]>
Commit | Line | Data |
---|---|---|
51bbfa0c | 1 | /* Convert function calls to rtl insns, for GNU C compiler. |
4d6a19ff | 2 | Copyright (C) 1989, 92, 93, 94, 95, 96, 1997 Free Software Foundation, Inc. |
51bbfa0c RS |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
940d9d63 RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
51bbfa0c RS |
20 | |
21 | #include "config.h" | |
22 | #include "rtl.h" | |
23 | #include "tree.h" | |
24 | #include "flags.h" | |
25 | #include "expr.h" | |
4f90e4a0 | 26 | #ifdef __STDC__ |
04fe4385 | 27 | #include <stdarg.h> |
4f90e4a0 | 28 | #else |
04fe4385 | 29 | #include <varargs.h> |
4f90e4a0 | 30 | #endif |
51bbfa0c RS |
31 | #include "insn-flags.h" |
32 | ||
33 | /* Decide whether a function's arguments should be processed | |
bbc8a071 RK |
34 | from first to last or from last to first. |
35 | ||
36 | They should if the stack and args grow in opposite directions, but | |
37 | only if we have push insns. */ | |
51bbfa0c | 38 | |
51bbfa0c | 39 | #ifdef PUSH_ROUNDING |
bbc8a071 | 40 | |
40083ddf | 41 | #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD) |
51bbfa0c RS |
42 | #define PUSH_ARGS_REVERSED /* If it's last to first */ |
43 | #endif | |
bbc8a071 | 44 | |
51bbfa0c RS |
45 | #endif |
46 | ||
47 | /* Like STACK_BOUNDARY but in units of bytes, not bits. */ | |
48 | #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) | |
49 | ||
50 | /* Data structure and subroutines used within expand_call. */ | |
51 | ||
52 | struct arg_data | |
53 | { | |
54 | /* Tree node for this argument. */ | |
55 | tree tree_value; | |
1efe6448 RK |
56 | /* Mode for value; TYPE_MODE unless promoted. */ |
57 | enum machine_mode mode; | |
51bbfa0c RS |
58 | /* Current RTL value for argument, or 0 if it isn't precomputed. */ |
59 | rtx value; | |
60 | /* Initially-compute RTL value for argument; only for const functions. */ | |
61 | rtx initial_value; | |
62 | /* Register to pass this argument in, 0 if passed on stack, or an | |
cacbd532 | 63 | PARALLEL if the arg is to be copied into multiple non-contiguous |
51bbfa0c RS |
64 | registers. */ |
65 | rtx reg; | |
84b55618 RK |
66 | /* If REG was promoted from the actual mode of the argument expression, |
67 | indicates whether the promotion is sign- or zero-extended. */ | |
68 | int unsignedp; | |
51bbfa0c RS |
69 | /* Number of registers to use. 0 means put the whole arg in registers. |
70 | Also 0 if not passed in registers. */ | |
71 | int partial; | |
d64f5a78 RS |
72 | /* Non-zero if argument must be passed on stack. |
73 | Note that some arguments may be passed on the stack | |
74 | even though pass_on_stack is zero, just because FUNCTION_ARG says so. | |
75 | pass_on_stack identifies arguments that *cannot* go in registers. */ | |
51bbfa0c RS |
76 | int pass_on_stack; |
77 | /* Offset of this argument from beginning of stack-args. */ | |
78 | struct args_size offset; | |
79 | /* Similar, but offset to the start of the stack slot. Different from | |
80 | OFFSET if this arg pads downward. */ | |
81 | struct args_size slot_offset; | |
82 | /* Size of this argument on the stack, rounded up for any padding it gets, | |
83 | parts of the argument passed in registers do not count. | |
84 | If REG_PARM_STACK_SPACE is defined, then register parms | |
85 | are counted here as well. */ | |
86 | struct args_size size; | |
87 | /* Location on the stack at which parameter should be stored. The store | |
88 | has already been done if STACK == VALUE. */ | |
89 | rtx stack; | |
90 | /* Location on the stack of the start of this argument slot. This can | |
91 | differ from STACK if this arg pads downward. This location is known | |
92 | to be aligned to FUNCTION_ARG_BOUNDARY. */ | |
93 | rtx stack_slot; | |
94 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
95 | /* Place that this stack area has been saved, if needed. */ | |
96 | rtx save_area; | |
97 | #endif | |
4ab56118 RK |
98 | /* If an argument's alignment does not permit direct copying into registers, |
99 | copy in smaller-sized pieces into pseudos. These are stored in a | |
100 | block pointed to by this field. The next field says how many | |
101 | word-sized pseudos we made. */ | |
102 | rtx *aligned_regs; | |
103 | int n_aligned_regs; | |
51bbfa0c RS |
104 | }; |
105 | ||
106 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
b94301c2 | 107 | /* A vector of one char per byte of stack space. A byte if non-zero if |
51bbfa0c RS |
108 | the corresponding stack location has been used. |
109 | This vector is used to prevent a function call within an argument from | |
110 | clobbering any stack already set up. */ | |
111 | static char *stack_usage_map; | |
112 | ||
113 | /* Size of STACK_USAGE_MAP. */ | |
114 | static int highest_outgoing_arg_in_use; | |
2f4aa534 RS |
115 | |
116 | /* stack_arg_under_construction is nonzero when an argument may be | |
117 | initialized with a constructor call (including a C function that | |
118 | returns a BLKmode struct) and expand_call must take special action | |
119 | to make sure the object being constructed does not overlap the | |
120 | argument list for the constructor call. */ | |
121 | int stack_arg_under_construction; | |
51bbfa0c RS |
122 | #endif |
123 | ||
322e3e34 | 124 | static int calls_function PROTO((tree, int)); |
9f4d9f6c | 125 | static int calls_function_1 PROTO((tree, int)); |
5d6155d4 RK |
126 | static void emit_call_1 PROTO((rtx, tree, tree, int, int, rtx, rtx, |
127 | int, rtx, int)); | |
322e3e34 RK |
128 | static void store_one_arg PROTO ((struct arg_data *, rtx, int, int, |
129 | tree, int)); | |
51bbfa0c | 130 | \f |
1ce0cb53 JW |
131 | /* If WHICH is 1, return 1 if EXP contains a call to the built-in function |
132 | `alloca'. | |
133 | ||
134 | If WHICH is 0, return 1 if EXP contains a call to any function. | |
135 | Actually, we only need return 1 if evaluating EXP would require pushing | |
136 | arguments on the stack, but that is too difficult to compute, so we just | |
137 | assume any function call might require the stack. */ | |
51bbfa0c | 138 | |
1c8d7aef RS |
139 | static tree calls_function_save_exprs; |
140 | ||
51bbfa0c | 141 | static int |
1ce0cb53 | 142 | calls_function (exp, which) |
51bbfa0c | 143 | tree exp; |
1ce0cb53 | 144 | int which; |
1c8d7aef RS |
145 | { |
146 | int val; | |
147 | calls_function_save_exprs = 0; | |
148 | val = calls_function_1 (exp, which); | |
149 | calls_function_save_exprs = 0; | |
150 | return val; | |
151 | } | |
152 | ||
153 | static int | |
154 | calls_function_1 (exp, which) | |
155 | tree exp; | |
156 | int which; | |
51bbfa0c RS |
157 | { |
158 | register int i; | |
0207efa2 RK |
159 | enum tree_code code = TREE_CODE (exp); |
160 | int type = TREE_CODE_CLASS (code); | |
161 | int length = tree_code_length[(int) code]; | |
51bbfa0c | 162 | |
ddd5a7c1 | 163 | /* If this code is language-specific, we don't know what it will do. */ |
0207efa2 RK |
164 | if ((int) code >= NUM_TREE_CODES) |
165 | return 1; | |
51bbfa0c | 166 | |
0207efa2 | 167 | /* Only expressions and references can contain calls. */ |
3b59a331 RS |
168 | if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r' |
169 | && type != 'b') | |
51bbfa0c RS |
170 | return 0; |
171 | ||
0207efa2 | 172 | switch (code) |
51bbfa0c RS |
173 | { |
174 | case CALL_EXPR: | |
1ce0cb53 JW |
175 | if (which == 0) |
176 | return 1; | |
177 | else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR | |
178 | && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) | |
0207efa2 RK |
179 | == FUNCTION_DECL)) |
180 | { | |
181 | tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); | |
182 | ||
183 | if ((DECL_BUILT_IN (fndecl) | |
184 | && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA) | |
185 | || (DECL_SAVED_INSNS (fndecl) | |
186 | && (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl)) | |
187 | & FUNCTION_FLAGS_CALLS_ALLOCA))) | |
188 | return 1; | |
189 | } | |
51bbfa0c RS |
190 | |
191 | /* Third operand is RTL. */ | |
192 | length = 2; | |
193 | break; | |
194 | ||
195 | case SAVE_EXPR: | |
196 | if (SAVE_EXPR_RTL (exp) != 0) | |
197 | return 0; | |
1c8d7aef RS |
198 | if (value_member (exp, calls_function_save_exprs)) |
199 | return 0; | |
200 | calls_function_save_exprs = tree_cons (NULL_TREE, exp, | |
201 | calls_function_save_exprs); | |
202 | return (TREE_OPERAND (exp, 0) != 0 | |
203 | && calls_function_1 (TREE_OPERAND (exp, 0), which)); | |
51bbfa0c RS |
204 | |
205 | case BLOCK: | |
ef03bc85 CH |
206 | { |
207 | register tree local; | |
208 | ||
209 | for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local)) | |
1ce0cb53 | 210 | if (DECL_INITIAL (local) != 0 |
1c8d7aef | 211 | && calls_function_1 (DECL_INITIAL (local), which)) |
ef03bc85 CH |
212 | return 1; |
213 | } | |
214 | { | |
215 | register tree subblock; | |
216 | ||
217 | for (subblock = BLOCK_SUBBLOCKS (exp); | |
218 | subblock; | |
219 | subblock = TREE_CHAIN (subblock)) | |
1c8d7aef | 220 | if (calls_function_1 (subblock, which)) |
ef03bc85 CH |
221 | return 1; |
222 | } | |
223 | return 0; | |
51bbfa0c RS |
224 | |
225 | case METHOD_CALL_EXPR: | |
226 | length = 3; | |
227 | break; | |
228 | ||
229 | case WITH_CLEANUP_EXPR: | |
230 | length = 1; | |
231 | break; | |
232 | ||
233 | case RTL_EXPR: | |
234 | return 0; | |
235 | } | |
236 | ||
237 | for (i = 0; i < length; i++) | |
238 | if (TREE_OPERAND (exp, i) != 0 | |
1c8d7aef | 239 | && calls_function_1 (TREE_OPERAND (exp, i), which)) |
51bbfa0c RS |
240 | return 1; |
241 | ||
242 | return 0; | |
243 | } | |
244 | \f | |
245 | /* Force FUNEXP into a form suitable for the address of a CALL, | |
246 | and return that as an rtx. Also load the static chain register | |
247 | if FNDECL is a nested function. | |
248 | ||
77cac2f2 RK |
249 | CALL_FUSAGE points to a variable holding the prospective |
250 | CALL_INSN_FUNCTION_USAGE information. */ | |
51bbfa0c | 251 | |
03dacb02 | 252 | rtx |
77cac2f2 | 253 | prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen) |
51bbfa0c RS |
254 | rtx funexp; |
255 | tree fndecl; | |
77cac2f2 | 256 | rtx *call_fusage; |
01368078 | 257 | int reg_parm_seen; |
51bbfa0c RS |
258 | { |
259 | rtx static_chain_value = 0; | |
260 | ||
261 | funexp = protect_from_queue (funexp, 0); | |
262 | ||
263 | if (fndecl != 0) | |
0f41302f | 264 | /* Get possible static chain value for nested function in C. */ |
51bbfa0c RS |
265 | static_chain_value = lookup_static_chain (fndecl); |
266 | ||
267 | /* Make a valid memory address and copy constants thru pseudo-regs, | |
268 | but not for a constant address if -fno-function-cse. */ | |
269 | if (GET_CODE (funexp) != SYMBOL_REF) | |
01368078 RK |
270 | funexp = |
271 | #ifdef SMALL_REGISTER_CLASSES | |
272 | /* If we are using registers for parameters, force the | |
273 | function address into a register now. */ | |
f95182a4 ILT |
274 | (SMALL_REGISTER_CLASSES && reg_parm_seen) |
275 | ? force_not_mem (memory_address (FUNCTION_MODE, funexp)) | |
276 | : | |
01368078 | 277 | #endif |
f95182a4 | 278 | memory_address (FUNCTION_MODE, funexp); |
51bbfa0c RS |
279 | else |
280 | { | |
281 | #ifndef NO_FUNCTION_CSE | |
282 | if (optimize && ! flag_no_function_cse) | |
283 | #ifdef NO_RECURSIVE_FUNCTION_CSE | |
284 | if (fndecl != current_function_decl) | |
285 | #endif | |
286 | funexp = force_reg (Pmode, funexp); | |
287 | #endif | |
288 | } | |
289 | ||
290 | if (static_chain_value != 0) | |
291 | { | |
292 | emit_move_insn (static_chain_rtx, static_chain_value); | |
293 | ||
f991a240 RK |
294 | if (GET_CODE (static_chain_rtx) == REG) |
295 | use_reg (call_fusage, static_chain_rtx); | |
51bbfa0c RS |
296 | } |
297 | ||
298 | return funexp; | |
299 | } | |
300 | ||
301 | /* Generate instructions to call function FUNEXP, | |
302 | and optionally pop the results. | |
303 | The CALL_INSN is the first insn generated. | |
304 | ||
607ea900 | 305 | FNDECL is the declaration node of the function. This is given to the |
2c8da025 RK |
306 | macro RETURN_POPS_ARGS to determine whether this function pops its own args. |
307 | ||
334c4f0f RK |
308 | FUNTYPE is the data type of the function. This is given to the macro |
309 | RETURN_POPS_ARGS to determine whether this function pops its own args. | |
310 | We used to allow an identifier for library functions, but that doesn't | |
311 | work when the return type is an aggregate type and the calling convention | |
312 | says that the pointer to this aggregate is to be popped by the callee. | |
51bbfa0c RS |
313 | |
314 | STACK_SIZE is the number of bytes of arguments on the stack, | |
315 | rounded up to STACK_BOUNDARY; zero if the size is variable. | |
316 | This is both to put into the call insn and | |
317 | to generate explicit popping code if necessary. | |
318 | ||
319 | STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value. | |
320 | It is zero if this call doesn't want a structure value. | |
321 | ||
322 | NEXT_ARG_REG is the rtx that results from executing | |
323 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1) | |
324 | just after all the args have had their registers assigned. | |
325 | This could be whatever you like, but normally it is the first | |
326 | arg-register beyond those used for args in this call, | |
327 | or 0 if all the arg-registers are used in this call. | |
328 | It is passed on to `gen_call' so you can put this info in the call insn. | |
329 | ||
330 | VALREG is a hard register in which a value is returned, | |
331 | or 0 if the call does not return a value. | |
332 | ||
333 | OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before | |
334 | the args to this call were processed. | |
335 | We restore `inhibit_defer_pop' to that value. | |
336 | ||
94b25f81 RK |
337 | CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that |
338 | denote registers used by the called function. | |
51bbfa0c RS |
339 | |
340 | IS_CONST is true if this is a `const' call. */ | |
341 | ||
322e3e34 | 342 | static void |
2c8da025 | 343 | emit_call_1 (funexp, fndecl, funtype, stack_size, struct_value_size, |
5d6155d4 RK |
344 | next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage, |
345 | is_const) | |
51bbfa0c | 346 | rtx funexp; |
2c8da025 | 347 | tree fndecl; |
51bbfa0c RS |
348 | tree funtype; |
349 | int stack_size; | |
350 | int struct_value_size; | |
351 | rtx next_arg_reg; | |
352 | rtx valreg; | |
353 | int old_inhibit_defer_pop; | |
77cac2f2 | 354 | rtx call_fusage; |
51bbfa0c RS |
355 | int is_const; |
356 | { | |
e5d70561 RK |
357 | rtx stack_size_rtx = GEN_INT (stack_size); |
358 | rtx struct_value_size_rtx = GEN_INT (struct_value_size); | |
51bbfa0c RS |
359 | rtx call_insn; |
360 | int already_popped = 0; | |
361 | ||
362 | /* Ensure address is valid. SYMBOL_REF is already valid, so no need, | |
363 | and we don't want to load it into a register as an optimization, | |
364 | because prepare_call_address already did it if it should be done. */ | |
365 | if (GET_CODE (funexp) != SYMBOL_REF) | |
366 | funexp = memory_address (FUNCTION_MODE, funexp); | |
367 | ||
368 | #ifndef ACCUMULATE_OUTGOING_ARGS | |
369 | #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop) | |
370 | if (HAVE_call_pop && HAVE_call_value_pop | |
2c8da025 RK |
371 | && (RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0 |
372 | || stack_size == 0)) | |
51bbfa0c | 373 | { |
2c8da025 | 374 | rtx n_pop = GEN_INT (RETURN_POPS_ARGS (fndecl, funtype, stack_size)); |
51bbfa0c RS |
375 | rtx pat; |
376 | ||
377 | /* If this subroutine pops its own args, record that in the call insn | |
378 | if possible, for the sake of frame pointer elimination. */ | |
2c8da025 | 379 | |
51bbfa0c RS |
380 | if (valreg) |
381 | pat = gen_call_value_pop (valreg, | |
382 | gen_rtx (MEM, FUNCTION_MODE, funexp), | |
383 | stack_size_rtx, next_arg_reg, n_pop); | |
384 | else | |
385 | pat = gen_call_pop (gen_rtx (MEM, FUNCTION_MODE, funexp), | |
386 | stack_size_rtx, next_arg_reg, n_pop); | |
387 | ||
388 | emit_call_insn (pat); | |
389 | already_popped = 1; | |
390 | } | |
391 | else | |
392 | #endif | |
393 | #endif | |
394 | ||
395 | #if defined (HAVE_call) && defined (HAVE_call_value) | |
396 | if (HAVE_call && HAVE_call_value) | |
397 | { | |
398 | if (valreg) | |
399 | emit_call_insn (gen_call_value (valreg, | |
400 | gen_rtx (MEM, FUNCTION_MODE, funexp), | |
e992302c BK |
401 | stack_size_rtx, next_arg_reg, |
402 | NULL_RTX)); | |
51bbfa0c RS |
403 | else |
404 | emit_call_insn (gen_call (gen_rtx (MEM, FUNCTION_MODE, funexp), | |
405 | stack_size_rtx, next_arg_reg, | |
406 | struct_value_size_rtx)); | |
407 | } | |
408 | else | |
409 | #endif | |
410 | abort (); | |
411 | ||
77cac2f2 | 412 | /* Find the CALL insn we just emitted. */ |
51bbfa0c RS |
413 | for (call_insn = get_last_insn (); |
414 | call_insn && GET_CODE (call_insn) != CALL_INSN; | |
415 | call_insn = PREV_INSN (call_insn)) | |
416 | ; | |
417 | ||
418 | if (! call_insn) | |
419 | abort (); | |
420 | ||
e59e60a7 RK |
