]> gcc.gnu.org Git - gcc.git/blame - gcc/cfgloopmanip.c
c-common.h (enum rid): Add RID_CXX_COMPAT_WARN.
[gcc.git] / gcc / cfgloopmanip.c
CommitLineData
3d436d2a 1/* Loop manipulation code for GNU compiler.
fa10beec
RW
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008 Free Software
3 Foundation, Inc.
3d436d2a
ZD
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
3d436d2a
ZD
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
3d436d2a
ZD
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "rtl.h"
26#include "hard-reg-set.h"
7932a3db 27#include "obstack.h"
3d436d2a
ZD
28#include "basic-block.h"
29#include "cfgloop.h"
30#include "cfglayout.h"
1cb7dfc3 31#include "cfghooks.h"
3d436d2a
ZD
32#include "output.h"
33
d73be268
ZD
34static void duplicate_subloops (struct loop *, struct loop *);
35static void copy_loops_to (struct loop **, int,
d329e058
AJ
36 struct loop *);
37static void loop_redirect_edge (edge, basic_block);
d47cc544 38static void remove_bbs (basic_block *, int);
ed7a4b4b 39static bool rpe_enum_p (const_basic_block, const void *);
d47cc544 40static int find_path (edge, basic_block **);
d73be268
ZD
41static void fix_loop_placements (struct loop *, bool *);
42static bool fix_bb_placement (basic_block);
43static void fix_bb_placements (basic_block, bool *);
d73be268 44static void unloop (struct loop *, bool *);
3d436d2a 45
bade3a00
JH
46#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
47
d47cc544 48/* Checks whether basic block BB is dominated by DATA. */
617b465c 49static bool
ed7a4b4b 50rpe_enum_p (const_basic_block bb, const void *data)
617b465c 51{
ed7a4b4b 52 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
617b465c
ZD
53}
54
598ec7bd
ZD
55/* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
56
617b465c 57static void
d47cc544 58remove_bbs (basic_block *bbs, int nbbs)
617b465c
ZD
59{
60 int i;
61
62 for (i = 0; i < nbbs; i++)
598ec7bd 63 delete_basic_block (bbs[i]);
617b465c
ZD
64}
65
66/* Find path -- i.e. the basic blocks dominated by edge E and put them
67 into array BBS, that will be allocated large enough to contain them.
35b07080
ZD
68 E->dest must have exactly one predecessor for this to work (it is
69 easy to achieve and we do not put it here because we do not want to
70 alter anything by this function). The number of basic blocks in the
71 path is returned. */
617b465c 72static int
d47cc544 73find_path (edge e, basic_block **bbs)
617b465c 74{
628f6a4e 75 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
617b465c
ZD
76
77 /* Find bbs in the path. */
5ed6ace5 78 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
617b465c 79 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
d47cc544 80 n_basic_blocks, e->dest);
617b465c
ZD
81}
82
d73be268 83/* Fix placement of basic block BB inside loop hierarchy --
617b465c
ZD
84 Let L be a loop to that BB belongs. Then every successor of BB must either
85 1) belong to some superloop of loop L, or
86 2) be a header of loop K such that K->outer is superloop of L
87 Returns true if we had to move BB into other loop to enforce this condition,
88 false if the placement of BB was already correct (provided that placements
89 of its successors are correct). */
90static bool
d73be268 91fix_bb_placement (basic_block bb)
617b465c
ZD
92{
93 edge e;
628f6a4e 94 edge_iterator ei;
d73be268 95 struct loop *loop = current_loops->tree_root, *act;
617b465c 96
628f6a4e 97 FOR_EACH_EDGE (e, ei, bb->succs)
617b465c
ZD
98 {
99 if (e->dest == EXIT_BLOCK_PTR)
100 continue;
101
102 act = e->dest->loop_father;
103 if (act->header == e->dest)
9ba025a2 104 act = loop_outer (act);
617b465c
ZD
105
106 if (flow_loop_nested_p (loop, act))
107 loop = act;
108 }
109
110 if (loop == bb->loop_father)
111 return false;
112
113 remove_bb_from_loops (bb);
114 add_bb_to_loop (bb, loop);
115
116 return true;
117}
118
b4c1c7e3
ZD
119/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120 of LOOP to that leads at least one exit edge of LOOP, and set it
121 as the immediate superloop of LOOP. Return true if the immediate superloop
122 of LOOP changed. */
123
124static bool
125fix_loop_placement (struct loop *loop)
126{
127 unsigned i;
128 edge e;
129 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
9ba025a2 140 if (father != loop_outer (loop))
b4c1c7e3 141 {
9ba025a2 142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
b4c1c7e3
ZD
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
150 rescan_loop_exit (e, false, false);
151
152 ret = true;
153 }
154
155 VEC_free (edge, heap, exits);
156 return ret;
157}
158
617b465c
ZD
159/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160 enforce condition condition stated in description of fix_bb_placement. We
161 start from basic block FROM that had some of its successors removed, so that
162 his placement no longer has to be correct, and iteratively fix placement of
163 its predecessors that may change if placement of FROM changed. Also fix
164 placement of subloops of FROM->loop_father, that might also be altered due
4d6922ee 165 to this change; the condition for them is similar, except that instead of
dc14f191
ZD
166 successors we consider edges coming out of the loops.
