]>
Commit | Line | Data |
---|---|---|
51bbfa0c | 1 | /* Convert function calls to rtl insns, for GNU C compiler. |
4283012f | 2 | Copyright (C) 1989, 92-97, 1998, 1999 Free Software Foundation, Inc. |
51bbfa0c RS |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
940d9d63 RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
51bbfa0c RS |
20 | |
21 | #include "config.h" | |
670ee920 KG |
22 | #include "system.h" |
23 | #include "rtl.h" | |
24 | #include "tree.h" | |
25 | #include "flags.h" | |
26 | #include "expr.h" | |
49ad7cfa | 27 | #include "function.h" |
670ee920 | 28 | #include "regs.h" |
51bbfa0c | 29 | #include "insn-flags.h" |
5f6da302 | 30 | #include "toplev.h" |
d6f4ec51 | 31 | #include "output.h" |
51bbfa0c | 32 | |
c795bca9 BS |
33 | #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY |
34 | #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY | |
35 | #endif | |
36 | ||
51bbfa0c | 37 | /* Decide whether a function's arguments should be processed |
bbc8a071 RK |
38 | from first to last or from last to first. |
39 | ||
40 | They should if the stack and args grow in opposite directions, but | |
41 | only if we have push insns. */ | |
51bbfa0c | 42 | |
51bbfa0c | 43 | #ifdef PUSH_ROUNDING |
bbc8a071 | 44 | |
40083ddf | 45 | #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD) |
51bbfa0c RS |
46 | #define PUSH_ARGS_REVERSED /* If it's last to first */ |
47 | #endif | |
bbc8a071 | 48 | |
51bbfa0c RS |
49 | #endif |
50 | ||
c795bca9 BS |
51 | /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */ |
52 | #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) | |
51bbfa0c RS |
53 | |
54 | /* Data structure and subroutines used within expand_call. */ | |
55 | ||
56 | struct arg_data | |
57 | { | |
58 | /* Tree node for this argument. */ | |
59 | tree tree_value; | |
1efe6448 RK |
60 | /* Mode for value; TYPE_MODE unless promoted. */ |
61 | enum machine_mode mode; | |
51bbfa0c RS |
62 | /* Current RTL value for argument, or 0 if it isn't precomputed. */ |
63 | rtx value; | |
64 | /* Initially-compute RTL value for argument; only for const functions. */ | |
65 | rtx initial_value; | |
66 | /* Register to pass this argument in, 0 if passed on stack, or an | |
cacbd532 | 67 | PARALLEL if the arg is to be copied into multiple non-contiguous |
51bbfa0c RS |
68 | registers. */ |
69 | rtx reg; | |
84b55618 RK |
70 | /* If REG was promoted from the actual mode of the argument expression, |
71 | indicates whether the promotion is sign- or zero-extended. */ | |
72 | int unsignedp; | |
51bbfa0c RS |
73 | /* Number of registers to use. 0 means put the whole arg in registers. |
74 | Also 0 if not passed in registers. */ | |
75 | int partial; | |
d64f5a78 RS |
76 | /* Non-zero if argument must be passed on stack. |
77 | Note that some arguments may be passed on the stack | |
78 | even though pass_on_stack is zero, just because FUNCTION_ARG says so. | |
79 | pass_on_stack identifies arguments that *cannot* go in registers. */ | |
51bbfa0c RS |
80 | int pass_on_stack; |
81 | /* Offset of this argument from beginning of stack-args. */ | |
82 | struct args_size offset; | |
83 | /* Similar, but offset to the start of the stack slot. Different from | |
84 | OFFSET if this arg pads downward. */ | |
85 | struct args_size slot_offset; | |
86 | /* Size of this argument on the stack, rounded up for any padding it gets, | |
87 | parts of the argument passed in registers do not count. | |
88 | If REG_PARM_STACK_SPACE is defined, then register parms | |
89 | are counted here as well. */ | |
90 | struct args_size size; | |
91 | /* Location on the stack at which parameter should be stored. The store | |
92 | has already been done if STACK == VALUE. */ | |
93 | rtx stack; | |
94 | /* Location on the stack of the start of this argument slot. This can | |
95 | differ from STACK if this arg pads downward. This location is known | |
96 | to be aligned to FUNCTION_ARG_BOUNDARY. */ | |
97 | rtx stack_slot; | |
98 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
99 | /* Place that this stack area has been saved, if needed. */ | |
100 | rtx save_area; | |
101 | #endif | |
4ab56118 RK |
102 | /* If an argument's alignment does not permit direct copying into registers, |
103 | copy in smaller-sized pieces into pseudos. These are stored in a | |
104 | block pointed to by this field. The next field says how many | |
105 | word-sized pseudos we made. */ | |
106 | rtx *aligned_regs; | |
107 | int n_aligned_regs; | |
51bbfa0c RS |
108 | }; |
109 | ||
110 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
b94301c2 | 111 | /* A vector of one char per byte of stack space. A byte if non-zero if |
51bbfa0c RS |
112 | the corresponding stack location has been used. |
113 | This vector is used to prevent a function call within an argument from | |
114 | clobbering any stack already set up. */ | |
115 | static char *stack_usage_map; | |
116 | ||
117 | /* Size of STACK_USAGE_MAP. */ | |
118 | static int highest_outgoing_arg_in_use; | |
2f4aa534 RS |
119 | |
120 | /* stack_arg_under_construction is nonzero when an argument may be | |
121 | initialized with a constructor call (including a C function that | |
122 | returns a BLKmode struct) and expand_call must take special action | |
123 | to make sure the object being constructed does not overlap the | |
124 | argument list for the constructor call. */ | |
125 | int stack_arg_under_construction; | |
51bbfa0c RS |
126 | #endif |
127 | ||
20efdf74 JL |
128 | static int calls_function PROTO ((tree, int)); |
129 | static int calls_function_1 PROTO ((tree, int)); | |
130 | static void emit_call_1 PROTO ((rtx, tree, tree, HOST_WIDE_INT, | |
fb5eebb9 RH |
131 | HOST_WIDE_INT, HOST_WIDE_INT, rtx, |
132 | rtx, int, rtx, int)); | |
20efdf74 JL |
133 | static void special_function_p PROTO ((char *, tree, int *, int *, |
134 | int *, int *)); | |
135 | static void precompute_register_parameters PROTO ((int, struct arg_data *, | |
136 | int *)); | |
322e3e34 | 137 | static void store_one_arg PROTO ((struct arg_data *, rtx, int, int, |
c84e2712 | 138 | int)); |
20efdf74 JL |
139 | static void store_unaligned_arguments_into_pseudos PROTO ((struct arg_data *, |
140 | int)); | |
0f9b3ea6 JL |
141 | static int finalize_must_preallocate PROTO ((int, int, |
142 | struct arg_data *, | |
143 | struct args_size *)); | |
cc0b1adc JL |
144 | static void precompute_arguments PROTO ((int, int, int, |
145 | struct arg_data *, | |
146 | struct args_size *)); | |
599f37b6 JL |
147 | static int compute_argument_block_size PROTO ((int, |
148 | struct args_size *)); | |
d7cdf113 JL |
149 | static void initialize_argument_information PROTO ((int, |
150 | struct arg_data *, | |
151 | struct args_size *, | |
152 | int, tree, tree, | |
959f3a06 | 153 | CUMULATIVE_ARGS *, |
d7cdf113 JL |
154 | int, rtx *, int *, |
155 | int *, int *)); | |
a45bdd02 JL |
156 | static void compute_argument_addresses PROTO ((struct arg_data *, |
157 | rtx, int)); | |
158 | static rtx rtx_for_function_call PROTO ((tree, tree)); | |
21a3b983 JL |
159 | static void load_register_parameters PROTO ((struct arg_data *, |
160 | int, rtx *)); | |
161 | ||
20efdf74 JL |
162 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) |
163 | static rtx save_fixed_argument_area PROTO ((int, rtx, int *, int *)); | |
164 | static void restore_fixed_argument_area PROTO ((rtx, rtx, int, int)); | |
165 | #endif | |
51bbfa0c | 166 | \f |
1ce0cb53 JW |
167 | /* If WHICH is 1, return 1 if EXP contains a call to the built-in function |
168 | `alloca'. | |
169 | ||
170 | If WHICH is 0, return 1 if EXP contains a call to any function. | |
171 | Actually, we only need return 1 if evaluating EXP would require pushing | |
172 | arguments on the stack, but that is too difficult to compute, so we just | |
173 | assume any function call might require the stack. */ | |
51bbfa0c | 174 | |
1c8d7aef RS |
175 | static tree calls_function_save_exprs; |
176 | ||
51bbfa0c | 177 | static int |
1ce0cb53 | 178 | calls_function (exp, which) |
51bbfa0c | 179 | tree exp; |
1ce0cb53 | 180 | int which; |
1c8d7aef RS |
181 | { |
182 | int val; | |
183 | calls_function_save_exprs = 0; | |
184 | val = calls_function_1 (exp, which); | |
185 | calls_function_save_exprs = 0; | |
186 | return val; | |
187 | } | |
188 | ||
189 | static int | |
190 | calls_function_1 (exp, which) | |
191 | tree exp; | |
192 | int which; | |
51bbfa0c RS |
193 | { |
194 | register int i; | |
0207efa2 RK |
195 | enum tree_code code = TREE_CODE (exp); |
196 | int type = TREE_CODE_CLASS (code); | |
197 | int length = tree_code_length[(int) code]; | |
51bbfa0c | 198 | |
ddd5a7c1 | 199 | /* If this code is language-specific, we don't know what it will do. */ |
0207efa2 RK |
200 | if ((int) code >= NUM_TREE_CODES) |
201 | return 1; | |
51bbfa0c | 202 | |
0207efa2 | 203 | /* Only expressions and references can contain calls. */ |
3b59a331 RS |
204 | if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r' |
205 | && type != 'b') | |
51bbfa0c RS |
206 | return 0; |
207 | ||
0207efa2 | 208 | switch (code) |
51bbfa0c RS |
209 | { |
210 | case CALL_EXPR: | |
1ce0cb53 JW |
211 | if (which == 0) |
212 | return 1; | |
213 | else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR | |
214 | && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) | |
0207efa2 RK |
215 | == FUNCTION_DECL)) |
216 | { | |
217 | tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); | |
218 | ||
219 | if ((DECL_BUILT_IN (fndecl) | |
220 | && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA) | |
221 | || (DECL_SAVED_INSNS (fndecl) | |
49ad7cfa | 222 | && DECL_SAVED_INSNS (fndecl)->calls_alloca)) |
0207efa2 RK |
223 | return 1; |
224 | } | |
51bbfa0c RS |
225 | |
226 | /* Third operand is RTL. */ | |
227 | length = 2; | |
228 | break; | |
229 | ||
230 | case SAVE_EXPR: | |
231 | if (SAVE_EXPR_RTL (exp) != 0) | |
232 | return 0; | |
1c8d7aef RS |
233 | if (value_member (exp, calls_function_save_exprs)) |
234 | return 0; | |
235 | calls_function_save_exprs = tree_cons (NULL_TREE, exp, | |
236 | calls_function_save_exprs); | |
237 | return (TREE_OPERAND (exp, 0) != 0 | |
238 | && calls_function_1 (TREE_OPERAND (exp, 0), which)); | |
51bbfa0c RS |
239 | |
240 | case BLOCK: | |
ef03bc85 CH |
241 | { |
242 | register tree local; | |
243 | ||
244 | for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local)) | |
1ce0cb53 | 245 | if (DECL_INITIAL (local) != 0 |
1c8d7aef | 246 | && calls_function_1 (DECL_INITIAL (local), which)) |
ef03bc85 CH |
247 | return 1; |
248 | } | |
249 | { | |
250 | register tree subblock; | |
251 | ||
252 | for (subblock = BLOCK_SUBBLOCKS (exp); | |
253 | subblock; | |
254 | subblock = TREE_CHAIN (subblock)) | |
1c8d7aef | 255 | if (calls_function_1 (subblock, which)) |
ef03bc85 CH |
256 | return 1; |
257 | } | |
258 | return 0; | |
51bbfa0c RS |
259 | |
260 | case METHOD_CALL_EXPR: | |
261 | length = 3; | |
262 | break; | |
263 | ||
264 | case WITH_CLEANUP_EXPR: | |
265 | length = 1; | |
266 | break; | |
267 | ||
268 | case RTL_EXPR: | |
269 | return 0; | |
e9a25f70 JL |
270 | |
271 | default: | |
272 | break; | |
51bbfa0c RS |
273 | } |
274 | ||
275 | for (i = 0; i < length; i++) | |
276 | if (TREE_OPERAND (exp, i) != 0 | |
1c8d7aef | 277 | && calls_function_1 (TREE_OPERAND (exp, i), which)) |
51bbfa0c RS |
278 | return 1; |
279 | ||
280 | return 0; | |
281 | } | |
282 | \f | |
283 | /* Force FUNEXP into a form suitable for the address of a CALL, | |
284 | and return that as an rtx. Also load the static chain register | |
285 | if FNDECL is a nested function. | |
286 | ||
77cac2f2 RK |
287 | CALL_FUSAGE points to a variable holding the prospective |
288 | CALL_INSN_FUNCTION_USAGE information. */ | |
51bbfa0c | 289 | |
03dacb02 | 290 | rtx |
77cac2f2 | 291 | prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen) |
51bbfa0c RS |
292 | rtx funexp; |
293 | tree fndecl; | |
77cac2f2 | 294 | rtx *call_fusage; |
01368078 | 295 | int reg_parm_seen; |
51bbfa0c RS |
296 | { |
297 | rtx static_chain_value = 0; | |
298 | ||
299 | funexp = protect_from_queue (funexp, 0); | |
300 | ||
301 | if (fndecl != 0) | |
0f41302f | 302 | /* Get possible static chain value for nested function in C. */ |
51bbfa0c RS |
303 | static_chain_value = lookup_static_chain (fndecl); |
304 | ||
305 | /* Make a valid memory address and copy constants thru pseudo-regs, | |
306 | but not for a constant address if -fno-function-cse. */ | |
307 | if (GET_CODE (funexp) != SYMBOL_REF) | |
01368078 | 308 | /* If we are using registers for parameters, force the |
e9a25f70 JL |
309 | function address into a register now. */ |
310 | funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen) | |
311 | ? force_not_mem (memory_address (FUNCTION_MODE, funexp)) | |
312 | : memory_address (FUNCTION_MODE, funexp)); | |
51bbfa0c RS |
313 | else |
314 | { | |
315 | #ifndef NO_FUNCTION_CSE | |
316 | if (optimize && ! flag_no_function_cse) | |
317 | #ifdef NO_RECURSIVE_FUNCTION_CSE | |
318 | if (fndecl != current_function_decl) | |
319 | #endif | |
320 | funexp = force_reg (Pmode, funexp); | |
321 | #endif | |
322 | } | |
323 | ||
324 | if (static_chain_value != 0) | |
325 | { | |
326 | emit_move_insn (static_chain_rtx, static_chain_value); | |
327 | ||
f991a240 RK |
328 | if (GET_CODE (static_chain_rtx) == REG) |
329 | use_reg (call_fusage, static_chain_rtx); | |
51bbfa0c RS |
330 | } |
331 | ||
332 | return funexp; | |
333 | } | |
334 | ||
335 | /* Generate instructions to call function FUNEXP, | |
336 | and optionally pop the results. | |
337 | The CALL_INSN is the first insn generated. | |
338 | ||
607ea900 | 339 | FNDECL is the declaration node of the function. This is given to the |
2c8da025 RK |
340 | macro RETURN_POPS_ARGS to determine whether this function pops its own args. |
341 | ||
334c4f0f RK |
342 | FUNTYPE is the data type of the function. This is given to the macro |
343 | RETURN_POPS_ARGS to determine whether this function pops its own args. | |
344 | We used to allow an identifier for library functions, but that doesn't | |
345 | work when the return type is an aggregate type and the calling convention | |
346 | says that the pointer to this aggregate is to be popped by the callee. | |
51bbfa0c RS |
347 | |
348 | STACK_SIZE is the number of bytes of arguments on the stack, | |
c795bca9 | 349 | rounded up to PREFERRED_STACK_BOUNDARY; zero if the size is variable. |
51bbfa0c RS |
350 | This is both to put into the call insn and |
351 | to generate explicit popping code if necessary. | |
352 | ||
353 | STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value. | |
354 | It is zero if this call doesn't want a structure value. | |
355 | ||
356 | NEXT_ARG_REG is the rtx that results from executing | |
357 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1) | |
358 | just after all the args have had their registers assigned. | |
359 | This could be whatever you like, but normally it is the first | |
360 | arg-register beyond those used for args in this call, | |
361 | or 0 if all the arg-registers are used in this call. | |
362 | It is passed on to `gen_call' so you can put this info in the call insn. | |
363 | ||
364 | VALREG is a hard register in which a value is returned, | |
365 | or 0 if the call does not return a value. | |
366 | ||
367 | OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before | |
368 | the args to this call were processed. | |
369 | We restore `inhibit_defer_pop' to that value. | |
370 | ||
94b25f81 RK |
371 | CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that |
372 | denote registers used by the called function. | |
51bbfa0c RS |
373 | |
374 | IS_CONST is true if this is a `const' call. */ | |
375 | ||
322e3e34 | 376 | static void |
fb5eebb9 RH |
377 | emit_call_1 (funexp, fndecl, funtype, stack_size, rounded_stack_size, |
378 | struct_value_size, next_arg_reg, valreg, old_inhibit_defer_pop, | |
379 | call_fusage, is_const) | |
51bbfa0c | 380 | rtx funexp; |
c84e2712 KG |
381 | tree fndecl ATTRIBUTE_UNUSED; |
382 | tree funtype ATTRIBUTE_UNUSED; | |
6a651371 | 383 | HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED; |
fb5eebb9 | 384 | HOST_WIDE_INT rounded_stack_size; |
e5e809f4 | 385 | HOST_WIDE_INT struct_value_size; |
51bbfa0c RS |
386 | rtx next_arg_reg; |
387 | rtx valreg; | |
388 | int old_inhibit_defer_pop; | |
77cac2f2 | 389 | rtx call_fusage; |
51bbfa0c RS |
390 | int is_const; |
391 | { | |
062e7fd8 | 392 | rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size); |
e5d70561 | 393 | rtx struct_value_size_rtx = GEN_INT (struct_value_size); |
51bbfa0c | 394 | rtx call_insn; |
081f5e7e | 395 | #ifndef ACCUMULATE_OUTGOING_ARGS |
51bbfa0c | 396 | int already_popped = 0; |
fb5eebb9 | 397 | HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size); |
081f5e7e | 398 | #endif |
51bbfa0c RS |
399 | |
400 | /* Ensure address is valid. SYMBOL_REF is already valid, so no need, | |
401 | and we don't want to load it into a register as an optimization, | |
402 | because prepare_call_address already did it if it should be done. */ | |
403 | if (GET_CODE (funexp) != SYMBOL_REF) | |
404 | funexp = memory_address (FUNCTION_MODE, funexp); | |
405 | ||
406 | #ifndef ACCUMULATE_OUTGOING_ARGS | |
407 | #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop) | |
8bcafee3 JDA |
408 | /* If the target has "call" or "call_value" insns, then prefer them |
409 | if no arguments are actually popped. If the target does not have | |
410 | "call" or "call_value" insns, then we must use the popping versions | |
411 | even if the call has no arguments to pop. */ | |
412 | #if defined (HAVE_call) && defined (HAVE_call_value) | |
413 | if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop | |
414 | && n_popped > 0) | |
415 | #else | |
416 | if (HAVE_call_pop && HAVE_call_value_pop) | |
417 | #endif | |
51bbfa0c | 418 | { |
fb5eebb9 | 419 | rtx n_pop = GEN_INT (n_popped); |
51bbfa0c RS |
420 | rtx pat; |
421 | ||
422 | /* If this subroutine pops its own args, record that in the call insn | |
423 | if possible, for the sake of frame pointer elimination. */ | |
2c8da025 | 424 | |
51bbfa0c RS |
425 | if (valreg) |
426 | pat = gen_call_value_pop (valreg, | |
38a448ca | 427 | gen_rtx_MEM (FUNCTION_MODE, funexp), |
062e7fd8 | 428 | rounded_stack_size_rtx, next_arg_reg, n_pop); |
51bbfa0c | 429 | else |
38a448ca | 430 | pat = gen_call_pop (gen_rtx_MEM (FUNCTION_MODE, funexp), |
062e7fd8 | 431 | rounded_stack_size_rtx, next_arg_reg, n_pop); |
51bbfa0c RS |
432 | |
433 | emit_call_insn (pat); | |
434 | already_popped = 1; | |
435 | } | |
436 | else | |
437 | #endif | |
438 | #endif | |
439 | ||
440 | #if defined (HAVE_call) && defined (HAVE_call_value) | |
441 | if (HAVE_call && HAVE_call_value) | |
442 | { | |
443 | if (valreg) | |
444 | emit_call_insn (gen_call_value (valreg, | |
38a448ca | 445 | gen_rtx_MEM (FUNCTION_MODE, funexp), |
062e7fd8 | 446 | rounded_stack_size_rtx, next_arg_reg, |
e992302c | 447 | NULL_RTX)); |
51bbfa0c | 448 | else |
38a448ca | 449 | emit_call_insn (gen_call (gen_rtx_MEM (FUNCTION_MODE, funexp), |
062e7fd8 | 450 | rounded_stack_size_rtx, next_arg_reg, |
51bbfa0c RS |
451 | struct_value_size_rtx)); |
452 | } | |
453 | else | |
454 | #endif | |
455 | abort (); | |
456 | ||
77cac2f2 | 457 | /* Find the CALL insn we just emitted. */ |
51bbfa0c RS |
458 | for (call_insn = get_last_insn (); |
459 | call_insn && GET_CODE (call_insn) != CALL_INSN; | |
460 | call_insn = PREV_INSN (call_insn)) | |
461 | ; | |
462 | ||
463 | if (! call_insn) | |
464 | abort (); | |
465 | ||
e59e60a7 RK |
466 | /* Put the register usage information on the CALL. If there is already |
467 | some usage information, put ours at the end. */ | |
468 | if (CALL_INSN_FUNCTION_USAGE (call_insn)) | |
469 | { | |
470 | rtx link; | |
471 | ||
472 | for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; | |
473 | link = XEXP (link, 1)) | |
474 | ; | |
475 | ||
476 | XEXP (link, 1) = call_fusage; | |
477 | } | |
478 | else | |
479 | CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; | |
51bbfa0c RS |
480 | |
481 | /* If this is a const call, then set the insn's unchanging bit. */ | |
482 | if (is_const) | |
483 | CONST_CALL_P (call_insn) = 1; | |
484 | ||
b1e64e0d RS |
485 | /* Restore this now, so that we do defer pops for this call's args |
486 | if the context of the call as a whole permits. */ | |
487 | inhibit_defer_pop = old_inhibit_defer_pop; | |
488 | ||
51bbfa0c RS |
489 | #ifndef ACCUMULATE_OUTGOING_ARGS |
490 | /* If returning from the subroutine does not automatically pop the args, | |
491 | we need an instruction to pop them sooner or later. | |
492 | Perhaps do it now; perhaps just record how much space to pop later. | |
493 | ||
494 | If returning from the subroutine does pop the args, indicate that the | |
495 | stack pointer will be changed. */ | |
496 | ||
fb5eebb9 | 497 | if (n_popped > 0) |
51bbfa0c RS |
498 | { |
499 | if (!already_popped) | |
e3da301d | 500 | CALL_INSN_FUNCTION_USAGE (call_insn) |
38a448ca RH |
