 | case GT: | |
3990 | case GE: | |
0c1c8ea6 | 3991 | return gen_unary (ABS, mode, mode, true); |
8079805d RK |
3992 | case LT: |
3993 | case LE: | |
0c1c8ea6 | 3994 | return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true)); |
8079805d RK |
3995 | } |
3996 | ||
3997 | /* Look for MIN or MAX. */ | |
3998 | ||
34c8be72 | 3999 | if ((! FLOAT_MODE_P (mode) || flag_fast_math) |
8079805d RK |
4000 | && comparison_p |
4001 | && rtx_equal_p (XEXP (cond, 0), true) | |
4002 | && rtx_equal_p (XEXP (cond, 1), false) | |
4003 | && ! side_effects_p (cond)) | |
4004 | switch (true_code) | |
4005 | { | |
4006 | case GE: | |
4007 | case GT: | |
4008 | return gen_binary (SMAX, mode, true, false); | |
4009 | case LE: | |
4010 | case LT: | |
4011 | return gen_binary (SMIN, mode, true, false); | |
4012 | case GEU: | |
4013 | case GTU: | |
4014 | return gen_binary (UMAX, mode, true, false); | |
4015 | case LEU: | |
4016 | case LTU: | |
4017 | return gen_binary (UMIN, mode, true, false); | |
4018 | } | |
4019 | ||
4020 | #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 | |
4021 | ||
4022 | /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its | |
4023 | second operand is zero, this can be done as (OP Z (mult COND C2)) where | |
4024 | C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or | |
4025 | SIGN_EXTEND as long as Z is already extended (so we don't destroy it). | |
4026 | We can do this kind of thing in some cases when STORE_FLAG_VALUE is | |
d5a4ebdc | 4027 | neither of the above, but it isn't worth checking for. */ |
8079805d RK |
4028 | |
4029 | if (comparison_p && mode != VOIDmode && ! side_effects_p (x)) | |
4030 | { | |
4031 | rtx t = make_compound_operation (true, SET); | |
4032 | rtx f = make_compound_operation (false, SET); | |
4033 | rtx cond_op0 = XEXP (cond, 0); | |
4034 | rtx cond_op1 = XEXP (cond, 1); | |
4035 | enum rtx_code op, extend_op = NIL; | |
4036 | enum machine_mode m = mode; | |
f24ad0e4 | 4037 | rtx z = 0, c1; |
8079805d | 4038 | |
8079805d RK |
4039 | if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS |
4040 | || GET_CODE (t) == IOR || GET_CODE (t) == XOR | |
4041 | || GET_CODE (t) == ASHIFT | |
4042 | || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT) | |
4043 | && rtx_equal_p (XEXP (t, 0), f)) | |
4044 | c1 = XEXP (t, 1), op = GET_CODE (t), z = f; | |
4045 | ||
4046 | /* If an identity-zero op is commutative, check whether there | |
4047 | would be a match if we swapped the operands. */ | |
4048 | else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR | |
4049 | || GET_CODE (t) == XOR) | |
4050 | && rtx_equal_p (XEXP (t, 1), f)) | |
4051 | c1 = XEXP (t, 0), op = GET_CODE (t), z = f; | |
4052 | else if (GET_CODE (t) == SIGN_EXTEND | |
4053 | && (GET_CODE (XEXP (t, 0)) == PLUS | |
4054 | || GET_CODE (XEXP (t, 0)) == MINUS | |
4055 | || GET_CODE (XEXP (t, 0)) == IOR | |
4056 | || GET_CODE (XEXP (t, 0)) == XOR | |
4057 | || GET_CODE (XEXP (t, 0)) == ASHIFT | |
4058 | || GET_CODE (XEXP (t, 0)) == LSHIFTRT | |
4059 | || GET_CODE (XEXP (t, 0)) == ASHIFTRT) | |
4060 | && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG | |
4061 | && subreg_lowpart_p (XEXP (XEXP (t, 0), 0)) | |
4062 | && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f) | |
4063 | && (num_sign_bit_copies (f, GET_MODE (f)) | |
4064 | > (GET_MODE_BITSIZE (mode) | |
4065 | - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0)))))) | |
4066 | { | |
4067 | c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0)); | |
4068 | extend_op = SIGN_EXTEND; | |
4069 | m = GET_MODE (XEXP (t, 0)); | |
1a26b032 | 4070 | } |
8079805d RK |
4071 | else if (GET_CODE (t) == SIGN_EXTEND |
4072 | && (GET_CODE (XEXP (t, 0)) == PLUS | |
4073 | || GET_CODE (XEXP (t, 0)) == IOR | |
4074 | || GET_CODE (XEXP (t, 0)) == XOR) | |
4075 | && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG | |
4076 | && subreg_lowpart_p (XEXP (XEXP (t, 0), 1)) | |
4077 | && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f) | |
4078 | && (num_sign_bit_copies (f, GET_MODE (f)) | |
4079 | > (GET_MODE_BITSIZE (mode) | |
4080 | - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1)))))) | |
4081 | { | |
4082 | c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0)); | |
4083 | extend_op = SIGN_EXTEND; | |
4084 | m = GET_MODE (XEXP (t, 0)); | |
4085 | } | |
4086 | else if (GET_CODE (t) == ZERO_EXTEND | |
4087 | && (GET_CODE (XEXP (t, 0)) == PLUS | |
4088 | || GET_CODE (XEXP (t, 0)) == MINUS | |
4089 | || GET_CODE (XEXP (t, 0)) == IOR | |
4090 | || GET_CODE (XEXP (t, 0)) == XOR | |
4091 | || GET_CODE (XEXP (t, 0)) == ASHIFT | |
4092 | || GET_CODE (XEXP (t, 0)) == LSHIFTRT | |
4093 | || GET_CODE (XEXP (t, 0)) == ASHIFTRT) | |
4094 | && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG | |
4095 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT | |
4096 | && subreg_lowpart_p (XEXP (XEXP (t, 0), 0)) | |
4097 | && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f) | |
4098 | && ((nonzero_bits (f, GET_MODE (f)) | |
4099 | & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0)))) | |
4100 | == 0)) | |
4101 | { | |
4102 | c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0)); | |
4103 | extend_op = ZERO_EXTEND; | |
4104 | m = GET_MODE (XEXP (t, 0)); | |
4105 | } | |
4106 | else if (GET_CODE (t) == ZERO_EXTEND | |
4107 | && (GET_CODE (XEXP (t, 0)) == PLUS | |
4108 | || GET_CODE (XEXP (t, 0)) == IOR | |
4109 | || GET_CODE (XEXP (t, 0)) == XOR) | |
4110 | && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG | |
4111 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT | |
4112 | && subreg_lowpart_p (XEXP (XEXP (t, 0), 1)) | |
4113 | && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f) | |
4114 | && ((nonzero_bits (f, GET_MODE (f)) | |
4115 | & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1)))) | |
4116 | == 0)) | |
4117 | { | |
4118 | c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0)); | |
4119 | extend_op = ZERO_EXTEND; | |
4120 | m = GET_MODE (XEXP (t, 0)); | |
4121 | } | |
4122 | ||
4123 | if (z) | |
4124 | { | |
4125 | temp = subst (gen_binary (true_code, m, cond_op0, cond_op1), | |
4126 | pc_rtx, pc_rtx, 0, 0); | |
4127 | temp = gen_binary (MULT, m, temp, | |
4128 | gen_binary (MULT, m, c1, const_true_rtx)); | |
4129 | temp = subst (temp, pc_rtx, pc_rtx, 0, 0); | |
4130 | temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp); | |
4131 | ||
4132 | if (extend_op != NIL) | |
0c1c8ea6 | 4133 | temp = gen_unary (extend_op, mode, m, temp); |
8079805d RK |
4134 | |
4135 | return temp; | |
4136 | } | |
4137 | } | |
5109d49f | 4138 | #endif |
224eeff2 | 4139 | |
8079805d RK |
4140 | /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or |
4141 | 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the | |
4142 | negation of a single bit, we can convert this operation to a shift. We | |
4143 | can actually do this more generally, but it doesn't seem worth it. */ | |
4144 | ||
4145 | if (true_code == NE && XEXP (cond, 1) == const0_rtx | |
4146 | && false == const0_rtx && GET_CODE (true) == CONST_INT | |
4147 | && ((1 == nonzero_bits (XEXP (cond, 0), mode) | |
4148 | && (i = exact_log2 (INTVAL (true))) >= 0) | |
4149 | || ((num_sign_bit_copies (XEXP (cond, 0), mode) | |
4150 | == GET_MODE_BITSIZE (mode)) | |
4151 | && (i = exact_log2 (- INTVAL (true))) >= 0))) | |
4152 | return | |
4153 | simplify_shift_const (NULL_RTX, ASHIFT, mode, | |
4154 | gen_lowpart_for_combine (mode, XEXP (cond, 0)), i); | |
230d793d | 4155 | |
8079805d RK |
4156 | return x; |
4157 | } | |
4158 | \f | |
4159 | /* Simplify X, a SET expression. Return the new expression. */ | |
230d793d | 4160 | |
8079805d RK |
4161 | static rtx |
4162 | simplify_set (x) | |
4163 | rtx x; | |
4164 | { | |
4165 | rtx src = SET_SRC (x); | |
4166 | rtx dest = SET_DEST (x); | |
4167 | enum machine_mode mode | |
4168 | = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest); | |
4169 | rtx other_insn; | |
4170 | rtx *cc_use; | |
4171 | ||
4172 | /* (set (pc) (return)) gets written as (return). */ | |
4173 | if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN) | |
4174 | return src; | |
230d793d | 4175 | |
87e3e0c1 RK |
4176 | /* Now that we know for sure which bits of SRC we are using, see if we can |
4177 | simplify the expression for the object knowing that we only need the | |
4178 | low-order bits. */ | |
4179 | ||
4180 | if (GET_MODE_CLASS (mode) == MODE_INT) | |
4181 | src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0); | |
4182 | ||
8079805d RK |
4183 | /* If we are setting CC0 or if the source is a COMPARE, look for the use of |
4184 | the comparison result and try to simplify it unless we already have used | |
4185 | undobuf.other_insn. */ | |
4186 | if ((GET_CODE (src) == COMPARE | |
230d793d | 4187 | #ifdef HAVE_cc0 |
8079805d | 4188 | || dest == cc0_rtx |
230d793d | 4189 | #endif |
8079805d RK |
4190 | ) |
4191 | && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0 | |
4192 | && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn) | |
4193 | && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<' | |
c0d3ac4d | 4194 | && rtx_equal_p (XEXP (*cc_use, 0), dest)) |
8079805d RK |
4195 | { |
4196 | enum rtx_code old_code = GET_CODE (*cc_use); | |
4197 | enum rtx_code new_code; | |
4198 | rtx op0, op1; | |
4199 | int other_changed = 0; | |
4200 | enum machine_mode compare_mode = GET_MODE (dest); | |
4201 | ||
4202 | if (GET_CODE (src) == COMPARE) | |
4203 | op0 = XEXP (src, 0), op1 = XEXP (src, 1); | |
4204 | else | |
4205 | op0 = src, op1 = const0_rtx; | |
230d793d | 4206 | |
8079805d RK |
4207 | /* Simplify our comparison, if possible. */ |
4208 | new_code = simplify_comparison (old_code, &op0, &op1); | |
230d793d | 4209 | |
c141a106 | 4210 | #ifdef EXTRA_CC_MODES |
8079805d RK |
4211 | /* If this machine has CC modes other than CCmode, check to see if we |
4212 | need to use a different CC mode here. */ | |
4213 | compare_mode = SELECT_CC_MODE (new_code, op0, op1); | |
c141a106 | 4214 | #endif /* EXTRA_CC_MODES */ |
230d793d | 4215 | |
c141a106 | 4216 | #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES) |
8079805d RK |
4217 | /* If the mode changed, we have to change SET_DEST, the mode in the |
4218 | compare, and the mode in the place SET_DEST is used. If SET_DEST is | |
4219 | a hard register, just build new versions with the proper mode. If it | |
4220 | is a pseudo, we lose unless it is only time we set the pseudo, in | |
4221 | which case we can safely change its mode. */ | |
4222 | if (compare_mode != GET_MODE (dest)) | |
4223 | { | |
4224 | int regno = REGNO (dest); | |
4225 | rtx new_dest = gen_rtx (REG, compare_mode, regno); | |
4226 | ||
4227 | if (regno < FIRST_PSEUDO_REGISTER | |
4228 | || (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest))) | |
230d793d | 4229 | { |
8079805d RK |
4230 | if (regno >= FIRST_PSEUDO_REGISTER) |
4231 | SUBST (regno_reg_rtx[regno], new_dest); | |
230d793d | 4232 | |
8079805d RK |
4233 | SUBST (SET_DEST (x), new_dest); |
4234 | SUBST (XEXP (*cc_use, 0), new_dest); | |
4235 | other_changed = 1; | |
230d793d | 4236 | |
8079805d | 4237 | dest = new_dest; |
230d793d | 4238 | } |
8079805d | 4239 | } |
230d793d RS |
4240 | #endif |
4241 | ||
8079805d RK |
4242 | /* If the code changed, we have to build a new comparison in |
4243 | undobuf.other_insn. */ | |
4244 | if (new_code != old_code) | |
4245 | { | |
4246 | unsigned HOST_WIDE_INT mask; | |
4247 | ||
4248 | SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use), | |
4249 | dest, const0_rtx)); | |
4250 | ||
4251 | /* If the only change we made was to change an EQ into an NE or | |
4252 | vice versa, OP0 has only one bit that might be nonzero, and OP1 | |
4253 | is zero, check if changing the user of the condition code will | |
4254 | produce a valid insn. If it won't, we can keep the original code | |
4255 | in that insn by surrounding our operation with an XOR. */ | |
4256 | ||
4257 | if (((old_code == NE && new_code == EQ) | |
4258 | || (old_code == EQ && new_code == NE)) | |
4259 | && ! other_changed && op1 == const0_rtx | |
4260 | && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT | |
4261 | && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0) | |
230d793d | 4262 | { |
8079805d | 4263 | rtx pat = PATTERN (other_insn), note = 0; |
230d793d | 4264 | |
8079805d RK |
4265 | if ((recog_for_combine (&pat, other_insn, ¬e) < 0 |
4266 | && ! check_asm_operands (pat))) | |
4267 | { | |
4268 | PUT_CODE (*cc_use, old_code); | |
4269 | other_insn = 0; | |
230d793d | 4270 | |
8079805d | 4271 | op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask)); |
230d793d | 4272 | } |
230d793d RS |
4273 | } |
4274 | ||
8079805d RK |
4275 | other_changed = 1; |
4276 | } | |
4277 | ||
4278 | if (other_changed) | |
4279 | undobuf.other_insn = other_insn; | |
230d793d RS |
4280 | |
4281 | #ifdef HAVE_cc0 | |
8079805d RK |
4282 | /* If we are now comparing against zero, change our source if |
4283 | needed. If we do not use cc0, we always have a COMPARE. */ | |
4284 | if (op1 == const0_rtx && dest == cc0_rtx) | |
4285 | { | |
4286 | SUBST (SET_SRC (x), op0); | |
4287 | src = op0; | |
4288 | } | |
4289 | else | |
230d793d RS |
4290 | #endif |
4291 | ||
8079805d RK |
4292 | /* Otherwise, if we didn't previously have a COMPARE in the |
4293 | correct mode, we need one. */ | |
4294 | if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode) | |
4295 | { | |
4296 | SUBST (SET_SRC (x), | |
4297 | gen_rtx_combine (COMPARE, compare_mode, op0, op1)); | |
4298 | src = SET_SRC (x); | |
230d793d RS |
4299 | } |
4300 | else | |
4301 | { | |
8079805d RK |
4302 | /* Otherwise, update the COMPARE if needed. */ |
4303 | SUBST (XEXP (src, 0), op0); | |
4304 | SUBST (XEXP (src, 1), op1); | |
230d793d | 4305 | } |
8079805d RK |
4306 | } |
4307 | else | |
4308 | { | |
4309 | /* Get SET_SRC in a form where we have placed back any | |
4310 | compound expressions. Then do the checks below. */ | |
4311 | src = make_compound_operation (src, SET); | |
4312 | SUBST (SET_SRC (x), src); | |
4313 | } | |
230d793d | 4314 | |
8079805d RK |
4315 | /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation, |
4316 | and X being a REG or (subreg (reg)), we may be able to convert this to | |
4317 | (set (subreg:m2 x) (op)). | |
df62f951 | 4318 | |
8079805d RK |
4319 | We can always do this if M1 is narrower than M2 because that means that |
4320 | we only care about the low bits of the result. | |
df62f951 | 4321 | |
8079805d RK |
4322 | However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot |
4323 | perform a narrower operation that requested since the high-order bits will | |
4324 | be undefined. On machine where it is defined, this transformation is safe | |
4325 | as long as M1 and M2 have the same number of words. */ | |
df62f951 | 4326 | |
8079805d RK |
4327 | if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src) |
4328 | && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o' | |
4329 | && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1)) | |
4330 | / UNITS_PER_WORD) | |
4331 | == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))) | |
4332 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)) | |
8baf60bb | 4333 | #ifndef WORD_REGISTER_OPERATIONS |
8079805d RK |
4334 | && (GET_MODE_SIZE (GET_MODE (src)) |
4335 | < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))) | |
df62f951 | 4336 | #endif |
8079805d RK |
4337 | && (GET_CODE (dest) == REG |
4338 | || (GET_CODE (dest) == SUBREG | |
4339 | && GET_CODE (SUBREG_REG (dest)) == REG))) | |
4340 | { | |
4341 | SUBST (SET_DEST (x), | |
4342 | gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)), | |
4343 | dest)); | |
4344 | SUBST (SET_SRC (x), SUBREG_REG (src)); | |
4345 | ||
4346 | src = SET_SRC (x), dest = SET_DEST (x); | |
4347 | } | |
df62f951 | 4348 | |
8baf60bb | 4349 | #ifdef LOAD_EXTEND_OP |
8079805d RK |
4350 | /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this |
4351 | would require a paradoxical subreg. Replace the subreg with a | |
4352 | zero_extend to avoid the reload that would otherwise be required. */ | |
4353 | ||
4354 | if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src) | |
4355 | && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL | |
4356 | && SUBREG_WORD (src) == 0 | |
4357 | && (GET_MODE_SIZE (GET_MODE (src)) | |
4358 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))) | |
4359 | && GET_CODE (SUBREG_REG (src)) == MEM) | |
4360 | { | |
4361 | SUBST (SET_SRC (x), | |
4362 | gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))), | |
4363 | GET_MODE (src), XEXP (src, 0))); | |
4364 | ||
4365 | src = SET_SRC (x); | |
4366 | } | |
230d793d RS |
4367 | #endif |
4368 | ||
8079805d RK |
4369 | /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we |
4370 | are comparing an item known to be 0 or -1 against 0, use a logical | |
4371 | operation instead. Check for one of the arms being an IOR of the other | |
4372 | arm with some value. We compute three terms to be IOR'ed together. In | |
4373 | practice, at most two will be nonzero. Then we do the IOR's. */ | |
4374 | ||
4375 | if (GET_CODE (dest) != PC | |
4376 | && GET_CODE (src) == IF_THEN_ELSE | |
36b8d792 | 4377 | && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT |
8079805d RK |
4378 | && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE) |
4379 | && XEXP (XEXP (src, 0), 1) == const0_rtx | |
6dd49058 | 4380 | && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0)) |
ea414472 DE |
4381 | #ifdef HAVE_conditional_move |
4382 | && ! can_conditionally_move_p (GET_MODE (src)) | |
4383 | #endif | |
8079805d RK |
4384 | && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), |
4385 | GET_MODE (XEXP (XEXP (src, 0), 0))) | |
4386 | == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0)))) | |
4387 | && ! side_effects_p (src)) | |
4388 | { | |
4389 | rtx true = (GET_CODE (XEXP (src, 0)) == NE | |
4390 | ? XEXP (src, 1) : XEXP (src, 2)); | |
4391 | rtx false = (GET_CODE (XEXP (src, 0)) == NE | |
4392 | ? XEXP (src, 2) : XEXP (src, 1)); | |
4393 | rtx term1 = const0_rtx, term2, term3; | |
4394 | ||
4395 | if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false)) | |
4396 | term1 = false, true = XEXP (true, 1), false = const0_rtx; | |
4397 | else if (GET_CODE (true) == IOR | |
4398 | && rtx_equal_p (XEXP (true, 1), false)) | |
4399 | term1 = false, true = XEXP (true, 0), false = const0_rtx; | |
4400 | else if (GET_CODE (false) == IOR | |
4401 | && rtx_equal_p (XEXP (false, 0), true)) | |
4402 | term1 = true, false = XEXP (false, 1), true = const0_rtx; | |
4403 | else if (GET_CODE (false) == IOR | |
4404 | && rtx_equal_p (XEXP (false, 1), true)) | |
4405 | term1 = true, false = XEXP (false, 0), true = const0_rtx; | |
4406 | ||
4407 | term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true); | |
4408 | term3 = gen_binary (AND, GET_MODE (src), | |
0c1c8ea6 | 4409 | gen_unary (NOT, GET_MODE (src), GET_MODE (src), |
8079805d RK |
4410 | XEXP (XEXP (src, 0), 0)), |
4411 | false); | |
4412 | ||
4413 | SUBST (SET_SRC (x), | |
4414 | gen_binary (IOR, GET_MODE (src), | |
4415 | gen_binary (IOR, GET_MODE (src), term1, term2), | |
4416 | term3)); | |
4417 | ||
4418 | src = SET_SRC (x); | |
4419 | } | |
230d793d | 4420 | |
246e00f2 RK |
4421 | /* If either SRC or DEST is a CLOBBER of (const_int 0), make this |
4422 | whole thing fail. */ | |
4423 | if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx) | |
4424 | return src; | |
4425 | else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx) | |
4426 | return dest; | |
4427 | else | |
4428 | /* Convert this into a field assignment operation, if possible. */ | |
4429 | return make_field_assignment (x); | |
8079805d RK |
4430 | } |
4431 | \f | |
4432 | /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified | |
4433 | result. LAST is nonzero if this is the last retry. */ | |
4434 | ||
4435 | static rtx | |
4436 | simplify_logical (x, last) | |
4437 | rtx x; | |
4438 | int last; | |
4439 | { | |
4440 | enum machine_mode mode = GET_MODE (x); | |
4441 | rtx op0 = XEXP (x, 0); | |
4442 | rtx op1 = XEXP (x, 1); | |
4443 | ||
4444 | switch (GET_CODE (x)) | |
4445 | { | |
230d793d | 4446 | case AND: |
8079805d RK |
4447 | /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single |
4448 | insn (and may simplify more). */ | |
4449 | if (GET_CODE (op0) == XOR | |
4450 | && rtx_equal_p (XEXP (op0, 0), op1) | |
4451 | && ! side_effects_p (op1)) | |
0c1c8ea6 RK |
4452 | x = gen_binary (AND, mode, |
4453 | gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1); | |
8079805d RK |
4454 | |
4455 | if (GET_CODE (op0) == XOR | |
4456 | && rtx_equal_p (XEXP (op0, 1), op1) | |
4457 | && ! side_effects_p (op1)) | |
0c1c8ea6 RK |
4458 | x = gen_binary (AND, mode, |
4459 | gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1); | |
8079805d RK |
4460 | |
4461 | /* Similarly for (~ (A ^ B)) & A. */ | |
4462 | if (GET_CODE (op0) == NOT | |
4463 | && GET_CODE (XEXP (op0, 0)) == XOR | |
4464 | && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1) | |
4465 | && ! side_effects_p (op1)) | |
4466 | x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1); | |
4467 | ||
4468 | if (GET_CODE (op0) == NOT | |
4469 | && GET_CODE (XEXP (op0, 0)) == XOR | |
4470 | && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1) | |
4471 | && ! side_effects_p (op1)) | |
4472 | x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1); | |
4473 | ||
4474 | if (GET_CODE (op1) == CONST_INT) | |
230d793d | 4475 | { |
8079805d | 4476 | x = simplify_and_const_int (x, mode, op0, INTVAL (op1)); |
230d793d RS |
4477 | |
4478 | /* If we have (ior (and (X C1) C2)) and the next restart would be | |
4479 | the last, simplify this by making C1 as small as possible | |
4480 | and then exit. */ | |
8079805d RK |
4481 | if (last |
4482 | && GET_CODE (x) == IOR && GET_CODE (op0) == AND | |
4483 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
4484 | && GET_CODE (op1) == CONST_INT) | |
4485 | return gen_binary (IOR, mode, | |
4486 | gen_binary (AND, mode, XEXP (op0, 0), | |
4487 | GEN_INT (INTVAL (XEXP (op0, 1)) | |
4488 | & ~ INTVAL (op1))), op1); | |
230d793d RS |
4489 | |
4490 | if (GET_CODE (x) != AND) | |
8079805d | 4491 | return x; |
230d793d RS |
4492 | } |
4493 | ||
4494 | /* Convert (A | B) & A to A. */ | |
8079805d RK |
4495 | if (GET_CODE (op0) == IOR |
4496 | && (rtx_equal_p (XEXP (op0, 0), op1) | |
4497 | || rtx_equal_p (XEXP (op0, 1), op1)) | |
4498 | && ! side_effects_p (XEXP (op0, 0)) | |
4499 | && ! side_effects_p (XEXP (op0, 1))) | |
4500 | return op1; | |
230d793d | 4501 | |
d0ab8cd3 | 4502 | /* In the following group of tests (and those in case IOR below), |
230d793d RS |
4503 | we start with some combination of logical operations and apply |
4504 | the distributive law followed by the inverse distributive law. | |
4505 | Most of the time, this results in no change. However, if some of | |
4506 | the operands are the same or inverses of each other, simplifications | |
4507 | will result. | |
4508 | ||
4509 | For example, (and (ior A B) (not B)) can occur as the result of | |
4510 | expanding a bit field assignment. When we apply the distributive | |
4511 | law to this, we get (ior (and (A (not B))) (and (B (not B)))), | |
8079805d | 4512 | which then simplifies to (and (A (not B))). |
230d793d | 4513 | |
8079805d | 4514 | If we have (and (ior A B) C), apply the distributive law and then |
230d793d RS |
4515 | the inverse distributive law to see if things simplify. */ |
4516 | ||
8079805d | 4517 | if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR) |
230d793d RS |
4518 | { |
4519 | x = apply_distributive_law | |
8079805d RK |
4520 | (gen_binary (GET_CODE (op0), mode, |
4521 | gen_binary (AND, mode, XEXP (op0, 0), op1), | |
4522 | gen_binary (AND, mode, XEXP (op0, 1), op1))); | |
230d793d | 4523 | if (GET_CODE (x) != AND) |
8079805d | 4524 | return x; |
230d793d RS |
4525 | } |
4526 | ||
8079805d RK |
4527 | if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR) |
4528 | return apply_distributive_law | |
4529 | (gen_binary (GET_CODE (op1), mode, | |
4530 | gen_binary (AND, mode, XEXP (op1, 0), op0), | |
4531 | gen_binary (AND, mode, XEXP (op1, 1), op0))); | |
230d793d RS |
4532 | |
4533 | /* Similarly, taking advantage of the fact that | |
4534 | (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */ | |
4535 | ||
8079805d RK |
4536 | if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR) |
4537 | return apply_distributive_law | |
4538 | (gen_binary (XOR, mode, | |
4539 | gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)), | |
4540 | gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1)))); | |
230d793d | 4541 | |
8079805d RK |
4542 | else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR) |
4543 | return apply_distributive_law | |
4544 | (gen_binary (XOR, mode, | |
4545 | gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)), | |
4546 | gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1)))); | |
230d793d RS |
4547 | break; |
4548 | ||
4549 | case IOR: | |
951553af | 4550 | /* (ior A C) is C if all bits of A that might be nonzero are on in C. */ |
8079805d | 4551 | if (GET_CODE (op1) == CONST_INT |
ac49a949 | 4552 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
8079805d RK |
4553 | && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0) |
4554 | return op1; | |
d0ab8cd3 | 4555 | |
230d793d | 4556 | /* Convert (A & B) | A to A. */ |
8079805d RK |
4557 | if (GET_CODE (op0) == AND |
4558 | && (rtx_equal_p (XEXP (op0, 0), op1) | |
4559 | || rtx_equal_p (XEXP (op0, 1), op1)) | |
4560 | && ! side_effects_p (XEXP (op0, 0)) | |
4561 | && ! side_effects_p (XEXP (op0, 1))) | |
4562 | return op1; | |
230d793d RS |
4563 | |
4564 | /* If we have (ior (and A B) C), apply the distributive law and then | |
4565 | the inverse distributive law to see if things simplify. */ | |
4566 | ||
8079805d | 4567 | if (GET_CODE (op0) == AND) |
230d793d RS |
4568 | { |
4569 | x = apply_distributive_law | |
4570 | (gen_binary (AND, mode, | |
8079805d RK |
4571 | gen_binary (IOR, mode, XEXP (op0, 0), op1), |
4572 | gen_binary (IOR, mode, XEXP (op0, 1), op1))); | |
230d793d RS |
4573 | |
4574 | if (GET_CODE (x) != IOR) | |
8079805d | 4575 | return x; |
230d793d RS |
4576 | } |
4577 | ||
8079805d | 4578 | if (GET_CODE (op1) == AND) |
230d793d RS |
4579 | { |
4580 | x = apply_distributive_law | |
4581 | (gen_binary (AND, mode, | |
8079805d RK |
4582 | gen_binary (IOR, mode, XEXP (op1, 0), op0), |
4583 | gen_binary (IOR, mode, XEXP (op1, 1), op0))); | |
230d793d RS |
4584 | |
4585 | if (GET_CODE (x) != IOR) | |
8079805d | 4586 | return x; |
230d793d RS |
4587 | } |
4588 | ||
4589 | /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the | |
4590 | mode size to (rotate A CX). */ | |
4591 | ||
8079805d RK |
4592 | if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT) |
4593 | || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT)) | |
4594 | && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0)) | |
4595 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
4596 | && GET_CODE (XEXP (op1, 1)) == CONST_INT | |
4597 | && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1)) | |
230d793d | 4598 | == GET_MODE_BITSIZE (mode))) |
8079805d RK |
4599 | return gen_rtx (ROTATE, mode, XEXP (op0, 0), |
4600 | (GET_CODE (op0) == ASHIFT | |
4601 | ? XEXP (op0, 1) : XEXP (op1, 1))); | |
230d793d | 4602 | |
71923da7 RK |
4603 | /* If OP0 is (ashiftrt (plus ...) C), it might actually be |
4604 | a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS | |
4605 | does not affect any of the bits in OP1, it can really be done | |
4606 | as a PLUS and we can associate. We do this by seeing if OP1 | |
4607 | can be safely shifted left C bits. */ | |
4608 | if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT | |
4609 | && GET_CODE (XEXP (op0, 0)) == PLUS | |
4610 | && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT | |
4611 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
4612 | && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT) | |
4613 | { | |
4614 | int count = INTVAL (XEXP (op0, 1)); | |
4615 | HOST_WIDE_INT mask = INTVAL (op1) << count; | |
4616 | ||
4617 | if (mask >> count == INTVAL (op1) | |
4618 | && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0) | |
4619 | { | |
4620 | SUBST (XEXP (XEXP (op0, 0), 1), | |
4621 | GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask)); | |
4622 | return op0; | |
4623 | } | |
4624 | } | |
230d793d RS |
4625 | break; |
4626 | ||
4627 | case XOR: | |
4628 | /* Convert (XOR (NOT x) (NOT y)) to (XOR x y). | |
4629 | Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for | |
4630 | (NOT y). */ | |
4631 | { | |
4632 | int num_negated = 0; | |
230d793d | 4633 | |
8079805d RK |
4634 | if (GET_CODE (op0) == NOT) |
4635 | num_negated++, op0 = XEXP (op0, 0); | |
4636 | if (GET_CODE (op1) == NOT) | |
4637 | num_negated++, op1 = XEXP (op1, 0); | |
230d793d RS |
4638 | |
4639 | if (num_negated == 2) | |
4640 | { | |
8079805d RK |
4641 | SUBST (XEXP (x, 0), op0); |
4642 | SUBST (XEXP (x, 1), op1); | |
230d793d RS |
4643 | } |
4644 | else if (num_negated == 1) | |
0c1c8ea6 | 4645 | return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1)); |
230d793d RS |
4646 | } |
4647 | ||
4648 | /* Convert (xor (and A B) B) to (and (not A) B). The latter may | |
4649 | correspond to a machine insn or result in further simplifications | |
4650 | if B is a constant. */ | |
4651 | ||
8079805d RK |
4652 | if (GET_CODE (op0) == AND |
4653 | && rtx_equal_p (XEXP (op0, 1), op1) | |
4654 | && ! side_effects_p (op1)) | |
0c1c8ea6 RK |
4655 | return gen_binary (AND, mode, |
4656 | gen_unary (NOT, mode, mode, XEXP (op0, 0)), | |
8079805d | 4657 | op1); |
230d793d | 4658 | |
8079805d RK |
4659 | else if (GET_CODE (op0) == AND |
4660 | && rtx_equal_p (XEXP (op0, 0), op1) | |
4661 | && ! side_effects_p (op1)) | |
0c1c8ea6 RK |
4662 | return gen_binary (AND, mode, |
4663 | gen_unary (NOT, mode, mode, XEXP (op0, 1)), | |
8079805d | 4664 | op1); |
230d793d RS |
4665 | |
4666 | #if STORE_FLAG_VALUE == 1 | |
4667 | /* (xor (comparison foo bar) (const_int 1)) can become the reversed | |
4668 | comparison. */ | |
8079805d RK |
4669 | if (op1 == const1_rtx |
4670 | && GET_RTX_CLASS (GET_CODE (op0)) == '<' | |
4671 | && reversible_comparison_p (op0)) | |
4672 | return gen_rtx_combine (reverse_condition (GET_CODE (op0)), | |
4673 | mode, XEXP (op0, 0), XEXP (op0, 1)); | |
500c518b RK |
4674 | |
4675 | /* (lshiftrt foo C) where C is the number of bits in FOO minus 1 | |
4676 | is (lt foo (const_int 0)), so we can perform the above | |
4677 | simplification. */ | |
4678 | ||
8079805d RK |
4679 | if (op1 == const1_rtx |
4680 | && GET_CODE (op0) == LSHIFTRT | |
4681 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
4682 | && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1) | |
4683 | return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx); | |
230d793d RS |
4684 | #endif |
4685 | ||
4686 | /* (xor (comparison foo bar) (const_int sign-bit)) | |
4687 | when STORE_FLAG_VALUE is the sign bit. */ | |
5f4f0e22 CH |
4688 | if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
4689 | && (STORE_FLAG_VALUE | |
4690 | == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)) | |
8079805d RK |
4691 | && op1 == const_true_rtx |
4692 | && GET_RTX_CLASS (GET_CODE (op0)) == '<' | |
4693 | && reversible_comparison_p (op0)) | |
4694 | return gen_rtx_combine (reverse_condition (GET_CODE (op0)), | |
4695 | mode, XEXP (op0, 0), XEXP (op0, 1)); | |
230d793d RS |
4696 | break; |
4697 | } | |
4698 | ||
4699 | return x; | |
4700 | } | |
4701 | \f | |
4702 | /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound | |
4703 | operations" because they can be replaced with two more basic operations. | |
4704 | ZERO_EXTEND is also considered "compound" because it can be replaced with | |
4705 | an AND operation, which is simpler, though only one operation. | |
4706 | ||
4707 | The function expand_compound_operation is called with an rtx expression | |
4708 | and will convert it to the appropriate shifts and AND operations, | |
4709 | simplifying at each stage. | |
4710 | ||
4711 | The function make_compound_operation is called to convert an expression | |
4712 | consisting of shifts and ANDs into the equivalent compound expression. | |
4713 | It is the inverse of this function, loosely speaking. */ | |
4714 | ||
4715 | static rtx | |
4716 | expand_compound_operation (x) | |
4717 | rtx x; | |
4718 | { | |
4719 | int pos = 0, len; | |
4720 | int unsignedp = 0; | |
4721 | int modewidth; | |
4722 | rtx tem; | |
4723 | ||
4724 | switch (GET_CODE (x)) | |
4725 | { | |
4726 | case ZERO_EXTEND: | |
4727 | unsignedp = 1; | |
4728 | case SIGN_EXTEND: | |
75473182 RS |
4729 | /* We can't necessarily use a const_int for a multiword mode; |
4730 | it depends on implicitly extending the value. | |
4731 | Since we don't know the right way to extend it, | |
4732 | we can't tell whether the implicit way is right. | |
4733 | ||
4734 | Even for a mode that is no wider than a const_int, | |
4735 | we can't win, because we need to sign extend one of its bits through | |
4736 | the rest of it, and we don't know which bit. */ | |
230d793d | 4737 | if (GET_CODE (XEXP (x, 0)) == CONST_INT) |
75473182 | 4738 | return x; |
230d793d | 4739 | |
8079805d RK |
4740 | /* Return if (subreg:MODE FROM 0) is not a safe replacement for |
4741 | (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM | |
4742 | because (SUBREG (MEM...)) is guaranteed to cause the MEM to be | |
4743 | reloaded. If not for that, MEM's would very rarely be safe. | |
4744 | ||
4745 | Reject MODEs bigger than a word, because we might not be able | |
4746 | to reference a two-register group starting with an arbitrary register | |
4747 | (and currently gen_lowpart might crash for a SUBREG). */ | |
4748 | ||
4749 | if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD) | |
230d793d RS |
4750 | return x; |
4751 | ||
4752 | len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))); | |
4753 | /* If the inner object has VOIDmode (the only way this can happen | |
4754 | is if it is a ASM_OPERANDS), we can't do anything since we don't | |
4755 | know how much masking to do. */ | |
4756 | if (len == 0) | |
4757 | return x; | |
4758 | ||
4759 | break; | |
4760 | ||
4761 | case ZERO_EXTRACT: | |
4762 | unsignedp = 1; | |
4763 | case SIGN_EXTRACT: | |
4764 | /* If the operand is a CLOBBER, just return it. */ | |
4765 | if (GET_CODE (XEXP (x, 0)) == CLOBBER) | |
4766 | return XEXP (x, 0); | |
4767 | ||
4768 | if (GET_CODE (XEXP (x, 1)) != CONST_INT | |
4769 | || GET_CODE (XEXP (x, 2)) != CONST_INT | |
4770 | || GET_MODE (XEXP (x, 0)) == VOIDmode) | |
4771 | return x; | |
4772 | ||
4773 | len = INTVAL (XEXP (x, 1)); | |
4774 | pos = INTVAL (XEXP (x, 2)); | |
4775 | ||
4776 | /* If this goes outside the object being extracted, replace the object | |
4777 | with a (use (mem ...)) construct that only combine understands | |
4778 | and is used only for this purpose. */ | |
4779 | if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))) | |
4780 | SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0))); | |
4781 | ||
f76b9db2 ILT |
4782 | if (BITS_BIG_ENDIAN) |
4783 | pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos; | |
4784 | ||
230d793d RS |
4785 | break; |
4786 | ||
4787 | default: | |
4788 | return x; | |
4789 | } | |
4790 | ||
4791 | /* If we reach here, we want to return a pair of shifts. The inner | |
4792 | shift is a left shift of BITSIZE - POS - LEN bits. The outer | |
4793 | shift is a right shift of BITSIZE - LEN bits. It is arithmetic or | |
4794 | logical depending on the value of UNSIGNEDP. | |
4795 | ||
4796 | If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be | |
4797 | converted into an AND of a shift. | |
4798 | ||
4799 | We must check for the case where the left shift would have a negative | |
4800 | count. This can happen in a case like (x >> 31) & 255 on machines | |
4801 | that can't shift by a constant. On those machines, we would first | |
4802 | combine the shift with the AND to produce a variable-position | |
4803 | extraction. Then the constant of 31 would be substituted in to produce | |
4804 | a such a position. */ | |
4805 | ||
4806 | modewidth = GET_MODE_BITSIZE (GET_MODE (x)); | |
4807 | if (modewidth >= pos - len) | |
5f4f0e22 | 4808 | tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT, |
230d793d | 4809 | GET_MODE (x), |
5f4f0e22 CH |
4810 | simplify_shift_const (NULL_RTX, ASHIFT, |
4811 | GET_MODE (x), | |
230d793d RS |
4812 | XEXP (x, 0), |
4813 | modewidth - pos - len), | |
4814 | modewidth - len); | |
4815 | ||
5f4f0e22 CH |
4816 | else if (unsignedp && len < HOST_BITS_PER_WIDE_INT) |
4817 | tem = simplify_and_const_int (NULL_RTX, GET_MODE (x), | |
4818 | simplify_shift_const (NULL_RTX, LSHIFTRT, | |
230d793d RS |
4819 | GET_MODE (x), |
4820 | XEXP (x, 0), pos), | |
5f4f0e22 | 4821 | ((HOST_WIDE_INT) 1 << len) - 1); |
230d793d RS |
4822 | else |