167
168 If the changes may invalidate the information about irreducible regions,
169 IRRED_INVALIDATED is set to true. */
170
617b465c 171static void
d73be268 172fix_bb_placements (basic_block from,
dc14f191 173 bool *irred_invalidated)
617b465c
ZD
174{
175 sbitmap in_queue;
176 basic_block *queue, *qtop, *qbeg, *qend;
177 struct loop *base_loop;
178 edge e;
179
180 /* We pass through blocks back-reachable from FROM, testing whether some
181 of their successors moved to outer loop. It may be necessary to
182 iterate several times, but it is finite, as we stop unless we move
183 the basic block up the loop structure. The whole story is a bit
184 more complicated due to presence of subloops, those are moved using
185 fix_loop_placement. */
186
187 base_loop = from->loop_father;
d73be268 188 if (base_loop == current_loops->tree_root)
617b465c
ZD
189 return;
190
191 in_queue = sbitmap_alloc (last_basic_block);
192 sbitmap_zero (in_queue);
193 SET_BIT (in_queue, from->index);
194 /* Prevent us from going out of the base_loop. */
195 SET_BIT (in_queue, base_loop->header->index);
196
5ed6ace5 197 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
617b465c
ZD
198 qtop = queue + base_loop->num_nodes + 1;
199 qbeg = queue;
200 qend = queue + 1;
201 *qbeg = from;
202
203 while (qbeg != qend)
204 {
628f6a4e 205 edge_iterator ei;
617b465c
ZD
206 from = *qbeg;
207 qbeg++;
208 if (qbeg == qtop)
209 qbeg = queue;
210 RESET_BIT (in_queue, from->index);
211
212 if (from->loop_father->header == from)
213 {
214 /* Subloop header, maybe move the loop upward. */
215 if (!fix_loop_placement (from->loop_father))
216 continue;
217 }
218 else
219 {
220 /* Ordinary basic block. */
d73be268 221 if (!fix_bb_placement (from))
617b465c
ZD
222 continue;
223 }
224
dc14f191
ZD
225 FOR_EACH_EDGE (e, ei, from->succs)
226 {
227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
228 *irred_invalidated = true;
229 }
230
617b465c 231 /* Something has changed, insert predecessors into queue. */
628f6a4e 232 FOR_EACH_EDGE (e, ei, from->preds)
617b465c
ZD
233 {
234 basic_block pred = e->src;
235 struct loop *nca;
236
dc14f191
ZD
237 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
238 *irred_invalidated = true;
239
617b465c
ZD
240 if (TEST_BIT (in_queue, pred->index))
241 continue;
242
d329e058 243 /* If it is subloop, then it either was not moved, or
617b465c
ZD
244 the path up the loop tree from base_loop do not contain
245 it. */
246 nca = find_common_loop (pred->loop_father, base_loop);
247 if (pred->loop_father != base_loop
248 && (nca == base_loop
249 || nca != pred->loop_father))
250 pred = pred->loop_father->header;
251 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
252 {
253 /* No point in processing it. */
254 continue;
255 }
256
257 if (TEST_BIT (in_queue, pred->index))
258 continue;
259
260 /* Schedule the basic block. */
261 *qend = pred;
262 qend++;
263 if (qend == qtop)
264 qend = queue;
265 SET_BIT (in_queue, pred->index);
266 }
267 }
268 free (in_queue);
269 free (queue);
270}
271
272/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
d73be268
ZD
273 and update loop structures and dominators. Return true if we were able
274 to remove the path, false otherwise (and nothing is affected then). */
617b465c 275bool
d73be268 276remove_path (edge e)
617b465c
ZD
277{
278 edge ae;
66f97d31
ZD
279 basic_block *rem_bbs, *bord_bbs, from, bb;
280 VEC (basic_block, heap) *dom_bbs;
281 int i, nrem, n_bord_bbs, nreml;
617b465c 282 sbitmap seen;
14fa2cc0 283 bool irred_invalidated = false;
598ec7bd 284 struct loop **deleted_loop;
617b465c 285
14fa2cc0 286 if (!can_remove_branch_p (e))
35b07080
ZD
287 return false;
288
dc14f191
ZD
289 /* Keep track of whether we need to update information about irreducible
290 regions. This is the case if the removed area is a part of the
291 irreducible region, or if the set of basic blocks that belong to a loop
292 that is inside an irreducible region is changed, or if such a loop is
293 removed. */
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 irred_invalidated = true;
296
35b07080
ZD
297 /* We need to check whether basic blocks are dominated by the edge
298 e, but we only have basic block dominators. This is easy to
299 fix -- when e->dest has exactly one predecessor, this corresponds
300 to blocks dominated by e->dest, if not, split the edge. */
c5cbcccf 301 if (!single_pred_p (e->dest))
598ec7bd 302 e = single_pred_edge (split_edge (e));
35b07080
ZD
303
304 /* It may happen that by removing path we remove one or more loops
305 we belong to. In this case first unloop the loops, then proceed
306 normally. We may assume that e->dest is not a header of any loop,
307 as it now has exactly one predecessor. */
9ba025a2 308 while (loop_outer (e->src->loop_father)
d47cc544 309 && dominated_by_p (CDI_DOMINATORS,
35b07080 310 e->src->loop_father->latch, e->dest))
d73be268 311 unloop (e->src->loop_father, &irred_invalidated);
d329e058 312
35b07080 313 /* Identify the path. */
d47cc544 314 nrem = find_path (e, &rem_bbs);
617b465c
ZD
315
316 n_bord_bbs = 0;
5ed6ace5 317 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
617b465c
ZD
318 seen = sbitmap_alloc (last_basic_block);
319 sbitmap_zero (seen);
320
321 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
322 for (i = 0; i < nrem; i++)
323 SET_BIT (seen, rem_bbs[i]->index);
35b07080 324 for (i = 0; i < nrem; i++)
617b465c 325 {
628f6a4e 326 edge_iterator ei;
35b07080 327 bb = rem_bbs[i];
628f6a4e 328 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
35b07080
ZD
329 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
330 {
331 SET_BIT (seen, ae->dest->index);
332 bord_bbs[n_bord_bbs++] = ae->dest;
dc14f191
ZD
333
334 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
335 irred_invalidated = true;
35b07080 336 }
617b465c 337 }
617b465c
ZD
338
339 /* Remove the path. */
340 from = e->src;
14fa2cc0 341 remove_branch (e);
66f97d31 342 dom_bbs = NULL;
617b465c
ZD
343
344 /* Cancel loops contained in the path. */
598ec7bd
ZD
345 deleted_loop = XNEWVEC (struct loop *, nrem);
346 nreml = 0;
617b465c
ZD
347 for (i = 0; i < nrem; i++)
348 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
598ec7bd 349 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
617b465c 350
d47cc544 351 remove_bbs (rem_bbs, nrem);
617b465c
ZD
352 free (rem_bbs);
353
598ec7bd 354 for (i = 0; i < nreml; i++)
d73be268 355 cancel_loop_tree (deleted_loop[i]);
598ec7bd
ZD
356 free (deleted_loop);
357
35b07080 358 /* Find blocks whose dominators may be affected. */
617b465c
ZD
359 sbitmap_zero (seen);
360 for (i = 0; i < n_bord_bbs; i++)
361 {
d47cc544 362 basic_block ldom;
617b465c 363
d47cc544 364 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
617b465c
ZD
365 if (TEST_BIT (seen, bb->index))
366 continue;
367 SET_BIT (seen, bb->index);
368
d47cc544
SB
369 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
370 ldom;
371 ldom = next_dom_son (CDI_DOMINATORS, ldom))