421 | /* Put the register usage information on the CALL. If there is already |
422 | some usage information, put ours at the end. */ | |
423 | if (CALL_INSN_FUNCTION_USAGE (call_insn)) | |
424 | { | |
425 | rtx link; | |
426 | ||
427 | for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; | |
428 | link = XEXP (link, 1)) | |
429 | ; | |
430 | ||
431 | XEXP (link, 1) = call_fusage; | |
432 | } | |
433 | else | |
434 | CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; | |
51bbfa0c RS |
435 | |
436 | /* If this is a const call, then set the insn's unchanging bit. */ | |
437 | if (is_const) | |
438 | CONST_CALL_P (call_insn) = 1; | |
439 | ||
b1e64e0d RS |
440 | /* Restore this now, so that we do defer pops for this call's args |
441 | if the context of the call as a whole permits. */ | |
442 | inhibit_defer_pop = old_inhibit_defer_pop; | |
443 | ||
51bbfa0c RS |
444 | #ifndef ACCUMULATE_OUTGOING_ARGS |
445 | /* If returning from the subroutine does not automatically pop the args, | |
446 | we need an instruction to pop them sooner or later. | |
447 | Perhaps do it now; perhaps just record how much space to pop later. | |
448 | ||
449 | If returning from the subroutine does pop the args, indicate that the | |
450 | stack pointer will be changed. */ | |
451 | ||
2c8da025 | 452 | if (stack_size != 0 && RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0) |
51bbfa0c RS |
453 | { |
454 | if (!already_popped) | |
77cac2f2 | 455 | CALL_INSN_FUNCTION_USAGE (call_insn) = |
96fd013f | 456 | gen_rtx (EXPR_LIST, VOIDmode, |
984d9166 | 457 | gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx), |
77cac2f2 | 458 | CALL_INSN_FUNCTION_USAGE (call_insn)); |
2c8da025 | 459 | stack_size -= RETURN_POPS_ARGS (fndecl, funtype, stack_size); |
e5d70561 | 460 | stack_size_rtx = GEN_INT (stack_size); |
51bbfa0c RS |
461 | } |
462 | ||
463 | if (stack_size != 0) | |
464 | { | |
70a73141 | 465 | if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const) |
51bbfa0c RS |
466 | pending_stack_adjust += stack_size; |
467 | else | |
468 | adjust_stack (stack_size_rtx); | |
469 | } | |
470 | #endif | |
471 | } | |
472 | ||
473 | /* Generate all the code for a function call | |
474 | and return an rtx for its value. | |
475 | Store the value in TARGET (specified as an rtx) if convenient. | |
476 | If the value is stored in TARGET then TARGET is returned. | |
477 | If IGNORE is nonzero, then we ignore the value of the function call. */ | |
478 | ||
479 | rtx | |
8129842c | 480 | expand_call (exp, target, ignore) |
51bbfa0c RS |
481 | tree exp; |
482 | rtx target; | |
483 | int ignore; | |
51bbfa0c RS |
484 | { |
485 | /* List of actual parameters. */ | |
486 | tree actparms = TREE_OPERAND (exp, 1); | |
487 | /* RTX for the function to be called. */ | |
488 | rtx funexp; | |
489 | /* Tree node for the function to be called (not the address!). */ | |
490 | tree funtree; | |
491 | /* Data type of the function. */ | |
492 | tree funtype; | |
493 | /* Declaration of the function being called, | |
494 | or 0 if the function is computed (not known by name). */ | |
495 | tree fndecl = 0; | |
496 | char *name = 0; | |
497 | ||
498 | /* Register in which non-BLKmode value will be returned, | |
499 | or 0 if no value or if value is BLKmode. */ | |
500 | rtx valreg; | |
501 | /* Address where we should return a BLKmode value; | |
502 | 0 if value not BLKmode. */ | |
503 | rtx structure_value_addr = 0; | |
504 | /* Nonzero if that address is being passed by treating it as | |
505 | an extra, implicit first parameter. Otherwise, | |
506 | it is passed by being copied directly into struct_value_rtx. */ | |
507 | int structure_value_addr_parm = 0; | |
508 | /* Size of aggregate value wanted, or zero if none wanted | |
509 | or if we are using the non-reentrant PCC calling convention | |
510 | or expecting the value in registers. */ | |
511 | int struct_value_size = 0; | |
512 | /* Nonzero if called function returns an aggregate in memory PCC style, | |
513 | by returning the address of where to find it. */ | |
514 | int pcc_struct_value = 0; | |
515 | ||
516 | /* Number of actual parameters in this call, including struct value addr. */ | |
517 | int num_actuals; | |
518 | /* Number of named args. Args after this are anonymous ones | |
519 | and they must all go on the stack. */ | |
520 | int n_named_args; | |
521 | /* Count arg position in order args appear. */ | |
522 | int argpos; | |
523 | ||
524 | /* Vector of information about each argument. | |
525 | Arguments are numbered in the order they will be pushed, | |
526 | not the order they are written. */ | |
527 | struct arg_data *args; | |
528 | ||
529 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
530 | struct args_size args_size; | |
531 | /* Size of arguments before any adjustments (such as rounding). */ | |
532 | struct args_size original_args_size; | |
533 | /* Data on reg parms scanned so far. */ | |
534 | CUMULATIVE_ARGS args_so_far; | |
535 | /* Nonzero if a reg parm has been scanned. */ | |
536 | int reg_parm_seen; | |
efd65a8b | 537 | /* Nonzero if this is an indirect function call. */ |
51bbfa0c RS |
538 | |
539 | /* Nonzero if we must avoid push-insns in the args for this call. | |
540 | If stack space is allocated for register parameters, but not by the | |
541 | caller, then it is preallocated in the fixed part of the stack frame. | |
542 | So the entire argument block must then be preallocated (i.e., we | |
543 | ignore PUSH_ROUNDING in that case). */ | |
544 | ||
545 | #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) | |
546 | int must_preallocate = 1; | |
547 | #else | |
548 | #ifdef PUSH_ROUNDING | |
549 | int must_preallocate = 0; | |
550 | #else | |
551 | int must_preallocate = 1; | |
552 | #endif | |
553 | #endif | |
554 | ||
f72aed24 | 555 | /* Size of the stack reserved for parameter registers. */ |
6f90e075 JW |
556 | int reg_parm_stack_space = 0; |
557 | ||
51bbfa0c RS |
558 | /* 1 if scanning parms front to back, -1 if scanning back to front. */ |
559 | int inc; | |
560 | /* Address of space preallocated for stack parms | |
561 | (on machines that lack push insns), or 0 if space not preallocated. */ | |
562 | rtx argblock = 0; | |
563 | ||
564 | /* Nonzero if it is plausible that this is a call to alloca. */ | |
565 | int may_be_alloca; | |
566 | /* Nonzero if this is a call to setjmp or a related function. */ | |
567 | int returns_twice; | |
568 | /* Nonzero if this is a call to `longjmp'. */ | |
569 | int is_longjmp; | |
570 | /* Nonzero if this is a call to an inline function. */ | |
571 | int is_integrable = 0; | |
51bbfa0c RS |
572 | /* Nonzero if this is a call to a `const' function. |
573 | Note that only explicitly named functions are handled as `const' here. */ | |
574 | int is_const = 0; | |
575 | /* Nonzero if this is a call to a `volatile' function. */ | |
576 | int is_volatile = 0; | |
577 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
578 | /* Define the boundary of the register parm stack space that needs to be | |
579 | save, if any. */ | |
580 | int low_to_save = -1, high_to_save; | |
581 | rtx save_area = 0; /* Place that it is saved */ | |
582 | #endif | |
583 | ||
584 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
585 | int initial_highest_arg_in_use = highest_outgoing_arg_in_use; | |
586 | char *initial_stack_usage_map = stack_usage_map; | |
587 | #endif | |
588 | ||
589 | rtx old_stack_level = 0; | |
79be3418 | 590 | int old_pending_adj = 0; |
2f4aa534 | 591 | int old_stack_arg_under_construction; |
51bbfa0c RS |
592 | int old_inhibit_defer_pop = inhibit_defer_pop; |
593 | tree old_cleanups = cleanups_this_call; | |
77cac2f2 | 594 | rtx call_fusage = 0; |
51bbfa0c | 595 | register tree p; |
4ab56118 | 596 | register int i, j; |
51bbfa0c RS |
597 | |
598 | /* See if we can find a DECL-node for the actual function. | |
599 | As a result, decide whether this is a call to an integrable function. */ | |
600 | ||
601 | p = TREE_OPERAND (exp, 0); | |
602 | if (TREE_CODE (p) == ADDR_EXPR) | |
603 | { | |
604 | fndecl = TREE_OPERAND (p, 0); | |
605 | if (TREE_CODE (fndecl) != FUNCTION_DECL) | |
fdff8c6d | 606 | fndecl = 0; |
51bbfa0c RS |
607 | else |
608 | { | |
609 | if (!flag_no_inline | |
610 | && fndecl != current_function_decl | |
aa10adff | 611 | && DECL_INLINE (fndecl) |
1cf4f698 RK |
612 | && DECL_SAVED_INSNS (fndecl) |
613 | && RTX_INTEGRATED_P (DECL_SAVED_INSNS (fndecl))) | |
51bbfa0c RS |
614 | is_integrable = 1; |
615 | else if (! TREE_ADDRESSABLE (fndecl)) | |
616 | { | |
13d39dbc | 617 | /* In case this function later becomes inlinable, |
51bbfa0c RS |
618 | record that there was already a non-inline call to it. |
619 | ||
620 | Use abstraction instead of setting TREE_ADDRESSABLE | |
621 | directly. */ | |
da8c1713 RK |
622 | if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline |
623 | && optimize > 0) | |
1907795e JM |
624 | { |
625 | warning_with_decl (fndecl, "can't inline call to `%s'"); | |
626 | warning ("called from here"); | |
627 | } | |
51bbfa0c RS |
628 | mark_addressable (fndecl); |
629 | } | |
630 | ||
d45cf215 RS |
631 | if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl) |
632 | && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode) | |
51bbfa0c | 633 | is_const = 1; |
5e24110e RS |
634 | |
635 | if (TREE_THIS_VOLATILE (fndecl)) | |
636 | is_volatile = 1; | |
51bbfa0c RS |
637 | } |
638 | } | |
639 | ||
fdff8c6d RK |
640 | /* If we don't have specific function to call, see if we have a |
641 | constant or `noreturn' function from the type. */ | |
642 | if (fndecl == 0) | |
643 | { | |
644 | is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p))); | |
645 | is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p))); | |
646 | } | |
647 | ||
6f90e075 JW |
648 | #ifdef REG_PARM_STACK_SPACE |
649 | #ifdef MAYBE_REG_PARM_STACK_SPACE | |
650 | reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; | |
651 | #else | |
652 | reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); | |
653 | #endif | |
654 | #endif | |
655 | ||
51bbfa0c RS |
656 | /* Warn if this value is an aggregate type, |
657 | regardless of which calling convention we are using for it. */ | |
05e3bdb9 | 658 | if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp))) |
51bbfa0c RS |
659 | warning ("function call has aggregate value"); |
660 | ||
661 | /* Set up a place to return a structure. */ | |
662 | ||
663 | /* Cater to broken compilers. */ | |
664 | if (aggregate_value_p (exp)) | |
665 | { | |
666 | /* This call returns a big structure. */ | |
667 | is_const = 0; | |
668 | ||
669 | #ifdef PCC_STATIC_STRUCT_RETURN | |
9e7b1d0a RS |
670 | { |
671 | pcc_struct_value = 1; | |
0dd532dc JW |
672 | /* Easier than making that case work right. */ |
673 | if (is_integrable) | |
674 | { | |
675 | /* In case this is a static function, note that it has been | |
676 | used. */ | |
677 | if (! TREE_ADDRESSABLE (fndecl)) | |
678 | mark_addressable (fndecl); | |
679 | is_integrable = 0; | |
680 | } | |
9e7b1d0a RS |
681 | } |
682 | #else /* not PCC_STATIC_STRUCT_RETURN */ | |
683 | { | |
684 | struct_value_size = int_size_in_bytes (TREE_TYPE (exp)); | |
51bbfa0c | 685 | |
9e7b1d0a RS |
686 | if (target && GET_CODE (target) == MEM) |
687 | structure_value_addr = XEXP (target, 0); | |
688 | else | |
689 | { | |
690 | /* Assign a temporary on the stack to hold the value. */ | |
51bbfa0c | 691 | |
9e7b1d0a RS |
692 | /* For variable-sized objects, we must be called with a target |
693 | specified. If we were to allocate space on the stack here, | |
694 | we would have no way of knowing when to free it. */ | |
51bbfa0c | 695 | |
002bdd6c RK |
696 | if (struct_value_size < 0) |
697 | abort (); | |
698 | ||
9e7b1d0a RS |
699 | structure_value_addr |
700 | = XEXP (assign_stack_temp (BLKmode, struct_value_size, 1), 0); | |
3668e76e JL |
701 | MEM_IN_STRUCT_P (structure_value_addr) |
702 | = AGGREGATE_TYPE_P (TREE_TYPE (exp)); | |
9e7b1d0a RS |
703 | target = 0; |
704 | } | |
705 | } | |
706 | #endif /* not PCC_STATIC_STRUCT_RETURN */ | |
51bbfa0c RS |
707 | } |
708 | ||
709 | /* If called function is inline, try to integrate it. */ | |
710 | ||
711 | if (is_integrable) | |
712 | { | |
713 | rtx temp; | |
2f4aa534 | 714 | rtx before_call = get_last_insn (); |
51bbfa0c RS |
715 | |
716 | temp = expand_inline_function (fndecl, actparms, target, | |
717 | ignore, TREE_TYPE (exp), | |
718 | structure_value_addr); | |
719 | ||
720 | /* If inlining succeeded, return. */ | |
854e97f0 | 721 | if ((HOST_WIDE_INT) temp != -1) |
51bbfa0c | 722 | { |
ef5057f8 MS |
723 | if (flag_short_temps) |
724 | { | |
725 | /* Perform all cleanups needed for the arguments of this | |
726 | call (i.e. destructors in C++). It is ok if these | |
727 | destructors clobber RETURN_VALUE_REG, because the | |
728 | only time we care about this is when TARGET is that | |
729 | register. But in C++, we take care to never return | |
730 | that register directly. */ | |
731 | expand_cleanups_to (old_cleanups); | |
732 | } | |
d64f5a78 RS |
733 | |
734 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2f4aa534 RS |
735 | /* If the outgoing argument list must be preserved, push |
736 | the stack before executing the inlined function if it | |
737 | makes any calls. */ | |
738 | ||
739 | for (i = reg_parm_stack_space - 1; i >= 0; i--) | |
740 | if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0) | |
741 | break; | |
742 | ||
743 | if (stack_arg_under_construction || i >= 0) | |
744 | { | |
a1917650 RK |
745 | rtx first_insn |
746 | = before_call ? NEXT_INSN (before_call) : get_insns (); | |
747 | rtx insn, seq; | |
2f4aa534 | 748 | |
d64f5a78 RS |
749 | /* Look for a call in the inline function code. |
750 | If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is | |
751 | nonzero then there is a call and it is not necessary | |
752 | to scan the insns. */ | |
753 | ||
754 | if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0) | |
a1917650 | 755 | for (insn = first_insn; insn; insn = NEXT_INSN (insn)) |
d64f5a78 RS |
756 | if (GET_CODE (insn) == CALL_INSN) |
757 | break; | |
2f4aa534 RS |
758 | |
759 | if (insn) | |
760 | { | |
d64f5a78 RS |
761 | /* Reserve enough stack space so that the largest |
762 | argument list of any function call in the inline | |
763 | function does not overlap the argument list being | |
764 | evaluated. This is usually an overestimate because | |
765 | allocate_dynamic_stack_space reserves space for an | |
766 | outgoing argument list in addition to the requested | |
767 | space, but there is no way to ask for stack space such | |
768 | that an argument list of a certain length can be | |
769 | safely constructed. */ | |
770 | ||
771 | int adjust = OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)); | |
772 | #ifdef REG_PARM_STACK_SPACE | |
773 | /* Add the stack space reserved for register arguments | |
774 | in the inline function. What is really needed is the | |
775 | largest value of reg_parm_stack_space in the inline | |
776 | function, but that is not available. Using the current | |
777 | value of reg_parm_stack_space is wrong, but gives | |
778 | correct results on all supported machines. */ | |
779 | adjust += reg_parm_stack_space; | |
780 | #endif | |
2f4aa534 | 781 | start_sequence (); |
ccf5d244 | 782 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
e5d70561 RK |
783 | allocate_dynamic_stack_space (GEN_INT (adjust), |
784 | NULL_RTX, BITS_PER_UNIT); | |
2f4aa534 RS |
785 | seq = get_insns (); |
786 | end_sequence (); | |
a1917650 | 787 | emit_insns_before (seq, first_insn); |
e5d70561 | 788 | emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); |
2f4aa534 RS |
789 | } |
790 | } | |
d64f5a78 | 791 | #endif |
51bbfa0c RS |
792 | |
793 | /* If the result is equivalent to TARGET, return TARGET to simplify | |
794 | checks in store_expr. They can be equivalent but not equal in the | |
795 | case of a function that returns BLKmode. */ | |
796 | if (temp != target && rtx_equal_p (temp, target)) | |
797 | return target; | |
798 | return temp; | |
799 | } | |
800 | ||
801 | /* If inlining failed, mark FNDECL as needing to be compiled | |
0481a55e RK |
802 | separately after all. If function was declared inline, |
803 | give a warning. */ | |
804 | if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline | |
da8c1713 | 805 | && optimize > 0 && ! TREE_ADDRESSABLE (fndecl)) |
1907795e JM |
806 | { |
807 | warning_with_decl (fndecl, "inlining failed in call to `%s'"); | |
808 | warning ("called from here"); | |
809 | } | |
51bbfa0c RS |
810 | mark_addressable (fndecl); |
811 | } | |
812 | ||
813 | /* When calling a const function, we must pop the stack args right away, | |
814 | so that the pop is deleted or moved with the call. */ | |
815 | if (is_const) | |
816 | NO_DEFER_POP; | |
817 | ||
818 | function_call_count++; | |
819 | ||
820 | if (fndecl && DECL_NAME (fndecl)) | |