501 | = gen_rtx_EXPR_LIST (VOIDmode, |
502 | gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx), | |
503 | CALL_INSN_FUNCTION_USAGE (call_insn)); | |
fb5eebb9 | 504 | rounded_stack_size -= n_popped; |
062e7fd8 | 505 | rounded_stack_size_rtx = GEN_INT (rounded_stack_size); |
51bbfa0c RS |
506 | } |
507 | ||
fb5eebb9 | 508 | if (rounded_stack_size != 0) |
51bbfa0c | 509 | { |
70a73141 | 510 | if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const) |
fb5eebb9 | 511 | pending_stack_adjust += rounded_stack_size; |
51bbfa0c | 512 | else |
062e7fd8 | 513 | adjust_stack (rounded_stack_size_rtx); |
51bbfa0c RS |
514 | } |
515 | #endif | |
516 | } | |
517 | ||
20efdf74 JL |
518 | /* Determine if the function identified by NAME and FNDECL is one with |
519 | special properties we wish to know about. | |
520 | ||
521 | For example, if the function might return more than one time (setjmp), then | |
522 | set RETURNS_TWICE to a nonzero value. | |
523 | ||
524 | Similarly set IS_LONGJMP for if the function is in the longjmp family. | |
525 | ||
526 | Set IS_MALLOC for any of the standard memory allocation functions which | |
527 | allocate from the heap. | |
528 | ||
529 | Set MAY_BE_ALLOCA for any memory allocation function that might allocate | |
530 | space from the stack such as alloca. */ | |
531 | ||
532 | static void | |
533 | special_function_p (name, fndecl, returns_twice, is_longjmp, | |
534 | is_malloc, may_be_alloca) | |
535 | char *name; | |
536 | tree fndecl; | |
537 | int *returns_twice; | |
538 | int *is_longjmp; | |
539 | int *is_malloc; | |
540 | int *may_be_alloca; | |
541 | { | |
542 | *returns_twice = 0; | |
543 | *is_longjmp = 0; | |
544 | *is_malloc = 0; | |
545 | *may_be_alloca = 0; | |
546 | ||
20efdf74 JL |
547 | if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17 |
548 | /* Exclude functions not at the file scope, or not `extern', | |
549 | since they are not the magic functions we would otherwise | |
550 | think they are. */ | |
551 | && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl)) | |
552 | { | |
553 | char *tname = name; | |
554 | ||
ca54603f JL |
555 | /* We assume that alloca will always be called by name. It |
556 | makes no sense to pass it as a pointer-to-function to | |
557 | anything that does not understand its behavior. */ | |
558 | *may_be_alloca | |
559 | = (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 | |
560 | && name[0] == 'a' | |
561 | && ! strcmp (name, "alloca")) | |
562 | || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16 | |
563 | && name[0] == '_' | |
564 | && ! strcmp (name, "__builtin_alloca")))); | |
565 | ||
20efdf74 JL |
566 | /* Disregard prefix _, __ or __x. */ |
567 | if (name[0] == '_') | |
568 | { | |
569 | if (name[1] == '_' && name[2] == 'x') | |
570 | tname += 3; | |
571 | else if (name[1] == '_') | |
572 | tname += 2; | |
573 | else | |
574 | tname += 1; | |
575 | } | |
576 | ||
577 | if (tname[0] == 's') | |
578 | { | |
579 | *returns_twice | |
580 | = ((tname[1] == 'e' | |
581 | && (! strcmp (tname, "setjmp") | |
582 | || ! strcmp (tname, "setjmp_syscall"))) | |
583 | || (tname[1] == 'i' | |
584 | && ! strcmp (tname, "sigsetjmp")) | |
585 | || (tname[1] == 'a' | |
586 | && ! strcmp (tname, "savectx"))); | |
587 | if (tname[1] == 'i' | |
588 | && ! strcmp (tname, "siglongjmp")) | |
589 | *is_longjmp = 1; | |
590 | } | |
591 | else if ((tname[0] == 'q' && tname[1] == 's' | |
592 | && ! strcmp (tname, "qsetjmp")) | |
593 | || (tname[0] == 'v' && tname[1] == 'f' | |
594 | && ! strcmp (tname, "vfork"))) | |
595 | *returns_twice = 1; | |
596 | ||
597 | else if (tname[0] == 'l' && tname[1] == 'o' | |
598 | && ! strcmp (tname, "longjmp")) | |
599 | *is_longjmp = 1; | |
600 | /* XXX should have "malloc" attribute on functions instead | |
601 | of recognizing them by name. */ | |
602 | else if (! strcmp (tname, "malloc") | |
603 | || ! strcmp (tname, "calloc") | |
604 | || ! strcmp (tname, "realloc") | |
605 | /* Note use of NAME rather than TNAME here. These functions | |
606 | are only reserved when preceded with __. */ | |
607 | || ! strcmp (name, "__vn") /* mangled __builtin_vec_new */ | |
608 | || ! strcmp (name, "__nw") /* mangled __builtin_new */ | |
609 | || ! strcmp (name, "__builtin_new") | |
610 | || ! strcmp (name, "__builtin_vec_new")) | |
611 | *is_malloc = 1; | |
612 | } | |
613 | } | |
614 | ||
615 | /* Precompute all register parameters as described by ARGS, storing values | |
616 | into fields within the ARGS array. | |
617 | ||
618 | NUM_ACTUALS indicates the total number elements in the ARGS array. | |
619 | ||
620 | Set REG_PARM_SEEN if we encounter a register parameter. */ | |
621 | ||
622 | static void | |
623 | precompute_register_parameters (num_actuals, args, reg_parm_seen) | |
624 | int num_actuals; | |
625 | struct arg_data *args; | |
626 | int *reg_parm_seen; | |
627 | { | |
628 | int i; | |
629 | ||
630 | *reg_parm_seen = 0; | |
631 | ||
632 | for (i = 0; i < num_actuals; i++) | |
633 | if (args[i].reg != 0 && ! args[i].pass_on_stack) | |
634 | { | |
635 | *reg_parm_seen = 1; | |
636 | ||
637 | if (args[i].value == 0) | |
638 | { | |
639 | push_temp_slots (); | |
640 | args[i].value = expand_expr (args[i].tree_value, NULL_RTX, | |
641 | VOIDmode, 0); | |
642 | preserve_temp_slots (args[i].value); | |
643 | pop_temp_slots (); | |
644 | ||
645 | /* ANSI doesn't require a sequence point here, | |
646 | but PCC has one, so this will avoid some problems. */ | |
647 | emit_queue (); | |
648 | } | |
649 | ||
650 | /* If we are to promote the function arg to a wider mode, | |
651 | do it now. */ | |
652 | ||
653 | if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value))) | |
654 | args[i].value | |
655 | = convert_modes (args[i].mode, | |
656 | TYPE_MODE (TREE_TYPE (args[i].tree_value)), | |
657 | args[i].value, args[i].unsignedp); | |
658 | ||
659 | /* If the value is expensive, and we are inside an appropriately | |
660 | short loop, put the value into a pseudo and then put the pseudo | |
661 | into the hard reg. | |
662 | ||
663 | For small register classes, also do this if this call uses | |
664 | register parameters. This is to avoid reload conflicts while | |
665 | loading the parameters registers. */ | |
666 | ||
667 | if ((! (GET_CODE (args[i].value) == REG | |
668 | || (GET_CODE (args[i].value) == SUBREG | |
669 | && GET_CODE (SUBREG_REG (args[i].value)) == REG))) | |
670 | && args[i].mode != BLKmode | |
671 | && rtx_cost (args[i].value, SET) > 2 | |
672 | && ((SMALL_REGISTER_CLASSES && *reg_parm_seen) | |
673 | || preserve_subexpressions_p ())) | |
674 | args[i].value = copy_to_mode_reg (args[i].mode, args[i].value); | |
675 | } | |
676 | } | |
677 | ||
678 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
679 | ||
680 | /* The argument list is the property of the called routine and it | |
681 | may clobber it. If the fixed area has been used for previous | |
682 | parameters, we must save and restore it. */ | |
683 | static rtx | |
684 | save_fixed_argument_area (reg_parm_stack_space, argblock, | |
685 | low_to_save, high_to_save) | |
686 | int reg_parm_stack_space; | |
687 | rtx argblock; | |
688 | int *low_to_save; | |
689 | int *high_to_save; | |
690 | { | |
691 | int i; | |
692 | rtx save_area = NULL_RTX; | |
693 | ||
694 | /* Compute the boundary of the that needs to be saved, if any. */ | |
695 | #ifdef ARGS_GROW_DOWNWARD | |
696 | for (i = 0; i < reg_parm_stack_space + 1; i++) | |
697 | #else | |
698 | for (i = 0; i < reg_parm_stack_space; i++) | |
699 | #endif | |
700 | { | |
701 | if (i >= highest_outgoing_arg_in_use | |
702 | || stack_usage_map[i] == 0) | |
703 | continue; | |
704 | ||
705 | if (*low_to_save == -1) | |
706 | *low_to_save = i; | |
707 | ||
708 | *high_to_save = i; | |
709 | } | |
710 | ||
711 | if (*low_to_save >= 0) | |
712 | { | |
713 | int num_to_save = *high_to_save - *low_to_save + 1; | |
714 | enum machine_mode save_mode | |
715 | = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); | |
716 | rtx stack_area; | |
717 | ||
718 | /* If we don't have the required alignment, must do this in BLKmode. */ | |
719 | if ((*low_to_save & (MIN (GET_MODE_SIZE (save_mode), | |
720 | BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) | |
721 | save_mode = BLKmode; | |
722 | ||
723 | #ifdef ARGS_GROW_DOWNWARD | |
724 | stack_area = gen_rtx_MEM (save_mode, | |
725 | memory_address (save_mode, | |
726 | plus_constant (argblock, | |
727 | - *high_to_save))); | |
728 | #else | |
729 | stack_area = gen_rtx_MEM (save_mode, | |
730 | memory_address (save_mode, | |
731 | plus_constant (argblock, | |
732 | *low_to_save))); | |
733 | #endif | |
734 | if (save_mode == BLKmode) | |
735 | { | |
736 | save_area = assign_stack_temp (BLKmode, num_to_save, 0); | |
20efdf74 JL |
737 | emit_block_move (validize_mem (save_area), stack_area, |
738 | GEN_INT (num_to_save), | |
739 | PARM_BOUNDARY / BITS_PER_UNIT); | |
740 | } | |
741 | else | |
742 | { | |
743 | save_area = gen_reg_rtx (save_mode); | |
744 | emit_move_insn (save_area, stack_area); | |
745 | } | |
746 | } | |
747 | return save_area; | |
748 | } | |
749 | ||
750 | static void | |
751 | restore_fixed_argument_area (save_area, argblock, high_to_save, low_to_save) | |
752 | rtx save_area; | |
753 | rtx argblock; | |
754 | int high_to_save; | |
755 | int low_to_save; | |
756 | { | |
757 | enum machine_mode save_mode = GET_MODE (save_area); | |
758 | #ifdef ARGS_GROW_DOWNWARD | |
759 | rtx stack_area | |
760 | = gen_rtx_MEM (save_mode, | |
761 | memory_address (save_mode, | |
762 | plus_constant (argblock, | |
763 | - high_to_save))); | |
764 | #else | |
765 | rtx stack_area | |
766 | = gen_rtx_MEM (save_mode, | |
767 | memory_address (save_mode, | |
768 | plus_constant (argblock, | |
769 | low_to_save))); | |
770 | #endif | |
771 | ||
772 | if (save_mode != BLKmode) | |
773 | emit_move_insn (stack_area, save_area); | |
774 | else | |
775 | emit_block_move (stack_area, validize_mem (save_area), | |
776 | GEN_INT (high_to_save - low_to_save + 1), | |
777 | PARM_BOUNDARY / BITS_PER_UNIT); | |
778 | } | |
779 | #endif | |
780 | ||
781 | /* If any elements in ARGS refer to parameters that are to be passed in | |
782 | registers, but not in memory, and whose alignment does not permit a | |
783 | direct copy into registers. Copy the values into a group of pseudos | |
8e6a59fe MM |
784 | which we will later copy into the appropriate hard registers. |
785 | ||
786 | Pseudos for each unaligned argument will be stored into the array | |
787 | args[argnum].aligned_regs. The caller is responsible for deallocating | |
788 | the aligned_regs array if it is nonzero. */ | |
789 | ||
20efdf74 JL |
790 | static void |
791 | store_unaligned_arguments_into_pseudos (args, num_actuals) | |
792 | struct arg_data *args; | |
793 | int num_actuals; | |
794 | { | |
795 | int i, j; | |
796 | ||
797 | for (i = 0; i < num_actuals; i++) | |
798 | if (args[i].reg != 0 && ! args[i].pass_on_stack | |
799 | && args[i].mode == BLKmode | |
800 | && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value)) | |
801 | < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD))) | |
802 | { | |
803 | int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value)); | |
804 | int big_endian_correction = 0; | |
805 | ||
806 | args[i].n_aligned_regs | |
807 | = args[i].partial ? args[i].partial | |
808 | : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; | |
809 | ||
8e6a59fe MM |
810 | args[i].aligned_regs = (rtx *) xmalloc (sizeof (rtx) |
811 | * args[i].n_aligned_regs); | |
20efdf74 JL |
812 | |
813 | /* Structures smaller than a word are aligned to the least | |
814 | significant byte (to the right). On a BYTES_BIG_ENDIAN machine, | |
815 | this means we must skip the empty high order bytes when | |
816 | calculating the bit offset. */ | |
817 | if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD) | |
818 | big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT)); | |
819 | ||
820 | for (j = 0; j < args[i].n_aligned_regs; j++) | |
821 | { | |
822 | rtx reg = gen_reg_rtx (word_mode); | |
823 | rtx word = operand_subword_force (args[i].value, j, BLKmode); | |
824 | int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD); | |
825 | int bitalign = TYPE_ALIGN (TREE_TYPE (args[i].tree_value)); | |
826 | ||
827 | args[i].aligned_regs[j] = reg; | |
828 | ||
829 | /* There is no need to restrict this code to loading items | |
830 | in TYPE_ALIGN sized hunks. The bitfield instructions can | |
831 | load up entire word sized registers efficiently. | |
832 | ||
833 | ??? This may not be needed anymore. | |
834 | We use to emit a clobber here but that doesn't let later | |
835 | passes optimize the instructions we emit. By storing 0 into | |
836 | the register later passes know the first AND to zero out the | |
837 | bitfield being set in the register is unnecessary. The store | |
838 | of 0 will be deleted as will at least the first AND. */ | |
839 | ||
840 | emit_move_insn (reg, const0_rtx); | |
841 | ||
842 | bytes -= bitsize / BITS_PER_UNIT; | |
843 | store_bit_field (reg, bitsize, big_endian_correction, word_mode, | |
844 | extract_bit_field (word, bitsize, 0, 1, | |
845 | NULL_RTX, word_mode, | |
846 | word_mode, | |
847 | bitalign / BITS_PER_UNIT, | |
848 | BITS_PER_WORD), | |
849 | bitalign / BITS_PER_UNIT, BITS_PER_WORD); | |
850 | } | |
851 | } | |
852 | } | |
853 | ||
d7cdf113 JL |
854 | /* Fill in ARGS_SIZE and ARGS array based on the parameters found in |
855 | ACTPARMS. | |
856 | ||
857 | NUM_ACTUALS is the total number of parameters. | |
858 | ||
859 | N_NAMED_ARGS is the total number of named arguments. | |
860 | ||
861 | FNDECL is the tree code for the target of this call (if known) | |
862 | ||
863 | ARGS_SO_FAR holds state needed by the target to know where to place | |
864 | the next argument. | |
865 | ||
866 | REG_PARM_STACK_SPACE is the number of bytes of stack space reserved | |
867 | for arguments which are passed in registers. | |
868 | ||
869 | OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level | |
870 | and may be modified by this routine. | |
871 | ||
872 | OLD_PENDING_ADJ, MUST_PREALLOCATE and IS_CONST are pointers to integer | |
873 | flags which may may be modified by this routine. */ | |
874 | ||
875 | static void | |
876 | initialize_argument_information (num_actuals, args, args_size, n_named_args, | |
877 | actparms, fndecl, args_so_far, | |
878 | reg_parm_stack_space, old_stack_level, | |
879 | old_pending_adj, must_preallocate, is_const) | |
91813b28 | 880 | int num_actuals ATTRIBUTE_UNUSED; |
d7cdf113 JL |
881 | struct arg_data *args; |
882 | struct args_size *args_size; | |
91813b28 | 883 | int n_named_args ATTRIBUTE_UNUSED; |
d7cdf113 JL |
884 | tree actparms; |
885 | tree fndecl; | |
959f3a06 | 886 | CUMULATIVE_ARGS *args_so_far; |
d7cdf113 JL |
887 | int reg_parm_stack_space; |
888 | rtx *old_stack_level; | |
889 | int *old_pending_adj; | |
890 | int *must_preallocate; | |
891 | int *is_const; | |
892 | { | |
893 | /* 1 if scanning parms front to back, -1 if scanning back to front. */ | |
894 | int inc; | |
895 | ||
896 | /* Count arg position in order args appear. */ | |
897 | int argpos; | |
898 | ||
899 | int i; | |
900 | tree p; | |
901 | ||
902 | args_size->constant = 0; | |
903 | args_size->var = 0; | |
904 | ||
905 | /* In this loop, we consider args in the order they are written. | |
906 | We fill up ARGS from the front or from the back if necessary | |
907 | so that in any case the first arg to be pushed ends up at the front. */ | |
908 | ||
909 | #ifdef PUSH_ARGS_REVERSED | |
910 | i = num_actuals - 1, inc = -1; | |
911 | /* In this case, must reverse order of args | |
912 | so that we compute and push the last arg first. */ | |
913 | #else | |
914 | i = 0, inc = 1; | |
915 | #endif | |
916 | ||
917 | /* I counts args in order (to be) pushed; ARGPOS counts in order written. */ | |
918 | for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++) | |
919 | { | |
920 | tree type = TREE_TYPE (TREE_VALUE (p)); | |
921 | int unsignedp; | |
922 | enum machine_mode mode; | |
923 | ||
924 | args[i].tree_value = TREE_VALUE (p); | |
925 | ||
926 | /* Replace erroneous argument with constant zero. */ | |
927 | if (type == error_mark_node || TYPE_SIZE (type) == 0) | |
928 | args[i].tree_value = integer_zero_node, type = integer_type_node; | |
929 | ||
930 | /* If TYPE is a transparent union, pass things the way we would | |
931 | pass the first field of the union. We have already verified that | |
932 | the modes are the same. */ | |
933 | if (TYPE_TRANSPARENT_UNION (type)) | |
934 | type = TREE_TYPE (TYPE_FIELDS (type)); | |
935 | ||
936 | /* Decide where to pass this arg. | |
937 | ||
938 | args[i].reg is nonzero if all or part is passed in registers. | |
939 | ||
940 | args[i].partial is nonzero if part but not all is passed in registers, | |
941 | and the exact value says how many words are passed in registers. | |
942 | ||
943 | args[i].pass_on_stack is nonzero if the argument must at least be | |
944 | computed on the stack. It may then be loaded back into registers | |
945 | if args[i].reg is nonzero. | |
946 | ||
947 | These decisions are driven by the FUNCTION_... macros and must agree | |
948 | with those made by function.c. */ | |
949 | ||
950 | /* See if this argument should be passed by invisible reference. */ | |
951 | if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST | |
952 | && contains_placeholder_p (TYPE_SIZE (type))) | |
953 | || TREE_ADDRESSABLE (type) | |
954 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE | |
959f3a06 | 955 | || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type), |
d7cdf113 JL |
956 | type, argpos < n_named_args) |
957 | #endif | |
958 | ) | |
959 | { | |
960 | /* If we're compiling a thunk, pass through invisible | |
961 | references instead of making a copy. */ | |
962 | if (current_function_is_thunk | |
963 | #ifdef FUNCTION_ARG_CALLEE_COPIES | |
959f3a06 | 964 | || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type), |
d7cdf113 JL |
965 | type, argpos < n_named_args) |
966 | /* If it's in a register, we must make a copy of it too. */ | |
967 | /* ??? Is this a sufficient test? Is there a better one? */ | |
968 | && !(TREE_CODE (args[i].tree_value) == VAR_DECL | |
969 | && REG_P (DECL_RTL (args[i].tree_value))) | |
970 | && ! TREE_ADDRESSABLE (type)) | |
971 | #endif | |
972 | ) | |
973 | { | |
974 | /* C++ uses a TARGET_EXPR to indicate that we want to make a | |
975 | new object from the argument. If we are passing by | |
976 | invisible reference, the callee will do that for us, so we | |
977 | can strip off the TARGET_EXPR. This is not always safe, | |
978 | but it is safe in the only case where this is a useful | |
979 | optimization; namely, when the argument is a plain object. | |
980 | In that case, the frontend is just asking the backend to | |
981 | make a bitwise copy of the argument. */ | |
982 | ||
983 | if (TREE_CODE (args[i].tree_value) == TARGET_EXPR | |
984 | && (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND | |
985 | (args[i].tree_value, 1))) | |
986 | == 'd') | |
987 | && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1)))) | |
988 | args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1); | |
989 | ||
990 | args[i].tree_value = build1 (ADDR_EXPR, | |
991 | build_pointer_type (type), | |
992 | args[i].tree_value); | |
993 | type = build_pointer_type (type); | |
994 | } | |
995 | else | |
996 | { | |
997 | /* We make a copy of the object and pass the address to the | |
998 | function being called. */ | |
999 | rtx copy; | |
1000 | ||
1001 | if (TYPE_SIZE (type) == 0 | |
1002 | || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST | |
1003 | || (flag_stack_check && ! STACK_CHECK_BUILTIN | |
1004 | && (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0 | |
1005 | || (TREE_INT_CST_LOW (TYPE_SIZE (type)) | |
1006 | > STACK_CHECK_MAX_VAR_SIZE * BITS_PER_UNIT)))) | |
1007 | { | |
1008 | /* This is a variable-sized object. Make space on the stack | |
1009 | for it. */ | |
1010 | rtx size_rtx = expr_size (TREE_VALUE (p)); | |
1011 | ||
1012 | if (*old_stack_level == 0) | |
1013 | { | |
1014 | emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX); | |
1015 | *old_pending_adj = pending_stack_adjust; | |
1016 | pending_stack_adjust = 0; | |
1017 | } | |
1018 | ||
1019 | copy = gen_rtx_MEM (BLKmode, | |
1020 | allocate_dynamic_stack_space (size_rtx, | |
1021 | NULL_RTX, | |
1022 | TYPE_ALIGN (type))); | |
1023 | } | |
1024 | else | |
1025 | { | |
1026 | int size = int_size_in_bytes (type); | |
1027 | copy = assign_stack_temp (TYPE_MODE (type), size, 0); | |
1028 | } | |
1029 | ||
1030 | MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type)); | |
1031 | ||
1032 | store_expr (args[i].tree_value, copy, 0); | |
1033 | *is_const = 0; | |
1034 | ||
1035 | args[i].tree_value = build1 (ADDR_EXPR, | |
1036 | build_pointer_type (type), | |
1037 | make_tree (type, copy)); | |