372 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
66f97d31 373 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
617b465c
ZD
374 }
375
617b465c
ZD
376 free (seen);
377
378 /* Recount dominators. */
66f97d31
ZD
379 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
380 VEC_free (basic_block, heap, dom_bbs);
35b07080
ZD
381 free (bord_bbs);
382
617b465c
ZD
383 /* Fix placements of basic blocks inside loops and the placement of
384 loops in the loop tree. */
d73be268
ZD
385 fix_bb_placements (from, &irred_invalidated);
386 fix_loop_placements (from->loop_father, &irred_invalidated);
dc14f191
ZD
387
388 if (irred_invalidated
f87000d0 389 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
d73be268 390 mark_irreducible_loops ();
617b465c
ZD
391
392 return true;
393}
394
89f8f30f
ZD
395/* Creates place for a new LOOP in loops structure. */
396
397static void
398place_new_loop (struct loop *loop)
617b465c 399{
89f8f30f 400 loop->num = number_of_loops ();
9e2f83a5 401 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
617b465c
ZD
402}
403
404/* Given LOOP structure with filled header and latch, find the body of the
d73be268 405 corresponding loop and add it to loops tree. Insert the LOOP as a son of
598ec7bd
ZD
406 outer. */
407
89f8f30f 408void
d73be268 409add_loop (struct loop *loop, struct loop *outer)
617b465c
ZD
410{
411 basic_block *bbs;
412 int i, n;
89f8f30f 413 struct loop *subloop;
d24a32a1
ZD
414 edge e;
415 edge_iterator ei;
d329e058 416
617b465c 417 /* Add it to loop structure. */
d73be268 418 place_new_loop (loop);
598ec7bd 419 flow_loop_tree_node_add (outer, loop);
617b465c
ZD
420
421 /* Find its nodes. */
89f8f30f
ZD
422 bbs = XNEWVEC (basic_block, n_basic_blocks);
423 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
617b465c
ZD
424
425 for (i = 0; i < n; i++)
598ec7bd 426 {
89f8f30f
ZD
427 if (bbs[i]->loop_father == outer)
428 {
429 remove_bb_from_loops (bbs[i]);
430 add_bb_to_loop (bbs[i], loop);
431 continue;
432 }
433
434 loop->num_nodes++;
435
436 /* If we find a direct subloop of OUTER, move it to LOOP. */
437 subloop = bbs[i]->loop_father;
9ba025a2 438 if (loop_outer (subloop) == outer
89f8f30f
ZD
439 && subloop->header == bbs[i])
440 {
441 flow_loop_tree_node_remove (subloop);
442 flow_loop_tree_node_add (loop, subloop);
443 }
598ec7bd 444 }
617b465c 445
d24a32a1
ZD
446 /* Update the information about loop exit edges. */
447 for (i = 0; i < n; i++)
448 {
449 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
450 {
451 rescan_loop_exit (e, false, false);
452 }
453 }
454
617b465c
ZD
455 free (bbs);
456}
457
617b465c 458/* Multiply all frequencies in LOOP by NUM/DEN. */
03cb2019 459void
d329e058 460scale_loop_frequencies (struct loop *loop, int num, int den)
617b465c
ZD
461{
462 basic_block *bbs;
463
464 bbs = get_loop_body (loop);
33156717 465 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
617b465c
ZD
466 free (bbs);
467}
468
469/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
d73be268 470 latch to header and update loop tree and dominators
617b465c
ZD
471 accordingly. Everything between them plus LATCH_EDGE destination must
472 be dominated by HEADER_EDGE destination, and back-reachable from
473 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
5132abc2
KH
474 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
475 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
03cb2019
ZD
476 Returns the newly created loop. Frequencies and counts in the new loop
477 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
50654f6c 478
617b465c 479struct loop *
d73be268 480loopify (edge latch_edge, edge header_edge,
5132abc2 481 basic_block switch_bb, edge true_edge, edge false_edge,
03cb2019 482 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
617b465c
ZD
483{
484 basic_block succ_bb = latch_edge->dest;
485 basic_block pred_bb = header_edge->src;
66f97d31
ZD
486 basic_block *body;
487 VEC (basic_block, heap) *dom_bbs;
488 unsigned i;
617b465c 489 sbitmap seen;
6270df4c 490 struct loop *loop = alloc_loop ();
9ba025a2 491 struct loop *outer = loop_outer (succ_bb->loop_father);
03cb2019 492 int freq;
617b465c
ZD
493 gcov_type cnt;
494 edge e;
628f6a4e 495 edge_iterator ei;
617b465c
ZD
496
497 loop->header = header_edge->dest;
498 loop->latch = latch_edge->src;
499
500 freq = EDGE_FREQUENCY (header_edge);
501 cnt = header_edge->count;
617b465c
ZD
502
503 /* Redirect edges. */
504 loop_redirect_edge (latch_edge, loop->header);
5132abc2 505 loop_redirect_edge (true_edge, succ_bb);
50654f6c 506
92fc4a2f
ZD
507 /* During loop versioning, one of the switch_bb edge is already properly
508 set. Do not redirect it again unless redirect_all_edges is true. */
509 if (redirect_all_edges)
510 {
511 loop_redirect_edge (header_edge, switch_bb);
c22cacf3
MS
512 loop_redirect_edge (false_edge, loop->header);
513
92fc4a2f
ZD
514 /* Update dominators. */
515 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
516 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
517 }
50654f6c 518
d47cc544 519 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
617b465c
ZD
520
521 /* Compute new loop. */
d73be268 522 add_loop (loop, outer);
617b465c
ZD
523
524 /* Add switch_bb to appropriate loop. */
598ec7bd
ZD
525 if (switch_bb->loop_father)
526 remove_bb_from_loops (switch_bb);
617b465c
ZD
527 add_bb_to_loop (switch_bb, outer);
528
529 /* Fix frequencies. */
03cb2019
ZD
530 if (redirect_all_edges)
531 {
532 switch_bb->frequency = freq;
533 switch_bb->count = cnt;
534 FOR_EACH_EDGE (e, ei, switch_bb->succs)
535 {
536 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
537 }
538 }
539 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
540 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
617b465c
ZD
541
542 /* Update dominators of blocks outside of LOOP. */
66f97d31 543 dom_bbs = NULL;
617b465c
ZD
544 seen = sbitmap_alloc (last_basic_block);
545 sbitmap_zero (seen);
546 body = get_loop_body (loop);
547
548 for (i = 0; i < loop->num_nodes; i++)
549 SET_BIT (seen, body[i]->index);
550
551 for (i = 0; i < loop->num_nodes; i++)
552 {
d47cc544 553 basic_block ldom;
617b465c 554
d47cc544
SB
555 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
556 ldom;
557 ldom = next_dom_son (CDI_DOMINATORS, ldom))
558 if (!TEST_BIT (seen, ldom->index))
617b465c 559 {
d47cc544 560 SET_BIT (seen, ldom->index);
66f97d31 561 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
617b465c 562 }
617b465c
ZD
563 }
564
66f97d31 565 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
617b465c
ZD
566
567 free (body);
568 free (seen);
66f97d31 569 VEC_free (basic_block, heap, dom_bbs);
617b465c
ZD
570
571 return loop;
572}
573
d73be268 574/* Remove the latch edge of a LOOP and update loops to indicate that
35b07080 575 the LOOP was removed. After this function, original loop latch will
dc14f191
ZD
576 have no successor, which caller is expected to fix somehow.
