]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
alias.c (get_alias_set): Initialize alias set to 0 when subset is impossible.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
3932261a
MM
46
47/* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
3932261a 51
01d28c3f 52 struct S { int i; double d; };
3932261a
MM
53
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
57 like:
58 struct S
59 / \
60 / \
61 |/_ _\|
62 int double
63
ac3d9668
RK
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
67
3bdf5ad1
RK
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
95bd1dd7 70 past immediate descendants, however, since we propagate all
3bdf5ad1 71 grandchildren up one level.
3932261a
MM
72
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
76
d4b60170
RK
77typedef struct alias_set_entry
78{
3932261a 79 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 80 HOST_WIDE_INT alias_set;
3932261a
MM
81
82 /* The children of the alias set. These are not just the immediate
95bd1dd7 83 children, but, in fact, all descendants. So, if we have:
3932261a 84
ca7fd9cd 85 struct T { struct S s; float f; }
3932261a
MM
86
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree children;
2bf105ab
RK
90
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
93 int has_zero_child;
d4b60170 94} *alias_set_entry;
9ae8ffe7 95
4682ae04
AJ
96static int rtx_equal_for_memref_p (rtx, rtx);
97static rtx find_symbolic_term (rtx);
4682ae04
AJ
98static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
99static void record_set (rtx, rtx, void *);
100static int base_alias_check (rtx, rtx, enum machine_mode,
101 enum machine_mode);
102static rtx find_base_value (rtx);
103static int mems_in_disjoint_alias_sets_p (rtx, rtx);
104static int insert_subset_children (splay_tree_node, void*);
105static tree find_base_decl (tree);
106static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
107static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
108 int (*) (rtx, int));
109static int aliases_everything_p (rtx);
110static bool nonoverlapping_component_refs_p (tree, tree);
111static tree decl_for_component_ref (tree);
112static rtx adjust_offset_for_component_ref (tree, rtx);
113static int nonoverlapping_memrefs_p (rtx, rtx);
d2399d75 114static int write_dependence_p (rtx, rtx, int, int);
4682ae04
AJ
115
116static int nonlocal_mentioned_p_1 (rtx *, void *);
117static int nonlocal_mentioned_p (rtx);
118static int nonlocal_referenced_p_1 (rtx *, void *);
119static int nonlocal_referenced_p (rtx);
120static int nonlocal_set_p_1 (rtx *, void *);
121static int nonlocal_set_p (rtx);
122static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
123
124/* Set up all info needed to perform alias analysis on memory references. */
125
d4b60170 126/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
127#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
128
41472af8 129/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
130 different alias sets. We ignore alias sets in functions making use
131 of variable arguments because the va_arg macros on some systems are
132 not legal ANSI C. */
133#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 134 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 135
ea64ef27 136/* Cap the number of passes we make over the insns propagating alias
ac3d9668 137 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 138#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 139
9ae8ffe7
JL
140/* reg_base_value[N] gives an address to which register N is related.
141 If all sets after the first add or subtract to the current value
142 or otherwise modify it so it does not point to a different top level
143 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
144 of the first set.
145
146 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
147 expressions represent certain special values: function arguments and
ca7fd9cd 148 the stack, frame, and argument pointers.
b3b5ad95
JL
149
150 The contents of an ADDRESS is not normally used, the mode of the
151 ADDRESS determines whether the ADDRESS is a function argument or some
152 other special value. Pointer equality, not rtx_equal_p, determines whether
153 two ADDRESS expressions refer to the same base address.
154
155 The only use of the contents of an ADDRESS is for determining if the
156 current function performs nonlocal memory memory references for the
157 purposes of marking the function as a constant function. */
2a2c8203 158
e2500fed 159static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 160static rtx *new_reg_base_value;
d4b60170
RK
161static unsigned int reg_base_value_size; /* size of reg_base_value array */
162
bf1660a6
JL
163/* Static hunks of RTL used by the aliasing code; these are initialized
164 once per function to avoid unnecessary RTL allocations. */
165static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
166
9ae8ffe7 167#define REG_BASE_VALUE(X) \
fb6754f0
BS
168 (REGNO (X) < reg_base_value_size \
169 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 170
de12be17
JC
171/* Vector of known invariant relationships between registers. Set in
172 loop unrolling. Indexed by register number, if nonzero the value
173 is an expression describing this register in terms of another.
174
175 The length of this array is REG_BASE_VALUE_SIZE.
176
177 Because this array contains only pseudo registers it has no effect
178 after reload. */
179static rtx *alias_invariant;
180
c13e8210
MM
181/* Vector indexed by N giving the initial (unchanging) value known for
182 pseudo-register N. This array is initialized in
183 init_alias_analysis, and does not change until end_alias_analysis
184 is called. */
9ae8ffe7
JL
185rtx *reg_known_value;
186
187/* Indicates number of valid entries in reg_known_value. */
770ae6cc 188static unsigned int reg_known_value_size;
9ae8ffe7
JL
189
190/* Vector recording for each reg_known_value whether it is due to a
191 REG_EQUIV note. Future passes (viz., reload) may replace the
192 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
193 dependences that would be introduced if that happens.