1038 | type = build_pointer_type (type); | |
1039 | } | |
1040 | } | |
1041 | ||
1042 | mode = TYPE_MODE (type); | |
1043 | unsignedp = TREE_UNSIGNED (type); | |
1044 | ||
1045 | #ifdef PROMOTE_FUNCTION_ARGS | |
1046 | mode = promote_mode (type, mode, &unsignedp, 1); | |
1047 | #endif | |
1048 | ||
1049 | args[i].unsignedp = unsignedp; | |
1050 | args[i].mode = mode; | |
959f3a06 | 1051 | args[i].reg = FUNCTION_ARG (*args_so_far, mode, type, |
d7cdf113 JL |
1052 | argpos < n_named_args); |
1053 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
1054 | if (args[i].reg) | |
1055 | args[i].partial | |
959f3a06 | 1056 | = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type, |
d7cdf113 JL |
1057 | argpos < n_named_args); |
1058 | #endif | |
1059 | ||
1060 | args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type); | |
1061 | ||
1062 | /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]), | |
1063 | it means that we are to pass this arg in the register(s) designated | |
1064 | by the PARALLEL, but also to pass it in the stack. */ | |
1065 | if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL | |
1066 | && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0) | |
1067 | args[i].pass_on_stack = 1; | |
1068 | ||
1069 | /* If this is an addressable type, we must preallocate the stack | |
1070 | since we must evaluate the object into its final location. | |
1071 | ||
1072 | If this is to be passed in both registers and the stack, it is simpler | |
1073 | to preallocate. */ | |
1074 | if (TREE_ADDRESSABLE (type) | |
1075 | || (args[i].pass_on_stack && args[i].reg != 0)) | |
1076 | *must_preallocate = 1; | |
1077 | ||
1078 | /* If this is an addressable type, we cannot pre-evaluate it. Thus, | |
1079 | we cannot consider this function call constant. */ | |
1080 | if (TREE_ADDRESSABLE (type)) | |
1081 | *is_const = 0; | |
1082 | ||
1083 | /* Compute the stack-size of this argument. */ | |
1084 | if (args[i].reg == 0 || args[i].partial != 0 | |
1085 | || reg_parm_stack_space > 0 | |
1086 | || args[i].pass_on_stack) | |
1087 | locate_and_pad_parm (mode, type, | |
1088 | #ifdef STACK_PARMS_IN_REG_PARM_AREA | |
1089 | 1, | |
1090 | #else | |
1091 | args[i].reg != 0, | |
1092 | #endif | |
1093 | fndecl, args_size, &args[i].offset, | |
1094 | &args[i].size); | |
1095 | ||
1096 | #ifndef ARGS_GROW_DOWNWARD | |
1097 | args[i].slot_offset = *args_size; | |
1098 | #endif | |
1099 | ||
1100 | /* If a part of the arg was put into registers, | |
1101 | don't include that part in the amount pushed. */ | |
1102 | if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack) | |
1103 | args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD) | |
1104 | / (PARM_BOUNDARY / BITS_PER_UNIT) | |
1105 | * (PARM_BOUNDARY / BITS_PER_UNIT)); | |
1106 | ||
1107 | /* Update ARGS_SIZE, the total stack space for args so far. */ | |
1108 | ||
1109 | args_size->constant += args[i].size.constant; | |
1110 | if (args[i].size.var) | |
1111 | { | |
1112 | ADD_PARM_SIZE (*args_size, args[i].size.var); | |
1113 | } | |
1114 | ||
1115 | /* Since the slot offset points to the bottom of the slot, | |
1116 | we must record it after incrementing if the args grow down. */ | |
1117 | #ifdef ARGS_GROW_DOWNWARD | |
1118 | args[i].slot_offset = *args_size; | |
1119 | ||
1120 | args[i].slot_offset.constant = -args_size->constant; | |
1121 | if (args_size->var) | |
1122 | { | |
1123 | SUB_PARM_SIZE (args[i].slot_offset, args_size->var); | |
1124 | } | |
1125 | #endif | |
1126 | ||
1127 | /* Increment ARGS_SO_FAR, which has info about which arg-registers | |
1128 | have been used, etc. */ | |
1129 | ||
959f3a06 | 1130 | FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type, |
d7cdf113 JL |
1131 | argpos < n_named_args); |
1132 | } | |
1133 | } | |
1134 | ||
599f37b6 JL |
1135 | /* Update ARGS_SIZE to contain the total size for the argument block. |
1136 | Return the original constant component of the argument block's size. | |
1137 | ||
1138 | REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved | |
1139 | for arguments passed in registers. */ | |
1140 | ||
1141 | static int | |
1142 | compute_argument_block_size (reg_parm_stack_space, args_size) | |
1143 | int reg_parm_stack_space; | |
1144 | struct args_size *args_size; | |
1145 | { | |
1146 | int unadjusted_args_size = args_size->constant; | |
1147 | ||
1148 | /* Compute the actual size of the argument block required. The variable | |
1149 | and constant sizes must be combined, the size may have to be rounded, | |
1150 | and there may be a minimum required size. */ | |
1151 | ||
1152 | if (args_size->var) | |
1153 | { | |
1154 | args_size->var = ARGS_SIZE_TREE (*args_size); | |
1155 | args_size->constant = 0; | |
1156 | ||
1157 | #ifdef PREFERRED_STACK_BOUNDARY | |
1158 | if (PREFERRED_STACK_BOUNDARY != BITS_PER_UNIT) | |
1159 | args_size->var = round_up (args_size->var, STACK_BYTES); | |
1160 | #endif | |
1161 | ||
1162 | if (reg_parm_stack_space > 0) | |
1163 | { | |
1164 | args_size->var | |
1165 | = size_binop (MAX_EXPR, args_size->var, | |
1166 | size_int (reg_parm_stack_space)); | |
1167 | ||
1168 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
1169 | /* The area corresponding to register parameters is not to count in | |
1170 | the size of the block we need. So make the adjustment. */ | |
1171 | args_size->var | |
1172 | = size_binop (MINUS_EXPR, args_size->var, | |
1173 | size_int (reg_parm_stack_space)); | |
1174 | #endif | |
1175 | } | |
1176 | } | |
1177 | else | |
1178 | { | |
1179 | #ifdef PREFERRED_STACK_BOUNDARY | |
fb5eebb9 RH |
1180 | args_size->constant = (((args_size->constant |
1181 | + pending_stack_adjust | |
1182 | + STACK_BYTES - 1) | |
1183 | / STACK_BYTES * STACK_BYTES) | |
1184 | - pending_stack_adjust); | |
599f37b6 JL |
1185 | #endif |
1186 | ||
1187 | args_size->constant = MAX (args_size->constant, | |
1188 | reg_parm_stack_space); | |
1189 | ||
1190 | #ifdef MAYBE_REG_PARM_STACK_SPACE | |
1191 | if (reg_parm_stack_space == 0) | |
1192 | args_size->constant = 0; | |
1193 | #endif | |
1194 | ||
1195 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
1196 | args_size->constant -= reg_parm_stack_space; | |
1197 | #endif | |
1198 | } | |
1199 | return unadjusted_args_size; | |
1200 | } | |
1201 | ||
cc0b1adc JL |
1202 | /* Precompute parameters has needed for a function call. |
1203 | ||
1204 | IS_CONST indicates the target function is a pure function. | |
1205 | ||
1206 | MUST_PREALLOCATE indicates that we must preallocate stack space for | |
1207 | any stack arguments. | |
1208 | ||
1209 | NUM_ACTUALS is the number of arguments. | |
1210 | ||
1211 | ARGS is an array containing information for each argument; this routine | |
1212 | fills in the INITIAL_VALUE and VALUE fields for each precomputed argument. | |
1213 | ||
1214 | ARGS_SIZE contains information about the size of the arg list. */ | |
1215 | ||
1216 | static void | |
1217 | precompute_arguments (is_const, must_preallocate, num_actuals, args, args_size) | |
1218 | int is_const; | |
1219 | int must_preallocate; | |
1220 | int num_actuals; | |
1221 | struct arg_data *args; | |
1222 | struct args_size *args_size; | |
1223 | { | |
1224 | int i; | |
1225 | ||
1226 | /* If this function call is cse'able, precompute all the parameters. | |
1227 | Note that if the parameter is constructed into a temporary, this will | |
1228 | cause an additional copy because the parameter will be constructed | |
1229 | into a temporary location and then copied into the outgoing arguments. | |
1230 | If a parameter contains a call to alloca and this function uses the | |
1231 | stack, precompute the parameter. */ | |
1232 | ||
1233 | /* If we preallocated the stack space, and some arguments must be passed | |
1234 | on the stack, then we must precompute any parameter which contains a | |
1235 | function call which will store arguments on the stack. | |
1236 | Otherwise, evaluating the parameter may clobber previous parameters | |
1237 | which have already been stored into the stack. */ | |
1238 | ||
1239 | for (i = 0; i < num_actuals; i++) | |
1240 | if (is_const | |
1241 | || ((args_size->var != 0 || args_size->constant != 0) | |
1242 | && calls_function (args[i].tree_value, 1)) | |
1243 | || (must_preallocate | |
1244 | && (args_size->var != 0 || args_size->constant != 0) | |
1245 | && calls_function (args[i].tree_value, 0))) | |
1246 | { | |
1247 | /* If this is an addressable type, we cannot pre-evaluate it. */ | |
1248 | if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))) | |
1249 | abort (); | |
1250 | ||
1251 | push_temp_slots (); | |
1252 | ||
1253 | args[i].initial_value = args[i].value | |
1254 | = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0); | |
1255 | ||
1256 | preserve_temp_slots (args[i].value); | |
1257 | pop_temp_slots (); | |
1258 | ||
1259 | /* ANSI doesn't require a sequence point here, | |
1260 | but PCC has one, so this will avoid some problems. */ | |
1261 | emit_queue (); | |
1262 | ||
1263 | args[i].initial_value = args[i].value | |
1264 | = protect_from_queue (args[i].initial_value, 0); | |
1265 | ||
1266 | if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode) | |
1267 | args[i].value | |
1268 | = convert_modes (args[i].mode, | |
1269 | TYPE_MODE (TREE_TYPE (args[i].tree_value)), | |
1270 | args[i].value, args[i].unsignedp); | |
1271 | } | |
1272 | } | |
1273 | ||
0f9b3ea6 JL |
1274 | /* Given the current state of MUST_PREALLOCATE and information about |
1275 | arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE, | |
1276 | compute and return the final value for MUST_PREALLOCATE. */ | |
1277 | ||
1278 | static int | |
1279 | finalize_must_preallocate (must_preallocate, num_actuals, args, args_size) | |
1280 | int must_preallocate; | |
1281 | int num_actuals; | |
1282 | struct arg_data *args; | |
1283 | struct args_size *args_size; | |
1284 | { | |
1285 | /* See if we have or want to preallocate stack space. | |
1286 | ||
1287 | If we would have to push a partially-in-regs parm | |
1288 | before other stack parms, preallocate stack space instead. | |
1289 | ||
1290 | If the size of some parm is not a multiple of the required stack | |
1291 | alignment, we must preallocate. | |
1292 | ||
1293 | If the total size of arguments that would otherwise create a copy in | |
1294 | a temporary (such as a CALL) is more than half the total argument list | |
1295 | size, preallocation is faster. | |
1296 | ||
1297 | Another reason to preallocate is if we have a machine (like the m88k) | |
1298 | where stack alignment is required to be maintained between every | |
1299 | pair of insns, not just when the call is made. However, we assume here | |
1300 | that such machines either do not have push insns (and hence preallocation | |
1301 | would occur anyway) or the problem is taken care of with | |
1302 | PUSH_ROUNDING. */ | |
1303 | ||
1304 | if (! must_preallocate) | |
1305 | { | |
1306 | int partial_seen = 0; | |
1307 | int copy_to_evaluate_size = 0; | |
1308 | int i; | |
1309 | ||
1310 | for (i = 0; i < num_actuals && ! must_preallocate; i++) | |
1311 | { | |
1312 | if (args[i].partial > 0 && ! args[i].pass_on_stack) | |
1313 | partial_seen = 1; | |
1314 | else if (partial_seen && args[i].reg == 0) | |
1315 | must_preallocate = 1; | |
1316 | ||
1317 | if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode | |
1318 | && (TREE_CODE (args[i].tree_value) == CALL_EXPR | |
1319 | || TREE_CODE (args[i].tree_value) == TARGET_EXPR | |
1320 | || TREE_CODE (args[i].tree_value) == COND_EXPR | |
1321 | || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))) | |
1322 | copy_to_evaluate_size | |
1323 | += int_size_in_bytes (TREE_TYPE (args[i].tree_value)); | |
1324 | } | |
1325 | ||
1326 | if (copy_to_evaluate_size * 2 >= args_size->constant | |
1327 | && args_size->constant > 0) | |
1328 | must_preallocate = 1; | |
1329 | } | |
1330 | return must_preallocate; | |
1331 | } | |
599f37b6 | 1332 | |
a45bdd02 JL |
1333 | /* If we preallocated stack space, compute the address of each argument |
1334 | and store it into the ARGS array. | |
1335 | ||
1336 | We need not ensure it is a valid memory address here; it will be | |
1337 | validized when it is used. | |
1338 | ||
1339 | ARGBLOCK is an rtx for the address of the outgoing arguments. */ | |
1340 | ||
1341 | static void | |
1342 | compute_argument_addresses (args, argblock, num_actuals) | |
1343 | struct arg_data *args; | |
1344 | rtx argblock; | |
1345 | int num_actuals; | |
1346 | { | |
1347 | if (argblock) | |
1348 | { | |
1349 | rtx arg_reg = argblock; | |
1350 | int i, arg_offset = 0; | |
1351 | ||
1352 | if (GET_CODE (argblock) == PLUS) | |
1353 | arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1)); | |
1354 | ||
1355 | for (i = 0; i < num_actuals; i++) | |
1356 | { | |
1357 | rtx offset = ARGS_SIZE_RTX (args[i].offset); | |
1358 | rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset); | |
1359 | rtx addr; | |
1360 | ||
1361 | /* Skip this parm if it will not be passed on the stack. */ | |
1362 | if (! args[i].pass_on_stack && args[i].reg != 0) | |
1363 | continue; | |
1364 | ||
1365 | if (GET_CODE (offset) == CONST_INT) | |
1366 | addr = plus_constant (arg_reg, INTVAL (offset)); | |
1367 | else | |
1368 | addr = gen_rtx_PLUS (Pmode, arg_reg, offset); | |
1369 | ||
1370 | addr = plus_constant (addr, arg_offset); | |
1371 | args[i].stack = gen_rtx_MEM (args[i].mode, addr); | |
1372 | MEM_SET_IN_STRUCT_P | |
1373 | (args[i].stack, | |
1374 | AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value))); | |
1375 | ||
1376 | if (GET_CODE (slot_offset) == CONST_INT) | |
1377 | addr = plus_constant (arg_reg, INTVAL (slot_offset)); | |
1378 | else | |
1379 | addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset); | |
1380 | ||
1381 | addr = plus_constant (addr, arg_offset); | |
1382 | args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr); | |
1383 | } | |
1384 | } | |
1385 | } | |
1386 | ||
1387 | /* Given a FNDECL and EXP, return an rtx suitable for use as a target address | |
1388 | in a call instruction. | |
1389 | ||
1390 | FNDECL is the tree node for the target function. For an indirect call | |
1391 | FNDECL will be NULL_TREE. | |
1392 | ||
1393 | EXP is the CALL_EXPR for this call. */ | |
1394 | ||
1395 | static rtx | |
1396 | rtx_for_function_call (fndecl, exp) | |
1397 | tree fndecl; | |
1398 | tree exp; | |
1399 | { | |
1400 | rtx funexp; | |
1401 | ||
1402 | /* Get the function to call, in the form of RTL. */ | |
1403 | if (fndecl) | |
1404 | { | |
1405 | /* If this is the first use of the function, see if we need to | |
1406 | make an external definition for it. */ | |
1407 | if (! TREE_USED (fndecl)) | |
1408 | { | |
1409 | assemble_external (fndecl); | |
1410 | TREE_USED (fndecl) = 1; | |
1411 | } | |
1412 | ||
1413 | /* Get a SYMBOL_REF rtx for the function address. */ | |
1414 | funexp = XEXP (DECL_RTL (fndecl), 0); | |
1415 | } | |
1416 | else | |
1417 | /* Generate an rtx (probably a pseudo-register) for the address. */ | |
1418 | { | |
91ab1046 | 1419 | rtx funaddr; |
a45bdd02 | 1420 | push_temp_slots (); |
91ab1046 DT |
1421 | funaddr = funexp = |
1422 | expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0); | |
a45bdd02 JL |
1423 | pop_temp_slots (); /* FUNEXP can't be BLKmode */ |
1424 | ||
1425 | /* Check the function is executable. */ | |
1426 | if (current_function_check_memory_usage) | |
91ab1046 DT |
1427 | { |
1428 | #ifdef POINTERS_EXTEND_UNSIGNED | |
1429 | /* It might be OK to convert funexp in place, but there's | |
1430 | a lot going on between here and when it happens naturally | |
1431 | that this seems safer. */ | |
1432 | funaddr = convert_memory_address (Pmode, funexp); | |
1433 | #endif | |
1434 | emit_library_call (chkr_check_exec_libfunc, 1, | |
1435 | VOIDmode, 1, | |
1436 | funaddr, Pmode); | |
1437 | } | |
a45bdd02 JL |
1438 | emit_queue (); |
1439 | } | |
1440 | return funexp; | |
1441 | } | |
1442 | ||
21a3b983 JL |
1443 | /* Do the register loads required for any wholly-register parms or any |
1444 | parms which are passed both on the stack and in a register. Their | |
1445 | expressions were already evaluated. | |
1446 | ||
1447 | Mark all register-parms as living through the call, putting these USE | |
1448 | insns in the CALL_INSN_FUNCTION_USAGE field. */ | |
1449 | ||
1450 | static void | |
1451 | load_register_parameters (args, num_actuals, call_fusage) | |
1452 | struct arg_data *args; | |
1453 | int num_actuals; | |
1454 | rtx *call_fusage; | |
1455 | { | |
1456 | int i, j; | |
1457 | ||
1458 | #ifdef LOAD_ARGS_REVERSED | |
1459 | for (i = num_actuals - 1; i >= 0; i--) | |
1460 | #else | |
1461 | for (i = 0; i < num_actuals; i++) | |
1462 | #endif | |
1463 | { | |
1464 | rtx reg = args[i].reg; | |
1465 | int partial = args[i].partial; | |
1466 | int nregs; | |
1467 | ||
1468 | if (reg) | |
1469 | { | |
1470 | /* Set to non-negative if must move a word at a time, even if just | |
1471 | one word (e.g, partial == 1 && mode == DFmode). Set to -1 if | |
1472 | we just use a normal move insn. This value can be zero if the | |
1473 | argument is a zero size structure with no fields. */ | |
1474 | nregs = (partial ? partial | |
1475 | : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode | |
1476 | ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value)) | |
1477 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
1478 | : -1)); | |
1479 | ||
1480 | /* Handle calls that pass values in multiple non-contiguous | |
1481 | locations. The Irix 6 ABI has examples of this. */ | |
1482 | ||
1483 | if (GET_CODE (reg) == PARALLEL) | |
1484 | { | |
1485 | emit_group_load (reg, args[i].value, | |
1486 | int_size_in_bytes (TREE_TYPE (args[i].tree_value)), | |
1487 | (TYPE_ALIGN (TREE_TYPE (args[i].tree_value)) | |
1488 | / BITS_PER_UNIT)); | |
1489 | } | |
1490 | ||
1491 | /* If simple case, just do move. If normal partial, store_one_arg | |
1492 | has already loaded the register for us. In all other cases, | |
1493 | load the register(s) from memory. */ | |
1494 | ||
1495 | else if (nregs == -1) | |
1496 | emit_move_insn (reg, args[i].value); | |
1497 | ||
1498 | /* If we have pre-computed the values to put in the registers in | |
1499 | the case of non-aligned structures, copy them in now. */ | |
1500 | ||
1501 | else if (args[i].n_aligned_regs != 0) | |
1502 | for (j = 0; j < args[i].n_aligned_regs; j++) | |
1503 | emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j), | |
1504 | args[i].aligned_regs[j]); | |
1505 | ||
1506 | else if (partial == 0 || args[i].pass_on_stack) | |
1507 | move_block_to_reg (REGNO (reg), | |
1508 | validize_mem (args[i].value), nregs, | |
1509 | args[i].mode); | |
1510 | ||
1511 | /* Handle calls that pass values in multiple non-contiguous | |
1512 | locations. The Irix 6 ABI has examples of this. */ | |
1513 | if (GET_CODE (reg) == PARALLEL) | |
1514 | use_group_regs (call_fusage, reg); | |
1515 | else if (nregs == -1) | |
1516 | use_reg (call_fusage, reg); | |
1517 | else | |
1518 | use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs); | |
1519 | } | |
1520 | } | |
1521 | } | |
1522 | ||
51bbfa0c RS |
1523 | /* Generate all the code for a function call |
1524 | and return an rtx for its value. | |
1525 | Store the value in TARGET (specified as an rtx) if convenient. | |
1526 | If the value is stored in TARGET then TARGET is returned. | |
1527 | If IGNORE is nonzero, then we ignore the value of the function call. */ | |
1528 | ||
1529 | rtx | |
8129842c | 1530 | expand_call (exp, target, ignore) |
51bbfa0c RS |
1531 | tree exp; |
1532 | rtx target; | |
1533 | int ignore; | |
51bbfa0c RS |
1534 | { |
1535 | /* List of actual parameters. */ | |
1536 | tree actparms = TREE_OPERAND (exp, 1); | |
1537 | /* RTX for the function to be called. */ | |
1538 | rtx funexp; | |
51bbfa0c RS |
1539 | /* Data type of the function. */ |
1540 | tree funtype; | |
1541 | /* Declaration of the function being called, | |
1542 | or 0 if the function is computed (not known by name). */ | |
1543 | tree fndecl = 0; | |
1544 | char *name = 0; | |
1545 | ||
1546 | /* Register in which non-BLKmode value will be returned, | |
1547 | or 0 if no value or if value is BLKmode. */ | |
1548 | rtx valreg; | |
1549 | /* Address where we should return a BLKmode value; | |
1550 | 0 if value not BLKmode. */ | |
1551 | rtx structure_value_addr = 0; | |
1552 | /* Nonzero if that address is being passed by treating it as | |
1553 | an extra, implicit first parameter. Otherwise, | |
1554 | it is passed by being copied directly into struct_value_rtx. */ | |
1555 | int structure_value_addr_parm = 0; | |
1556 | /* Size of aggregate value wanted, or zero if none wanted | |
1557 | or if we are using the non-reentrant PCC calling convention | |
1558 | or expecting the value in registers. */ | |
e5e809f4 | 1559 | HOST_WIDE_INT struct_value_size = 0; |
51bbfa0c RS |
1560 | /* Nonzero if called function returns an aggregate in memory PCC style, |
1561 | by returning the address of where to find it. */ | |