821 | name = IDENTIFIER_POINTER (DECL_NAME (fndecl)); | |
822 | ||
823 | #if 0 | |
824 | /* Unless it's a call to a specific function that isn't alloca, | |
825 | if it has one argument, we must assume it might be alloca. */ | |
826 | ||
827 | may_be_alloca = | |
828 | (!(fndecl != 0 && strcmp (name, "alloca")) | |
829 | && actparms != 0 | |
830 | && TREE_CHAIN (actparms) == 0); | |
831 | #else | |
832 | /* We assume that alloca will always be called by name. It | |
833 | makes no sense to pass it as a pointer-to-function to | |
834 | anything that does not understand its behavior. */ | |
835 | may_be_alloca = | |
836 | (name && ((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 | |
837 | && name[0] == 'a' | |
838 | && ! strcmp (name, "alloca")) | |
839 | || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16 | |
840 | && name[0] == '_' | |
841 | && ! strcmp (name, "__builtin_alloca")))); | |
842 | #endif | |
843 | ||
844 | /* See if this is a call to a function that can return more than once | |
845 | or a call to longjmp. */ | |
846 | ||
847 | returns_twice = 0; | |
848 | is_longjmp = 0; | |
849 | ||
850 | if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15) | |
851 | { | |
852 | char *tname = name; | |
853 | ||
8d515633 | 854 | /* Disregard prefix _, __ or __x. */ |
51bbfa0c | 855 | if (name[0] == '_') |
8d515633 RS |
856 | { |
857 | if (name[1] == '_' && name[2] == 'x') | |
858 | tname += 3; | |
859 | else if (name[1] == '_') | |
860 | tname += 2; | |
861 | else | |
862 | tname += 1; | |
863 | } | |
51bbfa0c RS |
864 | |
865 | if (tname[0] == 's') | |
866 | { | |
867 | returns_twice | |
868 | = ((tname[1] == 'e' | |
869 | && (! strcmp (tname, "setjmp") | |
870 | || ! strcmp (tname, "setjmp_syscall"))) | |
871 | || (tname[1] == 'i' | |
872 | && ! strcmp (tname, "sigsetjmp")) | |
873 | || (tname[1] == 'a' | |
874 | && ! strcmp (tname, "savectx"))); | |
875 | if (tname[1] == 'i' | |
876 | && ! strcmp (tname, "siglongjmp")) | |
877 | is_longjmp = 1; | |
878 | } | |
879 | else if ((tname[0] == 'q' && tname[1] == 's' | |
880 | && ! strcmp (tname, "qsetjmp")) | |
881 | || (tname[0] == 'v' && tname[1] == 'f' | |
882 | && ! strcmp (tname, "vfork"))) | |
883 | returns_twice = 1; | |
884 | ||
885 | else if (tname[0] == 'l' && tname[1] == 'o' | |
886 | && ! strcmp (tname, "longjmp")) | |
887 | is_longjmp = 1; | |
888 | } | |
889 | ||
51bbfa0c RS |
890 | if (may_be_alloca) |
891 | current_function_calls_alloca = 1; | |
892 | ||
893 | /* Don't let pending stack adjusts add up to too much. | |
894 | Also, do all pending adjustments now | |
895 | if there is any chance this might be a call to alloca. */ | |
896 | ||
897 | if (pending_stack_adjust >= 32 | |
898 | || (pending_stack_adjust > 0 && may_be_alloca)) | |
899 | do_pending_stack_adjust (); | |
900 | ||
901 | /* Operand 0 is a pointer-to-function; get the type of the function. */ | |
902 | funtype = TREE_TYPE (TREE_OPERAND (exp, 0)); | |
903 | if (TREE_CODE (funtype) != POINTER_TYPE) | |
904 | abort (); | |
905 | funtype = TREE_TYPE (funtype); | |
906 | ||
cc79451b RK |
907 | /* Push the temporary stack slot level so that we can free any temporaries |
908 | we make. */ | |
51bbfa0c RS |
909 | push_temp_slots (); |
910 | ||
eecb6f50 JL |
911 | /* Start updating where the next arg would go. |
912 | ||
913 | On some machines (such as the PA) indirect calls have a different | |
914 | calling convention than normal calls. The last argument in | |
915 | INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call | |
916 | or not. */ | |
917 | INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0)); | |
51bbfa0c RS |
918 | |
919 | /* If struct_value_rtx is 0, it means pass the address | |
920 | as if it were an extra parameter. */ | |
921 | if (structure_value_addr && struct_value_rtx == 0) | |
922 | { | |
5582b006 RK |
923 | /* If structure_value_addr is a REG other than |
924 | virtual_outgoing_args_rtx, we can use always use it. If it | |
925 | is not a REG, we must always copy it into a register. | |
926 | If it is virtual_outgoing_args_rtx, we must copy it to another | |
927 | register in some cases. */ | |
928 | rtx temp = (GET_CODE (structure_value_addr) != REG | |
d64f5a78 | 929 | #ifdef ACCUMULATE_OUTGOING_ARGS |
5582b006 RK |
930 | || (stack_arg_under_construction |
931 | && structure_value_addr == virtual_outgoing_args_rtx) | |
d64f5a78 | 932 | #endif |
5582b006 RK |
933 | ? copy_addr_to_reg (structure_value_addr) |
934 | : structure_value_addr); | |
d64f5a78 | 935 | |
51bbfa0c RS |
936 | actparms |
937 | = tree_cons (error_mark_node, | |
938 | make_tree (build_pointer_type (TREE_TYPE (funtype)), | |
2f4aa534 | 939 | temp), |
51bbfa0c RS |
940 | actparms); |
941 | structure_value_addr_parm = 1; | |
942 | } | |
943 | ||
944 | /* Count the arguments and set NUM_ACTUALS. */ | |
945 | for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++; | |
946 | num_actuals = i; | |
947 | ||
948 | /* Compute number of named args. | |
949 | Normally, don't include the last named arg if anonymous args follow. | |
469225d8 JW |
950 | We do include the last named arg if STRICT_ARGUMENT_NAMING is defined. |
951 | (If no anonymous args follow, the result of list_length is actually | |
952 | one too large. This is harmless.) | |
51bbfa0c | 953 | |
469225d8 JW |
954 | If SETUP_INCOMING_VARARGS is defined and STRICT_ARGUMENT_NAMING is not, |
955 | this machine will be able to place unnamed args that were passed in | |
956 | registers into the stack. So treat all args as named. This allows the | |
957 | insns emitting for a specific argument list to be independent of the | |
958 | function declaration. | |
51bbfa0c RS |
959 | |
960 | If SETUP_INCOMING_VARARGS is not defined, we do not have any reliable | |
961 | way to pass unnamed args in registers, so we must force them into | |
962 | memory. */ | |
469225d8 | 963 | #if !defined(SETUP_INCOMING_VARARGS) || defined(STRICT_ARGUMENT_NAMING) |
51bbfa0c RS |
964 | if (TYPE_ARG_TYPES (funtype) != 0) |
965 | n_named_args | |
0ee902cb | 966 | = (list_length (TYPE_ARG_TYPES (funtype)) |
469225d8 | 967 | #ifndef STRICT_ARGUMENT_NAMING |
0ee902cb RM |
968 | /* Don't include the last named arg. */ |
969 | - 1 | |
469225d8 | 970 | #endif |
0ee902cb RM |
971 | /* Count the struct value address, if it is passed as a parm. */ |
972 | + structure_value_addr_parm); | |
51bbfa0c RS |
973 | else |
974 | #endif | |
975 | /* If we know nothing, treat all args as named. */ | |
976 | n_named_args = num_actuals; | |
977 | ||
978 | /* Make a vector to hold all the information about each arg. */ | |
979 | args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data)); | |
4c9a05bc | 980 | bzero ((char *) args, num_actuals * sizeof (struct arg_data)); |
51bbfa0c RS |
981 | |
982 | args_size.constant = 0; | |
983 | args_size.var = 0; | |
984 | ||
985 | /* In this loop, we consider args in the order they are written. | |
0ee902cb | 986 | We fill up ARGS from the front or from the back if necessary |
51bbfa0c RS |
987 | so that in any case the first arg to be pushed ends up at the front. */ |
988 | ||
989 | #ifdef PUSH_ARGS_REVERSED | |
990 | i = num_actuals - 1, inc = -1; | |
991 | /* In this case, must reverse order of args | |
992 | so that we compute and push the last arg first. */ | |
993 | #else | |
994 | i = 0, inc = 1; | |
995 | #endif | |
996 | ||
997 | /* I counts args in order (to be) pushed; ARGPOS counts in order written. */ | |
998 | for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++) | |
999 | { | |
1000 | tree type = TREE_TYPE (TREE_VALUE (p)); | |
321e0bba | 1001 | int unsignedp; |
84b55618 | 1002 | enum machine_mode mode; |
51bbfa0c RS |
1003 | |
1004 | args[i].tree_value = TREE_VALUE (p); | |
1005 | ||
1006 | /* Replace erroneous argument with constant zero. */ | |
1007 | if (type == error_mark_node || TYPE_SIZE (type) == 0) | |
1008 | args[i].tree_value = integer_zero_node, type = integer_type_node; | |
1009 | ||
5c1c34d3 RK |
1010 | /* If TYPE is a transparent union, pass things the way we would |
1011 | pass the first field of the union. We have already verified that | |
1012 | the modes are the same. */ | |
1013 | if (TYPE_TRANSPARENT_UNION (type)) | |
1014 | type = TREE_TYPE (TYPE_FIELDS (type)); | |
1015 | ||
51bbfa0c RS |
1016 | /* Decide where to pass this arg. |
1017 | ||
1018 | args[i].reg is nonzero if all or part is passed in registers. | |
1019 | ||
1020 | args[i].partial is nonzero if part but not all is passed in registers, | |
1021 | and the exact value says how many words are passed in registers. | |
1022 | ||
1023 | args[i].pass_on_stack is nonzero if the argument must at least be | |
1024 | computed on the stack. It may then be loaded back into registers | |
1025 | if args[i].reg is nonzero. | |
1026 | ||
1027 | These decisions are driven by the FUNCTION_... macros and must agree | |
1028 | with those made by function.c. */ | |
1029 | ||
51bbfa0c | 1030 | /* See if this argument should be passed by invisible reference. */ |
7ef1fbd7 RK |
1031 | if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST |
1032 | && contains_placeholder_p (TYPE_SIZE (type))) | |
657bb6dc | 1033 | || TREE_ADDRESSABLE (type) |
7ef1fbd7 RK |
1034 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE |
1035 | || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, TYPE_MODE (type), | |
1036 | type, argpos < n_named_args) | |
1037 | #endif | |
1038 | ) | |
51bbfa0c | 1039 | { |
5e0de251 DE |
1040 | #ifdef FUNCTION_ARG_CALLEE_COPIES |
1041 | if (FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (type), type, | |
1042 | argpos < n_named_args) | |
1043 | /* If it's in a register, we must make a copy of it too. */ | |
1044 | /* ??? Is this a sufficient test? Is there a better one? */ | |
1045 | && !(TREE_CODE (args[i].tree_value) == VAR_DECL | |
67038661 RK |
1046 | && REG_P (DECL_RTL (args[i].tree_value))) |
1047 | && ! TREE_ADDRESSABLE (type)) | |
51bbfa0c | 1048 | { |
5e0de251 DE |
1049 | args[i].tree_value = build1 (ADDR_EXPR, |
1050 | build_pointer_type (type), | |
1051 | args[i].tree_value); | |
1052 | type = build_pointer_type (type); | |
51bbfa0c RS |
1053 | } |
1054 | else | |
5e0de251 | 1055 | #endif |
82c0ff02 | 1056 | { |
5e0de251 DE |
1057 | /* We make a copy of the object and pass the address to the |
1058 | function being called. */ | |
1059 | rtx copy; | |
51bbfa0c | 1060 | |
5e0de251 DE |
1061 | if (TYPE_SIZE (type) == 0 |
1062 | || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) | |
1063 | { | |
1064 | /* This is a variable-sized object. Make space on the stack | |
1065 | for it. */ | |
1066 | rtx size_rtx = expr_size (TREE_VALUE (p)); | |
1067 | ||
1068 | if (old_stack_level == 0) | |
1069 | { | |
1070 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); | |
1071 | old_pending_adj = pending_stack_adjust; | |
1072 | pending_stack_adjust = 0; | |
1073 | } | |
1074 | ||
1075 | copy = gen_rtx (MEM, BLKmode, | |
1076 | allocate_dynamic_stack_space (size_rtx, | |
1077 | NULL_RTX, | |
1078 | TYPE_ALIGN (type))); | |
1079 | } | |
1080 | else | |
1081 | { | |
1082 | int size = int_size_in_bytes (type); | |
6fa51029 | 1083 | copy = assign_stack_temp (TYPE_MODE (type), size, 0); |
5e0de251 | 1084 | } |
51bbfa0c | 1085 | |
05e3bdb9 | 1086 | MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type); |
6e87e69e | 1087 | |
5e0de251 | 1088 | store_expr (args[i].tree_value, copy, 0); |
ba3a053e | 1089 | is_const = 0; |
5e0de251 DE |
1090 | |
1091 | args[i].tree_value = build1 (ADDR_EXPR, | |
1092 | build_pointer_type (type), | |
1093 | make_tree (type, copy)); | |
1094 | type = build_pointer_type (type); | |
1095 | } | |
51bbfa0c | 1096 | } |
51bbfa0c | 1097 | |
84b55618 | 1098 | mode = TYPE_MODE (type); |
321e0bba | 1099 | unsignedp = TREE_UNSIGNED (type); |
84b55618 RK |
1100 | |
1101 | #ifdef PROMOTE_FUNCTION_ARGS | |
321e0bba | 1102 | mode = promote_mode (type, mode, &unsignedp, 1); |
84b55618 RK |
1103 | #endif |
1104 | ||
321e0bba | 1105 | args[i].unsignedp = unsignedp; |
1efe6448 | 1106 | args[i].mode = mode; |
84b55618 | 1107 | args[i].reg = FUNCTION_ARG (args_so_far, mode, type, |
51bbfa0c RS |
1108 | argpos < n_named_args); |
1109 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
1110 | if (args[i].reg) | |
1111 | args[i].partial | |
84b55618 | 1112 | = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, type, |
51bbfa0c RS |
1113 | argpos < n_named_args); |
1114 | #endif | |
1115 | ||
84b55618 | 1116 | args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type); |
51bbfa0c | 1117 | |
cacbd532 JW |
1118 | /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]), |
1119 | it means that we are to pass this arg in the register(s) designated | |
1120 | by the PARALLEL, but also to pass it in the stack. */ | |
1121 | if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL | |
1122 | && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0) | |
1123 | args[i].pass_on_stack = 1; | |
51bbfa0c RS |
1124 | |
1125 | /* If this is an addressable type, we must preallocate the stack | |
1126 | since we must evaluate the object into its final location. | |
1127 | ||
1128 | If this is to be passed in both registers and the stack, it is simpler | |
1129 | to preallocate. */ | |
1130 | if (TREE_ADDRESSABLE (type) | |
1131 | || (args[i].pass_on_stack && args[i].reg != 0)) | |
1132 | must_preallocate = 1; | |
1133 | ||
1134 | /* If this is an addressable type, we cannot pre-evaluate it. Thus, | |
1135 | we cannot consider this function call constant. */ | |
1136 | if (TREE_ADDRESSABLE (type)) | |
1137 | is_const = 0; | |
1138 | ||
1139 | /* Compute the stack-size of this argument. */ | |
1140 | if (args[i].reg == 0 || args[i].partial != 0 | |
1141 | #ifdef REG_PARM_STACK_SPACE | |
6f90e075 | 1142 | || reg_parm_stack_space > 0 |
51bbfa0c RS |
1143 | #endif |
1144 | || args[i].pass_on_stack) | |
1efe6448 | 1145 | locate_and_pad_parm (mode, type, |
51bbfa0c RS |
1146 | #ifdef STACK_PARMS_IN_REG_PARM_AREA |
1147 | 1, | |
1148 | #else | |
1149 | args[i].reg != 0, | |
1150 | #endif | |
1151 | fndecl, &args_size, &args[i].offset, | |
1152 | &args[i].size); | |
1153 | ||
1154 | #ifndef ARGS_GROW_DOWNWARD | |
1155 | args[i].slot_offset = args_size; | |
1156 | #endif | |
1157 | ||
1158 | #ifndef REG_PARM_STACK_SPACE | |
1159 | /* If a part of the arg was put into registers, | |
1160 | don't include that part in the amount pushed. */ | |
1161 | if (! args[i].pass_on_stack) | |
1162 | args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD) | |
1163 | / (PARM_BOUNDARY / BITS_PER_UNIT) | |
1164 | * (PARM_BOUNDARY / BITS_PER_UNIT)); | |
1165 | #endif | |
1166 | ||
1167 | /* Update ARGS_SIZE, the total stack space for args so far. */ | |
1168 | ||
1169 | args_size.constant += args[i].size.constant; | |
1170 | if (args[i].size.var) | |
1171 | { | |
1172 | ADD_PARM_SIZE (args_size, args[i].size.var); | |
1173 | } | |
1174 | ||
1175 | /* Since the slot offset points to the bottom of the slot, | |
1176 | we must record it after incrementing if the args grow down. */ | |
1177 | #ifdef ARGS_GROW_DOWNWARD | |
1178 | args[i].slot_offset = args_size; | |
1179 | ||
1180 | args[i].slot_offset.constant = -args_size.constant; | |
1181 | if (args_size.var) | |
1182 | { | |
1183 | SUB_PARM_SIZE (args[i].slot_offset, args_size.var); | |
1184 | } | |
1185 | #endif | |
1186 | ||
1187 | /* Increment ARGS_SO_FAR, which has info about which arg-registers | |
1188 | have been used, etc. */ | |
1189 | ||
1190 | FUNCTION_ARG_ADVANCE (args_so_far, TYPE_MODE (type), type, | |
1191 | argpos < n_named_args); | |
1192 | } | |
1193 | ||
6f90e075 JW |
1194 | #ifdef FINAL_REG_PARM_STACK_SPACE |
1195 | reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, | |
1196 | args_size.var); | |
1197 | #endif | |
1198 | ||
51bbfa0c RS |
1199 | /* Compute the actual size of the argument block required. The variable |
1200 | and constant sizes must be combined, the size may have to be rounded, | |
1201 | and there may be a minimum required size. */ | |
1202 | ||
1203 | original_args_size = args_size; | |
1204 | if (args_size.var) | |
1205 | { | |
1206 | /* If this function requires a variable-sized argument list, don't try to | |
1207 | make a cse'able block for this call. We may be able to do this | |
1208 | eventually, but it is too complicated to keep track of what insns go | |
1209 | in the cse'able block and which don't. */ | |
1210 | ||
1211 | is_const = 0; | |
1212 | must_preallocate = 1; | |
1213 | ||
1214 | args_size.var = ARGS_SIZE_TREE (args_size); | |
1215 | args_size.constant = 0; | |
1216 | ||
1217 | #ifdef STACK_BOUNDARY | |
1218 | if (STACK_BOUNDARY != BITS_PER_UNIT) | |
1219 | args_size.var = round_up (args_size.var, STACK_BYTES); | |
1220 | #endif | |
1221 | ||
1222 | #ifdef REG_PARM_STACK_SPACE | |
6f90e075 | 1223 | if (reg_parm_stack_space > 0) |
51bbfa0c RS |
1224 | { |
1225 | args_size.var | |
1226 | = size_binop (MAX_EXPR, args_size.var, | |