4823 | /* Any other cases we can't handle. */ | |
4824 | return x; | |
4825 | ||
4826 | ||
4827 | /* If we couldn't do this for some reason, return the original | |
4828 | expression. */ | |
4829 | if (GET_CODE (tem) == CLOBBER) | |
4830 | return x; | |
4831 | ||
4832 | return tem; | |
4833 | } | |
4834 | \f | |
4835 | /* X is a SET which contains an assignment of one object into | |
4836 | a part of another (such as a bit-field assignment, STRICT_LOW_PART, | |
4837 | or certain SUBREGS). If possible, convert it into a series of | |
4838 | logical operations. | |
4839 | ||
4840 | We half-heartedly support variable positions, but do not at all | |
4841 | support variable lengths. */ | |
4842 | ||
4843 | static rtx | |
4844 | expand_field_assignment (x) | |
4845 | rtx x; | |
4846 | { | |
4847 | rtx inner; | |
4848 | rtx pos; /* Always counts from low bit. */ | |
4849 | int len; | |
4850 | rtx mask; | |
4851 | enum machine_mode compute_mode; | |
4852 | ||
4853 | /* Loop until we find something we can't simplify. */ | |
4854 | while (1) | |
4855 | { | |
4856 | if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART | |
4857 | && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG) | |
4858 | { | |
4859 | inner = SUBREG_REG (XEXP (SET_DEST (x), 0)); | |
4860 | len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))); | |
4861 | pos = const0_rtx; | |
4862 | } | |
4863 | else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT | |
4864 | && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT) | |
4865 | { | |
4866 | inner = XEXP (SET_DEST (x), 0); | |
4867 | len = INTVAL (XEXP (SET_DEST (x), 1)); | |
4868 | pos = XEXP (SET_DEST (x), 2); | |
4869 | ||
4870 | /* If the position is constant and spans the width of INNER, | |
4871 | surround INNER with a USE to indicate this. */ | |
4872 | if (GET_CODE (pos) == CONST_INT | |
4873 | && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner))) | |
4874 | inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner); | |
4875 | ||
f76b9db2 ILT |
4876 | if (BITS_BIG_ENDIAN) |
4877 | { | |
4878 | if (GET_CODE (pos) == CONST_INT) | |
4879 | pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len | |
4880 | - INTVAL (pos)); | |
4881 | else if (GET_CODE (pos) == MINUS | |
4882 | && GET_CODE (XEXP (pos, 1)) == CONST_INT | |
4883 | && (INTVAL (XEXP (pos, 1)) | |
4884 | == GET_MODE_BITSIZE (GET_MODE (inner)) - len)) | |
4885 | /* If position is ADJUST - X, new position is X. */ | |
4886 | pos = XEXP (pos, 0); | |
4887 | else | |
4888 | pos = gen_binary (MINUS, GET_MODE (pos), | |
4889 | GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) | |
4890 | - len), | |
4891 | pos); | |
4892 | } | |
230d793d RS |
4893 | } |
4894 | ||
4895 | /* A SUBREG between two modes that occupy the same numbers of words | |
4896 | can be done by moving the SUBREG to the source. */ | |
4897 | else if (GET_CODE (SET_DEST (x)) == SUBREG | |
4898 | && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x))) | |
4899 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
4900 | == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x)))) | |
4901 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))) | |
4902 | { | |
4903 | x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)), | |
4904 | gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))), | |
4905 | SET_SRC (x))); | |
4906 | continue; | |
4907 | } | |
4908 | else | |
4909 | break; | |
4910 | ||
4911 | while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner)) | |
4912 | inner = SUBREG_REG (inner); | |
4913 | ||
4914 | compute_mode = GET_MODE (inner); | |
4915 | ||
4916 | /* Compute a mask of LEN bits, if we can do this on the host machine. */ | |
5f4f0e22 CH |
4917 | if (len < HOST_BITS_PER_WIDE_INT) |
4918 | mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1); | |
230d793d RS |
4919 | else |
4920 | break; | |
4921 | ||
4922 | /* Now compute the equivalent expression. Make a copy of INNER | |
4923 | for the SET_DEST in case it is a MEM into which we will substitute; | |
4924 | we don't want shared RTL in that case. */ | |
4925 | x = gen_rtx (SET, VOIDmode, copy_rtx (inner), | |
4926 | gen_binary (IOR, compute_mode, | |
4927 | gen_binary (AND, compute_mode, | |
4928 | gen_unary (NOT, compute_mode, | |
0c1c8ea6 | 4929 | compute_mode, |
230d793d RS |
4930 | gen_binary (ASHIFT, |
4931 | compute_mode, | |
4932 | mask, pos)), | |
4933 | inner), | |
4934 | gen_binary (ASHIFT, compute_mode, | |
4935 | gen_binary (AND, compute_mode, | |
4936 | gen_lowpart_for_combine | |
4937 | (compute_mode, | |
4938 | SET_SRC (x)), | |
4939 | mask), | |
4940 | pos))); | |
4941 | } | |
4942 | ||
4943 | return x; | |
4944 | } | |
4945 | \f | |
8999a12e RK |
4946 | /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero, |
4947 | it is an RTX that represents a variable starting position; otherwise, | |
4948 | POS is the (constant) starting bit position (counted from the LSB). | |
230d793d RS |
4949 | |
4950 | INNER may be a USE. This will occur when we started with a bitfield | |
4951 | that went outside the boundary of the object in memory, which is | |
4952 | allowed on most machines. To isolate this case, we produce a USE | |
4953 | whose mode is wide enough and surround the MEM with it. The only | |
4954 | code that understands the USE is this routine. If it is not removed, | |
4955 | it will cause the resulting insn not to match. | |
4956 | ||
4957 | UNSIGNEDP is non-zero for an unsigned reference and zero for a | |
4958 | signed reference. | |
4959 | ||
4960 | IN_DEST is non-zero if this is a reference in the destination of a | |
4961 | SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero, | |
4962 | a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will | |
4963 | be used. | |
4964 | ||
4965 | IN_COMPARE is non-zero if we are in a COMPARE. This means that a | |
4966 | ZERO_EXTRACT should be built even for bits starting at bit 0. | |
4967 | ||
4968 | MODE is the desired mode of the result (if IN_DEST == 0). */ | |
4969 | ||
4970 | static rtx | |
4971 | make_extraction (mode, inner, pos, pos_rtx, len, | |
4972 | unsignedp, in_dest, in_compare) | |
4973 | enum machine_mode mode; | |
4974 | rtx inner; | |
4975 | int pos; | |
4976 | rtx pos_rtx; | |
4977 | int len; | |
4978 | int unsignedp; | |
4979 | int in_dest, in_compare; | |
4980 | { | |
94b4b17a RS |
4981 | /* This mode describes the size of the storage area |
4982 | to fetch the overall value from. Within that, we | |
4983 | ignore the POS lowest bits, etc. */ | |
230d793d RS |
4984 | enum machine_mode is_mode = GET_MODE (inner); |
4985 | enum machine_mode inner_mode; | |
4986 | enum machine_mode wanted_mem_mode = byte_mode; | |
4987 | enum machine_mode pos_mode = word_mode; | |
4988 | enum machine_mode extraction_mode = word_mode; | |
4989 | enum machine_mode tmode = mode_for_size (len, MODE_INT, 1); | |
4990 | int spans_byte = 0; | |
4991 | rtx new = 0; | |
8999a12e | 4992 | rtx orig_pos_rtx = pos_rtx; |
6139ff20 | 4993 | int orig_pos; |
230d793d RS |
4994 | |
4995 | /* Get some information about INNER and get the innermost object. */ | |
4996 | if (GET_CODE (inner) == USE) | |
94b4b17a | 4997 | /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */ |
230d793d RS |
4998 | /* We don't need to adjust the position because we set up the USE |
4999 | to pretend that it was a full-word object. */ | |
5000 | spans_byte = 1, inner = XEXP (inner, 0); | |
5001 | else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner)) | |
94b4b17a RS |
5002 | { |
5003 | /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...), | |
5004 | consider just the QI as the memory to extract from. | |
5005 | The subreg adds or removes high bits; its mode is | |
5006 | irrelevant to the meaning of this extraction, | |
5007 | since POS and LEN count from the lsb. */ | |
5008 | if (GET_CODE (SUBREG_REG (inner)) == MEM) | |
5009 | is_mode = GET_MODE (SUBREG_REG (inner)); | |
5010 | inner = SUBREG_REG (inner); | |
5011 | } | |
230d793d RS |
5012 | |
5013 | inner_mode = GET_MODE (inner); | |
5014 | ||
5015 | if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT) | |
8999a12e | 5016 | pos = INTVAL (pos_rtx), pos_rtx = 0; |
230d793d RS |
5017 | |
5018 | /* See if this can be done without an extraction. We never can if the | |
5019 | width of the field is not the same as that of some integer mode. For | |
5020 | registers, we can only avoid the extraction if the position is at the | |
5021 | low-order bit and this is either not in the destination or we have the | |
5022 | appropriate STRICT_LOW_PART operation available. | |
5023 | ||
5024 | For MEM, we can avoid an extract if the field starts on an appropriate | |
5025 | boundary and we can change the mode of the memory reference. However, | |
5026 | we cannot directly access the MEM if we have a USE and the underlying | |
5027 | MEM is not TMODE. This combination means that MEM was being used in a | |
5028 | context where bits outside its mode were being referenced; that is only | |
5029 | valid in bit-field insns. */ | |
5030 | ||
5031 | if (tmode != BLKmode | |
5032 | && ! (spans_byte && inner_mode != tmode) | |
8999a12e | 5033 | && ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM |
230d793d | 5034 | && (! in_dest |
df62f951 RK |
5035 | || (GET_CODE (inner) == REG |
5036 | && (movstrict_optab->handlers[(int) tmode].insn_code | |
5037 | != CODE_FOR_nothing)))) | |
8999a12e | 5038 | || (GET_CODE (inner) == MEM && pos_rtx == 0 |
dfbe1b2f RK |
5039 | && (pos |
5040 | % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode) | |
5041 | : BITS_PER_UNIT)) == 0 | |
230d793d RS |
5042 | /* We can't do this if we are widening INNER_MODE (it |
5043 | may not be aligned, for one thing). */ | |
5044 | && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode) | |
5045 | && (inner_mode == tmode | |
5046 | || (! mode_dependent_address_p (XEXP (inner, 0)) | |
5047 | && ! MEM_VOLATILE_P (inner)))))) | |
5048 | { | |
230d793d RS |
5049 | /* If INNER is a MEM, make a new MEM that encompasses just the desired |
5050 | field. If the original and current mode are the same, we need not | |
5051 | adjust the offset. Otherwise, we do if bytes big endian. | |
5052 | ||
5053 | If INNER is not a MEM, get a piece consisting of the just the field | |
df62f951 | 5054 | of interest (in this case POS must be 0). */ |
230d793d RS |
5055 | |
5056 | if (GET_CODE (inner) == MEM) | |
5057 | { | |
94b4b17a RS |
5058 | int offset; |
5059 | /* POS counts from lsb, but make OFFSET count in memory order. */ | |
5060 | if (BYTES_BIG_ENDIAN) | |
5061 | offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT; | |
5062 | else | |
5063 | offset = pos / BITS_PER_UNIT; | |
230d793d RS |
5064 | |
5065 | new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset)); | |
5066 | RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner); | |
5067 | MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner); | |
5068 | MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner); | |
5069 | } | |
df62f951 | 5070 | else if (GET_CODE (inner) == REG) |
c0d3ac4d RK |
5071 | { |
5072 | /* We can't call gen_lowpart_for_combine here since we always want | |
5073 | a SUBREG and it would sometimes return a new hard register. */ | |
5074 | if (tmode != inner_mode) | |
5075 | new = gen_rtx (SUBREG, tmode, inner, | |
5076 | (WORDS_BIG_ENDIAN | |
5077 | && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD | |
5078 | ? ((GET_MODE_SIZE (inner_mode) | |
5079 | - GET_MODE_SIZE (tmode)) | |
5080 | / UNITS_PER_WORD) | |
5081 | : 0)); | |
5082 | else | |
5083 | new = inner; | |
5084 | } | |
230d793d | 5085 | else |
6139ff20 RK |
5086 | new = force_to_mode (inner, tmode, |
5087 | len >= HOST_BITS_PER_WIDE_INT | |
5088 | ? GET_MODE_MASK (tmode) | |
5089 | : ((HOST_WIDE_INT) 1 << len) - 1, | |
e3d616e3 | 5090 | NULL_RTX, 0); |
230d793d RS |
5091 | |
5092 | /* If this extraction is going into the destination of a SET, | |
5093 | make a STRICT_LOW_PART unless we made a MEM. */ | |
5094 | ||
5095 | if (in_dest) | |
5096 | return (GET_CODE (new) == MEM ? new | |
77fa0940 RK |
5097 | : (GET_CODE (new) != SUBREG |
5098 | ? gen_rtx (CLOBBER, tmode, const0_rtx) | |
5099 | : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new))); | |
230d793d RS |
5100 | |
5101 | /* Otherwise, sign- or zero-extend unless we already are in the | |
5102 | proper mode. */ | |
5103 | ||
5104 | return (mode == tmode ? new | |
5105 | : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, | |
5106 | mode, new)); | |
5107 | } | |
5108 | ||
cc471082 RS |
5109 | /* Unless this is a COMPARE or we have a funny memory reference, |
5110 | don't do anything with zero-extending field extracts starting at | |
5111 | the low-order bit since they are simple AND operations. */ | |
8999a12e RK |
5112 | if (pos_rtx == 0 && pos == 0 && ! in_dest |
5113 | && ! in_compare && ! spans_byte && unsignedp) | |
230d793d RS |
5114 | return 0; |
5115 | ||
e7373556 RK |
5116 | /* Unless we are allowed to span bytes, reject this if we would be |
5117 | spanning bytes or if the position is not a constant and the length | |
5118 | is not 1. In all other cases, we would only be going outside | |
5119 | out object in cases when an original shift would have been | |
5120 | undefined. */ | |
5121 | if (! spans_byte | |
5122 | && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode)) | |
5123 | || (pos_rtx != 0 && len != 1))) | |
5124 | return 0; | |
5125 | ||
230d793d RS |
5126 | /* Get the mode to use should INNER be a MEM, the mode for the position, |
5127 | and the mode for the result. */ | |
5128 | #ifdef HAVE_insv | |
5129 | if (in_dest) | |
5130 | { | |
5131 | wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0]; | |
5132 | pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2]; | |
5133 | extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3]; | |
5134 | } | |
5135 | #endif | |
5136 | ||
5137 | #ifdef HAVE_extzv | |
5138 | if (! in_dest && unsignedp) | |
5139 | { | |
5140 | wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1]; | |
5141 | pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3]; | |
5142 | extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0]; | |
5143 | } | |
5144 | #endif | |
5145 | ||
5146 | #ifdef HAVE_extv | |
5147 | if (! in_dest && ! unsignedp) | |
5148 | { | |
5149 | wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1]; | |
5150 | pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3]; | |
5151 | extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0]; | |
5152 | } | |
5153 | #endif | |
5154 | ||
5155 | /* Never narrow an object, since that might not be safe. */ | |
5156 | ||
5157 | if (mode != VOIDmode | |
5158 | && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode)) | |
5159 | extraction_mode = mode; | |
5160 | ||
5161 | if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode | |
5162 | && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx))) | |
5163 | pos_mode = GET_MODE (pos_rtx); | |
5164 | ||
5165 | /* If this is not from memory or we have to change the mode of memory and | |
5166 | cannot, the desired mode is EXTRACTION_MODE. */ | |
5167 | if (GET_CODE (inner) != MEM | |
5168 | || (inner_mode != wanted_mem_mode | |
5169 | && (mode_dependent_address_p (XEXP (inner, 0)) | |
5170 | || MEM_VOLATILE_P (inner)))) | |
5171 | wanted_mem_mode = extraction_mode; | |
5172 | ||
6139ff20 RK |
5173 | orig_pos = pos; |
5174 | ||
f76b9db2 ILT |
5175 | if (BITS_BIG_ENDIAN) |
5176 | { | |
5177 | /* If position is constant, compute new position. Otherwise, | |
5178 | build subtraction. */ | |
5179 | if (pos_rtx == 0) | |
5180 | pos = (MAX (GET_MODE_BITSIZE (is_mode), | |
5181 | GET_MODE_BITSIZE (wanted_mem_mode)) | |
5182 | - len - pos); | |
5183 | else | |
5184 | pos_rtx | |
5185 | = gen_rtx_combine (MINUS, GET_MODE (pos_rtx), | |
5186 | GEN_INT (MAX (GET_MODE_BITSIZE (is_mode), | |
5187 | GET_MODE_BITSIZE (wanted_mem_mode)) | |
5188 | - len), | |
5189 | pos_rtx); | |
5190 | } | |
230d793d RS |
5191 | |
5192 | /* If INNER has a wider mode, make it smaller. If this is a constant | |
5193 | extract, try to adjust the byte to point to the byte containing | |
5194 | the value. */ | |
5195 | if (wanted_mem_mode != VOIDmode | |
5196 | && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode) | |
5197 | && ((GET_CODE (inner) == MEM | |
5198 | && (inner_mode == wanted_mem_mode | |
5199 | || (! mode_dependent_address_p (XEXP (inner, 0)) | |
5200 | && ! MEM_VOLATILE_P (inner)))))) | |
5201 | { | |
5202 | int offset = 0; | |
5203 | ||
5204 | /* The computations below will be correct if the machine is big | |
5205 | endian in both bits and bytes or little endian in bits and bytes. | |
5206 | If it is mixed, we must adjust. */ | |
5207 | ||
230d793d RS |
5208 | /* If bytes are big endian and we had a paradoxical SUBREG, we must |
5209 | adjust OFFSET to compensate. */ | |
f76b9db2 ILT |
5210 | if (BYTES_BIG_ENDIAN |
5211 | && ! spans_byte | |
230d793d RS |
5212 | && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode)) |
5213 | offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode); | |
230d793d RS |
5214 | |
5215 | /* If this is a constant position, we can move to the desired byte. */ | |
8999a12e | 5216 | if (pos_rtx == 0) |
230d793d RS |
5217 | { |
5218 | offset += pos / BITS_PER_UNIT; | |
5219 | pos %= GET_MODE_BITSIZE (wanted_mem_mode); | |
5220 | } | |
5221 | ||
f76b9db2 ILT |
5222 | if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN |
5223 | && ! spans_byte | |
5224 | && is_mode != wanted_mem_mode) | |
c6b3f1f2 JW |
5225 | offset = (GET_MODE_SIZE (is_mode) |
5226 | - GET_MODE_SIZE (wanted_mem_mode) - offset); | |
c6b3f1f2 | 5227 | |
230d793d RS |
5228 | if (offset != 0 || inner_mode != wanted_mem_mode) |
5229 | { | |
5230 | rtx newmem = gen_rtx (MEM, wanted_mem_mode, | |
5231 | plus_constant (XEXP (inner, 0), offset)); | |
5232 | RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner); | |
5233 | MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner); | |
5234 | MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner); | |
5235 | inner = newmem; | |
5236 | } | |
5237 | } | |
5238 | ||
5239 | /* If INNER is not memory, we can always get it into the proper mode. */ | |
5240 | else if (GET_CODE (inner) != MEM) | |
d0ab8cd3 | 5241 | inner = force_to_mode (inner, extraction_mode, |
6139ff20 RK |
5242 | pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT |
5243 | ? GET_MODE_MASK (extraction_mode) | |
5244 | : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos, | |
e3d616e3 | 5245 | NULL_RTX, 0); |
230d793d RS |
5246 | |
5247 | /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we | |
5248 | have to zero extend. Otherwise, we can just use a SUBREG. */ | |
8999a12e | 5249 | if (pos_rtx != 0 |
230d793d RS |
5250 | && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx))) |
5251 | pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx); | |
8999a12e | 5252 | else if (pos_rtx != 0 |
230d793d RS |
5253 | && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx))) |
5254 | pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx); | |
5255 | ||
8999a12e RK |
5256 | /* Make POS_RTX unless we already have it and it is correct. If we don't |
5257 | have a POS_RTX but we do have an ORIG_POS_RTX, the latter must | |
5258 | be a CONST_INT. */ | |
5259 | if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos) | |
5260 | pos_rtx = orig_pos_rtx; | |
5261 | ||
5262 | else if (pos_rtx == 0) | |
5f4f0e22 | 5263 | pos_rtx = GEN_INT (pos); |
230d793d RS |
5264 | |
5265 | /* Make the required operation. See if we can use existing rtx. */ | |
5266 | new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT, | |
5f4f0e22 | 5267 | extraction_mode, inner, GEN_INT (len), pos_rtx); |
230d793d RS |
5268 | if (! in_dest) |
5269 | new = gen_lowpart_for_combine (mode, new); | |
5270 | ||
5271 | return new; | |
5272 | } | |
5273 | \f | |
71923da7 RK |
5274 | /* See if X contains an ASHIFT of COUNT or more bits that can be commuted |
5275 | with any other operations in X. Return X without that shift if so. */ | |
5276 | ||
5277 | static rtx | |
5278 | extract_left_shift (x, count) | |
5279 | rtx x; | |
5280 | int count; | |
5281 | { | |
5282 | enum rtx_code code = GET_CODE (x); | |
5283 | enum machine_mode mode = GET_MODE (x); | |
5284 | rtx tem; | |
5285 | ||
5286 | switch (code) | |
5287 | { | |
5288 | case ASHIFT: | |
5289 | /* This is the shift itself. If it is wide enough, we will return | |
5290 | either the value being shifted if the shift count is equal to | |
5291 | COUNT or a shift for the difference. */ | |
5292 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
5293 | && INTVAL (XEXP (x, 1)) >= count) | |
5294 | return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0), | |
5295 | INTVAL (XEXP (x, 1)) - count); | |
5296 | break; | |
5297 | ||
5298 | case NEG: case NOT: | |
5299 | if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0) | |
0c1c8ea6 | 5300 | return gen_unary (code, mode, mode, tem); |
71923da7 RK |
5301 | |
5302 | break; | |
5303 | ||
5304 | case PLUS: case IOR: case XOR: case AND: | |
5305 | /* If we can safely shift this constant and we find the inner shift, | |
5306 | make a new operation. */ | |
5307 | if (GET_CODE (XEXP (x,1)) == CONST_INT | |
5308 | && (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0 | |
5309 | && (tem = extract_left_shift (XEXP (x, 0), count)) != 0) | |
5310 | return gen_binary (code, mode, tem, | |
5311 | GEN_INT (INTVAL (XEXP (x, 1)) >> count)); | |
5312 | ||
5313 | break; | |
5314 | } | |
5315 | ||
5316 | return 0; | |
5317 | } | |
5318 | \f | |
230d793d RS |
5319 | /* Look at the expression rooted at X. Look for expressions |
5320 | equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND. | |
5321 | Form these expressions. | |
5322 | ||
5323 | Return the new rtx, usually just X. | |
5324 | ||
5325 | Also, for machines like the Vax that don't have logical shift insns, | |
5326 | try to convert logical to arithmetic shift operations in cases where | |
5327 | they are equivalent. This undoes the canonicalizations to logical | |
5328 | shifts done elsewhere. | |
5329 | ||
5330 | We try, as much as possible, to re-use rtl expressions to save memory. | |
5331 | ||
5332 | IN_CODE says what kind of expression we are processing. Normally, it is | |
42495ca0 RK |
5333 | SET. In a memory address (inside a MEM, PLUS or minus, the latter two |
5334 | being kludges), it is MEM. When processing the arguments of a comparison | |
230d793d RS |
5335 | or a COMPARE against zero, it is COMPARE. */ |
5336 | ||
5337 | static rtx | |
5338 | make_compound_operation (x, in_code) | |
5339 | rtx x; | |
5340 | enum rtx_code in_code; | |
5341 | { | |
5342 | enum rtx_code code = GET_CODE (x); | |
5343 | enum machine_mode mode = GET_MODE (x); | |
5344 | int mode_width = GET_MODE_BITSIZE (mode); | |
71923da7 | 5345 | rtx rhs, lhs; |
230d793d | 5346 | enum rtx_code next_code; |
f24ad0e4 | 5347 | int i; |
230d793d | 5348 | rtx new = 0; |
280f58ba | 5349 | rtx tem; |
230d793d RS |
5350 | char *fmt; |
5351 | ||
5352 | /* Select the code to be used in recursive calls. Once we are inside an | |
5353 | address, we stay there. If we have a comparison, set to COMPARE, | |
5354 | but once inside, go back to our default of SET. */ | |
5355 | ||
42495ca0 | 5356 | next_code = (code == MEM || code == PLUS || code == MINUS ? MEM |
230d793d RS |
5357 | : ((code == COMPARE || GET_RTX_CLASS (code) == '<') |
5358 | && XEXP (x, 1) == const0_rtx) ? COMPARE | |
5359 | : in_code == COMPARE ? SET : in_code); | |
5360 | ||
5361 | /* Process depending on the code of this operation. If NEW is set | |
5362 | non-zero, it will be returned. */ | |
5363 | ||
5364 | switch (code) | |
5365 | { | |
5366 | case ASHIFT: | |
230d793d RS |
5367 | /* Convert shifts by constants into multiplications if inside |
5368 | an address. */ | |
5369 | if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT | |
5f4f0e22 | 5370 | && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT |
230d793d | 5371 | && INTVAL (XEXP (x, 1)) >= 0) |
280f58ba RK |
5372 | { |
5373 | new = make_compound_operation (XEXP (x, 0), next_code); | |
5374 | new = gen_rtx_combine (MULT, mode, new, | |
5375 | GEN_INT ((HOST_WIDE_INT) 1 | |
5376 | << INTVAL (XEXP (x, 1)))); | |
5377 | } | |
230d793d RS |
5378 | break; |
5379 | ||
5380 | case AND: | |
5381 | /* If the second operand is not a constant, we can't do anything | |
5382 | with it. */ | |
5383 | if (GET_CODE (XEXP (x, 1)) != CONST_INT) | |
5384 | break; | |
5385 | ||
5386 | /* If the constant is a power of two minus one and the first operand | |
5387 | is a logical right shift, make an extraction. */ | |
5388 | if (GET_CODE (XEXP (x, 0)) == LSHIFTRT | |
5389 | && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0) | |
280f58ba RK |
5390 | { |
5391 | new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code); | |
5392 | new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1, | |
5393 | 0, in_code == COMPARE); | |
5394 | } | |
dfbe1b2f | 5395 | |
230d793d RS |
5396 | /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */ |
5397 | else if (GET_CODE (XEXP (x, 0)) == SUBREG | |
5398 | && subreg_lowpart_p (XEXP (x, 0)) | |
5399 | && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT | |
5400 | && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0) | |
280f58ba RK |
5401 | { |
5402 | new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0), | |
5403 | next_code); | |
2f99f437 | 5404 | new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0, |
280f58ba RK |
5405 | XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1, |
5406 | 0, in_code == COMPARE); | |
5407 | } | |
45620ed4 | 5408 | /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */ |
c2f9f64e JW |
5409 | else if ((GET_CODE (XEXP (x, 0)) == XOR |
5410 | || GET_CODE (XEXP (x, 0)) == IOR) | |
5411 | && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT | |
5412 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT | |
5413 | && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0) | |
5414 | { | |
5415 | /* Apply the distributive law, and then try to make extractions. */ | |
5416 | new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode, | |
5417 | gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0), | |
5418 | XEXP (x, 1)), | |
5419 | gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1), | |
5420 | XEXP (x, 1))); | |
5421 | new = make_compound_operation (new, in_code); | |
5422 | } | |
a7c99304 RK |
5423 | |
5424 | /* If we are have (and (rotate X C) M) and C is larger than the number | |
5425 | of bits in M, this is an extraction. */ | |
5426 | ||
5427 | else if (GET_CODE (XEXP (x, 0)) == ROTATE | |
5428 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
5429 | && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0 | |
5430 | && i <= INTVAL (XEXP (XEXP (x, 0), 1))) | |
280f58ba RK |
5431 | { |
5432 | new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code); | |
5433 | new = make_extraction (mode, new, | |
5434 | (GET_MODE_BITSIZE (mode) | |
5435 | - INTVAL (XEXP (XEXP (x, 0), 1))), | |
5436 | NULL_RTX, i, 1, 0, in_code == COMPARE); | |
5437 | } | |
a7c99304 RK |
5438 | |
5439 | /* On machines without logical shifts, if the operand of the AND is | |
230d793d RS |
5440 | a logical shift and our mask turns off all the propagated sign |
5441 | bits, we can replace the logical shift with an arithmetic shift. */ | |
d0ab8cd3 RK |
5442 | else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing |
5443 | && (lshr_optab->handlers[(int) mode].insn_code | |
5444 | == CODE_FOR_nothing) | |
230d793d RS |
5445 | && GET_CODE (XEXP (x, 0)) == LSHIFTRT |
5446 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
5447 | && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 | |
5f4f0e22 CH |
5448 | && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT |
5449 | && mode_width <= HOST_BITS_PER_WIDE_INT) | |
230d793d | 5450 | { |
5f4f0e22 | 5451 | unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); |
230d793d RS |
5452 | |
5453 | mask >>= INTVAL (XEXP (XEXP (x, 0), 1)); | |
5454 | if ((INTVAL (XEXP (x, 1)) & ~mask) == 0) | |
5455 | SUBST (XEXP (x, 0), | |
280f58ba RK |
5456 | gen_rtx_combine (ASHIFTRT, mode, |
5457 | make_compound_operation (XEXP (XEXP (x, 0), 0), | |
5458 | next_code), | |
230d793d RS |
5459 | XEXP (XEXP (x, 0), 1))); |
5460 | } | |
5461 | ||
5462 | /* If the constant is one less than a power of two, this might be | |
5463 | representable by an extraction even if no shift is present. | |
5464 | If it doesn't end up being a ZERO_EXTEND, we will ignore it unless | |
5465 | we are in a COMPARE. */ | |
5466 | else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0) | |
280f58ba RK |
5467 | new = make_extraction (mode, |
5468 | make_compound_operation (XEXP (x, 0), | |
5469 | next_code), | |
5470 | 0, NULL_RTX, i, 1, 0, in_code == COMPARE); | |
230d793d RS |
5471 | |
5472 | /* If we are in a comparison and this is an AND with a power of two, | |
5473 | convert this into the appropriate bit extract. */ | |
5474 | else if (in_code == COMPARE | |
5475 | && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0) | |
280f58ba RK |
5476 | new = make_extraction (mode, |
5477 | make_compound_operation (XEXP (x, 0), | |
5478 | next_code), | |
5479 | i, NULL_RTX, 1, 1, 0, 1); | |
230d793d RS |
5480 | |
5481 | break; | |
5482 | ||
5483 | case LSHIFTRT: | |
5484 | /* If the sign bit is known to be zero, replace this with an | |
5485 | arithmetic shift. */ | |
d0ab8cd3 RK |
5486 | if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing |
5487 | && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing | |
5f4f0e22 | 5488 | && mode_width <= HOST_BITS_PER_WIDE_INT |
951553af | 5489 | && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0) |
230d793d | 5490 | { |
280f58ba RK |
5491 | new = gen_rtx_combine (ASHIFTRT, mode, |
5492 | make_compound_operation (XEXP (x, 0), | |
5493 | next_code), | |
5494 | XEXP (x, 1)); | |
230d793d RS |
5495 | break; |
5496 | } | |
5497 | ||
5498 | /* ... fall through ... */ | |
5499 | ||
5500 | case ASHIFTRT: | |
71923da7 RK |
5501 | lhs = XEXP (x, 0); |
5502 | rhs = XEXP (x, 1); | |
5503 | ||
230d793d RS |
5504 | /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1, |
5505 | this is a SIGN_EXTRACT. */ | |
71923da7 RK |
5506 | if (GET_CODE (rhs) == CONST_INT |
5507 | && GET_CODE (lhs) == ASHIFT | |
5508 | && GET_CODE (XEXP (lhs, 1)) == CONST_INT | |
5509 | && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))) | |
280f58ba | 5510 | { |
71923da7 | 5511 | new = make_compound_operation (XEXP (lhs, 0), next_code); |
280f58ba | 5512 | new = make_extraction (mode, new, |
71923da7 RK |
5513 | INTVAL (rhs) - INTVAL (XEXP (lhs, 1)), |
5514 | NULL_RTX, mode_width - INTVAL (rhs), | |
d0ab8cd3 RK |
5515 | code == LSHIFTRT, 0, in_code == COMPARE); |
5516 | } | |
5517 | ||
71923da7 RK |
5518 | /* See if we have operations between an ASHIFTRT and an ASHIFT. |
5519 | If so, try to merge the shifts into a SIGN_EXTEND. We could | |
5520 | also do this for some cases of SIGN_EXTRACT, but it doesn't | |
5521 | seem worth the effort; the case checked for occurs on Alpha. */ | |
5522 | ||
5523 | if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o' | |
5524 | && ! (GET_CODE (lhs) == SUBREG | |
5525 | && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o')) | |
5526 | && GET_CODE (rhs) == CONST_INT | |
5527 | && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT | |
5528 | && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0) | |
5529 | new = make_extraction (mode, make_compound_operation (new, next_code), | |
5530 | 0, NULL_RTX, mode_width - INTVAL (rhs), | |
5531 | code == LSHIFTRT, 0, in_code == COMPARE); | |
5532 | ||
230d793d | 5533 | break; |
280f58ba RK |
5534 | |
5535 | case SUBREG: | |
5536 | /* Call ourselves recursively on the inner expression. If we are | |
5537 | narrowing the object and it has a different RTL code from | |
5538 | what it originally did, do this SUBREG as a force_to_mode. */ | |
5539 | ||
0a5cbff6 | 5540 | tem = make_compound_operation (SUBREG_REG (x), in_code); |
280f58ba RK |
5541 | if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x)) |
5542 | && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem)) | |
5543 | && subreg_lowpart_p (x)) | |
0a5cbff6 RK |
5544 | { |
5545 | rtx newer = force_to_mode (tem, mode, | |
e3d616e3 | 5546 | GET_MODE_MASK (mode), NULL_RTX, 0); |
0a5cbff6 RK |
5547 | |
5548 | /* If we have something other than a SUBREG, we might have | |
5549 | done an expansion, so rerun outselves. */ | |
5550 | if (GET_CODE (newer) != SUBREG) | |
5551 | newer = make_compound_operation (newer, in_code); | |
5552 | ||
5553 | return newer; | |
5554 | } | |
230d793d RS |
5555 | } |
5556 | ||
5557 | if (new) | |
5558 | { | |
df62f951 | 5559 | x = gen_lowpart_for_combine (mode, new); |
230d793d RS |
5560 | code = GET_CODE (x); |
5561 | } | |
5562 | ||
5563 | /* Now recursively process each operand of this operation. */ | |
5564 | fmt = GET_RTX_FORMAT (code); | |
5565 | for (i = 0; i < GET_RTX_LENGTH (code); i++) | |
5566 | if (fmt[i] == 'e') | |
5567 | { | |
5568 | new = make_compound_operation (XEXP (x, i), next_code); | |
5569 | SUBST (XEXP (x, i), new); | |
5570 | } | |
5571 | ||
5572 | return x; | |
5573 | } | |
5574 | \f | |
5575 | /* Given M see if it is a value that would select a field of bits | |
5576 | within an item, but not the entire word. Return -1 if not. | |
5577 | Otherwise, return the starting position of the field, where 0 is the | |
5578 | low-order bit. | |
5579 | ||
5580 | *PLEN is set to the length of the field. */ | |
5581 | ||
5582 | static int | |
5583 | get_pos_from_mask (m, plen) | |
5f4f0e22 | 5584 | unsigned HOST_WIDE_INT m; |
230d793d RS |
5585 | int *plen; |
5586 | { | |
5587 | /* Get the bit number of the first 1 bit from the right, -1 if none. */ | |
5588 | int pos = exact_log2 (m & - m); | |
5589 | ||
5590 | if (pos < 0) | |
5591 | return -1; | |
5592 | ||
5593 | /* Now shift off the low-order zero bits and see if we have a power of | |
5594 | two minus 1. */ | |
5595 | *plen = exact_log2 ((m >> pos) + 1); | |
5596 | ||
5597 | if (*plen <= 0) | |
5598 | return -1; | |
5599 | ||
5600 | return pos; | |
5601 | } | |
5602 | \f | |
6139ff20 RK |
5603 | /* See if X can be simplified knowing that we will only refer to it in |
5604 | MODE and will only refer to those bits that are nonzero in MASK. | |
5605 | If other bits are being computed or if masking operations are done | |
5606 | that select a superset of the bits in MASK, they can sometimes be | |
5607 | ignored. | |
5608 | ||
5609 | Return a possibly simplified expression, but always convert X to | |
5610 | MODE. If X is a CONST_INT, AND the CONST_INT with MASK. | |
dfbe1b2f RK |
5611 | |
5612 | Also, if REG is non-zero and X is a register equal in value to REG, | |
e3d616e3 RK |
5613 | replace X with REG. |
5614 | ||
5615 | If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK | |
5616 | are all off in X. This is used when X will be complemented, by either | |
180b8e4b | 5617 | NOT, NEG, or XOR. */ |
dfbe1b2f RK |
5618 | |
5619 | static rtx | |
e3d616e3 | 5620 | force_to_mode (x, mode, mask, reg, just_select) |
dfbe1b2f RK |
5621 | rtx x; |
5622 | enum machine_mode mode; | |
6139ff20 | 5623 | unsigned HOST_WIDE_INT mask; |
dfbe1b2f | 5624 | rtx reg; |
e3d616e3 | 5625 | int just_select; |
dfbe1b2f RK |
5626 | { |
5627 | enum rtx_code code = GET_CODE (x); | |
180b8e4b | 5628 | int next_select = just_select || code == XOR || code == NOT || code == NEG; |
ef026f91 RS |
5629 | enum machine_mode op_mode; |
5630 | unsigned HOST_WIDE_INT fuller_mask, nonzero; | |
6139ff20 RK |
5631 | rtx op0, op1, temp; |
5632 | ||
246e00f2 RK |
5633 | /* If this is a CALL, don't do anything. Some of the code below |
5634 | will do the wrong thing since the mode of a CALL is VOIDmode. */ | |
5635 | if (code == CALL) | |
5636 | return x; | |
5637 | ||
6139ff20 RK |
5638 | /* We want to perform the operation is its present mode unless we know |
5639 | that the operation is valid in MODE, in which case we do the operation | |
5640 | in MODE. */ | |
1c75dfa4 RK |
5641 | op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x)) |
5642 | && code_to_optab[(int) code] != 0 | |
ef026f91 RS |
5643 | && (code_to_optab[(int) code]->handlers[(int) mode].insn_code |
5644 | != CODE_FOR_nothing)) | |
5645 | ? mode : GET_MODE (x)); | |
e3d616e3 | 5646 | |
aa988991 RS |
5647 | /* It is not valid to do a right-shift in a narrower mode |
5648 | than the one it came in with. */ | |
5649 | if ((code == LSHIFTRT || code == ASHIFTRT) | |
5650 | && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x))) | |
5651 | op_mode = GET_MODE (x); | |
ef026f91 RS |
5652 | |
5653 | /* Truncate MASK to fit OP_MODE. */ | |
5654 | if (op_mode) | |
5655 | mask &= GET_MODE_MASK (op_mode); | |
6139ff20 RK |
5656 | |
5657 | /* When we have an arithmetic operation, or a shift whose count we | |