194
195 The REG_EQUIV notes created in assign_parms may mention the arg
196 pointer, and there are explicit insns in the RTL that modify the
197 arg pointer. Thus we must ensure that such insns don't get
198 scheduled across each other because that would invalidate the
199 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
200 wrong, but solving the problem in the scheduler will likely give
201 better code, so we do it here. */
9ae8ffe7
JL
202char *reg_known_equiv_p;
203
2a2c8203
JC
204/* True when scanning insns from the start of the rtl to the
205 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 206static bool copying_arguments;
9ae8ffe7 207
3932261a 208/* The splay-tree used to store the various alias set entries. */
9ddb66ca 209varray_type alias_sets;
ac3d9668 210\f
3932261a
MM
211/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
212 such an entry, or NULL otherwise. */
213
9ddb66ca 214static inline alias_set_entry
4682ae04 215get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 216{
9ddb66ca 217 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
3932261a
MM
218}
219
ac3d9668
RK
220/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
221 the two MEMs cannot alias each other. */
3932261a 222
9ddb66ca 223static inline int
4682ae04 224mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 225{
ca7fd9cd 226#ifdef ENABLE_CHECKING
3932261a
MM
227/* Perform a basic sanity check. Namely, that there are no alias sets
228 if we're not using strict aliasing. This helps to catch bugs
229 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
230 where a MEM is allocated in some way other than by the use of
231 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
232 use alias sets to indicate that spilled registers cannot alias each
233 other, we might need to remove this check. */
d4b60170
RK
234 if (! flag_strict_aliasing
235 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
236 abort ();
237#endif
238
1da68f56
RK
239 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
240}
3932261a 241
1da68f56
RK
242/* Insert the NODE into the splay tree given by DATA. Used by
243 record_alias_subset via splay_tree_foreach. */
244
245static int
4682ae04 246insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
247{
248 splay_tree_insert ((splay_tree) data, node->key, node->value);
249
250 return 0;
251}
252
253/* Return 1 if the two specified alias sets may conflict. */
254
255int
4682ae04 256alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
257{
258 alias_set_entry ase;
259
260 /* If have no alias set information for one of the operands, we have
261 to assume it can alias anything. */
262 if (set1 == 0 || set2 == 0
263 /* If the two alias sets are the same, they may alias. */
264 || set1 == set2)
265 return 1;
3932261a 266
3bdf5ad1 267 /* See if the first alias set is a subset of the second. */
1da68f56 268 ase = get_alias_set_entry (set1);
2bf105ab
RK
269 if (ase != 0
270 && (ase->has_zero_child
271 || splay_tree_lookup (ase->children,
1da68f56
RK
272 (splay_tree_key) set2)))
273 return 1;
3932261a
MM
274
275 /* Now do the same, but with the alias sets reversed. */
1da68f56 276 ase = get_alias_set_entry (set2);
2bf105ab
RK
277 if (ase != 0
278 && (ase->has_zero_child
279 || splay_tree_lookup (ase->children,
1da68f56
RK
280 (splay_tree_key) set1)))
281 return 1;
3932261a 282
1da68f56 283 /* The two alias sets are distinct and neither one is the
3932261a 284 child of the other. Therefore, they cannot alias. */
1da68f56 285 return 0;
3932261a 286}
1da68f56
RK
287\f
288/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
289 has any readonly fields. If any of the fields have types that
290 contain readonly fields, return true as well. */
3932261a 291
1da68f56 292int
4682ae04 293readonly_fields_p (tree type)
3932261a 294{
1da68f56
RK
295 tree field;
296
297 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
298 && TREE_CODE (type) != QUAL_UNION_TYPE)
299 return 0;
300
301 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
302 if (TREE_CODE (field) == FIELD_DECL
303 && (TREE_READONLY (field)
304 || readonly_fields_p (TREE_TYPE (field))))
305 return 1;
3932261a
MM
306
307 return 0;
308}
3bdf5ad1 309\f
1da68f56
RK
310/* Return 1 if any MEM object of type T1 will always conflict (using the
311 dependency routines in this file) with any MEM object of type T2.
312 This is used when allocating temporary storage. If T1 and/or T2 are
313 NULL_TREE, it means we know nothing about the storage. */
314
315int
4682ae04 316objects_must_conflict_p (tree t1, tree t2)
1da68f56 317{
82d610ec
RK
318 HOST_WIDE_INT set1, set2;
319
e8ea2809
RK
320 /* If neither has a type specified, we don't know if they'll conflict
321 because we may be using them to store objects of various types, for
322 example the argument and local variables areas of inlined functions. */
981a4c34 323 if (t1 == 0 && t2 == 0)
e8ea2809
RK
324 return 0;
325
66cce54d
RH
326 /* If one or the other has readonly fields or is readonly,
327 then they may not conflict. */
328 if ((t1 != 0 && readonly_fields_p (t1))
329 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
330 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
331 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
332 return 0;
333
1da68f56
RK
334 /* If they are the same type, they must conflict. */
335 if (t1 == t2
336 /* Likewise if both are volatile. */
337 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
338 return 1;
339
82d610ec
RK
340 set1 = t1 ? get_alias_set (t1) : 0;
341 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 342
82d610ec
RK
343 /* Otherwise they conflict if they have no alias set or the same. We
344 can't simply use alias_sets_conflict_p here, because we must make
345 sure that every subtype of t1 will conflict with every subtype of
346 t2 for which a pair of subobjects of these respective subtypes
347 overlaps on the stack. */
348 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
349}
350\f
3bdf5ad1
RK
351/* T is an expression with pointer type. Find the DECL on which this
352 expression is based. (For example, in `a[i]' this would be `a'.)