1227 | size_int (REG_PARM_STACK_SPACE (fndecl))); | |
1228 | ||
1229 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
1230 | /* The area corresponding to register parameters is not to count in | |
1231 | the size of the block we need. So make the adjustment. */ | |
1232 | args_size.var | |
1233 | = size_binop (MINUS_EXPR, args_size.var, | |
6f90e075 | 1234 | size_int (reg_parm_stack_space)); |
51bbfa0c RS |
1235 | #endif |
1236 | } | |
1237 | #endif | |
1238 | } | |
1239 | else | |
1240 | { | |
1241 | #ifdef STACK_BOUNDARY | |
1242 | args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) | |
1243 | / STACK_BYTES) * STACK_BYTES); | |
1244 | #endif | |
1245 | ||
1246 | #ifdef REG_PARM_STACK_SPACE | |
1247 | args_size.constant = MAX (args_size.constant, | |
6f90e075 | 1248 | reg_parm_stack_space); |
e1336658 JW |
1249 | #ifdef MAYBE_REG_PARM_STACK_SPACE |
1250 | if (reg_parm_stack_space == 0) | |
1251 | args_size.constant = 0; | |
1252 | #endif | |
51bbfa0c | 1253 | #ifndef OUTGOING_REG_PARM_STACK_SPACE |
6f90e075 | 1254 | args_size.constant -= reg_parm_stack_space; |
51bbfa0c RS |
1255 | #endif |
1256 | #endif | |
1257 | } | |
1258 | ||
1259 | /* See if we have or want to preallocate stack space. | |
1260 | ||
1261 | If we would have to push a partially-in-regs parm | |
1262 | before other stack parms, preallocate stack space instead. | |
1263 | ||
1264 | If the size of some parm is not a multiple of the required stack | |
1265 | alignment, we must preallocate. | |
1266 | ||
1267 | If the total size of arguments that would otherwise create a copy in | |
1268 | a temporary (such as a CALL) is more than half the total argument list | |
1269 | size, preallocation is faster. | |
1270 | ||
1271 | Another reason to preallocate is if we have a machine (like the m88k) | |
1272 | where stack alignment is required to be maintained between every | |
1273 | pair of insns, not just when the call is made. However, we assume here | |
1274 | that such machines either do not have push insns (and hence preallocation | |
1275 | would occur anyway) or the problem is taken care of with | |
1276 | PUSH_ROUNDING. */ | |
1277 | ||
1278 | if (! must_preallocate) | |
1279 | { | |
1280 | int partial_seen = 0; | |
1281 | int copy_to_evaluate_size = 0; | |
1282 | ||
1283 | for (i = 0; i < num_actuals && ! must_preallocate; i++) | |
1284 | { | |
1285 | if (args[i].partial > 0 && ! args[i].pass_on_stack) | |
1286 | partial_seen = 1; | |
1287 | else if (partial_seen && args[i].reg == 0) | |
1288 | must_preallocate = 1; | |
1289 | ||
1290 | if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode | |
1291 | && (TREE_CODE (args[i].tree_value) == CALL_EXPR | |
1292 | || TREE_CODE (args[i].tree_value) == TARGET_EXPR | |
1293 | || TREE_CODE (args[i].tree_value) == COND_EXPR | |
1294 | || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))) | |
1295 | copy_to_evaluate_size | |
1296 | += int_size_in_bytes (TREE_TYPE (args[i].tree_value)); | |
1297 | } | |
1298 | ||
c62f36cf RS |
1299 | if (copy_to_evaluate_size * 2 >= args_size.constant |
1300 | && args_size.constant > 0) | |
51bbfa0c RS |
1301 | must_preallocate = 1; |
1302 | } | |
1303 | ||
1304 | /* If the structure value address will reference the stack pointer, we must | |
1305 | stabilize it. We don't need to do this if we know that we are not going | |
1306 | to adjust the stack pointer in processing this call. */ | |
1307 | ||
1308 | if (structure_value_addr | |
1309 | && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr) | |
1310 | || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr)) | |
1311 | && (args_size.var | |
1312 | #ifndef ACCUMULATE_OUTGOING_ARGS | |
1313 | || args_size.constant | |
1314 | #endif | |
1315 | )) | |
1316 | structure_value_addr = copy_to_reg (structure_value_addr); | |
1317 | ||
1318 | /* If this function call is cse'able, precompute all the parameters. | |
1319 | Note that if the parameter is constructed into a temporary, this will | |
1320 | cause an additional copy because the parameter will be constructed | |
1321 | into a temporary location and then copied into the outgoing arguments. | |
1322 | If a parameter contains a call to alloca and this function uses the | |
1323 | stack, precompute the parameter. */ | |
1324 | ||
1ce0cb53 JW |
1325 | /* If we preallocated the stack space, and some arguments must be passed |
1326 | on the stack, then we must precompute any parameter which contains a | |
1327 | function call which will store arguments on the stack. | |
1328 | Otherwise, evaluating the parameter may clobber previous parameters | |
1329 | which have already been stored into the stack. */ | |
1330 | ||
51bbfa0c RS |
1331 | for (i = 0; i < num_actuals; i++) |
1332 | if (is_const | |
1333 | || ((args_size.var != 0 || args_size.constant != 0) | |
1ce0cb53 JW |
1334 | && calls_function (args[i].tree_value, 1)) |
1335 | || (must_preallocate && (args_size.var != 0 || args_size.constant != 0) | |
1336 | && calls_function (args[i].tree_value, 0))) | |
51bbfa0c | 1337 | { |
657bb6dc JM |
1338 | /* If this is an addressable type, we cannot pre-evaluate it. */ |
1339 | if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))) | |
1340 | abort (); | |
1341 | ||
cc79451b RK |
1342 | push_temp_slots (); |
1343 | ||
51bbfa0c | 1344 | args[i].initial_value = args[i].value |
e5d70561 | 1345 | = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0); |
1efe6448 | 1346 | |
51bbfa0c | 1347 | preserve_temp_slots (args[i].value); |
cc79451b | 1348 | pop_temp_slots (); |
51bbfa0c RS |
1349 | |
1350 | /* ANSI doesn't require a sequence point here, | |
1351 | but PCC has one, so this will avoid some problems. */ | |
1352 | emit_queue (); | |
8e6c802b RK |
1353 | |
1354 | args[i].initial_value = args[i].value | |
1355 | = protect_from_queue (args[i].initial_value, 0); | |
1356 | ||
1357 | if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode) | |
1358 | args[i].value | |
1359 | = convert_modes (args[i].mode, | |
1360 | TYPE_MODE (TREE_TYPE (args[i].tree_value)), | |
1361 | args[i].value, args[i].unsignedp); | |
51bbfa0c RS |
1362 | } |
1363 | ||
1364 | /* Now we are about to start emitting insns that can be deleted | |
1365 | if a libcall is deleted. */ | |
1366 | if (is_const) | |
1367 | start_sequence (); | |
1368 | ||
1369 | /* If we have no actual push instructions, or shouldn't use them, | |
1370 | make space for all args right now. */ | |
1371 | ||
1372 | if (args_size.var != 0) | |
1373 | { | |
1374 | if (old_stack_level == 0) | |
1375 | { | |
e5d70561 | 1376 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
51bbfa0c RS |
1377 | old_pending_adj = pending_stack_adjust; |
1378 | pending_stack_adjust = 0; | |
d64f5a78 | 1379 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 RS |
1380 | /* stack_arg_under_construction says whether a stack arg is |
1381 | being constructed at the old stack level. Pushing the stack | |
1382 | gets a clean outgoing argument block. */ | |
1383 | old_stack_arg_under_construction = stack_arg_under_construction; | |
1384 | stack_arg_under_construction = 0; | |
d64f5a78 | 1385 | #endif |
51bbfa0c RS |
1386 | } |
1387 | argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0); | |
1388 | } | |
26a258fe | 1389 | else |
51bbfa0c RS |
1390 | { |
1391 | /* Note that we must go through the motions of allocating an argument | |
1392 | block even if the size is zero because we may be storing args | |
1393 | in the area reserved for register arguments, which may be part of | |
1394 | the stack frame. */ | |
26a258fe | 1395 | |
51bbfa0c RS |
1396 | int needed = args_size.constant; |
1397 | ||
0f41302f MS |
1398 | /* Store the maximum argument space used. It will be pushed by |
1399 | the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow | |
1400 | checking). */ | |
51bbfa0c RS |
1401 | |
1402 | if (needed > current_function_outgoing_args_size) | |
1403 | current_function_outgoing_args_size = needed; | |
1404 | ||
26a258fe PB |
1405 | if (must_preallocate) |
1406 | { | |
1407 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
1408 | /* Since the stack pointer will never be pushed, it is possible for | |
1409 | the evaluation of a parm to clobber something we have already | |
1410 | written to the stack. Since most function calls on RISC machines | |
1411 | do not use the stack, this is uncommon, but must work correctly. | |
1412 | ||
1413 | Therefore, we save any area of the stack that was already written | |
1414 | and that we are using. Here we set up to do this by making a new | |
1415 | stack usage map from the old one. The actual save will be done | |
1416 | by store_one_arg. | |
1417 | ||
1418 | Another approach might be to try to reorder the argument | |
1419 | evaluations to avoid this conflicting stack usage. */ | |
1420 | ||
51bbfa0c | 1421 | #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) |
26a258fe PB |
1422 | /* Since we will be writing into the entire argument area, the |
1423 | map must be allocated for its entire size, not just the part that | |
1424 | is the responsibility of the caller. */ | |
1425 | needed += reg_parm_stack_space; | |
51bbfa0c RS |
1426 | #endif |
1427 | ||
1428 | #ifdef ARGS_GROW_DOWNWARD | |
26a258fe PB |
1429 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, |
1430 | needed + 1); | |
51bbfa0c | 1431 | #else |
26a258fe PB |
1432 | highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, |
1433 | needed); | |
51bbfa0c | 1434 | #endif |
26a258fe | 1435 | stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); |
51bbfa0c | 1436 | |
26a258fe PB |
1437 | if (initial_highest_arg_in_use) |
1438 | bcopy (initial_stack_usage_map, stack_usage_map, | |
1439 | initial_highest_arg_in_use); | |
51bbfa0c | 1440 | |
26a258fe PB |
1441 | if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) |
1442 | bzero (&stack_usage_map[initial_highest_arg_in_use], | |
1443 | highest_outgoing_arg_in_use - initial_highest_arg_in_use); | |
1444 | needed = 0; | |
2f4aa534 | 1445 | |
26a258fe PB |
1446 | /* The address of the outgoing argument list must not be copied to a |
1447 | register here, because argblock would be left pointing to the | |
1448 | wrong place after the call to allocate_dynamic_stack_space below. | |
1449 | */ | |
2f4aa534 | 1450 | |
26a258fe | 1451 | argblock = virtual_outgoing_args_rtx; |
2f4aa534 | 1452 | |
51bbfa0c | 1453 | #else /* not ACCUMULATE_OUTGOING_ARGS */ |
26a258fe | 1454 | if (inhibit_defer_pop == 0) |
51bbfa0c | 1455 | { |
26a258fe PB |
1456 | /* Try to reuse some or all of the pending_stack_adjust |
1457 | to get this space. Maybe we can avoid any pushing. */ | |
1458 | if (needed > pending_stack_adjust) | |
1459 | { | |
1460 | needed -= pending_stack_adjust; | |
1461 | pending_stack_adjust = 0; | |
1462 | } | |
1463 | else | |
1464 | { | |
1465 | pending_stack_adjust -= needed; | |
1466 | needed = 0; | |
1467 | } | |
51bbfa0c | 1468 | } |
26a258fe PB |
1469 | /* Special case this because overhead of `push_block' in this |
1470 | case is non-trivial. */ | |
1471 | if (needed == 0) | |
1472 | argblock = virtual_outgoing_args_rtx; | |
51bbfa0c | 1473 | else |
26a258fe PB |
1474 | argblock = push_block (GEN_INT (needed), 0, 0); |
1475 | ||
1476 | /* We only really need to call `copy_to_reg' in the case where push | |
1477 | insns are going to be used to pass ARGBLOCK to a function | |
1478 | call in ARGS. In that case, the stack pointer changes value | |
1479 | from the allocation point to the call point, and hence | |
1480 | the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well. | |
1481 | But might as well always do it. */ | |
1482 | argblock = copy_to_reg (argblock); | |
51bbfa0c | 1483 | #endif /* not ACCUMULATE_OUTGOING_ARGS */ |
26a258fe | 1484 | } |
51bbfa0c RS |
1485 | } |
1486 | ||
bfbf933a RS |
1487 | #ifdef ACCUMULATE_OUTGOING_ARGS |
1488 | /* The save/restore code in store_one_arg handles all cases except one: | |
1489 | a constructor call (including a C function returning a BLKmode struct) | |
1490 | to initialize an argument. */ | |
1491 | if (stack_arg_under_construction) | |
1492 | { | |
1493 | #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) | |
e5d70561 | 1494 | rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant); |
bfbf933a | 1495 | #else |
e5d70561 | 1496 | rtx push_size = GEN_INT (args_size.constant); |
bfbf933a RS |
1497 | #endif |
1498 | if (old_stack_level == 0) | |
1499 | { | |
e5d70561 | 1500 | emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); |
bfbf933a RS |
1501 | old_pending_adj = pending_stack_adjust; |
1502 | pending_stack_adjust = 0; | |
1503 | /* stack_arg_under_construction says whether a stack arg is | |
1504 | being constructed at the old stack level. Pushing the stack | |
1505 | gets a clean outgoing argument block. */ | |
1506 | old_stack_arg_under_construction = stack_arg_under_construction; | |
1507 | stack_arg_under_construction = 0; | |
1508 | /* Make a new map for the new argument list. */ | |
1509 | stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use); | |
1510 | bzero (stack_usage_map, highest_outgoing_arg_in_use); | |
1511 | highest_outgoing_arg_in_use = 0; | |
1512 | } | |
e5d70561 | 1513 | allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT); |
bfbf933a RS |
1514 | } |
1515 | /* If argument evaluation might modify the stack pointer, copy the | |
1516 | address of the argument list to a register. */ | |
1517 | for (i = 0; i < num_actuals; i++) | |
1518 | if (args[i].pass_on_stack) | |
1519 | { | |
1520 | argblock = copy_addr_to_reg (argblock); | |
1521 | break; | |
1522 | } | |
1523 | #endif | |
1524 | ||
1525 | ||
51bbfa0c RS |
1526 | /* If we preallocated stack space, compute the address of each argument. |
1527 | We need not ensure it is a valid memory address here; it will be | |
1528 | validized when it is used. */ | |
1529 | if (argblock) | |
1530 | { | |
1531 | rtx arg_reg = argblock; | |
1532 | int arg_offset = 0; | |
1533 | ||
1534 | if (GET_CODE (argblock) == PLUS) | |
1535 | arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1)); | |
1536 | ||
1537 | for (i = 0; i < num_actuals; i++) | |
1538 | { | |
1539 | rtx offset = ARGS_SIZE_RTX (args[i].offset); | |
1540 | rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset); | |
1541 | rtx addr; | |
1542 | ||
1543 | /* Skip this parm if it will not be passed on the stack. */ | |
1544 | if (! args[i].pass_on_stack && args[i].reg != 0) | |
1545 | continue; | |
1546 | ||
1547 | if (GET_CODE (offset) == CONST_INT) | |
1548 | addr = plus_constant (arg_reg, INTVAL (offset)); | |
1549 | else | |
1550 | addr = gen_rtx (PLUS, Pmode, arg_reg, offset); | |
1551 | ||
1552 | addr = plus_constant (addr, arg_offset); | |
1efe6448 | 1553 | args[i].stack = gen_rtx (MEM, args[i].mode, addr); |
0c0600d5 | 1554 | MEM_IN_STRUCT_P (args[i].stack) |
05e3bdb9 | 1555 | = AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value)); |
51bbfa0c RS |
1556 | |
1557 | if (GET_CODE (slot_offset) == CONST_INT) | |
1558 | addr = plus_constant (arg_reg, INTVAL (slot_offset)); | |
1559 | else | |
1560 | addr = gen_rtx (PLUS, Pmode, arg_reg, slot_offset); | |
1561 | ||
1562 | addr = plus_constant (addr, arg_offset); | |
1efe6448 | 1563 | args[i].stack_slot = gen_rtx (MEM, args[i].mode, addr); |
51bbfa0c RS |
1564 | } |
1565 | } | |
1566 | ||
1567 | #ifdef PUSH_ARGS_REVERSED | |
1568 | #ifdef STACK_BOUNDARY | |
1569 | /* If we push args individually in reverse order, perform stack alignment | |
1570 | before the first push (the last arg). */ | |
1571 | if (argblock == 0) | |
e5d70561 RK |
1572 | anti_adjust_stack (GEN_INT (args_size.constant |
1573 | - original_args_size.constant)); | |
51bbfa0c RS |
1574 | #endif |
1575 | #endif | |
1576 | ||
1577 | /* Don't try to defer pops if preallocating, not even from the first arg, | |
1578 | since ARGBLOCK probably refers to the SP. */ | |
1579 | if (argblock) | |
1580 | NO_DEFER_POP; | |
1581 | ||
1582 | /* Get the function to call, in the form of RTL. */ | |
1583 | if (fndecl) | |
ef5d30c9 RK |
1584 | { |
1585 | /* If this is the first use of the function, see if we need to | |
1586 | make an external definition for it. */ | |
1587 | if (! TREE_USED (fndecl)) | |
1588 | { | |
1589 | assemble_external (fndecl); | |
1590 | TREE_USED (fndecl) = 1; | |
1591 | } | |
1592 | ||
1593 | /* Get a SYMBOL_REF rtx for the function address. */ | |
1594 | funexp = XEXP (DECL_RTL (fndecl), 0); | |
1595 | } | |
51bbfa0c RS |
1596 | else |
1597 | /* Generate an rtx (probably a pseudo-register) for the address. */ | |
1598 | { | |
cc79451b | 1599 | push_temp_slots (); |
e5d70561 | 1600 | funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0); |
cc79451b | 1601 | pop_temp_slots (); /* FUNEXP can't be BLKmode */ |
51bbfa0c RS |
1602 | emit_queue (); |
1603 | } | |
1604 | ||
1605 | /* Figure out the register where the value, if any, will come back. */ | |
1606 | valreg = 0; | |
1607 | if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode | |
1608 | && ! structure_value_addr) | |
1609 | { | |
1610 | if (pcc_struct_value) | |
1611 | valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)), | |
1612 | fndecl); | |
1613 | else | |
1614 | valreg = hard_function_value (TREE_TYPE (exp), fndecl); | |
1615 | } | |
1616 | ||
1617 | /* Precompute all register parameters. It isn't safe to compute anything | |
0f41302f | 1618 | once we have started filling any specific hard regs. */ |
51bbfa0c RS |
1619 | reg_parm_seen = 0; |
1620 | for (i = 0; i < num_actuals; i++) | |
1621 | if (args[i].reg != 0 && ! args[i].pass_on_stack) | |
1622 | { | |
1623 | reg_parm_seen = 1; | |
1624 | ||
1625 | if (args[i].value == 0) | |
1626 | { | |
cc79451b | 1627 | push_temp_slots (); |
e5d70561 RK |
1628 | args[i].value = expand_expr (args[i].tree_value, NULL_RTX, |
1629 | VOIDmode, 0); | |
51bbfa0c | 1630 | preserve_temp_slots (args[i].value); |
cc79451b | 1631 | pop_temp_slots (); |
51bbfa0c RS |
1632 | |
1633 | /* ANSI doesn't require a sequence point here, | |
1634 | but PCC has one, so this will avoid some problems. */ | |
1635 | emit_queue (); | |
1636 | } | |
84b55618 RK |
1637 | |
1638 | /* If we are to promote the function arg to a wider mode, | |
1639 | do it now. */ | |
84b55618 | 1640 | |
843fec55 RK |
1641 | if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value))) |
1642 | args[i].value | |
1643 | = convert_modes (args[i].mode, | |
1644 | TYPE_MODE (TREE_TYPE (args[i].tree_value)), | |
1645 | args[i].value, args[i].unsignedp); | |
ebef2728 RK |
1646 | |
1647 | /* If the value is expensive, and we are inside an appropriately | |
1648 | short loop, put the value into a pseudo and then put the pseudo | |
01368078 RK |
1649 | into the hard reg. |
1650 | ||
1651 | For small register classes, also do this if this call uses | |
1652 | register parameters. This is to avoid reload conflicts while | |
1653 | loading the parameters registers. */ | |
ebef2728 RK |
1654 | |
1655 | if ((! (GET_CODE (args[i].value) == REG | |
1656 | || (GET_CODE (args[i].value) == SUBREG | |
1657 | && GET_CODE (SUBREG_REG (args[i].value)) == REG))) | |
1658 | && args[i].mode != BLKmode | |
1659 | && rtx_cost (args[i].value, SET) > 2 | |
01368078 | 1660 | #ifdef SMALL_REGISTER_CLASSES |
f95182a4 ILT |
1661 | && ((SMALL_REGISTER_CLASSES && reg_parm_seen) |
1662 | || preserve_subexpressions_p ()) | |
01368078 | 1663 | #else |
4f48d56a | 1664 | && preserve_subexpressions_p () |
01368078 | 1665 | #endif |
4f48d56a | 1666 | ) |
ebef2728 | 1667 | args[i].value = copy_to_mode_reg (args[i].mode, args[i].value); |
51bbfa0c RS |
1668 | } |
1669 | ||
1670 | #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE) | |
1671 | /* The argument list is the property of the called routine and it | |
1672 | may clobber it. If the fixed area has been used for previous | |
1673 | parameters, we must save and restore it. | |
1674 | ||
1675 | Here we compute the boundary of the that needs to be saved, if any. */ | |
1676 | ||
b94301c2 RS |
1677 | #ifdef ARGS_GROW_DOWNWARD |
1678 | for (i = 0; i < reg_parm_stack_space + 1; i++) | |
1679 | #else | |
6f90e075 | 1680 | for (i = 0; i < reg_parm_stack_space; i++) |
b94301c2 | 1681 | #endif |
51bbfa0c RS |
1682 | { |
1683 | if (i >= highest_outgoing_arg_in_use | |
1684 | || stack_usage_map[i] == 0) | |
1685 | continue; | |
1686 | ||
1687 | if (low_to_save == -1) | |
1688 | low_to_save = i; | |
1689 | ||
1690 | high_to_save = i; | |
1691 | } | |
1692 | ||
1693 | if (low_to_save >= 0) | |
1694 | { | |
1695 | int num_to_save = high_to_save - low_to_save + 1; | |
1696 | enum machine_mode save_mode | |
1697 | = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); | |
1698 | rtx stack_area; | |
1699 | ||
1700 | /* If we don't have the required alignment, must do this in BLKmode. */ | |
1701 | if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode), | |
1702 | BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) | |
1703 | save_mode = BLKmode; | |
1704 | ||
1705 | stack_area = gen_rtx (MEM, save_mode, | |
1706 | memory_address (save_mode, | |
b94301c2 RS |
1707 | |
1708 | #ifdef ARGS_GROW_DOWNWARD | |
1709 | plus_constant (argblock, | |
1710 | - high_to_save) | |
1711 | #else | |
51bbfa0c | 1712 | plus_constant (argblock, |
b94301c2 RS |
1713 | low_to_save) |
1714 | #endif | |
1715 | )); | |
51bbfa0c RS |
1716 | if (save_mode == BLKmode) |
1717 | { | |
6fa51029 | 1718 | save_area = assign_stack_temp (BLKmode, num_to_save, 0); |
3668e76e | 1719 | MEM_IN_STRUCT_P (save_area) = 0; |
51bbfa0c | 1720 | emit_block_move (validize_mem (save_area), stack_area, |
e5d70561 | 1721 | GEN_INT (num_to_save), |
51bbfa0c RS |
1722 | PARM_BOUNDARY / BITS_PER_UNIT); |
1723 | } | |
1724 | else | |
1725 | { | |
1726 | save_area = gen_reg_rtx (save_mode); | |
1727 | emit_move_insn (save_area, stack_area); | |
1728 | } | |
1729 | } | |
1730 | #endif | |
1731 | ||
1732 | ||
1733 | /* Now store (and compute if necessary) all non-register parms. | |
1734 | These come before register parms, since they can require block-moves, | |
1735 | which could clobber the registers used for register parms. | |
1736 | Parms which have partial registers are not stored here, | |
1737 | but we do preallocate space here if they want that. */ | |
1738 | ||
1739 | for (i = 0; i < num_actuals; i++) | |
1740 | if (args[i].reg == 0 || args[i].pass_on_stack) | |
1741 | store_one_arg (&args[i], argblock, may_be_alloca, | |
6f90e075 | 1742 | args_size.var != 0, fndecl, reg_parm_stack_space); |
51bbfa0c | 1743 | |
4ab56118 RK |
1744 | /* If we have a parm that is passed in registers but not in memory |
1745 | and whose alignment does not permit a direct copy into registers, | |
1746 | make a group of pseudos that correspond to each register that we | |
1747 | will later fill. */ | |
1748 | ||
45d44c98 RK |
1749 | if (STRICT_ALIGNMENT) |
1750 | for (i = 0; i < num_actuals; i++) | |
1751 | if (args[i].reg != 0 && ! args[i].pass_on_stack | |
4ab56118 | 1752 | && args[i].mode == BLKmode |
45d44c98 RK |
1753 | && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value)) |
1754 | < MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD))) | |
1755 | { | |
1756 | int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value)); | |
1757 | int big_endian_correction = 0; | |
4ab56118 | 1758 | |
45d44c98 RK |
1759 | args[i].n_aligned_regs |
1760 | = args[i].partial ? args[i].partial | |
1761 | : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; | |
4ab56118 | 1762 | |
45d44c98 RK |
1763 | args[i].aligned_regs = (rtx *) alloca (sizeof (rtx) |
1764 | * args[i].n_aligned_regs); | |
4ab56118 | 1765 | |
45d44c98 RK |
1766 | /* Structures smaller than a word are aligned to the least |
1767 | significant byte (to the right). On a BYTES_BIG_ENDIAN machine, | |
1768 | this means we must skip the empty high order bytes when | |
1769 | calculating the bit offset. */ | |
1770 | if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD) | |
1771 | big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT)); | |
8498efd0 | 1772 | |
45d44c98 RK |
1773 | for (j = 0; j < args[i].n_aligned_regs; j++) |
1774 | { | |
1775 | rtx reg = gen_reg_rtx (word_mode); | |
1776 | rtx word = operand_subword_force (args[i].value, j, BLKmode); | |
1777 | int bitsize = TYPE_ALIGN (TREE_TYPE (args[i].tree_value)); | |
1778 | int bitpos; | |
1779 | ||
1780 | args[i].aligned_regs[j] = reg; | |
1781 | ||
1782 | /* Clobber REG and move each partword into it. Ensure we don't | |
1783 | go past the end of the structure. Note that the loop below | |
1784 | works because we've already verified that padding | |
1785 | and endianness are compatible. */ | |
1786 | ||
1787 | emit_insn (gen_rtx (CLOBBER, VOIDmode, reg)); | |
1788 | ||
1789 | for (bitpos = 0; | |
1790 | bitpos < BITS_PER_WORD && bytes > 0; | |
1791 | bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT) | |
1792 | { | |
1793 | int xbitpos = bitpos + big_endian_correction; | |
1794 | ||
1795 | store_bit_field (reg, bitsize, xbitpos, word_mode, | |
1796 | extract_bit_field (word, bitsize, bitpos, 1, | |
1797 | NULL_RTX, word_mode, | |
1798 | word_mode, | |
1799 | bitsize / BITS_PER_UNIT, | |
1800 | BITS_PER_WORD), | |
1801 | bitsize / BITS_PER_UNIT, BITS_PER_WORD); | |
1802 | } | |
1803 | } | |
1804 | } | |
4ab56118 | 1805 | |
51bbfa0c RS |
1806 | /* Now store any partially-in-registers parm. |
1807 | This is the last place a block-move can happen. */ | |
1808 | if (reg_parm_seen) | |
1809 | for (i = 0; i < num_actuals; i++) | |
1810 | if (args[i].partial != 0 && ! args[i].pass_on_stack) | |
1811 | store_one_arg (&args[i], argblock, may_be_alloca, | |
6f90e075 | 1812 | args_size.var != 0, fndecl, reg_parm_stack_space); |
51bbfa0c RS |
1813 | |
1814 | #ifndef PUSH_ARGS_REVERSED | |
1815 | #ifdef STACK_BOUNDARY | |
1816 | /* If we pushed args in forward order, perform stack alignment | |
1817 | after pushing the last arg. */ | |
1818 | if (argblock == 0) | |
e5d70561 RK |
1819 | anti_adjust_stack (GEN_INT (args_size.constant |
1820 | - original_args_size.constant)); | |
51bbfa0c RS |
1821 | #endif |
1822 | #endif | |
1823 | ||
756e0e12 RS |
1824 | /* If register arguments require space on the stack and stack space |
1825 | was not preallocated, allocate stack space here for arguments | |
1826 | passed in registers. */ | |
6e716e89 | 1827 | #if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE) |
756e0e12 | 1828 | if (must_preallocate == 0 && reg_parm_stack_space > 0) |
e5d70561 | 1829 | anti_adjust_stack (GEN_INT (reg_parm_stack_space)); |
756e0e12 RS |
1830 | #endif |
1831 | ||
51bbfa0c RS |
1832 | /* Pass the function the address in which to return a structure value. */ |
1833 | if (structure_value_addr && ! structure_value_addr_parm) | |
1834 | { | |
1835 | emit_move_insn (struct_value_rtx, | |
1836 | force_reg (Pmode, | |
e5d70561 RK |
1837 | force_operand (structure_value_addr, |
1838 | NULL_RTX))); | |
51bbfa0c | 1839 | if (GET_CODE (struct_value_rtx) == REG) |
77cac2f2 | 1840 | use_reg (&call_fusage, struct_value_rtx); |
51bbfa0c RS |
1841 | } |
1842 | ||
77cac2f2 | 1843 | funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen); |
8b0f9101 | 1844 | |
51bbfa0c RS |
1845 | /* Now do the register loads required for any wholly-register parms or any |
1846 | parms which are passed both on the stack and in a register. Their | |
1847 | expressions were already evaluated. | |
1848 | ||
1849 | Mark all register-parms as living through the call, putting these USE | |
77cac2f2 | 1850 | insns in the CALL_INSN_FUNCTION_USAGE field. */ |
51bbfa0c RS |
1851 | |
1852 | for (i = 0; i < num_actuals; i++) | |
1853 | { | |
cacbd532 | 1854 | rtx reg = args[i].reg; |
51bbfa0c | 1855 | int partial = args[i].partial; |
cacbd532 | 1856 | int nregs; |
51bbfa0c | 1857 | |
cacbd532 | 1858 | if (reg) |
51bbfa0c | 1859 | { |
6b972c4f JW |
1860 | /* Set to non-negative if must move a word at a time, even if just |
1861 | one word (e.g, partial == 1 && mode == DFmode). Set to -1 if | |
1862 | we just use a normal move insn. This value can be zero if the | |
1863 | argument is a zero size structure with no fields. */ | |
51bbfa0c RS |
1864 | nregs = (partial ? partial |
1865 | : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode | |
6b972c4f JW |
1866 | ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value)) |
1867 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
1868 | : -1)); | |
51bbfa0c | 1869 | |
cacbd532 JW |
1870 | /* Handle calls that pass values in multiple non-contiguous |
1871 | locations. The Irix 6 ABI has examples of this. */ | |
1872 | ||
1873 | if (GET_CODE (reg) == PARALLEL) | |
1874 | emit_group_load (reg, args[i].value); | |
1875 | ||
51bbfa0c RS |
1876 | /* If simple case, just do move. If normal partial, store_one_arg |
1877 | has already loaded the register for us. In all other cases, | |
1878 | load the register(s) from memory. */ | |
1879 | ||
cacbd532 | 1880 | else if (nregs == -1) |
51bbfa0c | 1881 | emit_move_insn (reg, args[i].value); |
4ab56118 | 1882 | |
4ab56118 RK |
1883 | /* If we have pre-computed the values to put in the registers in |
1884 | the case of non-aligned structures, copy them in now. */ | |
1885 | ||
1886 | else if (args[i].n_aligned_regs != 0) | |
1887 | for (j = 0; j < args[i].n_aligned_regs; j++) | |
1888 | emit_move_insn (gen_rtx (REG, word_mode, REGNO (reg) + j), | |
1889 | args[i].aligned_regs[j]); | |
4ab56118 | 1890 | |
cacbd532 | 1891 | else if (partial == 0 || args[i].pass_on_stack) |
6b972c4f JW |
1892 | move_block_to_reg (REGNO (reg), |
1893 | validize_mem (args[i].value), nregs, | |
1894 | args[i].mode); | |
0304dfbb | 1895 | |
cacbd532 JW |
1896 | /* Handle calls that pass values in multiple non-contiguous |
1897 | locations. The Irix 6 ABI has examples of this. */ | |
1898 | if (GET_CODE (reg) == PARALLEL) | |
1899 | use_group_regs (&call_fusage, reg); | |
1900 | else if (nregs == -1) | |
0304dfbb DE |
1901 | use_reg (&call_fusage, reg); |
1902 | else | |
1903 | use_regs (&call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs); | |
51bbfa0c RS |
1904 | } |
1905 | } | |
1906 | ||
1907 | /* Perform postincrements before actually calling the function. */ | |
1908 | emit_queue (); | |
1909 | ||
1910 | /* All arguments and registers used for the call must be set up by now! */ | |
1911 | ||
51bbfa0c | 1912 | /* Generate the actual call instruction. */ |
2c8da025 | 1913 | emit_call_1 (funexp, fndecl, funtype, args_size.constant, struct_value_size, |
51bbfa0c | 1914 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
77cac2f2 | 1915 | valreg, old_inhibit_defer_pop, call_fusage, is_const); |
51bbfa0c RS |
1916 | |
1917 | /* If call is cse'able, make appropriate pair of reg-notes around it. | |
1918 | Test valreg so we don't crash; may safely ignore `const' | |
80a3ad45 JW |
1919 | if return type is void. Disable for PARALLEL return values, because |
1920 | we have no way to move such values into a pseudo register. */ | |
1921 | if (is_const && valreg != 0 && GET_CODE (valreg) != PARALLEL) | |
51bbfa0c RS |
1922 | { |
1923 | rtx note = 0; | |
1924 | rtx temp = gen_reg_rtx (GET_MODE (valreg)); | |
1925 | rtx insns; | |
1926 | ||
1927 | /* Construct an "equal form" for the value which mentions all the | |
1928 | arguments in order as well as the function name. */ | |
1929 | #ifdef PUSH_ARGS_REVERSED | |
1930 | for (i = 0; i < num_actuals; i++) | |
1931 | note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note); | |
1932 | #else | |
1933 | for (i = num_actuals - 1; i >= 0; i--) | |
1934 | note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note); | |
1935 | #endif | |
1936 | note = gen_rtx (EXPR_LIST, VOIDmode, funexp, note); | |
1937 | ||
1938 | insns = get_insns (); | |
1939 | end_sequence (); | |
1940 | ||
1941 | emit_libcall_block (insns, temp, valreg, note); | |
1942 | ||
1943 | valreg = temp; | |
1944 | } | |
4f48d56a RK |
1945 | else if (is_const) |
1946 | { | |
1947 | /* Otherwise, just write out the sequence without a note. */ | |
1948 | rtx insns = get_insns (); | |
1949 | ||
1950 | end_sequence (); | |
1951 | emit_insns (insns); | |
1952 | } | |
51bbfa0c RS |
1953 | |
1954 | /* For calls to `setjmp', etc., inform flow.c it should complain | |
1955 | if nonvolatile values are live. */ | |
1956 | ||
1957 | if (returns_twice) | |
1958 | { | |
1959 | emit_note (name, NOTE_INSN_SETJMP); | |
1960 | current_function_calls_setjmp = 1; | |
1961 | } | |
1962 | ||
1963 | if (is_longjmp) | |
1964 | current_function_calls_longjmp = 1; | |
1965 | ||
1966 | /* Notice functions that cannot return. | |
1967 | If optimizing, insns emitted below will be dead. | |
1968 | If not optimizing, they will exist, which is useful | |
1969 | if the user uses the `return' command in the debugger. */ | |
1970 | ||
1971 | if (is_volatile || is_longjmp) | |
1972 | emit_barrier (); | |
1973 | ||
51bbfa0c RS |
1974 | /* If value type not void, return an rtx for the value. */ |
1975 | ||
1976 | /* If there are cleanups to be called, don't use a hard reg as target. */ | |
1977 | if (cleanups_this_call != old_cleanups | |
1978 | && target && REG_P (target) | |
1979 | && REGNO (target) < FIRST_PSEUDO_REGISTER) | |
1980 | target = 0; | |
1981 | ||
1982 | if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode | |
1983 | || ignore) | |
1984 | { | |
1985 | target = const0_rtx; | |
1986 | } | |
1987 | else if (structure_value_addr) | |
1988 | { | |
1989 | if (target == 0 || GET_CODE (target) != MEM) | |
29008b51 JW |
1990 | { |
1991 | target = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)), | |
1992 | memory_address (TYPE_MODE (TREE_TYPE (exp)), | |
1993 | structure_value_addr)); | |
05e3bdb9 | 1994 | MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); |
29008b51 | 1995 | } |
51bbfa0c RS |
1996 | } |
1997 | else if (pcc_struct_value) | |
1998 | { | |
1999 | if (target == 0) | |
29008b51 | 2000 | { |
30082223 RS |