577
578 If this may cause the information about irreducible regions to become
579 invalid, IRRED_INVALIDATED is set to true. */
580
25a6c68b 581static void
d73be268 582unloop (struct loop *loop, bool *irred_invalidated)
35b07080
ZD
583{
584 basic_block *body;
585 struct loop *ploop;
586 unsigned i, n;
587 basic_block latch = loop->latch;
dc14f191
ZD
588 bool dummy = false;
589
590 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
591 *irred_invalidated = true;
35b07080 592
e0bb17a8 593 /* This is relatively straightforward. The dominators are unchanged, as
35b07080
ZD
594 loop header dominates loop latch, so the only thing we have to care of
595 is the placement of loops and basic blocks inside the loop tree. We
596 move them all to the loop->outer, and then let fix_bb_placements do
597 its work. */
598
599 body = get_loop_body (loop);
35b07080
ZD
600 n = loop->num_nodes;
601 for (i = 0; i < n; i++)
602 if (body[i]->loop_father == loop)
603 {
604 remove_bb_from_loops (body[i]);
9ba025a2 605 add_bb_to_loop (body[i], loop_outer (loop));
35b07080
ZD
606 }
607 free(body);
608
609 while (loop->inner)
610 {
611 ploop = loop->inner;
612 flow_loop_tree_node_remove (ploop);
9ba025a2 613 flow_loop_tree_node_add (loop_outer (loop), ploop);
35b07080
ZD
614 }
615
616 /* Remove the loop and free its data. */
42fd6772 617 delete_loop (loop);
35b07080 618
c5cbcccf 619 remove_edge (single_succ_edge (latch));
dc14f191
ZD
620
621 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
622 there is an irreducible region inside the cancelled loop, the flags will
623 be still correct. */
d73be268 624 fix_bb_placements (latch, &dummy);
35b07080
ZD
625}
626
617b465c
ZD
627/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
628 condition stated in description of fix_loop_placement holds for them.
629 It is used in case when we removed some edges coming out of LOOP, which
dc14f191
ZD
630 may cause the right placement of LOOP inside loop tree to change.
631
632 IRRED_INVALIDATED is set to true if a change in the loop structures might
633 invalidate the information about irreducible regions. */
634
617b465c 635static void
d73be268 636fix_loop_placements (struct loop *loop, bool *irred_invalidated)
617b465c
ZD
637{
638 struct loop *outer;
639
9ba025a2 640 while (loop_outer (loop))
617b465c 641 {
9ba025a2 642 outer = loop_outer (loop);
617b465c 643 if (!fix_loop_placement (loop))
c22cacf3 644 break;
1548580c
EB
645
646 /* Changing the placement of a loop in the loop tree may alter the
647 validity of condition 2) of the description of fix_bb_placement
648 for its preheader, because the successor is the header and belongs
649 to the loop. So call fix_bb_placements to fix up the placement
650 of the preheader and (possibly) of its predecessors. */
d73be268 651 fix_bb_placements (loop_preheader_edge (loop)->src,
dc14f191 652 irred_invalidated);
617b465c
ZD
653 loop = outer;
654 }
655}
656
617b465c 657/* Copies copy of LOOP as subloop of TARGET loop, placing newly
d73be268 658 created loop into loops structure. */
f67d92e9 659struct loop *
d73be268 660duplicate_loop (struct loop *loop, struct loop *target)
617b465c
ZD
661{
662 struct loop *cloop;
6270df4c 663 cloop = alloc_loop ();
d73be268 664 place_new_loop (cloop);
617b465c 665
99f8a411 666 /* Mark the new loop as copy of LOOP. */
561e8a90 667 set_loop_copy (loop, cloop);
617b465c
ZD
668
669 /* Add it to target. */
670 flow_loop_tree_node_add (target, cloop);
671
672 return cloop;
673}
674
675/* Copies structure of subloops of LOOP into TARGET loop, placing
d73be268 676 newly created loops into loop tree. */
d329e058 677static void
d73be268 678duplicate_subloops (struct loop *loop, struct loop *target)
617b465c
ZD
679{
680 struct loop *aloop, *cloop;
681
682 for (aloop = loop->inner; aloop; aloop = aloop->next)
683 {
d73be268
ZD
684 cloop = duplicate_loop (aloop, target);
685 duplicate_subloops (aloop, cloop);
617b465c
ZD
686 }
687}
688
689/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
d73be268 690 into TARGET loop, placing newly created loops into loop tree. */
d329e058 691static void
d73be268 692copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
617b465c
ZD
693{
694 struct loop *aloop;
695 int i;
696
697 for (i = 0; i < n; i++)
698 {
d73be268
ZD
699 aloop = duplicate_loop (copied_loops[i], target);
700 duplicate_subloops (copied_loops[i], aloop);
617b465c
ZD
701 }
702}
703
704/* Redirects edge E to basic block DEST. */
705static void
d329e058 706loop_redirect_edge (edge e, basic_block dest)
617b465c
ZD
707{
708 if (e->dest == dest)
709 return;
710
9ee634e3 711 redirect_edge_and_branch_force (e, dest);
617b465c
ZD
712}
713
617b465c
ZD
714/* Check whether LOOP's body can be duplicated. */
715bool
ed7a4b4b 716can_duplicate_loop_p (const struct loop *loop)
617b465c 717{
8d28e87d
ZD
718 int ret;
719 basic_block *bbs = get_loop_body (loop);
617b465c 720
8d28e87d 721 ret = can_copy_bbs_p (bbs, loop->num_nodes);
617b465c 722 free (bbs);
c22cacf3 723
8d28e87d 724 return ret;
617b465c
ZD
725}
726
03cb2019
ZD
727/* Sets probability and count of edge E to zero. The probability and count
728 is redistributed evenly to the remaining edges coming from E->src. */
729
730static void
731set_zero_probability (edge e)
732{
733 basic_block bb = e->src;
734 edge_iterator ei;
735 edge ae, last = NULL;
736 unsigned n = EDGE_COUNT (bb->succs);
737 gcov_type cnt = e->count, cnt1;
738 unsigned prob = e->probability, prob1;
739
740 gcc_assert (n > 1);
741 cnt1 = cnt / (n - 1);
742 prob1 = prob / (n - 1);
743
744 FOR_EACH_EDGE (ae, ei, bb->succs)
745 {
746 if (ae == e)
747 continue;
748
749 ae->probability += prob1;
750 ae->count += cnt1;
751 last = ae;
752 }
753
754 /* Move the rest to one of the edges. */
755 last->probability += prob % (n - 1);
756 last->count += cnt % (n - 1);
757
758 e->probability = 0;
759 e->count = 0;
760}
761
8d28e87d 762/* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
d73be268 763 loop structure and dominators. E's destination must be LOOP header for
8d28e87d
ZD