1562 | int pcc_struct_value = 0; | |
1563 | ||
1564 | /* Number of actual parameters in this call, including struct value addr. */ | |
1565 | int num_actuals; | |
1566 | /* Number of named args. Args after this are anonymous ones | |
1567 | and they must all go on the stack. */ | |
1568 | int n_named_args; | |
51bbfa0c RS |
1569 | |
1570 | /* Vector of information about each argument. | |
1571 | Arguments are numbered in the order they will be pushed, | |
1572 | not the order they are written. */ | |
1573 | struct arg_data *args; | |
1574 | ||
1575 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
1576 | struct args_size args_size; | |
1577 | /* Size of arguments before any adjustments (such as rounding). */ | |
599f37b6 | 1578 | int unadjusted_args_size; |
51bbfa0c RS |
1579 | /* Data on reg parms scanned so far. */ |
1580 | CUMULATIVE_ARGS args_so_far; | |
1581 | /* Nonzero if a reg parm has been scanned. */ | |
1582 | int reg_parm_seen; | |
efd65a8b | 1583 | /* Nonzero if this is an indirect function call. */ |
51bbfa0c RS |
1584 | |
1585 | /* Nonzero if we must avoid push-insns in the args for this call. | |
1586 | If stack space is allocated for register parameters, but not by the | |
1587 | caller, then it is preallocated in the fixed part of the stack frame. | |
1588 | So the entire argument block must then be preallocated (i.e., we | |
1589 | ignore PUSH_ROUNDING in that case). */ | |
1590 | ||
51bbfa0c RS |
1591 | #ifdef PUSH_ROUNDING |
1592 | int must_preallocate = 0; | |
1593 | #else | |
1594 | int must_preallocate = 1; | |
51bbfa0c RS |
1595 | #endif |
1596 | ||
f72aed24 | 1597 | /* Size of the stack reserved for parameter registers. */ |
6f90e075 JW |
1598 | int reg_parm_stack_space = 0; |
1599 | ||
51bbfa0c RS |
1600 | /* Address of space preallocated for stack parms |
1601 | (on machines that lack push insns), or 0 if space not preallocated. */ | |
1602 | rtx argblock = 0; | |
1603 | ||
1604 | /* Nonzero if it is plausible that this is a call to alloca. */ | |
1605 | int may_be_alloca; | |
9ae8ffe7 JL |
1606 | /* Nonzero if this is a call to malloc or a related function. */ |
1607 | int is_malloc; | |
51bbfa0c RS |
1608 | /* Nonzero if this is a call to setjmp or a related function. */ |
1609 | int returns_twice; | |
1610 | /* Nonzero if this is a call to `longjmp'. */ | |
1611 | int is_longjmp; | |
1612 | /* Nonzero if this is a call to an inline function. */ | |
1613 | int is_integrable = 0; | |
51bbfa0c RS |
1614 | /* Nonzero if this is a call to a `const' function. |
1615 | Note that only explicitly named functions are handled as `const' here. */ | |
1616 | int is_const = 0; | |
1617 | /* Nonzero if this is a call to a `volatile' function. */ | |
1618 | int is_volatile = 0; | |
1619 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
1620 | /* Define the boundary of the register parm stack space that needs to be | |
1621 | save, if any. */ | |
1622 | int low_to_save = -1, high_to_save; | |
1623 | rtx save_area = 0; /* Place that it is saved */ | |
1624 | #endif | |
1625 | ||
1626 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
1627 | int initial_highest_arg_in_use = highest_outgoing_arg_in_use; | |
1628 | char *initial_stack_usage_map = stack_usage_map; | |
69d4ca36 | 1629 | int old_stack_arg_under_construction; |
51bbfa0c RS |
1630 | #endif |
1631 | ||
1632 | rtx old_stack_level = 0; | |
79be3418 | 1633 | int old_pending_adj = 0; |
51bbfa0c | 1634 | int old_inhibit_defer_pop = inhibit_defer_pop; |
77cac2f2 | 1635 | rtx call_fusage = 0; |
51bbfa0c | 1636 | register tree p; |
21a3b983 | 1637 | register int i; |
51bbfa0c | 1638 | |
7815214e RK |
1639 | /* The value of the function call can be put in a hard register. But |
1640 | if -fcheck-memory-usage, code which invokes functions (and thus | |
1641 | damages some hard registers) can be inserted before using the value. | |
1642 | So, target is always a pseudo-register in that case. */ | |
7d384cc0 | 1643 | if (current_function_check_memory_usage) |
7815214e RK |
1644 | target = 0; |
1645 | ||
51bbfa0c RS |
1646 | /* See if we can find a DECL-node for the actual function. |
1647 | As a result, decide whether this is a call to an integrable function. */ | |
1648 | ||
1649 | p = TREE_OPERAND (exp, 0); | |
1650 | if (TREE_CODE (p) == ADDR_EXPR) | |
1651 | { | |
1652 | fndecl = TREE_OPERAND (p, 0); | |
1653 | if (TREE_CODE (fndecl) != FUNCTION_DECL) | |
fdff8c6d | 1654 | fndecl = 0; |
51bbfa0c RS |
1655 | else |
1656 | { | |
1657 | if (!flag_no_inline | |
1658 | && fndecl != current_function_decl | |
aa10adff | 1659 | && DECL_INLINE (fndecl) |
1cf4f698 | 1660 | && DECL_SAVED_INSNS (fndecl) |
49ad7cfa | 1661 | && DECL_SAVED_INSNS (fndecl)->inlinable) |
51bbfa0c RS |
1662 | is_integrable = 1; |
1663 | else if (! TREE_ADDRESSABLE (fndecl)) | |
1664 | { | |
13d39dbc | 1665 | /* In case this function later becomes inlinable, |
51bbfa0c RS |
1666 | record that there was already a non-inline call to it. |
1667 | ||
1668 | Use abstraction instead of setting TREE_ADDRESSABLE | |
1669 | directly. */ | |
da8c1713 RK |
1670 | if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline |
1671 | && optimize > 0) | |
1907795e JM |
1672 | { |
1673 | warning_with_decl (fndecl, "can't inline call to `%s'"); | |
1674 | warning ("called from here"); | |
1675 | } | |
51bbfa0c RS |
1676 | mark_addressable (fndecl); |
1677 | } | |
1678 | ||
d45cf215 RS |
1679 | if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl) |
1680 | && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode) | |
51bbfa0c | 1681 | is_const = 1; |
5e24110e RS |
1682 | |
1683 | if (TREE_THIS_VOLATILE (fndecl)) | |
1684 | is_volatile = 1; | |
51bbfa0c RS |
1685 | } |
1686 | } | |
1687 | ||
fdff8c6d RK |
1688 | /* If we don't have specific function to call, see if we have a |
1689 | constant or `noreturn' function from the type. */ | |
1690 | if (fndecl == 0) | |
1691 | { | |
1692 | is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p))); | |
1693 | is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p))); | |
1694 | } | |
1695 | ||
6f90e075 JW |
1696 | #ifdef REG_PARM_STACK_SPACE |
1697 | #ifdef MAYBE_REG_PARM_STACK_SPACE | |
1698 | reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; | |
1699 | #else | |
1700 | reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); | |
1701 | #endif | |
1702 | #endif | |
1703 | ||
e5e809f4 JL |
1704 | #if defined(PUSH_ROUNDING) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) |
1705 | if (reg_parm_stack_space > 0) | |
1706 | must_preallocate = 1; | |
1707 | #endif | |
1708 | ||
51bbfa0c RS |
1709 | /* Warn if this value is an aggregate type, |
1710 | regardless of which calling convention we are using for it. */ | |
05e3bdb9 | 1711 | if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp))) |
51bbfa0c RS |
1712 | warning ("function call has aggregate value"); |
1713 | ||
1714 | /* Set up a place to return a structure. */ | |
1715 | ||
1716 | /* Cater to broken compilers. */ | |
1717 | if (aggregate_value_p (exp)) | |
1718 | { | |
1719 | /* This call returns a big structure. */ | |
1720 | is_const = 0; | |
1721 | ||
1722 | #ifdef PCC_STATIC_STRUCT_RETURN | |
9e7b1d0a RS |
1723 | { |
1724 | pcc_struct_value = 1; | |
0dd532dc JW |
1725 | /* Easier than making that case work right. */ |
1726 | if (is_integrable) | |
1727 | { | |
1728 | /* In case this is a static function, note that it has been | |
1729 | used. */ | |
1730 | if (! TREE_ADDRESSABLE (fndecl)) | |
1731 | mark_addressable (fndecl); | |
1732 | is_integrable = 0; | |
1733 | } | |
9e7b1d0a RS |
1734 | } |
1735 | #else /* not PCC_STATIC_STRUCT_RETURN */ | |
1736 | { | |
1737 | struct_value_size = int_size_in_bytes (TREE_TYPE (exp)); | |
51bbfa0c | 1738 | |
9e7b1d0a RS |
1739 | if (target && GET_CODE (target) == MEM) |
1740 | structure_value_addr = XEXP (target, 0); | |
1741 | else | |
1742 | { | |
e9a25f70 JL |
1743 | /* Assign a temporary to hold the value. */ |
1744 | tree d; | |
51bbfa0c | 1745 | |
9e7b1d0a RS |
1746 | /* For variable-sized objects, we must be called with a target |
1747 | specified. If we were to allocate space on the stack here, | |
1748 | we would have no way of knowing when to free it. */ | |
51bbfa0c | 1749 | |
002bdd6c RK |
1750 | if (struct_value_size < 0) |
1751 | abort (); | |
1752 | ||
e9a25f70 JL |
1753 | /* This DECL is just something to feed to mark_addressable; |
1754 | it doesn't get pushed. */ | |
1755 | d = build_decl (VAR_DECL, NULL_TREE, TREE_TYPE (exp)); | |
1756 | DECL_RTL (d) = assign_temp (TREE_TYPE (exp), 1, 0, 1); | |
1757 | mark_addressable (d); | |
1758 | structure_value_addr = XEXP (DECL_RTL (d), 0); | |
e5e809f4 | 1759 | TREE_USED (d) = 1; |
9e7b1d0a RS |
1760 | target = 0; |
1761 | } | |
1762 | } | |
1763 | #endif /* not PCC_STATIC_STRUCT_RETURN */ | |
51bbfa0c RS |
1764 | } |
1765 | ||
1766 | /* If called function is inline, try to integrate it. */ | |
1767 | ||
1768 | if (is_integrable) | |
1769 | { | |
1770 | rtx temp; | |
69d4ca36 | 1771 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 | 1772 | rtx before_call = get_last_insn (); |
69d4ca36 | 1773 | #endif |
51bbfa0c RS |
1774 | |
1775 | temp = expand_inline_function (fndecl, actparms, target, | |
1776 | ignore, TREE_TYPE (exp), | |
1777 | structure_value_addr); | |
1778 | ||
1779 | /* If inlining succeeded, return. */ | |
2e0dd623 | 1780 | if (temp != (rtx) (HOST_WIDE_INT) -1) |
51bbfa0c | 1781 | { |
d64f5a78 | 1782 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 RS |
1783 | /* If the outgoing argument list must be preserved, push |
1784 | the stack before executing the inlined function if it | |
1785 | makes any calls. */ | |
1786 | ||
1787 | for (i = reg_parm_stack_space - 1; i >= 0; i--) | |
1788 | if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0) | |
1789 | break; | |
1790 | ||
1791 | if (stack_arg_under_construction || i >= 0) | |
1792 | { | |
a1917650 RK |
1793 | rtx first_insn |
1794 | = before_call ? NEXT_INSN (before_call) : get_insns (); | |
6a651371 | 1795 | rtx insn = NULL_RTX, seq; |
2f4aa534 | 1796 | |
d64f5a78 | 1797 | /* Look for a call in the inline function code. |
49ad7cfa | 1798 | If DECL_SAVED_INSNS (fndecl)->outgoing_args_size is |
d64f5a78 RS |
1799 | nonzero then there is a call and it is not necessary |
1800 | to scan the insns. */ | |
1801 | ||
49ad7cfa | 1802 | if (DECL_SAVED_INSNS (fndecl)->outgoing_args_size == 0) |
a1917650 | 1803 | for (insn = first_insn; insn; insn = NEXT_INSN (insn)) |
d64f5a78 RS |
1804 | if (GET_CODE (insn) == CALL_INSN) |
1805 | break; | |
2f4aa534 RS |
1806 | |
1807 | if (insn) | |
1808 | { | |
d64f5a78 RS |
1809 | /* Reserve enough stack space so that the largest |
1810 | argument list of any function call in the inline | |
1811 | function does not overlap the argument list being | |
1812 | evaluated. This is usually an overestimate because | |
1813 | allocate_dynamic_stack_space reserves space for an | |
1814 | outgoing argument list in addition to the requested | |
1815 | space, but there is no way to ask for stack space such | |
1816 | that an argument list of a certain length can be | |
e5e809f4 | 1817 | safely constructed. |
d64f5a78 | 1818 | |
e5e809f4 JL |
1819 | Add the stack space reserved for register arguments, if |
1820 | any, in the inline function. What is really needed is the | |
d64f5a78 RS |
1821 | largest value of reg_parm_stack_space in the inline |
1822 | function, but that is not available. Using the current | |
1823 | value of reg_parm_stack_space is wrong, but gives | |
1824 | correct results on all supported machines. */ | |
e5e809f4 | 1825 | |
49ad7cfa | 1826 | int adjust = (DECL_SAVED_INSNS (fndecl)->outgoing_args_size |
e5e809f4 JL |
1827 | + reg_parm_stack_space); |
1828 | ||
2f4aa534 | 1829 | start_sequence (); |
ccf5d244 | 1830 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
e5d70561 RK |
1831 | allocate_dynamic_stack_space (GEN_INT (adjust), |
1832 | NULL_RTX, BITS_PER_UNIT); | |
2f4aa534 RS |
1833 | seq = get_insns (); |
1834 | end_sequence (); | |
a1917650 | 1835 | emit_insns_before (seq, first_insn); |
e5d70561 | 1836 | emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); |
2f4aa534 RS |
1837 | } |
1838 | } | |
d64f5a78 | 1839 | #endif |
51bbfa0c RS |
1840 | |
1841 | /* If the result is equivalent to TARGET, return TARGET to simplify | |
1842 | checks in store_expr. They can be equivalent but not equal in the | |
1843 | case of a function that returns BLKmode. */ | |
1844 | if (temp != target && rtx_equal_p (temp, target)) | |
1845 | return target; | |
1846 | return temp; | |
1847 | } | |
1848 | ||
1849 | /* If inlining failed, mark FNDECL as needing to be compiled | |
0481a55e RK |
1850 | separately after all. If function was declared inline, |
1851 | give a warning. */ | |
1852 | if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline | |
da8c1713 | 1853 | && optimize > 0 && ! TREE_ADDRESSABLE (fndecl)) |
1907795e JM |
1854 | { |
1855 | warning_with_decl (fndecl, "inlining failed in call to `%s'"); | |
1856 | warning ("called from here"); | |
1857 | } | |
51bbfa0c RS |
1858 | mark_addressable (fndecl); |
1859 | } | |
1860 | ||
51bbfa0c RS |
1861 | function_call_count++; |
1862 | ||
1863 | if (fndecl && DECL_NAME (fndecl)) | |
1864 | name = IDENTIFIER_POINTER (DECL_NAME (fndecl)); | |
1865 | ||
51bbfa0c | 1866 | /* See if this is a call to a function that can return more than once |
20efdf74 JL |
1867 | or a call to longjmp or malloc. */ |
1868 | special_function_p (name, fndecl, &returns_twice, &is_longjmp, | |
1869 | &is_malloc, &may_be_alloca); | |
51bbfa0c | 1870 | |
51bbfa0c RS |
1871 | if (may_be_alloca) |
1872 | current_function_calls_alloca = 1; | |
1873 | ||
39842893 JL |
1874 | /* Operand 0 is a pointer-to-function; get the type of the function. */ |
1875 | funtype = TREE_TYPE (TREE_OPERAND (exp, 0)); | |
1876 | if (! POINTER_TYPE_P (funtype)) | |
1877 | abort (); | |
1878 | funtype = TREE_TYPE (funtype); | |
1879 | ||
1880 | /* When calling a const function, we must pop the stack args right away, | |
1881 | so that the pop is deleted or moved with the call. */ | |
1882 | if (is_const) | |
1883 | NO_DEFER_POP; | |
1884 | ||
51bbfa0c RS |
1885 | /* Don't let pending stack adjusts add up to too much. |
1886 | Also, do all pending adjustments now | |
1887 | if there is any chance this might be a call to alloca. */ | |
1888 | ||
1889 | if (pending_stack_adjust >= 32 | |
1890 | || (pending_stack_adjust > 0 && may_be_alloca)) | |
1891 | do_pending_stack_adjust (); | |
1892 | ||
cc79451b RK |
1893 | /* Push the temporary stack slot level so that we can free any temporaries |
1894 | we make. */ | |
51bbfa0c RS |
1895 | push_temp_slots (); |
1896 | ||
eecb6f50 JL |
1897 | /* Start updating where the next arg would go. |
1898 | ||
1899 | On some machines (such as the PA) indirect calls have a different | |
1900 | calling convention than normal calls. The last argument in | |
1901 | INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call | |
1902 | or not. */ | |
1903 | INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0)); | |
51bbfa0c RS |
1904 | |
1905 | /* If struct_value_rtx is 0, it means pass the address | |
1906 | as if it were an extra parameter. */ | |
1907 | if (structure_value_addr && struct_value_rtx == 0) | |
1908 | { | |
5582b006 RK |
1909 | /* If structure_value_addr is a REG other than |
1910 | virtual_outgoing_args_rtx, we can use always use it. If it | |
1911 | is not a REG, we must always copy it into a register. | |
1912 | If it is virtual_outgoing_args_rtx, we must copy it to another | |
1913 | register in some cases. */ | |
1914 | rtx temp = (GET_CODE (structure_value_addr) != REG | |
d64f5a78 | 1915 | #ifdef ACCUMULATE_OUTGOING_ARGS |
5582b006 RK |
1916 | || (stack_arg_under_construction |
1917 | && structure_value_addr == virtual_outgoing_args_rtx) | |
d64f5a78 | 1918 | #endif |
5582b006 RK |
1919 | ? copy_addr_to_reg (structure_value_addr) |
1920 | : structure_value_addr); | |
d64f5a78 | 1921 | |
51bbfa0c RS |
1922 | actparms |
1923 | = tree_cons (error_mark_node, | |
1924 | make_tree (build_pointer_type (TREE_TYPE (funtype)), | |
2f4aa534 | 1925 | temp), |
51bbfa0c RS |
1926 | actparms); |
1927 | structure_value_addr_parm = 1; | |
1928 | } | |
1929 | ||
1930 | /* Count the arguments and set NUM_ACTUALS. */ | |
1931 | for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++; | |
1932 | num_actuals = i; | |
1933 | ||
1934 | /* Compute number of named args. | |
1935 | Normally, don't include the last named arg if anonymous args follow. | |
e5e809f4 | 1936 | We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero. |
469225d8 JW |
1937 | (If no anonymous args follow, the result of list_length is actually |
1938 | one too large. This is harmless.) | |
51bbfa0c | 1939 | |
9ab70a9b R |
1940 | If PRETEND_OUTGOING_VARARGS_NAMED is set and STRICT_ARGUMENT_NAMING is |
1941 | zero, this machine will be able to place unnamed args that were passed in | |
469225d8 JW |
1942 | registers into the stack. So treat all args as named. This allows the |
1943 | insns emitting for a specific argument list to be independent of the | |
1944 | function declaration. | |
51bbfa0c | 1945 | |
9ab70a9b | 1946 | If PRETEND_OUTGOING_VARARGS_NAMED is not set, we do not have any reliable |
51bbfa0c RS |
1947 | way to pass unnamed args in registers, so we must force them into |
1948 | memory. */ | |
e5e809f4 JL |
1949 | |
1950 | if ((STRICT_ARGUMENT_NAMING | |
9ab70a9b | 1951 | || ! PRETEND_OUTGOING_VARARGS_NAMED) |
e5e809f4 | 1952 | && TYPE_ARG_TYPES (funtype) != 0) |
51bbfa0c | 1953 | n_named_args |
0ee902cb | 1954 | = (list_length (TYPE_ARG_TYPES (funtype)) |
0ee902cb | 1955 | /* Don't include the last named arg. */ |
d0f9021a | 1956 | - (STRICT_ARGUMENT_NAMING ? 0 : 1) |
0ee902cb RM |
1957 | /* Count the struct value address, if it is passed as a parm. */ |
1958 | + structure_value_addr_parm); | |
51bbfa0c | 1959 | else |
51bbfa0c RS |
1960 | /* If we know nothing, treat all args as named. */ |
1961 | n_named_args = num_actuals; | |
1962 | ||
1963 | /* Make a vector to hold all the information about each arg. */ | |
1964 | args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data)); | |
4c9a05bc | 1965 | bzero ((char *) args, num_actuals * sizeof (struct arg_data)); |
51bbfa0c | 1966 | |
d7cdf113 JL |
1967 | /* Build up entries inthe ARGS array, compute the size of the arguments |
1968 | into ARGS_SIZE, etc. */ | |
1969 | initialize_argument_information (num_actuals, args, &args_size, n_named_args, | |
959f3a06 | 1970 | actparms, fndecl, &args_so_far, |
d7cdf113 JL |
1971 | reg_parm_stack_space, &old_stack_level, |
1972 | &old_pending_adj, &must_preallocate, | |
1973 | &is_const); | |
51bbfa0c | 1974 | |
6f90e075 JW |
1975 | #ifdef FINAL_REG_PARM_STACK_SPACE |
1976 | reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, | |
1977 | args_size.var); | |
1978 | #endif | |
1979 | ||
51bbfa0c RS |
1980 | if (args_size.var) |
1981 | { | |
1982 | /* If this function requires a variable-sized argument list, don't try to | |
1983 | make a cse'able block for this call. We may be able to do this | |
1984 | eventually, but it is too complicated to keep track of what insns go | |
1985 | in the cse'able block and which don't. */ | |
1986 | ||
1987 | is_const = 0; | |
1988 | must_preallocate = 1; | |
51bbfa0c | 1989 | } |
e5e809f4 | 1990 | |
599f37b6 JL |
1991 | /* Compute the actual size of the argument block required. The variable |
1992 | and constant sizes must be combined, the size may have to be rounded, | |
1993 | and there may be a minimum required size. */ | |
1994 | unadjusted_args_size | |
1995 | = compute_argument_block_size (reg_parm_stack_space, &args_size); | |
51bbfa0c | 1996 | |
0f9b3ea6 JL |
1997 | /* Now make final decision about preallocating stack space. */ |
1998 | must_preallocate = finalize_must_preallocate (must_preallocate, | |
1999 | num_actuals, args, &args_size); | |
51bbfa0c RS |
2000 | |
2001 | /* If the structure value address will reference the stack pointer, we must | |
2002 | stabilize it. We don't need to do this if we know that we are not going | |
2003 | to adjust the stack pointer in processing this call. */ | |
2004 | ||
2005 | if (structure_value_addr | |
2006 | && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr) | |
2007 | || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr)) | |
2008 | && (args_size.var | |
2009 | #ifndef ACCUMULATE_OUTGOING_ARGS | |
2010 | || args_size.constant | |
2011 | #endif | |
2012 | )) | |
2013 | structure_value_addr = copy_to_reg (structure_value_addr); | |
2014 | ||
cc0b1adc JL |
2015 | /* Precompute any arguments as needed. */ |
2016 | precompute_arguments (is_const, must_preallocate, num_actuals, | |
2017 | args, &args_size); | |
51bbfa0c RS |
2018 | |
2019 | /* Now we are about to start emitting insns that can be deleted | |
2020 | if a libcall is deleted. */ | |
9ae8ffe7 | 2021 | if (is_const || is_malloc) |
51bbfa0c RS |