2001 | /* We used leave the value in the location that it is |
2002 | returned in, but that causes problems if it is used more | |
2003 | than once in one expression. Rather than trying to track | |
2004 | when a copy is required, we always copy when TARGET is | |
2005 | not specified. This calling sequence is only used on | |
2006 | a few machines and TARGET is usually nonzero. */ | |
2007 | if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) | |
6d8b61b9 RS |
2008 | { |
2009 | target = assign_stack_temp (BLKmode, | |
2010 | int_size_in_bytes (TREE_TYPE (exp)), | |
2011 | 0); | |
2012 | ||
05e3bdb9 | 2013 | MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); |
3b780899 | 2014 | |
6d8b61b9 RS |
2015 | /* Save this temp slot around the pop below. */ |
2016 | preserve_temp_slots (target); | |
2017 | } | |
30082223 RS |
2018 | else |
2019 | target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp))); | |
29008b51 | 2020 | } |
30082223 RS |
2021 | |
2022 | if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) | |
51bbfa0c RS |
2023 | emit_move_insn (target, gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)), |
2024 | copy_to_reg (valreg))); | |
2025 | else | |
2026 | emit_block_move (target, gen_rtx (MEM, BLKmode, copy_to_reg (valreg)), | |
2027 | expr_size (exp), | |
2028 | TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT); | |
2029 | } | |
cacbd532 JW |
2030 | /* Handle calls that return values in multiple non-contiguous locations. |
2031 | The Irix 6 ABI has examples of this. */ | |
2032 | else if (GET_CODE (valreg) == PARALLEL) | |
2033 | { | |
2034 | if (target == 0) | |
2035 | { | |
2036 | int bytes = int_size_in_bytes (TREE_TYPE (exp)); | |
2b4092f2 | 2037 | target = assign_stack_temp (TYPE_MODE (TREE_TYPE (exp)), bytes, 0); |
cacbd532 JW |
2038 | MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); |
2039 | preserve_temp_slots (target); | |
2040 | } | |
2041 | ||
2042 | emit_group_store (target, valreg); | |
2043 | } | |
059c3d84 JW |
2044 | else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp)) |
2045 | && GET_MODE (target) == GET_MODE (valreg)) | |
2046 | /* TARGET and VALREG cannot be equal at this point because the latter | |
2047 | would not have REG_FUNCTION_VALUE_P true, while the former would if | |
2048 | it were referring to the same register. | |
2049 | ||
2050 | If they refer to the same register, this move will be a no-op, except | |
2051 | when function inlining is being done. */ | |
2052 | emit_move_insn (target, valreg); | |
766b19fb JL |
2053 | else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) |
2054 | { | |
2055 | /* Some machines (the PA for example) want to return all small | |
2056 | structures in registers regardless of the structure's alignment. | |
2057 | ||
2058 | Deal with them explicitly by copying from the return registers | |
2059 | into the target MEM locations. */ | |
2060 | int bytes = int_size_in_bytes (TREE_TYPE (exp)); | |
2061 | int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; | |
2062 | int i; | |
2063 | enum machine_mode tmpmode; | |
1b5c5873 RK |
2064 | rtx src, dst; |
2065 | int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (exp)), BITS_PER_WORD); | |
2066 | int bitpos, xbitpos, big_endian_correction = 0; | |
766b19fb JL |
2067 | |
2068 | if (target == 0) | |
822e3422 RK |
2069 | { |
2070 | target = assign_stack_temp (BLKmode, bytes, 0); | |
2071 | MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp)); | |
2072 | preserve_temp_slots (target); | |
2073 | } | |
766b19fb | 2074 | |
e934eef9 RK |
2075 | /* This code assumes valreg is at least a full word. If it isn't, |
2076 | copy it into a new pseudo which is a full word. */ | |
2077 | if (GET_MODE (valreg) != BLKmode | |
2078 | && GET_MODE_SIZE (GET_MODE (valreg)) < UNITS_PER_WORD) | |
144a3150 | 2079 | valreg = convert_to_mode (word_mode, valreg, |
e934eef9 RK |
2080 | TREE_UNSIGNED (TREE_TYPE (exp))); |
2081 | ||
1b5c5873 RK |
2082 | /* Structures whose size is not a multiple of a word are aligned |
2083 | to the least significant byte (to the right). On a BYTES_BIG_ENDIAN | |
2084 | machine, this means we must skip the empty high order bytes when | |
2085 | calculating the bit offset. */ | |
2086 | if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD) | |
2087 | big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) | |
2088 | * BITS_PER_UNIT)); | |
2089 | ||
2090 | /* Copy the structure BITSIZE bites at a time. | |
2091 | ||
2092 | We could probably emit more efficient code for machines | |
766b19fb JL |
2093 | which do not use strict alignment, but it doesn't seem |
2094 | worth the effort at the current time. */ | |
1b5c5873 RK |
2095 | for (bitpos = 0, xbitpos = big_endian_correction; |
2096 | bitpos < bytes * BITS_PER_UNIT; | |
2097 | bitpos += bitsize, xbitpos += bitsize) | |
766b19fb | 2098 | { |
1b5c5873 RK |
2099 | |
2100 | /* We need a new source operand each time xbitpos is on a | |
2101 | word boundary and when xbitpos == big_endian_correction | |
2102 | (the first time through). */ | |
2103 | if (xbitpos % BITS_PER_WORD == 0 | |
2104 | || xbitpos == big_endian_correction) | |
2105 | src = operand_subword_force (valreg, | |
2106 | xbitpos / BITS_PER_WORD, | |
2107 | BLKmode); | |
2108 | ||
2109 | /* We need a new destination operand each time bitpos is on | |
2110 | a word boundary. */ | |
2111 | if (bitpos % BITS_PER_WORD == 0) | |
2112 | dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, BLKmode); | |
766b19fb | 2113 | |
1b5c5873 RK |
2114 | /* Use xbitpos for the source extraction (right justified) and |
2115 | xbitpos for the destination store (left justified). */ | |
2116 | store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode, | |
2117 | extract_bit_field (src, bitsize, | |
2118 | xbitpos % BITS_PER_WORD, 1, | |
2119 | NULL_RTX, word_mode, | |
2120 | word_mode, | |
2121 | bitsize / BITS_PER_UNIT, | |
2122 | BITS_PER_WORD), | |
2123 | bitsize / BITS_PER_UNIT, BITS_PER_WORD); | |
766b19fb JL |
2124 | } |
2125 | } | |
51bbfa0c RS |
2126 | else |
2127 | target = copy_to_reg (valreg); | |
2128 | ||
84b55618 | 2129 | #ifdef PROMOTE_FUNCTION_RETURN |
5d2ac65e RK |
2130 | /* If we promoted this return value, make the proper SUBREG. TARGET |
2131 | might be const0_rtx here, so be careful. */ | |
2132 | if (GET_CODE (target) == REG | |
766b19fb | 2133 | && TYPE_MODE (TREE_TYPE (exp)) != BLKmode |
5d2ac65e | 2134 | && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) |
84b55618 | 2135 | { |
321e0bba RK |
2136 | tree type = TREE_TYPE (exp); |
2137 | int unsignedp = TREE_UNSIGNED (type); | |
84b55618 | 2138 | |
321e0bba RK |
2139 | /* If we don't promote as expected, something is wrong. */ |
2140 | if (GET_MODE (target) | |
2141 | != promote_mode (type, TYPE_MODE (type), &unsignedp, 1)) | |
5d2ac65e RK |
2142 | abort (); |
2143 | ||
321e0bba | 2144 | target = gen_rtx (SUBREG, TYPE_MODE (type), target, 0); |
84b55618 RK |
2145 | SUBREG_PROMOTED_VAR_P (target) = 1; |
2146 | SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp; | |
2147 | } | |
2148 | #endif | |
2149 | ||
5dab5552 MS |
2150 | if (flag_short_temps) |
2151 | { | |
2152 | /* Perform all cleanups needed for the arguments of this call | |
2153 | (i.e. destructors in C++). */ | |
2154 | expand_cleanups_to (old_cleanups); | |
2155 | } | |
51bbfa0c | 2156 | |
2f4aa534 RS |
2157 | /* If size of args is variable or this was a constructor call for a stack |
2158 | argument, restore saved stack-pointer value. */ | |
51bbfa0c RS |
2159 | |
2160 | if (old_stack_level) | |
2161 | { | |
e5d70561 | 2162 | emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); |
51bbfa0c | 2163 | pending_stack_adjust = old_pending_adj; |
d64f5a78 | 2164 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2f4aa534 RS |
2165 | stack_arg_under_construction = old_stack_arg_under_construction; |
2166 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
2167 | stack_usage_map = initial_stack_usage_map; | |
d64f5a78 | 2168 | #endif |
51bbfa0c | 2169 | } |
51bbfa0c RS |
2170 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2171 | else | |
2172 | { | |
2173 | #ifdef REG_PARM_STACK_SPACE | |
2174 | if (save_area) | |
2175 | { | |
2176 | enum machine_mode save_mode = GET_MODE (save_area); | |
2177 | rtx stack_area | |
2178 | = gen_rtx (MEM, save_mode, | |
2179 | memory_address (save_mode, | |
b94301c2 RS |
2180 | #ifdef ARGS_GROW_DOWNWARD |
2181 | plus_constant (argblock, - high_to_save) | |
2182 | #else | |
2183 | plus_constant (argblock, low_to_save) | |
2184 | #endif | |
2185 | )); | |
51bbfa0c RS |
2186 | |
2187 | if (save_mode != BLKmode) | |
2188 | emit_move_insn (stack_area, save_area); | |
2189 | else | |
2190 | emit_block_move (stack_area, validize_mem (save_area), | |
e5d70561 RK |
2191 | GEN_INT (high_to_save - low_to_save + 1), |
2192 | PARM_BOUNDARY / BITS_PER_UNIT); | |
51bbfa0c RS |
2193 | } |
2194 | #endif | |
2195 | ||
2196 | /* If we saved any argument areas, restore them. */ | |
2197 | for (i = 0; i < num_actuals; i++) | |
2198 | if (args[i].save_area) | |
2199 | { | |
2200 | enum machine_mode save_mode = GET_MODE (args[i].save_area); | |
2201 | rtx stack_area | |
2202 | = gen_rtx (MEM, save_mode, | |
2203 | memory_address (save_mode, | |
2204 | XEXP (args[i].stack_slot, 0))); | |
2205 | ||
2206 | if (save_mode != BLKmode) | |
2207 | emit_move_insn (stack_area, args[i].save_area); | |
2208 | else | |
2209 | emit_block_move (stack_area, validize_mem (args[i].save_area), | |
e5d70561 | 2210 | GEN_INT (args[i].size.constant), |
51bbfa0c RS |
2211 | PARM_BOUNDARY / BITS_PER_UNIT); |
2212 | } | |
2213 | ||
2214 | highest_outgoing_arg_in_use = initial_highest_arg_in_use; | |
2215 | stack_usage_map = initial_stack_usage_map; | |
2216 | } | |
2217 | #endif | |
2218 | ||
59257ff7 RK |
2219 | /* If this was alloca, record the new stack level for nonlocal gotos. |
2220 | Check for the handler slots since we might not have a save area | |
0f41302f | 2221 | for non-local gotos. */ |
59257ff7 RK |
2222 | |
2223 | if (may_be_alloca && nonlocal_goto_handler_slot != 0) | |
e5d70561 | 2224 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX); |
51bbfa0c RS |
2225 | |
2226 | pop_temp_slots (); | |
2227 | ||
2228 | return target; | |
2229 | } | |
2230 | \f | |
322e3e34 RK |
2231 | /* Output a library call to function FUN (a SYMBOL_REF rtx) |
2232 | (emitting the queue unless NO_QUEUE is nonzero), | |
2233 | for a value of mode OUTMODE, | |
2234 | with NARGS different arguments, passed as alternating rtx values | |
2235 | and machine_modes to convert them to. | |
2236 | The rtx values should have been passed through protect_from_queue already. | |
2237 | ||
2238 | NO_QUEUE will be true if and only if the library call is a `const' call | |
2239 | which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent | |
2240 | to the variable is_const in expand_call. | |
2241 | ||
2242 | NO_QUEUE must be true for const calls, because if it isn't, then | |
2243 | any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes, | |
2244 | and will be lost if the libcall sequence is optimized away. | |
2245 | ||
2246 | NO_QUEUE must be false for non-const calls, because if it isn't, the | |
2247 | call insn will have its CONST_CALL_P bit set, and it will be incorrectly | |
2248 | optimized. For instance, the instruction scheduler may incorrectly | |
2249 | move memory references across the non-const call. */ | |
2250 | ||
2251 | void | |
4f90e4a0 RK |
2252 | emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode, |
2253 | int nargs, ...)) | |
322e3e34 | 2254 | { |
4f90e4a0 RK |
2255 | #ifndef __STDC__ |
2256 | rtx orgfun; | |
2257 | int no_queue; | |
2258 | enum machine_mode outmode; | |
2259 | int nargs; | |
2260 | #endif | |
322e3e34 RK |
2261 | va_list p; |
2262 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
2263 | struct args_size args_size; | |
2264 | /* Size of arguments before any adjustments (such as rounding). */ | |
2265 | struct args_size original_args_size; | |
2266 | register int argnum; | |
322e3e34 | 2267 | rtx fun; |
322e3e34 RK |
2268 | int inc; |
2269 | int count; | |
2270 | rtx argblock = 0; | |
2271 | CUMULATIVE_ARGS args_so_far; | |
2272 | struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; | |
2273 | struct args_size offset; struct args_size size; }; | |
2274 | struct arg *argvec; | |
2275 | int old_inhibit_defer_pop = inhibit_defer_pop; | |
77cac2f2 | 2276 | rtx call_fusage = 0; |
322e3e34 | 2277 | |
4f90e4a0 RK |
2278 | VA_START (p, nargs); |
2279 | ||
2280 | #ifndef __STDC__ | |
2281 | orgfun = va_arg (p, rtx); | |
322e3e34 RK |
2282 | no_queue = va_arg (p, int); |
2283 | outmode = va_arg (p, enum machine_mode); | |
2284 | nargs = va_arg (p, int); | |
4f90e4a0 RK |
2285 | #endif |
2286 | ||
2287 | fun = orgfun; | |
322e3e34 RK |
2288 | |
2289 | /* Copy all the libcall-arguments out of the varargs data | |
2290 | and into a vector ARGVEC. | |
2291 | ||
2292 | Compute how to pass each argument. We only support a very small subset | |
2293 | of the full argument passing conventions to limit complexity here since | |
2294 | library functions shouldn't have many args. */ | |
2295 | ||
2296 | argvec = (struct arg *) alloca (nargs * sizeof (struct arg)); | |
2297 | ||
eecb6f50 | 2298 | INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0); |
322e3e34 RK |
2299 | |
2300 | args_size.constant = 0; | |
2301 | args_size.var = 0; | |
2302 | ||
888aa7a9 RS |
2303 | push_temp_slots (); |
2304 | ||
322e3e34 RK |
2305 | for (count = 0; count < nargs; count++) |
2306 | { | |
2307 | rtx val = va_arg (p, rtx); | |
2308 | enum machine_mode mode = va_arg (p, enum machine_mode); | |
2309 | ||
2310 | /* We cannot convert the arg value to the mode the library wants here; | |
2311 | must do it earlier where we know the signedness of the arg. */ | |
2312 | if (mode == BLKmode | |
2313 | || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) | |
2314 | abort (); | |
2315 | ||
2316 | /* On some machines, there's no way to pass a float to a library fcn. | |
2317 | Pass it as a double instead. */ | |
2318 | #ifdef LIBGCC_NEEDS_DOUBLE | |
2319 | if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) | |
7373d92d | 2320 | val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; |
322e3e34 RK |
2321 | #endif |
2322 | ||
2323 | /* There's no need to call protect_from_queue, because | |
2324 | either emit_move_insn or emit_push_insn will do that. */ | |
2325 | ||
2326 | /* Make sure it is a reasonable operand for a move or push insn. */ | |
2327 | if (GET_CODE (val) != REG && GET_CODE (val) != MEM | |
2328 | && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) | |
2329 | val = force_operand (val, NULL_RTX); | |
2330 | ||
322e3e34 RK |
2331 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE |
2332 | if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) | |
888aa7a9 | 2333 | { |
a44492f0 RK |
2334 | /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can |
2335 | be viewed as just an efficiency improvement. */ | |
888aa7a9 RS |
2336 | rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); |
2337 | emit_move_insn (slot, val); | |
8301b6e2 | 2338 | val = force_operand (XEXP (slot, 0), NULL_RTX); |
a44492f0 | 2339 | mode = Pmode; |
888aa7a9 | 2340 | } |
322e3e34 RK |
2341 | #endif |
2342 | ||
888aa7a9 RS |
2343 | argvec[count].value = val; |
2344 | argvec[count].mode = mode; | |
2345 | ||
322e3e34 | 2346 | argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); |
cacbd532 | 2347 | if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL) |
322e3e34 RK |
2348 | abort (); |
2349 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
2350 | argvec[count].partial | |
2351 | = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); | |
2352 | #else | |
2353 | argvec[count].partial = 0; | |
2354 | #endif | |
2355 | ||
2356 | locate_and_pad_parm (mode, NULL_TREE, | |
2357 | argvec[count].reg && argvec[count].partial == 0, | |
2358 | NULL_TREE, &args_size, &argvec[count].offset, | |
2359 | &argvec[count].size); | |
2360 | ||
2361 | if (argvec[count].size.var) | |
2362 | abort (); | |
2363 | ||
2364 | #ifndef REG_PARM_STACK_SPACE | |
2365 | if (argvec[count].partial) | |
2366 | argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; | |
2367 | #endif | |
2368 | ||
2369 | if (argvec[count].reg == 0 || argvec[count].partial != 0 | |
2370 | #ifdef REG_PARM_STACK_SPACE | |
2371 | || 1 | |
2372 | #endif | |
2373 | ) | |
2374 | args_size.constant += argvec[count].size.constant; | |
2375 | ||
2376 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2377 | /* If this arg is actually passed on the stack, it might be | |
2378 | clobbering something we already put there (this library call might | |
2379 | be inside the evaluation of an argument to a function whose call | |
2380 | requires the stack). This will only occur when the library call | |
2381 | has sufficient args to run out of argument registers. Abort in | |