764 this to work, i.e. it must be entry or latch edge of this loop; these are
765 unique, as the loops must have preheaders for this function to work
766 correctly (in case E is latch, the function unrolls the loop, if E is entry
767 edge, it peels the loop). Store edges created by copying ORIG edge from
768 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
769 original LOOP body, the other copies are numbered in order given by control
770 flow through them) into TO_REMOVE array. Returns false if duplication is
771 impossible. */
ee8c1b05 772
1cb7dfc3 773bool
d73be268 774duplicate_loop_to_header_edge (struct loop *loop, edge e,
d329e058 775 unsigned int ndupl, sbitmap wont_exit,
ee8c1b05
ZD
776 edge orig, VEC (edge, heap) **to_remove,
777 int flags)
617b465c
ZD
778{
779 struct loop *target, *aloop;
780 struct loop **orig_loops;
781 unsigned n_orig_loops;
782 basic_block header = loop->header, latch = loop->latch;
783 basic_block *new_bbs, *bbs, *first_active;
784 basic_block new_bb, bb, first_active_latch = NULL;
8d28e87d
ZD
785 edge ae, latch_edge;
786 edge spec_edges[2], new_spec_edges[2];
787#define SE_LATCH 0
788#define SE_ORIG 1
617b465c
ZD
789 unsigned i, j, n;
790 int is_latch = (latch == e->src);
791 int scale_act = 0, *scale_step = NULL, scale_main = 0;
03cb2019 792 int scale_after_exit = 0;
617b465c
ZD
793 int p, freq_in, freq_le, freq_out_orig;
794 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
795 int add_irreducible_flag;
b9a66240 796 basic_block place_after;
03cb2019
ZD
797 bitmap bbs_to_scale = NULL;
798 bitmap_iterator bi;
617b465c 799
341c100f
NS
800 gcc_assert (e->dest == loop->header);
801 gcc_assert (ndupl > 0);
617b465c
ZD
802
803 if (orig)
804 {
805 /* Orig must be edge out of the loop. */
341c100f
NS
806 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
807 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
617b465c
ZD
808 }
809
b9a66240
ZD
810 n = loop->num_nodes;
811 bbs = get_loop_body_in_dom_order (loop);
812 gcc_assert (bbs[0] == loop->header);
813 gcc_assert (bbs[n - 1] == loop->latch);
617b465c
ZD
814
815 /* Check whether duplication is possible. */
8d28e87d 816 if (!can_copy_bbs_p (bbs, loop->num_nodes))
617b465c 817 {
8d28e87d
ZD
818 free (bbs);
819 return false;
617b465c 820 }
5ed6ace5 821 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
617b465c 822
8d28e87d
ZD
823 /* In case we are doing loop peeling and the loop is in the middle of
824 irreducible region, the peeled copies will be inside it too. */
825 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
341c100f 826 gcc_assert (!is_latch || !add_irreducible_flag);
617b465c
ZD
827
828 /* Find edge from latch. */
829 latch_edge = loop_latch_edge (loop);
830
831 if (flags & DLTHE_FLAG_UPDATE_FREQ)
832 {
833 /* Calculate coefficients by that we have to scale frequencies
834 of duplicated loop bodies. */
835 freq_in = header->frequency;
836 freq_le = EDGE_FREQUENCY (latch_edge);
837 if (freq_in == 0)
838 freq_in = 1;
839 if (freq_in < freq_le)
840 freq_in = freq_le;
841 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
842 if (freq_out_orig > freq_in - freq_le)
843 freq_out_orig = freq_in - freq_le;
844 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
845 prob_pass_wont_exit =
846 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
847
03cb2019
ZD
848 if (orig
849 && REG_BR_PROB_BASE - orig->probability != 0)
850 {
851 /* The blocks that are dominated by a removed exit edge ORIG have
852 frequencies scaled by this. */
853 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
854 REG_BR_PROB_BASE - orig->probability);
855 bbs_to_scale = BITMAP_ALLOC (NULL);
856 for (i = 0; i < n; i++)
857 {
858 if (bbs[i] != orig->src
859 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
860 bitmap_set_bit (bbs_to_scale, i);
861 }
862 }
863
5ed6ace5 864 scale_step = XNEWVEC (int, ndupl);
617b465c 865
03cb2019
ZD
866 for (i = 1; i <= ndupl; i++)
867 scale_step[i - 1] = TEST_BIT (wont_exit, i)
617b465c
ZD
868 ? prob_pass_wont_exit
869 : prob_pass_thru;
870
a4d05547 871 /* Complete peeling is special as the probability of exit in last
c22cacf3 872 copy becomes 1. */
178df94f
JH
873 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
874 {
875 int wanted_freq = EDGE_FREQUENCY (e);
876
877 if (wanted_freq > freq_in)
878 wanted_freq = freq_in;
879
880 gcc_assert (!is_latch);
a4d05547 881 /* First copy has frequency of incoming edge. Each subsequent
178df94f
JH
882 frequency should be reduced by prob_pass_wont_exit. Caller
883 should've managed the flags so all except for original loop
884 has won't exist set. */
885 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
886 /* Now simulate the duplication adjustments and compute header
887 frequency of the last copy. */
888 for (i = 0; i < ndupl; i++)
c22cacf3 889 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
178df94f
JH
890 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
891 }
892 else if (is_latch)
617b465c
ZD
893 {
894 prob_pass_main = TEST_BIT (wont_exit, 0)
895 ? prob_pass_wont_exit
896 : prob_pass_thru;
897 p = prob_pass_main;
898 scale_main = REG_BR_PROB_BASE;
899 for (i = 0; i < ndupl; i++)
900 {
901 scale_main += p;
902 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
903 }
904 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
905 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
906 }
907 else
908 {
909 scale_main = REG_BR_PROB_BASE;
910 for (i = 0; i < ndupl; i++)
911 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
912 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
913 }
914 for (i = 0; i < ndupl; i++)
341c100f
NS
915 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
916 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
917 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
617b465c
ZD
918 }
919
920 /* Loop the new bbs will belong to. */
8d28e87d 921 target = e->src->loop_father;
617b465c
ZD
922
923 /* Original loops. */
924 n_orig_loops = 0;
925 for (aloop = loop->inner; aloop; aloop = aloop->next)
926 n_orig_loops++;
5ed6ace5 927 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