2022 | start_sequence (); |
2023 | ||
2024 | /* If we have no actual push instructions, or shouldn't use them, | |
2025 | make space for all args right now. */ | |
2026 | ||
2027 | if (args_size.var != 0) | |
2028 | { | |
2029 | if (old_stack_level == 0) | |
2030 | { | |
e5d70561 | 2031 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
51bbfa0c RS |
2032 | old_pending_adj = pending_stack_adjust; |
2033 | pending_stack_adjust = 0; | |
d64f5a78 | 2034 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 RS |
2035 | /* stack_arg_under_construction says whether a stack arg is |
2036 | being constructed at the old stack level. Pushing the stack | |
2037 | gets a clean outgoing argument block. */ | |
2038 | old_stack_arg_under_construction = stack_arg_under_construction; | |
2039 | stack_arg_under_construction = 0; | |
d64f5a78 | 2040 | #endif |
51bbfa0c RS |
2041 | } |
2042 | argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0); | |
2043 | } | |
26a258fe | 2044 | else |
51bbfa0c RS |
2045 | { |
2046 | /* Note that we must go through the motions of allocating an argument | |
2047 | block even if the size is zero because we may be storing args | |
2048 | in the area reserved for register arguments, which may be part of | |
2049 | the stack frame. */ | |
26a258fe | 2050 | |
51bbfa0c RS |
2051 | int needed = args_size.constant; |
2052 | ||
0f41302f MS |
2053 | /* Store the maximum argument space used. It will be pushed by |
2054 | the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow | |
2055 | checking). */ | |
51bbfa0c RS |
2056 | |
2057 | if (needed > current_function_outgoing_args_size) | |
2058 | current_function_outgoing_args_size = needed; | |
2059 | ||
26a258fe PB |
2060 | if (must_preallocate) |
2061 | { | |
2062 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2063 | /* Since the stack pointer will never be pushed, it is possible for | |
2064 | the evaluation of a parm to clobber something we have already | |
2065 | written to the stack. Since most function calls on RISC machines | |
2066 | do not use the stack, this is uncommon, but must work correctly. | |
2067 | ||
2068 | Therefore, we save any area of the stack that was already written | |
2069 | and that we are using. Here we set up to do this by making a new | |
2070 | stack usage map from the old one. The actual save will be done | |
2071 | by store_one_arg. | |
2072 | ||
2073 | Another approach might be to try to reorder the argument | |
2074 | evaluations to avoid this conflicting stack usage. */ | |
2075 | ||
e5e809f4 | 2076 | #ifndef OUTGOING_REG_PARM_STACK_SPACE |
26a258fe PB |
2077 | /* Since we will be writing into the entire argument area, the |
2078 | map must be allocated for its entire size, not just the part that | |
2079 | is the responsibility of the caller. */ | |
2080 | needed += reg_parm_stack_space; | |
51bbfa0c RS |
2081 | #endif |
2082 | ||
2083 | #ifdef ARGS_GROW_DOWNWARD | |
26a258fe PB |
2084 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, |
2085 | needed + 1); | |
51bbfa0c | 2086 | #else |
26a258fe PB |
2087 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, |
2088 | needed); | |
51bbfa0c | 2089 | #endif |
26a258fe | 2090 | stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); |
51bbfa0c | 2091 | |
26a258fe PB |
2092 | if (initial_highest_arg_in_use) |
2093 | bcopy (initial_stack_usage_map, stack_usage_map, | |
2094 | initial_highest_arg_in_use); | |
51bbfa0c | 2095 | |
26a258fe PB |
2096 | if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) |
2097 | bzero (&stack_usage_map[initial_highest_arg_in_use], | |
2098 | highest_outgoing_arg_in_use - initial_highest_arg_in_use); | |
2099 | needed = 0; | |
2f4aa534 | 2100 | |
26a258fe PB |
2101 | /* The address of the outgoing argument list must not be copied to a |
2102 | register here, because argblock would be left pointing to the | |
2103 | wrong place after the call to allocate_dynamic_stack_space below. | |
2104 | */ | |
2f4aa534 | 2105 | |
26a258fe | 2106 | argblock = virtual_outgoing_args_rtx; |
2f4aa534 | 2107 | |
51bbfa0c | 2108 | #else /* not ACCUMULATE_OUTGOING_ARGS */ |
26a258fe | 2109 | if (inhibit_defer_pop == 0) |
51bbfa0c | 2110 | { |
26a258fe PB |
2111 | /* Try to reuse some or all of the pending_stack_adjust |
2112 | to get this space. Maybe we can avoid any pushing. */ | |
2113 | if (needed > pending_stack_adjust) | |
2114 | { | |
2115 | needed -= pending_stack_adjust; | |
2116 | pending_stack_adjust = 0; | |
2117 | } | |
2118 | else | |
2119 | { | |
2120 | pending_stack_adjust -= needed; | |
2121 | needed = 0; | |
2122 | } | |
51bbfa0c | 2123 | } |
26a258fe PB |
2124 | /* Special case this because overhead of `push_block' in this |
2125 | case is non-trivial. */ | |
2126 | if (needed == 0) | |
2127 | argblock = virtual_outgoing_args_rtx; | |
51bbfa0c | 2128 | else |
26a258fe PB |
2129 | argblock = push_block (GEN_INT (needed), 0, 0); |
2130 | ||
2131 | /* We only really need to call `copy_to_reg' in the case where push | |
2132 | insns are going to be used to pass ARGBLOCK to a function | |
2133 | call in ARGS. In that case, the stack pointer changes value | |
2134 | from the allocation point to the call point, and hence | |
2135 | the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well. | |
2136 | But might as well always do it. */ | |
2137 | argblock = copy_to_reg (argblock); | |
51bbfa0c | 2138 | #endif /* not ACCUMULATE_OUTGOING_ARGS */ |
26a258fe | 2139 | } |
51bbfa0c RS |
2140 | } |
2141 | ||
bfbf933a RS |
2142 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2143 | /* The save/restore code in store_one_arg handles all cases except one: | |
2144 | a constructor call (including a C function returning a BLKmode struct) | |
2145 | to initialize an argument. */ | |
2146 | if (stack_arg_under_construction) | |
2147 | { | |
e5e809f4 | 2148 | #ifndef OUTGOING_REG_PARM_STACK_SPACE |
e5d70561 | 2149 | rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant); |
bfbf933a | 2150 | #else |
e5d70561 | 2151 | rtx push_size = GEN_INT (args_size.constant); |
bfbf933a RS |
2152 | #endif |
2153 | if (old_stack_level == 0) | |
2154 | { | |
e5d70561 | 2155 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
bfbf933a RS |
2156 | old_pending_adj = pending_stack_adjust; |
2157 | pending_stack_adjust = 0; | |
2158 | /* stack_arg_under_construction says whether a stack arg is | |
2159 | being constructed at the old stack level. Pushing the stack | |
2160 | gets a clean outgoing argument block. */ | |
2161 | old_stack_arg_under_construction = stack_arg_under_construction; | |
2162 | stack_arg_under_construction = 0; | |
2163 | /* Make a new map for the new argument list. */ | |
2164 | stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use); | |
2165 | bzero (stack_usage_map, highest_outgoing_arg_in_use); | |
2166 | highest_outgoing_arg_in_use = 0; | |
2167 | } | |
e5d70561 | 2168 | allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT); |
bfbf933a RS |
2169 | } |
2170 | /* If argument evaluation might modify the stack pointer, copy the | |
2171 | address of the argument list to a register. */ | |
2172 | for (i = 0; i < num_actuals; i++) | |
2173 | if (args[i].pass_on_stack) | |
2174 | { | |
2175 | argblock = copy_addr_to_reg (argblock); | |
2176 | break; | |
2177 | } | |
2178 | #endif | |
2179 | ||
a45bdd02 | 2180 | compute_argument_addresses (args, argblock, num_actuals); |
bfbf933a | 2181 | |
51bbfa0c | 2182 | #ifdef PUSH_ARGS_REVERSED |
c795bca9 | 2183 | #ifdef PREFERRED_STACK_BOUNDARY |
51bbfa0c RS |
2184 | /* If we push args individually in reverse order, perform stack alignment |
2185 | before the first push (the last arg). */ | |
2186 | if (argblock == 0) | |
599f37b6 | 2187 | anti_adjust_stack (GEN_INT (args_size.constant - unadjusted_args_size)); |
51bbfa0c RS |
2188 | #endif |
2189 | #endif | |
2190 | ||
2191 | /* Don't try to defer pops if preallocating, not even from the first arg, | |
2192 | since ARGBLOCK probably refers to the SP. */ | |
2193 | if (argblock) | |
2194 | NO_DEFER_POP; | |
2195 | ||
a45bdd02 | 2196 | funexp = rtx_for_function_call (fndecl, exp); |
51bbfa0c RS |
2197 | |
2198 | /* Figure out the register where the value, if any, will come back. */ | |
2199 | valreg = 0; | |
2200 | if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode | |
2201 | && ! structure_value_addr) | |
2202 | { | |
2203 | if (pcc_struct_value) | |
2204 | valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)), | |
2205 | fndecl); | |
2206 | else | |
2207 | valreg = hard_function_value (TREE_TYPE (exp), fndecl); | |
2208 | } | |
2209 | ||
2210 | /* Precompute all register parameters. It isn't safe to compute anything | |
0f41302f | 2211 | once we have started filling any specific hard regs. */ |
20efdf74 | 2212 | precompute_register_parameters (num_actuals, args, ®_parm_seen); |
51bbfa0c RS |
2213 | |
2214 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
e5e809f4 | 2215 | |
20efdf74 JL |
2216 | /* Save the fixed argument area if it's part of the caller's frame and |
2217 | is clobbered by argument setup for this call. */ | |
2218 | save_area = save_fixed_argument_area (reg_parm_stack_space, argblock, | |
2219 | &low_to_save, &high_to_save); | |
b94301c2 | 2220 | #endif |
20efdf74 | 2221 | |
51bbfa0c RS |
2222 | |
2223 | /* Now store (and compute if necessary) all non-register parms. | |
2224 | These come before register parms, since they can require block-moves, | |
2225 | which could clobber the registers used for register parms. | |
2226 | Parms which have partial registers are not stored here, | |
2227 | but we do preallocate space here if they want that. */ | |
2228 | ||
2229 | for (i = 0; i < num_actuals; i++) | |
2230 | if (args[i].reg == 0 || args[i].pass_on_stack) | |
2231 | store_one_arg (&args[i], argblock, may_be_alloca, | |
c84e2712 | 2232 | args_size.var != 0, reg_parm_stack_space); |
51bbfa0c | 2233 | |
4ab56118 RK |
2234 | /* If we have a parm that is passed in registers but not in memory |
2235 | and whose alignment does not permit a direct copy into registers, | |
2236 | make a group of pseudos that correspond to each register that we | |
2237 | will later fill. */ | |
45d44c98 | 2238 | if (STRICT_ALIGNMENT) |
20efdf74 | 2239 | store_unaligned_arguments_into_pseudos (args, num_actuals); |
4ab56118 | 2240 | |
51bbfa0c RS |
2241 | /* Now store any partially-in-registers parm. |
2242 | This is the last place a block-move can happen. */ | |
2243 | if (reg_parm_seen) | |
2244 | for (i = 0; i < num_actuals; i++) | |
2245 | if (args[i].partial != 0 && ! args[i].pass_on_stack) | |
2246 | store_one_arg (&args[i], argblock, may_be_alloca, | |
c84e2712 | 2247 | args_size.var != 0, reg_parm_stack_space); |
51bbfa0c RS |
2248 | |
2249 | #ifndef PUSH_ARGS_REVERSED | |
c795bca9 | 2250 | #ifdef PREFERRED_STACK_BOUNDARY |
51bbfa0c RS |
2251 | /* If we pushed args in forward order, perform stack alignment |
2252 | after pushing the last arg. */ | |
2253 | if (argblock == 0) | |
599f37b6 | 2254 | anti_adjust_stack (GEN_INT (args_size.constant - unadjusted_args_size)); |
51bbfa0c RS |
2255 | #endif |
2256 | #endif | |
2257 | ||
756e0e12 RS |
2258 | /* If register arguments require space on the stack and stack space |
2259 | was not preallocated, allocate stack space here for arguments | |
2260 | passed in registers. */ | |
6e716e89 | 2261 | #if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE) |
756e0e12 | 2262 | if (must_preallocate == 0 && reg_parm_stack_space > 0) |
e5d70561 | 2263 | anti_adjust_stack (GEN_INT (reg_parm_stack_space)); |
756e0e12 RS |
2264 | #endif |
2265 | ||
51bbfa0c RS |
2266 | /* Pass the function the address in which to return a structure value. */ |
2267 | if (structure_value_addr && ! structure_value_addr_parm) | |
2268 | { | |
2269 | emit_move_insn (struct_value_rtx, | |
2270 | force_reg (Pmode, | |
e5d70561 RK |
2271 | force_operand (structure_value_addr, |
2272 | NULL_RTX))); | |
7815214e RK |
2273 | |
2274 | /* Mark the memory for the aggregate as write-only. */ | |
7d384cc0 | 2275 | if (current_function_check_memory_usage) |
7815214e RK |
2276 | emit_library_call (chkr_set_right_libfunc, 1, |
2277 | VOIDmode, 3, | |
6a9c4aed | 2278 | structure_value_addr, Pmode, |
7815214e | 2279 | GEN_INT (struct_value_size), TYPE_MODE (sizetype), |
956d6950 JL |
2280 | GEN_INT (MEMORY_USE_WO), |
2281 | TYPE_MODE (integer_type_node)); | |
7815214e | 2282 | |
51bbfa0c | 2283 | if (GET_CODE (struct_value_rtx) == REG) |
77cac2f2 | 2284 | use_reg (&call_fusage, struct_value_rtx); |
51bbfa0c RS |
2285 | } |
2286 | ||
77cac2f2 | 2287 | funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen); |
8b0f9101 | 2288 | |
21a3b983 | 2289 | load_register_parameters (args, num_actuals, &call_fusage); |
51bbfa0c RS |
2290 | |
2291 | /* Perform postincrements before actually calling the function. */ | |
2292 | emit_queue (); | |
2293 | ||
2294 | /* All arguments and registers used for the call must be set up by now! */ | |
2295 | ||
51bbfa0c | 2296 | /* Generate the actual call instruction. */ |
fb5eebb9 RH |
2297 | emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size, |
2298 | args_size.constant, struct_value_size, | |
51bbfa0c | 2299 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
77cac2f2 | 2300 | valreg, old_inhibit_defer_pop, call_fusage, is_const); |
51bbfa0c RS |
2301 | |
2302 | /* If call is cse'able, make appropriate pair of reg-notes around it. | |
2303 | Test valreg so we don't crash; may safely ignore `const' | |
80a3ad45 JW |
2304 | if return type is void. Disable for PARALLEL return values, because |
2305 | we have no way to move such values into a pseudo register. */ | |
2306 | if (is_const && valreg != 0 && GET_CODE (valreg) != PARALLEL) | |
51bbfa0c RS |
2307 | { |
2308 | rtx note = 0; | |
2309 | rtx temp = gen_reg_rtx (GET_MODE (valreg)); | |
2310 | rtx insns; | |
2311 | ||
9ae8ffe7 JL |
2312 | /* Mark the return value as a pointer if needed. */ |
2313 | if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE) | |
2314 | { | |
2315 | tree pointed_to = TREE_TYPE (TREE_TYPE (exp)); | |
2316 | mark_reg_pointer (temp, TYPE_ALIGN (pointed_to) / BITS_PER_UNIT); | |
2317 | } | |
2318 | ||
51bbfa0c RS |
2319 | /* Construct an "equal form" for the value which mentions all the |
2320 | arguments in order as well as the function name. */ | |
2321 | #ifdef PUSH_ARGS_REVERSED | |
2322 | for (i = 0; i < num_actuals; i++) | |
38a448ca | 2323 | note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note); |
51bbfa0c RS |
2324 | #else |
2325 | for (i = num_actuals - 1; i >= 0; i--) | |
38a448ca | 2326 | note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note); |
51bbfa0c | 2327 | #endif |
38a448ca | 2328 | note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note); |
51bbfa0c RS |
2329 | |
2330 | insns = get_insns (); | |
2331 | end_sequence (); | |
2332 | ||
2333 | emit_libcall_block (insns, temp, valreg, note); | |
2334 | ||
2335 | valreg = temp; | |
2336 | } | |
4f48d56a RK |
2337 | else if (is_const) |
2338 | { | |
2339 | /* Otherwise, just write out the sequence without a note. */ | |
2340 | rtx insns = get_insns (); | |
2341 | ||
2342 | end_sequence (); | |
2343 | emit_insns (insns); | |
2344 | } | |
9ae8ffe7 JL |
2345 | else if (is_malloc) |
2346 | { | |
2347 | rtx temp = gen_reg_rtx (GET_MODE (valreg)); | |
2348 | rtx last, insns; | |
2349 | ||
2350 | /* The return value from a malloc-like function is a pointer. */ | |
2351 | if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE) | |
2352 | mark_reg_pointer (temp, BIGGEST_ALIGNMENT / BITS_PER_UNIT); | |
2353 | ||
2354 | emit_move_insn (temp, valreg); | |
2355 | ||
2356 | /* The return value from a malloc-like function can not alias | |
2357 | anything else. */ | |
2358 | last = get_last_insn (); | |
2359 | REG_NOTES (last) = | |
38a448ca | 2360 | gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last)); |
9ae8ffe7 JL |
2361 | |
2362 | /* Write out the sequence. */ | |
2363 | insns = get_insns (); | |
2364 | end_sequence (); | |
2365 | emit_insns (insns); | |
2366 | valreg = temp; | |
2367 | } | |
51bbfa0c RS |
2368 | |
2369 | /* For calls to `setjmp', etc., inform flow.c it should complain | |
2370 | if nonvolatile values are live. */ | |
2371 | ||
2372 | if (returns_twice) | |
2373 | { | |
2374 | emit_note (name, NOTE_INSN_SETJMP); | |
2375 | current_function_calls_setjmp = 1; | |
2376 | } | |
2377 | ||
2378 | if (is_longjmp) | |
2379 | current_function_calls_longjmp = 1; | |
2380 | ||
2381 | /* Notice functions that cannot return. | |
2382 | If optimizing, insns emitted below will be dead. | |
2383 | If not optimizing, they will exist, which is useful | |
2384 | if the user uses the `return' command in the debugger. */ | |
2385 | ||
2386 | if (is_volatile || is_longjmp) | |
2387 | emit_barrier (); | |
2388 | ||
51bbfa0c RS |
2389 | /* If value type not void, return an rtx for the value. */ |
2390 | ||
e976b8b2 MS |
2391 | /* If there are cleanups to be called, don't use a hard reg as target. |
2392 | We need to double check this and see if it matters anymore. */ | |
e9a25f70 | 2393 | if (any_pending_cleanups (1) |
51bbfa0c RS |
2394 | && target && REG_P (target) |
2395 | && REGNO (target) < FIRST_PSEUDO_REGISTER) | |
2396 | target = 0; | |
2397 | ||
2398 | if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode | |
2399 | || ignore) | |
2400 | { | |
2401 | target = const0_rtx; | |
2402 | } | |
2403 | else if (structure_value_addr) | |
2404 | { | |
2405 | if (target == 0 || GET_CODE (target) != MEM) | |
29008b51 | 2406 | { |
38a448ca RH |
2407 | target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)), |
2408 | memory_address (TYPE_MODE (TREE_TYPE (exp)), | |
2409 | structure_value_addr)); | |
c6df88cb MM |
2410 | MEM_SET_IN_STRUCT_P (target, |
2411 | AGGREGATE_TYPE_P (TREE_TYPE (exp))); | |
29008b51 | 2412 | } |
51bbfa0c RS |
2413 | } |
2414 | else if (pcc_struct_value) | |
2415 | { | |
f78b5ca1 JL |
2416 | /* This is the special C++ case where we need to |
2417 | know what the true target was. We take care to | |
2418 | never use this value more than once in one expression. */ | |
38a448ca RH |
2419 | target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)), |
2420 | copy_to_reg (valreg)); | |
c6df88cb | 2421 | MEM_SET_IN_STRUCT_P (target, AGGREGATE_TYPE_P (TREE_TYPE (exp))); |
51bbfa0c | 2422 | } |
cacbd532 JW |
2423 | /* Handle calls that return values in multiple non-contiguous locations. |
2424 | The Irix 6 ABI has examples of this. */ | |
2425 | else if (GET_CODE (valreg) == PARALLEL) | |
2426 | { | |
aac5cc16 RH |
2427 | int bytes = int_size_in_bytes (TREE_TYPE (exp)); |
2428 | ||
cacbd532 JW |
2429 | if (target == 0) |
2430 | { | |
2b4092f2 | 2431 | target = assign_stack_temp (TYPE_MODE (TREE_TYPE (exp)), bytes, 0); |
c6df88cb | 2432 | MEM_SET_IN_STRUCT_P (target, AGGREGATE_TYPE_P (TREE_TYPE (exp))); |
cacbd532 JW |
2433 | preserve_temp_slots (target); |
2434 | } | |
2435 | ||
c5c76735 JL |
2436 | if (! rtx_equal_p (target, valreg)) |
2437 | emit_group_store (target, valreg, bytes, | |
2438 | TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT); | |
cacbd532 | 2439 | } |
059c3d84 JW |
2440 | else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp)) |
2441 | && GET_MODE (target) == GET_MODE (valreg)) | |
2442 | /* TARGET and VALREG cannot be equal at this point because the latter | |
2443 | would not have REG_FUNCTION_VALUE_P true, while the former would if | |
2444 | it were referring to the same register. | |
2445 | ||
2446 | If they refer to the same register, this move will be a no-op, except | |
2447 | when function inlining is being done. */ | |
2448 | emit_move_insn (target, valreg); | |
766b19fb | 2449 | else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) |
c36fce9a | 2450 | target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp)); |
51bbfa0c RS |
2451 | else |
2452 | target = copy_to_reg (valreg); | |
2453 | ||
84b55618 | 2454 | #ifdef PROMOTE_FUNCTION_RETURN |
5d2ac65e RK |
2455 | /* If we promoted this return value, make the proper SUBREG. TARGET |
2456 | might be const0_rtx here, so be careful. */ | |
2457 | if (GET_CODE (target) == REG | |
766b19fb | 2458 | && TYPE_MODE (TREE_TYPE (exp)) != BLKmode |
5d2ac65e | 2459 | && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) |
84b55618 | 2460 | { |
321e0bba RK |
2461 | tree type = TREE_TYPE (exp); |
2462 | int unsignedp = TREE_UNSIGNED (type); | |
84b55618 | 2463 | |
321e0bba RK |
2464 | /* If we don't promote as expected, something is wrong. */ |
2465 | if (GET_MODE (target) | |
2466 | != promote_mode (type, TYPE_MODE (type), &unsignedp, 1)) | |
5d2ac65e RK |
2467 | abort (); |
2468 | ||
38a448ca | 2469 | target = gen_rtx_SUBREG (TYPE_MODE (type), target, 0); |
84b55618 RK |
2470 | SUBREG_PROMOTED_VAR_P (target) = 1; |
2471 | SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp; | |
2472 | } | |
2473 | #endif | |
2474 | ||
2f4aa534 RS |
2475 | /* If size of args is variable or this was a constructor call for a stack |