353 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 354 NULL_TREE is returned. */
3bdf5ad1
RK
355
356static tree
4682ae04 357find_base_decl (tree t)
3bdf5ad1
RK
358{
359 tree d0, d1, d2;
360
361 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
362 return 0;
363
364 /* If this is a declaration, return it. */
365 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
366 return t;
367
368 /* Handle general expressions. It would be nice to deal with
369 COMPONENT_REFs here. If we could tell that `a' and `b' were the
370 same, then `a->f' and `b->f' are also the same. */
371 switch (TREE_CODE_CLASS (TREE_CODE (t)))
372 {
373 case '1':
374 return find_base_decl (TREE_OPERAND (t, 0));
375
376 case '2':
377 /* Return 0 if found in neither or both are the same. */
378 d0 = find_base_decl (TREE_OPERAND (t, 0));
379 d1 = find_base_decl (TREE_OPERAND (t, 1));
380 if (d0 == d1)
381 return d0;
382 else if (d0 == 0)
383 return d1;
384 else if (d1 == 0)
385 return d0;
386 else
387 return 0;
388
389 case '3':
390 d0 = find_base_decl (TREE_OPERAND (t, 0));
391 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
392 d2 = find_base_decl (TREE_OPERAND (t, 2));
393
394 /* Set any nonzero values from the last, then from the first. */
395 if (d1 == 0) d1 = d2;
396 if (d0 == 0) d0 = d1;
397 if (d1 == 0) d1 = d0;
398 if (d2 == 0) d2 = d1;
399
400 /* At this point all are nonzero or all are zero. If all three are the
401 same, return it. Otherwise, return zero. */
402 return (d0 == d1 && d1 == d2) ? d0 : 0;
403
404 default:
405 return 0;
406 }
407}
408
6e24b709
RK
409/* Return 1 if all the nested component references handled by
410 get_inner_reference in T are such that we can address the object in T. */
411
10b76d73 412int
4682ae04 413can_address_p (tree t)
6e24b709
RK
414{
415 /* If we're at the end, it is vacuously addressable. */
416 if (! handled_component_p (t))
417 return 1;
418
419 /* Bitfields are never addressable. */
420 else if (TREE_CODE (t) == BIT_FIELD_REF)
421 return 0;
422
8ac61af7
RK
423 /* Fields are addressable unless they are marked as nonaddressable or
424 the containing type has alias set 0. */
6e24b709
RK
425 else if (TREE_CODE (t) == COMPONENT_REF
426 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 427 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
428 && can_address_p (TREE_OPERAND (t, 0)))
429 return 1;
430
8ac61af7 431 /* Likewise for arrays. */
b4e3fabb 432 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 433 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 434 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
435 && can_address_p (TREE_OPERAND (t, 0)))
436 return 1;
437
438 return 0;
439}
440
3bdf5ad1
RK
441/* Return the alias set for T, which may be either a type or an
442 expression. Call language-specific routine for help, if needed. */
443
444HOST_WIDE_INT
4682ae04 445get_alias_set (tree t)
3bdf5ad1
RK
446{
447 HOST_WIDE_INT set;
3bdf5ad1
RK
448
449 /* If we're not doing any alias analysis, just assume everything
450 aliases everything else. Also return 0 if this or its type is
451 an error. */
452 if (! flag_strict_aliasing || t == error_mark_node
453 || (! TYPE_P (t)
454 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
455 return 0;
456
457 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
458 language-specific routine may make mutually-recursive calls to each other
459 to figure out what to do. At each juncture, we see if this is a tree
460 that the language may need to handle specially. First handle things that
738cc472 461 aren't types. */
f824e5c3 462 if (! TYPE_P (t))
3bdf5ad1 463 {
738cc472
RK
464 tree inner = t;
465 tree placeholder_ptr = 0;
466
8ac61af7
RK
467 /* Remove any nops, then give the language a chance to do
468 something with this tree before we look at it. */
469 STRIP_NOPS (t);
470 set = (*lang_hooks.get_alias_set) (t);
471 if (set != -1)
472 return set;
473
738cc472 474 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 475 restrict-qualified pointer or a "void *". Replace
738cc472 476 PLACEHOLDER_EXPRs. */
8ac61af7 477 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
478 || handled_component_p (inner))
479 {
480 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
481 inner = find_placeholder (inner, &placeholder_ptr);
482 else
483 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
484
485 STRIP_NOPS (inner);
738cc472
RK
486 }
487
488 /* Check for accesses through restrict-qualified pointers. */
489 if (TREE_CODE (inner) == INDIRECT_REF)
490 {
491 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
492
493 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
494 {
e5837c07 495 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
496 if (DECL_POINTER_ALIAS_SET (decl) == -2)
497 {
498 /* No two restricted pointers can point at the same thing.
499 However, a restricted pointer can point at the same thing
500 as an unrestricted pointer, if that unrestricted pointer
501 is based on the restricted pointer. So, we make the
502 alias set for the restricted pointer a subset of the
503 alias set for the type pointed to by the type of the
504 decl. */
505 HOST_WIDE_INT pointed_to_alias_set
506 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
507
508 if (pointed_to_alias_set == 0)
509 /* It's not legal to make a subset of alias set zero. */
e7844ffb 510 DECL_POINTER_ALIAS_SET (decl) = 0;
738cc472
RK
511 else
512 {
513 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
514 record_alias_subset (pointed_to_alias_set,
515 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
516 }
517 }
518
519 /* We use the alias set indicated in the declaration. */
520 return DECL_POINTER_ALIAS_SET (decl);
521 }
522
523 /* If we have an INDIRECT_REF via a void pointer, we don't
524 know anything about what that might alias. */
525 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
526 return 0;
527 }
528
529 /* Otherwise, pick up the outermost object that we could have a pointer
530 to, processing conversion and PLACEHOLDER_EXPR as above. */
531 placeholder_ptr = 0;
8ac61af7 532 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
533 || (handled_component_p (t) && ! can_address_p (t)))
534 {
f47e9b4e 535 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 536 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
537 else
538 t = TREE_OPERAND (t, 0);
f824e5c3 539
8ac61af7
RK
540 STRIP_NOPS (t);
541 }
f824e5c3 542
738cc472
RK
543 /* If we've already determined the alias set for a decl, just return
544 it. This is necessary for C++ anonymous unions, whose component
545 variables don't look like union members (boo!). */
5755cd38
JM
546 if (TREE_CODE (t) == VAR_DECL
547 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
548 return MEM_ALIAS_SET (DECL_RTL (t));
549
f824e5c3
RK
550 /* Now all we care about is the type. */
551 t = TREE_TYPE (t);
3bdf5ad1
RK
552 }
553
3bdf5ad1
RK
554 /* Variant qualifiers don't affect the alias set, so get the main
555 variant. If this is a type with a known alias set, return it. */
556 t = TYPE_MAIN_VARIANT (t);
738cc472 557 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