617b465c
ZD
928 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
929 orig_loops[i] = aloop;
930
561e8a90 931 set_loop_copy (loop, target);
d329e058 932
5ed6ace5 933 first_active = XNEWVEC (basic_block, n);
617b465c
ZD
934 if (is_latch)
935 {
936 memcpy (first_active, bbs, n * sizeof (basic_block));
937 first_active_latch = latch;
938 }
939
8d28e87d
ZD
940 spec_edges[SE_ORIG] = orig;
941 spec_edges[SE_LATCH] = latch_edge;
d329e058 942
b9a66240 943 place_after = e->src;
617b465c
ZD
944 for (j = 0; j < ndupl; j++)
945 {
946 /* Copy loops. */
d73be268 947 copy_loops_to (orig_loops, n_orig_loops, target);
617b465c
ZD
948
949 /* Copy bbs. */
b9a66240
ZD
950 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
951 place_after);
952 place_after = new_spec_edges[SE_LATCH]->src;
8d28e87d 953
7f7b1718
JH
954 if (flags & DLTHE_RECORD_COPY_NUMBER)
955 for (i = 0; i < n; i++)
956 {
957 gcc_assert (!new_bbs[i]->aux);
958 new_bbs[i]->aux = (void *)(size_t)(j + 1);
959 }
113d659a 960
84d45ad1
ZD
961 /* Note whether the blocks and edges belong to an irreducible loop. */
962 if (add_irreducible_flag)
963 {
964 for (i = 0; i < n; i++)
6580ee77 965 new_bbs[i]->flags |= BB_DUPLICATED;
84d45ad1
ZD
966 for (i = 0; i < n; i++)
967 {
628f6a4e 968 edge_iterator ei;
84d45ad1
ZD
969 new_bb = new_bbs[i];
970 if (new_bb->loop_father == target)
971 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
972
628f6a4e 973 FOR_EACH_EDGE (ae, ei, new_bb->succs)
6580ee77 974 if ((ae->dest->flags & BB_DUPLICATED)
84d45ad1
ZD
975 && (ae->src->loop_father == target
976 || ae->dest->loop_father == target))
977 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
978 }
979 for (i = 0; i < n; i++)
6580ee77 980 new_bbs[i]->flags &= ~BB_DUPLICATED;
84d45ad1
ZD
981 }
982
8d28e87d 983 /* Redirect the special edges. */
617b465c 984 if (is_latch)
8d28e87d
ZD
985 {
986 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
987 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
988 loop->header);
d47cc544 989 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
b9a66240 990 latch = loop->latch = new_bbs[n - 1];
8d28e87d
ZD
991 e = latch_edge = new_spec_edges[SE_LATCH];
992 }
993 else
994 {
995 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
996 loop->header);
997 redirect_edge_and_branch_force (e, new_bbs[0]);
d47cc544 998 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
8d28e87d
ZD
999 e = new_spec_edges[SE_LATCH];
1000 }
617b465c 1001
8d28e87d
ZD
1002 /* Record exit edge in this copy. */
1003 if (orig && TEST_BIT (wont_exit, j + 1))
ee8c1b05
ZD
1004 {
1005 if (to_remove)
1006 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
03cb2019
ZD
1007 set_zero_probability (new_spec_edges[SE_ORIG]);
1008
1009 /* Scale the frequencies of the blocks dominated by the exit. */
1010 if (bbs_to_scale)
1011 {
1012 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1013 {
1014 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1015 REG_BR_PROB_BASE);
1016 }
1017 }
ee8c1b05 1018 }
d329e058 1019
8d28e87d
ZD
1020 /* Record the first copy in the control flow order if it is not
1021 the original loop (i.e. in case of peeling). */
617b465c
ZD
1022 if (!first_active_latch)
1023 {
1024 memcpy (first_active, new_bbs, n * sizeof (basic_block));
b9a66240 1025 first_active_latch = new_bbs[n - 1];
617b465c 1026 }
d329e058 1027
8d28e87d
ZD
1028 /* Set counts and frequencies. */
1029 if (flags & DLTHE_FLAG_UPDATE_FREQ)
617b465c 1030 {
33156717 1031 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
8d28e87d 1032 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
617b465c
ZD
1033 }
1034 }
8d28e87d
ZD
1035 free (new_bbs);
1036 free (orig_loops);
c22cacf3 1037
ee8c1b05
ZD
1038 /* Record the exit edge in the original loop body, and update the frequencies. */
1039 if (orig && TEST_BIT (wont_exit, 0))
1040 {
1041 if (to_remove)
1042 VEC_safe_push (edge, heap, *to_remove, orig);
03cb2019
ZD
1043 set_zero_probability (orig);
1044
1045 /* Scale the frequencies of the blocks dominated by the exit. */
1046 if (bbs_to_scale)
1047 {
1048 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1049 {
1050 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1051 REG_BR_PROB_BASE);
1052 }
1053 }
ee8c1b05
ZD
1054 }
1055
8d28e87d
ZD
1056 /* Update the original loop. */
1057 if (!is_latch)
d47cc544 1058 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
617b465c
ZD
1059 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1060 {
33156717 1061 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
617b465c
ZD
1062 free (scale_step);
1063 }
617b465c 1064
8d28e87d 1065 /* Update dominators of outer blocks if affected. */
617b465c
ZD
1066 for (i = 0; i < n; i++)
1067 {
66f97d31
ZD
1068 basic_block dominated, dom_bb;
1069 VEC (basic_block, heap) *dom_bbs;
1070 unsigned j;
617b465c
ZD
1071
1072 bb = bbs[i];
6580ee77 1073 bb->aux = 0;
113d659a 1074
66f97d31
ZD
1075 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1076 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
617b465c 1077 {
617b465c
ZD
1078 if (flow_bb_inside_loop_p (loop, dominated))
1079 continue;
1080 dom_bb = nearest_common_dominator (
d47cc544 1081 CDI_DOMINATORS, first_active[i], first_active_latch);
c22cacf3 1082 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
617b465c 1083 }
66f97d31 1084 VEC_free (basic_block, heap, dom_bbs);
617b465c
ZD
1085 }
1086 free (first_active);
1087
1088 free (bbs);
03cb2019 1089 BITMAP_FREE (bbs_to_scale);
617b465c
ZD
1090
1091 return true;
1092}
1093
f470c378
ZD
1094/* A callback for make_forwarder block, to redirect all edges except for
1095 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1096 whether to redirect it. */
1097
b02b9b53
ZD
1098edge mfb_kj_edge;
1099bool
f470c378
ZD
1100mfb_keep_just (edge e)
1101{
1102 return e != mfb_kj_edge;
1103}
1104
3d436d2a
ZD
1105/* Creates a pre-header for a LOOP. Returns newly created block. Unless
1106 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1107 entry; otherwise we also force preheader block to have only one successor.