2476 | argument, restore saved stack-pointer value. */ | |
51bbfa0c RS |
2477 | |
2478 | if (old_stack_level) | |
2479 | { | |
e5d70561 | 2480 | emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); |
51bbfa0c | 2481 | pending_stack_adjust = old_pending_adj; |
d64f5a78 | 2482 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 RS |
2483 | stack_arg_under_construction = old_stack_arg_under_construction; |
2484 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
2485 | stack_usage_map = initial_stack_usage_map; | |
d64f5a78 | 2486 | #endif |
51bbfa0c | 2487 | } |
51bbfa0c RS |
2488 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2489 | else | |
2490 | { | |
2491 | #ifdef REG_PARM_STACK_SPACE | |
2492 | if (save_area) | |
20efdf74 JL |
2493 | restore_fixed_argument_area (save_area, argblock, |
2494 | high_to_save, low_to_save); | |
b94301c2 | 2495 | #endif |
51bbfa0c | 2496 | |
51bbfa0c RS |
2497 | /* If we saved any argument areas, restore them. */ |
2498 | for (i = 0; i < num_actuals; i++) | |
2499 | if (args[i].save_area) | |
2500 | { | |
2501 | enum machine_mode save_mode = GET_MODE (args[i].save_area); | |
2502 | rtx stack_area | |
38a448ca RH |
2503 | = gen_rtx_MEM (save_mode, |
2504 | memory_address (save_mode, | |
2505 | XEXP (args[i].stack_slot, 0))); | |
51bbfa0c RS |
2506 | |
2507 | if (save_mode != BLKmode) | |
2508 | emit_move_insn (stack_area, args[i].save_area); | |
2509 | else | |
2510 | emit_block_move (stack_area, validize_mem (args[i].save_area), | |
e5d70561 | 2511 | GEN_INT (args[i].size.constant), |
51bbfa0c RS |
2512 | PARM_BOUNDARY / BITS_PER_UNIT); |
2513 | } | |
2514 | ||
2515 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
2516 | stack_usage_map = initial_stack_usage_map; | |
2517 | } | |
2518 | #endif | |
2519 | ||
59257ff7 RK |
2520 | /* If this was alloca, record the new stack level for nonlocal gotos. |
2521 | Check for the handler slots since we might not have a save area | |
0f41302f | 2522 | for non-local gotos. */ |
59257ff7 | 2523 | |
ba716ac9 | 2524 | if (may_be_alloca && nonlocal_goto_handler_slots != 0) |
e5d70561 | 2525 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX); |
51bbfa0c RS |
2526 | |
2527 | pop_temp_slots (); | |
2528 | ||
8e6a59fe MM |
2529 | /* Free up storage we no longer need. */ |
2530 | for (i = 0; i < num_actuals; ++i) | |
2531 | if (args[i].aligned_regs) | |
2532 | free (args[i].aligned_regs); | |
2533 | ||
51bbfa0c RS |
2534 | return target; |
2535 | } | |
2536 | \f | |
322e3e34 RK |
2537 | /* Output a library call to function FUN (a SYMBOL_REF rtx) |
2538 | (emitting the queue unless NO_QUEUE is nonzero), | |
2539 | for a value of mode OUTMODE, | |
2540 | with NARGS different arguments, passed as alternating rtx values | |
2541 | and machine_modes to convert them to. | |
2542 | The rtx values should have been passed through protect_from_queue already. | |
2543 | ||
2544 | NO_QUEUE will be true if and only if the library call is a `const' call | |
2545 | which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent | |
2546 | to the variable is_const in expand_call. | |
2547 | ||
2548 | NO_QUEUE must be true for const calls, because if it isn't, then | |
2549 | any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes, | |
2550 | and will be lost if the libcall sequence is optimized away. | |
2551 | ||
2552 | NO_QUEUE must be false for non-const calls, because if it isn't, the | |
2553 | call insn will have its CONST_CALL_P bit set, and it will be incorrectly | |
2554 | optimized. For instance, the instruction scheduler may incorrectly | |
2555 | move memory references across the non-const call. */ | |
2556 | ||
2557 | void | |
4f90e4a0 RK |
2558 | emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode, |
2559 | int nargs, ...)) | |
322e3e34 | 2560 | { |
5148a72b | 2561 | #ifndef ANSI_PROTOTYPES |
4f90e4a0 RK |
2562 | rtx orgfun; |
2563 | int no_queue; | |
2564 | enum machine_mode outmode; | |
2565 | int nargs; | |
2566 | #endif | |
322e3e34 RK |
2567 | va_list p; |
2568 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
2569 | struct args_size args_size; | |
2570 | /* Size of arguments before any adjustments (such as rounding). */ | |
2571 | struct args_size original_args_size; | |
2572 | register int argnum; | |
322e3e34 | 2573 | rtx fun; |
322e3e34 RK |
2574 | int inc; |
2575 | int count; | |
2576 | rtx argblock = 0; | |
2577 | CUMULATIVE_ARGS args_so_far; | |
2578 | struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; | |
f046b3cc | 2579 | struct args_size offset; struct args_size size; rtx save_area; }; |
322e3e34 RK |
2580 | struct arg *argvec; |
2581 | int old_inhibit_defer_pop = inhibit_defer_pop; | |
77cac2f2 | 2582 | rtx call_fusage = 0; |
e5e809f4 | 2583 | int reg_parm_stack_space = 0; |
f046b3cc JL |
2584 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) |
2585 | /* Define the boundary of the register parm stack space that needs to be | |
2586 | save, if any. */ | |
6a651371 | 2587 | int low_to_save = -1, high_to_save = 0; |
f046b3cc JL |
2588 | rtx save_area = 0; /* Place that it is saved */ |
2589 | #endif | |
2590 | ||
2591 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2592 | int initial_highest_arg_in_use = highest_outgoing_arg_in_use; | |
2593 | char *initial_stack_usage_map = stack_usage_map; | |
2594 | int needed; | |
2595 | #endif | |
2596 | ||
2597 | #ifdef REG_PARM_STACK_SPACE | |
69d4ca36 | 2598 | /* Size of the stack reserved for parameter registers. */ |
f046b3cc JL |
2599 | #ifdef MAYBE_REG_PARM_STACK_SPACE |
2600 | reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; | |
2601 | #else | |
ab87f8c8 | 2602 | reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0); |
f046b3cc JL |
2603 | #endif |
2604 | #endif | |
322e3e34 | 2605 | |
4f90e4a0 RK |
2606 | VA_START (p, nargs); |
2607 | ||
5148a72b | 2608 | #ifndef ANSI_PROTOTYPES |
4f90e4a0 | 2609 | orgfun = va_arg (p, rtx); |
322e3e34 RK |
2610 | no_queue = va_arg (p, int); |
2611 | outmode = va_arg (p, enum machine_mode); | |
2612 | nargs = va_arg (p, int); | |
4f90e4a0 RK |
2613 | #endif |
2614 | ||
2615 | fun = orgfun; | |
322e3e34 RK |
2616 | |
2617 | /* Copy all the libcall-arguments out of the varargs data | |
2618 | and into a vector ARGVEC. | |
2619 | ||
2620 | Compute how to pass each argument. We only support a very small subset | |
2621 | of the full argument passing conventions to limit complexity here since | |
2622 | library functions shouldn't have many args. */ | |
2623 | ||
2624 | argvec = (struct arg *) alloca (nargs * sizeof (struct arg)); | |
f046b3cc JL |
2625 | bzero ((char *) argvec, nargs * sizeof (struct arg)); |
2626 | ||
322e3e34 | 2627 | |
eecb6f50 | 2628 | INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0); |
322e3e34 RK |
2629 | |
2630 | args_size.constant = 0; | |
2631 | args_size.var = 0; | |
2632 | ||
888aa7a9 RS |
2633 | push_temp_slots (); |
2634 | ||
322e3e34 RK |
2635 | for (count = 0; count < nargs; count++) |
2636 | { | |
2637 | rtx val = va_arg (p, rtx); | |
2638 | enum machine_mode mode = va_arg (p, enum machine_mode); | |
2639 | ||
2640 | /* We cannot convert the arg value to the mode the library wants here; | |
2641 | must do it earlier where we know the signedness of the arg. */ | |
2642 | if (mode == BLKmode | |
2643 | || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) | |
2644 | abort (); | |
2645 | ||
2646 | /* On some machines, there's no way to pass a float to a library fcn. | |
2647 | Pass it as a double instead. */ | |
2648 | #ifdef LIBGCC_NEEDS_DOUBLE | |
2649 | if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) | |
7373d92d | 2650 | val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; |
322e3e34 RK |
2651 | #endif |
2652 | ||
2653 | /* There's no need to call protect_from_queue, because | |
2654 | either emit_move_insn or emit_push_insn will do that. */ | |
2655 | ||
2656 | /* Make sure it is a reasonable operand for a move or push insn. */ | |
2657 | if (GET_CODE (val) != REG && GET_CODE (val) != MEM | |
2658 | && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) | |
2659 | val = force_operand (val, NULL_RTX); | |
2660 | ||
322e3e34 RK |
2661 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE |
2662 | if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) | |
888aa7a9 | 2663 | { |
a44492f0 RK |
2664 | /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can |
2665 | be viewed as just an efficiency improvement. */ | |
888aa7a9 RS |
2666 | rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); |
2667 | emit_move_insn (slot, val); | |
8301b6e2 | 2668 | val = force_operand (XEXP (slot, 0), NULL_RTX); |
a44492f0 | 2669 | mode = Pmode; |
888aa7a9 | 2670 | } |
322e3e34 RK |
2671 | #endif |
2672 | ||
888aa7a9 RS |
2673 | argvec[count].value = val; |
2674 | argvec[count].mode = mode; | |
2675 | ||
322e3e34 | 2676 | argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); |
cacbd532 | 2677 | if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL) |
322e3e34 RK |
2678 | abort (); |
2679 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
2680 | argvec[count].partial | |
2681 | = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); | |
2682 | #else | |
2683 | argvec[count].partial = 0; | |
2684 | #endif | |
2685 | ||
2686 | locate_and_pad_parm (mode, NULL_TREE, | |
2687 | argvec[count].reg && argvec[count].partial == 0, | |
2688 | NULL_TREE, &args_size, &argvec[count].offset, | |
2689 | &argvec[count].size); | |
2690 | ||
2691 | if (argvec[count].size.var) | |
2692 | abort (); | |
2693 | ||
e5e809f4 | 2694 | if (reg_parm_stack_space == 0 && argvec[count].partial) |
322e3e34 | 2695 | argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; |
322e3e34 RK |
2696 | |
2697 | if (argvec[count].reg == 0 || argvec[count].partial != 0 | |
e5e809f4 | 2698 | || reg_parm_stack_space > 0) |
322e3e34 RK |
2699 | args_size.constant += argvec[count].size.constant; |
2700 | ||
0f41302f | 2701 | FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1); |
322e3e34 RK |
2702 | } |
2703 | va_end (p); | |
2704 | ||
f046b3cc JL |
2705 | #ifdef FINAL_REG_PARM_STACK_SPACE |
2706 | reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, | |
2707 | args_size.var); | |
2708 | #endif | |
2709 | ||
322e3e34 RK |
2710 | /* If this machine requires an external definition for library |
2711 | functions, write one out. */ | |
2712 | assemble_external_libcall (fun); | |
2713 | ||
2714 | original_args_size = args_size; | |
c795bca9 | 2715 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
2716 | args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) |
2717 | / STACK_BYTES) * STACK_BYTES); | |
2718 | #endif | |
2719 | ||
322e3e34 | 2720 | args_size.constant = MAX (args_size.constant, |
f046b3cc | 2721 | reg_parm_stack_space); |
e5e809f4 | 2722 | |
322e3e34 | 2723 | #ifndef OUTGOING_REG_PARM_STACK_SPACE |
f046b3cc | 2724 | args_size.constant -= reg_parm_stack_space; |
322e3e34 RK |
2725 | #endif |
2726 | ||
322e3e34 RK |
2727 | if (args_size.constant > current_function_outgoing_args_size) |
2728 | current_function_outgoing_args_size = args_size.constant; | |
26a258fe PB |
2729 | |
2730 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
f046b3cc JL |
2731 | /* Since the stack pointer will never be pushed, it is possible for |
2732 | the evaluation of a parm to clobber something we have already | |
2733 | written to the stack. Since most function calls on RISC machines | |
2734 | do not use the stack, this is uncommon, but must work correctly. | |
2735 | ||
2736 | Therefore, we save any area of the stack that was already written | |
2737 | and that we are using. Here we set up to do this by making a new | |
2738 | stack usage map from the old one. | |
2739 | ||
2740 | Another approach might be to try to reorder the argument | |
2741 | evaluations to avoid this conflicting stack usage. */ | |
2742 | ||
2743 | needed = args_size.constant; | |
e5e809f4 JL |
2744 | |
2745 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
f046b3cc JL |
2746 | /* Since we will be writing into the entire argument area, the |
2747 | map must be allocated for its entire size, not just the part that | |
2748 | is the responsibility of the caller. */ | |
2749 | needed += reg_parm_stack_space; | |
2750 | #endif | |
2751 | ||
2752 | #ifdef ARGS_GROW_DOWNWARD | |
2753 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, | |
2754 | needed + 1); | |
2755 | #else | |
2756 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, | |
2757 | needed); | |
322e3e34 | 2758 | #endif |
f046b3cc JL |
2759 | stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); |
2760 | ||
2761 | if (initial_highest_arg_in_use) | |
2762 | bcopy (initial_stack_usage_map, stack_usage_map, | |
2763 | initial_highest_arg_in_use); | |
2764 | ||
2765 | if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) | |
2766 | bzero (&stack_usage_map[initial_highest_arg_in_use], | |
2767 | highest_outgoing_arg_in_use - initial_highest_arg_in_use); | |
2768 | needed = 0; | |
322e3e34 | 2769 | |
f046b3cc JL |
2770 | /* The address of the outgoing argument list must not be copied to a |
2771 | register here, because argblock would be left pointing to the | |
2772 | wrong place after the call to allocate_dynamic_stack_space below. | |
2773 | */ | |
2774 | ||
2775 | argblock = virtual_outgoing_args_rtx; | |
2776 | #else /* not ACCUMULATE_OUTGOING_ARGS */ | |
322e3e34 RK |
2777 | #ifndef PUSH_ROUNDING |
2778 | argblock = push_block (GEN_INT (args_size.constant), 0, 0); | |
2779 | #endif | |
f046b3cc | 2780 | #endif |
322e3e34 RK |
2781 | |
2782 | #ifdef PUSH_ARGS_REVERSED | |
c795bca9 | 2783 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
2784 | /* If we push args individually in reverse order, perform stack alignment |
2785 | before the first push (the last arg). */ | |
2786 | if (argblock == 0) | |
2787 | anti_adjust_stack (GEN_INT (args_size.constant | |
2788 | - original_args_size.constant)); | |
2789 | #endif | |
2790 | #endif | |
2791 | ||
2792 | #ifdef PUSH_ARGS_REVERSED | |
2793 | inc = -1; | |
2794 | argnum = nargs - 1; | |
2795 | #else | |
2796 | inc = 1; | |
2797 | argnum = 0; | |
2798 | #endif | |
2799 | ||
f046b3cc JL |
2800 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) |
2801 | /* The argument list is the property of the called routine and it | |
2802 | may clobber it. If the fixed area has been used for previous | |
2803 | parameters, we must save and restore it. | |
2804 | ||
2805 | Here we compute the boundary of the that needs to be saved, if any. */ | |
2806 | ||
2807 | #ifdef ARGS_GROW_DOWNWARD | |
2808 | for (count = 0; count < reg_parm_stack_space + 1; count++) | |
2809 | #else | |
2810 | for (count = 0; count < reg_parm_stack_space; count++) | |
2811 | #endif | |
2812 | { | |
2813 | if (count >= highest_outgoing_arg_in_use | |
2814 | || stack_usage_map[count] == 0) | |
2815 | continue; | |
2816 | ||
2817 | if (low_to_save == -1) | |
2818 | low_to_save = count; | |
2819 | ||
2820 | high_to_save = count; | |
2821 | } | |
2822 | ||
2823 | if (low_to_save >= 0) | |
2824 | { | |
2825 | int num_to_save = high_to_save - low_to_save + 1; | |
2826 | enum machine_mode save_mode | |
2827 | = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); | |
2828 | rtx stack_area; | |
2829 | ||
2830 | /* If we don't have the required alignment, must do this in BLKmode. */ | |
2831 | if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode), | |
2832 | BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) | |
2833 | save_mode = BLKmode; | |
2834 | ||
ceb83206 | 2835 | #ifdef ARGS_GROW_DOWNWARD |
38a448ca RH |
2836 | stack_area = gen_rtx_MEM (save_mode, |
2837 | memory_address (save_mode, | |
38a448ca | 2838 | plus_constant (argblock, |
ceb83206 | 2839 | - high_to_save))); |
f046b3cc | 2840 | #else |
ceb83206 JL |
2841 | stack_area = gen_rtx_MEM (save_mode, |
2842 | memory_address (save_mode, | |
38a448ca | 2843 | plus_constant (argblock, |
ceb83206 | 2844 | low_to_save))); |
f046b3cc | 2845 | #endif |
f046b3cc JL |
2846 | if (save_mode == BLKmode) |
2847 | { | |
2848 | save_area = assign_stack_temp (BLKmode, num_to_save, 0); | |
f046b3cc JL |
2849 | emit_block_move (validize_mem (save_area), stack_area, |
2850 | GEN_INT (num_to_save), | |
2851 | PARM_BOUNDARY / BITS_PER_UNIT); | |
2852 | } | |
2853 | else | |
2854 | { | |
2855 | save_area = gen_reg_rtx (save_mode); | |
2856 | emit_move_insn (save_area, stack_area); | |
2857 | } | |
2858 | } | |
2859 | #endif | |
2860 | ||
322e3e34 RK |
2861 | /* Push the args that need to be pushed. */ |
2862 | ||
5e26979c JL |
2863 | /* ARGNUM indexes the ARGVEC array in the order in which the arguments |
2864 | are to be pushed. */ | |
322e3e34 RK |
2865 | for (count = 0; count < nargs; count++, argnum += inc) |
2866 | { | |
2867 | register enum machine_mode mode = argvec[argnum].mode; | |
2868 | register rtx val = argvec[argnum].value; | |
2869 | rtx reg = argvec[argnum].reg; | |
2870 | int partial = argvec[argnum].partial; | |
69d4ca36 | 2871 | #ifdef ACCUMULATE_OUTGOING_ARGS |
f046b3cc | 2872 | int lower_bound, upper_bound, i; |
69d4ca36 | 2873 | #endif |
322e3e34 RK |
2874 | |
2875 | if (! (reg != 0 && partial == 0)) | |
f046b3cc JL |
2876 | { |
2877 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2878 | /* If this is being stored into a pre-allocated, fixed-size, stack | |
2879 | area, save any previous data at that location. */ | |
2880 | ||
2881 | #ifdef ARGS_GROW_DOWNWARD | |
2882 | /* stack_slot is negative, but we want to index stack_usage_map | |
2883 | with positive values. */ | |
5e26979c JL |
2884 | upper_bound = -argvec[argnum].offset.constant + 1; |
2885 | lower_bound = upper_bound - argvec[argnum].size.constant; | |
f046b3cc | 2886 | #else |
5e26979c JL |
2887 | lower_bound = argvec[argnum].offset.constant; |
2888 | upper_bound = lower_bound + argvec[argnum].size.constant; | |
f046b3cc JL |
2889 | #endif |
2890 | ||
2891 | for (i = lower_bound; i < upper_bound; i++) | |
2892 | if (stack_usage_map[i] | |
f046b3cc JL |
2893 | /* Don't store things in the fixed argument area at this point; |
2894 | it has already been saved. */ | |
e5e809f4 | 2895 | && i > reg_parm_stack_space) |
f046b3cc JL |
2896 | break; |
2897 | ||
2898 | if (i != upper_bound) | |
2899 | { | |
e5e809f4 | 2900 | /* We need to make a save area. See what mode we can make it. */ |
f046b3cc | 2901 | enum machine_mode save_mode |
5e26979c | 2902 | = mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT, |
f046b3cc JL |
2903 | MODE_INT, 1); |
2904 | rtx stack_area | |
c5c76735 JL |
2905 | = gen_rtx_MEM |
2906 | (save_mode, | |
2907 | memory_address | |
2908 | (save_mode, | |
2909 | plus_constant (argblock, | |
2910 | argvec[argnum].offset.constant))); | |
2911 | ||
5e26979c JL |
2912 | argvec[argnum].save_area = gen_reg_rtx (save_mode); |
2913 | emit_move_insn (argvec[argnum].save_area, stack_area); | |
f046b3cc JL |
2914 | } |
2915 | #endif | |
2916 | emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, | |
e5e809f4 JL |
2917 | argblock, GEN_INT (argvec[argnum].offset.constant), |
2918 | reg_parm_stack_space); | |
f046b3cc JL |
2919 | |
2920 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2921 | /* Now mark the segment we just used. */ | |
2922 | for (i = lower_bound; i < upper_bound; i++) | |
2923 | stack_usage_map[i] = 1; | |
2924 | #endif | |
2925 | ||
2926 | NO_DEFER_POP; | |
2927 | } | |
322e3e34 RK |
2928 | } |
2929 | ||
2930 | #ifndef PUSH_ARGS_REVERSED | |
c795bca9 | 2931 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
2932 | /* If we pushed args in forward order, perform stack alignment |
2933 | after pushing the last arg. */ | |
2934 | if (argblock == 0) | |
2935 | anti_adjust_stack (GEN_INT (args_size.constant | |
2936 | - original_args_size.constant)); | |
2937 | #endif | |
2938 | #endif | |
2939 | ||
2940 | #ifdef PUSH_ARGS_REVERSED | |
2941 | argnum = nargs - 1; | |
2942 | #else | |
2943 | argnum = 0; | |
2944 | #endif | |
2945 | ||
77cac2f2 | 2946 | fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); |
8b0f9101 | 2947 | |
322e3e34 RK |
2948 | /* Now load any reg parms into their regs. */ |
2949 | ||
5e26979c JL |
2950 | /* ARGNUM indexes the ARGVEC array in the order in which the arguments |
2951 | are to be pushed. */ | |
322e3e34 RK |
2952 | for (count = 0; count < nargs; count++, argnum += inc) |
2953 | { | |
322e3e34 RK |
2954 | register rtx val = argvec[argnum].value; |
2955 | rtx reg = argvec[argnum].reg; | |
2956 | int partial = argvec[argnum].partial; | |
2957 | ||
2958 | if (reg != 0 && partial == 0) | |
2959 | emit_move_insn (reg, val); | |
2960 | NO_DEFER_POP; | |
2961 | } | |
2962 | ||
2963 | /* For version 1.37, try deleting this entirely. */ | |
2964 | if (! no_queue) | |
2965 | emit_queue (); | |
2966 | ||
2967 | /* Any regs containing parms remain in use through the call. */ | |
322e3e34 RK |
2968 | for (count = 0; count < nargs; count++) |
2969 | if (argvec[count].reg != 0) | |
77cac2f2 | 2970 | use_reg (&call_fusage, argvec[count].reg); |