2382 | this case; if this ever occurs, code must be added to save and | |
2383 | restore the arg slot. */ | |
2384 | ||
2385 | if (argvec[count].reg == 0 || argvec[count].partial != 0) | |
2386 | abort (); | |
2387 | #endif | |
2388 | ||
0f41302f | 2389 | FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1); |
322e3e34 RK |
2390 | } |
2391 | va_end (p); | |
2392 | ||
2393 | /* If this machine requires an external definition for library | |
2394 | functions, write one out. */ | |
2395 | assemble_external_libcall (fun); | |
2396 | ||
2397 | original_args_size = args_size; | |
2398 | #ifdef STACK_BOUNDARY | |
2399 | args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) | |
2400 | / STACK_BYTES) * STACK_BYTES); | |
2401 | #endif | |
2402 | ||
2403 | #ifdef REG_PARM_STACK_SPACE | |
2404 | args_size.constant = MAX (args_size.constant, | |
2405 | REG_PARM_STACK_SPACE (NULL_TREE)); | |
2406 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
2407 | args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE); | |
2408 | #endif | |
2409 | #endif | |
2410 | ||
322e3e34 RK |
2411 | if (args_size.constant > current_function_outgoing_args_size) |
2412 | current_function_outgoing_args_size = args_size.constant; | |
26a258fe PB |
2413 | |
2414 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
322e3e34 RK |
2415 | args_size.constant = 0; |
2416 | #endif | |
2417 | ||
2418 | #ifndef PUSH_ROUNDING | |
2419 | argblock = push_block (GEN_INT (args_size.constant), 0, 0); | |
2420 | #endif | |
2421 | ||
2422 | #ifdef PUSH_ARGS_REVERSED | |
2423 | #ifdef STACK_BOUNDARY | |
2424 | /* If we push args individually in reverse order, perform stack alignment | |
2425 | before the first push (the last arg). */ | |
2426 | if (argblock == 0) | |
2427 | anti_adjust_stack (GEN_INT (args_size.constant | |
2428 | - original_args_size.constant)); | |
2429 | #endif | |
2430 | #endif | |
2431 | ||
2432 | #ifdef PUSH_ARGS_REVERSED | |
2433 | inc = -1; | |
2434 | argnum = nargs - 1; | |
2435 | #else | |
2436 | inc = 1; | |
2437 | argnum = 0; | |
2438 | #endif | |
2439 | ||
2440 | /* Push the args that need to be pushed. */ | |
2441 | ||
2442 | for (count = 0; count < nargs; count++, argnum += inc) | |
2443 | { | |
2444 | register enum machine_mode mode = argvec[argnum].mode; | |
2445 | register rtx val = argvec[argnum].value; | |
2446 | rtx reg = argvec[argnum].reg; | |
2447 | int partial = argvec[argnum].partial; | |
2448 | ||
2449 | if (! (reg != 0 && partial == 0)) | |
2450 | emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, | |
2451 | argblock, GEN_INT (argvec[count].offset.constant)); | |
2452 | NO_DEFER_POP; | |
2453 | } | |
2454 | ||
2455 | #ifndef PUSH_ARGS_REVERSED | |
2456 | #ifdef STACK_BOUNDARY | |
2457 | /* If we pushed args in forward order, perform stack alignment | |
2458 | after pushing the last arg. */ | |
2459 | if (argblock == 0) | |
2460 | anti_adjust_stack (GEN_INT (args_size.constant | |
2461 | - original_args_size.constant)); | |
2462 | #endif | |
2463 | #endif | |
2464 | ||
2465 | #ifdef PUSH_ARGS_REVERSED | |
2466 | argnum = nargs - 1; | |
2467 | #else | |
2468 | argnum = 0; | |
2469 | #endif | |
2470 | ||
77cac2f2 | 2471 | fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); |
8b0f9101 | 2472 | |
322e3e34 RK |
2473 | /* Now load any reg parms into their regs. */ |
2474 | ||
2475 | for (count = 0; count < nargs; count++, argnum += inc) | |
2476 | { | |
2477 | register enum machine_mode mode = argvec[argnum].mode; | |
2478 | register rtx val = argvec[argnum].value; | |
2479 | rtx reg = argvec[argnum].reg; | |
2480 | int partial = argvec[argnum].partial; | |
2481 | ||
2482 | if (reg != 0 && partial == 0) | |
2483 | emit_move_insn (reg, val); | |
2484 | NO_DEFER_POP; | |
2485 | } | |
2486 | ||
2487 | /* For version 1.37, try deleting this entirely. */ | |
2488 | if (! no_queue) | |
2489 | emit_queue (); | |
2490 | ||
2491 | /* Any regs containing parms remain in use through the call. */ | |
322e3e34 RK |
2492 | for (count = 0; count < nargs; count++) |
2493 | if (argvec[count].reg != 0) | |
77cac2f2 | 2494 | use_reg (&call_fusage, argvec[count].reg); |
322e3e34 | 2495 | |
322e3e34 RK |
2496 | /* Don't allow popping to be deferred, since then |
2497 | cse'ing of library calls could delete a call and leave the pop. */ | |
2498 | NO_DEFER_POP; | |
2499 | ||
2500 | /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which | |
2501 | will set inhibit_defer_pop to that value. */ | |
2502 | ||
334c4f0f RK |
2503 | /* The return type is needed to decide how many bytes the function pops. |
2504 | Signedness plays no role in that, so for simplicity, we pretend it's | |
2505 | always signed. We also assume that the list of arguments passed has | |
2506 | no impact, so we pretend it is unknown. */ | |
2507 | ||
2c8da025 RK |
2508 | emit_call_1 (fun, |
2509 | get_identifier (XSTR (orgfun, 0)), | |
b3776927 RK |
2510 | build_function_type (outmode == VOIDmode ? void_type_node |
2511 | : type_for_mode (outmode, 0), NULL_TREE), | |
334c4f0f | 2512 | args_size.constant, 0, |
322e3e34 RK |
2513 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
2514 | outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX, | |
77cac2f2 | 2515 | old_inhibit_defer_pop + 1, call_fusage, no_queue); |
322e3e34 | 2516 | |
888aa7a9 RS |
2517 | pop_temp_slots (); |
2518 | ||
322e3e34 RK |
2519 | /* Now restore inhibit_defer_pop to its actual original value. */ |
2520 | OK_DEFER_POP; | |
2521 | } | |
2522 | \f | |
2523 | /* Like emit_library_call except that an extra argument, VALUE, | |
2524 | comes second and says where to store the result. | |
fac0ad80 RS |
2525 | (If VALUE is zero, this function chooses a convenient way |
2526 | to return the value. | |
322e3e34 | 2527 | |
fac0ad80 RS |
2528 | This function returns an rtx for where the value is to be found. |
2529 | If VALUE is nonzero, VALUE is returned. */ | |
2530 | ||
2531 | rtx | |
4f90e4a0 RK |
2532 | emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue, |
2533 | enum machine_mode outmode, int nargs, ...)) | |
322e3e34 | 2534 | { |
4f90e4a0 RK |
2535 | #ifndef __STDC__ |
2536 | rtx orgfun; | |
2537 | rtx value; | |
2538 | int no_queue; | |
2539 | enum machine_mode outmode; | |
2540 | int nargs; | |
2541 | #endif | |
322e3e34 RK |
2542 | va_list p; |
2543 | /* Total size in bytes of all the stack-parms scanned so far. */ | |
2544 | struct args_size args_size; | |
2545 | /* Size of arguments before any adjustments (such as rounding). */ | |
2546 | struct args_size original_args_size; | |
2547 | register int argnum; | |
322e3e34 | 2548 | rtx fun; |
322e3e34 RK |
2549 | int inc; |
2550 | int count; | |
2551 | rtx argblock = 0; | |
2552 | CUMULATIVE_ARGS args_so_far; | |
2553 | struct arg { rtx value; enum machine_mode mode; rtx reg; int partial; | |
2554 | struct args_size offset; struct args_size size; }; | |
2555 | struct arg *argvec; | |
2556 | int old_inhibit_defer_pop = inhibit_defer_pop; | |
77cac2f2 | 2557 | rtx call_fusage = 0; |
322e3e34 | 2558 | rtx mem_value = 0; |
fac0ad80 | 2559 | int pcc_struct_value = 0; |
4f389214 | 2560 | int struct_value_size = 0; |
d61bee95 | 2561 | int is_const; |
322e3e34 | 2562 | |
4f90e4a0 RK |
2563 | VA_START (p, nargs); |
2564 | ||
2565 | #ifndef __STDC__ | |
2566 | orgfun = va_arg (p, rtx); | |
322e3e34 RK |
2567 | value = va_arg (p, rtx); |
2568 | no_queue = va_arg (p, int); | |
2569 | outmode = va_arg (p, enum machine_mode); | |
2570 | nargs = va_arg (p, int); | |
4f90e4a0 RK |
2571 | #endif |
2572 | ||
d61bee95 | 2573 | is_const = no_queue; |
4f90e4a0 | 2574 | fun = orgfun; |
322e3e34 RK |
2575 | |
2576 | /* If this kind of value comes back in memory, | |
2577 | decide where in memory it should come back. */ | |
fac0ad80 | 2578 | if (aggregate_value_p (type_for_mode (outmode, 0))) |
322e3e34 | 2579 | { |
fac0ad80 RS |
2580 | #ifdef PCC_STATIC_STRUCT_RETURN |
2581 | rtx pointer_reg | |
2582 | = hard_function_value (build_pointer_type (type_for_mode (outmode, 0)), | |
2583 | 0); | |
2584 | mem_value = gen_rtx (MEM, outmode, pointer_reg); | |
2585 | pcc_struct_value = 1; | |
2586 | if (value == 0) | |
2587 | value = gen_reg_rtx (outmode); | |
2588 | #else /* not PCC_STATIC_STRUCT_RETURN */ | |
4f389214 | 2589 | struct_value_size = GET_MODE_SIZE (outmode); |
fac0ad80 | 2590 | if (value != 0 && GET_CODE (value) == MEM) |
322e3e34 RK |
2591 | mem_value = value; |
2592 | else | |
2593 | mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0); | |
fac0ad80 | 2594 | #endif |
779c643a JW |
2595 | |
2596 | /* This call returns a big structure. */ | |
2597 | is_const = 0; | |
322e3e34 RK |
2598 | } |
2599 | ||
2600 | /* ??? Unfinished: must pass the memory address as an argument. */ | |
2601 | ||
2602 | /* Copy all the libcall-arguments out of the varargs data | |
2603 | and into a vector ARGVEC. | |
2604 | ||
2605 | Compute how to pass each argument. We only support a very small subset | |
2606 | of the full argument passing conventions to limit complexity here since | |
2607 | library functions shouldn't have many args. */ | |
2608 | ||
2609 | argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg)); | |
2610 | ||
eecb6f50 | 2611 | INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0); |
322e3e34 RK |
2612 | |
2613 | args_size.constant = 0; | |
2614 | args_size.var = 0; | |
2615 | ||
2616 | count = 0; | |
2617 | ||
888aa7a9 RS |
2618 | push_temp_slots (); |
2619 | ||
322e3e34 RK |
2620 | /* If there's a structure value address to be passed, |
2621 | either pass it in the special place, or pass it as an extra argument. */ | |
fac0ad80 | 2622 | if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value) |
322e3e34 RK |
2623 | { |
2624 | rtx addr = XEXP (mem_value, 0); | |
fac0ad80 | 2625 | nargs++; |
322e3e34 | 2626 | |
fac0ad80 RS |
2627 | /* Make sure it is a reasonable operand for a move or push insn. */ |
2628 | if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM | |
2629 | && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr))) | |
2630 | addr = force_operand (addr, NULL_RTX); | |
322e3e34 | 2631 | |
fac0ad80 | 2632 | argvec[count].value = addr; |
4fc3dcd5 | 2633 | argvec[count].mode = Pmode; |
fac0ad80 | 2634 | argvec[count].partial = 0; |
322e3e34 | 2635 | |
4fc3dcd5 | 2636 | argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1); |
322e3e34 | 2637 | #ifdef FUNCTION_ARG_PARTIAL_NREGS |
4fc3dcd5 | 2638 | if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1)) |
fac0ad80 | 2639 | abort (); |
322e3e34 RK |
2640 | #endif |
2641 | ||
4fc3dcd5 | 2642 | locate_and_pad_parm (Pmode, NULL_TREE, |
fac0ad80 RS |
2643 | argvec[count].reg && argvec[count].partial == 0, |
2644 | NULL_TREE, &args_size, &argvec[count].offset, | |
2645 | &argvec[count].size); | |
322e3e34 RK |
2646 | |
2647 | ||
fac0ad80 | 2648 | if (argvec[count].reg == 0 || argvec[count].partial != 0 |
322e3e34 | 2649 | #ifdef REG_PARM_STACK_SPACE |
fac0ad80 | 2650 | || 1 |
322e3e34 | 2651 | #endif |
fac0ad80 RS |
2652 | ) |
2653 | args_size.constant += argvec[count].size.constant; | |
322e3e34 | 2654 | |
0f41302f | 2655 | FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1); |
fac0ad80 RS |
2656 | |
2657 | count++; | |
322e3e34 RK |
2658 | } |
2659 | ||
2660 | for (; count < nargs; count++) | |
2661 | { | |
2662 | rtx val = va_arg (p, rtx); | |
2663 | enum machine_mode mode = va_arg (p, enum machine_mode); | |
2664 | ||
2665 | /* We cannot convert the arg value to the mode the library wants here; | |
2666 | must do it earlier where we know the signedness of the arg. */ | |
2667 | if (mode == BLKmode | |
2668 | || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) | |
2669 | abort (); | |
2670 | ||
2671 | /* On some machines, there's no way to pass a float to a library fcn. | |
2672 | Pass it as a double instead. */ | |
2673 | #ifdef LIBGCC_NEEDS_DOUBLE | |
2674 | if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) | |
7373d92d | 2675 | val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; |
322e3e34 RK |
2676 | #endif |
2677 | ||
2678 | /* There's no need to call protect_from_queue, because | |
2679 | either emit_move_insn or emit_push_insn will do that. */ | |
2680 | ||
2681 | /* Make sure it is a reasonable operand for a move or push insn. */ | |
2682 | if (GET_CODE (val) != REG && GET_CODE (val) != MEM | |
2683 | && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) | |
2684 | val = force_operand (val, NULL_RTX); | |
2685 | ||
322e3e34 RK |
2686 | #ifdef FUNCTION_ARG_PASS_BY_REFERENCE |
2687 | if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) | |
888aa7a9 | 2688 | { |
a44492f0 RK |
2689 | /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can |
2690 | be viewed as just an efficiency improvement. */ | |
888aa7a9 RS |
2691 | rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0); |
2692 | emit_move_insn (slot, val); | |
2693 | val = XEXP (slot, 0); | |
2694 | mode = Pmode; | |
2695 | } | |
322e3e34 RK |
2696 | #endif |
2697 | ||
888aa7a9 RS |
2698 | argvec[count].value = val; |
2699 | argvec[count].mode = mode; | |
2700 | ||
322e3e34 | 2701 | argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); |
cacbd532 | 2702 | if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL) |
322e3e34 RK |
2703 | abort (); |
2704 | #ifdef FUNCTION_ARG_PARTIAL_NREGS | |
2705 | argvec[count].partial | |
2706 | = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); | |
2707 | #else | |
2708 | argvec[count].partial = 0; | |
2709 | #endif | |
2710 | ||
2711 | locate_and_pad_parm (mode, NULL_TREE, | |
2712 | argvec[count].reg && argvec[count].partial == 0, | |
2713 | NULL_TREE, &args_size, &argvec[count].offset, | |
2714 | &argvec[count].size); | |
2715 | ||
2716 | if (argvec[count].size.var) | |
2717 | abort (); | |
2718 | ||
2719 | #ifndef REG_PARM_STACK_SPACE | |
2720 | if (argvec[count].partial) | |
2721 | argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; | |
2722 | #endif | |
2723 | ||
2724 | if (argvec[count].reg == 0 || argvec[count].partial != 0 | |
2725 | #ifdef REG_PARM_STACK_SPACE | |
2726 | || 1 | |
2727 | #endif | |
2728 | ) | |
2729 | args_size.constant += argvec[count].size.constant; | |
2730 | ||
2731 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
2732 | /* If this arg is actually passed on the stack, it might be | |
2733 | clobbering something we already put there (this library call might | |
2734 | be inside the evaluation of an argument to a function whose call | |
2735 | requires the stack). This will only occur when the library call | |
2736 | has sufficient args to run out of argument registers. Abort in | |
2737 | this case; if this ever occurs, code must be added to save and | |
2738 | restore the arg slot. */ | |
2739 | ||
2740 | if (argvec[count].reg == 0 || argvec[count].partial != 0) | |
2741 | abort (); | |
2742 | #endif | |
2743 | ||
0f41302f | 2744 | FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1); |
322e3e34 RK |
2745 | } |
2746 | va_end (p); | |
2747 | ||
2748 | /* If this machine requires an external definition for library | |
2749 | functions, write one out. */ | |
2750 | assemble_external_libcall (fun); | |
2751 | ||
2752 | original_args_size = args_size; | |
2753 | #ifdef STACK_BOUNDARY | |
2754 | args_size.constant = (((args_size.constant + (STACK_BYTES - 1)) | |
2755 | / STACK_BYTES) * STACK_BYTES); | |
2756 | #endif | |
2757 | ||
2758 | #ifdef REG_PARM_STACK_SPACE | |
2759 | args_size.constant = MAX (args_size.constant, | |
2760 | REG_PARM_STACK_SPACE (NULL_TREE)); | |
2761 | #ifndef OUTGOING_REG_PARM_STACK_SPACE | |
2762 | args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE); | |
2763 | #endif | |
2764 | #endif | |
2765 | ||
322e3e34 RK |
2766 | if (args_size.constant > current_function_outgoing_args_size) |
2767 | current_function_outgoing_args_size = args_size.constant; | |
26a258fe PB |
2768 | |
2769 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
322e3e34 RK |
2770 | args_size.constant = 0; |
2771 | #endif | |
2772 | ||
2773 | #ifndef PUSH_ROUNDING | |
2774 | argblock = push_block (GEN_INT (args_size.constant), 0, 0); | |
2775 | #endif | |
2776 | ||
2777 | #ifdef PUSH_ARGS_REVERSED | |
2778 | #ifdef STACK_BOUNDARY | |
2779 | /* If we push args individually in reverse order, perform stack alignment | |
2780 | before the first push (the last arg). */ | |
2781 | if (argblock == 0) | |
2782 | anti_adjust_stack (GEN_INT (args_size.constant | |
2783 | - original_args_size.constant)); | |
2784 | #endif | |
2785 | #endif | |
2786 | ||
2787 | #ifdef PUSH_ARGS_REVERSED | |
2788 | inc = -1; | |
2789 | argnum = nargs - 1; | |
2790 | #else | |
2791 | inc = 1; | |
2792 | argnum = 0; | |
2793 | #endif | |
2794 | ||
2795 | /* Push the args that need to be pushed. */ | |
2796 | ||
2797 | for (count = 0; count < nargs; count++, argnum += inc) | |
2798 | { | |
2799 | register enum machine_mode mode = argvec[argnum].mode; | |
2800 | register rtx val = argvec[argnum].value; | |