5658 | do not know, we need to assume that all bit the up to the highest-order | |
5659 | bit in MASK will be needed. This is how we form such a mask. */ | |
ef026f91 RS |
5660 | if (op_mode) |
5661 | fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT | |
5662 | ? GET_MODE_MASK (op_mode) | |
5663 | : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1); | |
5664 | else | |
5665 | fuller_mask = ~ (HOST_WIDE_INT) 0; | |
5666 | ||
5667 | /* Determine what bits of X are guaranteed to be (non)zero. */ | |
5668 | nonzero = nonzero_bits (x, mode); | |
6139ff20 RK |
5669 | |
5670 | /* If none of the bits in X are needed, return a zero. */ | |
e3d616e3 | 5671 | if (! just_select && (nonzero & mask) == 0) |
6139ff20 | 5672 | return const0_rtx; |
dfbe1b2f | 5673 | |
6139ff20 RK |
5674 | /* If X is a CONST_INT, return a new one. Do this here since the |
5675 | test below will fail. */ | |
5676 | if (GET_CODE (x) == CONST_INT) | |
ceb7983c RK |
5677 | { |
5678 | HOST_WIDE_INT cval = INTVAL (x) & mask; | |
5679 | int width = GET_MODE_BITSIZE (mode); | |
5680 | ||
5681 | /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative | |
5682 | number, sign extend it. */ | |
5683 | if (width > 0 && width < HOST_BITS_PER_WIDE_INT | |
5684 | && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0) | |
5685 | cval |= (HOST_WIDE_INT) -1 << width; | |
5686 | ||
5687 | return GEN_INT (cval); | |
5688 | } | |
dfbe1b2f | 5689 | |
180b8e4b RK |
5690 | /* If X is narrower than MODE and we want all the bits in X's mode, just |
5691 | get X in the proper mode. */ | |
5692 | if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode) | |
5693 | && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0) | |
dfbe1b2f RK |
5694 | return gen_lowpart_for_combine (mode, x); |
5695 | ||
71923da7 RK |
5696 | /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in |
5697 | MASK are already known to be zero in X, we need not do anything. */ | |
5698 | if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0) | |
6139ff20 RK |
5699 | return x; |
5700 | ||
dfbe1b2f RK |
5701 | switch (code) |
5702 | { | |
6139ff20 RK |
5703 | case CLOBBER: |
5704 | /* If X is a (clobber (const_int)), return it since we know we are | |
5705 | generating something that won't match. */ | |
5706 | return x; | |
5707 | ||
6139ff20 RK |
5708 | case USE: |
5709 | /* X is a (use (mem ..)) that was made from a bit-field extraction that | |
5710 | spanned the boundary of the MEM. If we are now masking so it is | |
5711 | within that boundary, we don't need the USE any more. */ | |
f76b9db2 ILT |
5712 | if (! BITS_BIG_ENDIAN |
5713 | && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0) | |
e3d616e3 | 5714 | return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select); |
f76b9db2 | 5715 | break; |
6139ff20 | 5716 | |
dfbe1b2f RK |
5717 | case SIGN_EXTEND: |
5718 | case ZERO_EXTEND: | |
5719 | case ZERO_EXTRACT: | |
5720 | case SIGN_EXTRACT: | |
5721 | x = expand_compound_operation (x); | |
5722 | if (GET_CODE (x) != code) | |
e3d616e3 | 5723 | return force_to_mode (x, mode, mask, reg, next_select); |
dfbe1b2f RK |
5724 | break; |
5725 | ||
5726 | case REG: | |
5727 | if (reg != 0 && (rtx_equal_p (get_last_value (reg), x) | |
5728 | || rtx_equal_p (reg, get_last_value (x)))) | |
5729 | x = reg; | |
5730 | break; | |
5731 | ||
dfbe1b2f | 5732 | case SUBREG: |
6139ff20 | 5733 | if (subreg_lowpart_p (x) |
180b8e4b RK |
5734 | /* We can ignore the effect of this SUBREG if it narrows the mode or |
5735 | if the constant masks to zero all the bits the mode doesn't | |
5736 | have. */ | |
6139ff20 RK |
5737 | && ((GET_MODE_SIZE (GET_MODE (x)) |
5738 | < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) | |
6139ff20 RK |
5739 | || (0 == (mask |
5740 | & GET_MODE_MASK (GET_MODE (x)) | |
180b8e4b | 5741 | & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))))))) |
e3d616e3 | 5742 | return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select); |
dfbe1b2f RK |
5743 | break; |
5744 | ||
5745 | case AND: | |
6139ff20 RK |
5746 | /* If this is an AND with a constant, convert it into an AND |
5747 | whose constant is the AND of that constant with MASK. If it | |
5748 | remains an AND of MASK, delete it since it is redundant. */ | |
dfbe1b2f | 5749 | |
6139ff20 RK |
5750 | if (GET_CODE (XEXP (x, 1)) == CONST_INT |
5751 | && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT) | |
dfbe1b2f | 5752 | { |
6139ff20 RK |
5753 | x = simplify_and_const_int (x, op_mode, XEXP (x, 0), |
5754 | mask & INTVAL (XEXP (x, 1))); | |
dfbe1b2f RK |
5755 | |
5756 | /* If X is still an AND, see if it is an AND with a mask that | |
71923da7 RK |
5757 | is just some low-order bits. If so, and it is MASK, we don't |
5758 | need it. */ | |
dfbe1b2f RK |
5759 | |
5760 | if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT | |
6139ff20 | 5761 | && INTVAL (XEXP (x, 1)) == mask) |
dfbe1b2f | 5762 | x = XEXP (x, 0); |
d0ab8cd3 | 5763 | |
71923da7 RK |
5764 | /* If it remains an AND, try making another AND with the bits |
5765 | in the mode mask that aren't in MASK turned on. If the | |
5766 | constant in the AND is wide enough, this might make a | |
5767 | cheaper constant. */ | |
5768 | ||
5769 | if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT | |
5770 | && GET_MODE_MASK (GET_MODE (x)) != mask) | |
5771 | { | |
5772 | HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1)) | |
5773 | | (GET_MODE_MASK (GET_MODE (x)) & ~ mask)); | |
5774 | int width = GET_MODE_BITSIZE (GET_MODE (x)); | |
5775 | rtx y; | |
5776 | ||
5777 | /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative | |
5778 | number, sign extend it. */ | |
5779 | if (width > 0 && width < HOST_BITS_PER_WIDE_INT | |
5780 | && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0) | |
5781 | cval |= (HOST_WIDE_INT) -1 << width; | |
5782 | ||
5783 | y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval)); | |
5784 | if (rtx_cost (y, SET) < rtx_cost (x, SET)) | |
5785 | x = y; | |
5786 | } | |
5787 | ||
d0ab8cd3 | 5788 | break; |
dfbe1b2f RK |
5789 | } |
5790 | ||
6139ff20 | 5791 | goto binop; |
dfbe1b2f RK |
5792 | |
5793 | case PLUS: | |
6139ff20 RK |
5794 | /* In (and (plus FOO C1) M), if M is a mask that just turns off |
5795 | low-order bits (as in an alignment operation) and FOO is already | |
5796 | aligned to that boundary, mask C1 to that boundary as well. | |
5797 | This may eliminate that PLUS and, later, the AND. */ | |
9fa6d012 TG |
5798 | |
5799 | { | |
5800 | int width = GET_MODE_BITSIZE (mode); | |
5801 | unsigned HOST_WIDE_INT smask = mask; | |
5802 | ||
5803 | /* If MODE is narrower than HOST_WIDE_INT and mask is a negative | |
5804 | number, sign extend it. */ | |
5805 | ||
5806 | if (width < HOST_BITS_PER_WIDE_INT | |
5807 | && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0) | |
5808 | smask |= (HOST_WIDE_INT) -1 << width; | |
5809 | ||
5810 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
5811 | && exact_log2 (- smask) >= 0 | |
5812 | && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0 | |
5813 | && (INTVAL (XEXP (x, 1)) & ~ mask) != 0) | |
5814 | return force_to_mode (plus_constant (XEXP (x, 0), | |
5815 | INTVAL (XEXP (x, 1)) & mask), | |
5816 | mode, mask, reg, next_select); | |
5817 | } | |
6139ff20 RK |
5818 | |
5819 | /* ... fall through ... */ | |
5820 | ||
dfbe1b2f RK |
5821 | case MINUS: |
5822 | case MULT: | |
6139ff20 RK |
5823 | /* For PLUS, MINUS and MULT, we need any bits less significant than the |
5824 | most significant bit in MASK since carries from those bits will | |
5825 | affect the bits we are interested in. */ | |
5826 | mask = fuller_mask; | |
5827 | goto binop; | |
5828 | ||
dfbe1b2f RK |
5829 | case IOR: |
5830 | case XOR: | |
6139ff20 RK |
5831 | /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and |
5832 | LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...) | |
5833 | operation which may be a bitfield extraction. Ensure that the | |
5834 | constant we form is not wider than the mode of X. */ | |
5835 | ||
5836 | if (GET_CODE (XEXP (x, 0)) == LSHIFTRT | |
5837 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
5838 | && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 | |
5839 | && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT | |
5840 | && GET_CODE (XEXP (x, 1)) == CONST_INT | |
5841 | && ((INTVAL (XEXP (XEXP (x, 0), 1)) | |
5842 | + floor_log2 (INTVAL (XEXP (x, 1)))) | |
5843 | < GET_MODE_BITSIZE (GET_MODE (x))) | |
5844 | && (INTVAL (XEXP (x, 1)) | |
5845 | & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0)) | |
5846 | { | |
5847 | temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask) | |
5848 | << INTVAL (XEXP (XEXP (x, 0), 1))); | |
5849 | temp = gen_binary (GET_CODE (x), GET_MODE (x), | |
5850 | XEXP (XEXP (x, 0), 0), temp); | |
5851 | x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1)); | |
e3d616e3 | 5852 | return force_to_mode (x, mode, mask, reg, next_select); |
6139ff20 RK |
5853 | } |
5854 | ||
5855 | binop: | |
dfbe1b2f | 5856 | /* For most binary operations, just propagate into the operation and |
6139ff20 RK |
5857 | change the mode if we have an operation of that mode. */ |
5858 | ||
e3d616e3 RK |
5859 | op0 = gen_lowpart_for_combine (op_mode, |
5860 | force_to_mode (XEXP (x, 0), mode, mask, | |
5861 | reg, next_select)); | |
5862 | op1 = gen_lowpart_for_combine (op_mode, | |
5863 | force_to_mode (XEXP (x, 1), mode, mask, | |
5864 | reg, next_select)); | |
6139ff20 | 5865 | |
2dd484ed RK |
5866 | /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside |
5867 | MASK since OP1 might have been sign-extended but we never want | |
5868 | to turn on extra bits, since combine might have previously relied | |
5869 | on them being off. */ | |
5870 | if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR) | |
5871 | && (INTVAL (op1) & mask) != 0) | |
5872 | op1 = GEN_INT (INTVAL (op1) & mask); | |
5873 | ||
6139ff20 RK |
5874 | if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) |
5875 | x = gen_binary (code, op_mode, op0, op1); | |
d0ab8cd3 | 5876 | break; |
dfbe1b2f RK |
5877 | |
5878 | case ASHIFT: | |
dfbe1b2f | 5879 | /* For left shifts, do the same, but just for the first operand. |
f6785026 RK |
5880 | However, we cannot do anything with shifts where we cannot |
5881 | guarantee that the counts are smaller than the size of the mode | |
5882 | because such a count will have a different meaning in a | |
6139ff20 | 5883 | wider mode. */ |
f6785026 RK |
5884 | |
5885 | if (! (GET_CODE (XEXP (x, 1)) == CONST_INT | |
6139ff20 | 5886 | && INTVAL (XEXP (x, 1)) >= 0 |
f6785026 RK |
5887 | && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)) |
5888 | && ! (GET_MODE (XEXP (x, 1)) != VOIDmode | |
5889 | && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1))) | |
adb7a1cb | 5890 | < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))) |
f6785026 RK |
5891 | break; |
5892 | ||
6139ff20 RK |
5893 | /* If the shift count is a constant and we can do arithmetic in |
5894 | the mode of the shift, refine which bits we need. Otherwise, use the | |
5895 | conservative form of the mask. */ | |
5896 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
5897 | && INTVAL (XEXP (x, 1)) >= 0 | |
5898 | && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode) | |
5899 | && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT) | |
5900 | mask >>= INTVAL (XEXP (x, 1)); | |
5901 | else | |
5902 | mask = fuller_mask; | |
5903 | ||
5904 | op0 = gen_lowpart_for_combine (op_mode, | |
5905 | force_to_mode (XEXP (x, 0), op_mode, | |
e3d616e3 | 5906 | mask, reg, next_select)); |
6139ff20 RK |
5907 | |
5908 | if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0)) | |
5909 | x = gen_binary (code, op_mode, op0, XEXP (x, 1)); | |
d0ab8cd3 | 5910 | break; |
dfbe1b2f RK |
5911 | |
5912 | case LSHIFTRT: | |
1347292b JW |
5913 | /* Here we can only do something if the shift count is a constant, |
5914 | this shift constant is valid for the host, and we can do arithmetic | |
5915 | in OP_MODE. */ | |
dfbe1b2f RK |
5916 | |
5917 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
1347292b | 5918 | && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT |
6139ff20 | 5919 | && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT) |
d0ab8cd3 | 5920 | { |
6139ff20 RK |
5921 | rtx inner = XEXP (x, 0); |
5922 | ||
5923 | /* Select the mask of the bits we need for the shift operand. */ | |
5924 | mask <<= INTVAL (XEXP (x, 1)); | |
d0ab8cd3 | 5925 | |
6139ff20 RK |
5926 | /* We can only change the mode of the shift if we can do arithmetic |
5927 | in the mode of the shift and MASK is no wider than the width of | |
5928 | OP_MODE. */ | |
5929 | if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT | |
5930 | || (mask & ~ GET_MODE_MASK (op_mode)) != 0) | |
d0ab8cd3 RK |
5931 | op_mode = GET_MODE (x); |
5932 | ||
e3d616e3 | 5933 | inner = force_to_mode (inner, op_mode, mask, reg, next_select); |
6139ff20 RK |
5934 | |
5935 | if (GET_MODE (x) != op_mode || inner != XEXP (x, 0)) | |
5936 | x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1)); | |
d0ab8cd3 | 5937 | } |
6139ff20 RK |
5938 | |
5939 | /* If we have (and (lshiftrt FOO C1) C2) where the combination of the | |
5940 | shift and AND produces only copies of the sign bit (C2 is one less | |
5941 | than a power of two), we can do this with just a shift. */ | |
5942 | ||
5943 | if (GET_CODE (x) == LSHIFTRT | |
5944 | && GET_CODE (XEXP (x, 1)) == CONST_INT | |
5945 | && ((INTVAL (XEXP (x, 1)) | |
5946 | + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))) | |
5947 | >= GET_MODE_BITSIZE (GET_MODE (x))) | |
5948 | && exact_log2 (mask + 1) >= 0 | |
5949 | && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))) | |
5950 | >= exact_log2 (mask + 1))) | |
5951 | x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), | |
5952 | GEN_INT (GET_MODE_BITSIZE (GET_MODE (x)) | |
5953 | - exact_log2 (mask + 1))); | |
d0ab8cd3 RK |
5954 | break; |
5955 | ||
5956 | case ASHIFTRT: | |
6139ff20 RK |
5957 | /* If we are just looking for the sign bit, we don't need this shift at |
5958 | all, even if it has a variable count. */ | |
5959 | if (mask == ((HOST_WIDE_INT) 1 | |
5960 | << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))) | |
e3d616e3 | 5961 | return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select); |
6139ff20 RK |
5962 | |
5963 | /* If this is a shift by a constant, get a mask that contains those bits | |
5964 | that are not copies of the sign bit. We then have two cases: If | |
5965 | MASK only includes those bits, this can be a logical shift, which may | |
5966 | allow simplifications. If MASK is a single-bit field not within | |
5967 | those bits, we are requesting a copy of the sign bit and hence can | |
5968 | shift the sign bit to the appropriate location. */ | |
5969 | ||
5970 | if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0 | |
5971 | && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT) | |
5972 | { | |
5973 | int i = -1; | |
5974 | ||
5975 | nonzero = GET_MODE_MASK (GET_MODE (x)); | |
5976 | nonzero >>= INTVAL (XEXP (x, 1)); | |
5977 | ||
5978 | if ((mask & ~ nonzero) == 0 | |
5979 | || (i = exact_log2 (mask)) >= 0) | |
5980 | { | |
5981 | x = simplify_shift_const | |
5982 | (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0), | |
5983 | i < 0 ? INTVAL (XEXP (x, 1)) | |
5984 | : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i); | |
5985 | ||
5986 | if (GET_CODE (x) != ASHIFTRT) | |
e3d616e3 | 5987 | return force_to_mode (x, mode, mask, reg, next_select); |
6139ff20 RK |
5988 | } |
5989 | } | |
5990 | ||
5991 | /* If MASK is 1, convert this to a LSHIFTRT. This can be done | |
5992 | even if the shift count isn't a constant. */ | |
5993 | if (mask == 1) | |
5994 | x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)); | |
5995 | ||
d0ab8cd3 | 5996 | /* If this is a sign-extension operation that just affects bits |
4c002f29 RK |
5997 | we don't care about, remove it. Be sure the call above returned |
5998 | something that is still a shift. */ | |
d0ab8cd3 | 5999 | |
4c002f29 RK |
6000 | if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT) |
6001 | && GET_CODE (XEXP (x, 1)) == CONST_INT | |
d0ab8cd3 | 6002 | && INTVAL (XEXP (x, 1)) >= 0 |
6139ff20 RK |
6003 | && (INTVAL (XEXP (x, 1)) |
6004 | <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1)) | |
d0ab8cd3 RK |
6005 | && GET_CODE (XEXP (x, 0)) == ASHIFT |
6006 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
6007 | && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1))) | |
e3d616e3 RK |
6008 | return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, |
6009 | reg, next_select); | |
6139ff20 | 6010 | |
dfbe1b2f RK |
6011 | break; |
6012 | ||
6139ff20 RK |
6013 | case ROTATE: |
6014 | case ROTATERT: | |
6015 | /* If the shift count is constant and we can do computations | |
6016 | in the mode of X, compute where the bits we care about are. | |
6017 | Otherwise, we can't do anything. Don't change the mode of | |
6018 | the shift or propagate MODE into the shift, though. */ | |
6019 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
6020 | && INTVAL (XEXP (x, 1)) >= 0) | |
6021 | { | |
6022 | temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE, | |
6023 | GET_MODE (x), GEN_INT (mask), | |
6024 | XEXP (x, 1)); | |
7d171a1e | 6025 | if (temp && GET_CODE(temp) == CONST_INT) |
6139ff20 RK |
6026 | SUBST (XEXP (x, 0), |
6027 | force_to_mode (XEXP (x, 0), GET_MODE (x), | |
e3d616e3 | 6028 | INTVAL (temp), reg, next_select)); |
6139ff20 RK |
6029 | } |
6030 | break; | |
6031 | ||
dfbe1b2f | 6032 | case NEG: |
180b8e4b RK |
6033 | /* If we just want the low-order bit, the NEG isn't needed since it |
6034 | won't change the low-order bit. */ | |
6035 | if (mask == 1) | |
6036 | return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select); | |
6037 | ||
6139ff20 RK |
6038 | /* We need any bits less significant than the most significant bit in |
6039 | MASK since carries from those bits will affect the bits we are | |
6040 | interested in. */ | |
6041 | mask = fuller_mask; | |
6042 | goto unop; | |
6043 | ||
dfbe1b2f | 6044 | case NOT: |
6139ff20 RK |
6045 | /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the |
6046 | same as the XOR case above. Ensure that the constant we form is not | |
6047 | wider than the mode of X. */ | |
6048 | ||
6049 | if (GET_CODE (XEXP (x, 0)) == LSHIFTRT | |
6050 | && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT | |
6051 | && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 | |
6052 | && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask) | |
6053 | < GET_MODE_BITSIZE (GET_MODE (x))) | |
6054 | && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT) | |
6055 | { | |
6056 | temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1))); | |
6057 | temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp); | |
6058 | x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1)); | |
6059 | ||
e3d616e3 | 6060 | return force_to_mode (x, mode, mask, reg, next_select); |
6139ff20 RK |
6061 | } |
6062 | ||
6063 | unop: | |
e3d616e3 RK |
6064 | op0 = gen_lowpart_for_combine (op_mode, |
6065 | force_to_mode (XEXP (x, 0), mode, mask, | |
6066 | reg, next_select)); | |
6139ff20 | 6067 | if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0)) |
0c1c8ea6 | 6068 | x = gen_unary (code, op_mode, op_mode, op0); |
6139ff20 RK |
6069 | break; |
6070 | ||
6071 | case NE: | |
6072 | /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included | |
6073 | in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not | |
6074 | in CONST. */ | |
6075 | if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx | |
6076 | && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0) | |
e3d616e3 | 6077 | return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select); |
6139ff20 | 6078 | |
d0ab8cd3 RK |
6079 | break; |
6080 | ||
6081 | case IF_THEN_ELSE: | |
6082 | /* We have no way of knowing if the IF_THEN_ELSE can itself be | |
6083 | written in a narrower mode. We play it safe and do not do so. */ | |
6084 | ||
6085 | SUBST (XEXP (x, 1), | |
6086 | gen_lowpart_for_combine (GET_MODE (x), | |
6087 | force_to_mode (XEXP (x, 1), mode, | |
e3d616e3 | 6088 | mask, reg, next_select))); |
d0ab8cd3 RK |
6089 | SUBST (XEXP (x, 2), |
6090 | gen_lowpart_for_combine (GET_MODE (x), | |
6091 | force_to_mode (XEXP (x, 2), mode, | |
e3d616e3 | 6092 | mask, reg,next_select))); |
d0ab8cd3 | 6093 | break; |
dfbe1b2f RK |
6094 | } |
6095 | ||
d0ab8cd3 | 6096 | /* Ensure we return a value of the proper mode. */ |
dfbe1b2f RK |
6097 | return gen_lowpart_for_combine (mode, x); |
6098 | } | |
6099 | \f | |
abe6e52f RK |
6100 | /* Return nonzero if X is an expression that has one of two values depending on |
6101 | whether some other value is zero or nonzero. In that case, we return the | |
6102 | value that is being tested, *PTRUE is set to the value if the rtx being | |
6103 | returned has a nonzero value, and *PFALSE is set to the other alternative. | |
6104 | ||
6105 | If we return zero, we set *PTRUE and *PFALSE to X. */ | |
6106 | ||
6107 | static rtx | |
6108 | if_then_else_cond (x, ptrue, pfalse) | |
6109 | rtx x; | |
6110 | rtx *ptrue, *pfalse; | |
6111 | { | |
6112 | enum machine_mode mode = GET_MODE (x); | |
6113 | enum rtx_code code = GET_CODE (x); | |
6114 | int size = GET_MODE_BITSIZE (mode); | |
6115 | rtx cond0, cond1, true0, true1, false0, false1; | |
6116 | unsigned HOST_WIDE_INT nz; | |
6117 | ||
6118 | /* If this is a unary operation whose operand has one of two values, apply | |
6119 | our opcode to compute those values. */ | |
6120 | if (GET_RTX_CLASS (code) == '1' | |
6121 | && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0) | |
6122 | { | |
0c1c8ea6 RK |
6123 | *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0); |
6124 | *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0); | |
abe6e52f RK |
6125 | return cond0; |
6126 | } | |
6127 | ||
3a19aabc RK |
6128 | /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would |
6129 | make can't possibly match and would supress other optimizations. */ | |
6130 | else if (code == COMPARE) | |
6131 | ; | |
6132 | ||
abe6e52f RK |
6133 | /* If this is a binary operation, see if either side has only one of two |
6134 | values. If either one does or if both do and they are conditional on | |
6135 | the same value, compute the new true and false values. */ | |
6136 | else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2' | |
6137 | || GET_RTX_CLASS (code) == '<') | |
6138 | { | |
6139 | cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0); | |
6140 | cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1); | |
6141 | ||
6142 | if ((cond0 != 0 || cond1 != 0) | |
6143 | && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1))) | |
6144 | { | |
6145 | *ptrue = gen_binary (code, mode, true0, true1); | |
6146 | *pfalse = gen_binary (code, mode, false0, false1); | |
6147 | return cond0 ? cond0 : cond1; | |
6148 | } | |
9210df58 RK |
6149 | |
6150 | #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 | |
6151 | ||
6152 | /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the | |
6153 | operands is zero when the other is non-zero, and vice-versa. */ | |
6154 | ||
6155 | if ((code == PLUS || code == IOR || code == XOR || code == MINUS | |
6156 | || code == UMAX) | |
6157 | && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT) | |
6158 | { | |
6159 | rtx op0 = XEXP (XEXP (x, 0), 1); | |
6160 | rtx op1 = XEXP (XEXP (x, 1), 1); | |
6161 | ||
6162 | cond0 = XEXP (XEXP (x, 0), 0); | |
6163 | cond1 = XEXP (XEXP (x, 1), 0); | |
6164 | ||
6165 | if (GET_RTX_CLASS (GET_CODE (cond0)) == '<' | |
6166 | && GET_RTX_CLASS (GET_CODE (cond1)) == '<' | |
6167 | && reversible_comparison_p (cond1) | |
6168 | && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1)) | |
6169 | && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0)) | |
6170 | && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1))) | |
6171 | || ((swap_condition (GET_CODE (cond0)) | |
6172 | == reverse_condition (GET_CODE (cond1))) | |
6173 | && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1)) | |
6174 | && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0)))) | |
6175 | && ! side_effects_p (x)) | |
6176 | { | |
6177 | *ptrue = gen_binary (MULT, mode, op0, const_true_rtx); | |
6178 | *pfalse = gen_binary (MULT, mode, | |
6179 | (code == MINUS | |
0c1c8ea6 | 6180 | ? gen_unary (NEG, mode, mode, op1) : op1), |
9210df58 RK |
6181 | const_true_rtx); |
6182 | return cond0; | |
6183 | } | |
6184 | } | |
6185 | ||
6186 | /* Similarly for MULT, AND and UMIN, execpt that for these the result | |
6187 | is always zero. */ | |
6188 | if ((code == MULT || code == AND || code == UMIN) | |
6189 | && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT) | |
6190 | { | |
6191 | cond0 = XEXP (XEXP (x, 0), 0); | |
6192 | cond1 = XEXP (XEXP (x, 1), 0); | |
6193 | ||
6194 | if (GET_RTX_CLASS (GET_CODE (cond0)) == '<' | |
6195 | && GET_RTX_CLASS (GET_CODE (cond1)) == '<' | |
6196 | && reversible_comparison_p (cond1) | |
6197 | && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1)) | |
6198 | && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0)) | |
6199 | && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1))) | |
6200 | || ((swap_condition (GET_CODE (cond0)) | |
6201 | == reverse_condition (GET_CODE (cond1))) | |
6202 | && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1)) | |
6203 | && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0)))) | |
6204 | && ! side_effects_p (x)) | |
6205 | { | |
6206 | *ptrue = *pfalse = const0_rtx; | |
6207 | return cond0; | |
6208 | } | |
6209 | } | |
6210 | #endif | |
abe6e52f RK |
6211 | } |
6212 | ||
6213 | else if (code == IF_THEN_ELSE) | |
6214 | { | |
6215 | /* If we have IF_THEN_ELSE already, extract the condition and | |
6216 | canonicalize it if it is NE or EQ. */ | |
6217 | cond0 = XEXP (x, 0); | |
6218 | *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2); | |
6219 | if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx) | |
6220 | return XEXP (cond0, 0); | |
6221 | else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx) | |
6222 | { | |
6223 | *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1); | |
6224 | return XEXP (cond0, 0); | |
6225 | } | |
6226 | else | |
6227 | return cond0; | |
6228 | } | |
6229 | ||
6230 | /* If X is a normal SUBREG with both inner and outer modes integral, | |
6231 | we can narrow both the true and false values of the inner expression, | |
6232 | if there is a condition. */ | |
6233 | else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT | |
6234 | && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT | |
6235 | && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) | |
6236 | && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x), | |
6237 | &true0, &false0))) | |
6238 | { | |
00244e6b RK |
6239 | *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0); |
6240 | *pfalse | |
6241 | = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0); | |
abe6e52f | 6242 | |
abe6e52f RK |
6243 | return cond0; |
6244 | } | |
6245 | ||
6246 | /* If X is a constant, this isn't special and will cause confusions | |
6247 | if we treat it as such. Likewise if it is equivalent to a constant. */ | |
6248 | else if (CONSTANT_P (x) | |
6249 | || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0))) | |
6250 | ; | |
6251 | ||
6252 | /* If X is known to be either 0 or -1, those are the true and | |
6253 | false values when testing X. */ | |
6254 | else if (num_sign_bit_copies (x, mode) == size) | |
6255 | { | |
6256 | *ptrue = constm1_rtx, *pfalse = const0_rtx; | |
6257 | return x; | |
6258 | } | |
6259 | ||
6260 | /* Likewise for 0 or a single bit. */ | |
6261 | else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0) | |
6262 | { | |
6263 | *ptrue = GEN_INT (nz), *pfalse = const0_rtx; | |
6264 | return x; | |
6265 | } | |
6266 | ||
6267 | /* Otherwise fail; show no condition with true and false values the same. */ | |
6268 | *ptrue = *pfalse = x; | |
6269 | return 0; | |
6270 | } | |
6271 | \f | |
1a26b032 RK |
6272 | /* Return the value of expression X given the fact that condition COND |
6273 | is known to be true when applied to REG as its first operand and VAL | |
6274 | as its second. X is known to not be shared and so can be modified in | |
6275 | place. | |
6276 | ||
6277 | We only handle the simplest cases, and specifically those cases that | |
6278 | arise with IF_THEN_ELSE expressions. */ | |
6279 | ||
6280 | static rtx | |
6281 | known_cond (x, cond, reg, val) | |
6282 | rtx x; | |
6283 | enum rtx_code cond; | |
6284 | rtx reg, val; | |
6285 | { | |
6286 | enum rtx_code code = GET_CODE (x); | |
f24ad0e4 | 6287 | rtx temp; |
1a26b032 RK |
6288 | char *fmt; |
6289 | int i, j; | |
6290 | ||
6291 | if (side_effects_p (x)) | |
6292 | return x; | |
6293 | ||
6294 | if (cond == EQ && rtx_equal_p (x, reg)) | |
6295 | return val; | |
6296 | ||
6297 | /* If X is (abs REG) and we know something about REG's relationship | |
6298 | with zero, we may be able to simplify this. */ | |
6299 | ||
6300 | if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx) | |
6301 | switch (cond) | |
6302 | { | |
6303 | case GE: case GT: case EQ: | |
6304 | return XEXP (x, 0); | |
6305 | case LT: case LE: | |
0c1c8ea6 RK |
6306 | return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)), |
6307 | XEXP (x, 0)); | |
1a26b032 RK |
6308 | } |
6309 | ||
6310 | /* The only other cases we handle are MIN, MAX, and comparisons if the | |
6311 | operands are the same as REG and VAL. */ | |
6312 | ||
6313 | else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c') | |
6314 | { | |
6315 | if (rtx_equal_p (XEXP (x, 0), val)) | |
6316 | cond = swap_condition (cond), temp = val, val = reg, reg = temp; | |
6317 | ||
6318 | if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val)) | |
6319 | { | |
6320 | if (GET_RTX_CLASS (code) == '<') | |
6321 | return (comparison_dominates_p (cond, code) ? const_true_rtx | |
6322 | : (comparison_dominates_p (cond, | |
6323 | reverse_condition (code)) | |
6324 | ? const0_rtx : x)); | |
6325 | ||
6326 | else if (code == SMAX || code == SMIN | |
6327 | || code == UMIN || code == UMAX) | |
6328 | { | |
6329 | int unsignedp = (code == UMIN || code == UMAX); | |
6330 | ||
6331 | if (code == SMAX || code == UMAX) | |
6332 | cond = reverse_condition (cond); | |
6333 | ||
6334 | switch (cond) | |
6335 | { | |
6336 | case GE: case GT: | |
6337 | return unsignedp ? x : XEXP (x, 1); | |
6338 | case LE: case LT: | |
6339 | return unsignedp ? x : XEXP (x, 0); | |
6340 | case GEU: case GTU: | |
6341 | return unsignedp ? XEXP (x, 1) : x; | |
6342 | case LEU: case LTU: | |
6343 | return unsignedp ? XEXP (x, 0) : x; | |
6344 | } | |
6345 | } | |
6346 | } | |
6347 | } | |
6348 | ||
6349 | fmt = GET_RTX_FORMAT (code); | |
6350 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
6351 | { | |
6352 | if (fmt[i] == 'e') | |
6353 | SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val)); | |
6354 | else if (fmt[i] == 'E') | |
6355 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
6356 | SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j), | |
6357 | cond, reg, val)); | |
6358 | } | |
6359 | ||
6360 | return x; | |
6361 | } | |
6362 | \f | |
230d793d RS |
6363 | /* See if X, a SET operation, can be rewritten as a bit-field assignment. |
6364 | Return that assignment if so. | |
6365 | ||
6366 | We only handle the most common cases. */ | |
6367 | ||
6368 | static rtx | |
6369 | make_field_assignment (x) | |
6370 | rtx x; | |
6371 | { | |
6372 | rtx dest = SET_DEST (x); | |
6373 | rtx src = SET_SRC (x); | |
dfbe1b2f | 6374 | rtx assign; |
5f4f0e22 CH |
6375 | HOST_WIDE_INT c1; |
6376 | int pos, len; | |
dfbe1b2f RK |
6377 | rtx other; |
6378 | enum machine_mode mode; | |
230d793d RS |
6379 | |
6380 | /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is | |
6381 | a clear of a one-bit field. We will have changed it to | |
6382 | (and (rotate (const_int -2) POS) DEST), so check for that. Also check | |
6383 | for a SUBREG. */ | |
6384 | ||
6385 | if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE | |
6386 | && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT | |
6387 | && INTVAL (XEXP (XEXP (src, 0), 0)) == -2 | |
dfbe1b2f RK |
6388 | && (rtx_equal_p (dest, XEXP (src, 1)) |
6389 | || rtx_equal_p (dest, get_last_value (XEXP (src, 1))) | |
6390 | || rtx_equal_p (get_last_value (dest), XEXP (src, 1)))) | |
230d793d | 6391 | { |
8999a12e | 6392 | assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1), |
230d793d | 6393 | 1, 1, 1, 0); |
dfbe1b2f | 6394 | return gen_rtx (SET, VOIDmode, assign, const0_rtx); |
230d793d RS |
6395 | } |
6396 | ||
6397 | else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG | |
6398 | && subreg_lowpart_p (XEXP (src, 0)) | |
6399 | && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0))) | |
6400 | < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0))))) | |
6401 | && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE | |
6402 | && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2 | |
dfbe1b2f RK |
6403 | && (rtx_equal_p (dest, XEXP (src, 1)) |
6404 | || rtx_equal_p (dest, get_last_value (XEXP (src, 1))) | |
6405 | || rtx_equal_p (get_last_value (dest), XEXP (src, 1)))) | |
230d793d | 6406 | { |
8999a12e | 6407 | assign = make_extraction (VOIDmode, dest, 0, |
230d793d RS |
6408 | XEXP (SUBREG_REG (XEXP (src, 0)), 1), |
6409 | 1, 1, 1, 0); | |
dfbe1b2f | 6410 | return gen_rtx (SET, VOIDmode, assign, const0_rtx); |
230d793d RS |
6411 | } |
6412 | ||
6413 | /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a | |
6414 | one-bit field. */ | |
6415 | else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT | |
6416 | && XEXP (XEXP (src, 0), 0) == const1_rtx | |
dfbe1b2f RK |
6417 | && (rtx_equal_p (dest, XEXP (src, 1)) |
6418 | || rtx_equal_p (dest, get_last_value (XEXP (src, 1))) | |
6419 | || rtx_equal_p (get_last_value (dest), XEXP (src, 1)))) | |
230d793d | 6420 | { |
8999a12e | 6421 | assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1), |
230d793d | 6422 | 1, 1, 1, 0); |
dfbe1b2f | 6423 | return gen_rtx (SET, VOIDmode, assign, const1_rtx); |
230d793d RS |
6424 | } |
6425 | ||
dfbe1b2f RK |
6426 | /* The other case we handle is assignments into a constant-position |
6427 | field. They look like (ior (and DEST C1) OTHER). If C1 represents | |
6428 | a mask that has all one bits except for a group of zero bits and | |
6429 | OTHER is known to have zeros where C1 has ones, this is such an | |
6430 | assignment. Compute the position and length from C1. Shift OTHER | |
6431 | to the appropriate position, force it to the required mode, and | |
6432 | make the extraction. Check for the AND in both operands. */ | |
6433 | ||
6434 | if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND | |
6435 | && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT | |
6436 | && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest) | |
6437 | || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest)) | |
6438 | || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest))) | |
6439 | c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1); | |
6440 | else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND | |
6441 | && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT | |
6442 | && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest) | |
6443 | || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest)) | |
6444 | || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)), | |
6445 | dest))) | |
6446 | c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0); | |
6447 | else | |
6448 | return x; | |
230d793d | 6449 | |
c2f9f64e | 6450 | pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len); |
dfbe1b2f | 6451 | if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest)) |
ac49a949 | 6452 | || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT |
951553af | 6453 | && (c1 & nonzero_bits (other, GET_MODE (other))) != 0)) |
dfbe1b2f | 6454 | return x; |
230d793d | 6455 | |
5f4f0e22 | 6456 | assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0); |
230d793d | 6457 | |
dfbe1b2f RK |
6458 | /* The mode to use for the source is the mode of the assignment, or of |
6459 | what is inside a possible STRICT_LOW_PART. */ | |
6460 | mode = (GET_CODE (assign) == STRICT_LOW_PART | |
6461 | ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign)); | |
230d793d | 6462 | |
dfbe1b2f RK |
6463 | /* Shift OTHER right POS places and make it the source, restricting it |
6464 | to the proper length and mode. */ | |
230d793d | 6465 | |
5f4f0e22 CH |
6466 | src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT, |
6467 | GET_MODE (src), other, pos), | |
6139ff20 RK |
6468 | mode, |
6469 | GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT | |
6470 | ? GET_MODE_MASK (mode) | |
6471 | : ((HOST_WIDE_INT) 1 << len) - 1, | |
e3d616e3 | 6472 | dest, 0); |
230d793d | 6473 | |