322e3e34 | 2971 | |
322e3e34 RK |
2972 | /* Don't allow popping to be deferred, since then |
2973 | cse'ing of library calls could delete a call and leave the pop. */ | |
2974 | NO_DEFER_POP; | |
2975 | ||
2976 | /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which | |
2977 | will set inhibit_defer_pop to that value. */ | |
2978 | ||
334c4f0f RK |
2979 | /* The return type is needed to decide how many bytes the function pops. |
2980 | Signedness plays no role in that, so for simplicity, we pretend it's | |
2981 | always signed. We also assume that the list of arguments passed has | |
2982 | no impact, so we pretend it is unknown. */ | |
2983 | ||
2c8da025 RK |
2984 | emit_call_1 (fun, |
2985 | get_identifier (XSTR (orgfun, 0)), | |
b3776927 RK |
2986 | build_function_type (outmode == VOIDmode ? void_type_node |
2987 | : type_for_mode (outmode, 0), NULL_TREE), | |
fb5eebb9 | 2988 | original_args_size.constant, args_size.constant, 0, |
322e3e34 RK |
2989 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
2990 | outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX, | |
77cac2f2 | 2991 | old_inhibit_defer_pop + 1, call_fusage, no_queue); |
322e3e34 | 2992 | |
888aa7a9 RS |
2993 | pop_temp_slots (); |
2994 | ||
322e3e34 RK |
2995 | /* Now restore inhibit_defer_pop to its actual original value. */ |
2996 | OK_DEFER_POP; | |
f046b3cc JL |
2997 | |
2998 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2999 | #ifdef REG_PARM_STACK_SPACE | |
e9a25f70 JL |
3000 | if (save_area) |
3001 | { | |
3002 | enum machine_mode save_mode = GET_MODE (save_area); | |
ceb83206 | 3003 | #ifdef ARGS_GROW_DOWNWARD |
e9a25f70 | 3004 | rtx stack_area |
38a448ca RH |
3005 | = gen_rtx_MEM (save_mode, |
3006 | memory_address (save_mode, | |
ceb83206 JL |
3007 | plus_constant (argblock, |
3008 | - high_to_save))); | |
f046b3cc | 3009 | #else |
ceb83206 JL |
3010 | rtx stack_area |
3011 | = gen_rtx_MEM (save_mode, | |
3012 | memory_address (save_mode, | |
3013 | plus_constant (argblock, low_to_save))); | |
f046b3cc | 3014 | #endif |
f046b3cc | 3015 | |
e9a25f70 JL |
3016 | if (save_mode != BLKmode) |
3017 | emit_move_insn (stack_area, save_area); | |
3018 | else | |
3019 | emit_block_move (stack_area, validize_mem (save_area), | |
3020 | GEN_INT (high_to_save - low_to_save + 1), | |
3021 | PARM_BOUNDARY / BITS_PER_UNIT); | |
3022 | } | |
f046b3cc JL |
3023 | #endif |
3024 | ||
3025 | /* If we saved any argument areas, restore them. */ | |
3026 | for (count = 0; count < nargs; count++) | |
3027 | if (argvec[count].save_area) | |
3028 | { | |
3029 | enum machine_mode save_mode = GET_MODE (argvec[count].save_area); | |
3030 | rtx stack_area | |
38a448ca | 3031 | = gen_rtx_MEM (save_mode, |
c5c76735 JL |
3032 | memory_address |
3033 | (save_mode, | |
3034 | plus_constant (argblock, | |
3035 | argvec[count].offset.constant))); | |
f046b3cc JL |
3036 | |
3037 | emit_move_insn (stack_area, argvec[count].save_area); | |
3038 | } | |
3039 | ||
3040 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
3041 | stack_usage_map = initial_stack_usage_map; | |
3042 | #endif | |
322e3e34 RK |
3043 | } |
3044 | \f | |
3045 | /* Like emit_library_call except that an extra argument, VALUE, | |
3046 | comes second and says where to store the result. | |
fac0ad80 RS |
3047 | (If VALUE is zero, this function chooses a convenient way |
3048 | to return the value. | |
322e3e34 | 3049 | |
fac0ad80 RS |
3050 | This function returns an rtx for where the value is to be found. |
3051 | If VALUE is nonzero, VALUE is returned. */ | |
3052 | ||
3053 | rtx | |
4f90e4a0 RK |
3054 | emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue, |
3055 | enum machine_mode outmode, int nargs, ...)) | |
322e3e34 | 3056 | { |
5148a72b | 3057 | #ifndef ANSI_PROTOTYPES |
4f90e4a0 RK |
3058 | rtx orgfun; |
3059 | rtx value; | |
3060 | int no_queue; | |
3061 | enum machine_mode outmode; | |
3062 | int nargs; | |
3063 | #endif | |
322e3e34 RK |
3064 | va_list p; |
3065 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
3066 | struct args_size args_size; | |
3067 | /* Size of arguments before any adjustments (such as rounding). */ | |
3068 | struct args_size original_args_size; | |
3069 | register int argnum; | |
322e3e34 | 3070 | rtx fun; |
322e3e34 RK |
3071 | int inc; |
3072 | int count; | |
3073 | rtx argblock = 0; | |
3074 | CUMULATIVE_ARGS args_so_far; | |
3075 | struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; | |
f046b3cc | 3076 | struct args_size offset; struct args_size size; rtx save_area; }; |
322e3e34 RK |
3077 | struct arg *argvec; |
3078 | int old_inhibit_defer_pop = inhibit_defer_pop; | |
77cac2f2 | 3079 | rtx call_fusage = 0; |
322e3e34 | 3080 | rtx mem_value = 0; |
fac0ad80 | 3081 | int pcc_struct_value = 0; |
4f389214 | 3082 | int struct_value_size = 0; |
d61bee95 | 3083 | int is_const; |
e5e809f4 | 3084 | int reg_parm_stack_space = 0; |
69d4ca36 | 3085 | #ifdef ACCUMULATE_OUTGOING_ARGS |
f046b3cc | 3086 | int needed; |
69d4ca36 | 3087 | #endif |
f046b3cc JL |
3088 | |
3089 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
3090 | /* Define the boundary of the register parm stack space that needs to be | |
3091 | save, if any. */ | |
6a651371 | 3092 | int low_to_save = -1, high_to_save = 0; |
f046b3cc JL |
3093 | rtx save_area = 0; /* Place that it is saved */ |
3094 | #endif | |
3095 | ||
3096 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
69d4ca36 | 3097 | /* Size of the stack reserved for parameter registers. */ |
f046b3cc JL |
3098 | int initial_highest_arg_in_use = highest_outgoing_arg_in_use; |
3099 | char *initial_stack_usage_map = stack_usage_map; | |
3100 | #endif | |
3101 | ||
3102 | #ifdef REG_PARM_STACK_SPACE | |
3103 | #ifdef MAYBE_REG_PARM_STACK_SPACE | |
3104 | reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; | |
3105 | #else | |
ab87f8c8 | 3106 | reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0); |
f046b3cc JL |
3107 | #endif |
3108 | #endif | |
322e3e34 | 3109 | |
4f90e4a0 RK |
3110 | VA_START (p, nargs); |
3111 | ||
5148a72b | 3112 | #ifndef ANSI_PROTOTYPES |
4f90e4a0 | 3113 | orgfun = va_arg (p, rtx); |
322e3e34 RK |
3114 | value = va_arg (p, rtx); |
3115 | no_queue = va_arg (p, int); | |
3116 | outmode = va_arg (p, enum machine_mode); | |
3117 | nargs = va_arg (p, int); | |
4f90e4a0 RK |
3118 | #endif |
3119 | ||
d61bee95 | 3120 | is_const = no_queue; |
4f90e4a0 | 3121 | fun = orgfun; |
322e3e34 RK |
3122 | |
3123 | /* If this kind of value comes back in memory, | |
3124 | decide where in memory it should come back. */ | |
fac0ad80 | 3125 | if (aggregate_value_p (type_for_mode (outmode, 0))) |
322e3e34 | 3126 | { |
fac0ad80 RS |
3127 | #ifdef PCC_STATIC_STRUCT_RETURN |
3128 | rtx pointer_reg | |
3129 | = hard_function_value (build_pointer_type (type_for_mode (outmode, 0)), | |
3130 | 0); | |
38a448ca | 3131 | mem_value = gen_rtx_MEM (outmode, pointer_reg); |
fac0ad80 RS |
3132 | pcc_struct_value = 1; |
3133 | if (value == 0) | |
3134 | value = gen_reg_rtx (outmode); | |
3135 | #else /* not PCC_STATIC_STRUCT_RETURN */ | |
4f389214 | 3136 | struct_value_size = GET_MODE_SIZE (outmode); |
fac0ad80 | 3137 | if (value != 0 && GET_CODE (value) == MEM) |
322e3e34 RK |
3138 | mem_value = value; |
3139 | else | |
3140 | mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0); | |
fac0ad80 | 3141 | #endif |
779c643a JW |
3142 | |
3143 | /* This call returns a big structure. */ | |
3144 | is_const = 0; | |
322e3e34 RK |
3145 | } |
3146 | ||
3147 | /* ??? Unfinished: must pass the memory address as an argument. */ | |
3148 | ||
3149 | /* Copy all the libcall-arguments out of the varargs data | |
3150 | and into a vector ARGVEC. | |
3151 | ||
3152 | Compute how to pass each argument. We only support a very small subset | |
3153 | of the full argument passing conventions to limit complexity here since | |
3154 | library functions shouldn't have many args. */ | |
3155 | ||
3156 | argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg)); | |
d3c4e2ab | 3157 | bzero ((char *) argvec, (nargs + 1) * sizeof (struct arg)); |
322e3e34 | 3158 | |
eecb6f50 | 3159 | INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0); |
322e3e34 RK |
3160 | |
3161 | args_size.constant = 0; | |
3162 | args_size.var = 0; | |
3163 | ||
3164 | count = 0; | |
3165 | ||
888aa7a9 RS |
3166 | push_temp_slots (); |
3167 | ||
322e3e34 RK |
3168 | /* If there's a structure value address to be passed, |
3169 | either pass it in the special place, or pass it as an extra argument. */ | |
fac0ad80 | 3170 | if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value) |
322e3e34 RK |
3171 | { |
3172 | rtx addr = XEXP (mem_value, 0); | |
fac0ad80 | 3173 | nargs++; |
322e3e34 | 3174 | |
fac0ad80 RS |
3175 | /* Make sure it is a reasonable operand for a move or push insn. */ |
3176 | if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM | |
3177 | && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr))) | |
3178 | addr = force_operand (addr, NULL_RTX); | |
322e3e34 | 3179 | |
fac0ad80 | 3180 | argvec[count].value = addr; |
4fc3dcd5 | 3181 | argvec[count].mode = Pmode; |
fac0ad80 | 3182 | argvec[count].partial = 0; |
322e3e34 | 3183 | |
4fc3dcd5 | 3184 | argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1); |
322e3e34 | 3185 | #ifdef FUNCTION_ARG_PARTIAL_NREGS |
4fc3dcd5 | 3186 | if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1)) |
fac0ad80 | 3187 | abort (); |
322e3e34 RK |
3188 | #endif |
3189 | ||
4fc3dcd5 | 3190 | locate_and_pad_parm (Pmode, NULL_TREE, |
fac0ad80 RS |
3191 | argvec[count].reg && argvec[count].partial == 0, |
3192 | NULL_TREE, &args_size, &argvec[count].offset, | |
3193 | &argvec[count].size); | |
322e3e34 RK |
3194 | |
3195 | ||
fac0ad80 | 3196 | if (argvec[count].reg == 0 || argvec[count].partial != 0 |
e5e809f4 | 3197 | || reg_parm_stack_space > 0) |
fac0ad80 | 3198 | args_size.constant += argvec[count].size.constant; |
322e3e34 | 3199 | |
0f41302f | 3200 | FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1); |
fac0ad80 RS |
3201 | |
3202 | count++; | |
322e3e34 RK |
3203 | } |
3204 | ||
3205 | for (; count < nargs; count++) | |
3206 | { | |
3207 | rtx val = va_arg (p, rtx); | |
3208 | enum machine_mode mode = va_arg (p, enum machine_mode); | |
3209 | ||
3210 | /* We cannot convert the arg value to the mode the library wants here; | |
3211 | must do it earlier where we know the signedness of the arg. */ | |
3212 | if (mode == BLKmode | |
3213 | || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) | |
3214 | abort (); | |
3215 | ||
3216 | /* On some machines, there's no way to pass a float to a library fcn. | |
3217 | Pass it as a double instead. */ | |
3218 | #ifdef LIBGCC_NEEDS_DOUBLE | |
3219 | if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) | |
7373d92d | 3220 | val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; |
322e3e34 RK |
3221 | #endif |
3222 | ||
3223 | /* There's no need to call protect_from_queue, because | |
3224 | either emit_move_insn or emit_push_insn will do that. */ | |
3225 | ||
3226 | /* Make sure it is a reasonable operand for a move or push insn. */ | |
3227 | if (GET_CODE (val) != REG && GET_CODE (val) != MEM | |
3228 | && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) | |
3229 | val = force_operand (val, NULL_RTX); | |
3230 | ||
322e3e34 RK |
3231 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE |
3232 | if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) | |
888aa7a9 | 3233 | { |
a44492f0 RK |
3234 | /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can |
3235 | be viewed as just an efficiency improvement. */ | |
888aa7a9 RS |
3236 | rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); |
3237 | emit_move_insn (slot, val); | |
3238 | val = XEXP (slot, 0); | |
3239 | mode = Pmode; | |
3240 | } | |
322e3e34 RK |
3241 | #endif |
3242 | ||
888aa7a9 RS |
3243 | argvec[count].value = val; |
3244 | argvec[count].mode = mode; | |
3245 | ||
322e3e34 | 3246 | argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); |
cacbd532 | 3247 | if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL) |
322e3e34 RK |
3248 | abort (); |
3249 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
3250 | argvec[count].partial | |
3251 | = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); | |
3252 | #else | |
3253 | argvec[count].partial = 0; | |
3254 | #endif | |
3255 | ||
3256 | locate_and_pad_parm (mode, NULL_TREE, | |
3257 | argvec[count].reg && argvec[count].partial == 0, | |
3258 | NULL_TREE, &args_size, &argvec[count].offset, | |
3259 | &argvec[count].size); | |
3260 | ||
3261 | if (argvec[count].size.var) | |
3262 | abort (); | |
3263 | ||
e5e809f4 | 3264 | if (reg_parm_stack_space == 0 && argvec[count].partial) |
322e3e34 | 3265 | argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; |
322e3e34 RK |
3266 | |
3267 | if (argvec[count].reg == 0 || argvec[count].partial != 0 | |
e5e809f4 | 3268 | || reg_parm_stack_space > 0) |
322e3e34 RK |
3269 | args_size.constant += argvec[count].size.constant; |
3270 | ||
0f41302f | 3271 | FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1); |
322e3e34 RK |
3272 | } |
3273 | va_end (p); | |
3274 | ||
f046b3cc JL |
3275 | #ifdef FINAL_REG_PARM_STACK_SPACE |
3276 | reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, | |
3277 | args_size.var); | |
3278 | #endif | |
322e3e34 RK |
3279 | /* If this machine requires an external definition for library |
3280 | functions, write one out. */ | |
3281 | assemble_external_libcall (fun); | |
3282 | ||
3283 | original_args_size = args_size; | |
c795bca9 | 3284 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
3285 | args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) |
3286 | / STACK_BYTES) * STACK_BYTES); | |
3287 | #endif | |
3288 | ||
322e3e34 | 3289 | args_size.constant = MAX (args_size.constant, |
f046b3cc | 3290 | reg_parm_stack_space); |
e5e809f4 | 3291 | |
322e3e34 | 3292 | #ifndef OUTGOING_REG_PARM_STACK_SPACE |
fc990856 | 3293 | args_size.constant -= reg_parm_stack_space; |
322e3e34 RK |
3294 | #endif |
3295 | ||
322e3e34 RK |
3296 | if (args_size.constant > current_function_outgoing_args_size) |
3297 | current_function_outgoing_args_size = args_size.constant; | |
26a258fe PB |
3298 | |
3299 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
f046b3cc JL |
3300 | /* Since the stack pointer will never be pushed, it is possible for |
3301 | the evaluation of a parm to clobber something we have already | |
3302 | written to the stack. Since most function calls on RISC machines | |
3303 | do not use the stack, this is uncommon, but must work correctly. | |
3304 | ||
3305 | Therefore, we save any area of the stack that was already written | |
3306 | and that we are using. Here we set up to do this by making a new | |
3307 | stack usage map from the old one. | |
3308 | ||
3309 | Another approach might be to try to reorder the argument | |
3310 | evaluations to avoid this conflicting stack usage. */ | |
3311 | ||
3312 | needed = args_size.constant; | |
e5e809f4 JL |
3313 | |
3314 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
f046b3cc JL |
3315 | /* Since we will be writing into the entire argument area, the |
3316 | map must be allocated for its entire size, not just the part that | |
3317 | is the responsibility of the caller. */ | |
3318 | needed += reg_parm_stack_space; | |
3319 | #endif | |
3320 | ||
3321 | #ifdef ARGS_GROW_DOWNWARD | |
3322 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, | |
3323 | needed + 1); | |
3324 | #else | |
3325 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, | |
3326 | needed); | |
322e3e34 | 3327 | #endif |
f046b3cc JL |
3328 | stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); |
3329 | ||
3330 | if (initial_highest_arg_in_use) | |
3331 | bcopy (initial_stack_usage_map, stack_usage_map, | |
3332 | initial_highest_arg_in_use); | |
3333 | ||
3334 | if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) | |
3335 | bzero (&stack_usage_map[initial_highest_arg_in_use], | |
3336 | highest_outgoing_arg_in_use - initial_highest_arg_in_use); | |
3337 | needed = 0; | |
322e3e34 | 3338 | |
f046b3cc JL |
3339 | /* The address of the outgoing argument list must not be copied to a |
3340 | register here, because argblock would be left pointing to the | |
3341 | wrong place after the call to allocate_dynamic_stack_space below. | |
3342 | */ | |
3343 | ||
3344 | argblock = virtual_outgoing_args_rtx; | |
3345 | #else /* not ACCUMULATE_OUTGOING_ARGS */ | |
322e3e34 RK |
3346 | #ifndef PUSH_ROUNDING |
3347 | argblock = push_block (GEN_INT (args_size.constant), 0, 0); | |
3348 | #endif | |
f046b3cc | 3349 | #endif |
322e3e34 RK |
3350 | |
3351 | #ifdef PUSH_ARGS_REVERSED | |
c795bca9 | 3352 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
3353 | /* If we push args individually in reverse order, perform stack alignment |
3354 | before the first push (the last arg). */ | |
3355 | if (argblock == 0) | |
3356 | anti_adjust_stack (GEN_INT (args_size.constant | |
3357 | - original_args_size.constant)); | |
3358 | #endif | |
3359 | #endif | |
3360 | ||
3361 | #ifdef PUSH_ARGS_REVERSED | |
3362 | inc = -1; | |
3363 | argnum = nargs - 1; | |
3364 | #else | |
3365 | inc = 1; | |
3366 | argnum = 0; | |
3367 | #endif | |
3368 | ||
f046b3cc JL |
3369 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) |
3370 | /* The argument list is the property of the called routine and it | |
3371 | may clobber it. If the fixed area has been used for previous | |
3372 | parameters, we must save and restore it. | |
3373 | ||
3374 | Here we compute the boundary of the that needs to be saved, if any. */ | |
3375 | ||
3376 | #ifdef ARGS_GROW_DOWNWARD | |
3377 | for (count = 0; count < reg_parm_stack_space + 1; count++) | |
3378 | #else | |
3379 | for (count = 0; count < reg_parm_stack_space; count++) | |
3380 | #endif | |
3381 | { | |
3382 | if (count >= highest_outgoing_arg_in_use | |
3383 | || stack_usage_map[count] == 0) | |
3384 | continue; | |
3385 | ||
3386 | if (low_to_save == -1) | |
3387 | low_to_save = count; | |
3388 | ||
3389 | high_to_save = count; | |
3390 | } | |
3391 | ||
3392 | if (low_to_save >= 0) | |
3393 | { | |
3394 | int num_to_save = high_to_save - low_to_save + 1; | |
3395 | enum machine_mode save_mode | |
3396 | = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); | |
3397 | rtx stack_area; | |
3398 | ||
3399 | /* If we don't have the required alignment, must do this in BLKmode. */ | |
3400 | if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode), | |
3401 | BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) | |
3402 | save_mode = BLKmode; | |
3403 | ||
ceb83206 | 3404 | #ifdef ARGS_GROW_DOWNWARD |
38a448ca RH |
3405 | stack_area = gen_rtx_MEM (save_mode, |
3406 | memory_address (save_mode, | |
38a448ca | 3407 | plus_constant (argblock, |
ceb83206 | 3408 | - high_to_save))); |
f046b3cc | 3409 | #else |
ceb83206 JL |
3410 | stack_area = gen_rtx_MEM (save_mode, |
3411 | memory_address (save_mode, | |
38a448ca | 3412 | plus_constant (argblock, |
ceb83206 | 3413 | low_to_save))); |
f046b3cc | 3414 | #endif |
f046b3cc JL |
3415 | if (save_mode == BLKmode) |
3416 | { | |
3417 | save_area = assign_stack_temp (BLKmode, num_to_save, 0); | |
f046b3cc JL |
3418 | emit_block_move (validize_mem (save_area), stack_area, |
3419 | GEN_INT (num_to_save), | |
3420 | PARM_BOUNDARY / BITS_PER_UNIT); | |
3421 | } | |
3422 | else | |
3423 | { | |
3424 | save_area = gen_reg_rtx (save_mode); | |
3425 | emit_move_insn (save_area, stack_area); | |
3426 | } | |
3427 | } | |
3428 | #endif | |
3429 | ||
322e3e34 RK |
3430 | /* Push the args that need to be pushed. */ |
3431 | ||
5e26979c JL |
3432 | /* ARGNUM indexes the ARGVEC array in the order in which the arguments |
3433 | are to be pushed. */ | |
322e3e34 RK |
3434 | for (count = 0; count < nargs; count++, argnum += inc) |
3435 | { | |
3436 | register enum machine_mode mode = argvec[argnum].mode; | |
3437 | register rtx val = argvec[argnum].value; | |
3438 | rtx reg = argvec[argnum].reg; | |
3439 | int partial = argvec[argnum].partial; | |
69d4ca36 | 3440 | #ifdef ACCUMULATE_OUTGOING_ARGS |
f046b3cc | 3441 | int lower_bound, upper_bound, i; |
69d4ca36 | 3442 | #endif |
322e3e34 RK |
3443 | |
3444 | if (! (reg != 0 && partial == 0)) | |
f046b3cc JL |
3445 | { |
3446 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
3447 | /* If this is being stored into a pre-allocated, fixed-size, stack | |
3448 | area, save any previous data at that location. */ | |
3449 | ||
3450 | #ifdef ARGS_GROW_DOWNWARD | |
3451 | /* stack_slot is negative, but we want to index stack_usage_map | |
3452 | with positive values. */ | |
5e26979c JL |
3453 | upper_bound = -argvec[argnum].offset.constant + 1; |
3454 | lower_bound = upper_bound - argvec[argnum].size.constant; | |
f046b3cc | 3455 | #else |
5e26979c JL |
3456 | lower_bound = argvec[argnum].offset.constant; |
3457 | upper_bound = lower_bound + argvec[argnum].size.constant; | |
f046b3cc JL |