558 return TYPE_ALIAS_SET (t);
559
560 /* See if the language has special handling for this type. */
8ac61af7
RK
561 set = (*lang_hooks.get_alias_set) (t);
562 if (set != -1)
738cc472 563 return set;
2bf105ab 564
3bdf5ad1
RK
565 /* There are no objects of FUNCTION_TYPE, so there's no point in
566 using up an alias set for them. (There are, of course, pointers
567 and references to functions, but that's different.) */
568 else if (TREE_CODE (t) == FUNCTION_TYPE)
569 set = 0;
74d86f4f
RH
570
571 /* Unless the language specifies otherwise, let vector types alias
572 their components. This avoids some nasty type punning issues in
573 normal usage. And indeed lets vectors be treated more like an
574 array slice. */
575 else if (TREE_CODE (t) == VECTOR_TYPE)
576 set = get_alias_set (TREE_TYPE (t));
577
3bdf5ad1
RK
578 else
579 /* Otherwise make a new alias set for this type. */
580 set = new_alias_set ();
581
582 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
583
584 /* If this is an aggregate type, we must record any component aliasing
585 information. */
1d79fd2c 586 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
587 record_component_aliases (t);
588
3bdf5ad1
RK
589 return set;
590}
591
592/* Return a brand-new alias set. */
593
594HOST_WIDE_INT
4682ae04 595new_alias_set (void)
3bdf5ad1
RK
596{
597 static HOST_WIDE_INT last_alias_set;
598
599 if (flag_strict_aliasing)
9ddb66ca 600 {
3416f5c2
JH
601 if (!alias_sets)
602 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
603 else
604 VARRAY_GROW (alias_sets, last_alias_set + 2);
9ddb66ca
JH
605 return ++last_alias_set;
606 }
3bdf5ad1
RK
607 else
608 return 0;
609}
3932261a 610
01d28c3f
JM
611/* Indicate that things in SUBSET can alias things in SUPERSET, but that
612 not everything that aliases SUPERSET also aliases SUBSET. For example,
613 in C, a store to an `int' can alias a load of a structure containing an
614 `int', and vice versa. But it can't alias a load of a 'double' member
615 of the same structure. Here, the structure would be the SUPERSET and
616 `int' the SUBSET. This relationship is also described in the comment at
617 the beginning of this file.
618
619 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
620
621 It is illegal for SUPERSET to be zero; everything is implicitly a
622 subset of alias set zero. */
623
624void
4682ae04 625record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
626{
627 alias_set_entry superset_entry;
628 alias_set_entry subset_entry;
629
f47e9b4e
RK
630 /* It is possible in complex type situations for both sets to be the same,
631 in which case we can ignore this operation. */
632 if (superset == subset)
633 return;
634
3932261a
MM
635 if (superset == 0)
636 abort ();
637
638 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 639 if (superset_entry == 0)
3932261a
MM
640 {
641 /* Create an entry for the SUPERSET, so that we have a place to
642 attach the SUBSET. */
703ad42b 643 superset_entry = xmalloc (sizeof (struct alias_set_entry));
3932261a 644 superset_entry->alias_set = superset;
ca7fd9cd 645 superset_entry->children
30f72379 646 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 647 superset_entry->has_zero_child = 0;
9ddb66ca 648 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
3932261a
MM
649 }
650
2bf105ab
RK
651 if (subset == 0)
652 superset_entry->has_zero_child = 1;
653 else
654 {
655 subset_entry = get_alias_set_entry (subset);
656 /* If there is an entry for the subset, enter all of its children
657 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 658 if (subset_entry)
2bf105ab
RK
659 {
660 if (subset_entry->has_zero_child)
661 superset_entry->has_zero_child = 1;
d4b60170 662
2bf105ab
RK
663 splay_tree_foreach (subset_entry->children, insert_subset_children,
664 superset_entry->children);
665 }
3932261a 666
2bf105ab 667 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 668 splay_tree_insert (superset_entry->children,
2bf105ab
RK
669 (splay_tree_key) subset, 0);
670 }
3932261a
MM
671}
672
a0c33338
RK
673/* Record that component types of TYPE, if any, are part of that type for
674 aliasing purposes. For record types, we only record component types
675 for fields that are marked addressable. For array types, we always
676 record the component types, so the front end should not call this
677 function if the individual component aren't addressable. */
678
679void
4682ae04 680record_component_aliases (tree type)
a0c33338 681{
3bdf5ad1 682 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
683 tree field;
684
685 if (superset == 0)
686 return;
687
688 switch (TREE_CODE (type))
689 {
690 case ARRAY_TYPE:
2bf105ab
RK
691 if (! TYPE_NONALIASED_COMPONENT (type))
692 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
693 break;
694
695 case RECORD_TYPE:
696 case UNION_TYPE:
697 case QUAL_UNION_TYPE:
6614fd40 698 /* Recursively record aliases for the base classes, if there are any. */
61eece67 699 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
700 {
701 int i;
702 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
703 {
704 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
705 record_alias_subset (superset,
61eece67 706 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
707 }
708 }
a0c33338 709 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 710 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 711 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
712 break;
713
1d79fd2c
JW
714 case COMPLEX_TYPE:
715 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
716 break;
717
a0c33338
RK
718 default:
719 break;
720 }
721}
722
3bdf5ad1
RK
723/* Allocate an alias set for use in storing and reading from the varargs
724 spill area. */
725
726HOST_WIDE_INT
4682ae04 727get_varargs_alias_set (void)
3bdf5ad1
RK
728{
729 static HOST_WIDE_INT set = -1;
730
731 if (set == -1)
732 set = new_alias_set ();
733
734 return set;
735}
736
737/* Likewise, but used for the fixed portions of the frame, e.g., register
738 save areas. */
739
740HOST_WIDE_INT
4682ae04 741get_frame_alias_set (void)
3bdf5ad1
RK
742{
743 static HOST_WIDE_INT set = -1;
744
745 if (set == -1)
746 set = new_alias_set ();
747
748 return set;
749}
750
2a2c8203
JC
751/* Inside SRC, the source of a SET, find a base address. */
752
9ae8ffe7 753static rtx
4682ae04 754find_base_value (rtx src)
9ae8ffe7 755{
713f41f9 756 unsigned int regno;
0aacc8ed 757
9ae8ffe7
JL
758 switch (GET_CODE (src))
759 {
760 case SYMBOL_REF:
761 case LABEL_REF:
762 return src;
763
764 case REG:
fb6754f0 765 regno = REGNO (src);
d4b60170 766 /* At the start of a function, argument registers have known base
2a2c8203
JC
767 values which may be lost later. Returning an ADDRESS
768 expression here allows optimization based on argument values
769 even when the argument registers are used for other purposes. */
713f41f9
BS
770 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
771 return new_reg_base_value[regno];
73774bc7 772
eaf407a5 773 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
774 for non-fixed hard regs since it can result in a circular
775 dependency chain for registers which have values at function entry.