dfbe1b2f | 6474 | return gen_rtx_combine (SET, VOIDmode, assign, src); |
230d793d RS |
6475 | } |
6476 | \f | |
6477 | /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c) | |
6478 | if so. */ | |
6479 | ||
6480 | static rtx | |
6481 | apply_distributive_law (x) | |
6482 | rtx x; | |
6483 | { | |
6484 | enum rtx_code code = GET_CODE (x); | |
6485 | rtx lhs, rhs, other; | |
6486 | rtx tem; | |
6487 | enum rtx_code inner_code; | |
6488 | ||
d8a8a4da RS |
6489 | /* Distributivity is not true for floating point. |
6490 | It can change the value. So don't do it. | |
6491 | -- rms and moshier@world.std.com. */ | |
3ad2180a | 6492 | if (FLOAT_MODE_P (GET_MODE (x))) |
d8a8a4da RS |
6493 | return x; |
6494 | ||
230d793d RS |
6495 | /* The outer operation can only be one of the following: */ |
6496 | if (code != IOR && code != AND && code != XOR | |
6497 | && code != PLUS && code != MINUS) | |
6498 | return x; | |
6499 | ||
6500 | lhs = XEXP (x, 0), rhs = XEXP (x, 1); | |
6501 | ||
dfbe1b2f | 6502 | /* If either operand is a primitive we can't do anything, so get out fast. */ |
230d793d | 6503 | if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o' |
dfbe1b2f | 6504 | || GET_RTX_CLASS (GET_CODE (rhs)) == 'o') |
230d793d RS |
6505 | return x; |
6506 | ||
6507 | lhs = expand_compound_operation (lhs); | |
6508 | rhs = expand_compound_operation (rhs); | |
6509 | inner_code = GET_CODE (lhs); | |
6510 | if (inner_code != GET_CODE (rhs)) | |
6511 | return x; | |
6512 | ||
6513 | /* See if the inner and outer operations distribute. */ | |
6514 | switch (inner_code) | |
6515 | { | |
6516 | case LSHIFTRT: | |
6517 | case ASHIFTRT: | |
6518 | case AND: | |
6519 | case IOR: | |
6520 | /* These all distribute except over PLUS. */ | |
6521 | if (code == PLUS || code == MINUS) | |
6522 | return x; | |
6523 | break; | |
6524 | ||
6525 | case MULT: | |
6526 | if (code != PLUS && code != MINUS) | |
6527 | return x; | |
6528 | break; | |
6529 | ||
6530 | case ASHIFT: | |
45620ed4 | 6531 | /* This is also a multiply, so it distributes over everything. */ |
230d793d RS |
6532 | break; |
6533 | ||
6534 | case SUBREG: | |
dfbe1b2f RK |
6535 | /* Non-paradoxical SUBREGs distributes over all operations, provided |
6536 | the inner modes and word numbers are the same, this is an extraction | |
2b4bd1bc JW |
6537 | of a low-order part, we don't convert an fp operation to int or |
6538 | vice versa, and we would not be converting a single-word | |
dfbe1b2f | 6539 | operation into a multi-word operation. The latter test is not |
2b4bd1bc | 6540 | required, but it prevents generating unneeded multi-word operations. |
dfbe1b2f RK |
6541 | Some of the previous tests are redundant given the latter test, but |
6542 | are retained because they are required for correctness. | |
6543 | ||
6544 | We produce the result slightly differently in this case. */ | |
6545 | ||
6546 | if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs)) | |
6547 | || SUBREG_WORD (lhs) != SUBREG_WORD (rhs) | |
6548 | || ! subreg_lowpart_p (lhs) | |
2b4bd1bc JW |
6549 | || (GET_MODE_CLASS (GET_MODE (lhs)) |
6550 | != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs)))) | |
dfbe1b2f | 6551 | || (GET_MODE_SIZE (GET_MODE (lhs)) |
8af24e26 | 6552 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs)))) |
dfbe1b2f | 6553 | || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD) |
230d793d RS |
6554 | return x; |
6555 | ||
6556 | tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)), | |
6557 | SUBREG_REG (lhs), SUBREG_REG (rhs)); | |
6558 | return gen_lowpart_for_combine (GET_MODE (x), tem); | |
6559 | ||
6560 | default: | |
6561 | return x; | |
6562 | } | |
6563 | ||
6564 | /* Set LHS and RHS to the inner operands (A and B in the example | |
6565 | above) and set OTHER to the common operand (C in the example). | |
6566 | These is only one way to do this unless the inner operation is | |
6567 | commutative. */ | |
6568 | if (GET_RTX_CLASS (inner_code) == 'c' | |
6569 | && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0))) | |
6570 | other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1); | |
6571 | else if (GET_RTX_CLASS (inner_code) == 'c' | |
6572 | && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1))) | |
6573 | other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0); | |
6574 | else if (GET_RTX_CLASS (inner_code) == 'c' | |
6575 | && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0))) | |
6576 | other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1); | |
6577 | else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1))) | |
6578 | other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0); | |
6579 | else | |
6580 | return x; | |
6581 | ||
6582 | /* Form the new inner operation, seeing if it simplifies first. */ | |
6583 | tem = gen_binary (code, GET_MODE (x), lhs, rhs); | |
6584 | ||
6585 | /* There is one exception to the general way of distributing: | |
6586 | (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */ | |
6587 | if (code == XOR && inner_code == IOR) | |
6588 | { | |
6589 | inner_code = AND; | |
0c1c8ea6 | 6590 | other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other); |
230d793d RS |
6591 | } |
6592 | ||
6593 | /* We may be able to continuing distributing the result, so call | |
6594 | ourselves recursively on the inner operation before forming the | |
6595 | outer operation, which we return. */ | |
6596 | return gen_binary (inner_code, GET_MODE (x), | |
6597 | apply_distributive_law (tem), other); | |
6598 | } | |
6599 | \f | |
6600 | /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done | |
6601 | in MODE. | |
6602 | ||
6603 | Return an equivalent form, if different from X. Otherwise, return X. If | |
6604 | X is zero, we are to always construct the equivalent form. */ | |
6605 | ||
6606 | static rtx | |
6607 | simplify_and_const_int (x, mode, varop, constop) | |
6608 | rtx x; | |
6609 | enum machine_mode mode; | |
6610 | rtx varop; | |
5f4f0e22 | 6611 | unsigned HOST_WIDE_INT constop; |
230d793d | 6612 | { |
951553af | 6613 | unsigned HOST_WIDE_INT nonzero; |
9fa6d012 | 6614 | int width = GET_MODE_BITSIZE (mode); |
42301240 | 6615 | int i; |
230d793d | 6616 | |
6139ff20 RK |
6617 | /* Simplify VAROP knowing that we will be only looking at some of the |
6618 | bits in it. */ | |
e3d616e3 | 6619 | varop = force_to_mode (varop, mode, constop, NULL_RTX, 0); |
230d793d | 6620 | |
6139ff20 RK |
6621 | /* If VAROP is a CLOBBER, we will fail so return it; if it is a |
6622 | CONST_INT, we are done. */ | |
6623 | if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT) | |
6624 | return varop; | |
230d793d | 6625 | |
fc06d7aa RK |
6626 | /* See what bits may be nonzero in VAROP. Unlike the general case of |
6627 | a call to nonzero_bits, here we don't care about bits outside | |
6628 | MODE. */ | |
6629 | ||
6630 | nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode); | |
230d793d | 6631 | |
9fa6d012 TG |
6632 | /* If this would be an entire word for the target, but is not for |
6633 | the host, then sign-extend on the host so that the number will look | |
6634 | the same way on the host that it would on the target. | |
6635 | ||
6636 | For example, when building a 64 bit alpha hosted 32 bit sparc | |
6637 | targeted compiler, then we want the 32 bit unsigned value -1 to be | |
6638 | represented as a 64 bit value -1, and not as 0x00000000ffffffff. | |
6639 | The later confuses the sparc backend. */ | |
6640 | ||
6641 | if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width | |
6642 | && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1)))) | |
6643 | nonzero |= ((HOST_WIDE_INT) (-1) << width); | |
6644 | ||
230d793d | 6645 | /* Turn off all bits in the constant that are known to already be zero. |
951553af | 6646 | Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS |
230d793d RS |
6647 | which is tested below. */ |
6648 | ||
951553af | 6649 | constop &= nonzero; |
230d793d RS |
6650 | |
6651 | /* If we don't have any bits left, return zero. */ | |
6652 | if (constop == 0) | |
6653 | return const0_rtx; | |
6654 | ||
42301240 RK |
6655 | /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is |
6656 | a power of two, we can replace this with a ASHIFT. */ | |
6657 | if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1 | |
6658 | && (i = exact_log2 (constop)) >= 0) | |
6659 | return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i); | |
6660 | ||
6139ff20 RK |
6661 | /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR |
6662 | or XOR, then try to apply the distributive law. This may eliminate | |
6663 | operations if either branch can be simplified because of the AND. | |
6664 | It may also make some cases more complex, but those cases probably | |
6665 | won't match a pattern either with or without this. */ | |
6666 | ||
6667 | if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR) | |
6668 | return | |
6669 | gen_lowpart_for_combine | |
6670 | (mode, | |
6671 | apply_distributive_law | |
6672 | (gen_binary (GET_CODE (varop), GET_MODE (varop), | |
6673 | simplify_and_const_int (NULL_RTX, GET_MODE (varop), | |
6674 | XEXP (varop, 0), constop), | |
6675 | simplify_and_const_int (NULL_RTX, GET_MODE (varop), | |
6676 | XEXP (varop, 1), constop)))); | |
6677 | ||
230d793d RS |
6678 | /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG |
6679 | if we already had one (just check for the simplest cases). */ | |
6680 | if (x && GET_CODE (XEXP (x, 0)) == SUBREG | |
6681 | && GET_MODE (XEXP (x, 0)) == mode | |
6682 | && SUBREG_REG (XEXP (x, 0)) == varop) | |
6683 | varop = XEXP (x, 0); | |
6684 | else | |
6685 | varop = gen_lowpart_for_combine (mode, varop); | |
6686 | ||
6687 | /* If we can't make the SUBREG, try to return what we were given. */ | |
6688 | if (GET_CODE (varop) == CLOBBER) | |
6689 | return x ? x : varop; | |
6690 | ||
6691 | /* If we are only masking insignificant bits, return VAROP. */ | |
951553af | 6692 | if (constop == nonzero) |
230d793d RS |
6693 | x = varop; |
6694 | ||
6695 | /* Otherwise, return an AND. See how much, if any, of X we can use. */ | |
6696 | else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode) | |
6139ff20 | 6697 | x = gen_binary (AND, mode, varop, GEN_INT (constop)); |
230d793d RS |
6698 | |
6699 | else | |
6700 | { | |
6701 | if (GET_CODE (XEXP (x, 1)) != CONST_INT | |
6702 | || INTVAL (XEXP (x, 1)) != constop) | |
5f4f0e22 | 6703 | SUBST (XEXP (x, 1), GEN_INT (constop)); |
230d793d RS |
6704 | |
6705 | SUBST (XEXP (x, 0), varop); | |
6706 | } | |
6707 | ||
6708 | return x; | |
6709 | } | |
6710 | \f | |
6711 | /* Given an expression, X, compute which bits in X can be non-zero. | |
6712 | We don't care about bits outside of those defined in MODE. | |
6713 | ||
6714 | For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is | |
6715 | a shift, AND, or zero_extract, we can do better. */ | |
6716 | ||
5f4f0e22 | 6717 | static unsigned HOST_WIDE_INT |
951553af | 6718 | nonzero_bits (x, mode) |
230d793d RS |
6719 | rtx x; |
6720 | enum machine_mode mode; | |
6721 | { | |
951553af RK |
6722 | unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode); |
6723 | unsigned HOST_WIDE_INT inner_nz; | |
230d793d RS |
6724 | enum rtx_code code; |
6725 | int mode_width = GET_MODE_BITSIZE (mode); | |
6726 | rtx tem; | |
6727 | ||
1c75dfa4 RK |
6728 | /* For floating-point values, assume all bits are needed. */ |
6729 | if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)) | |
6730 | return nonzero; | |
6731 | ||
230d793d RS |
6732 | /* If X is wider than MODE, use its mode instead. */ |
6733 | if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width) | |
6734 | { | |
6735 | mode = GET_MODE (x); | |
951553af | 6736 | nonzero = GET_MODE_MASK (mode); |
230d793d RS |
6737 | mode_width = GET_MODE_BITSIZE (mode); |
6738 | } | |
6739 | ||
5f4f0e22 | 6740 | if (mode_width > HOST_BITS_PER_WIDE_INT) |
230d793d RS |
6741 | /* Our only callers in this case look for single bit values. So |
6742 | just return the mode mask. Those tests will then be false. */ | |
951553af | 6743 | return nonzero; |
230d793d | 6744 | |
8baf60bb | 6745 | #ifndef WORD_REGISTER_OPERATIONS |
c6965c0f | 6746 | /* If MODE is wider than X, but both are a single word for both the host |
0840fd91 RK |
6747 | and target machines, we can compute this from which bits of the |
6748 | object might be nonzero in its own mode, taking into account the fact | |
6749 | that on many CISC machines, accessing an object in a wider mode | |
6750 | causes the high-order bits to become undefined. So they are | |
6751 | not known to be zero. */ | |
6752 | ||
6753 | if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode | |
6754 | && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD | |
6755 | && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT | |
c6965c0f | 6756 | && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x))) |
0840fd91 RK |
6757 | { |
6758 | nonzero &= nonzero_bits (x, GET_MODE (x)); | |
6759 | nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)); | |
6760 | return nonzero; | |
6761 | } | |
6762 | #endif | |
6763 | ||
230d793d RS |
6764 | code = GET_CODE (x); |
6765 | switch (code) | |
6766 | { | |
6767 | case REG: | |
6768 | #ifdef STACK_BOUNDARY | |
6769 | /* If this is the stack pointer, we may know something about its | |
6770 | alignment. If PUSH_ROUNDING is defined, it is possible for the | |
6771 | stack to be momentarily aligned only to that amount, so we pick | |
6772 | the least alignment. */ | |
6773 | ||
6774 | if (x == stack_pointer_rtx) | |
6775 | { | |
6776 | int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT; | |
6777 | ||
6778 | #ifdef PUSH_ROUNDING | |
6779 | sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment); | |
6780 | #endif | |
6781 | ||
ff0dbdd1 | 6782 | nonzero &= ~ (sp_alignment - 1); |
230d793d RS |
6783 | } |
6784 | #endif | |
6785 | ||
ff0dbdd1 RK |
6786 | #ifdef POINTERS_EXTEND_UNSIGNED |
6787 | /* If pointers extend unsigned and this is a pointer in Pmode, say that | |
6788 | all the bits above ptr_mode are known to be zero. */ | |
6789 | if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode | |
6790 | && REGNO_POINTER_FLAG (REGNO (x))) | |
6791 | nonzero &= GET_MODE_MASK (ptr_mode); | |
6792 | #endif | |
6793 | ||
55310dad RK |
6794 | /* If X is a register whose nonzero bits value is current, use it. |
6795 | Otherwise, if X is a register whose value we can find, use that | |
6796 | value. Otherwise, use the previously-computed global nonzero bits | |
6797 | for this register. */ | |
6798 | ||
6799 | if (reg_last_set_value[REGNO (x)] != 0 | |
6800 | && reg_last_set_mode[REGNO (x)] == mode | |
6801 | && (reg_n_sets[REGNO (x)] == 1 | |
6802 | || reg_last_set_label[REGNO (x)] == label_tick) | |
6803 | && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid) | |
6804 | return reg_last_set_nonzero_bits[REGNO (x)]; | |
230d793d RS |
6805 | |
6806 | tem = get_last_value (x); | |
9afa3d54 | 6807 | |
230d793d | 6808 | if (tem) |
9afa3d54 RK |
6809 | { |
6810 | #ifdef SHORT_IMMEDIATES_SIGN_EXTEND | |
6811 | /* If X is narrower than MODE and TEM is a non-negative | |
6812 | constant that would appear negative in the mode of X, | |
6813 | sign-extend it for use in reg_nonzero_bits because some | |
6814 | machines (maybe most) will actually do the sign-extension | |
6815 | and this is the conservative approach. | |
6816 | ||
6817 | ??? For 2.5, try to tighten up the MD files in this regard | |
6818 | instead of this kludge. */ | |
6819 | ||
6820 | if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width | |
6821 | && GET_CODE (tem) == CONST_INT | |
6822 | && INTVAL (tem) > 0 | |
6823 | && 0 != (INTVAL (tem) | |
6824 | & ((HOST_WIDE_INT) 1 | |
9e69be8c | 6825 | << (GET_MODE_BITSIZE (GET_MODE (x)) - 1)))) |
9afa3d54 RK |
6826 | tem = GEN_INT (INTVAL (tem) |
6827 | | ((HOST_WIDE_INT) (-1) | |
6828 | << GET_MODE_BITSIZE (GET_MODE (x)))); | |
6829 | #endif | |
6830 | return nonzero_bits (tem, mode); | |
6831 | } | |
951553af RK |
6832 | else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)]) |
6833 | return reg_nonzero_bits[REGNO (x)] & nonzero; | |
230d793d | 6834 | else |
951553af | 6835 | return nonzero; |
230d793d RS |
6836 | |
6837 | case CONST_INT: | |
9afa3d54 RK |
6838 | #ifdef SHORT_IMMEDIATES_SIGN_EXTEND |
6839 | /* If X is negative in MODE, sign-extend the value. */ | |
9e69be8c RK |
6840 | if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD |
6841 | && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1)))) | |
6842 | return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width)); | |
9afa3d54 RK |
6843 | #endif |
6844 | ||
230d793d RS |
6845 | return INTVAL (x); |
6846 | ||
230d793d | 6847 | case MEM: |
8baf60bb | 6848 | #ifdef LOAD_EXTEND_OP |
230d793d RS |
6849 | /* In many, if not most, RISC machines, reading a byte from memory |
6850 | zeros the rest of the register. Noticing that fact saves a lot | |
6851 | of extra zero-extends. */ | |
8baf60bb RK |
6852 | if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND) |
6853 | nonzero &= GET_MODE_MASK (GET_MODE (x)); | |
230d793d | 6854 | #endif |
8baf60bb | 6855 | break; |
230d793d | 6856 | |
230d793d RS |
6857 | case EQ: case NE: |
6858 | case GT: case GTU: | |
6859 | case LT: case LTU: | |
6860 | case GE: case GEU: | |
6861 | case LE: case LEU: | |
3f508eca | 6862 | |
c6965c0f RK |
6863 | /* If this produces an integer result, we know which bits are set. |
6864 | Code here used to clear bits outside the mode of X, but that is | |
6865 | now done above. */ | |
230d793d | 6866 | |
c6965c0f RK |
6867 | if (GET_MODE_CLASS (mode) == MODE_INT |
6868 | && mode_width <= HOST_BITS_PER_WIDE_INT) | |
6869 | nonzero = STORE_FLAG_VALUE; | |
230d793d | 6870 | break; |
230d793d | 6871 | |
230d793d | 6872 | case NEG: |
d0ab8cd3 RK |
6873 | if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x)) |
6874 | == GET_MODE_BITSIZE (GET_MODE (x))) | |
951553af | 6875 | nonzero = 1; |
230d793d RS |
6876 | |
6877 | if (GET_MODE_SIZE (GET_MODE (x)) < mode_width) | |
951553af | 6878 | nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x))); |
230d793d | 6879 | break; |
d0ab8cd3 RK |
6880 | |
6881 | case ABS: | |
6882 | if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x)) | |
6883 | == GET_MODE_BITSIZE (GET_MODE (x))) | |
951553af | 6884 | nonzero = 1; |
d0ab8cd3 | 6885 | break; |
230d793d RS |
6886 | |
6887 | case TRUNCATE: | |
951553af | 6888 | nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode)); |
230d793d RS |
6889 | break; |
6890 | ||
6891 | case ZERO_EXTEND: | |
951553af | 6892 | nonzero &= nonzero_bits (XEXP (x, 0), mode); |
230d793d | 6893 | if (GET_MODE (XEXP (x, 0)) != VOIDmode) |
951553af | 6894 | nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0))); |
230d793d RS |
6895 | break; |
6896 | ||
6897 | case SIGN_EXTEND: | |
6898 | /* If the sign bit is known clear, this is the same as ZERO_EXTEND. | |
6899 | Otherwise, show all the bits in the outer mode but not the inner | |
6900 | may be non-zero. */ | |
951553af | 6901 | inner_nz = nonzero_bits (XEXP (x, 0), mode); |
230d793d RS |
6902 | if (GET_MODE (XEXP (x, 0)) != VOIDmode) |
6903 | { | |
951553af RK |
6904 | inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0))); |
6905 | if (inner_nz & | |
5f4f0e22 CH |
6906 | (((HOST_WIDE_INT) 1 |
6907 | << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))) | |
951553af | 6908 | inner_nz |= (GET_MODE_MASK (mode) |
230d793d RS |
6909 | & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))); |
6910 | } | |
6911 | ||
951553af | 6912 | nonzero &= inner_nz; |
230d793d RS |
6913 | break; |
6914 | ||
6915 | case AND: | |
951553af RK |
6916 | nonzero &= (nonzero_bits (XEXP (x, 0), mode) |
6917 | & nonzero_bits (XEXP (x, 1), mode)); | |
230d793d RS |
6918 | break; |
6919 | ||
d0ab8cd3 RK |
6920 | case XOR: case IOR: |
6921 | case UMIN: case UMAX: case SMIN: case SMAX: | |
951553af RK |
6922 | nonzero &= (nonzero_bits (XEXP (x, 0), mode) |
6923 | | nonzero_bits (XEXP (x, 1), mode)); | |
230d793d RS |
6924 | break; |
6925 | ||
6926 | case PLUS: case MINUS: | |
6927 | case MULT: | |
6928 | case DIV: case UDIV: | |
6929 | case MOD: case UMOD: | |
6930 | /* We can apply the rules of arithmetic to compute the number of | |
6931 | high- and low-order zero bits of these operations. We start by | |
6932 | computing the width (position of the highest-order non-zero bit) | |
6933 | and the number of low-order zero bits for each value. */ | |
6934 | { | |
951553af RK |
6935 | unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode); |
6936 | unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode); | |
6937 | int width0 = floor_log2 (nz0) + 1; | |
6938 | int width1 = floor_log2 (nz1) + 1; | |
6939 | int low0 = floor_log2 (nz0 & -nz0); | |
6940 | int low1 = floor_log2 (nz1 & -nz1); | |
318b149c RK |
6941 | HOST_WIDE_INT op0_maybe_minusp |
6942 | = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1))); | |
6943 | HOST_WIDE_INT op1_maybe_minusp | |
6944 | = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1))); | |
230d793d RS |
6945 | int result_width = mode_width; |
6946 | int result_low = 0; | |
6947 | ||
6948 | switch (code) | |
6949 | { | |
6950 | case PLUS: | |
6951 | result_width = MAX (width0, width1) + 1; | |
6952 | result_low = MIN (low0, low1); | |
6953 | break; | |
6954 | case MINUS: | |
6955 | result_low = MIN (low0, low1); | |
6956 | break; | |
6957 | case MULT: | |
6958 | result_width = width0 + width1; | |
6959 | result_low = low0 + low1; | |
6960 | break; | |
6961 | case DIV: | |
6962 | if (! op0_maybe_minusp && ! op1_maybe_minusp) | |
6963 | result_width = width0; | |
6964 | break; | |
6965 | case UDIV: | |
6966 | result_width = width0; | |
6967 | break; | |
6968 | case MOD: | |
6969 | if (! op0_maybe_minusp && ! op1_maybe_minusp) | |
6970 | result_width = MIN (width0, width1); | |
6971 | result_low = MIN (low0, low1); | |
6972 | break; | |
6973 | case UMOD: | |
6974 | result_width = MIN (width0, width1); | |
6975 | result_low = MIN (low0, low1); | |
6976 | break; | |
6977 | } | |
6978 | ||
6979 | if (result_width < mode_width) | |
951553af | 6980 | nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1; |
230d793d RS |
6981 | |
6982 | if (result_low > 0) | |
951553af | 6983 | nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1); |
230d793d RS |
6984 | } |
6985 | break; | |
6986 | ||
6987 | case ZERO_EXTRACT: | |
6988 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
5f4f0e22 | 6989 | && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT) |
951553af | 6990 | nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1; |
230d793d RS |
6991 | break; |
6992 | ||
6993 | case SUBREG: | |
c3c2cb37 RK |
6994 | /* If this is a SUBREG formed for a promoted variable that has |
6995 | been zero-extended, we know that at least the high-order bits | |
6996 | are zero, though others might be too. */ | |
6997 | ||
6998 | if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x)) | |
951553af RK |
6999 | nonzero = (GET_MODE_MASK (GET_MODE (x)) |
7000 | & nonzero_bits (SUBREG_REG (x), GET_MODE (x))); | |
c3c2cb37 | 7001 | |
230d793d RS |
7002 | /* If the inner mode is a single word for both the host and target |
7003 | machines, we can compute this from which bits of the inner | |
951553af | 7004 | object might be nonzero. */ |
230d793d | 7005 | if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD |
5f4f0e22 CH |
7006 | && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) |
7007 | <= HOST_BITS_PER_WIDE_INT)) | |
230d793d | 7008 | { |
951553af | 7009 | nonzero &= nonzero_bits (SUBREG_REG (x), mode); |
8baf60bb RK |
7010 | |
7011 | #ifndef WORD_REGISTER_OPERATIONS | |
230d793d RS |
7012 | /* On many CISC machines, accessing an object in a wider mode |
7013 | causes the high-order bits to become undefined. So they are | |
7014 | not known to be zero. */ | |
7015 | if (GET_MODE_SIZE (GET_MODE (x)) | |
7016 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) | |
951553af RK |
7017 | nonzero |= (GET_MODE_MASK (GET_MODE (x)) |
7018 | & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))); | |
230d793d RS |
7019 | #endif |
7020 | } | |
7021 | break; | |
7022 | ||
7023 | case ASHIFTRT: | |
7024 | case LSHIFTRT: | |
7025 | case ASHIFT: | |
230d793d | 7026 | case ROTATE: |
951553af | 7027 | /* The nonzero bits are in two classes: any bits within MODE |
230d793d | 7028 | that aren't in GET_MODE (x) are always significant. The rest of the |
951553af | 7029 | nonzero bits are those that are significant in the operand of |
230d793d RS |
7030 | the shift when shifted the appropriate number of bits. This |
7031 | shows that high-order bits are cleared by the right shift and | |
7032 | low-order bits by left shifts. */ | |
7033 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
7034 | && INTVAL (XEXP (x, 1)) >= 0 | |
5f4f0e22 | 7035 | && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT) |
230d793d RS |
7036 | { |
7037 | enum machine_mode inner_mode = GET_MODE (x); | |
7038 | int width = GET_MODE_BITSIZE (inner_mode); | |
7039 | int count = INTVAL (XEXP (x, 1)); | |
5f4f0e22 | 7040 | unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode); |
951553af RK |
7041 | unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode); |
7042 | unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask; | |
5f4f0e22 | 7043 | unsigned HOST_WIDE_INT outer = 0; |
230d793d RS |
7044 | |
7045 | if (mode_width > width) | |
951553af | 7046 | outer = (op_nonzero & nonzero & ~ mode_mask); |
230d793d RS |
7047 | |
7048 | if (code == LSHIFTRT) | |
7049 | inner >>= count; | |
7050 | else if (code == ASHIFTRT) | |
7051 | { | |
7052 | inner >>= count; | |
7053 | ||
951553af | 7054 | /* If the sign bit may have been nonzero before the shift, we |
230d793d | 7055 | need to mark all the places it could have been copied to |
951553af | 7056 | by the shift as possibly nonzero. */ |
5f4f0e22 CH |
7057 | if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count))) |
7058 | inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count); | |
230d793d | 7059 | } |
45620ed4 | 7060 | else if (code == ASHIFT) |
230d793d RS |
7061 | inner <<= count; |
7062 | else | |
7063 | inner = ((inner << (count % width) | |
7064 | | (inner >> (width - (count % width)))) & mode_mask); | |
7065 | ||
951553af | 7066 | nonzero &= (outer | inner); |
230d793d RS |
7067 | } |
7068 | break; | |
7069 | ||
7070 | case FFS: | |
7071 | /* This is at most the number of bits in the mode. */ | |
951553af | 7072 | nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1; |
230d793d | 7073 | break; |
d0ab8cd3 RK |
7074 | |
7075 | case IF_THEN_ELSE: | |
951553af RK |
7076 | nonzero &= (nonzero_bits (XEXP (x, 1), mode) |
7077 | | nonzero_bits (XEXP (x, 2), mode)); | |
d0ab8cd3 | 7078 | break; |
230d793d RS |
7079 | } |
7080 | ||
951553af | 7081 | return nonzero; |
230d793d RS |
7082 | } |
7083 | \f | |
d0ab8cd3 | 7084 | /* Return the number of bits at the high-order end of X that are known to |
5109d49f RK |
7085 | be equal to the sign bit. X will be used in mode MODE; if MODE is |
7086 | VOIDmode, X will be used in its own mode. The returned value will always | |
7087 | be between 1 and the number of bits in MODE. */ | |
d0ab8cd3 RK |
7088 | |
7089 | static int | |
7090 | num_sign_bit_copies (x, mode) | |
7091 | rtx x; | |
7092 | enum machine_mode mode; | |
7093 | { | |
7094 | enum rtx_code code = GET_CODE (x); | |
7095 | int bitwidth; | |
7096 | int num0, num1, result; | |
951553af | 7097 | unsigned HOST_WIDE_INT nonzero; |
d0ab8cd3 RK |
7098 | rtx tem; |
7099 | ||
7100 | /* If we weren't given a mode, use the mode of X. If the mode is still | |
1c75dfa4 RK |
7101 | VOIDmode, we don't know anything. Likewise if one of the modes is |
7102 | floating-point. */ | |
d0ab8cd3 RK |
7103 | |
7104 | if (mode == VOIDmode) | |
7105 | mode = GET_MODE (x); | |
7106 | ||
1c75dfa4 | 7107 | if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))) |
6752e8d2 | 7108 | return 1; |
d0ab8cd3 RK |
7109 | |
7110 | bitwidth = GET_MODE_BITSIZE (mode); | |
7111 | ||
312def2e RK |
7112 | /* For a smaller object, just ignore the high bits. */ |
7113 | if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x))) | |
7114 | return MAX (1, (num_sign_bit_copies (x, GET_MODE (x)) | |
7115 | - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth))); | |
7116 | ||
0c314d1a RK |
7117 | #ifndef WORD_REGISTER_OPERATIONS |
7118 | /* If this machine does not do all register operations on the entire | |
7119 | register and MODE is wider than the mode of X, we can say nothing | |
7120 | at all about the high-order bits. */ | |
7121 | if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x))) | |
7122 | return 1; | |
7123 | #endif | |
7124 | ||
d0ab8cd3 RK |
7125 | switch (code) |
7126 | { | |
7127 | case REG: | |
55310dad | 7128 | |
ff0dbdd1 RK |
7129 | #ifdef POINTERS_EXTEND_UNSIGNED |
7130 | /* If pointers extend signed and this is a pointer in Pmode, say that | |
7131 | all the bits above ptr_mode are known to be sign bit copies. */ | |
7132 | if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode | |
7133 | && REGNO_POINTER_FLAG (REGNO (x))) | |
7134 | return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1; | |
7135 | #endif | |
7136 | ||
55310dad RK |
7137 | if (reg_last_set_value[REGNO (x)] != 0 |
7138 | && reg_last_set_mode[REGNO (x)] == mode | |
7139 | && (reg_n_sets[REGNO (x)] == 1 | |
7140 | || reg_last_set_label[REGNO (x)] == label_tick) | |
7141 | && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid) | |
7142 | return reg_last_set_sign_bit_copies[REGNO (x)]; | |
d0ab8cd3 RK |
7143 | |
7144 | tem = get_last_value (x); | |
7145 | if (tem != 0) | |
7146 | return num_sign_bit_copies (tem, mode); | |
55310dad RK |
7147 | |
7148 | if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0) | |
7149 | return reg_sign_bit_copies[REGNO (x)]; | |
d0ab8cd3 RK |
7150 | break; |
7151 | ||
457816e2 | 7152 | case MEM: |
8baf60bb | 7153 | #ifdef LOAD_EXTEND_OP |
457816e2 | 7154 | /* Some RISC machines sign-extend all loads of smaller than a word. */ |
8baf60bb RK |
7155 | if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND) |
7156 | return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1); | |
457816e2 | 7157 | #endif |
8baf60bb | 7158 | break; |
457816e2 | 7159 | |
d0ab8cd3 RK |
7160 | case CONST_INT: |
7161 | /* If the constant is negative, take its 1's complement and remask. | |
7162 | Then see how many zero bits we have. */ | |
951553af | 7163 | nonzero = INTVAL (x) & GET_MODE_MASK (mode); |
ac49a949 | 7164 | if (bitwidth <= HOST_BITS_PER_WIDE_INT |
951553af RK |
7165 | && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0) |
7166 | nonzero = (~ nonzero) & GET_MODE_MASK (mode); | |
d0ab8cd3 | 7167 | |
951553af | 7168 | return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); |
d0ab8cd3 RK |
7169 | |
7170 | case SUBREG: | |
c3c2cb37 RK |
7171 | /* If this is a SUBREG for a promoted object that is sign-extended |
7172 | and we are looking at it in a wider mode, we know that at least the | |
7173 | high-order bits are known to be sign bit copies. */ | |
7174 | ||
7175 | if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x)) | |
dc3e17ad RK |
7176 | return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1, |
7177 | num_sign_bit_copies (SUBREG_REG (x), mode)); | |
c3c2cb37 | 7178 | |
d0ab8cd3 RK |
7179 | /* For a smaller object, just ignore the high bits. */ |
7180 | if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))) | |
7181 | { | |
7182 | num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode); | |
7183 | return MAX (1, (num0 | |
7184 | - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) | |
7185 | - bitwidth))); | |
7186 | } | |
457816e2 | 7187 | |
8baf60bb | 7188 | #ifdef WORD_REGISTER_OPERATIONS |
2aec5b7a | 7189 | #ifdef LOAD_EXTEND_OP |
8baf60bb RK |
7190 | /* For paradoxical SUBREGs on machines where all register operations |
7191 | affect the entire register, just look inside. Note that we are | |
7192 | passing MODE to the recursive call, so the number of sign bit copies | |
7193 | will remain relative to that mode, not the inner mode. */ | |
457816e2 | 7194 | |
2aec5b7a JW |
7195 | /* This works only if loads sign extend. Otherwise, if we get a |
7196 | reload for the inner part, it may be loaded from the stack, and | |
7197 | then we lose all sign bit copies that existed before the store | |
7198 | to the stack. */ | |
7199 | ||
7200 | if ((GET_MODE_SIZE (GET_MODE (x)) | |
7201 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) | |
7202 | && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND) | |
457816e2 | 7203 | return num_sign_bit_copies (SUBREG_REG (x), mode); |
2aec5b7a | 7204 | #endif |
457816e2 | 7205 | #endif |
d0ab8cd3 RK |
7206 | break; |
7207 | ||
7208 | case SIGN_EXTRACT: | |
7209 | if (GET_CODE (XEXP (x, 1)) == CONST_INT) | |
7210 | return MAX (1, bitwidth - INTVAL (XEXP (x, 1))); | |
7211 | break; | |
7212 | ||
7213 | case SIGN_EXTEND: | |
7214 | return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) | |
7215 | + num_sign_bit_copies (XEXP (x, 0), VOIDmode)); | |
7216 | ||
7217 | case TRUNCATE: | |
7218 | /* For a smaller object, just ignore the high bits. */ | |
7219 | num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode); | |
7220 | return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) | |
7221 | - bitwidth))); | |
7222 | ||
7223 | case NOT: | |
7224 | return num_sign_bit_copies (XEXP (x, 0), mode); | |
7225 | ||
7226 | case ROTATE: case ROTATERT: | |
7227 | /* If we are rotating left by a number of bits less than the number | |
7228 | of sign bit copies, we can just subtract that amount from the | |
7229 | number. */ | |
7230 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
7231 | && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth) | |
7232 | { | |
7233 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7234 | return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1)) | |
7235 | : bitwidth - INTVAL (XEXP (x, 1)))); | |
7236 | } | |
7237 | break; | |
7238 | ||
7239 | case NEG: | |
7240 | /* In general, this subtracts one sign bit copy. But if the value | |
7241 | is known to be positive, the number of sign bit copies is the | |
951553af RK |
7242 | same as that of the input. Finally, if the input has just one bit |
7243 | that might be nonzero, all the bits are copies of the sign bit. */ | |
7244 | nonzero = nonzero_bits (XEXP (x, 0), mode); | |
7245 | if (nonzero == 1) | |
d0ab8cd3 RK |
7246 | return bitwidth; |
7247 | ||
7248 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7249 | if (num0 > 1 | |
ac49a949 | 7250 | && bitwidth <= HOST_BITS_PER_WIDE_INT |
951553af | 7251 | && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero)) |
d0ab8cd3 RK |
7252 | num0--; |
7253 | ||
7254 | return num0; | |
7255 | ||
7256 | case IOR: case AND: case XOR: | |
7257 | case SMIN: case SMAX: case UMIN: case UMAX: | |
7258 | /* Logical operations will preserve the number of sign-bit copies. | |
7259 | MIN and MAX operations always return one of the operands. */ | |
7260 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7261 | num1 = num_sign_bit_copies (XEXP (x, 1), mode); | |
7262 | return MIN (num0, num1); | |
7263 | ||
7264 | case PLUS: case MINUS: | |
7265 | /* For addition and subtraction, we can have a 1-bit carry. However, | |
7266 | if we are subtracting 1 from a positive number, there will not | |
7267 | be such a carry. Furthermore, if the positive number is known to | |
7268 | be 0 or 1, we know the result is either -1 or 0. */ | |
7269 | ||
3e3ea975 | 7270 | if (code == PLUS && XEXP (x, 1) == constm1_rtx |
9295e6af | 7271 | && bitwidth <= HOST_BITS_PER_WIDE_INT) |
d0ab8cd3 | 7272 | { |
951553af RK |
7273 | nonzero = nonzero_bits (XEXP (x, 0), mode); |
7274 | if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0) | |
7275 | return (nonzero == 1 || nonzero == 0 ? bitwidth | |
7276 | : bitwidth - floor_log2 (nonzero) - 1); | |
d0ab8cd3 RK |
7277 | } |
7278 | ||
7279 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7280 | num1 = num_sign_bit_copies (XEXP (x, 1), mode); | |
7281 | return MAX (1, MIN (num0, num1) - 1); | |
7282 | ||
7283 | case MULT: | |
7284 | /* The number of bits of the product is the sum of the number of | |
7285 | bits of both terms. However, unless one of the terms if known | |
7286 | to be positive, we must allow for an additional bit since negating | |
7287 | a negative number can remove one sign bit copy. */ | |
7288 | ||
7289 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7290 | num1 = num_sign_bit_copies (XEXP (x, 1), mode); | |
7291 | ||
7292 | result = bitwidth - (bitwidth - num0) - (bitwidth - num1); | |
7293 | if (result > 0 | |
9295e6af | 7294 | && bitwidth <= HOST_BITS_PER_WIDE_INT |
951553af | 7295 | && ((nonzero_bits (XEXP (x, 0), mode) |
d0ab8cd3 | 7296 | & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0) |
951553af | 7297 | && (nonzero_bits (XEXP (x, 1), mode) |