f470c378
ZD
1108 The function also updates dominators. */
1109
b02b9b53 1110basic_block
d47cc544 1111create_preheader (struct loop *loop, int flags)
3d436d2a
ZD
1112{
1113 edge e, fallthru;
1114 basic_block dummy;
3d436d2a 1115 int nentry = 0;
f470c378 1116 bool irred = false;
c15bc84b 1117 bool latch_edge_was_fallthru;
c7b852c8 1118 edge one_succ_pred = NULL, single_entry = NULL;
628f6a4e 1119 edge_iterator ei;
3d436d2a 1120
628f6a4e 1121 FOR_EACH_EDGE (e, ei, loop->header->preds)
3d436d2a
ZD
1122 {
1123 if (e->src == loop->latch)
1124 continue;
f470c378 1125 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
3d436d2a 1126 nentry++;
c7b852c8 1127 single_entry = e;
c5cbcccf 1128 if (single_succ_p (e->src))
c15bc84b 1129 one_succ_pred = e;
3d436d2a 1130 }
341c100f 1131 gcc_assert (nentry);
3d436d2a
ZD
1132 if (nentry == 1)
1133 {
89f8f30f
ZD
1134 if (/* We do not allow entry block to be the loop preheader, since we
1135 cannot emit code there. */
c7b852c8 1136 single_entry->src != ENTRY_BLOCK_PTR
89f8f30f
ZD
1137 /* If we want simple preheaders, also force the preheader to have
1138 just a single successor. */
1139 && !((flags & CP_SIMPLE_PREHEADERS)
c7b852c8 1140 && !single_succ_p (single_entry->src)))
3d436d2a
ZD
1141 return NULL;
1142 }
1143
f470c378 1144 mfb_kj_edge = loop_latch_edge (loop);
c15bc84b 1145 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
598ec7bd 1146 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
3d436d2a
ZD
1147 dummy = fallthru->src;
1148 loop->header = fallthru->dest;
1149
c15bc84b
EB
1150 /* Try to be clever in placing the newly created preheader. The idea is to
1151 avoid breaking any "fallthruness" relationship between blocks.
1152
1153 The preheader was created just before the header and all incoming edges
1154 to the header were redirected to the preheader, except the latch edge.
1155 So the only problematic case is when this latch edge was a fallthru
1156 edge: it is not anymore after the preheader creation so we have broken
1157 the fallthruness. We're therefore going to look for a better place. */
1158 if (latch_edge_was_fallthru)
1159 {
1160 if (one_succ_pred)
1161 e = one_succ_pred;
1162 else
1163 e = EDGE_PRED (dummy, 0);
1164
1165 move_block_after (dummy, e->src);
1166 }
f470c378 1167
f470c378 1168 if (irred)
3d436d2a 1169 {
f470c378 1170 dummy->flags |= BB_IRREDUCIBLE_LOOP;
c5cbcccf 1171 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
3d436d2a
ZD
1172 }
1173
c263766c
RH
1174 if (dump_file)
1175 fprintf (dump_file, "Created preheader block for loop %i\n",
3d436d2a
ZD
1176 loop->num);
1177
1178 return dummy;
1179}
1180
d73be268
ZD
1181/* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1182
3d436d2a 1183void
d73be268 1184create_preheaders (int flags)
3d436d2a 1185{
42fd6772
ZD
1186 loop_iterator li;
1187 struct loop *loop;
1188
c7b852c8
ZD
1189 if (!current_loops)
1190 return;
1191
42fd6772
ZD
1192 FOR_EACH_LOOP (li, loop, 0)
1193 create_preheader (loop, flags);
f87000d0 1194 loops_state_set (LOOPS_HAVE_PREHEADERS);
3d436d2a
ZD
1195}
1196
d73be268
ZD
1197/* Forces all loop latches to have only single successor. */
1198
3d436d2a 1199void
d73be268 1200force_single_succ_latches (void)
3d436d2a 1201{
42fd6772 1202 loop_iterator li;
3d436d2a
ZD
1203 struct loop *loop;
1204 edge e;
1205
42fd6772 1206 FOR_EACH_LOOP (li, loop, 0)
3d436d2a 1207 {
c5cbcccf 1208 if (loop->latch != loop->header && single_succ_p (loop->latch))
3d436d2a 1209 continue;
d329e058 1210
9ff3d2de 1211 e = find_edge (loop->latch, loop->header);
bc810602 1212
598ec7bd 1213 split_edge (e);
3d436d2a 1214 }
f87000d0 1215 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
3d436d2a
ZD
1216}
1217
1cb7dfc3
MH
1218/* This function is called from loop_version. It splits the entry edge
1219 of the loop we want to version, adds the versioning condition, and
1220 adjust the edges to the two versions of the loop appropriately.
1221 e is an incoming edge. Returns the basic block containing the
1222 condition.
1223
1224 --- edge e ---- > [second_head]
1225
1226 Split it and insert new conditional expression and adjust edges.
1227
1228 --- edge e ---> [cond expr] ---> [first_head]
c22cacf3
MS
1229 |
1230 +---------> [second_head]
03cb2019
ZD
1231
1232 THEN_PROB is the probability of then branch of the condition. */
1cb7dfc3
MH
1233
1234static basic_block
03cb2019
ZD
1235lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1236 edge e, void *cond_expr, unsigned then_prob)
1cb7dfc3
MH
1237{
1238 basic_block new_head = NULL;
1239 edge e1;
1240
1241 gcc_assert (e->dest == second_head);
1242
1243 /* Split edge 'e'. This will create a new basic block, where we can
1244 insert conditional expr. */
1245 new_head = split_edge (e);
1246
1cb7dfc3
MH
1247 lv_add_condition_to_bb (first_head, second_head, new_head,
1248 cond_expr);
1249
766613a4 1250 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
03cb2019 1251 e = single_succ_edge (new_head);
52bca999
SB
1252 e1 = make_edge (new_head, first_head,
1253 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
03cb2019
ZD
1254 e1->probability = then_prob;
1255 e->probability = REG_BR_PROB_BASE - then_prob;
1256 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1257 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1258
1cb7dfc3
MH
1259 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1260 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1261
1262 /* Adjust loop header phi nodes. */
1263 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1264
1265 return new_head;
1266}
1267
1268/* Main entry point for Loop Versioning transformation.
c22cacf3 1269
b9a66240
ZD
1270 This transformation given a condition and a loop, creates
1271 -if (condition) { loop_copy1 } else { loop_copy2 },
1272 where loop_copy1 is the loop transformed in one way, and loop_copy2
1273 is the loop transformed in another way (or unchanged). 'condition'
1274 may be a run time test for things that were not resolved by static
1275 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1276
03cb2019
ZD
1277 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1278 is the ratio by that the frequencies in the original loop should
1279 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1280 new loop should be scaled.
1281
b9a66240
ZD
1282 If PLACE_AFTER is true, we place the new loop after LOOP in the
1283 instruction stream, otherwise it is placed before LOOP. */
1cb7dfc3
MH
1284
1285struct loop *
d73be268 1286loop_version (struct loop *loop,
b9a66240 1287 void *cond_expr, basic_block *condition_bb,
03cb2019 1288 unsigned then_prob, unsigned then_scale, unsigned else_scale,
b9a66240 1289 bool place_after)
1cb7dfc3
MH
1290{
1291 basic_block first_head, second_head;
6270df4c 1292 edge entry, latch_edge, true_edge, false_edge;
1cb7dfc3
MH
1293 int irred_flag;
1294 struct loop *nloop;
b9a66240 1295 basic_block cond_bb;
1cb7dfc3 1296
1cb7dfc3
MH
1297 /* Record entry and latch edges for the loop */
1298 entry = loop_preheader_edge (loop);
1299 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1300 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
c22cacf3 1301
1cb7dfc3
MH
1302 /* Note down head of loop as first_head. */
1303 first_head = entry->dest;
1304
1305 /* Duplicate loop. */
d73be268 1306 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
ee8c1b05 1307 NULL, NULL, NULL, 0))
1cb7dfc3
MH
1308 return NULL;
1309
1310 /* After duplication entry edge now points to new loop head block.