eaf407a5
JL
776
777 The test above is not sufficient because the scheduler may move
778 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 779 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
780 && regno < reg_base_value_size)
781 {
782 /* If we're inside init_alias_analysis, use new_reg_base_value
783 to reduce the number of relaxation iterations. */
1afdf91c
RH
784 if (new_reg_base_value && new_reg_base_value[regno]
785 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
786 return new_reg_base_value[regno];
787
788 if (reg_base_value[regno])
789 return reg_base_value[regno];
790 }
73774bc7 791
e3f049a8 792 return 0;
9ae8ffe7
JL
793
794 case MEM:
795 /* Check for an argument passed in memory. Only record in the
796 copying-arguments block; it is too hard to track changes
797 otherwise. */
798 if (copying_arguments
799 && (XEXP (src, 0) == arg_pointer_rtx
800 || (GET_CODE (XEXP (src, 0)) == PLUS
801 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 802 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
803 return 0;
804
805 case CONST:
806 src = XEXP (src, 0);
807 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
808 break;
d4b60170 809
ec5c56db 810 /* ... fall through ... */
2a2c8203 811
9ae8ffe7
JL
812 case PLUS:
813 case MINUS:
2a2c8203 814 {
ec907dd8
JL
815 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
816
0134bf2d
DE
817 /* If either operand is a REG that is a known pointer, then it
818 is the base. */
819 if (REG_P (src_0) && REG_POINTER (src_0))
820 return find_base_value (src_0);
821 if (REG_P (src_1) && REG_POINTER (src_1))
822 return find_base_value (src_1);
823
ec907dd8
JL
824 /* If either operand is a REG, then see if we already have
825 a known value for it. */
0134bf2d 826 if (REG_P (src_0))
ec907dd8
JL
827 {
828 temp = find_base_value (src_0);
d4b60170 829 if (temp != 0)
ec907dd8
JL
830 src_0 = temp;
831 }
832
0134bf2d 833 if (REG_P (src_1))
ec907dd8
JL
834 {
835 temp = find_base_value (src_1);
d4b60170 836 if (temp!= 0)
ec907dd8
JL
837 src_1 = temp;
838 }
2a2c8203 839
0134bf2d
DE
840 /* If either base is named object or a special address
841 (like an argument or stack reference), then use it for the
842 base term. */
843 if (src_0 != 0
844 && (GET_CODE (src_0) == SYMBOL_REF
845 || GET_CODE (src_0) == LABEL_REF
846 || (GET_CODE (src_0) == ADDRESS
847 && GET_MODE (src_0) != VOIDmode)))
848 return src_0;
849
850 if (src_1 != 0
851 && (GET_CODE (src_1) == SYMBOL_REF
852 || GET_CODE (src_1) == LABEL_REF
853 || (GET_CODE (src_1) == ADDRESS
854 && GET_MODE (src_1) != VOIDmode)))
855 return src_1;
856
d4b60170 857 /* Guess which operand is the base address:
ec907dd8
JL
858 If either operand is a symbol, then it is the base. If
859 either operand is a CONST_INT, then the other is the base. */
d4b60170 860 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 861 return find_base_value (src_0);
d4b60170 862 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
863 return find_base_value (src_1);
864
9ae8ffe7 865 return 0;
2a2c8203
JC
866 }
867
868 case LO_SUM:
869 /* The standard form is (lo_sum reg sym) so look only at the
870 second operand. */
871 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
872
873 case AND:
874 /* If the second operand is constant set the base
ec5c56db 875 address to the first operand. */
2a2c8203
JC
876 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
877 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
878 return 0;
879
61f0131c
R
880 case TRUNCATE:
881 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
882 break;
883 /* Fall through. */
9ae8ffe7 884 case HIGH:
d288e53d
DE
885 case PRE_INC:
886 case PRE_DEC:
887 case POST_INC:
888 case POST_DEC:
889 case PRE_MODIFY:
890 case POST_MODIFY:
2a2c8203 891 return find_base_value (XEXP (src, 0));
1d300e19 892
0aacc8ed
RK
893 case ZERO_EXTEND:
894 case SIGN_EXTEND: /* used for NT/Alpha pointers */
895 {
896 rtx temp = find_base_value (XEXP (src, 0));
897
5ae6cd0d 898 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 899 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
900
901 return temp;
902 }
903
1d300e19
KG
904 default:
905 break;
9ae8ffe7
JL
906 }
907
908 return 0;
909}
910
911/* Called from init_alias_analysis indirectly through note_stores. */
912
d4b60170 913/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
914 register N has been set in this function. */
915static char *reg_seen;
916
13309a5f
JC
917/* Addresses which are known not to alias anything else are identified
918 by a unique integer. */
ec907dd8
JL
919static int unique_id;
920
2a2c8203 921static void
4682ae04 922record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 923{
b3694847 924 unsigned regno;
9ae8ffe7 925 rtx src;
c28b4e40 926 int n;
9ae8ffe7
JL
927
928 if (GET_CODE (dest) != REG)
929 return;
930
fb6754f0 931 regno = REGNO (dest);
9ae8ffe7 932
ac606739
GS
933 if (regno >= reg_base_value_size)
934 abort ();
935
c28b4e40
JW
936 /* If this spans multiple hard registers, then we must indicate that every
937 register has an unusable value. */
938 if (regno < FIRST_PSEUDO_REGISTER)
939 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
940 else
941 n = 1;
942 if (n != 1)
943 {
944 while (--n >= 0)
945 {
946 reg_seen[regno + n] = 1;
947 new_reg_base_value[regno + n] = 0;
948 }
949 return;
950 }
951
9ae8ffe7
JL
952 if (set)
953 {
954 /* A CLOBBER wipes out any old value but does not prevent a previously
955 unset register from acquiring a base address (i.e. reg_seen is not
956 set). */
957 if (GET_CODE (set) == CLOBBER)
958 {
ec907dd8 959 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
960 return;
961 }
962 src = SET_SRC (set);
963 }
964 else
965 {
9ae8ffe7
JL
966 if (reg_seen[regno])
967 {
ec907dd8 968 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
969 return;
970 }
971 reg_seen[regno] = 1;
38a448ca