3458 | #endif |
3459 | ||
3460 | for (i = lower_bound; i < upper_bound; i++) | |
3461 | if (stack_usage_map[i] | |
f046b3cc JL |
3462 | /* Don't store things in the fixed argument area at this point; |
3463 | it has already been saved. */ | |
e5e809f4 | 3464 | && i > reg_parm_stack_space) |
f046b3cc JL |
3465 | break; |
3466 | ||
3467 | if (i != upper_bound) | |
3468 | { | |
e5e809f4 | 3469 | /* We need to make a save area. See what mode we can make it. */ |
f046b3cc | 3470 | enum machine_mode save_mode |
5e26979c | 3471 | = mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT, |
f046b3cc JL |
3472 | MODE_INT, 1); |
3473 | rtx stack_area | |
c5c76735 JL |
3474 | = gen_rtx_MEM |
3475 | (save_mode, | |
3476 | memory_address | |
3477 | (save_mode, | |
3478 | plus_constant (argblock, | |
3479 | argvec[argnum].offset.constant))); | |
5e26979c | 3480 | argvec[argnum].save_area = gen_reg_rtx (save_mode); |
c5c76735 | 3481 | |
5e26979c | 3482 | emit_move_insn (argvec[argnum].save_area, stack_area); |
f046b3cc JL |
3483 | } |
3484 | #endif | |
3485 | emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, | |
e5e809f4 JL |
3486 | argblock, GEN_INT (argvec[argnum].offset.constant), |
3487 | reg_parm_stack_space); | |
f046b3cc JL |
3488 | |
3489 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
3490 | /* Now mark the segment we just used. */ | |
3491 | for (i = lower_bound; i < upper_bound; i++) | |
3492 | stack_usage_map[i] = 1; | |
3493 | #endif | |
3494 | ||
3495 | NO_DEFER_POP; | |
3496 | } | |
322e3e34 RK |
3497 | } |
3498 | ||
3499 | #ifndef PUSH_ARGS_REVERSED | |
c795bca9 | 3500 | #ifdef PREFERRED_STACK_BOUNDARY |
322e3e34 RK |
3501 | /* If we pushed args in forward order, perform stack alignment |
3502 | after pushing the last arg. */ | |
3503 | if (argblock == 0) | |
3504 | anti_adjust_stack (GEN_INT (args_size.constant | |
3505 | - original_args_size.constant)); | |
3506 | #endif | |
3507 | #endif | |
3508 | ||
3509 | #ifdef PUSH_ARGS_REVERSED | |
3510 | argnum = nargs - 1; | |
3511 | #else | |
3512 | argnum = 0; | |
3513 | #endif | |
3514 | ||
77cac2f2 | 3515 | fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); |
8b0f9101 | 3516 | |
322e3e34 RK |
3517 | /* Now load any reg parms into their regs. */ |
3518 | ||
5e26979c JL |
3519 | /* ARGNUM indexes the ARGVEC array in the order in which the arguments |
3520 | are to be pushed. */ | |
322e3e34 RK |
3521 | for (count = 0; count < nargs; count++, argnum += inc) |
3522 | { | |
322e3e34 RK |
3523 | register rtx val = argvec[argnum].value; |
3524 | rtx reg = argvec[argnum].reg; | |
3525 | int partial = argvec[argnum].partial; | |
3526 | ||
3527 | if (reg != 0 && partial == 0) | |
3528 | emit_move_insn (reg, val); | |
3529 | NO_DEFER_POP; | |
3530 | } | |
3531 | ||
3532 | #if 0 | |
3533 | /* For version 1.37, try deleting this entirely. */ | |
3534 | if (! no_queue) | |
3535 | emit_queue (); | |
3536 | #endif | |
3537 | ||
3538 | /* Any regs containing parms remain in use through the call. */ | |
322e3e34 RK |
3539 | for (count = 0; count < nargs; count++) |
3540 | if (argvec[count].reg != 0) | |
77cac2f2 | 3541 | use_reg (&call_fusage, argvec[count].reg); |
322e3e34 | 3542 | |
fac0ad80 RS |
3543 | /* Pass the function the address in which to return a structure value. */ |
3544 | if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value) | |
3545 | { | |
3546 | emit_move_insn (struct_value_rtx, | |
3547 | force_reg (Pmode, | |
3548 | force_operand (XEXP (mem_value, 0), | |
3549 | NULL_RTX))); | |
3550 | if (GET_CODE (struct_value_rtx) == REG) | |
77cac2f2 | 3551 | use_reg (&call_fusage, struct_value_rtx); |
fac0ad80 RS |
3552 | } |
3553 | ||
322e3e34 RK |
3554 | /* Don't allow popping to be deferred, since then |
3555 | cse'ing of library calls could delete a call and leave the pop. */ | |
3556 | NO_DEFER_POP; | |
3557 | ||
3558 | /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which | |
3559 | will set inhibit_defer_pop to that value. */ | |
334c4f0f RK |
3560 | /* See the comment in emit_library_call about the function type we build |
3561 | and pass here. */ | |
322e3e34 | 3562 | |
2c8da025 RK |
3563 | emit_call_1 (fun, |
3564 | get_identifier (XSTR (orgfun, 0)), | |
334c4f0f | 3565 | build_function_type (type_for_mode (outmode, 0), NULL_TREE), |
fb5eebb9 RH |
3566 | original_args_size.constant, args_size.constant, |
3567 | struct_value_size, | |
322e3e34 | 3568 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
4d6a19ff | 3569 | mem_value == 0 ? hard_libcall_value (outmode) : NULL_RTX, |
77cac2f2 | 3570 | old_inhibit_defer_pop + 1, call_fusage, is_const); |
322e3e34 RK |
3571 | |
3572 | /* Now restore inhibit_defer_pop to its actual original value. */ | |
3573 | OK_DEFER_POP; | |
3574 | ||
888aa7a9 RS |
3575 | pop_temp_slots (); |
3576 | ||
322e3e34 RK |
3577 | /* Copy the value to the right place. */ |
3578 | if (outmode != VOIDmode) | |
3579 | { | |
3580 | if (mem_value) | |
3581 | { | |
3582 | if (value == 0) | |
fac0ad80 | 3583 | value = mem_value; |
322e3e34 RK |
3584 | if (value != mem_value) |
3585 | emit_move_insn (value, mem_value); | |
3586 | } | |
3587 | else if (value != 0) | |
3588 | emit_move_insn (value, hard_libcall_value (outmode)); | |
fac0ad80 RS |
3589 | else |
3590 | value = hard_libcall_value (outmode); | |
322e3e34 | 3591 | } |
fac0ad80 | 3592 | |
f046b3cc JL |
3593 | #ifdef ACCUMULATE_OUTGOING_ARGS |
3594 | #ifdef REG_PARM_STACK_SPACE | |
e9a25f70 JL |
3595 | if (save_area) |
3596 | { | |
3597 | enum machine_mode save_mode = GET_MODE (save_area); | |
ceb83206 | 3598 | #ifdef ARGS_GROW_DOWNWARD |
e9a25f70 | 3599 | rtx stack_area |
38a448ca RH |
3600 | = gen_rtx_MEM (save_mode, |
3601 | memory_address (save_mode, | |
ceb83206 JL |
3602 | plus_constant (argblock, |
3603 | - high_to_save))); | |
f046b3cc | 3604 | #else |
ceb83206 JL |
3605 | rtx stack_area |
3606 | = gen_rtx_MEM (save_mode, | |
3607 | memory_address (save_mode, | |
3608 | plus_constant (argblock, low_to_save))); | |
f046b3cc | 3609 | #endif |
e9a25f70 JL |
3610 | if (save_mode != BLKmode) |
3611 | emit_move_insn (stack_area, save_area); | |
3612 | else | |
3613 | emit_block_move (stack_area, validize_mem (save_area), | |
3614 | GEN_INT (high_to_save - low_to_save + 1), | |
f046b3cc | 3615 | PARM_BOUNDARY / BITS_PER_UNIT); |
e9a25f70 | 3616 | } |
f046b3cc JL |
3617 | #endif |
3618 | ||
3619 | /* If we saved any argument areas, restore them. */ | |
3620 | for (count = 0; count < nargs; count++) | |
3621 | if (argvec[count].save_area) | |
3622 | { | |
3623 | enum machine_mode save_mode = GET_MODE (argvec[count].save_area); | |
3624 | rtx stack_area | |
38a448ca | 3625 | = gen_rtx_MEM (save_mode, |
c5c76735 JL |
3626 | memory_address |
3627 | (save_mode, | |
3628 | plus_constant (argblock, | |
3629 | argvec[count].offset.constant))); | |
f046b3cc JL |
3630 | |
3631 | emit_move_insn (stack_area, argvec[count].save_area); | |
3632 | } | |
3633 | ||
3634 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
3635 | stack_usage_map = initial_stack_usage_map; | |
3636 | #endif | |
3637 | ||
fac0ad80 | 3638 | return value; |
322e3e34 RK |
3639 | } |
3640 | \f | |
51bbfa0c RS |
3641 | #if 0 |
3642 | /* Return an rtx which represents a suitable home on the stack | |
3643 | given TYPE, the type of the argument looking for a home. | |
3644 | This is called only for BLKmode arguments. | |
3645 | ||
3646 | SIZE is the size needed for this target. | |
3647 | ARGS_ADDR is the address of the bottom of the argument block for this call. | |
3648 | OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless | |
3649 | if this machine uses push insns. */ | |
3650 | ||
3651 | static rtx | |
3652 | target_for_arg (type, size, args_addr, offset) | |
3653 | tree type; | |
3654 | rtx size; | |
3655 | rtx args_addr; | |
3656 | struct args_size offset; | |
3657 | { | |
3658 | rtx target; | |
3659 | rtx offset_rtx = ARGS_SIZE_RTX (offset); | |
3660 | ||
3661 | /* We do not call memory_address if possible, | |
3662 | because we want to address as close to the stack | |
3663 | as possible. For non-variable sized arguments, | |
3664 | this will be stack-pointer relative addressing. */ | |
3665 | if (GET_CODE (offset_rtx) == CONST_INT) | |
3666 | target = plus_constant (args_addr, INTVAL (offset_rtx)); | |
3667 | else | |
3668 | { | |
3669 | /* I have no idea how to guarantee that this | |
3670 | will work in the presence of register parameters. */ | |
38a448ca | 3671 | target = gen_rtx_PLUS (Pmode, args_addr, offset_rtx); |
51bbfa0c RS |
3672 | target = memory_address (QImode, target); |
3673 | } | |
3674 | ||
38a448ca | 3675 | return gen_rtx_MEM (BLKmode, target); |
51bbfa0c RS |
3676 | } |
3677 | #endif | |
3678 | \f | |
3679 | /* Store a single argument for a function call | |
3680 | into the register or memory area where it must be passed. | |
3681 | *ARG describes the argument value and where to pass it. | |
3682 | ||
3683 | ARGBLOCK is the address of the stack-block for all the arguments, | |
d45cf215 | 3684 | or 0 on a machine where arguments are pushed individually. |
51bbfa0c RS |
3685 | |
3686 | MAY_BE_ALLOCA nonzero says this could be a call to `alloca' | |
3687 | so must be careful about how the stack is used. | |
3688 | ||
3689 | VARIABLE_SIZE nonzero says that this was a variable-sized outgoing | |
3690 | argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate | |
3691 | that we need not worry about saving and restoring the stack. | |
3692 | ||
3693 | FNDECL is the declaration of the function we are calling. */ | |
3694 | ||
3695 | static void | |
c84e2712 | 3696 | store_one_arg (arg, argblock, may_be_alloca, variable_size, |
6f90e075 | 3697 | reg_parm_stack_space) |
51bbfa0c RS |
3698 | struct arg_data *arg; |
3699 | rtx argblock; | |
3700 | int may_be_alloca; | |
0f9b3ea6 | 3701 | int variable_size ATTRIBUTE_UNUSED; |
6f90e075 | 3702 | int reg_parm_stack_space; |
51bbfa0c RS |
3703 | { |
3704 | register tree pval = arg->tree_value; | |
3705 | rtx reg = 0; | |
3706 | int partial = 0; | |
3707 | int used = 0; | |
69d4ca36 | 3708 | #ifdef ACCUMULATE_OUTGOING_ARGS |
6a651371 | 3709 | int i, lower_bound = 0, upper_bound = 0; |
69d4ca36 | 3710 | #endif |
51bbfa0c RS |
3711 | |
3712 | if (TREE_CODE (pval) == ERROR_MARK) | |
3713 | return; | |
3714 | ||
cc79451b RK |
3715 | /* Push a new temporary level for any temporaries we make for |
3716 | this argument. */ | |
3717 | push_temp_slots (); | |
3718 | ||
51bbfa0c RS |
3719 | #ifdef ACCUMULATE_OUTGOING_ARGS |
3720 | /* If this is being stored into a pre-allocated, fixed-size, stack area, | |
3721 | save any previous data at that location. */ | |
3722 | if (argblock && ! variable_size && arg->stack) | |
3723 | { | |
3724 | #ifdef ARGS_GROW_DOWNWARD | |
0f41302f MS |
3725 | /* stack_slot is negative, but we want to index stack_usage_map |
3726 | with positive values. */ | |
51bbfa0c RS |
3727 | if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) |
3728 | upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1; | |
3729 | else | |
50eb43ca | 3730 | upper_bound = 0; |
51bbfa0c RS |
3731 | |
3732 | lower_bound = upper_bound - arg->size.constant; | |
3733 | #else | |
3734 | if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) | |
3735 | lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)); | |
3736 | else | |
3737 | lower_bound = 0; | |
3738 | ||
3739 | upper_bound = lower_bound + arg->size.constant; | |
3740 | #endif | |
3741 | ||
3742 | for (i = lower_bound; i < upper_bound; i++) | |
3743 | if (stack_usage_map[i] | |
51bbfa0c RS |
3744 | /* Don't store things in the fixed argument area at this point; |
3745 | it has already been saved. */ | |
e5e809f4 | 3746 | && i > reg_parm_stack_space) |
51bbfa0c RS |
3747 | break; |
3748 | ||
3749 | if (i != upper_bound) | |
3750 | { | |
3751 | /* We need to make a save area. See what mode we can make it. */ | |
3752 | enum machine_mode save_mode | |
3753 | = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1); | |
3754 | rtx stack_area | |
38a448ca RH |
3755 | = gen_rtx_MEM (save_mode, |
3756 | memory_address (save_mode, | |
3757 | XEXP (arg->stack_slot, 0))); | |
51bbfa0c RS |
3758 | |
3759 | if (save_mode == BLKmode) | |
3760 | { | |
3761 | arg->save_area = assign_stack_temp (BLKmode, | |
6fa51029 | 3762 | arg->size.constant, 0); |
c6df88cb MM |
3763 | MEM_SET_IN_STRUCT_P (arg->save_area, |
3764 | AGGREGATE_TYPE_P (TREE_TYPE | |
3765 | (arg->tree_value))); | |
cc79451b | 3766 | preserve_temp_slots (arg->save_area); |
51bbfa0c | 3767 | emit_block_move (validize_mem (arg->save_area), stack_area, |
e5d70561 | 3768 | GEN_INT (arg->size.constant), |
51bbfa0c RS |
3769 | PARM_BOUNDARY / BITS_PER_UNIT); |
3770 | } | |
3771 | else | |
3772 | { | |
3773 | arg->save_area = gen_reg_rtx (save_mode); | |
3774 | emit_move_insn (arg->save_area, stack_area); | |
3775 | } | |
3776 | } | |
3777 | } | |
b564df06 JL |
3778 | |
3779 | /* Now that we have saved any slots that will be overwritten by this | |
3780 | store, mark all slots this store will use. We must do this before | |
3781 | we actually expand the argument since the expansion itself may | |
3782 | trigger library calls which might need to use the same stack slot. */ | |
3783 | if (argblock && ! variable_size && arg->stack) | |
3784 | for (i = lower_bound; i < upper_bound; i++) | |
3785 | stack_usage_map[i] = 1; | |
51bbfa0c RS |
3786 | #endif |
3787 | ||
3788 | /* If this isn't going to be placed on both the stack and in registers, | |
3789 | set up the register and number of words. */ | |
3790 | if (! arg->pass_on_stack) | |
3791 | reg = arg->reg, partial = arg->partial; | |
3792 | ||
3793 | if (reg != 0 && partial == 0) | |
3794 | /* Being passed entirely in a register. We shouldn't be called in | |
3795 | this case. */ | |
3796 | abort (); | |
3797 | ||
4ab56118 RK |
3798 | /* If this arg needs special alignment, don't load the registers |
3799 | here. */ | |
3800 | if (arg->n_aligned_regs != 0) | |
3801 | reg = 0; | |
4ab56118 | 3802 | |
4ab56118 | 3803 | /* If this is being passed partially in a register, we can't evaluate |
51bbfa0c RS |
3804 | it directly into its stack slot. Otherwise, we can. */ |
3805 | if (arg->value == 0) | |
d64f5a78 RS |
3806 | { |
3807 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
3808 | /* stack_arg_under_construction is nonzero if a function argument is | |
3809 | being evaluated directly into the outgoing argument list and | |
3810 | expand_call must take special action to preserve the argument list | |
3811 | if it is called recursively. | |
3812 | ||
3813 | For scalar function arguments stack_usage_map is sufficient to | |
3814 | determine which stack slots must be saved and restored. Scalar | |
3815 | arguments in general have pass_on_stack == 0. | |
3816 | ||
3817 | If this argument is initialized by a function which takes the | |
3818 | address of the argument (a C++ constructor or a C function | |
3819 | returning a BLKmode structure), then stack_usage_map is | |
3820 | insufficient and expand_call must push the stack around the | |
3821 | function call. Such arguments have pass_on_stack == 1. | |
3822 | ||
3823 | Note that it is always safe to set stack_arg_under_construction, | |
3824 | but this generates suboptimal code if set when not needed. */ | |
3825 | ||
3826 | if (arg->pass_on_stack) | |
3827 | stack_arg_under_construction++; | |
3828 | #endif | |
3a08477a RK |
3829 | arg->value = expand_expr (pval, |
3830 | (partial | |
3831 | || TYPE_MODE (TREE_TYPE (pval)) != arg->mode) | |
3832 | ? NULL_RTX : arg->stack, | |
e5d70561 | 3833 | VOIDmode, 0); |
1efe6448 RK |
3834 | |
3835 | /* If we are promoting object (or for any other reason) the mode | |
3836 | doesn't agree, convert the mode. */ | |
3837 | ||
7373d92d RK |
3838 | if (arg->mode != TYPE_MODE (TREE_TYPE (pval))) |
3839 | arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)), | |
3840 | arg->value, arg->unsignedp); | |
1efe6448 | 3841 | |
d64f5a78 RS |
3842 | #ifdef ACCUMULATE_OUTGOING_ARGS |
3843 | if (arg->pass_on_stack) | |
3844 | stack_arg_under_construction--; | |
3845 | #endif | |
3846 | } | |
51bbfa0c RS |
3847 | |
3848 | /* Don't allow anything left on stack from computation | |
3849 | of argument to alloca. */ | |
3850 | if (may_be_alloca) | |
3851 | do_pending_stack_adjust (); | |
3852 | ||
3853 | if (arg->value == arg->stack) | |
7815214e | 3854 | { |
c5c76735 | 3855 | /* If the value is already in the stack slot, we are done. */ |
7d384cc0 | 3856 | if (current_function_check_memory_usage && GET_CODE (arg->stack) == MEM) |
7815214e | 3857 | { |
7815214e | 3858 | emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, |
6a9c4aed | 3859 | XEXP (arg->stack, 0), Pmode, |
7d384cc0 | 3860 | ARGS_SIZE_RTX (arg->size), |
7815214e | 3861 | TYPE_MODE (sizetype), |
956d6950 JL |
3862 | GEN_INT (MEMORY_USE_RW), |
3863 | TYPE_MODE (integer_type_node)); | |
7815214e RK |
3864 | } |
3865 | } | |
1efe6448 | 3866 | else if (arg->mode != BLKmode) |
51bbfa0c RS |
3867 | { |
3868 | register int size; | |
3869 | ||
3870 | /* Argument is a scalar, not entirely passed in registers. | |
3871 | (If part is passed in registers, arg->partial says how much | |
3872 | and emit_push_insn will take care of putting it there.) | |
3873 | ||
3874 | Push it, and if its size is less than the | |
3875 | amount of space allocated to it, | |
3876 | also bump stack pointer by the additional space. | |
3877 | Note that in C the default argument promotions | |
3878 | will prevent such mismatches. */ | |
3879 | ||
1efe6448 | 3880 | size = GET_MODE_SIZE (arg->mode); |
51bbfa0c RS |
3881 | /* Compute how much space the push instruction will push. |
3882 | On many machines, pushing a byte will advance the stack | |
3883 | pointer by a halfword. */ | |
3884 | #ifdef PUSH_ROUNDING | |
3885 | size = PUSH_ROUNDING (size); | |
3886 | #endif | |
3887 | used = size; | |
3888 | ||
3889 | /* Compute how much space the argument should get: | |
3890 | round up to a multiple of the alignment for arguments. */ | |
1efe6448 | 3891 | if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval))) |
51bbfa0c RS |
3892 | used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1) |
3893 | / (PARM_BOUNDARY / BITS_PER_UNIT)) | |
3894 | * (PARM_BOUNDARY / BITS_PER_UNIT)); | |
3895 | ||
3896 | /* This isn't already where we want it on the stack, so put it there. | |
3897 | This can either be done with push or copy insns. */ | |
e5e809f4 JL |
3898 | emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, 0, |
3899 | partial, reg, used - size, argblock, | |
3900 | ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space); | |
51bbfa0c RS |
3901 | } |
3902 | else | |
3903 | { | |
3904 | /* BLKmode, at least partly to be pushed. */ | |
3905 | ||
3906 | register int excess; | |
3907 | rtx size_rtx; | |
3908 | ||
3909 | /* Pushing a nonscalar. | |
3910 | If part is passed in registers, PARTIAL says how much | |
3911 | and emit_push_insn will take care of putting it there. */ | |
3912 | ||
3913 | /* Round its size up to a multiple | |
3914 | of the allocation unit for arguments. */ | |
3915 | ||
3916 | if (arg->size.var != 0) | |
3917 | { | |
3918 | excess = 0; | |
3919 | size_rtx = ARGS_SIZE_RTX (arg->size); | |
3920 | } | |
3921 | else | |
3922 | { | |
51bbfa0c RS |
3923 | /* PUSH_ROUNDING has no effect on us, because |
3924 | emit_push_insn for BLKmode is careful to avoid it. */ | |
0cf91217 | 3925 | excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval)) |
51bbfa0c | 3926 | + partial * UNITS_PER_WORD); |
e4f93898 | 3927 | size_rtx = expr_size (pval); |
51bbfa0c RS |
3928 | } |
3929 | ||
1efe6448 | 3930 | emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx, |
51bbfa0c | 3931 | TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial, |
e5e809f4 JL |
3932 | reg, excess, argblock, ARGS_SIZE_RTX (arg->offset), |
3933 | reg_parm_stack_space); | |
51bbfa0c RS |
3934 | } |
3935 | ||
3936 | ||
3937 | /* Unless this is a partially-in-register argument, the argument is now | |
3938 | in the stack. | |
3939 | ||
3940 | ??? Note that this can change arg->value from arg->stack to | |
3941 | arg->stack_slot and it matters when they are not the same. | |
3942 | It isn't totally clear that this is correct in all cases. */ | |
3943 | if (partial == 0) | |
3b917a55 | 3944 | arg->value = arg->stack_slot; |
51bbfa0c RS |
3945 | |
3946 | /* Once we have pushed something, pops can't safely | |
3947 | be deferred during the rest of the arguments. */ | |
3948 | NO_DEFER_POP; | |
3949 | ||
3950 | /* ANSI doesn't require a sequence point here, | |
3951 | but PCC has one, so this will avoid some problems. */ | |
3952 | emit_queue (); | |
3953 | ||
db907e7b RK |
3954 | /* Free any temporary slots made in processing this argument. Show |
3955 | that we might have taken the address of something and pushed that | |
3956 | as an operand. */ | |
3957 | preserve_temp_slots (NULL_RTX); | |
51bbfa0c | 3958 | free_temp_slots (); |
cc79451b | 3959 | pop_temp_slots (); |
51bbfa0c | 3960 | } |