2801 | rtx reg = argvec[argnum].reg; | |
2802 | int partial = argvec[argnum].partial; | |
2803 | ||
2804 | if (! (reg != 0 && partial == 0)) | |
2805 | emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0, | |
2806 | argblock, GEN_INT (argvec[count].offset.constant)); | |
2807 | NO_DEFER_POP; | |
2808 | } | |
2809 | ||
2810 | #ifndef PUSH_ARGS_REVERSED | |
2811 | #ifdef STACK_BOUNDARY | |
2812 | /* If we pushed args in forward order, perform stack alignment | |
2813 | after pushing the last arg. */ | |
2814 | if (argblock == 0) | |
2815 | anti_adjust_stack (GEN_INT (args_size.constant | |
2816 | - original_args_size.constant)); | |
2817 | #endif | |
2818 | #endif | |
2819 | ||
2820 | #ifdef PUSH_ARGS_REVERSED | |
2821 | argnum = nargs - 1; | |
2822 | #else | |
2823 | argnum = 0; | |
2824 | #endif | |
2825 | ||
77cac2f2 | 2826 | fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0); |
8b0f9101 | 2827 | |
322e3e34 RK |
2828 | /* Now load any reg parms into their regs. */ |
2829 | ||
322e3e34 RK |
2830 | for (count = 0; count < nargs; count++, argnum += inc) |
2831 | { | |
2832 | register enum machine_mode mode = argvec[argnum].mode; | |
2833 | register rtx val = argvec[argnum].value; | |
2834 | rtx reg = argvec[argnum].reg; | |
2835 | int partial = argvec[argnum].partial; | |
2836 | ||
2837 | if (reg != 0 && partial == 0) | |
2838 | emit_move_insn (reg, val); | |
2839 | NO_DEFER_POP; | |
2840 | } | |
2841 | ||
2842 | #if 0 | |
2843 | /* For version 1.37, try deleting this entirely. */ | |
2844 | if (! no_queue) | |
2845 | emit_queue (); | |
2846 | #endif | |
2847 | ||
2848 | /* Any regs containing parms remain in use through the call. */ | |
322e3e34 RK |
2849 | for (count = 0; count < nargs; count++) |
2850 | if (argvec[count].reg != 0) | |
77cac2f2 | 2851 | use_reg (&call_fusage, argvec[count].reg); |
322e3e34 | 2852 | |
fac0ad80 RS |
2853 | /* Pass the function the address in which to return a structure value. */ |
2854 | if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value) | |
2855 | { | |
2856 | emit_move_insn (struct_value_rtx, | |
2857 | force_reg (Pmode, | |
2858 | force_operand (XEXP (mem_value, 0), | |
2859 | NULL_RTX))); | |
2860 | if (GET_CODE (struct_value_rtx) == REG) | |
77cac2f2 | 2861 | use_reg (&call_fusage, struct_value_rtx); |
fac0ad80 RS |
2862 | } |
2863 | ||
322e3e34 RK |
2864 | /* Don't allow popping to be deferred, since then |
2865 | cse'ing of library calls could delete a call and leave the pop. */ | |
2866 | NO_DEFER_POP; | |
2867 | ||
2868 | /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which | |
2869 | will set inhibit_defer_pop to that value. */ | |
334c4f0f RK |
2870 | /* See the comment in emit_library_call about the function type we build |
2871 | and pass here. */ | |
322e3e34 | 2872 | |
2c8da025 RK |
2873 | emit_call_1 (fun, |
2874 | get_identifier (XSTR (orgfun, 0)), | |
334c4f0f RK |
2875 | build_function_type (type_for_mode (outmode, 0), NULL_TREE), |
2876 | args_size.constant, struct_value_size, | |
322e3e34 | 2877 | FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), |
4d6a19ff | 2878 | mem_value == 0 ? hard_libcall_value (outmode) : NULL_RTX, |
77cac2f2 | 2879 | old_inhibit_defer_pop + 1, call_fusage, is_const); |
322e3e34 RK |
2880 | |
2881 | /* Now restore inhibit_defer_pop to its actual original value. */ | |
2882 | OK_DEFER_POP; | |
2883 | ||
888aa7a9 RS |
2884 | pop_temp_slots (); |
2885 | ||
322e3e34 RK |
2886 | /* Copy the value to the right place. */ |
2887 | if (outmode != VOIDmode) | |
2888 | { | |
2889 | if (mem_value) | |
2890 | { | |
2891 | if (value == 0) | |
fac0ad80 | 2892 | value = mem_value; |
322e3e34 RK |
2893 | if (value != mem_value) |
2894 | emit_move_insn (value, mem_value); | |
2895 | } | |
2896 | else if (value != 0) | |
2897 | emit_move_insn (value, hard_libcall_value (outmode)); | |
fac0ad80 RS |
2898 | else |
2899 | value = hard_libcall_value (outmode); | |
322e3e34 | 2900 | } |
fac0ad80 RS |
2901 | |
2902 | return value; | |
322e3e34 RK |
2903 | } |
2904 | \f | |
51bbfa0c RS |
2905 | #if 0 |
2906 | /* Return an rtx which represents a suitable home on the stack | |
2907 | given TYPE, the type of the argument looking for a home. | |
2908 | This is called only for BLKmode arguments. | |
2909 | ||
2910 | SIZE is the size needed for this target. | |
2911 | ARGS_ADDR is the address of the bottom of the argument block for this call. | |
2912 | OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless | |
2913 | if this machine uses push insns. */ | |
2914 | ||
2915 | static rtx | |
2916 | target_for_arg (type, size, args_addr, offset) | |
2917 | tree type; | |
2918 | rtx size; | |
2919 | rtx args_addr; | |
2920 | struct args_size offset; | |
2921 | { | |
2922 | rtx target; | |
2923 | rtx offset_rtx = ARGS_SIZE_RTX (offset); | |
2924 | ||
2925 | /* We do not call memory_address if possible, | |
2926 | because we want to address as close to the stack | |
2927 | as possible. For non-variable sized arguments, | |
2928 | this will be stack-pointer relative addressing. */ | |
2929 | if (GET_CODE (offset_rtx) == CONST_INT) | |
2930 | target = plus_constant (args_addr, INTVAL (offset_rtx)); | |
2931 | else | |
2932 | { | |
2933 | /* I have no idea how to guarantee that this | |
2934 | will work in the presence of register parameters. */ | |
2935 | target = gen_rtx (PLUS, Pmode, args_addr, offset_rtx); | |
2936 | target = memory_address (QImode, target); | |
2937 | } | |
2938 | ||
2939 | return gen_rtx (MEM, BLKmode, target); | |
2940 | } | |
2941 | #endif | |
2942 | \f | |
2943 | /* Store a single argument for a function call | |
2944 | into the register or memory area where it must be passed. | |
2945 | *ARG describes the argument value and where to pass it. | |
2946 | ||
2947 | ARGBLOCK is the address of the stack-block for all the arguments, | |
d45cf215 | 2948 | or 0 on a machine where arguments are pushed individually. |
51bbfa0c RS |
2949 | |
2950 | MAY_BE_ALLOCA nonzero says this could be a call to `alloca' | |
2951 | so must be careful about how the stack is used. | |
2952 | ||
2953 | VARIABLE_SIZE nonzero says that this was a variable-sized outgoing | |
2954 | argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate | |
2955 | that we need not worry about saving and restoring the stack. | |
2956 | ||
2957 | FNDECL is the declaration of the function we are calling. */ | |
2958 | ||
2959 | static void | |
6f90e075 JW |
2960 | store_one_arg (arg, argblock, may_be_alloca, variable_size, fndecl, |
2961 | reg_parm_stack_space) | |
51bbfa0c RS |
2962 | struct arg_data *arg; |
2963 | rtx argblock; | |
2964 | int may_be_alloca; | |
2965 | int variable_size; | |
2966 | tree fndecl; | |
6f90e075 | 2967 | int reg_parm_stack_space; |
51bbfa0c RS |
2968 | { |
2969 | register tree pval = arg->tree_value; | |
2970 | rtx reg = 0; | |
2971 | int partial = 0; | |
2972 | int used = 0; | |
2973 | int i, lower_bound, upper_bound; | |
2974 | ||
2975 | if (TREE_CODE (pval) == ERROR_MARK) | |
2976 | return; | |
2977 | ||
cc79451b RK |
2978 | /* Push a new temporary level for any temporaries we make for |
2979 | this argument. */ | |
2980 | push_temp_slots (); | |
2981 | ||
51bbfa0c RS |
2982 | #ifdef ACCUMULATE_OUTGOING_ARGS |
2983 | /* If this is being stored into a pre-allocated, fixed-size, stack area, | |
2984 | save any previous data at that location. */ | |
2985 | if (argblock && ! variable_size && arg->stack) | |
2986 | { | |
2987 | #ifdef ARGS_GROW_DOWNWARD | |
0f41302f MS |
2988 | /* stack_slot is negative, but we want to index stack_usage_map |
2989 | with positive values. */ | |
51bbfa0c RS |
2990 | if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) |
2991 | upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1; | |
2992 | else | |
2993 | abort (); | |
2994 | ||
2995 | lower_bound = upper_bound - arg->size.constant; | |
2996 | #else | |
2997 | if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) | |
2998 | lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)); | |
2999 | else | |
3000 | lower_bound = 0; | |
3001 | ||
3002 | upper_bound = lower_bound + arg->size.constant; | |
3003 | #endif | |
3004 | ||
3005 | for (i = lower_bound; i < upper_bound; i++) | |
3006 | if (stack_usage_map[i] | |
3007 | #ifdef REG_PARM_STACK_SPACE | |
3008 | /* Don't store things in the fixed argument area at this point; | |
3009 | it has already been saved. */ | |
6f90e075 | 3010 | && i > reg_parm_stack_space |
51bbfa0c RS |
3011 | #endif |
3012 | ) | |
3013 | break; | |
3014 | ||
3015 | if (i != upper_bound) | |
3016 | { | |
3017 | /* We need to make a save area. See what mode we can make it. */ | |
3018 | enum machine_mode save_mode | |
3019 | = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1); | |
3020 | rtx stack_area | |
3021 | = gen_rtx (MEM, save_mode, | |
3022 | memory_address (save_mode, XEXP (arg->stack_slot, 0))); | |
3023 | ||
3024 | if (save_mode == BLKmode) | |
3025 | { | |
3026 | arg->save_area = assign_stack_temp (BLKmode, | |
6fa51029 | 3027 | arg->size.constant, 0); |
3668e76e JL |
3028 | MEM_IN_STRUCT_P (arg->save_area) |
3029 | = AGGREGATE_TYPE_P (TREE_TYPE (arg->tree_value)); | |
cc79451b | 3030 | preserve_temp_slots (arg->save_area); |
51bbfa0c | 3031 | emit_block_move (validize_mem (arg->save_area), stack_area, |
e5d70561 | 3032 | GEN_INT (arg->size.constant), |
51bbfa0c RS |
3033 | PARM_BOUNDARY / BITS_PER_UNIT); |
3034 | } | |
3035 | else | |
3036 | { | |
3037 | arg->save_area = gen_reg_rtx (save_mode); | |
3038 | emit_move_insn (arg->save_area, stack_area); | |
3039 | } | |
3040 | } | |
3041 | } | |
3042 | #endif | |
3043 | ||
3044 | /* If this isn't going to be placed on both the stack and in registers, | |
3045 | set up the register and number of words. */ | |
3046 | if (! arg->pass_on_stack) | |
3047 | reg = arg->reg, partial = arg->partial; | |
3048 | ||
3049 | if (reg != 0 && partial == 0) | |
3050 | /* Being passed entirely in a register. We shouldn't be called in | |
3051 | this case. */ | |
3052 | abort (); | |
3053 | ||
4ab56118 RK |
3054 | /* If this arg needs special alignment, don't load the registers |
3055 | here. */ | |
3056 | if (arg->n_aligned_regs != 0) | |
3057 | reg = 0; | |
4ab56118 | 3058 | |
4ab56118 | 3059 | /* If this is being passed partially in a register, we can't evaluate |
51bbfa0c RS |
3060 | it directly into its stack slot. Otherwise, we can. */ |
3061 | if (arg->value == 0) | |
d64f5a78 RS |
3062 | { |
3063 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
3064 | /* stack_arg_under_construction is nonzero if a function argument is | |
3065 | being evaluated directly into the outgoing argument list and | |
3066 | expand_call must take special action to preserve the argument list | |
3067 | if it is called recursively. | |
3068 | ||
3069 | For scalar function arguments stack_usage_map is sufficient to | |
3070 | determine which stack slots must be saved and restored. Scalar | |
3071 | arguments in general have pass_on_stack == 0. | |
3072 | ||
3073 | If this argument is initialized by a function which takes the | |
3074 | address of the argument (a C++ constructor or a C function | |
3075 | returning a BLKmode structure), then stack_usage_map is | |
3076 | insufficient and expand_call must push the stack around the | |
3077 | function call. Such arguments have pass_on_stack == 1. | |
3078 | ||
3079 | Note that it is always safe to set stack_arg_under_construction, | |
3080 | but this generates suboptimal code if set when not needed. */ | |
3081 | ||
3082 | if (arg->pass_on_stack) | |
3083 | stack_arg_under_construction++; | |
3084 | #endif | |
3a08477a RK |
3085 | arg->value = expand_expr (pval, |
3086 | (partial | |
3087 | || TYPE_MODE (TREE_TYPE (pval)) != arg->mode) | |
3088 | ? NULL_RTX : arg->stack, | |
e5d70561 | 3089 | VOIDmode, 0); |
1efe6448 RK |
3090 | |
3091 | /* If we are promoting object (or for any other reason) the mode | |
3092 | doesn't agree, convert the mode. */ | |
3093 | ||
7373d92d RK |
3094 | if (arg->mode != TYPE_MODE (TREE_TYPE (pval))) |
3095 | arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)), | |
3096 | arg->value, arg->unsignedp); | |
1efe6448 | 3097 | |
d64f5a78 RS |
3098 | #ifdef ACCUMULATE_OUTGOING_ARGS |
3099 | if (arg->pass_on_stack) | |
3100 | stack_arg_under_construction--; | |
3101 | #endif | |
3102 | } | |
51bbfa0c RS |
3103 | |
3104 | /* Don't allow anything left on stack from computation | |
3105 | of argument to alloca. */ | |
3106 | if (may_be_alloca) | |
3107 | do_pending_stack_adjust (); | |
3108 | ||
3109 | if (arg->value == arg->stack) | |
3110 | /* If the value is already in the stack slot, we are done. */ | |
3111 | ; | |
1efe6448 | 3112 | else if (arg->mode != BLKmode) |
51bbfa0c RS |
3113 | { |
3114 | register int size; | |
3115 | ||
3116 | /* Argument is a scalar, not entirely passed in registers. | |
3117 | (If part is passed in registers, arg->partial says how much | |
3118 | and emit_push_insn will take care of putting it there.) | |
3119 | ||
3120 | Push it, and if its size is less than the | |
3121 | amount of space allocated to it, | |
3122 | also bump stack pointer by the additional space. | |
3123 | Note that in C the default argument promotions | |
3124 | will prevent such mismatches. */ | |
3125 | ||
1efe6448 | 3126 | size = GET_MODE_SIZE (arg->mode); |
51bbfa0c RS |
3127 | /* Compute how much space the push instruction will push. |
3128 | On many machines, pushing a byte will advance the stack | |
3129 | pointer by a halfword. */ | |
3130 | #ifdef PUSH_ROUNDING | |
3131 | size = PUSH_ROUNDING (size); | |
3132 | #endif | |
3133 | used = size; | |
3134 | ||
3135 | /* Compute how much space the argument should get: | |
3136 | round up to a multiple of the alignment for arguments. */ | |
1efe6448 | 3137 | if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval))) |
51bbfa0c RS |
3138 | used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1) |
3139 | / (PARM_BOUNDARY / BITS_PER_UNIT)) | |
3140 | * (PARM_BOUNDARY / BITS_PER_UNIT)); | |
3141 | ||
3142 | /* This isn't already where we want it on the stack, so put it there. | |
3143 | This can either be done with push or copy insns. */ | |
ccf5d244 RK |
3144 | emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, |
3145 | 0, partial, reg, used - size, | |
3146 | argblock, ARGS_SIZE_RTX (arg->offset)); | |
51bbfa0c RS |
3147 | } |
3148 | else | |
3149 | { | |
3150 | /* BLKmode, at least partly to be pushed. */ | |
3151 | ||
3152 | register int excess; | |
3153 | rtx size_rtx; | |
3154 | ||
3155 | /* Pushing a nonscalar. | |
3156 | If part is passed in registers, PARTIAL says how much | |
3157 | and emit_push_insn will take care of putting it there. */ | |
3158 | ||
3159 | /* Round its size up to a multiple | |
3160 | of the allocation unit for arguments. */ | |
3161 | ||
3162 | if (arg->size.var != 0) | |
3163 | { | |
3164 | excess = 0; | |
3165 | size_rtx = ARGS_SIZE_RTX (arg->size); | |
3166 | } | |
3167 | else | |
3168 | { | |
51bbfa0c RS |
3169 | /* PUSH_ROUNDING has no effect on us, because |
3170 | emit_push_insn for BLKmode is careful to avoid it. */ | |
0cf91217 | 3171 | excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval)) |
51bbfa0c | 3172 | + partial * UNITS_PER_WORD); |
e4f93898 | 3173 | size_rtx = expr_size (pval); |
51bbfa0c RS |
3174 | } |
3175 | ||
1efe6448 | 3176 | emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx, |
51bbfa0c RS |
3177 | TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial, |
3178 | reg, excess, argblock, ARGS_SIZE_RTX (arg->offset)); | |
3179 | } | |
3180 | ||
3181 | ||
3182 | /* Unless this is a partially-in-register argument, the argument is now | |
3183 | in the stack. | |
3184 | ||
3185 | ??? Note that this can change arg->value from arg->stack to | |
3186 | arg->stack_slot and it matters when they are not the same. | |
3187 | It isn't totally clear that this is correct in all cases. */ | |
3188 | if (partial == 0) | |
3189 | arg->value = arg->stack_slot; | |
3190 | ||
3191 | /* Once we have pushed something, pops can't safely | |
3192 | be deferred during the rest of the arguments. */ | |
3193 | NO_DEFER_POP; | |
3194 | ||
3195 | /* ANSI doesn't require a sequence point here, | |
3196 | but PCC has one, so this will avoid some problems. */ | |
3197 | emit_queue (); | |
3198 | ||
db907e7b RK |
3199 | /* Free any temporary slots made in processing this argument. Show |
3200 | that we might have taken the address of something and pushed that | |
3201 | as an operand. */ | |
3202 | preserve_temp_slots (NULL_RTX); | |
51bbfa0c | 3203 | free_temp_slots (); |
cc79451b | 3204 | pop_temp_slots (); |
51bbfa0c RS |
3205 | |
3206 | #ifdef ACCUMULATE_OUTGOING_ARGS | |
3207 | /* Now mark the segment we just used. */ | |
3208 | if (argblock && ! variable_size && arg->stack) | |
3209 | for (i = lower_bound; i < upper_bound; i++) | |
3210 | stack_usage_map[i] = 1; | |
3211 | #endif | |
3212 | } |