RH
972 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
973 GEN_INT (unique_id++));
9ae8ffe7
JL
974 return;
975 }
976
977 /* This is not the first set. If the new value is not related to the
978 old value, forget the base value. Note that the following code is
979 not detected:
980 extern int x, y; int *p = &x; p += (&y-&x);
981 ANSI C does not allow computing the difference of addresses
982 of distinct top level objects. */
ec907dd8 983 if (new_reg_base_value[regno])
9ae8ffe7
JL
984 switch (GET_CODE (src))
985 {
2a2c8203 986 case LO_SUM:
9ae8ffe7
JL
987 case MINUS:
988 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 989 new_reg_base_value[regno] = 0;
9ae8ffe7 990 break;
61f0131c
R
991 case PLUS:
992 /* If the value we add in the PLUS is also a valid base value,
993 this might be the actual base value, and the original value
994 an index. */
995 {
996 rtx other = NULL_RTX;
997
998 if (XEXP (src, 0) == dest)
999 other = XEXP (src, 1);
1000 else if (XEXP (src, 1) == dest)
1001 other = XEXP (src, 0);
1002
1003 if (! other || find_base_value (other))
1004 new_reg_base_value[regno] = 0;
1005 break;
1006 }
9ae8ffe7
JL
1007 case AND:
1008 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1009 new_reg_base_value[regno] = 0;
9ae8ffe7 1010 break;
9ae8ffe7 1011 default:
ec907dd8 1012 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1013 break;
1014 }
1015 /* If this is the first set of a register, record the value. */
1016 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1017 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1018 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1019
1020 reg_seen[regno] = 1;
1021}
1022
ac3d9668
RK
1023/* Called from loop optimization when a new pseudo-register is
1024 created. It indicates that REGNO is being set to VAL. f INVARIANT
1025 is true then this value also describes an invariant relationship
1026 which can be used to deduce that two registers with unknown values
1027 are different. */
d4b60170 1028
9ae8ffe7 1029void
4682ae04 1030record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1031{
ac3d9668 1032 if (regno >= reg_base_value_size)
9ae8ffe7 1033 return;
de12be17 1034
de12be17
JC
1035 if (invariant && alias_invariant)
1036 alias_invariant[regno] = val;
1037
9ae8ffe7
JL
1038 if (GET_CODE (val) == REG)
1039 {
fb6754f0
BS
1040 if (REGNO (val) < reg_base_value_size)
1041 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1042
9ae8ffe7
JL
1043 return;
1044 }
d4b60170 1045
9ae8ffe7
JL
1046 reg_base_value[regno] = find_base_value (val);
1047}
1048
43fe47ca
JW
1049/* Clear alias info for a register. This is used if an RTL transformation
1050 changes the value of a register. This is used in flow by AUTO_INC_DEC
1051 optimizations. We don't need to clear reg_base_value, since flow only
1052 changes the offset. */
1053
1054void
4682ae04 1055clear_reg_alias_info (rtx reg)
43fe47ca 1056{
4e1a4144
JW
1057 unsigned int regno = REGNO (reg);
1058
1059 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1060 reg_known_value[regno] = reg;
43fe47ca
JW
1061}
1062
db048faf
MM
1063/* Returns a canonical version of X, from the point of view alias
1064 analysis. (For example, if X is a MEM whose address is a register,
1065 and the register has a known value (say a SYMBOL_REF), then a MEM
1066 whose address is the SYMBOL_REF is returned.) */
1067
1068rtx
4682ae04 1069canon_rtx (rtx x)
9ae8ffe7
JL
1070{
1071 /* Recursively look for equivalences. */
fb6754f0
BS
1072 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1073 && REGNO (x) < reg_known_value_size)
1074 return reg_known_value[REGNO (x)] == x
1075 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1076 else if (GET_CODE (x) == PLUS)
1077 {
1078 rtx x0 = canon_rtx (XEXP (x, 0));
1079 rtx x1 = canon_rtx (XEXP (x, 1));
1080
1081 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1082 {
9ae8ffe7 1083 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1084 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1085 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1086 return plus_constant (x0, INTVAL (x1));
38a448ca 1087 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1088 }
1089 }
d4b60170 1090
9ae8ffe7
JL
1091 /* This gives us much better alias analysis when called from
1092 the loop optimizer. Note we want to leave the original
1093 MEM alone, but need to return the canonicalized MEM with
1094 all the flags with their original values. */
1095 else if (GET_CODE (x) == MEM)
f1ec5147 1096 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1097
9ae8ffe7
JL
1098 return x;
1099}
1100
1101/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1102 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1103
1104 We use the data in reg_known_value above to see if two registers with
1105 different numbers are, in fact, equivalent. */
1106
1107static int
4682ae04 1108rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1109{
b3694847
SS
1110 int i;
1111 int j;
1112 enum rtx_code code;
1113 const char *fmt;
9ae8ffe7
JL
1114
1115 if (x == 0 && y == 0)
1116 return 1;
1117 if (x == 0 || y == 0)
1118 return 0;
d4b60170 1119
9ae8ffe7
JL
1120 if (x == y)
1121 return 1;
1122
1123 code = GET_CODE (x);
1124 /* Rtx's of different codes cannot be equal. */
1125 if (code != GET_CODE (y))
1126 return 0;
1127
1128 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1129 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1130
1131 if (GET_MODE (x) != GET_MODE (y))
1132 return 0;
1133
db048faf
MM
1134 /* Some RTL can be compared without a recursive examination. */
1135 switch (code)
1136 {
ab59db3c
BS
1137 case VALUE:
1138 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1139
db048faf
MM
1140 case REG:
1141 return REGNO (x) == REGNO (y);
1142
1143 case LABEL_REF:
1144 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1145