d0ab8cd3 RK |
7298 | & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0)) |
7299 | result--; | |
7300 | ||
7301 | return MAX (1, result); | |
7302 | ||
7303 | case UDIV: | |
7304 | /* The result must be <= the first operand. */ | |
7305 | return num_sign_bit_copies (XEXP (x, 0), mode); | |
7306 | ||
7307 | case UMOD: | |
7308 | /* The result must be <= the scond operand. */ | |
7309 | return num_sign_bit_copies (XEXP (x, 1), mode); | |
7310 | ||
7311 | case DIV: | |
7312 | /* Similar to unsigned division, except that we have to worry about | |
7313 | the case where the divisor is negative, in which case we have | |
7314 | to add 1. */ | |
7315 | result = num_sign_bit_copies (XEXP (x, 0), mode); | |
7316 | if (result > 1 | |
ac49a949 | 7317 | && bitwidth <= HOST_BITS_PER_WIDE_INT |
951553af | 7318 | && (nonzero_bits (XEXP (x, 1), mode) |
d0ab8cd3 RK |
7319 | & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0) |
7320 | result --; | |
7321 | ||
7322 | return result; | |
7323 | ||
7324 | case MOD: | |
7325 | result = num_sign_bit_copies (XEXP (x, 1), mode); | |
7326 | if (result > 1 | |
ac49a949 | 7327 | && bitwidth <= HOST_BITS_PER_WIDE_INT |
951553af | 7328 | && (nonzero_bits (XEXP (x, 1), mode) |
d0ab8cd3 RK |
7329 | & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0) |
7330 | result --; | |
7331 | ||
7332 | return result; | |
7333 | ||
7334 | case ASHIFTRT: | |
7335 | /* Shifts by a constant add to the number of bits equal to the | |
7336 | sign bit. */ | |
7337 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7338 | if (GET_CODE (XEXP (x, 1)) == CONST_INT | |
7339 | && INTVAL (XEXP (x, 1)) > 0) | |
7340 | num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1))); | |
7341 | ||
7342 | return num0; | |
7343 | ||
7344 | case ASHIFT: | |
d0ab8cd3 RK |
7345 | /* Left shifts destroy copies. */ |
7346 | if (GET_CODE (XEXP (x, 1)) != CONST_INT | |
7347 | || INTVAL (XEXP (x, 1)) < 0 | |
7348 | || INTVAL (XEXP (x, 1)) >= bitwidth) | |
7349 | return 1; | |
7350 | ||
7351 | num0 = num_sign_bit_copies (XEXP (x, 0), mode); | |
7352 | return MAX (1, num0 - INTVAL (XEXP (x, 1))); | |
7353 | ||
7354 | case IF_THEN_ELSE: | |
7355 | num0 = num_sign_bit_copies (XEXP (x, 1), mode); | |
7356 | num1 = num_sign_bit_copies (XEXP (x, 2), mode); | |
7357 | return MIN (num0, num1); | |
7358 | ||
7359 | #if STORE_FLAG_VALUE == -1 | |
7360 | case EQ: case NE: case GE: case GT: case LE: case LT: | |
7361 | case GEU: case GTU: case LEU: case LTU: | |
7362 | return bitwidth; | |
7363 | #endif | |
7364 | } | |
7365 | ||
7366 | /* If we haven't been able to figure it out by one of the above rules, | |
7367 | see if some of the high-order bits are known to be zero. If so, | |
ac49a949 RS |
7368 | count those bits and return one less than that amount. If we can't |
7369 | safely compute the mask for this mode, always return BITWIDTH. */ | |
7370 | ||
7371 | if (bitwidth > HOST_BITS_PER_WIDE_INT) | |
6752e8d2 | 7372 | return 1; |
d0ab8cd3 | 7373 | |
951553af | 7374 | nonzero = nonzero_bits (x, mode); |
df6f4086 | 7375 | return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) |
951553af | 7376 | ? 1 : bitwidth - floor_log2 (nonzero) - 1); |
d0ab8cd3 RK |
7377 | } |
7378 | \f | |
1a26b032 RK |
7379 | /* Return the number of "extended" bits there are in X, when interpreted |
7380 | as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For | |
7381 | unsigned quantities, this is the number of high-order zero bits. | |
7382 | For signed quantities, this is the number of copies of the sign bit | |
7383 | minus 1. In both case, this function returns the number of "spare" | |
7384 | bits. For example, if two quantities for which this function returns | |
7385 | at least 1 are added, the addition is known not to overflow. | |
7386 | ||
7387 | This function will always return 0 unless called during combine, which | |
7388 | implies that it must be called from a define_split. */ | |
7389 | ||
7390 | int | |
7391 | extended_count (x, mode, unsignedp) | |
7392 | rtx x; | |
7393 | enum machine_mode mode; | |
7394 | int unsignedp; | |
7395 | { | |
951553af | 7396 | if (nonzero_sign_valid == 0) |
1a26b032 RK |
7397 | return 0; |
7398 | ||
7399 | return (unsignedp | |
ac49a949 RS |
7400 | ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT |
7401 | && (GET_MODE_BITSIZE (mode) - 1 | |
951553af | 7402 | - floor_log2 (nonzero_bits (x, mode)))) |
1a26b032 RK |
7403 | : num_sign_bit_copies (x, mode) - 1); |
7404 | } | |
7405 | \f | |
230d793d RS |
7406 | /* This function is called from `simplify_shift_const' to merge two |
7407 | outer operations. Specifically, we have already found that we need | |
7408 | to perform operation *POP0 with constant *PCONST0 at the outermost | |
7409 | position. We would now like to also perform OP1 with constant CONST1 | |
7410 | (with *POP0 being done last). | |
7411 | ||
7412 | Return 1 if we can do the operation and update *POP0 and *PCONST0 with | |
7413 | the resulting operation. *PCOMP_P is set to 1 if we would need to | |
7414 | complement the innermost operand, otherwise it is unchanged. | |
7415 | ||
7416 | MODE is the mode in which the operation will be done. No bits outside | |
7417 | the width of this mode matter. It is assumed that the width of this mode | |
5f4f0e22 | 7418 | is smaller than or equal to HOST_BITS_PER_WIDE_INT. |
230d793d RS |
7419 | |
7420 | If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS, | |
7421 | IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper | |
7422 | result is simply *PCONST0. | |
7423 | ||
7424 | If the resulting operation cannot be expressed as one operation, we | |
7425 | return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */ | |
7426 | ||
7427 | static int | |
7428 | merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p) | |
7429 | enum rtx_code *pop0; | |
5f4f0e22 | 7430 | HOST_WIDE_INT *pconst0; |
230d793d | 7431 | enum rtx_code op1; |
5f4f0e22 | 7432 | HOST_WIDE_INT const1; |
230d793d RS |
7433 | enum machine_mode mode; |
7434 | int *pcomp_p; | |
7435 | { | |
7436 | enum rtx_code op0 = *pop0; | |
5f4f0e22 | 7437 | HOST_WIDE_INT const0 = *pconst0; |
9fa6d012 | 7438 | int width = GET_MODE_BITSIZE (mode); |
230d793d RS |
7439 | |
7440 | const0 &= GET_MODE_MASK (mode); | |
7441 | const1 &= GET_MODE_MASK (mode); | |
7442 | ||
7443 | /* If OP0 is an AND, clear unimportant bits in CONST1. */ | |
7444 | if (op0 == AND) | |
7445 | const1 &= const0; | |
7446 | ||
7447 | /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or | |
7448 | if OP0 is SET. */ | |
7449 | ||
7450 | if (op1 == NIL || op0 == SET) | |
7451 | return 1; | |
7452 | ||
7453 | else if (op0 == NIL) | |
7454 | op0 = op1, const0 = const1; | |
7455 | ||
7456 | else if (op0 == op1) | |
7457 | { | |
7458 | switch (op0) | |
7459 | { | |
7460 | case AND: | |
7461 | const0 &= const1; | |
7462 | break; | |
7463 | case IOR: | |
7464 | const0 |= const1; | |
7465 | break; | |
7466 | case XOR: | |
7467 | const0 ^= const1; | |
7468 | break; | |
7469 | case PLUS: | |
7470 | const0 += const1; | |
7471 | break; | |
7472 | case NEG: | |
7473 | op0 = NIL; | |
7474 | break; | |
7475 | } | |
7476 | } | |
7477 | ||
7478 | /* Otherwise, if either is a PLUS or NEG, we can't do anything. */ | |
7479 | else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG) | |
7480 | return 0; | |
7481 | ||
7482 | /* If the two constants aren't the same, we can't do anything. The | |
7483 | remaining six cases can all be done. */ | |
7484 | else if (const0 != const1) | |
7485 | return 0; | |
7486 | ||
7487 | else | |
7488 | switch (op0) | |
7489 | { | |
7490 | case IOR: | |
7491 | if (op1 == AND) | |
7492 | /* (a & b) | b == b */ | |
7493 | op0 = SET; | |
7494 | else /* op1 == XOR */ | |
7495 | /* (a ^ b) | b == a | b */ | |
7496 | ; | |
7497 | break; | |
7498 | ||
7499 | case XOR: | |
7500 | if (op1 == AND) | |
7501 | /* (a & b) ^ b == (~a) & b */ | |
7502 | op0 = AND, *pcomp_p = 1; | |
7503 | else /* op1 == IOR */ | |
7504 | /* (a | b) ^ b == a & ~b */ | |
7505 | op0 = AND, *pconst0 = ~ const0; | |
7506 | break; | |
7507 | ||
7508 | case AND: | |
7509 | if (op1 == IOR) | |
7510 | /* (a | b) & b == b */ | |
7511 | op0 = SET; | |
7512 | else /* op1 == XOR */ | |
7513 | /* (a ^ b) & b) == (~a) & b */ | |
7514 | *pcomp_p = 1; | |
7515 | break; | |
7516 | } | |
7517 | ||
7518 | /* Check for NO-OP cases. */ | |
7519 | const0 &= GET_MODE_MASK (mode); | |
7520 | if (const0 == 0 | |
7521 | && (op0 == IOR || op0 == XOR || op0 == PLUS)) | |
7522 | op0 = NIL; | |
7523 | else if (const0 == 0 && op0 == AND) | |
7524 | op0 = SET; | |
7525 | else if (const0 == GET_MODE_MASK (mode) && op0 == AND) | |
7526 | op0 = NIL; | |
7527 | ||
9fa6d012 TG |
7528 | /* If this would be an entire word for the target, but is not for |
7529 | the host, then sign-extend on the host so that the number will look | |
7530 | the same way on the host that it would on the target. | |
7531 | ||
7532 | For example, when building a 64 bit alpha hosted 32 bit sparc | |
7533 | targeted compiler, then we want the 32 bit unsigned value -1 to be | |
7534 | represented as a 64 bit value -1, and not as 0x00000000ffffffff. | |
7535 | The later confuses the sparc backend. */ | |
7536 | ||
7537 | if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width | |
7538 | && (const0 & ((HOST_WIDE_INT) 1 << (width - 1)))) | |
7539 | const0 |= ((HOST_WIDE_INT) (-1) << width); | |
7540 | ||
230d793d RS |
7541 | *pop0 = op0; |
7542 | *pconst0 = const0; | |
7543 | ||
7544 | return 1; | |
7545 | } | |
7546 | \f | |
7547 | /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift. | |
7548 | The result of the shift is RESULT_MODE. X, if non-zero, is an expression | |
7549 | that we started with. | |
7550 | ||
7551 | The shift is normally computed in the widest mode we find in VAROP, as | |
7552 | long as it isn't a different number of words than RESULT_MODE. Exceptions | |
7553 | are ASHIFTRT and ROTATE, which are always done in their original mode, */ | |
7554 | ||
7555 | static rtx | |
7556 | simplify_shift_const (x, code, result_mode, varop, count) | |
7557 | rtx x; | |
7558 | enum rtx_code code; | |
7559 | enum machine_mode result_mode; | |
7560 | rtx varop; | |
7561 | int count; | |
7562 | { | |
7563 | enum rtx_code orig_code = code; | |
7564 | int orig_count = count; | |
7565 | enum machine_mode mode = result_mode; | |
7566 | enum machine_mode shift_mode, tmode; | |
7567 | int mode_words | |
7568 | = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; | |
7569 | /* We form (outer_op (code varop count) (outer_const)). */ | |
7570 | enum rtx_code outer_op = NIL; | |
c4e861e8 | 7571 | HOST_WIDE_INT outer_const = 0; |
230d793d RS |
7572 | rtx const_rtx; |
7573 | int complement_p = 0; | |
7574 | rtx new; | |
7575 | ||
7576 | /* If we were given an invalid count, don't do anything except exactly | |
7577 | what was requested. */ | |
7578 | ||
7579 | if (count < 0 || count > GET_MODE_BITSIZE (mode)) | |
7580 | { | |
7581 | if (x) | |
7582 | return x; | |
7583 | ||
5f4f0e22 | 7584 | return gen_rtx (code, mode, varop, GEN_INT (count)); |
230d793d RS |
7585 | } |
7586 | ||
7587 | /* Unless one of the branches of the `if' in this loop does a `continue', | |
7588 | we will `break' the loop after the `if'. */ | |
7589 | ||
7590 | while (count != 0) | |
7591 | { | |
7592 | /* If we have an operand of (clobber (const_int 0)), just return that | |
7593 | value. */ | |
7594 | if (GET_CODE (varop) == CLOBBER) | |
7595 | return varop; | |
7596 | ||
7597 | /* If we discovered we had to complement VAROP, leave. Making a NOT | |
7598 | here would cause an infinite loop. */ | |
7599 | if (complement_p) | |
7600 | break; | |
7601 | ||
7602 | /* Convert ROTATETRT to ROTATE. */ | |
7603 | if (code == ROTATERT) | |
7604 | code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count; | |
7605 | ||
230d793d RS |
7606 | /* We need to determine what mode we will do the shift in. If the |
7607 | shift is a ASHIFTRT or ROTATE, we must always do it in the mode it | |
7608 | was originally done in. Otherwise, we can do it in MODE, the widest | |
7609 | mode encountered. */ | |
7610 | shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode); | |
7611 | ||
7612 | /* Handle cases where the count is greater than the size of the mode | |
7613 | minus 1. For ASHIFT, use the size minus one as the count (this can | |
7614 | occur when simplifying (lshiftrt (ashiftrt ..))). For rotates, | |
7615 | take the count modulo the size. For other shifts, the result is | |
7616 | zero. | |
7617 | ||
7618 | Since these shifts are being produced by the compiler by combining | |
7619 | multiple operations, each of which are defined, we know what the | |
7620 | result is supposed to be. */ | |
7621 | ||
7622 | if (count > GET_MODE_BITSIZE (shift_mode) - 1) | |
7623 | { | |
7624 | if (code == ASHIFTRT) | |
7625 | count = GET_MODE_BITSIZE (shift_mode) - 1; | |
7626 | else if (code == ROTATE || code == ROTATERT) | |
7627 | count %= GET_MODE_BITSIZE (shift_mode); | |
7628 | else | |
7629 | { | |
7630 | /* We can't simply return zero because there may be an | |
7631 | outer op. */ | |
7632 | varop = const0_rtx; | |
7633 | count = 0; | |
7634 | break; | |
7635 | } | |
7636 | } | |
7637 | ||
7638 | /* Negative counts are invalid and should not have been made (a | |
7639 | programmer-specified negative count should have been handled | |
7640 | above). */ | |
7641 | else if (count < 0) | |
7642 | abort (); | |
7643 | ||
312def2e RK |
7644 | /* An arithmetic right shift of a quantity known to be -1 or 0 |
7645 | is a no-op. */ | |
7646 | if (code == ASHIFTRT | |
7647 | && (num_sign_bit_copies (varop, shift_mode) | |
7648 | == GET_MODE_BITSIZE (shift_mode))) | |
d0ab8cd3 | 7649 | { |
312def2e RK |
7650 | count = 0; |
7651 | break; | |
7652 | } | |
d0ab8cd3 | 7653 | |
312def2e RK |
7654 | /* If we are doing an arithmetic right shift and discarding all but |
7655 | the sign bit copies, this is equivalent to doing a shift by the | |
7656 | bitsize minus one. Convert it into that shift because it will often | |
7657 | allow other simplifications. */ | |
500c518b | 7658 | |
312def2e RK |
7659 | if (code == ASHIFTRT |
7660 | && (count + num_sign_bit_copies (varop, shift_mode) | |
7661 | >= GET_MODE_BITSIZE (shift_mode))) | |
7662 | count = GET_MODE_BITSIZE (shift_mode) - 1; | |
500c518b | 7663 | |
230d793d RS |
7664 | /* We simplify the tests below and elsewhere by converting |
7665 | ASHIFTRT to LSHIFTRT if we know the sign bit is clear. | |
7666 | `make_compound_operation' will convert it to a ASHIFTRT for | |
7667 | those machines (such as Vax) that don't have a LSHIFTRT. */ | |
5f4f0e22 | 7668 | if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT |
230d793d | 7669 | && code == ASHIFTRT |
951553af | 7670 | && ((nonzero_bits (varop, shift_mode) |
5f4f0e22 CH |
7671 | & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1))) |
7672 | == 0)) | |
230d793d RS |
7673 | code = LSHIFTRT; |
7674 | ||
7675 | switch (GET_CODE (varop)) | |
7676 | { | |
7677 | case SIGN_EXTEND: | |
7678 | case ZERO_EXTEND: | |
7679 | case SIGN_EXTRACT: | |
7680 | case ZERO_EXTRACT: | |
7681 | new = expand_compound_operation (varop); | |
7682 | if (new != varop) | |
7683 | { | |
7684 | varop = new; | |
7685 | continue; | |
7686 | } | |
7687 | break; | |
7688 | ||
7689 | case MEM: | |
7690 | /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH | |
7691 | minus the width of a smaller mode, we can do this with a | |
7692 | SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */ | |
7693 | if ((code == ASHIFTRT || code == LSHIFTRT) | |
7694 | && ! mode_dependent_address_p (XEXP (varop, 0)) | |
7695 | && ! MEM_VOLATILE_P (varop) | |
7696 | && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count, | |
7697 | MODE_INT, 1)) != BLKmode) | |
7698 | { | |
f76b9db2 ILT |
7699 | if (BYTES_BIG_ENDIAN) |
7700 | new = gen_rtx (MEM, tmode, XEXP (varop, 0)); | |
7701 | else | |
e24b00c8 ILT |
7702 | new = gen_rtx (MEM, tmode, |
7703 | plus_constant (XEXP (varop, 0), | |
7704 | count / BITS_PER_UNIT)); | |
7705 | RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop); | |
7706 | MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop); | |
7707 | MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop); | |
230d793d RS |
7708 | varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND |
7709 | : ZERO_EXTEND, mode, new); | |
7710 | count = 0; | |
7711 | continue; | |
7712 | } | |
7713 | break; | |
7714 | ||
7715 | case USE: | |
7716 | /* Similar to the case above, except that we can only do this if | |
7717 | the resulting mode is the same as that of the underlying | |
7718 | MEM and adjust the address depending on the *bits* endianness | |
7719 | because of the way that bit-field extract insns are defined. */ | |
7720 | if ((code == ASHIFTRT || code == LSHIFTRT) | |
7721 | && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count, | |
7722 | MODE_INT, 1)) != BLKmode | |
7723 | && tmode == GET_MODE (XEXP (varop, 0))) | |
7724 | { | |
f76b9db2 ILT |
7725 | if (BITS_BIG_ENDIAN) |
7726 | new = XEXP (varop, 0); | |
7727 | else | |
7728 | { | |
7729 | new = copy_rtx (XEXP (varop, 0)); | |
7730 | SUBST (XEXP (new, 0), | |
7731 | plus_constant (XEXP (new, 0), | |
7732 | count / BITS_PER_UNIT)); | |
7733 | } | |
230d793d RS |
7734 | |
7735 | varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND | |
7736 | : ZERO_EXTEND, mode, new); | |
7737 | count = 0; | |
7738 | continue; | |
7739 | } | |
7740 | break; | |
7741 | ||
7742 | case SUBREG: | |
7743 | /* If VAROP is a SUBREG, strip it as long as the inner operand has | |
7744 | the same number of words as what we've seen so far. Then store | |
7745 | the widest mode in MODE. */ | |
f9e67232 RS |
7746 | if (subreg_lowpart_p (varop) |
7747 | && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop))) | |
7748 | > GET_MODE_SIZE (GET_MODE (varop))) | |
230d793d RS |
7749 | && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop))) |
7750 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
7751 | == mode_words)) | |
7752 | { | |
7753 | varop = SUBREG_REG (varop); | |
7754 | if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode)) | |
7755 | mode = GET_MODE (varop); | |
7756 | continue; | |
7757 | } | |
7758 | break; | |
7759 | ||
7760 | case MULT: | |
7761 | /* Some machines use MULT instead of ASHIFT because MULT | |
7762 | is cheaper. But it is still better on those machines to | |
7763 | merge two shifts into one. */ | |
7764 | if (GET_CODE (XEXP (varop, 1)) == CONST_INT | |
7765 | && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0) | |
7766 | { | |
7767 | varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0), | |
5f4f0e22 | 7768 | GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));; |
230d793d RS |
7769 | continue; |
7770 | } | |
7771 | break; | |
7772 | ||
7773 | case UDIV: | |
7774 | /* Similar, for when divides are cheaper. */ | |
7775 | if (GET_CODE (XEXP (varop, 1)) == CONST_INT | |
7776 | && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0) | |
7777 | { | |
7778 | varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0), | |
5f4f0e22 | 7779 | GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1))))); |
230d793d RS |
7780 | continue; |
7781 | } | |
7782 | break; | |
7783 | ||
7784 | case ASHIFTRT: | |
7785 | /* If we are extracting just the sign bit of an arithmetic right | |
7786 | shift, that shift is not needed. */ | |
7787 | if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1) | |
7788 | { | |
7789 | varop = XEXP (varop, 0); | |
7790 | continue; | |
7791 | } | |
7792 | ||
7793 | /* ... fall through ... */ | |
7794 | ||
7795 | case LSHIFTRT: | |
7796 | case ASHIFT: | |
230d793d RS |
7797 | case ROTATE: |
7798 | /* Here we have two nested shifts. The result is usually the | |
7799 | AND of a new shift with a mask. We compute the result below. */ | |
7800 | if (GET_CODE (XEXP (varop, 1)) == CONST_INT | |
7801 | && INTVAL (XEXP (varop, 1)) >= 0 | |
7802 | && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop)) | |
5f4f0e22 CH |
7803 | && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT |
7804 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) | |
230d793d RS |
7805 | { |
7806 | enum rtx_code first_code = GET_CODE (varop); | |
7807 | int first_count = INTVAL (XEXP (varop, 1)); | |
5f4f0e22 | 7808 | unsigned HOST_WIDE_INT mask; |
230d793d | 7809 | rtx mask_rtx; |
230d793d | 7810 | |
230d793d RS |
7811 | /* We have one common special case. We can't do any merging if |
7812 | the inner code is an ASHIFTRT of a smaller mode. However, if | |
7813 | we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2) | |
7814 | with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2), | |
7815 | we can convert it to | |
7816 | (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1). | |
7817 | This simplifies certain SIGN_EXTEND operations. */ | |
7818 | if (code == ASHIFT && first_code == ASHIFTRT | |
7819 | && (GET_MODE_BITSIZE (result_mode) | |
7820 | - GET_MODE_BITSIZE (GET_MODE (varop))) == count) | |
7821 | { | |
7822 | /* C3 has the low-order C1 bits zero. */ | |
7823 | ||
5f4f0e22 CH |
7824 | mask = (GET_MODE_MASK (mode) |
7825 | & ~ (((HOST_WIDE_INT) 1 << first_count) - 1)); | |
230d793d | 7826 | |
5f4f0e22 | 7827 | varop = simplify_and_const_int (NULL_RTX, result_mode, |
230d793d | 7828 | XEXP (varop, 0), mask); |
5f4f0e22 | 7829 | varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode, |
230d793d RS |
7830 | varop, count); |
7831 | count = first_count; | |
7832 | code = ASHIFTRT; | |
7833 | continue; | |
7834 | } | |
7835 | ||
d0ab8cd3 RK |
7836 | /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more |
7837 | than C1 high-order bits equal to the sign bit, we can convert | |
7838 | this to either an ASHIFT or a ASHIFTRT depending on the | |
7839 | two counts. | |
230d793d RS |
7840 | |
7841 | We cannot do this if VAROP's mode is not SHIFT_MODE. */ | |
7842 | ||
7843 | if (code == ASHIFTRT && first_code == ASHIFT | |
7844 | && GET_MODE (varop) == shift_mode | |
d0ab8cd3 RK |
7845 | && (num_sign_bit_copies (XEXP (varop, 0), shift_mode) |
7846 | > first_count)) | |
230d793d | 7847 | { |
d0ab8cd3 RK |
7848 | count -= first_count; |
7849 | if (count < 0) | |
7850 | count = - count, code = ASHIFT; | |
7851 | varop = XEXP (varop, 0); | |
7852 | continue; | |
230d793d RS |
7853 | } |
7854 | ||
7855 | /* There are some cases we can't do. If CODE is ASHIFTRT, | |
7856 | we can only do this if FIRST_CODE is also ASHIFTRT. | |
7857 | ||
7858 | We can't do the case when CODE is ROTATE and FIRST_CODE is | |
7859 | ASHIFTRT. | |
7860 | ||
7861 | If the mode of this shift is not the mode of the outer shift, | |
7862 | we can't do this if either shift is ASHIFTRT or ROTATE. | |
7863 | ||
7864 | Finally, we can't do any of these if the mode is too wide | |
7865 | unless the codes are the same. | |
7866 | ||
7867 | Handle the case where the shift codes are the same | |
7868 | first. */ | |
7869 | ||
7870 | if (code == first_code) | |
7871 | { | |
7872 | if (GET_MODE (varop) != result_mode | |
7873 | && (code == ASHIFTRT || code == ROTATE)) | |
7874 | break; | |
7875 | ||
7876 | count += first_count; | |
7877 | varop = XEXP (varop, 0); | |
7878 | continue; | |
7879 | } | |
7880 | ||
7881 | if (code == ASHIFTRT | |
7882 | || (code == ROTATE && first_code == ASHIFTRT) | |
5f4f0e22 | 7883 | || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT |
230d793d RS |
7884 | || (GET_MODE (varop) != result_mode |
7885 | && (first_code == ASHIFTRT || first_code == ROTATE | |
7886 | || code == ROTATE))) | |
7887 | break; | |
7888 | ||
7889 | /* To compute the mask to apply after the shift, shift the | |
951553af | 7890 | nonzero bits of the inner shift the same way the |
230d793d RS |
7891 | outer shift will. */ |
7892 | ||
951553af | 7893 | mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop))); |
230d793d RS |
7894 | |
7895 | mask_rtx | |
7896 | = simplify_binary_operation (code, result_mode, mask_rtx, | |
5f4f0e22 | 7897 | GEN_INT (count)); |
230d793d RS |
7898 | |
7899 | /* Give up if we can't compute an outer operation to use. */ | |
7900 | if (mask_rtx == 0 | |
7901 | || GET_CODE (mask_rtx) != CONST_INT | |
7902 | || ! merge_outer_ops (&outer_op, &outer_const, AND, | |
7903 | INTVAL (mask_rtx), | |
7904 | result_mode, &complement_p)) | |
7905 | break; | |
7906 | ||
7907 | /* If the shifts are in the same direction, we add the | |
7908 | counts. Otherwise, we subtract them. */ | |
7909 | if ((code == ASHIFTRT || code == LSHIFTRT) | |
7910 | == (first_code == ASHIFTRT || first_code == LSHIFTRT)) | |
7911 | count += first_count; | |
7912 | else | |
7913 | count -= first_count; | |
7914 | ||
7915 | /* If COUNT is positive, the new shift is usually CODE, | |
7916 | except for the two exceptions below, in which case it is | |
7917 | FIRST_CODE. If the count is negative, FIRST_CODE should | |
7918 | always be used */ | |
7919 | if (count > 0 | |
7920 | && ((first_code == ROTATE && code == ASHIFT) | |
7921 | || (first_code == ASHIFTRT && code == LSHIFTRT))) | |
7922 | code = first_code; | |
7923 | else if (count < 0) | |
7924 | code = first_code, count = - count; | |
7925 | ||
7926 | varop = XEXP (varop, 0); | |
7927 | continue; | |
7928 | } | |
7929 | ||
7930 | /* If we have (A << B << C) for any shift, we can convert this to | |
7931 | (A << C << B). This wins if A is a constant. Only try this if | |
7932 | B is not a constant. */ | |
7933 | ||
7934 | else if (GET_CODE (varop) == code | |
7935 | && GET_CODE (XEXP (varop, 1)) != CONST_INT | |
7936 | && 0 != (new | |
7937 | = simplify_binary_operation (code, mode, | |
7938 | XEXP (varop, 0), | |
5f4f0e22 | 7939 | GEN_INT (count)))) |
230d793d RS |
7940 | { |
7941 | varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1)); | |
7942 | count = 0; | |
7943 | continue; | |
7944 | } | |
7945 | break; | |
7946 | ||
7947 | case NOT: | |
7948 | /* Make this fit the case below. */ | |
7949 | varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0), | |
5f4f0e22 | 7950 | GEN_INT (GET_MODE_MASK (mode))); |
230d793d RS |
7951 | continue; |
7952 | ||
7953 | case IOR: | |
7954 | case AND: | |
7955 | case XOR: | |
7956 | /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C) | |
7957 | with C the size of VAROP - 1 and the shift is logical if | |
7958 | STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1, | |
7959 | we have an (le X 0) operation. If we have an arithmetic shift | |
7960 | and STORE_FLAG_VALUE is 1 or we have a logical shift with | |
7961 | STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */ | |
7962 | ||
7963 | if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS | |
7964 | && XEXP (XEXP (varop, 0), 1) == constm1_rtx | |
7965 | && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) | |
7966 | && (code == LSHIFTRT || code == ASHIFTRT) | |
7967 | && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1 | |
7968 | && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1))) | |
7969 | { | |
7970 | count = 0; | |
7971 | varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1), | |
7972 | const0_rtx); | |
7973 | ||
7974 | if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT) | |
7975 | varop = gen_rtx_combine (NEG, GET_MODE (varop), varop); | |
7976 | ||
7977 | continue; | |
7978 | } | |
7979 | ||
7980 | /* If we have (shift (logical)), move the logical to the outside | |
7981 | to allow it to possibly combine with another logical and the | |
7982 | shift to combine with another shift. This also canonicalizes to | |
7983 | what a ZERO_EXTRACT looks like. Also, some machines have | |
7984 | (and (shift)) insns. */ | |
7985 | ||
7986 | if (GET_CODE (XEXP (varop, 1)) == CONST_INT | |
7987 | && (new = simplify_binary_operation (code, result_mode, | |
7988 | XEXP (varop, 1), | |
5f4f0e22 | 7989 | GEN_INT (count))) != 0 |
7d171a1e | 7990 | && GET_CODE(new) == CONST_INT |
230d793d RS |
7991 | && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop), |
7992 | INTVAL (new), result_mode, &complement_p)) | |
7993 | { | |
7994 | varop = XEXP (varop, 0); | |
7995 | continue; | |
7996 | } | |
7997 | ||
7998 | /* If we can't do that, try to simplify the shift in each arm of the | |
7999 | logical expression, make a new logical expression, and apply | |
8000 | the inverse distributive law. */ | |
8001 | { | |
00d4ca1c | 8002 | rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode, |
230d793d | 8003 | XEXP (varop, 0), count); |
00d4ca1c | 8004 | rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode, |
230d793d RS |
8005 | XEXP (varop, 1), count); |
8006 | ||
21a64bf1 | 8007 | varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs); |
230d793d RS |
8008 | varop = apply_distributive_law (varop); |
8009 | ||
8010 | count = 0; | |
8011 | } | |
8012 | break; | |
8013 | ||
8014 | case EQ: | |
45620ed4 | 8015 | /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE |
230d793d | 8016 | says that the sign bit can be tested, FOO has mode MODE, C is |
45620ed4 RK |
8017 | GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit |
8018 | that may be nonzero. */ | |
8019 | if (code == LSHIFTRT | |
230d793d RS |
8020 | && XEXP (varop, 1) == const0_rtx |
8021 | && GET_MODE (XEXP (varop, 0)) == result_mode | |
8022 | && count == GET_MODE_BITSIZE (result_mode) - 1 | |
5f4f0e22 | 8023 | && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT |
230d793d | 8024 | && ((STORE_FLAG_VALUE |
5f4f0e22 | 8025 | & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1)))) |
951553af | 8026 | && nonzero_bits (XEXP (varop, 0), result_mode) == 1 |
5f4f0e22 CH |
8027 | && merge_outer_ops (&outer_op, &outer_const, XOR, |
8028 | (HOST_WIDE_INT) 1, result_mode, | |
8029 | &complement_p)) | |
230d793d RS |
8030 | { |
8031 | varop = XEXP (varop, 0); | |
8032 | count = 0; | |
8033 | continue; | |
8034 | } | |
8035 | break; | |
8036 | ||
8037 | case NEG: | |
d0ab8cd3 RK |
8038 | /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less |
8039 | than the number of bits in the mode is equivalent to A. */ | |
8040 | if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1 | |
951553af | 8041 | && nonzero_bits (XEXP (varop, 0), result_mode) == 1) |
230d793d | 8042 | { |
d0ab8cd3 | 8043 | varop = XEXP (varop, 0); |
230d793d RS |
8044 | count = 0; |
8045 | continue; | |
8046 | } | |
8047 | ||
8048 | /* NEG commutes with ASHIFT since it is multiplication. Move the | |
8049 | NEG outside to allow shifts to combine. */ | |
8050 | if (code == ASHIFT | |
5f4f0e22 CH |
8051 | && merge_outer_ops (&outer_op, &outer_const, NEG, |
8052 | (HOST_WIDE_INT) 0, result_mode, | |
8053 | &complement_p)) | |
230d793d RS |
8054 | { |
8055 | varop = XEXP (varop, 0); | |
8056 | continue; | |
8057 | } | |
8058 | break; | |
8059 | ||
8060 | case PLUS: | |
d0ab8cd3 RK |
8061 | /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C |
8062 | is one less than the number of bits in the mode is | |
8063 | equivalent to (xor A 1). */ | |
230d793d RS |
8064 | if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1 |
8065 | && XEXP (varop, 1) == constm1_rtx | |
951553af | 8066 | && nonzero_bits (XEXP (varop, 0), result_mode) == 1 |
5f4f0e22 CH |
8067 | && merge_outer_ops (&outer_op, &outer_const, XOR, |
8068 | (HOST_WIDE_INT) 1, result_mode, | |
8069 | &complement_p)) | |
230d793d RS |
8070 | { |
8071 | count = 0; | |
8072 | varop = XEXP (varop, 0); | |
8073 | continue; | |
8074 | } | |
8075 | ||
3f508eca | 8076 | /* If we have (xshiftrt (plus FOO BAR) C), and the only bits |
951553af | 8077 | that might be nonzero in BAR are those being shifted out and those |
3f508eca RK |
8078 | bits are known zero in FOO, we can replace the PLUS with FOO. |
8079 | Similarly in the other operand order. This code occurs when | |
8080 | we are computing the size of a variable-size array. */ | |
8081 | ||
8082 | if ((code == ASHIFTRT || code == LSHIFTRT) | |
5f4f0e22 | 8083 | && count < HOST_BITS_PER_WIDE_INT |
951553af RK |
8084 | && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0 |
8085 | && (nonzero_bits (XEXP (varop, 1), result_mode) | |
8086 | & nonzero_bits (XEXP (varop, 0), result_mode)) == 0) | |
3f508eca RK |
8087 | { |
8088 | varop = XEXP (varop, 0); | |
8089 | continue; | |
8090 | } | |
8091 | else if ((code == ASHIFTRT || code == LSHIFTRT) | |
5f4f0e22 | 8092 | && count < HOST_BITS_PER_WIDE_INT |
ac49a949 | 8093 | && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT |
951553af | 8094 | && 0 == (nonzero_bits (XEXP (varop, 0), result_mode) |
3f508eca | 8095 | >> count) |
951553af RK |
8096 | && 0 == (nonzero_bits (XEXP (varop, 0), result_mode) |
8097 | & nonzero_bits (XEXP (varop, 1), | |
3f508eca RK |
8098 | result_mode))) |
8099 | { | |
8100 | varop = XEXP (varop, 1); | |
8101 | continue; | |
8102 | } | |
8103 | ||
230d793d RS |
8104 | /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */ |
8105 | if (code == ASHIFT | |
8106 | && GET_CODE (XEXP (varop, 1)) == CONST_INT | |
8107 | && (new = simplify_binary_operation (ASHIFT, result_mode, | |
8108 | XEXP (varop, 1), | |
5f4f0e22 | 8109 | GEN_INT (count))) != 0 |
7d171a1e | 8110 | && GET_CODE(new) == CONST_INT |
230d793d RS |
8111 | && merge_outer_ops (&outer_op, &outer_const, PLUS, |
8112 | INTVAL (new), result_mode, &complement_p)) | |
8113 | { | |
8114 | varop = XEXP (varop, 0); | |
8115 | continue; | |
8116 | } | |
8117 | break; | |
8118 | ||
8119 | case MINUS: | |
8120 | /* If we have (xshiftrt (minus (ashiftrt X C)) X) C) | |
8121 | with C the size of VAROP - 1 and the shift is logical if | |
8122 | STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1, | |
8123 | we have a (gt X 0) operation. If the shift is arithmetic with | |
8124 | STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1, | |
8125 | we have a (neg (gt X 0)) operation. */ | |
8126 | ||
8127 | if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT | |
8128 | && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1 | |
8129 | && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) | |
8130 | && (code == LSHIFTRT || code == ASHIFTRT) | |
8131 | && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT | |
8132 | && INTVAL (XEXP (XEXP (varop, 0), 1)) == count | |
8133 | && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1))) | |
8134 | { | |
8135 | count = 0; | |
8136 | varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1), | |
8137 | const0_rtx); | |
8138 | ||
8139 | if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT) | |
8140 | varop = gen_rtx_combine (NEG, GET_MODE (varop), varop); | |
8141 | ||
8142 | continue; | |
8143 | } | |
8144 | break; | |
8145 | } | |
8146 | ||
8147 | break; | |
8148 | } | |
8149 | ||
8150 | /* We need to determine what mode to do the shift in. If the shift is | |
8151 | a ASHIFTRT or ROTATE, we must always do it in the mode it was originally | |
8152 | done in. Otherwise, we can do it in MODE, the widest mode encountered. | |
8153 | The code we care about is that of the shift that will actually be done, | |
8154 | not the shift that was originally requested. */ | |
8155 | shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode); | |
8156 | ||
8157 | /* We have now finished analyzing the shift. The result should be | |
8158 | a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If | |
8159 | OUTER_OP is non-NIL, it is an operation that needs to be applied | |
8160 | to the result of the shift. OUTER_CONST is the relevant constant, | |
8161 | but we must turn off all bits turned off in the shift. | |
8162 | ||
8163 | If we were passed a value for X, see if we can use any pieces of | |
8164 | it. If not, make new rtx. */ | |
8165 | ||
8166 | if (x && GET_RTX_CLASS (GET_CODE (x)) == '2' | |
8167 | && GET_CODE (XEXP (x, 1)) == CONST_INT | |
8168 | && INTVAL (XEXP (x, 1)) == count) | |
8169 | const_rtx = XEXP (x, 1); | |
8170 | else | |
5f4f0e22 | 8171 | const_rtx = GEN_INT (count); |
230d793d RS |
8172 | |
8173 | if (x && GET_CODE (XEXP (x, 0)) == SUBREG | |
8174 | && GET_MODE (XEXP (x, 0)) == shift_mode | |
8175 | && SUBREG_REG (XEXP (x, 0)) == varop) | |
8176 | varop = XEXP (x, 0); | |
8177 | else if (GET_MODE (varop) != shift_mode) | |
8178 | varop = gen_lowpart_for_combine (shift_mode, varop); | |
8179 | ||
8180 | /* If we can't make the SUBREG, try to return what we were given. */ | |
8181 | if (GET_CODE (varop) == CLOBBER) | |
8182 | return x ? x : varop; | |
8183 | ||
8184 | new = simplify_binary_operation (code, shift_mode, varop, const_rtx); | |
8185 | if (new != 0) | |
8186 | x = new; | |
8187 | else | |
8188 | { | |
8189 | if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode) | |
8190 | x = gen_rtx_combine (code, shift_mode, varop, const_rtx); | |
8191 | ||
8192 | SUBST (XEXP (x, 0), varop); | |
8193 | SUBST (XEXP (x, 1), const_rtx); | |
8194 | } | |
8195 | ||
224eeff2 RK |
8196 | /* If we have an outer operation and we just made a shift, it is |
8197 | possible that we could have simplified the shift were it not | |
8198 | for the outer operation. So try to do the simplification | |
8199 | recursively. */ | |