1311 Note down new head as second_head. */
1312 second_head = entry->dest;
1313
1314 /* Split loop entry edge and insert new block with cond expr. */
b9a66240 1315 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
03cb2019 1316 entry, cond_expr, then_prob);
b9a66240
ZD
1317 if (condition_bb)
1318 *condition_bb = cond_bb;
1319
1320 if (!cond_bb)
1cb7dfc3
MH
1321 {
1322 entry->flags |= irred_flag;
1323 return NULL;
1324 }
1325
6580ee77 1326 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
c22cacf3 1327
b9a66240 1328 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
d73be268 1329 nloop = loopify (latch_edge,
6580ee77 1330 single_pred_edge (get_bb_copy (loop->header)),
b9a66240 1331 cond_bb, true_edge, false_edge,
03cb2019
ZD
1332 false /* Do not redirect all edges. */,
1333 then_scale, else_scale);
1cb7dfc3 1334
c22cacf3 1335 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1cb7dfc3
MH
1336 lv_flush_pending_stmts (latch_edge);
1337
c22cacf3 1338 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
b9a66240 1339 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1cb7dfc3
MH
1340 lv_flush_pending_stmts (false_edge);
1341 /* Adjust irreducible flag. */
1342 if (irred_flag)
1343 {
b9a66240 1344 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1cb7dfc3
MH
1345 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1346 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
b9a66240
ZD
1347 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1348 }
1349
1350 if (place_after)
1351 {
1352 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1353 unsigned i;
1354
1355 after = loop->latch;
1356
1357 for (i = 0; i < nloop->num_nodes; i++)
1358 {
1359 move_block_after (bbs[i], after);
1360 after = bbs[i];
1361 }
1362 free (bbs);
1cb7dfc3
MH
1363 }
1364
fa10beec
RW
1365 /* At this point condition_bb is loop preheader with two successors,
1366 first_head and second_head. Make sure that loop preheader has only
1cb7dfc3 1367 one successor. */
598ec7bd
ZD
1368 split_edge (loop_preheader_edge (loop));
1369 split_edge (loop_preheader_edge (nloop));
1cb7dfc3
MH
1370
1371 return nloop;
1372}
1373
d73be268 1374/* The structure of loops might have changed. Some loops might get removed
2b271002
ZD
1375 (and their headers and latches were set to NULL), loop exists might get
1376 removed (thus the loop nesting may be wrong), and some blocks and edges
1377 were changed (so the information about bb --> loop mapping does not have
1378 to be correct). But still for the remaining loops the header dominates
fa10beec 1379 the latch, and loops did not get new subloops (new loops might possibly
2b271002 1380 get created, but we are not interested in them). Fix up the mess.
c22cacf3 1381
2b271002
ZD
1382 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1383 marked in it. */
1384
1385void
d73be268 1386fix_loop_structure (bitmap changed_bbs)
2b271002
ZD
1387{
1388 basic_block bb;
1389 struct loop *loop, *ploop;
42fd6772 1390 loop_iterator li;
c7b852c8
ZD
1391 bool record_exits = false;
1392 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
2b271002 1393
c7b852c8
ZD
1394 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1395 the loop hierarchy, so that we can recognize blocks whose loop nesting
1396 relationship has changed. */
2b271002
ZD
1397 FOR_EACH_BB (bb)
1398 {
c7b852c8 1399 if (changed_bbs)
9ba025a2 1400 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
d73be268 1401 bb->loop_father = current_loops->tree_root;
2b271002
ZD
1402 }
1403
f87000d0 1404 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
c7b852c8
ZD
1405 {
1406 release_recorded_exits ();
1407 record_exits = true;
1408 }
1409
1410 /* Remove the dead loops from structures. We start from the innermost
1411 loops, so that when we remove the loops, we know that the loops inside
1412 are preserved, and do not waste time relinking loops that will be
1413 removed later. */
1414 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2b271002 1415 {
2b271002
ZD
1416 if (loop->header)
1417 continue;
1418
1419 while (loop->inner)
1420 {
1421 ploop = loop->inner;
1422 flow_loop_tree_node_remove (ploop);
9ba025a2 1423 flow_loop_tree_node_add (loop_outer (loop), ploop);
2b271002
ZD
1424 }
1425
1426 /* Remove the loop and free its data. */
42fd6772 1427 delete_loop (loop);
2b271002
ZD
1428 }
1429
c7b852c8
ZD
1430 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1431 that no optimization interchanges the order of the loops, i.e., it cannot
1432 happen that L1 was superloop of L2 before and it is subloop of L2 now
1433 (without explicitly updating loop information). At the same time, we also
1434 determine the new loop structure. */
1435 current_loops->tree_root->num_nodes = n_basic_blocks;
42fd6772 1436 FOR_EACH_LOOP (li, loop, 0)
2b271002 1437 {
c7b852c8 1438 superloop[loop->num] = loop->header->loop_father;
2b271002
ZD
1439 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1440 }
1441
1442 /* Now fix the loop nesting. */
42fd6772 1443 FOR_EACH_LOOP (li, loop, 0)
2b271002 1444 {
c7b852c8 1445 ploop = superloop[loop->num];
9ba025a2 1446 if (ploop != loop_outer (loop))
2b271002
ZD
1447 {
1448 flow_loop_tree_node_remove (loop);
c7b852c8 1449 flow_loop_tree_node_add (ploop, loop);
2b271002
ZD
1450 }
1451 }
c7b852c8 1452 free (superloop);
2b271002
ZD
1453
1454 /* Mark the blocks whose loop has changed. */
c7b852c8 1455 if (changed_bbs)
2b271002 1456 {
c7b852c8
ZD
1457 FOR_EACH_BB (bb)
1458 {
9ba025a2 1459 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
c7b852c8 1460 bitmap_set_bit (changed_bbs, bb->index);
2b271002 1461
c7b852c8
ZD
1462 bb->aux = NULL;
1463 }
2b271002
ZD
1464 }
1465
f87000d0 1466 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
c7b852c8
ZD
1467 create_preheaders (CP_SIMPLE_PREHEADERS);
1468
f87000d0 1469 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
af0b10e5
ZD
1470 force_single_succ_latches ();
1471
f87000d0 1472 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
d73be268 1473 mark_irreducible_loops ();
6270df4c 1474
c7b852c8
ZD
1475 if (record_exits)
1476 record_loop_exits ();
1477
1478#ifdef ENABLE_CHECKING
1479 verify_loop_structure ();
1480#endif
2b271002 1481}
This page took 1.329017 seconds and 5 git commands to generate.