db048faf
MM
1146 case SYMBOL_REF:
1147 return XSTR (x, 0) == XSTR (y, 0);
1148
1149 case CONST_INT:
1150 case CONST_DOUBLE:
1151 /* There's no need to compare the contents of CONST_DOUBLEs or
1152 CONST_INTs because pointer equality is a good enough
1153 comparison for these nodes. */
1154 return 0;
1155
1156 case ADDRESSOF:
831ecbd4 1157 return (XINT (x, 1) == XINT (y, 1)
45183e03 1158 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1159 XEXP (y, 0)));
db048faf
MM
1160
1161 default:
1162 break;
1163 }
9ae8ffe7 1164
45183e03
JH
1165 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1166 if (code == PLUS)
9ae8ffe7
JL
1167 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1168 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1169 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1170 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1171 /* For commutative operations, the RTX match if the operand match in any
1172 order. Also handle the simple binary and unary cases without a loop. */
1173 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1174 {
1175 rtx xop0 = canon_rtx (XEXP (x, 0));
1176 rtx yop0 = canon_rtx (XEXP (y, 0));
1177 rtx yop1 = canon_rtx (XEXP (y, 1));
1178
1179 return ((rtx_equal_for_memref_p (xop0, yop0)
1180 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1181 || (rtx_equal_for_memref_p (xop0, yop1)
1182 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1183 }
9ae8ffe7 1184 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1185 {
1186 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1187 canon_rtx (XEXP (y, 0)))
45183e03
JH
1188 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1189 canon_rtx (XEXP (y, 1))));
1190 }
9ae8ffe7 1191 else if (GET_RTX_CLASS (code) == '1')
45183e03 1192 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1193 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1194
1195 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1196 fail to match, return 0 for the whole things.
1197
1198 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1199
1200 fmt = GET_RTX_FORMAT (code);
1201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1202 {
1203 switch (fmt[i])
1204 {
9ae8ffe7
JL
1205 case 'i':
1206 if (XINT (x, i) != XINT (y, i))
1207 return 0;
1208 break;
1209
9ae8ffe7
JL
1210 case 'E':
1211 /* Two vectors must have the same length. */
1212 if (XVECLEN (x, i) != XVECLEN (y, i))
1213 return 0;
1214
1215 /* And the corresponding elements must match. */
1216 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1217 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1218 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1219 return 0;
1220 break;
1221
1222 case 'e':
45183e03
JH
1223 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1224 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1225 return 0;
1226 break;
1227
3237ac18
AH
1228 /* This can happen for asm operands. */
1229 case 's':
1230 if (strcmp (XSTR (x, i), XSTR (y, i)))
1231 return 0;
1232 break;
1233
aee21ba9
JL
1234 /* This can happen for an asm which clobbers memory. */
1235 case '0':
1236 break;
1237
9ae8ffe7
JL
1238 /* It is believed that rtx's at this level will never
1239 contain anything but integers and other rtx's,
1240 except for within LABEL_REFs and SYMBOL_REFs. */
1241 default:
1242 abort ();
1243 }
1244 }
1245 return 1;
1246}
1247
1248/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1249 X and return it, or return 0 if none found. */
1250
1251static rtx
4682ae04 1252find_symbolic_term (rtx x)
9ae8ffe7 1253{
b3694847
SS
1254 int i;
1255 enum rtx_code code;
1256 const char *fmt;
9ae8ffe7
JL
1257
1258 code = GET_CODE (x);
1259 if (code == SYMBOL_REF || code == LABEL_REF)
1260 return x;
1261 if (GET_RTX_CLASS (code) == 'o')
1262 return 0;
1263
1264 fmt = GET_RTX_FORMAT (code);
1265 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1266 {
1267 rtx t;
1268
1269 if (fmt[i] == 'e')
1270 {
1271 t = find_symbolic_term (XEXP (x, i));
1272 if (t != 0)
1273 return t;
1274 }
1275 else if (fmt[i] == 'E')
1276 break;
1277 }
1278 return 0;
1279}
1280
94f24ddc 1281rtx
4682ae04 1282find_base_term (rtx x)
9ae8ffe7 1283{
eab5c70a
BS
1284 cselib_val *val;
1285 struct elt_loc_list *l;
1286
b949ea8b
JW
1287#if defined (FIND_BASE_TERM)
1288 /* Try machine-dependent ways to find the base term. */
1289 x = FIND_BASE_TERM (x);
1290#endif
1291
9ae8ffe7
JL
1292 switch (GET_CODE (x))
1293 {
1294 case REG:
1295 return REG_BASE_VALUE (x);
1296
d288e53d
DE
1297 case TRUNCATE:
1298 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1299 return 0;
d288e53d 1300 /* Fall through. */
9ae8ffe7 1301 case HIGH:
6d849a2a
JL
1302 case PRE_INC:
1303 case PRE_DEC:
1304 case POST_INC:
1305 case POST_DEC:
d288e53d
DE
1306 case PRE_MODIFY:
1307 case POST_MODIFY:
6d849a2a
JL
1308 return find_base_term (XEXP (x, 0));
1309
1abade85
RK
1310 case ZERO_EXTEND:
1311 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1312 {
1313 rtx temp = find_base_term (XEXP (x, 0));
1314
5ae6cd0d 1315 if (temp != 0 && CONSTANT_P (temp))
1abade85 1316 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1317
1318 return temp;
1319 }
1320
eab5c70a
BS
1321 case VALUE:
1322 val = CSELIB_VAL_PTR (x);
1323 for (l = val->locs; l; l = l->next)
1324 if ((x = find_base_term (l->loc)) != 0)
1325 return x;
1326 return 0;
1327
9ae8ffe7
JL
1328 case CONST:
1329 x = XEXP (x, 0);
1330 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1331 return 0;
938d968e 1332 /* Fall through. */
9ae8ffe7
JL
1333 case LO_SUM:
1334 case PLUS:
1335 case MINUS:
1336 {
3c567fae
JL
1337 rtx tmp1 = XEXP (x, 0);
1338 rtx tmp2 = XEXP (x, 1);
1339
f5143c46 1340 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1341 the two operands represents the real base address. Otherwise this
1342 routine may return the index register instead of the base register.