8200 | ||
8201 | if (outer_op != NIL && GET_CODE (x) == code | |
8202 | && GET_CODE (XEXP (x, 1)) == CONST_INT) | |
8203 | x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0), | |
8204 | INTVAL (XEXP (x, 1))); | |
8205 | ||
230d793d RS |
8206 | /* If we were doing a LSHIFTRT in a wider mode than it was originally, |
8207 | turn off all the bits that the shift would have turned off. */ | |
8208 | if (orig_code == LSHIFTRT && result_mode != shift_mode) | |
5f4f0e22 | 8209 | x = simplify_and_const_int (NULL_RTX, shift_mode, x, |
230d793d RS |
8210 | GET_MODE_MASK (result_mode) >> orig_count); |
8211 | ||
8212 | /* Do the remainder of the processing in RESULT_MODE. */ | |
8213 | x = gen_lowpart_for_combine (result_mode, x); | |
8214 | ||
8215 | /* If COMPLEMENT_P is set, we have to complement X before doing the outer | |
8216 | operation. */ | |
8217 | if (complement_p) | |
0c1c8ea6 | 8218 | x = gen_unary (NOT, result_mode, result_mode, x); |
230d793d RS |
8219 | |
8220 | if (outer_op != NIL) | |
8221 | { | |
5f4f0e22 | 8222 | if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT) |
9fa6d012 TG |
8223 | { |
8224 | int width = GET_MODE_BITSIZE (result_mode); | |
8225 | ||
8226 | outer_const &= GET_MODE_MASK (result_mode); | |
8227 | ||
8228 | /* If this would be an entire word for the target, but is not for | |
8229 | the host, then sign-extend on the host so that the number will | |
8230 | look the same way on the host that it would on the target. | |
8231 | ||
8232 | For example, when building a 64 bit alpha hosted 32 bit sparc | |
8233 | targeted compiler, then we want the 32 bit unsigned value -1 to be | |
8234 | represented as a 64 bit value -1, and not as 0x00000000ffffffff. | |
8235 | The later confuses the sparc backend. */ | |
8236 | ||
8237 | if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width | |
8238 | && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1)))) | |
8239 | outer_const |= ((HOST_WIDE_INT) (-1) << width); | |
8240 | } | |
230d793d RS |
8241 | |
8242 | if (outer_op == AND) | |
5f4f0e22 | 8243 | x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const); |
230d793d RS |
8244 | else if (outer_op == SET) |
8245 | /* This means that we have determined that the result is | |
8246 | equivalent to a constant. This should be rare. */ | |
5f4f0e22 | 8247 | x = GEN_INT (outer_const); |
230d793d | 8248 | else if (GET_RTX_CLASS (outer_op) == '1') |
0c1c8ea6 | 8249 | x = gen_unary (outer_op, result_mode, result_mode, x); |
230d793d | 8250 | else |
5f4f0e22 | 8251 | x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const)); |
230d793d RS |
8252 | } |
8253 | ||
8254 | return x; | |
8255 | } | |
8256 | \f | |
8257 | /* Like recog, but we receive the address of a pointer to a new pattern. | |
8258 | We try to match the rtx that the pointer points to. | |
8259 | If that fails, we may try to modify or replace the pattern, | |
8260 | storing the replacement into the same pointer object. | |
8261 | ||
8262 | Modifications include deletion or addition of CLOBBERs. | |
8263 | ||
8264 | PNOTES is a pointer to a location where any REG_UNUSED notes added for | |
8265 | the CLOBBERs are placed. | |
8266 | ||
8267 | The value is the final insn code from the pattern ultimately matched, | |
8268 | or -1. */ | |
8269 | ||
8270 | static int | |
8271 | recog_for_combine (pnewpat, insn, pnotes) | |
8272 | rtx *pnewpat; | |
8273 | rtx insn; | |
8274 | rtx *pnotes; | |
8275 | { | |
8276 | register rtx pat = *pnewpat; | |
8277 | int insn_code_number; | |
8278 | int num_clobbers_to_add = 0; | |
8279 | int i; | |
8280 | rtx notes = 0; | |
8281 | ||
974f4146 RK |
8282 | /* If PAT is a PARALLEL, check to see if it contains the CLOBBER |
8283 | we use to indicate that something didn't match. If we find such a | |
8284 | thing, force rejection. */ | |
d96023cf | 8285 | if (GET_CODE (pat) == PARALLEL) |
974f4146 | 8286 | for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) |
d96023cf RK |
8287 | if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER |
8288 | && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx) | |
974f4146 RK |
8289 | return -1; |
8290 | ||
230d793d RS |
8291 | /* Is the result of combination a valid instruction? */ |
8292 | insn_code_number = recog (pat, insn, &num_clobbers_to_add); | |
8293 | ||
8294 | /* If it isn't, there is the possibility that we previously had an insn | |
8295 | that clobbered some register as a side effect, but the combined | |
8296 | insn doesn't need to do that. So try once more without the clobbers | |
8297 | unless this represents an ASM insn. */ | |
8298 | ||
8299 | if (insn_code_number < 0 && ! check_asm_operands (pat) | |
8300 | && GET_CODE (pat) == PARALLEL) | |
8301 | { | |
8302 | int pos; | |
8303 | ||
8304 | for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++) | |
8305 | if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER) | |
8306 | { | |
8307 | if (i != pos) | |
8308 | SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i)); | |
8309 | pos++; | |
8310 | } | |
8311 | ||
8312 | SUBST_INT (XVECLEN (pat, 0), pos); | |
8313 | ||
8314 | if (pos == 1) | |
8315 | pat = XVECEXP (pat, 0, 0); | |
8316 | ||
8317 | insn_code_number = recog (pat, insn, &num_clobbers_to_add); | |
8318 | } | |
8319 | ||
8320 | /* If we had any clobbers to add, make a new pattern than contains | |
8321 | them. Then check to make sure that all of them are dead. */ | |
8322 | if (num_clobbers_to_add) | |
8323 | { | |
8324 | rtx newpat = gen_rtx (PARALLEL, VOIDmode, | |
8325 | gen_rtvec (GET_CODE (pat) == PARALLEL | |
8326 | ? XVECLEN (pat, 0) + num_clobbers_to_add | |
8327 | : num_clobbers_to_add + 1)); | |
8328 | ||
8329 | if (GET_CODE (pat) == PARALLEL) | |
8330 | for (i = 0; i < XVECLEN (pat, 0); i++) | |
8331 | XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i); | |
8332 | else | |
8333 | XVECEXP (newpat, 0, 0) = pat; | |
8334 | ||
8335 | add_clobbers (newpat, insn_code_number); | |
8336 | ||
8337 | for (i = XVECLEN (newpat, 0) - num_clobbers_to_add; | |
8338 | i < XVECLEN (newpat, 0); i++) | |
8339 | { | |
8340 | if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG | |
8341 | && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn)) | |
8342 | return -1; | |
8343 | notes = gen_rtx (EXPR_LIST, REG_UNUSED, | |
8344 | XEXP (XVECEXP (newpat, 0, i), 0), notes); | |
8345 | } | |
8346 | pat = newpat; | |
8347 | } | |
8348 | ||
8349 | *pnewpat = pat; | |
8350 | *pnotes = notes; | |
8351 | ||
8352 | return insn_code_number; | |
8353 | } | |
8354 | \f | |
8355 | /* Like gen_lowpart but for use by combine. In combine it is not possible | |
8356 | to create any new pseudoregs. However, it is safe to create | |
8357 | invalid memory addresses, because combine will try to recognize | |
8358 | them and all they will do is make the combine attempt fail. | |
8359 | ||
8360 | If for some reason this cannot do its job, an rtx | |
8361 | (clobber (const_int 0)) is returned. | |
8362 | An insn containing that will not be recognized. */ | |
8363 | ||
8364 | #undef gen_lowpart | |
8365 | ||
8366 | static rtx | |
8367 | gen_lowpart_for_combine (mode, x) | |
8368 | enum machine_mode mode; | |
8369 | register rtx x; | |
8370 | { | |
8371 | rtx result; | |
8372 | ||
8373 | if (GET_MODE (x) == mode) | |
8374 | return x; | |
8375 | ||
eae957a8 RK |
8376 | /* We can only support MODE being wider than a word if X is a |
8377 | constant integer or has a mode the same size. */ | |
8378 | ||
8379 | if (GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
8380 | && ! ((GET_MODE (x) == VOIDmode | |
8381 | && (GET_CODE (x) == CONST_INT | |
8382 | || GET_CODE (x) == CONST_DOUBLE)) | |
8383 | || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode))) | |
230d793d RS |
8384 | return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx); |
8385 | ||
8386 | /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart | |
8387 | won't know what to do. So we will strip off the SUBREG here and | |
8388 | process normally. */ | |
8389 | if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM) | |
8390 | { | |
8391 | x = SUBREG_REG (x); | |
8392 | if (GET_MODE (x) == mode) | |
8393 | return x; | |
8394 | } | |
8395 | ||
8396 | result = gen_lowpart_common (mode, x); | |
64bf47a2 RK |
8397 | if (result != 0 |
8398 | && GET_CODE (result) == SUBREG | |
8399 | && GET_CODE (SUBREG_REG (result)) == REG | |
8400 | && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER | |
8401 | && (GET_MODE_SIZE (GET_MODE (result)) | |
8402 | != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result))))) | |
8403 | reg_changes_size[REGNO (SUBREG_REG (result))] = 1; | |
8404 | ||
230d793d RS |
8405 | if (result) |
8406 | return result; | |
8407 | ||
8408 | if (GET_CODE (x) == MEM) | |
8409 | { | |
8410 | register int offset = 0; | |
8411 | rtx new; | |
8412 | ||
8413 | /* Refuse to work on a volatile memory ref or one with a mode-dependent | |
8414 | address. */ | |
8415 | if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0))) | |
8416 | return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx); | |
8417 | ||
8418 | /* If we want to refer to something bigger than the original memref, | |
8419 | generate a perverse subreg instead. That will force a reload | |
8420 | of the original memref X. */ | |
8421 | if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)) | |
8422 | return gen_rtx (SUBREG, mode, x, 0); | |
8423 | ||
f76b9db2 ILT |
8424 | if (WORDS_BIG_ENDIAN) |
8425 | offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD) | |
8426 | - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD)); | |
8427 | if (BYTES_BIG_ENDIAN) | |
8428 | { | |
8429 | /* Adjust the address so that the address-after-the-data is | |
8430 | unchanged. */ | |
8431 | offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)) | |
8432 | - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))); | |
8433 | } | |
230d793d RS |
8434 | new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset)); |
8435 | RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x); | |
8436 | MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x); | |
8437 | MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x); | |
8438 | return new; | |
8439 | } | |
8440 | ||
8441 | /* If X is a comparison operator, rewrite it in a new mode. This | |
8442 | probably won't match, but may allow further simplifications. */ | |
8443 | else if (GET_RTX_CLASS (GET_CODE (x)) == '<') | |
8444 | return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1)); | |
8445 | ||
8446 | /* If we couldn't simplify X any other way, just enclose it in a | |
8447 | SUBREG. Normally, this SUBREG won't match, but some patterns may | |
a7c99304 | 8448 | include an explicit SUBREG or we may simplify it further in combine. */ |
230d793d | 8449 | else |
dfbe1b2f RK |
8450 | { |
8451 | int word = 0; | |
8452 | ||
8453 | if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) | |
8454 | word = ((GET_MODE_SIZE (GET_MODE (x)) | |
8455 | - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD)) | |
8456 | / UNITS_PER_WORD); | |
8457 | return gen_rtx (SUBREG, mode, x, word); | |
8458 | } | |
230d793d RS |
8459 | } |
8460 | \f | |
8461 | /* Make an rtx expression. This is a subset of gen_rtx and only supports | |
8462 | expressions of 1, 2, or 3 operands, each of which are rtx expressions. | |
8463 | ||
8464 | If the identical expression was previously in the insn (in the undobuf), | |
8465 | it will be returned. Only if it is not found will a new expression | |
8466 | be made. */ | |
8467 | ||
8468 | /*VARARGS2*/ | |
8469 | static rtx | |
4f90e4a0 | 8470 | gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...)) |
230d793d | 8471 | { |
4f90e4a0 | 8472 | #ifndef __STDC__ |
230d793d RS |
8473 | enum rtx_code code; |
8474 | enum machine_mode mode; | |
4f90e4a0 RK |
8475 | #endif |
8476 | va_list p; | |
230d793d RS |
8477 | int n_args; |
8478 | rtx args[3]; | |
8479 | int i, j; | |
8480 | char *fmt; | |
8481 | rtx rt; | |
8482 | ||
4f90e4a0 RK |
8483 | VA_START (p, mode); |
8484 | ||
8485 | #ifndef __STDC__ | |
230d793d RS |
8486 | code = va_arg (p, enum rtx_code); |
8487 | mode = va_arg (p, enum machine_mode); | |
4f90e4a0 RK |
8488 | #endif |
8489 | ||
230d793d RS |
8490 | n_args = GET_RTX_LENGTH (code); |
8491 | fmt = GET_RTX_FORMAT (code); | |
8492 | ||
8493 | if (n_args == 0 || n_args > 3) | |
8494 | abort (); | |
8495 | ||
8496 | /* Get each arg and verify that it is supposed to be an expression. */ | |
8497 | for (j = 0; j < n_args; j++) | |
8498 | { | |
8499 | if (*fmt++ != 'e') | |
8500 | abort (); | |
8501 | ||
8502 | args[j] = va_arg (p, rtx); | |
8503 | } | |
8504 | ||
8505 | /* See if this is in undobuf. Be sure we don't use objects that came | |
8506 | from another insn; this could produce circular rtl structures. */ | |
8507 | ||
8508 | for (i = previous_num_undos; i < undobuf.num_undo; i++) | |
8509 | if (!undobuf.undo[i].is_int | |
f5393ab9 RS |
8510 | && GET_CODE (undobuf.undo[i].old_contents.r) == code |
8511 | && GET_MODE (undobuf.undo[i].old_contents.r) == mode) | |
230d793d RS |
8512 | { |
8513 | for (j = 0; j < n_args; j++) | |
f5393ab9 | 8514 | if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j]) |
230d793d RS |
8515 | break; |
8516 | ||
8517 | if (j == n_args) | |
f5393ab9 | 8518 | return undobuf.undo[i].old_contents.r; |
230d793d RS |
8519 | } |
8520 | ||
8521 | /* Otherwise make a new rtx. We know we have 1, 2, or 3 args. | |
8522 | Use rtx_alloc instead of gen_rtx because it's faster on RISC. */ | |
8523 | rt = rtx_alloc (code); | |
8524 | PUT_MODE (rt, mode); | |
8525 | XEXP (rt, 0) = args[0]; | |
8526 | if (n_args > 1) | |
8527 | { | |
8528 | XEXP (rt, 1) = args[1]; | |
8529 | if (n_args > 2) | |
8530 | XEXP (rt, 2) = args[2]; | |
8531 | } | |
8532 | return rt; | |
8533 | } | |
8534 | ||
8535 | /* These routines make binary and unary operations by first seeing if they | |
8536 | fold; if not, a new expression is allocated. */ | |
8537 | ||
8538 | static rtx | |
8539 | gen_binary (code, mode, op0, op1) | |
8540 | enum rtx_code code; | |
8541 | enum machine_mode mode; | |
8542 | rtx op0, op1; | |
8543 | { | |
8544 | rtx result; | |
1a26b032 RK |
8545 | rtx tem; |
8546 | ||
8547 | if (GET_RTX_CLASS (code) == 'c' | |
8548 | && (GET_CODE (op0) == CONST_INT | |
8549 | || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT))) | |
8550 | tem = op0, op0 = op1, op1 = tem; | |
230d793d RS |
8551 | |
8552 | if (GET_RTX_CLASS (code) == '<') | |
8553 | { | |
8554 | enum machine_mode op_mode = GET_MODE (op0); | |
9210df58 RK |
8555 | |
8556 | /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get | |
8557 | just (REL_OP X Y). */ | |
8558 | if (GET_CODE (op0) == COMPARE && op1 == const0_rtx) | |
8559 | { | |
8560 | op1 = XEXP (op0, 1); | |
8561 | op0 = XEXP (op0, 0); | |
8562 | op_mode = GET_MODE (op0); | |
8563 | } | |
8564 | ||
230d793d RS |
8565 | if (op_mode == VOIDmode) |
8566 | op_mode = GET_MODE (op1); | |
8567 | result = simplify_relational_operation (code, op_mode, op0, op1); | |
8568 | } | |
8569 | else | |
8570 | result = simplify_binary_operation (code, mode, op0, op1); | |
8571 | ||
8572 | if (result) | |
8573 | return result; | |
8574 | ||
8575 | /* Put complex operands first and constants second. */ | |
8576 | if (GET_RTX_CLASS (code) == 'c' | |
8577 | && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT) | |
8578 | || (GET_RTX_CLASS (GET_CODE (op0)) == 'o' | |
8579 | && GET_RTX_CLASS (GET_CODE (op1)) != 'o') | |
8580 | || (GET_CODE (op0) == SUBREG | |
8581 | && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o' | |
8582 | && GET_RTX_CLASS (GET_CODE (op1)) != 'o'))) | |
8583 | return gen_rtx_combine (code, mode, op1, op0); | |
8584 | ||
8585 | return gen_rtx_combine (code, mode, op0, op1); | |
8586 | } | |
8587 | ||
8588 | static rtx | |
0c1c8ea6 | 8589 | gen_unary (code, mode, op0_mode, op0) |
230d793d | 8590 | enum rtx_code code; |
0c1c8ea6 | 8591 | enum machine_mode mode, op0_mode; |
230d793d RS |
8592 | rtx op0; |
8593 | { | |
0c1c8ea6 | 8594 | rtx result = simplify_unary_operation (code, mode, op0, op0_mode); |
230d793d RS |
8595 | |
8596 | if (result) | |
8597 | return result; | |
8598 | ||
8599 | return gen_rtx_combine (code, mode, op0); | |
8600 | } | |
8601 | \f | |
8602 | /* Simplify a comparison between *POP0 and *POP1 where CODE is the | |
8603 | comparison code that will be tested. | |
8604 | ||
8605 | The result is a possibly different comparison code to use. *POP0 and | |
8606 | *POP1 may be updated. | |
8607 | ||
8608 | It is possible that we might detect that a comparison is either always | |
8609 | true or always false. However, we do not perform general constant | |
5089e22e | 8610 | folding in combine, so this knowledge isn't useful. Such tautologies |
230d793d RS |
8611 | should have been detected earlier. Hence we ignore all such cases. */ |
8612 | ||
8613 | static enum rtx_code | |
8614 | simplify_comparison (code, pop0, pop1) | |
8615 | enum rtx_code code; | |
8616 | rtx *pop0; | |
8617 | rtx *pop1; | |
8618 | { | |
8619 | rtx op0 = *pop0; | |
8620 | rtx op1 = *pop1; | |
8621 | rtx tem, tem1; | |
8622 | int i; | |
8623 | enum machine_mode mode, tmode; | |
8624 | ||
8625 | /* Try a few ways of applying the same transformation to both operands. */ | |
8626 | while (1) | |
8627 | { | |
3a19aabc RK |
8628 | #ifndef WORD_REGISTER_OPERATIONS |
8629 | /* The test below this one won't handle SIGN_EXTENDs on these machines, | |
8630 | so check specially. */ | |
8631 | if (code != GTU && code != GEU && code != LTU && code != LEU | |
8632 | && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT | |
8633 | && GET_CODE (XEXP (op0, 0)) == ASHIFT | |
8634 | && GET_CODE (XEXP (op1, 0)) == ASHIFT | |
8635 | && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG | |
8636 | && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG | |
8637 | && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))) | |
ad25ba17 | 8638 | == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))) |
3a19aabc RK |
8639 | && GET_CODE (XEXP (op0, 1)) == CONST_INT |
8640 | && GET_CODE (XEXP (op1, 1)) == CONST_INT | |
8641 | && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT | |
8642 | && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT | |
8643 | && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1)) | |
8644 | && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1)) | |
8645 | && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1)) | |
8646 | && (INTVAL (XEXP (op0, 1)) | |
8647 | == (GET_MODE_BITSIZE (GET_MODE (op0)) | |
8648 | - (GET_MODE_BITSIZE | |
8649 | (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))))))) | |
8650 | { | |
8651 | op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0)); | |
8652 | op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0)); | |
8653 | } | |
8654 | #endif | |
8655 | ||
230d793d RS |
8656 | /* If both operands are the same constant shift, see if we can ignore the |
8657 | shift. We can if the shift is a rotate or if the bits shifted out of | |
951553af | 8658 | this shift are known to be zero for both inputs and if the type of |
230d793d | 8659 | comparison is compatible with the shift. */ |
67232b23 RK |
8660 | if (GET_CODE (op0) == GET_CODE (op1) |
8661 | && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT | |
8662 | && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ)) | |
45620ed4 | 8663 | || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT) |
67232b23 RK |
8664 | && (code != GT && code != LT && code != GE && code != LE)) |
8665 | || (GET_CODE (op0) == ASHIFTRT | |
8666 | && (code != GTU && code != LTU | |
8667 | && code != GEU && code != GEU))) | |
8668 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
8669 | && INTVAL (XEXP (op0, 1)) >= 0 | |
8670 | && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT | |
8671 | && XEXP (op0, 1) == XEXP (op1, 1)) | |
230d793d RS |
8672 | { |
8673 | enum machine_mode mode = GET_MODE (op0); | |
5f4f0e22 | 8674 | unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); |
230d793d RS |
8675 | int shift_count = INTVAL (XEXP (op0, 1)); |
8676 | ||
8677 | if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT) | |
8678 | mask &= (mask >> shift_count) << shift_count; | |
45620ed4 | 8679 | else if (GET_CODE (op0) == ASHIFT) |
230d793d RS |
8680 | mask = (mask & (mask << shift_count)) >> shift_count; |
8681 | ||
951553af RK |
8682 | if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0 |
8683 | && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0) | |
230d793d RS |
8684 | op0 = XEXP (op0, 0), op1 = XEXP (op1, 0); |
8685 | else | |
8686 | break; | |
8687 | } | |
8688 | ||
8689 | /* If both operands are AND's of a paradoxical SUBREG by constant, the | |
8690 | SUBREGs are of the same mode, and, in both cases, the AND would | |
8691 | be redundant if the comparison was done in the narrower mode, | |
8692 | do the comparison in the narrower mode (e.g., we are AND'ing with 1 | |
951553af RK |
8693 | and the operand's possibly nonzero bits are 0xffffff01; in that case |
8694 | if we only care about QImode, we don't need the AND). This case | |
8695 | occurs if the output mode of an scc insn is not SImode and | |
7e4dc511 RK |
8696 | STORE_FLAG_VALUE == 1 (e.g., the 386). |
8697 | ||
8698 | Similarly, check for a case where the AND's are ZERO_EXTEND | |
8699 | operations from some narrower mode even though a SUBREG is not | |
8700 | present. */ | |
230d793d RS |
8701 | |
8702 | else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND | |
8703 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
7e4dc511 | 8704 | && GET_CODE (XEXP (op1, 1)) == CONST_INT) |
230d793d | 8705 | { |
7e4dc511 RK |
8706 | rtx inner_op0 = XEXP (op0, 0); |
8707 | rtx inner_op1 = XEXP (op1, 0); | |
8708 | HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1)); | |
8709 | HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1)); | |
8710 | int changed = 0; | |
8711 | ||
8712 | if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG | |
8713 | && (GET_MODE_SIZE (GET_MODE (inner_op0)) | |
8714 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0)))) | |
8715 | && (GET_MODE (SUBREG_REG (inner_op0)) | |
8716 | == GET_MODE (SUBREG_REG (inner_op1))) | |
8717 | && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) | |
8718 | <= HOST_BITS_PER_WIDE_INT) | |
8719 | && (0 == (~c0) & nonzero_bits (SUBREG_REG (inner_op0), | |
8720 | GET_MODE (SUBREG_REG (op0)))) | |
8721 | && (0 == (~c1) & nonzero_bits (SUBREG_REG (inner_op1), | |
8722 | GET_MODE (SUBREG_REG (inner_op1))))) | |
8723 | { | |
8724 | op0 = SUBREG_REG (inner_op0); | |
8725 | op1 = SUBREG_REG (inner_op1); | |
8726 | ||
8727 | /* The resulting comparison is always unsigned since we masked | |
8728 | off the original sign bit. */ | |
8729 | code = unsigned_condition (code); | |
8730 | ||
8731 | changed = 1; | |
8732 | } | |
230d793d | 8733 | |
7e4dc511 RK |
8734 | else if (c0 == c1) |
8735 | for (tmode = GET_CLASS_NARROWEST_MODE | |
8736 | (GET_MODE_CLASS (GET_MODE (op0))); | |
8737 | tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode)) | |
8738 | if (c0 == GET_MODE_MASK (tmode)) | |
8739 | { | |
8740 | op0 = gen_lowpart_for_combine (tmode, inner_op0); | |
8741 | op1 = gen_lowpart_for_combine (tmode, inner_op1); | |
66415c8b | 8742 | code = unsigned_condition (code); |
7e4dc511 RK |
8743 | changed = 1; |
8744 | break; | |
8745 | } | |
8746 | ||
8747 | if (! changed) | |
8748 | break; | |
230d793d | 8749 | } |
3a19aabc | 8750 | |
ad25ba17 RK |
8751 | /* If both operands are NOT, we can strip off the outer operation |
8752 | and adjust the comparison code for swapped operands; similarly for | |
8753 | NEG, except that this must be an equality comparison. */ | |
8754 | else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT) | |
8755 | || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG | |
8756 | && (code == EQ || code == NE))) | |
8757 | op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code); | |
3a19aabc | 8758 | |
230d793d RS |
8759 | else |
8760 | break; | |
8761 | } | |
8762 | ||
8763 | /* If the first operand is a constant, swap the operands and adjust the | |
8764 | comparison code appropriately. */ | |
8765 | if (CONSTANT_P (op0)) | |
8766 | { | |
8767 | tem = op0, op0 = op1, op1 = tem; | |
8768 | code = swap_condition (code); | |
8769 | } | |
8770 | ||
8771 | /* We now enter a loop during which we will try to simplify the comparison. | |
8772 | For the most part, we only are concerned with comparisons with zero, | |
8773 | but some things may really be comparisons with zero but not start | |
8774 | out looking that way. */ | |
8775 | ||
8776 | while (GET_CODE (op1) == CONST_INT) | |
8777 | { | |
8778 | enum machine_mode mode = GET_MODE (op0); | |
8779 | int mode_width = GET_MODE_BITSIZE (mode); | |
5f4f0e22 | 8780 | unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); |
230d793d RS |
8781 | int equality_comparison_p; |
8782 | int sign_bit_comparison_p; | |
8783 | int unsigned_comparison_p; | |
5f4f0e22 | 8784 | HOST_WIDE_INT const_op; |
230d793d RS |
8785 | |
8786 | /* We only want to handle integral modes. This catches VOIDmode, | |
8787 | CCmode, and the floating-point modes. An exception is that we | |
8788 | can handle VOIDmode if OP0 is a COMPARE or a comparison | |
8789 | operation. */ | |
8790 | ||
8791 | if (GET_MODE_CLASS (mode) != MODE_INT | |
8792 | && ! (mode == VOIDmode | |
8793 | && (GET_CODE (op0) == COMPARE | |
8794 | || GET_RTX_CLASS (GET_CODE (op0)) == '<'))) | |
8795 | break; | |
8796 | ||
8797 | /* Get the constant we are comparing against and turn off all bits | |
8798 | not on in our mode. */ | |
8799 | const_op = INTVAL (op1); | |
5f4f0e22 | 8800 | if (mode_width <= HOST_BITS_PER_WIDE_INT) |
4803a34a | 8801 | const_op &= mask; |
230d793d RS |
8802 | |
8803 | /* If we are comparing against a constant power of two and the value | |
951553af | 8804 | being compared can only have that single bit nonzero (e.g., it was |
230d793d RS |
8805 | `and'ed with that bit), we can replace this with a comparison |
8806 | with zero. */ | |
8807 | if (const_op | |
8808 | && (code == EQ || code == NE || code == GE || code == GEU | |
8809 | || code == LT || code == LTU) | |
5f4f0e22 | 8810 | && mode_width <= HOST_BITS_PER_WIDE_INT |
230d793d | 8811 | && exact_log2 (const_op) >= 0 |
951553af | 8812 | && nonzero_bits (op0, mode) == const_op) |
230d793d RS |
8813 | { |
8814 | code = (code == EQ || code == GE || code == GEU ? NE : EQ); | |
8815 | op1 = const0_rtx, const_op = 0; | |
8816 | } | |
8817 | ||
d0ab8cd3 RK |
8818 | /* Similarly, if we are comparing a value known to be either -1 or |
8819 | 0 with -1, change it to the opposite comparison against zero. */ | |
8820 | ||
8821 | if (const_op == -1 | |
8822 | && (code == EQ || code == NE || code == GT || code == LE | |
8823 | || code == GEU || code == LTU) | |
8824 | && num_sign_bit_copies (op0, mode) == mode_width) | |
8825 | { | |
8826 | code = (code == EQ || code == LE || code == GEU ? NE : EQ); | |
8827 | op1 = const0_rtx, const_op = 0; | |
8828 | } | |
8829 | ||
230d793d | 8830 | /* Do some canonicalizations based on the comparison code. We prefer |
4803a34a RK |
8831 | comparisons against zero and then prefer equality comparisons. |
8832 | If we can reduce the size of a constant, we will do that too. */ | |
230d793d RS |
8833 | |
8834 | switch (code) | |
8835 | { | |
8836 | case LT: | |
4803a34a RK |
8837 | /* < C is equivalent to <= (C - 1) */ |
8838 | if (const_op > 0) | |
230d793d | 8839 | { |
4803a34a | 8840 | const_op -= 1; |
5f4f0e22 | 8841 | op1 = GEN_INT (const_op); |
230d793d RS |
8842 | code = LE; |
8843 | /* ... fall through to LE case below. */ | |
8844 | } | |
8845 | else | |
8846 | break; | |
8847 | ||
8848 | case LE: | |
4803a34a RK |
8849 | /* <= C is equivalent to < (C + 1); we do this for C < 0 */ |
8850 | if (const_op < 0) | |
8851 | { | |
8852 | const_op += 1; | |
5f4f0e22 | 8853 | op1 = GEN_INT (const_op); |
4803a34a RK |
8854 | code = LT; |
8855 | } | |
230d793d RS |
8856 | |
8857 | /* If we are doing a <= 0 comparison on a value known to have | |
8858 | a zero sign bit, we can replace this with == 0. */ | |
8859 | else if (const_op == 0 | |
5f4f0e22 | 8860 | && mode_width <= HOST_BITS_PER_WIDE_INT |
951553af | 8861 | && (nonzero_bits (op0, mode) |
5f4f0e22 | 8862 | & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0) |
230d793d RS |
8863 | code = EQ; |
8864 | break; | |
8865 | ||
8866 | case GE: | |
4803a34a RK |
8867 | /* >= C is equivalent to > (C - 1). */ |
8868 | if (const_op > 0) | |
230d793d | 8869 | { |
4803a34a | 8870 | const_op -= 1; |
5f4f0e22 | 8871 | op1 = GEN_INT (const_op); |
230d793d RS |
8872 | code = GT; |
8873 | /* ... fall through to GT below. */ | |
8874 | } | |
8875 | else | |
8876 | break; | |
8877 | ||
8878 | case GT: | |
4803a34a RK |
8879 | /* > C is equivalent to >= (C + 1); we do this for C < 0*/ |
8880 | if (const_op < 0) | |
8881 | { | |
8882 | const_op += 1; | |
5f4f0e22 | 8883 | op1 = GEN_INT (const_op); |
4803a34a RK |
8884 | code = GE; |
8885 | } | |
230d793d RS |
8886 | |
8887 | /* If we are doing a > 0 comparison on a value known to have | |
8888 | a zero sign bit, we can replace this with != 0. */ | |
8889 | else if (const_op == 0 | |
5f4f0e22 | 8890 | && mode_width <= HOST_BITS_PER_WIDE_INT |
951553af | 8891 | && (nonzero_bits (op0, mode) |
5f4f0e22 | 8892 | & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0) |
230d793d RS |
8893 | code = NE; |
8894 | break; | |
8895 | ||
230d793d | 8896 | case LTU: |
4803a34a RK |
8897 | /* < C is equivalent to <= (C - 1). */ |
8898 | if (const_op > 0) | |
8899 | { | |
8900 | const_op -= 1; | |
5f4f0e22 | 8901 | op1 = GEN_INT (const_op); |
4803a34a RK |
8902 | code = LEU; |
8903 | /* ... fall through ... */ | |
8904 | } | |
d0ab8cd3 RK |
8905 | |
8906 | /* (unsigned) < 0x80000000 is equivalent to >= 0. */ | |
8907 | else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)) | |
8908 | { | |
8909 | const_op = 0, op1 = const0_rtx; | |
8910 | code = GE; | |
8911 | break; | |
8912 | } | |
4803a34a RK |
8913 | else |
8914 | break; | |
230d793d RS |
8915 | |
8916 | case LEU: | |
8917 | /* unsigned <= 0 is equivalent to == 0 */ | |
8918 | if (const_op == 0) | |
8919 | code = EQ; | |
d0ab8cd3 RK |
8920 | |
8921 | /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */ | |
8922 | else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1) | |
8923 | { | |
8924 | const_op = 0, op1 = const0_rtx; | |
8925 | code = GE; | |
8926 | } | |
230d793d RS |
8927 | break; |
8928 | ||
4803a34a RK |
8929 | case GEU: |
8930 | /* >= C is equivalent to < (C - 1). */ | |
8931 | if (const_op > 1) | |
8932 | { | |
8933 | const_op -= 1; | |
5f4f0e22 | 8934 | op1 = GEN_INT (const_op); |
4803a34a RK |
8935 | code = GTU; |
8936 | /* ... fall through ... */ | |
8937 | } | |
d0ab8cd3 RK |
8938 | |
8939 | /* (unsigned) >= 0x80000000 is equivalent to < 0. */ | |
8940 | else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)) | |
8941 | { | |
8942 | const_op = 0, op1 = const0_rtx; | |
8943 | code = LT; | |
8b2e69e1 | 8944 | break; |
d0ab8cd3 | 8945 | } |
4803a34a RK |
8946 | else |
8947 | break; | |
8948 | ||
230d793d RS |
8949 | case GTU: |
8950 | /* unsigned > 0 is equivalent to != 0 */ | |
8951 | if (const_op == 0) | |
8952 | code = NE; | |
d0ab8cd3 RK |
8953 | |
8954 | /* (unsigned) > 0x7fffffff is equivalent to < 0. */ | |
8955 | else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1) | |
8956 | { | |
8957 | const_op = 0, op1 = const0_rtx; | |
8958 | code = LT; | |
8959 | } | |
230d793d RS |
8960 | break; |
8961 | } | |
8962 | ||
8963 | /* Compute some predicates to simplify code below. */ | |
8964 | ||
8965 | equality_comparison_p = (code == EQ || code == NE); | |
8966 | sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0); | |
8967 | unsigned_comparison_p = (code == LTU || code == LEU || code == GTU | |
8968 | || code == LEU); | |
8969 | ||
6139ff20 RK |
8970 | /* If this is a sign bit comparison and we can do arithmetic in |
8971 | MODE, say that we will only be needing the sign bit of OP0. */ | |
8972 | if (sign_bit_comparison_p | |
8973 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) | |
8974 | op0 = force_to_mode (op0, mode, | |
8975 | ((HOST_WIDE_INT) 1 | |
8976 | << (GET_MODE_BITSIZE (mode) - 1)), | |
e3d616e3 | 8977 | NULL_RTX, 0); |
6139ff20 | 8978 | |
230d793d RS |
8979 | /* Now try cases based on the opcode of OP0. If none of the cases |
8980 | does a "continue", we exit this loop immediately after the | |
8981 | switch. */ | |
8982 | ||
8983 | switch (GET_CODE (op0)) | |
8984 | { | |
8985 | case ZERO_EXTRACT: | |
8986 | /* If we are extracting a single bit from a variable position in | |
8987 | a constant that has only a single bit set and are comparing it | |
8988 | with zero, we can convert this into an equality comparison | |
8989 | between the position and the location of the single bit. We can't | |
8990 | do this if bit endian and we don't have an extzv since we then | |
8991 | can't know what mode to use for the endianness adjustment. */ | |
8992 | ||
230d793d RS |
8993 | if (GET_CODE (XEXP (op0, 0)) == CONST_INT |
8994 | && XEXP (op0, 1) == const1_rtx | |
8995 | && equality_comparison_p && const_op == 0 | |
f76b9db2 ILT |
8996 | && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0 |
8997 | && (! BITS_BIG_ENDIAN | |
8998 | #ifdef HAVE_extzv | |
8999 | || HAVE_extzv | |
9000 | #endif | |
9001 | )) | |
230d793d | 9002 | { |
f76b9db2 ILT |
9003 | #ifdef HAVE_extzv |
9004 | if (BITS_BIG_ENDIAN) | |
9005 | i = (GET_MODE_BITSIZE | |
9006 | (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i); | |
230d793d RS |
9007 | #endif |
9008 | ||
9009 | op0 = XEXP (op0, 2); | |
5f4f0e22 | 9010 | op1 = GEN_INT (i); |
230d793d RS |
9011 | const_op = i; |
9012 | ||
9013 | /* Result is nonzero iff shift count is equal to I. */ | |
9014 | code = reverse_condition (code); | |
9015 | continue; | |
9016 | } | |
230d793d RS |
9017 | |
9018 | /* ... fall through ... */ | |
9019 | ||
9020 | case SIGN_EXTRACT: | |
9021 | tem = expand_compound_operation (op0); | |
9022 | if (tem != op0) | |
9023 | { | |
9024 | op0 = tem; | |
9025 | continue; | |
9026 | } | |
9027 | break; | |
9028 | ||
9029 | case NOT: | |
9030 | /* If testing for equality, we can take the NOT of the constant. */ | |
9031 | if (equality_comparison_p | |
9032 | && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0) | |
9033 | { | |
9034 | op0 = XEXP (op0, 0); | |
9035 | op1 = tem; | |
9036 | continue; | |
9037 | } | |
9038 | ||
9039 | /* If just looking at the sign bit, reverse the sense of the | |
9040 | comparison. */ | |
9041 | if (sign_bit_comparison_p) | |
9042 | { | |
9043 | op0 = XEXP (op0, 0); | |
9044 | code = (code == GE ? LT : GE); | |
9045 | continue; | |
9046 | } | |
9047 | break; | |
9048 | ||
9049 | case NEG: | |
9050 | /* If testing for equality, we can take the NEG of the constant. */ | |
9051 | if (equality_comparison_p | |
9052 | && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0) | |
9053 | { | |
9054 | op0 = XEXP (op0, 0); | |
9055 | op1 = tem; | |
9056 | continue; | |
9057 | } | |
9058 | ||
9059 | /* The remaining cases only apply to comparisons with zero. */ | |
9060 | if (const_op != 0) | |
9061 | break; | |
9062 | ||
9063 | /* When X is ABS or is known positive, | |
9064 | (neg X) is < 0 if and only if X != 0. */ | |
9065 | ||
9066 | if (sign_bit_comparison_p | |
9067 | && (GET_CODE (XEXP (op0, 0)) == ABS | |
5f4f0e22 | 9068 | || (mode_width <= HOST_BITS_PER_WIDE_INT |
951553af | 9069 | && (nonzero_bits (XEXP (op0, 0), mode) |
5f4f0e22 | 9070 | & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0))) |
230d793d RS |
9071 | { |
9072 | op0 = XEXP (op0, 0); | |
9073 | code = (code == LT ? NE : EQ); | |
9074 | continue; | |
9075 | } | |
9076 | ||
3bed8141 RK |
9077 | /* If we have NEG of something whose two high-order bits are the |
9078 | same, we know that "(-a) < 0" is equivalent to "a > 0". */ | |
9079 | if (num_sign_bit_copies (op0, mode) >= 2) | |
230d793d RS |
9080 | { |
9081 | op0 = XEXP (op0, 0); | |
9082 | code = swap_condition (code); | |
9083 | continue; | |
9084 | } | |
9085 | break; | |
9086 | ||
9087 | case ROTATE: | |
9088 | /* If we are testing equality and our count is a constant, we | |
9089 | can perform the inverse operation on our RHS. */ | |
9090 | if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9091 | && (tem = simplify_binary_operation (ROTATERT, mode, | |
9092 | op1, XEXP (op0, 1))) != 0) | |
9093 | { | |
9094 | op0 = XEXP (op0, 0); | |
9095 | op1 = tem; | |
9096 | continue; | |
9097 | } | |
9098 | ||
9099 | /* If we are doing a < 0 or >= 0 comparison, it means we are testing | |
9100 | a particular bit. Convert it to an AND of a constant of that | |
9101 | bit. This will be converted into a ZERO_EXTRACT. */ | |
9102 | if (const_op == 0 && sign_bit_comparison_p | |
9103 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
5f4f0e22 | 9104 | && mode_width <= HOST_BITS_PER_WIDE_INT) |
230d793d | 9105 | { |
5f4f0e22 CH |
9106 | op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), |
9107 | ((HOST_WIDE_INT) 1 | |
9108 | << (mode_width - 1 | |
9109 | - INTVAL (XEXP (op0, 1))))); | |
230d793d RS |
9110 | code = (code == LT ? NE : EQ); |
9111 | continue; | |
9112 | } | |
9113 | ||
9114 | /* ... fall through ... */ | |
9115 | ||
9116 | case ABS: | |
9117 | /* ABS is ignorable inside an equality comparison with zero. */ | |
9118 | if (const_op == 0 && equality_comparison_p) | |
9119 | { | |
9120 | op0 = XEXP (op0, 0); | |
9121 | continue; | |
9122 | } | |
9123 | break; | |
9124 | ||
9125 | ||
9126 | case SIGN_EXTEND: | |
9127 | /* Can simplify (compare (zero/sign_extend FOO) CONST) | |
9128 | to (compare FOO CONST) if CONST fits in FOO's mode and we | |
9129 | are either testing inequality or have an unsigned comparison | |
9130 | with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */ | |
9131 | if (! unsigned_comparison_p | |
9132 | && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) | |
5f4f0e22 CH |
9133 | <= HOST_BITS_PER_WIDE_INT) |
9134 | && ((unsigned HOST_WIDE_INT) const_op | |
9135 | < (((HOST_WIDE_INT) 1 | |
9136 | << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1))))) | |
230d793d RS |
9137 | { |
9138 | op0 = XEXP (op0, 0); | |
9139 | continue; | |
9140 | } | |
9141 | break; | |
9142 | ||
9143 | case SUBREG: | |
a687e897 RK |
9144 | /* Check for the case where we are comparing A - C1 with C2, |
9145 | both constants are smaller than 1/2 the maxium positive | |
9146 | value in MODE, and the comparison is equality or unsigned. | |
9147 | In that case, if A is either zero-extended to MODE or has | |
9148 | sufficient sign bits so that the high-order bit in MODE | |
9149 | is a copy of the sign in the inner mode, we can prove that it is | |
9150 | safe to do the operation in the wider mode. This simplifies | |
9151 | many range checks. */ | |
9152 | ||
9153 | if (mode_width <= HOST_BITS_PER_WIDE_INT | |
9154 | && subreg_lowpart_p (op0) | |
9155 | && GET_CODE (SUBREG_REG (op0)) == PLUS | |
9156 | && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT | |
9157 | && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0 | |
9158 | && (- INTVAL (XEXP (SUBREG_REG (op0), 1)) | |
9159 | < GET_MODE_MASK (mode) / 2) | |
adb7a1cb | 9160 | && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2 |
951553af RK |
9161 | && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0), |
9162 | GET_MODE (SUBREG_REG (op0))) | |
a687e897 RK |
9163 | & ~ GET_MODE_MASK (mode)) |
9164 | || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0), | |
9165 | GET_MODE (SUBREG_REG (op0))) | |
9166 | > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) | |
9167 | - GET_MODE_BITSIZE (mode))))) | |
9168 | { | |
9169 | op0 = SUBREG_REG (op0); | |
9170 | continue; | |
9171 | } | |
9172 | ||
fe0cf571 RK |
9173 | /* If the inner mode is narrower and we are extracting the low part, |
9174 | we can treat the SUBREG as if it were a ZERO_EXTEND. */ | |
9175 | if (subreg_lowpart_p (op0) | |
89f1c7f2 RS |
9176 | && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width) |
9177 | /* Fall through */ ; | |
9178 | else | |
230d793d RS |
9179 | break; |
9180 | ||
9181 | /* ... fall through ... */ | |
9182 | ||
9183 | case ZERO_EXTEND: | |
9184 | if ((unsigned_comparison_p || equality_comparison_p) | |
9185 | && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) | |
5f4f0e22 CH |
9186 | <= HOST_BITS_PER_WIDE_INT) |
9187 | && ((unsigned HOST_WIDE_INT) const_op | |
230d793d RS |
9188 | < GET_MODE_MASK (GET_MODE (XEXP (op0, 0))))) |
9189 | { | |
9190 | op0 = XEXP (op0, 0); | |
9191 | continue; | |
9192 | } | |
9193 | break; | |
9194 | ||
9195 | case PLUS: | |
20fdd649 | 9196 | /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do |
5089e22e | 9197 | this for equality comparisons due to pathological cases involving |
230d793d | 9198 | overflows. */ |
20fdd649 RK |
9199 | if (equality_comparison_p |
9200 | && 0 != (tem = simplify_binary_operation (MINUS, mode, | |
9201 | op1, XEXP (op0, 1)))) | |
230d793d RS |
9202 | { |
9203 | op0 = XEXP (op0, 0); | |
9204 | op1 = tem; | |
9205 | continue; | |
9206 | } | |
9207 | ||
9208 | /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */ | |
9209 | if (const_op == 0 && XEXP (op0, 1) == constm1_rtx | |
9210 | && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p) | |
9211 | { | |
9212 | op0 = XEXP (XEXP (op0, 0), 0); | |
9213 | code = (code == LT ? EQ : NE); | |
9214 | continue; | |
9215 | } | |
9216 | break; | |
9217 | ||
9218 | case MINUS: | |
20fdd649 RK |
9219 | /* (eq (minus A B) C) -> (eq A (plus B C)) or |
9220 | (eq B (minus A C)), whichever simplifies. We can only do | |
9221 | this for equality comparisons due to pathological cases involving | |
9222 | overflows. */ | |
9223 | if (equality_comparison_p | |
9224 | && 0 != (tem = simplify_binary_operation (PLUS, mode, | |
9225 | XEXP (op0, 1), op1))) | |
9226 | { | |
9227 | op0 = XEXP (op0, 0); | |
9228 | op1 = tem; | |
9229 | continue; | |
9230 | } | |
9231 | ||
9232 | if (equality_comparison_p | |
9233 | && 0 != (tem = simplify_binary_operation (MINUS, mode, | |
9234 | XEXP (op0, 0), op1))) | |
9235 | { | |
9236 | op0 = XEXP (op0, 1); | |
9237 | op1 = tem; | |
9238 | continue; | |
9239 | } | |
9240 | ||
230d793d RS |
9241 | /* The sign bit of (minus (ashiftrt X C) X), where C is the number |
9242 | of bits in X minus 1, is one iff X > 0. */ | |
9243 | if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT | |
9244 | && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT | |
9245 | && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1 | |
9246 | && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1))) | |
9247 | { | |
9248 | op0 = XEXP (op0, 1); | |
9249 | code = (code == GE ? LE : GT); | |
9250 | continue; | |
9251 | } | |
9252 | break; | |
9253 | ||
9254 | case XOR: | |
9255 | /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification | |
9256 | if C is zero or B is a constant. */ | |
9257 | if (equality_comparison_p | |
9258 | && 0 != (tem = simplify_binary_operation (XOR, mode, | |
9259 | XEXP (op0, 1), op1))) | |
9260 | { | |
9261 | op0 = XEXP (op0, 0); | |
9262 | op1 = tem; | |
9263 | continue; | |
9264 | } | |
9265 | break; | |
9266 | ||
9267 | case EQ: case NE: | |
9268 | case LT: case LTU: case LE: case LEU: | |
9269 | case GT: case GTU: case GE: case GEU: | |
9270 | /* We can't do anything if OP0 is a condition code value, rather | |
9271 | than an actual data value. */ | |
9272 | if (const_op != 0 | |
9273 | #ifdef HAVE_cc0 | |
9274 | || XEXP (op0, 0) == cc0_rtx | |
9275 | #endif | |
9276 | || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC) | |
9277 | break; | |
9278 | ||
9279 | /* Get the two operands being compared. */ | |
9280 | if (GET_CODE (XEXP (op0, 0)) == COMPARE) | |
9281 | tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1); | |
9282 | else | |
9283 | tem = XEXP (op0, 0), tem1 = XEXP (op0, 1); | |
9284 | ||
9285 | /* Check for the cases where we simply want the result of the | |
9286 | earlier test or the opposite of that result. */ | |
9287 | if (code == NE | |
9288 | || (code == EQ && reversible_comparison_p (op0)) | |
5f4f0e22 | 9289 | || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT |
3f508eca | 9290 | && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT |
230d793d | 9291 | && (STORE_FLAG_VALUE |
5f4f0e22 CH |
9292 | & (((HOST_WIDE_INT) 1 |
9293 | << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))) | |
230d793d RS |
9294 | && (code == LT |
9295 | || (code == GE && reversible_comparison_p (op0))))) | |
9296 | { | |
9297 | code = (code == LT || code == NE | |
9298 | ? GET_CODE (op0) : reverse_condition (GET_CODE (op0))); | |
9299 | op0 = tem, op1 = tem1; | |
9300 | continue; | |
9301 | } | |
9302 | break; | |
9303 | ||
9304 | case IOR: | |
9305 | /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero | |
9306 | iff X <= 0. */ | |
9307 | if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS | |
9308 | && XEXP (XEXP (op0, 0), 1) == constm1_rtx | |
9309 | && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1))) | |
9310 | { | |
9311 | op0 = XEXP (op0, 1); | |
9312 | code = (code == GE ? GT : LE); | |
9313 | continue; | |
9314 | } | |
9315 | break; | |
9316 | ||
9317 | case AND: | |
9318 | /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This | |
9319 | will be converted to a ZERO_EXTRACT later. */ | |
9320 | if (const_op == 0 && equality_comparison_p | |
45620ed4 | 9321 | && GET_CODE (XEXP (op0, 0)) == ASHIFT |
230d793d RS |
9322 | && XEXP (XEXP (op0, 0), 0) == const1_rtx) |
9323 | { | |
9324 | op0 = simplify_and_const_int | |
9325 | (op0, mode, gen_rtx_combine (LSHIFTRT, mode, | |
9326 | XEXP (op0, 1), | |
9327 | XEXP (XEXP (op0, 0), 1)), | |
5f4f0e22 | 9328 | (HOST_WIDE_INT) 1); |
230d793d RS |
9329 | continue; |
9330 | } | |
9331 | ||
9332 | /* If we are comparing (and (lshiftrt X C1) C2) for equality with | |
9333 | zero and X is a comparison and C1 and C2 describe only bits set | |
9334 | in STORE_FLAG_VALUE, we can compare with X. */ | |
9335 | if (const_op == 0 && equality_comparison_p | |
5f4f0e22 | 9336 | && mode_width <= HOST_BITS_PER_WIDE_INT |
230d793d RS |
9337 | && GET_CODE (XEXP (op0, 1)) == CONST_INT |
9338 | && GET_CODE (XEXP (op0, 0)) == LSHIFTRT | |
9339 | && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT | |
9340 | && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0 | |
5f4f0e22 | 9341 | && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT) |
230d793d RS |
9342 | { |
9343 | mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode)) | |
9344 | << INTVAL (XEXP (XEXP (op0, 0), 1))); | |
9345 | if ((~ STORE_FLAG_VALUE & mask) == 0 | |
9346 | && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<' | |
9347 | || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0 | |
9348 | && GET_RTX_CLASS (GET_CODE (tem)) == '<'))) | |
9349 | { | |
9350 | op0 = XEXP (XEXP (op0, 0), 0); | |
9351 | continue; | |
9352 | } | |
9353 | } | |
9354 | ||
9355 | /* If we are doing an equality comparison of an AND of a bit equal | |
9356 | to the sign bit, replace this with a LT or GE comparison of | |
9357 | the underlying value. */ | |
9358 | if (equality_comparison_p | |
9359 | && const_op == 0 | |
9360 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
5f4f0e22 | 9361 | && mode_width <= HOST_BITS_PER_WIDE_INT |
230d793d | 9362 | && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode)) |
5f4f0e22 | 9363 | == (HOST_WIDE_INT) 1 << (mode_width - 1))) |
230d793d RS |
9364 | { |
9365 | op0 = XEXP (op0, 0); | |
9366 | code = (code == EQ ? GE : LT); | |
9367 | continue; | |
9368 | } | |
9369 | ||
9370 | /* If this AND operation is really a ZERO_EXTEND from a narrower | |
9371 | mode, the constant fits within that mode, and this is either an | |
9372 | equality or unsigned comparison, try to do this comparison in | |
9373 | the narrower mode. */ | |
9374 | if ((equality_comparison_p || unsigned_comparison_p) | |
9375 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9376 | && (i = exact_log2 ((INTVAL (XEXP (op0, 1)) | |
9377 | & GET_MODE_MASK (mode)) | |
9378 | + 1)) >= 0 | |
9379 | && const_op >> i == 0 | |
9380 | && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode) | |
9381 | { | |
9382 | op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0)); | |
9383 | continue; | |
9384 | } | |
9385 | break; | |
9386 | ||
9387 | case ASHIFT: | |
45620ed4 | 9388 | /* If we have (compare (ashift FOO N) (const_int C)) and |
230d793d | 9389 | the high order N bits of FOO (N+1 if an inequality comparison) |
951553af | 9390 | are known to be zero, we can do this by comparing FOO with C |
230d793d RS |
9391 | shifted right N bits so long as the low-order N bits of C are |
9392 | zero. */ | |
9393 | if (GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9394 | && INTVAL (XEXP (op0, 1)) >= 0 | |
9395 | && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p) | |
5f4f0e22 CH |
9396 | < HOST_BITS_PER_WIDE_INT) |
9397 | && ((const_op | |
34785d05 | 9398 | & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0) |
5f4f0e22 | 9399 | && mode_width <= HOST_BITS_PER_WIDE_INT |
951553af | 9400 | && (nonzero_bits (XEXP (op0, 0), mode) |
230d793d RS |
9401 | & ~ (mask >> (INTVAL (XEXP (op0, 1)) |
9402 | + ! equality_comparison_p))) == 0) | |
9403 | { | |
9404 | const_op >>= INTVAL (XEXP (op0, 1)); | |
5f4f0e22 | 9405 | op1 = GEN_INT (const_op); |
230d793d RS |
9406 | op0 = XEXP (op0, 0); |
9407 | continue; | |
9408 | } | |
9409 | ||
dfbe1b2f | 9410 | /* If we are doing a sign bit comparison, it means we are testing |
230d793d | 9411 | a particular bit. Convert it to the appropriate AND. */ |
dfbe1b2f | 9412 | if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT |
5f4f0e22 | 9413 | && mode_width <= HOST_BITS_PER_WIDE_INT) |
230d793d | 9414 | { |
5f4f0e22 CH |
9415 | op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), |
9416 | ((HOST_WIDE_INT) 1 | |
9417 | << (mode_width - 1 | |
9418 | - INTVAL (XEXP (op0, 1))))); | |
230d793d RS |
9419 | code = (code == LT ? NE : EQ); |
9420 | continue; | |
9421 | } | |
dfbe1b2f RK |
9422 | |
9423 | /* If this an equality comparison with zero and we are shifting | |
9424 | the low bit to the sign bit, we can convert this to an AND of the | |
9425 | low-order bit. */ | |
9426 | if (const_op == 0 && equality_comparison_p | |
9427 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9428 | && INTVAL (XEXP (op0, 1)) == mode_width - 1) | |
9429 | { | |
5f4f0e22 CH |
9430 | op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), |
9431 | (HOST_WIDE_INT) 1); | |
dfbe1b2f RK |
9432 | continue; |
9433 | } | |
230d793d RS |
9434 | break; |
9435 | ||
9436 | case ASHIFTRT: | |
d0ab8cd3 RK |
9437 | /* If this is an equality comparison with zero, we can do this |
9438 | as a logical shift, which might be much simpler. */ | |
9439 | if (equality_comparison_p && const_op == 0 | |
9440 | && GET_CODE (XEXP (op0, 1)) == CONST_INT) | |
9441 | { | |
9442 | op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode, | |
9443 | XEXP (op0, 0), | |
9444 | INTVAL (XEXP (op0, 1))); | |
9445 | continue; | |
9446 | } | |
9447 | ||
230d793d RS |
9448 | /* If OP0 is a sign extension and CODE is not an unsigned comparison, |
9449 | do the comparison in a narrower mode. */ | |
9450 | if (! unsigned_comparison_p | |
9451 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9452 | && GET_CODE (XEXP (op0, 0)) == ASHIFT | |
9453 | && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1) | |
9454 | && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), | |
22331794 | 9455 | MODE_INT, 1)) != BLKmode |
5f4f0e22 CH |
9456 | && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode) |
9457 | || ((unsigned HOST_WIDE_INT) - const_op | |
9458 | <= GET_MODE_MASK (tmode)))) | |
230d793d RS |
9459 | { |
9460 | op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0)); | |
9461 | continue; | |
9462 | } | |
9463 | ||
9464 | /* ... fall through ... */ | |
9465 | case LSHIFTRT: | |
9466 | /* If we have (compare (xshiftrt FOO N) (const_int C)) and | |
951553af | 9467 | the low order N bits of FOO are known to be zero, we can do this |
230d793d RS |
9468 | by comparing FOO with C shifted left N bits so long as no |
9469 | overflow occurs. */ | |
9470 | if (GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9471 | && INTVAL (XEXP (op0, 1)) >= 0 | |
5f4f0e22 CH |
9472 | && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT |
9473 | && mode_width <= HOST_BITS_PER_WIDE_INT | |
951553af | 9474 | && (nonzero_bits (XEXP (op0, 0), mode) |
5f4f0e22 | 9475 | & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0 |
230d793d RS |
9476 | && (const_op == 0 |
9477 | || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1)) | |
9478 | < mode_width))) | |
9479 | { | |
9480 | const_op <<= INTVAL (XEXP (op0, 1)); | |
5f4f0e22 | 9481 | op1 = GEN_INT (const_op); |
230d793d RS |
9482 | op0 = XEXP (op0, 0); |
9483 | continue; | |
9484 | } | |
9485 | ||
9486 | /* If we are using this shift to extract just the sign bit, we | |
9487 | can replace this with an LT or GE comparison. */ | |
9488 | if (const_op == 0 | |
9489 | && (equality_comparison_p || sign_bit_comparison_p) | |
9490 | && GET_CODE (XEXP (op0, 1)) == CONST_INT | |
9491 | && INTVAL (XEXP (op0, 1)) == mode_width - 1) | |
9492 | { | |
9493 | op0 = XEXP (op0, 0); | |
9494 | code = (code == NE || code == GT ? LT : GE); | |
9495 | continue; | |
9496 | } | |
9497 | break; | |
9498 | } | |
9499 | ||
9500 | break; | |
9501 | } | |
9502 | ||
9503 | /* Now make any compound operations involved in this comparison. Then, | |
9504 | check for an outmost SUBREG on OP0 that isn't doing anything or is | |
9505 | paradoxical. The latter case can only occur when it is known that the | |
9506 | "extra" bits will be zero. Therefore, it is safe to remove the SUBREG. | |
9507 | We can never remove a SUBREG for a non-equality comparison because the | |
9508 | sign bit is in a different place in the underlying object. */ | |
9509 | ||
9510 | op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET); | |
9511 | op1 = make_compound_operation (op1, SET); | |
9512 | ||
9513 | if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0) | |
9514 | && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT | |
9515 | && (code == NE || code == EQ) | |
9516 | && ((GET_MODE_SIZE (GET_MODE (op0)) | |
9517 | > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))) | |
9518 | { | |
9519 | op0 = SUBREG_REG (op0); | |
9520 | op1 = gen_lowpart_for_combine (GET_MODE (op0), op1); | |
9521 | } | |
9522 | ||
9523 | else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0) | |
9524 | && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT | |
9525 | && (code == NE || code == EQ) | |
ac49a949 RS |
9526 | && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) |
9527 | <= HOST_BITS_PER_WIDE_INT) | |
951553af | 9528 | && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0))) |
230d793d RS |
9529 | & ~ GET_MODE_MASK (GET_MODE (op0))) == 0 |
9530 | && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), | |
9531 | op1), | |
951553af | 9532 | (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0))) |
230d793d RS |
9533 | & ~ GET_MODE_MASK (GET_MODE (op0))) == 0)) |
9534 | op0 = SUBREG_REG (op0), op1 = tem; | |
9535 | ||
9536 | /* We now do the opposite procedure: Some machines don't have compare | |
9537 | insns in all modes. If OP0's mode is an integer mode smaller than a | |
9538 | word and we can't do a compare in that mode, see if there is a larger | |
a687e897 RK |
9539 | mode for which we can do the compare. There are a number of cases in |
9540 | which we can use the wider mode. */ | |
230d793d RS |
9541 | |
9542 | mode = GET_MODE (op0); | |
9543 | if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT | |
9544 | && GET_MODE_SIZE (mode) < UNITS_PER_WORD | |
9545 | && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing) | |
9546 | for (tmode = GET_MODE_WIDER_MODE (mode); | |
5f4f0e22 CH |
9547 | (tmode != VOIDmode |
9548 | && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT); | |
230d793d | 9549 | tmode = GET_MODE_WIDER_MODE (tmode)) |
a687e897 | 9550 | if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing) |
230d793d | 9551 | { |
951553af | 9552 | /* If the only nonzero bits in OP0 and OP1 are those in the |
a687e897 RK |
9553 | narrower mode and this is an equality or unsigned comparison, |
9554 | we can use the wider mode. Similarly for sign-extended | |
7e4dc511 | 9555 | values, in which case it is true for all comparisons. */ |
a687e897 RK |
9556 | if (((code == EQ || code == NE |
9557 | || code == GEU || code == GTU || code == LEU || code == LTU) | |
951553af RK |
9558 | && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0 |
9559 | && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0) | |
7e4dc511 RK |
9560 | || ((num_sign_bit_copies (op0, tmode) |
9561 | > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode)) | |
a687e897 | 9562 | && (num_sign_bit_copies (op1, tmode) |
58744483 | 9563 | > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode)))) |
a687e897 RK |
9564 | { |
9565 | op0 = gen_lowpart_for_combine (tmode, op0); | |
9566 | op1 = gen_lowpart_for_combine (tmode, op1); | |
9567 | break; | |
9568 | } | |
230d793d | 9569 | |
a687e897 RK |
9570 | /* If this is a test for negative, we can make an explicit |
9571 | test of the sign bit. */ | |
9572 | ||
9573 | if (op1 == const0_rtx && (code == LT || code == GE) | |
9574 | && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) | |
230d793d | 9575 | { |
a687e897 RK |
9576 | op0 = gen_binary (AND, tmode, |
9577 | gen_lowpart_for_combine (tmode, op0), | |
5f4f0e22 CH |
9578 | GEN_INT ((HOST_WIDE_INT) 1 |
9579 | << (GET_MODE_BITSIZE (mode) - 1))); | |
230d793d | 9580 | code = (code == LT) ? NE : EQ; |
a687e897 | 9581 | break; |
230d793d | 9582 | } |
230d793d RS |
9583 | } |
9584 | ||
b7a775b2 RK |
9585 | #ifdef CANONICALIZE_COMPARISON |
9586 | /* If this machine only supports a subset of valid comparisons, see if we | |
9587 | can convert an unsupported one into a supported one. */ | |
9588 | CANONICALIZE_COMPARISON (code, op0, op1); | |
9589 | #endif | |
9590 | ||
230d793d RS |
9591 | *pop0 = op0; |
9592 | *pop1 = op1; | |
9593 | ||
9594 | return code; | |
9595 | } | |
9596 | \f | |
9597 | /* Return 1 if we know that X, a comparison operation, is not operating | |
9598 | on a floating-point value or is EQ or NE, meaning that we can safely | |
9599 | reverse it. */ | |
9600 | ||
9601 | static int | |
9602 | reversible_comparison_p (x) | |
9603 | rtx x; | |
9604 | { | |
9605 | if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT | |
7e2a0d8e | 9606 | || flag_fast_math |
230d793d RS |
9607 | || GET_CODE (x) == NE || GET_CODE (x) == EQ) |
9608 | return 1; | |
9609 | ||
9610 | switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0)))) | |
9611 | { | |
9612 | case MODE_INT: | |
3ad2180a RK |
9613 | case MODE_PARTIAL_INT: |
9614 | case MODE_COMPLEX_INT: | |
230d793d RS |
9615 | return 1; |
9616 | ||
9617 | case MODE_CC: | |
9210df58 RK |
9618 | /* If the mode of the condition codes tells us that this is safe, |
9619 | we need look no further. */ | |
9620 | if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0)))) | |
9621 | return 1; | |
9622 | ||
9623 | /* Otherwise try and find where the condition codes were last set and | |
9624 | use that. */ | |
230d793d RS |
9625 | x = get_last_value (XEXP (x, 0)); |
9626 | return (x && GET_CODE (x) == COMPARE | |
3ad2180a | 9627 | && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))); |
230d793d RS |
9628 | } |
9629 | ||
9630 | return 0; | |
9631 | } | |
9632 | \f | |
9633 | /* Utility function for following routine. Called when X is part of a value | |
9634 | being stored into reg_last_set_value. Sets reg_last_set_table_tick | |
9635 | for each register mentioned. Similar to mention_regs in cse.c */ | |
9636 | ||
9637 | static void | |
9638 | update_table_tick (x) | |
9639 | rtx x; | |
9640 | { | |
9641 | register enum rtx_code code = GET_CODE (x); | |
9642 | register char *fmt = GET_RTX_FORMAT (code); | |
9643 | register int i; | |
9644 | ||
9645 | if (code == REG) | |
9646 | { | |
9647 | int regno = REGNO (x); | |
9648 | int endregno = regno + (regno < FIRST_PSEUDO_REGISTER | |
9649 | ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1); | |
9650 | ||
9651 | for (i = regno; i < endregno; i++) | |
9652 | reg_last_set_table_tick[i] = label_tick; | |
9653 | ||
9654 | return; | |
9655 | } | |
9656 | ||
9657 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
9658 | /* Note that we can't have an "E" in values stored; see | |
9659 | get_last_value_validate. */ | |
9660 | if (fmt[i] == 'e') | |
9661 | update_table_tick (XEXP (x, i)); | |
9662 | } | |
9663 | ||
9664 | /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we | |
9665 | are saying that the register is clobbered and we no longer know its | |
7988fd36 RK |
9666 | value. If INSN is zero, don't update reg_last_set; this is only permitted |
9667 | with VALUE also zero and is used to invalidate the register. */ | |
230d793d RS |
9668 | |
9669 | static void | |
9670 | record_value_for_reg (reg, insn, value) | |
9671 | rtx reg; | |
9672 | rtx insn; | |
9673 | rtx value; | |
9674 | { | |
9675 | int regno = REGNO (reg); | |
9676 | int endregno = regno + (regno < FIRST_PSEUDO_REGISTER | |
9677 | ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1); | |
9678 | int i; | |
9679 | ||
9680 | /* If VALUE contains REG and we have a previous value for REG, substitute | |
9681 | the previous value. */ | |
9682 | if (value && insn && reg_overlap_mentioned_p (reg, value)) | |
9683 | { | |
9684 | rtx tem; | |
9685 | ||
9686 | /* Set things up so get_last_value is allowed to see anything set up to | |
9687 | our insn. */ | |
9688 | subst_low_cuid = INSN_CUID (insn); | |
9689 | tem = get_last_value (reg); | |
9690 | ||
9691 | if (tem) | |
9692 | value = replace_rtx (copy_rtx (value), reg, tem); | |
9693 | } | |
9694 | ||
9695 | /* For each register modified, show we don't know its value, that | |
ef026f91 RS |
9696 | we don't know about its bitwise content, that its value has been |
9697 | updated, and that we don't know the location of the death of the | |
9698 | register. */ | |
230d793d RS |
9699 | for (i = regno; i < endregno; i ++) |
9700 | { | |
9701 | if (insn) | |
9702 | reg_last_set[i] = insn; | |
9703 | reg_last_set_value[i] = 0; | |
ef026f91 RS |
9704 | reg_last_set_mode[i] = 0; |
9705 | reg_last_set_nonzero_bits[i] = 0; | |
9706 | reg_last_set_sign_bit_copies[i] = 0; | |
230d793d RS |
9707 | reg_last_death[i] = 0; |
9708 | } | |
9709 | ||
9710 | /* Mark registers that are being referenced in this value. */ | |
9711 | if (value) | |
9712 | update_table_tick (value); | |
9713 | ||
9714 | /* Now update the status of each register being set. | |
9715 | If someone is using this register in this block, set this register | |
9716 | to invalid since we will get confused between the two lives in this | |
9717 | basic block. This makes using this register always invalid. In cse, we | |
9718 | scan the table to invalidate all entries using this register, but this | |
9719 | is too much work for us. */ | |
9720 | ||
9721 | for (i = regno; i < endregno; i++) | |
9722 | { | |
9723 | reg_last_set_label[i] = label_tick; | |
9724 | if (value && reg_last_set_table_tick[i] == label_tick) | |
9725 | reg_last_set_invalid[i] = 1; | |
9726 | else | |
9727 | reg_last_set_invalid[i] = 0; | |
9728 | } | |
9729 | ||
9730 | /* The value being assigned might refer to X (like in "x++;"). In that | |
9731 | case, we must replace it with (clobber (const_int 0)) to prevent | |
9732 | infinite loops. */ | |
9733 | if (value && ! get_last_value_validate (&value, | |
9734 | reg_last_set_label[regno], 0)) | |
9735 | { | |
9736 | value = copy_rtx (value); | |
9737 | if (! get_last_value_validate (&value, reg_last_set_label[regno], 1)) | |
9738 | value = 0; | |
9739 | } | |
9740 | ||
55310dad RK |
9741 | /* For the main register being modified, update the value, the mode, the |
9742 | nonzero bits, and the number of sign bit copies. */ | |
9743 | ||
230d793d RS |
9744 | reg_last_set_value[regno] = value; |
9745 | ||
55310dad RK |
9746 | if (value) |
9747 | { | |
2afabb48 | 9748 | subst_low_cuid = INSN_CUID (insn); |
55310dad RK |
9749 | reg_last_set_mode[regno] = GET_MODE (reg); |
9750 | reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg)); | |
9751 | reg_last_set_sign_bit_copies[regno] | |
9752 | = num_sign_bit_copies (value, GET_MODE (reg)); | |
9753 | } | |
230d793d RS |
9754 | } |
9755 | ||
9756 | /* Used for communication between the following two routines. */ | |
9757 | static rtx record_dead_insn; | |
9758 | ||
9759 | /* Called via note_stores from record_dead_and_set_regs to handle one | |
9760 | SET or CLOBBER in an insn. */ | |
9761 | ||
9762 | static void | |
9763 | record_dead_and_set_regs_1 (dest, setter) | |
9764 | rtx dest, setter; | |
9765 | { | |
ca89d290 RK |
9766 | if (GET_CODE (dest) == SUBREG) |
9767 | dest = SUBREG_REG (dest); | |
9768 | ||
230d793d RS |
9769 | if (GET_CODE (dest) == REG) |
9770 | { | |
9771 | /* If we are setting the whole register, we know its value. Otherwise | |
9772 | show that we don't know the value. We can handle SUBREG in | |
9773 | some cases. */ | |
9774 | if (GET_CODE (setter) == SET && dest == SET_DEST (setter)) | |
9775 | record_value_for_reg (dest, record_dead_insn, SET_SRC (setter)); | |
9776 | else if (GET_CODE (setter) == SET | |
9777 | && GET_CODE (SET_DEST (setter)) == SUBREG | |
9778 | && SUBREG_REG (SET_DEST (setter)) == dest | |
90bf8081 | 9779 | && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD |
230d793d | 9780 | && subreg_lowpart_p (SET_DEST (setter))) |
d0ab8cd3 RK |
9781 | record_value_for_reg (dest, record_dead_insn, |
9782 | gen_lowpart_for_combine (GET_MODE (dest), | |
9783 | SET_SRC (setter))); | |
230d793d | 9784 | else |
5f4f0e22 | 9785 | record_value_for_reg (dest, record_dead_insn, NULL_RTX); |
230d793d RS |
9786 | } |
9787 | else if (GET_CODE (dest) == MEM | |
9788 | /* Ignore pushes, they clobber nothing. */ | |
9789 | && ! push_operand (dest, GET_MODE (dest))) | |
9790 | mem_last_set = INSN_CUID (record_dead_insn); | |
9791 | } | |
9792 | ||
9793 | /* Update the records of when each REG was most recently set or killed | |
9794 | for the things done by INSN. This is the last thing done in processing | |
9795 | INSN in the combiner loop. | |
9796 | ||
ef026f91 RS |
9797 | We update reg_last_set, reg_last_set_value, reg_last_set_mode, |
9798 | reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death, | |
9799 | and also the similar information mem_last_set (which insn most recently | |
9800 | modified memory) and last_call_cuid (which insn was the most recent | |
9801 | subroutine call). */ | |
230d793d RS |
9802 | |
9803 | static void | |
9804 | record_dead_and_set_regs (insn) | |
9805 | rtx insn; | |
9806 | { | |
9807 | register rtx link; | |
55310dad RK |
9808 | int i; |
9809 | ||
230d793d RS |
9810 | for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
9811 | { | |
dbc131f3 RK |
9812 | if (REG_NOTE_KIND (link) == REG_DEAD |
9813 | && GET_CODE (XEXP (link, 0)) == REG) | |
9814 | { | |
9815 | int regno = REGNO (XEXP (link, 0)); | |
9816 | int endregno | |
9817 | = regno + (regno < FIRST_PSEUDO_REGISTER | |
9818 | ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0))) | |
9819 | : 1); | |
dbc131f3 RK |
9820 | |
9821 | for (i = regno; i < endregno; i++) | |
9822 | reg_last_death[i] = insn; | |
9823 | } | |
230d793d | 9824 | else if (REG_NOTE_KIND (link) == REG_INC) |
5f4f0e22 | 9825 | record_value_for_reg (XEXP (link, 0), insn, NULL_RTX); |
230d793d RS |
9826 | } |
9827 | ||
9828 | if (GET_CODE (insn) == CALL_INSN) | |
55310dad RK |
9829 | { |
9830 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) | |
9831 | if (call_used_regs[i]) | |
9832 | { | |
9833 | reg_last_set_value[i] = 0; | |
ef026f91 RS |
9834 | reg_last_set_mode[i] = 0; |
9835 | reg_last_set_nonzero_bits[i] = 0; | |
9836 | reg_last_set_sign_bit_copies[i] = 0; | |
55310dad RK |
9837 | reg_last_death[i] = 0; |
9838 | } | |
9839 | ||
9840 | last_call_cuid = mem_last_set = INSN_CUID (insn); | |
9841 | } | |
230d793d RS |
9842 | |
9843 | record_dead_insn = insn; | |
9844 | note_stores (PATTERN (insn), record_dead_and_set_regs_1); | |
9845 | } | |
9846 | \f | |
9847 | /* Utility routine for the following function. Verify that all the registers | |
9848 | mentioned in *LOC are valid when *LOC was part of a value set when | |
9849 | label_tick == TICK. Return 0 if some are not. | |
9850 | ||
9851 | If REPLACE is non-zero, replace the invalid reference with | |
9852 | (clobber (const_int 0)) and return 1. This replacement is useful because | |
9853 | we often can get useful information about the form of a value (e.g., if | |
9854 | it was produced by a shift that always produces -1 or 0) even though | |
9855 | we don't know exactly what registers it was produced from. */ | |
9856 | ||
9857 | static int | |
9858 | get_last_value_validate (loc, tick, replace) | |
9859 | rtx *loc; | |
9860 | int tick; | |
9861 | int replace; | |
9862 | { | |
9863 | rtx x = *loc; | |
9864 | char *fmt = GET_RTX_FORMAT (GET_CODE (x)); | |
9865 | int len = GET_RTX_LENGTH (GET_CODE (x)); | |
9866 | int i; | |
9867 | ||
9868 | if (GET_CODE (x) == REG) | |
9869 | { | |
9870 | int regno = REGNO (x); | |
9871 | int endregno = regno + (regno < FIRST_PSEUDO_REGISTER | |
9872 | ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1); | |
9873 | int j; | |
9874 | ||
9875 | for (j = regno; j < endregno; j++) | |
9876 | if (reg_last_set_invalid[j] | |
9877 | /* If this is a pseudo-register that was only set once, it is | |
9878 | always valid. */ | |
9879 | || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1) | |
9880 | && reg_last_set_label[j] > tick)) | |
9881 | { | |
9882 | if (replace) | |
9883 | *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx); | |
9884 | return replace; | |
9885 | } | |
9886 | ||
9887 | return 1; | |
9888 | } | |
9889 | ||
9890 | for (i = 0; i < len; i++) | |
9891 | if ((fmt[i] == 'e' | |
9892 | && get_last_value_validate (&XEXP (x, i), tick, replace) == 0) | |
9893 | /* Don't bother with these. They shouldn't occur anyway. */ | |
9894 | || fmt[i] == 'E') | |
9895 | return 0; | |
9896 | ||
9897 | /* If we haven't found a reason for it to be invalid, it is valid. */ | |
9898 | return 1; | |
9899 | } | |
9900 | ||
9901 | /* Get the last value assigned to X, if known. Some registers | |
9902 | in the value may be replaced with (clobber (const_int 0)) if their value | |
9903 | is known longer known reliably. */ | |
9904 | ||
9905 | static rtx | |
9906 | get_last_value (x) | |
9907 | rtx x; | |
9908 | { | |
9909 | int regno; | |
9910 | rtx value; | |
9911 | ||
9912 | /* If this is a non-paradoxical SUBREG, get the value of its operand and | |
9913 | then convert it to the desired mode. If this is a paradoxical SUBREG, | |
9914 | we cannot predict what values the "extra" bits might have. */ | |
9915 | if (GET_CODE (x) == SUBREG | |
9916 | && subreg_lowpart_p (x) | |
9917 | && (GET_MODE_SIZE (GET_MODE (x)) | |
9918 | <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) | |
9919 | && (value = get_last_value (SUBREG_REG (x))) != 0) | |
9920 | return gen_lowpart_for_combine (GET_MODE (x), value); | |
9921 | ||
9922 | if (GET_CODE (x) != REG) | |
9923 | return 0; | |
9924 | ||
9925 | regno = REGNO (x); | |
9926 | value = reg_last_set_value[regno]; | |
9927 | ||
d0ab8cd3 | 9928 | /* If we don't have a value or if it isn't for this basic block, return 0. */ |
230d793d RS |
9929 | |
9930 | if (value == 0 | |
9931 | || (reg_n_sets[regno] != 1 | |
55310dad | 9932 | && reg_last_set_label[regno] != label_tick)) |
230d793d RS |
9933 | return 0; |
9934 | ||
4255220d | 9935 | /* If the value was set in a later insn than the ones we are processing, |
4090a6b3 RK |
9936 | we can't use it even if the register was only set once, but make a quick |
9937 | check to see if the previous insn set it to something. This is commonly | |
9938 | the case when the same pseudo is used by repeated insns. */ | |
d0ab8cd3 | 9939 | |
4090a6b3 | 9940 | if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid) |
d0ab8cd3 RK |
9941 | { |
9942 | rtx insn, set; | |
9943 | ||
4255220d JW |
9944 | /* Skip over USE insns. They are not useful here, and they may have |
9945 | been made by combine, in which case they do not have a INSN_CUID | |
d6c80562 JW |
9946 | value. We can't use prev_real_insn, because that would incorrectly |
9947 | take us backwards across labels. */ | |
9948 | for (insn = prev_nonnote_insn (subst_insn); | |
9949 | insn && ((GET_CODE (insn) == INSN | |
9950 | && GET_CODE (PATTERN (insn)) == USE) | |
4255220d | 9951 | || INSN_CUID (insn) >= subst_low_cuid); |
d6c80562 | 9952 | insn = prev_nonnote_insn (insn)) |
3adde2a5 | 9953 | ; |
d0ab8cd3 RK |
9954 | |
9955 | if (insn | |
9956 | && (set = single_set (insn)) != 0 | |
9957 | && rtx_equal_p (SET_DEST (set), x)) | |
9958 | { | |
9959 | value = SET_SRC (set); | |
9960 | ||
9961 | /* Make sure that VALUE doesn't reference X. Replace any | |
9962 | expliit references with a CLOBBER. If there are any remaining | |
9963 | references (rare), don't use the value. */ | |
9964 | ||
9965 | if (reg_mentioned_p (x, value)) | |
9966 | value = replace_rtx (copy_rtx (value), x, | |
9967 | gen_rtx (CLOBBER, GET_MODE (x), const0_rtx)); | |
9968 | ||
9969 | if (reg_overlap_mentioned_p (x, value)) | |
9970 | return 0; | |
9971 | } | |
9972 | else | |
9973 | return 0; | |
9974 | } | |
9975 | ||
9976 | /* If the value has all its registers valid, return it. */ | |
230d793d RS |
9977 | if (get_last_value_validate (&value, reg_last_set_label[regno], 0)) |
9978 | return value; | |
9979 | ||
9980 | /* Otherwise, make a copy and replace any invalid register with | |
9981 | (clobber (const_int 0)). If that fails for some reason, return 0. */ | |
9982 | ||
9983 | value = copy_rtx (value); | |
9984 | if (get_last_value_validate (&value, reg_last_set_label[regno], 1)) | |
9985 | return value; | |
9986 | ||
9987 | return 0; | |
9988 | } | |
9989 | \f | |
9990 | /* Return nonzero if expression X refers to a REG or to memory | |
9991 | that is set in an instruction more recent than FROM_CUID. */ | |
9992 | ||
9993 | static int | |
9994 | use_crosses_set_p (x, from_cuid) | |
9995 | register rtx x; | |
9996 | int from_cuid; | |
9997 | { | |
9998 | register char *fmt; | |
9999 | register int i; | |
10000 | register enum rtx_code code = GET_CODE (x); | |
10001 | ||
10002 | if (code == REG) | |
10003 | { | |
10004 | register int regno = REGNO (x); | |
e28f5732 RK |
10005 | int endreg = regno + (regno < FIRST_PSEUDO_REGISTER |
10006 | ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1); | |
10007 | ||
230d793d RS |
10008 | #ifdef PUSH_ROUNDING |
10009 | /* Don't allow uses of the stack pointer to be moved, | |
10010 | because we don't know whether the move crosses a push insn. */ | |
10011 | if (regno == STACK_POINTER_REGNUM) | |
10012 | return 1; | |
10013 | #endif | |
e28f5732 RK |
10014 | for (;regno < endreg; regno++) |
10015 | if (reg_last_set[regno] | |
10016 | && INSN_CUID (reg_last_set[regno]) > from_cuid) | |
10017 | return 1; | |
10018 | return 0; | |
230d793d RS |
10019 | } |
10020 | ||
10021 | if (code == MEM && mem_last_set > from_cuid) | |
10022 | return 1; | |
10023 | ||
10024 | fmt = GET_RTX_FORMAT (code); | |
10025 | ||
10026 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
10027 | { | |
10028 | if (fmt[i] == 'E') | |
10029 | { | |
10030 | register int j; | |
10031 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
10032 | if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid)) | |
10033 | return 1; | |
10034 | } | |
10035 | else if (fmt[i] == 'e' | |
10036 | && use_crosses_set_p (XEXP (x, i), from_cuid)) | |
10037 | return 1; | |
10038 | } | |
10039 | return 0; | |
10040 | } | |
10041 | \f | |
10042 | /* Define three variables used for communication between the following | |
10043 | routines. */ | |
10044 | ||
10045 | static int reg_dead_regno, reg_dead_endregno; | |
10046 | static int reg_dead_flag; | |
10047 | ||
10048 | /* Function called via note_stores from reg_dead_at_p. | |
10049 | ||
10050 | If DEST is within [reg_dead_rengno, reg_dead_endregno), set | |
10051 | reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */ | |
10052 | ||
10053 | static void | |
10054 | reg_dead_at_p_1 (dest, x) | |
10055 | rtx dest; | |
10056 | rtx x; | |
10057 | { | |
10058 | int regno, endregno; | |
10059 | ||
10060 | if (GET_CODE (dest) != REG) | |
10061 | return; | |
10062 | ||
10063 | regno = REGNO (dest); | |
10064 | endregno = regno + (regno < FIRST_PSEUDO_REGISTER | |
10065 | ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1); | |
10066 | ||
10067 | if (reg_dead_endregno > regno && reg_dead_regno < endregno) | |
10068 | reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1; | |
10069 | } | |
10070 | ||
10071 | /* Return non-zero if REG is known to be dead at INSN. | |
10072 | ||
10073 | We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER | |
10074 | referencing REG, it is dead. If we hit a SET referencing REG, it is | |
10075 | live. Otherwise, see if it is live or dead at the start of the basic | |
6e25d159 RK |
10076 | block we are in. Hard regs marked as being live in NEWPAT_USED_REGS |
10077 | must be assumed to be always live. */ | |
230d793d RS |
10078 | |
10079 | static int | |
10080 | reg_dead_at_p (reg, insn) | |
10081 | rtx reg; | |
10082 | rtx insn; | |
10083 | { | |
10084 | int block, i; | |
10085 | ||
10086 | /* Set variables for reg_dead_at_p_1. */ | |
10087 | reg_dead_regno = REGNO (reg); | |
10088 | reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER | |
10089 | ? HARD_REGNO_NREGS (reg_dead_regno, | |
10090 | GET_MODE (reg)) | |
10091 | : 1); | |
10092 | ||
10093 | reg_dead_flag = 0; | |
10094 | ||
6e25d159 RK |
10095 | /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */ |
10096 | if (reg_dead_regno < FIRST_PSEUDO_REGISTER) | |
10097 | { | |
10098 | for (i = reg_dead_regno; i < reg_dead_endregno; i++) | |
10099 | if (TEST_HARD_REG_BIT (newpat_used_regs, i)) | |
10100 | return 0; | |
10101 | } | |
10102 | ||
230d793d RS |
10103 | /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or |
10104 | beginning of function. */ | |
10105 | for (; insn && GET_CODE (insn) != CODE_LABEL; | |
10106 | insn = prev_nonnote_insn (insn)) | |
10107 | { | |
10108 | note_stores (PATTERN (insn), reg_dead_at_p_1); | |
10109 | if (reg_dead_flag) | |
10110 | return reg_dead_flag == 1 ? 1 : 0; | |
10111 | ||
10112 | if (find_regno_note (insn, REG_DEAD, reg_dead_regno)) | |
10113 | return 1; | |
10114 | } | |
10115 | ||
10116 | /* Get the basic block number that we were in. */ | |
10117 | if (insn == 0) | |
10118 | block = 0; | |
10119 | else | |
10120 | { | |
10121 | for (block = 0; block < n_basic_blocks; block++) | |
10122 | if (insn == basic_block_head[block]) | |
10123 | break; | |
10124 | ||
10125 | if (block == n_basic_blocks) | |
10126 | return 0; | |
10127 | } | |
10128 | ||
10129 | for (i = reg_dead_regno; i < reg_dead_endregno; i++) | |
5f4f0e22 CH |
10130 | if (basic_block_live_at_start[block][i / REGSET_ELT_BITS] |
10131 | & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))) | |
230d793d RS |
10132 | return 0; |
10133 | ||
10134 | return 1; | |
10135 | } | |
6e25d159 RK |
10136 | \f |
10137 | /* Note hard registers in X that are used. This code is similar to | |
10138 | that in flow.c, but much simpler since we don't care about pseudos. */ | |
10139 | ||
10140 | static void | |
10141 | mark_used_regs_combine (x) | |
10142 | rtx x; | |
10143 | { | |
10144 | register RTX_CODE code = GET_CODE (x); | |
10145 | register int regno; | |
10146 | int i; | |
10147 | ||
10148 | switch (code) | |
10149 | { | |
10150 | case LABEL_REF: | |
10151 | case SYMBOL_REF: | |
10152 | case CONST_INT: | |
10153 | case CONST: | |
10154 | case CONST_DOUBLE: | |
10155 | case PC: | |
10156 | case ADDR_VEC: | |
10157 | case ADDR_DIFF_VEC: | |
10158 | case ASM_INPUT: | |
10159 | #ifdef HAVE_cc0 | |
10160 | /* CC0 must die in the insn after it is set, so we don't need to take | |
10161 | special note of it here. */ | |
10162 | case CC0: | |
10163 | #endif | |
10164 | return; | |
10165 | ||
10166 | case CLOBBER: | |
10167 | /* If we are clobbering a MEM, mark any hard registers inside the | |
10168 | address as used. */ | |
10169 | if (GET_CODE (XEXP (x, 0)) == MEM) | |
10170 | mark_used_regs_combine (XEXP (XEXP (x, 0), 0)); | |
10171 | return; | |
10172 | ||
10173 | case REG: | |
10174 | regno = REGNO (x); | |
10175 | /* A hard reg in a wide mode may really be multiple registers. | |
10176 | If so, mark all of them just like the first. */ | |
10177 | if (regno < FIRST_PSEUDO_REGISTER) | |
10178 | { | |
10179 | /* None of this applies to the stack, frame or arg pointers */ | |
10180 | if (regno == STACK_POINTER_REGNUM | |
10181 | #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM | |
10182 | || regno == HARD_FRAME_POINTER_REGNUM | |
10183 | #endif | |
10184 | #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM | |
10185 | || (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) | |
10186 | #endif | |
10187 | || regno == FRAME_POINTER_REGNUM) | |
10188 | return; | |
10189 | ||
10190 | i = HARD_REGNO_NREGS (regno, GET_MODE (x)); | |
10191 | while (i-- > 0) | |
10192 | SET_HARD_REG_BIT (newpat_used_regs, regno + i); | |
10193 | } | |
10194 | return; | |
10195 | ||
10196 | case SET: | |
10197 | { | |
10198 | /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in | |
10199 | the address. */ | |
10200 | register rtx testreg = SET_DEST (x); | |
10201 | ||
e048778f RK |
10202 | while (GET_CODE (testreg) == SUBREG |
10203 | || GET_CODE (testreg) == ZERO_EXTRACT | |
10204 | || GET_CODE (testreg) == SIGN_EXTRACT | |
10205 | || GET_CODE (testreg) == STRICT_LOW_PART) | |
6e25d159 RK |
10206 | testreg = XEXP (testreg, 0); |
10207 | ||
10208 | if (GET_CODE (testreg) == MEM) | |
10209 | mark_used_regs_combine (XEXP (testreg, 0)); | |
10210 | ||
10211 | mark_used_regs_combine (SET_SRC (x)); | |
10212 | return; | |
10213 | } | |
10214 | } | |
10215 | ||
10216 | /* Recursively scan the operands of this expression. */ | |
10217 | ||
10218 | { | |
10219 | register char *fmt = GET_RTX_FORMAT (code); | |
10220 | ||
10221 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) | |
10222 | { | |
10223 | if (fmt[i] == 'e') | |
10224 | mark_used_regs_combine (XEXP (x, i)); | |
10225 | else if (fmt[i] == 'E') | |
10226 | { | |
10227 | register int j; | |
10228 | ||
10229 | for (j = 0; j < XVECLEN (x, i); j++) | |
10230 | mark_used_regs_combine (XVECEXP (x, i, j)); | |
10231 | } | |
10232 | } | |
10233 | } | |
10234 | } | |
10235 | ||
230d793d RS |
10236 | \f |
10237 | /* Remove register number REGNO from the dead registers list of INSN. | |
10238 | ||
10239 | Return the note used to record the death, if there was one. */ | |
10240 | ||
10241 | rtx | |
10242 | remove_death (regno, insn) | |
10243 | int regno; | |
10244 | rtx insn; | |
10245 | { | |
10246 | register rtx note = find_regno_note (insn, REG_DEAD, regno); | |
10247 | ||
10248 | if (note) | |
1a26b032 RK |
10249 | { |
10250 | reg_n_deaths[regno]--; | |
10251 | remove_note (insn, note); | |
10252 | } | |
230d793d RS |
10253 | |
10254 | return note; | |
10255 | } | |
10256 | ||
10257 | /* For each register (hardware or pseudo) used within expression X, if its | |
10258 | death is in an instruction with cuid between FROM_CUID (inclusive) and | |
10259 | TO_INSN (exclusive), put a REG_DEAD note for that register in the | |
10260 | list headed by PNOTES. | |
10261 | ||
10262 | This is done when X is being merged by combination into TO_INSN. These | |
10263 | notes will then be distributed as needed. */ | |
10264 | ||
10265 | static void | |
10266 | move_deaths (x, from_cuid, to_insn, pnotes) | |
10267 | rtx x; | |
10268 | int from_cuid; | |
10269 | rtx to_insn; | |
10270 | rtx *pnotes; | |
10271 | { | |
10272 | register char *fmt; | |
10273 | register int len, i; | |
10274 | register enum rtx_code code = GET_CODE (x); | |
10275 | ||
10276 | if (code == REG) | |
10277 | { | |
10278 | register int regno = REGNO (x); | |
10279 | register rtx where_dead = reg_last_death[regno]; | |
10280 | ||
10281 | if (where_dead && INSN_CUID (where_dead) >= from_cuid | |
10282 | && INSN_CUID (where_dead) < INSN_CUID (to_insn)) | |
10283 | { | |
dbc131f3 | 10284 | rtx note = remove_death (regno, where_dead); |
230d793d RS |
10285 | |
10286 | /* It is possible for the call above to return 0. This can occur | |
10287 | when reg_last_death points to I2 or I1 that we combined with. | |
dbc131f3 RK |
10288 | In that case make a new note. |
10289 | ||
10290 | We must also check for the case where X is a hard register | |
10291 | and NOTE is a death note for a range of hard registers | |
10292 | including X. In that case, we must put REG_DEAD notes for | |
10293 | the remaining registers in place of NOTE. */ | |
10294 | ||
10295 | if (note != 0 && regno < FIRST_PSEUDO_REGISTER | |
10296 | && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0))) | |
10297 | != GET_MODE_SIZE (GET_MODE (x)))) | |
10298 | { | |
10299 | int deadregno = REGNO (XEXP (note, 0)); | |
10300 | int deadend | |
10301 | = (deadregno + HARD_REGNO_NREGS (deadregno, | |
10302 | GET_MODE (XEXP (note, 0)))); | |
10303 | int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); | |
10304 | int i; | |
10305 | ||
10306 | for (i = deadregno; i < deadend; i++) | |
10307 | if (i < regno || i >= ourend) | |
10308 | REG_NOTES (where_dead) | |
10309 | = gen_rtx (EXPR_LIST, REG_DEAD, | |
36b878d1 | 10310 | gen_rtx (REG, reg_raw_mode[i], i), |
dbc131f3 RK |
10311 | REG_NOTES (where_dead)); |
10312 | } | |
230d793d | 10313 | |
dbc131f3 | 10314 | if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x)) |
230d793d RS |
10315 | { |
10316 | XEXP (note, 1) = *pnotes; | |
10317 | *pnotes = note; | |
10318 | } | |
10319 | else | |
10320 | *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes); | |
1a26b032 RK |
10321 | |
10322 | reg_n_deaths[regno]++; | |
230d793d RS |
10323 | } |
10324 | ||
10325 | return; | |
10326 | } | |
10327 | ||
10328 | else if (GET_CODE (x) == SET) | |
10329 | { | |
10330 | rtx dest = SET_DEST (x); | |
10331 | ||
10332 | move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes); | |
10333 | ||
a7c99304 RK |
10334 | /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG |
10335 | that accesses one word of a multi-word item, some | |
10336 | piece of everything register in the expression is used by | |
10337 | this insn, so remove any old death. */ | |
10338 | ||
10339 | if (GET_CODE (dest) == ZERO_EXTRACT | |
10340 | || GET_CODE (dest) == STRICT_LOW_PART | |
10341 | || (GET_CODE (dest) == SUBREG | |
10342 | && (((GET_MODE_SIZE (GET_MODE (dest)) | |
10343 | + UNITS_PER_WORD - 1) / UNITS_PER_WORD) | |
10344 | == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) | |
10345 | + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))) | |
230d793d | 10346 | { |
a7c99304 RK |
10347 | move_deaths (dest, from_cuid, to_insn, pnotes); |
10348 | return; | |
230d793d RS |
10349 | } |
10350 | ||
a7c99304 RK |
10351 | /* If this is some other SUBREG, we know it replaces the entire |
10352 | value, so use that as the destination. */ | |
10353 | if (GET_CODE (dest) == SUBREG) | |
10354 | dest = SUBREG_REG (dest); | |
10355 | ||
10356 | /* If this is a MEM, adjust deaths of anything used in the address. | |
10357 | For a REG (the only other possibility), the entire value is | |
10358 | being replaced so the old value is not used in this insn. */ | |
230d793d RS |
10359 | |
10360 | if (GET_CODE (dest) == MEM) | |
10361 | move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes); | |
10362 | return; | |
10363 | } | |
10364 | ||
10365 | else if (GET_CODE (x) == CLOBBER) | |
10366 | return; | |
10367 | ||
10368 | len = GET_RTX_LENGTH (code); | |
10369 | fmt = GET_RTX_FORMAT (code); | |
10370 | ||
10371 | for (i = 0; i < len; i++) | |
10372 | { | |
10373 | if (fmt[i] == 'E') | |
10374 | { | |
10375 | register int j; | |
10376 | for (j = XVECLEN (x, i) - 1; j >= 0; j--) | |
10377 | move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes); | |
10378 | } | |
10379 | else if (fmt[i] == 'e') | |
10380 | move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes); | |
10381 | } | |
10382 | } | |
10383 | \f | |
a7c99304 RK |
10384 | /* Return 1 if X is the target of a bit-field assignment in BODY, the |
10385 | pattern of an insn. X must be a REG. */ | |
230d793d RS |
10386 | |
10387 | static int | |
a7c99304 RK |
10388 | reg_bitfield_target_p (x, body) |
10389 | rtx x; | |
230d793d RS |
10390 | rtx body; |
10391 | { | |
10392 | int i; | |
10393 | ||
10394 | if (GET_CODE (body) == SET) | |
a7c99304 RK |
10395 | { |
10396 | rtx dest = SET_DEST (body); | |
10397 | rtx target; | |
10398 | int regno, tregno, endregno, endtregno; | |
10399 | ||
10400 | if (GET_CODE (dest) == ZERO_EXTRACT) | |
10401 | target = XEXP (dest, 0); | |
10402 | else if (GET_CODE (dest) == STRICT_LOW_PART) | |
10403 | target = SUBREG_REG (XEXP (dest, 0)); | |
10404 | else | |
10405 | return 0; | |
10406 | ||
10407 | if (GET_CODE (target) == SUBREG) | |
10408 | target = SUBREG_REG (target); | |
10409 | ||
10410 | if (GET_CODE (target) != REG) | |
10411 | return 0; | |
10412 | ||
10413 | tregno = REGNO (target), regno = REGNO (x); | |
10414 | if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER) | |
10415 | return target == x; | |
10416 | ||
10417 | endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target)); | |
10418 | endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); | |
10419 | ||
10420 | return endregno > tregno && regno < endtregno; | |
10421 | } | |
230d793d RS |
10422 | |
10423 | else if (GET_CODE (body) == PARALLEL) | |
10424 | for (i = XVECLEN (body, 0) - 1; i >= 0; i--) | |
a7c99304 | 10425 | if (reg_bitfield_target_p (x, XVECEXP (body, 0, i))) |
230d793d RS |
10426 | return 1; |
10427 | ||
10428 | return 0; | |
10429 | } | |
10430 | \f | |
10431 | /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them | |
10432 | as appropriate. I3 and I2 are the insns resulting from the combination | |
10433 | insns including FROM (I2 may be zero). | |
10434 | ||
10435 | ELIM_I2 and ELIM_I1 are either zero or registers that we know will | |
10436 | not need REG_DEAD notes because they are being substituted for. This | |
10437 | saves searching in the most common cases. | |
10438 | ||
10439 | Each note in the list is either ignored or placed on some insns, depending | |
10440 | on the type of note. */ | |
10441 | ||
10442 | static void | |
10443 | distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1) | |
10444 | rtx notes; | |
10445 | rtx from_insn; | |
10446 | rtx i3, i2; | |
10447 | rtx elim_i2, elim_i1; | |
10448 | { | |
10449 | rtx note, next_note; | |
10450 | rtx tem; | |
10451 | ||
10452 | for (note = notes; note; note = next_note) | |
10453 | { | |
10454 | rtx place = 0, place2 = 0; | |
10455 | ||
10456 | /* If this NOTE references a pseudo register, ensure it references | |
10457 | the latest copy of that register. */ | |
10458 | if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG | |
10459 | && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER) | |
10460 | XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))]; | |
10461 | ||
10462 | next_note = XEXP (note, 1); | |
10463 | switch (REG_NOTE_KIND (note)) | |
10464 | { | |
10465 | case REG_UNUSED: | |
07d0cbdd | 10466 | /* Any clobbers for i3 may still exist, and so we must process |
176c9e6b JW |
10467 | REG_UNUSED notes from that insn. |
10468 | ||
10469 | Any clobbers from i2 or i1 can only exist if they were added by | |
10470 | recog_for_combine. In that case, recog_for_combine created the | |
10471 | necessary REG_UNUSED notes. Trying to keep any original | |
10472 | REG_UNUSED notes from these insns can cause incorrect output | |
10473 | if it is for the same register as the original i3 dest. | |
10474 | In that case, we will notice that the register is set in i3, | |
10475 | and then add a REG_UNUSED note for the destination of i3, which | |
07d0cbdd JW |
10476 | is wrong. However, it is possible to have REG_UNUSED notes from |
10477 | i2 or i1 for register which were both used and clobbered, so | |
10478 | we keep notes from i2 or i1 if they will turn into REG_DEAD | |
10479 | notes. */ | |
176c9e6b | 10480 | |
230d793d RS |
10481 | /* If this register is set or clobbered in I3, put the note there |
10482 | unless there is one already. */ | |
07d0cbdd | 10483 | if (reg_set_p (XEXP (note, 0), PATTERN (i3))) |
230d793d | 10484 | { |
07d0cbdd JW |
10485 | if (from_insn != i3) |
10486 | break; | |
10487 | ||
230d793d RS |
10488 | if (! (GET_CODE (XEXP (note, 0)) == REG |
10489 | ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0))) | |
10490 | : find_reg_note (i3, REG_UNUSED, XEXP (note, 0)))) | |
10491 | place = i3; | |
10492 | } | |
10493 | /* Otherwise, if this register is used by I3, then this register | |
10494 | now dies here, so we must put a REG_DEAD note here unless there | |
10495 | is one already. */ | |
10496 | else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)) | |
10497 | && ! (GET_CODE (XEXP (note, 0)) == REG | |
10498 | ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0))) | |
10499 | : find_reg_note (i3, REG_DEAD, XEXP (note, 0)))) | |
10500 | { | |
10501 | PUT_REG_NOTE_KIND (note, REG_DEAD); | |
10502 | place = i3; | |
10503 | } | |
10504 | break; | |
10505 | ||
10506 | case REG_EQUAL: | |
10507 | case REG_EQUIV: | |
10508 | case REG_NONNEG: | |
10509 | /* These notes say something about results of an insn. We can | |
10510 | only support them if they used to be on I3 in which case they | |
a687e897 RK |
10511 | remain on I3. Otherwise they are ignored. |
10512 | ||
10513 | If the note refers to an expression that is not a constant, we | |
10514 | must also ignore the note since we cannot tell whether the | |
10515 | equivalence is still true. It might be possible to do | |
10516 | slightly better than this (we only have a problem if I2DEST | |
10517 | or I1DEST is present in the expression), but it doesn't | |
10518 | seem worth the trouble. */ | |
10519 | ||
10520 | if (from_insn == i3 | |
10521 | && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0)))) | |
230d793d RS |
10522 | place = i3; |
10523 | break; | |
10524 | ||
10525 | case REG_INC: | |
10526 | case REG_NO_CONFLICT: | |
10527 | case REG_LABEL: | |
10528 | /* These notes say something about how a register is used. They must | |
10529 | be present on any use of the register in I2 or I3. */ | |
10530 | if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))) | |
10531 | place = i3; | |
10532 | ||
10533 | if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2))) | |
10534 | { | |
10535 | if (place) | |
10536 | place2 = i2; | |
10537 | else | |
10538 | place = i2; | |
10539 | } | |
10540 | break; | |
10541 | ||
10542 | case REG_WAS_0: | |
10543 | /* It is too much trouble to try to see if this note is still | |
10544 | correct in all situations. It is better to simply delete it. */ | |
10545 | break; | |
10546 | ||
10547 | case REG_RETVAL: | |
10548 | /* If the insn previously containing this note still exists, | |
10549 | put it back where it was. Otherwise move it to the previous | |
10550 | insn. Adjust the corresponding REG_LIBCALL note. */ | |
10551 | if (GET_CODE (from_insn) != NOTE) | |
10552 | place = from_insn; | |
10553 | else | |
10554 | { | |
5f4f0e22 | 10555 | tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX); |
230d793d RS |
10556 | place = prev_real_insn (from_insn); |
10557 | if (tem && place) | |
10558 | XEXP (tem, 0) = place; | |
10559 | } | |
10560 | break; | |
10561 | ||
10562 | case REG_LIBCALL: | |
10563 | /* This is handled similarly to REG_RETVAL. */ | |
10564 | if (GET_CODE (from_insn) != NOTE) | |
10565 | place = from_insn; | |
10566 | else | |
10567 | { | |
5f4f0e22 | 10568 | tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX); |
230d793d RS |
10569 | place = next_real_insn (from_insn); |
10570 | if (tem && place) | |
10571 | XEXP (tem, 0) = place; | |
10572 | } | |
10573 | break; | |
10574 | ||
10575 | case REG_DEAD: | |
10576 | /* If the register is used as an input in I3, it dies there. | |
10577 | Similarly for I2, if it is non-zero and adjacent to I3. | |
10578 | ||
10579 | If the register is not used as an input in either I3 or I2 | |
10580 | and it is not one of the registers we were supposed to eliminate, | |
10581 | there are two possibilities. We might have a non-adjacent I2 | |
10582 | or we might have somehow eliminated an additional register | |
10583 | from a computation. For example, we might have had A & B where | |
10584 | we discover that B will always be zero. In this case we will | |
10585 | eliminate the reference to A. | |
10586 | ||
10587 | In both cases, we must search to see if we can find a previous | |
10588 | use of A and put the death note there. */ | |
10589 | ||
6e2d1486 RK |
10590 | if (from_insn |
10591 | && GET_CODE (from_insn) == CALL_INSN | |
10592 | && find_reg_fusage (from_insn, USE, XEXP (note, 0))) | |
10593 | place = from_insn; | |
10594 | else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))) | |
230d793d RS |
10595 | place = i3; |
10596 | else if (i2 != 0 && next_nonnote_insn (i2) == i3 | |
10597 | && reg_referenced_p (XEXP (note, 0), PATTERN (i2))) | |
10598 | place = i2; | |
10599 | ||
10600 | if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1) | |
10601 | break; | |
10602 | ||
510dd77e RK |
10603 | /* If the register is used in both I2 and I3 and it dies in I3, |
10604 | we might have added another reference to it. If reg_n_refs | |
10605 | was 2, bump it to 3. This has to be correct since the | |
10606 | register must have been set somewhere. The reason this is | |
10607 | done is because local-alloc.c treats 2 references as a | |
10608 | special case. */ | |
10609 | ||
10610 | if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG | |
10611 | && reg_n_refs[REGNO (XEXP (note, 0))]== 2 | |
10612 | && reg_referenced_p (XEXP (note, 0), PATTERN (i2))) | |
10613 | reg_n_refs[REGNO (XEXP (note, 0))] = 3; | |
10614 | ||
230d793d | 10615 | if (place == 0) |
38d8473f RK |
10616 | { |
10617 | for (tem = prev_nonnote_insn (i3); | |
10618 | place == 0 && tem | |
10619 | && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN); | |
10620 | tem = prev_nonnote_insn (tem)) | |
10621 | { | |
10622 | /* If the register is being set at TEM, see if that is all | |
10623 | TEM is doing. If so, delete TEM. Otherwise, make this | |
10624 | into a REG_UNUSED note instead. */ | |
10625 | if (reg_set_p (XEXP (note, 0), PATTERN (tem))) | |
10626 | { | |
10627 | rtx set = single_set (tem); | |
10628 | ||
10629 | /* Verify that it was the set, and not a clobber that | |
10630 | modified the register. */ | |
10631 | ||
10632 | if (set != 0 && ! side_effects_p (SET_SRC (set)) | |
10633 | && rtx_equal_p (XEXP (note, 0), SET_DEST (set))) | |
10634 | { | |
10635 | /* Move the notes and links of TEM elsewhere. | |
10636 | This might delete other dead insns recursively. | |
10637 | First set the pattern to something that won't use | |
10638 | any register. */ | |
10639 | ||
10640 | PATTERN (tem) = pc_rtx; | |
10641 | ||
10642 | distribute_notes (REG_NOTES (tem), tem, tem, | |
10643 | NULL_RTX, NULL_RTX, NULL_RTX); | |
10644 | distribute_links (LOG_LINKS (tem)); | |
10645 | ||
10646 | PUT_CODE (tem, NOTE); | |
10647 | NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED; | |
10648 | NOTE_SOURCE_FILE (tem) = 0; | |
10649 | } | |
10650 | else | |
10651 | { | |
10652 | PUT_REG_NOTE_KIND (note, REG_UNUSED); | |
10653 | ||
10654 | /* If there isn't already a REG_UNUSED note, put one | |
10655 | here. */ | |
10656 | if (! find_regno_note (tem, REG_UNUSED, | |
10657 | REGNO (XEXP (note, 0)))) | |
10658 | place = tem; | |
10659 | break; | |
230d793d RS |
10660 | } |
10661 | } | |
13018fad RE |
10662 | else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem)) |
10663 | || (GET_CODE (tem) == CALL_INSN | |
10664 | && find_reg_fusage (tem, USE, XEXP (note, 0)))) | |
230d793d RS |
10665 | { |
10666 | place = tem; | |
10667 | break; | |
10668 | } | |
38d8473f RK |
10669 | } |
10670 | ||
10671 | /* If we haven't found an insn for the death note and it | |
10672 | is still a REG_DEAD note, but we have hit a CODE_LABEL, | |
10673 | insert a USE insn for the register at that label and | |
10674 | put the death node there. This prevents problems with | |
10675 | call-state tracking in caller-save.c. */ | |
10676 | if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0) | |
e2cce0cf RK |
10677 | { |
10678 | place | |
10679 | = emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)), | |
10680 | tem); | |
10681 | ||
10682 | /* If this insn was emitted between blocks, then update | |
10683 | basic_block_head of the current block to include it. */ | |
10684 | if (basic_block_end[this_basic_block - 1] == tem) | |
10685 | basic_block_head[this_basic_block] = place; | |
10686 | } | |
38d8473f | 10687 | } |
230d793d RS |
10688 | |
10689 | /* If the register is set or already dead at PLACE, we needn't do | |
10690 | anything with this note if it is still a REG_DEAD note. | |
10691 | ||
10692 | Note that we cannot use just `dead_or_set_p' here since we can | |
10693 | convert an assignment to a register into a bit-field assignment. | |
10694 | Therefore, we must also omit the note if the register is the | |
10695 | target of a bitfield assignment. */ | |
10696 | ||
10697 | if (place && REG_NOTE_KIND (note) == REG_DEAD) | |
10698 | { | |
10699 | int regno = REGNO (XEXP (note, 0)); | |
10700 | ||
10701 | if (dead_or_set_p (place, XEXP (note, 0)) | |
10702 | || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place))) | |
10703 | { | |
10704 | /* Unless the register previously died in PLACE, clear | |
10705 | reg_last_death. [I no longer understand why this is | |
10706 | being done.] */ | |
10707 | if (reg_last_death[regno] != place) | |
10708 | reg_last_death[regno] = 0; | |
10709 | place = 0; | |
10710 | } | |
10711 | else | |
10712 | reg_last_death[regno] = place; | |
10713 | ||
10714 | /* If this is a death note for a hard reg that is occupying | |
10715 | multiple registers, ensure that we are still using all | |
10716 | parts of the object. If we find a piece of the object | |
10717 | that is unused, we must add a USE for that piece before | |
10718 | PLACE and put the appropriate REG_DEAD note on it. | |
10719 | ||
10720 | An alternative would be to put a REG_UNUSED for the pieces | |
10721 | on the insn that set the register, but that can't be done if | |
10722 | it is not in the same block. It is simpler, though less | |
10723 | efficient, to add the USE insns. */ | |
10724 | ||
10725 | if (place && regno < FIRST_PSEUDO_REGISTER | |
10726 | && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1) | |
10727 | { | |
10728 | int endregno | |
10729 | = regno + HARD_REGNO_NREGS (regno, | |
10730 | GET_MODE (XEXP (note, 0))); | |
10731 | int all_used = 1; | |
10732 | int i; | |
10733 | ||
10734 | for (i = regno; i < endregno; i++) | |
9fd5bb62 JW |
10735 | if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0) |
10736 | && ! find_regno_fusage (place, USE, i)) | |
230d793d | 10737 | { |
485eeec4 | 10738 | rtx piece = gen_rtx (REG, reg_raw_mode[i], i); |
28f6d3af RK |
10739 | rtx p; |
10740 | ||
10741 | /* See if we already placed a USE note for this | |
10742 | register in front of PLACE. */ | |
10743 | for (p = place; | |
10744 | GET_CODE (PREV_INSN (p)) == INSN | |
10745 | && GET_CODE (PATTERN (PREV_INSN (p))) == USE; | |
10746 | p = PREV_INSN (p)) | |
10747 | if (rtx_equal_p (piece, | |
10748 | XEXP (PATTERN (PREV_INSN (p)), 0))) | |
10749 | { | |
10750 | p = 0; | |
10751 | break; | |
10752 | } | |
10753 | ||
10754 | if (p) | |
10755 | { | |
10756 | rtx use_insn | |
10757 | = emit_insn_before (gen_rtx (USE, VOIDmode, | |
10758 | piece), | |
10759 | p); | |
10760 | REG_NOTES (use_insn) | |
10761 | = gen_rtx (EXPR_LIST, REG_DEAD, piece, | |
10762 | REG_NOTES (use_insn)); | |
10763 | } | |
230d793d | 10764 | |
5089e22e | 10765 | all_used = 0; |
230d793d RS |
10766 | } |
10767 | ||
a394b17b JW |
10768 | /* Check for the case where the register dying partially |
10769 | overlaps the register set by this insn. */ | |
10770 | if (all_used) | |
10771 | for (i = regno; i < endregno; i++) | |
10772 | if (dead_or_set_regno_p (place, i)) | |
10773 | { | |
10774 | all_used = 0; | |
10775 | break; | |
10776 | } | |
10777 | ||
230d793d RS |
10778 | if (! all_used) |
10779 | { | |
10780 | /* Put only REG_DEAD notes for pieces that are | |
10781 | still used and that are not already dead or set. */ | |
10782 | ||
10783 | for (i = regno; i < endregno; i++) | |
10784 | { | |
485eeec4 | 10785 | rtx piece = gen_rtx (REG, reg_raw_mode[i], i); |
230d793d | 10786 | |
17cbf358 JW |
10787 | if ((reg_referenced_p (piece, PATTERN (place)) |
10788 | || (GET_CODE (place) == CALL_INSN | |
10789 | && find_reg_fusage (place, USE, piece))) | |
230d793d RS |
10790 | && ! dead_or_set_p (place, piece) |
10791 | && ! reg_bitfield_target_p (piece, | |
10792 | PATTERN (place))) | |
10793 | REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD, | |
10794 | piece, | |
10795 | REG_NOTES (place)); | |
10796 | } | |
10797 | ||
10798 | place = 0; | |
10799 | } | |
10800 | } | |
10801 | } | |
10802 | break; | |
10803 | ||
10804 | default: | |
10805 | /* Any other notes should not be present at this point in the | |
10806 | compilation. */ | |
10807 | abort (); | |
10808 | } | |
10809 | ||
10810 | if (place) | |
10811 | { | |
10812 | XEXP (note, 1) = REG_NOTES (place); | |
10813 | REG_NOTES (place) = note; | |
10814 | } | |
1a26b032 RK |
10815 | else if ((REG_NOTE_KIND (note) == REG_DEAD |
10816 | || REG_NOTE_KIND (note) == REG_UNUSED) | |
10817 | && GET_CODE (XEXP (note, 0)) == REG) | |
10818 | reg_n_deaths[REGNO (XEXP (note, 0))]--; | |
230d793d RS |
10819 | |
10820 | if (place2) | |
1a26b032 RK |
10821 | { |
10822 | if ((REG_NOTE_KIND (note) == REG_DEAD | |
10823 | || REG_NOTE_KIND (note) == REG_UNUSED) | |
10824 | && GET_CODE (XEXP (note, 0)) == REG) | |
10825 | reg_n_deaths[REGNO (XEXP (note, 0))]++; | |
10826 | ||
10827 | REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note), | |
10828 | XEXP (note, 0), REG_NOTES (place2)); | |
10829 | } | |
230d793d RS |
10830 | } |
10831 | } | |
10832 | \f | |
10833 | /* Similarly to above, distribute the LOG_LINKS that used to be present on | |
5089e22e RS |
10834 | I3, I2, and I1 to new locations. This is also called in one case to |
10835 | add a link pointing at I3 when I3's destination is changed. */ | |
230d793d RS |
10836 | |
10837 | static void | |
10838 | distribute_links (links) | |
10839 | rtx links; | |
10840 | { | |
10841 | rtx link, next_link; | |
10842 | ||
10843 | for (link = links; link; link = next_link) | |
10844 | { | |
10845 | rtx place = 0; | |
10846 | rtx insn; | |
10847 | rtx set, reg; | |
10848 | ||
10849 | next_link = XEXP (link, 1); | |
10850 | ||
10851 | /* If the insn that this link points to is a NOTE or isn't a single | |
10852 | set, ignore it. In the latter case, it isn't clear what we | |
10853 | can do other than ignore the link, since we can't tell which | |
10854 | register it was for. Such links wouldn't be used by combine | |
10855 | anyway. | |
10856 | ||
10857 | It is not possible for the destination of the target of the link to | |
10858 | have been changed by combine. The only potential of this is if we | |
10859 | replace I3, I2, and I1 by I3 and I2. But in that case the | |
10860 | destination of I2 also remains unchanged. */ | |
10861 | ||
10862 | if (GET_CODE (XEXP (link, 0)) == NOTE | |
10863 | || (set = single_set (XEXP (link, 0))) == 0) | |
10864 | continue; | |
10865 | ||
10866 | reg = SET_DEST (set); | |
10867 | while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT | |
10868 | || GET_CODE (reg) == SIGN_EXTRACT | |
10869 | || GET_CODE (reg) == STRICT_LOW_PART) | |
10870 | reg = XEXP (reg, 0); | |
10871 | ||
10872 | /* A LOG_LINK is defined as being placed on the first insn that uses | |
10873 | a register and points to the insn that sets the register. Start | |
10874 | searching at the next insn after the target of the link and stop | |
10875 | when we reach a set of the register or the end of the basic block. | |
10876 | ||
10877 | Note that this correctly handles the link that used to point from | |
5089e22e | 10878 | I3 to I2. Also note that not much searching is typically done here |
230d793d RS |
10879 | since most links don't point very far away. */ |
10880 | ||
10881 | for (insn = NEXT_INSN (XEXP (link, 0)); | |
0d4d42c3 RK |
10882 | (insn && (this_basic_block == n_basic_blocks - 1 |
10883 | || basic_block_head[this_basic_block + 1] != insn)); | |
230d793d RS |
10884 | insn = NEXT_INSN (insn)) |
10885 | if (GET_RTX_CLASS (GET_CODE (insn)) == 'i' | |
10886 | && reg_overlap_mentioned_p (reg, PATTERN (insn))) | |
10887 | { | |
10888 | if (reg_referenced_p (reg, PATTERN (insn))) | |
10889 | place = insn; | |
10890 | break; | |
10891 | } | |
6e2d1486 RK |
10892 | else if (GET_CODE (insn) == CALL_INSN |
10893 | && find_reg_fusage (insn, USE, reg)) | |
10894 | { | |
10895 | place = insn; | |
10896 | break; | |
10897 | } | |
230d793d RS |
10898 | |
10899 | /* If we found a place to put the link, place it there unless there | |
10900 | is already a link to the same insn as LINK at that point. */ | |
10901 | ||
10902 | if (place) | |
10903 | { | |
10904 | rtx link2; | |
10905 | ||
10906 | for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1)) | |
10907 | if (XEXP (link2, 0) == XEXP (link, 0)) | |
10908 | break; | |
10909 | ||
10910 | if (link2 == 0) | |
10911 | { | |
10912 | XEXP (link, 1) = LOG_LINKS (place); | |
10913 | LOG_LINKS (place) = link; | |
abe6e52f RK |
10914 | |
10915 | /* Set added_links_insn to the earliest insn we added a | |
10916 | link to. */ | |
10917 | if (added_links_insn == 0 | |
10918 | || INSN_CUID (added_links_insn) > INSN_CUID (place)) | |
10919 | added_links_insn = place; | |
230d793d RS |
10920 | } |
10921 | } | |
10922 | } | |
10923 | } | |
10924 | \f | |
10925 | void | |
10926 | dump_combine_stats (file) | |
10927 | FILE *file; | |
10928 | { | |
10929 | fprintf | |
10930 | (file, | |
10931 | ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n", | |
10932 | combine_attempts, combine_merges, combine_extras, combine_successes); | |
10933 | } | |
10934 | ||
10935 | void | |
10936 | dump_combine_total_stats (file) | |
10937 | FILE *file; | |
10938 | { | |
10939 | fprintf | |
10940 | (file, | |
10941 | "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n", | |
10942 | total_attempts, total_merges, total_extras, total_successes); | |
10943 | } |