1343
1344 That may cause us to believe no aliasing was possible, when in
1345 fact aliasing is possible.
1346
1347 We use a few simple tests to guess the base register. Additional
1348 tests can certainly be added. For example, if one of the operands
1349 is a shift or multiply, then it must be the index register and the
1350 other operand is the base register. */
ca7fd9cd 1351
b949ea8b
JW
1352 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1353 return find_base_term (tmp2);
1354
3c567fae
JL
1355 /* If either operand is known to be a pointer, then use it
1356 to determine the base term. */
3502dc9c 1357 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1358 return find_base_term (tmp1);
1359
3502dc9c 1360 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1361 return find_base_term (tmp2);
1362
1363 /* Neither operand was known to be a pointer. Go ahead and find the
1364 base term for both operands. */
1365 tmp1 = find_base_term (tmp1);
1366 tmp2 = find_base_term (tmp2);
1367
1368 /* If either base term is named object or a special address
1369 (like an argument or stack reference), then use it for the
1370 base term. */
d4b60170 1371 if (tmp1 != 0
3c567fae
JL
1372 && (GET_CODE (tmp1) == SYMBOL_REF
1373 || GET_CODE (tmp1) == LABEL_REF
1374 || (GET_CODE (tmp1) == ADDRESS
1375 && GET_MODE (tmp1) != VOIDmode)))
1376 return tmp1;
1377
d4b60170 1378 if (tmp2 != 0
3c567fae
JL
1379 && (GET_CODE (tmp2) == SYMBOL_REF
1380 || GET_CODE (tmp2) == LABEL_REF
1381 || (GET_CODE (tmp2) == ADDRESS
1382 && GET_MODE (tmp2) != VOIDmode)))
1383 return tmp2;
1384
1385 /* We could not determine which of the two operands was the
1386 base register and which was the index. So we can determine
1387 nothing from the base alias check. */
1388 return 0;
9ae8ffe7
JL
1389 }
1390
1391 case AND:
d288e53d
DE
1392 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1393 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1394 return 0;
1395
1396 case SYMBOL_REF:
1397 case LABEL_REF:
1398 return x;
1399
d982e46e 1400 case ADDRESSOF:
bb07060a 1401 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1402
9ae8ffe7
JL
1403 default:
1404 return 0;
1405 }
1406}
1407
1408/* Return 0 if the addresses X and Y are known to point to different
1409 objects, 1 if they might be pointers to the same object. */
1410
1411static int
4682ae04
AJ
1412base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1413 enum machine_mode y_mode)
9ae8ffe7
JL
1414{
1415 rtx x_base = find_base_term (x);
1416 rtx y_base = find_base_term (y);
1417
1c72c7f6
JC
1418 /* If the address itself has no known base see if a known equivalent
1419 value has one. If either address still has no known base, nothing
1420 is known about aliasing. */
1421 if (x_base == 0)
1422 {
1423 rtx x_c;
d4b60170 1424
1c72c7f6
JC
1425 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1426 return 1;
d4b60170 1427
1c72c7f6
JC
1428 x_base = find_base_term (x_c);
1429 if (x_base == 0)
1430 return 1;
1431 }
9ae8ffe7 1432
1c72c7f6
JC
1433 if (y_base == 0)
1434 {
1435 rtx y_c;
1436 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1437 return 1;
d4b60170 1438
1c72c7f6
JC
1439 y_base = find_base_term (y_c);
1440 if (y_base == 0)
1441 return 1;
1442 }
1443
1444 /* If the base addresses are equal nothing is known about aliasing. */
1445 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1446 return 1;
1447
ca7fd9cd 1448 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1449 If they are both symbols and they are not accessed via AND, there is
1450 no conflict. We can bring knowledge of object alignment into play
1451 here. For example, on alpha, "char a, b;" can alias one another,
1452 though "char a; long b;" cannot. */
9ae8ffe7 1453 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1454 {
56ee9281
RH
1455 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1456 return 1;
1457 if (GET_CODE (x) == AND
1458 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1459 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1460 return 1;
1461 if (GET_CODE (y) == AND
1462 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1463 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1464 return 1;
b2972551
JL
1465 /* Differing symbols never alias. */
1466 return 0;
c02f035f 1467 }
9ae8ffe7
JL
1468
1469 /* If one address is a stack reference there can be no alias:
1470 stack references using different base registers do not alias,
1471 a stack reference can not alias a parameter, and a stack reference
1472 can not alias a global. */
1473 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1474 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1475 return 0;
1476
1477 if (! flag_argument_noalias)
1478 return 1;
1479
1480 if (flag_argument_noalias > 1)
1481 return 0;
1482
ec5c56db 1483 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1484 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1485}
1486
eab5c70a
BS
1487/* Convert the address X into something we can use. This is done by returning
1488 it unchanged unless it is a value; in the latter case we call cselib to get
1489 a more useful rtx. */
3bdf5ad1 1490
a13d4ebf 1491rtx
4682ae04 1492get_addr (rtx x)
eab5c70a
BS
1493{
1494 cselib_val *v;
1495 struct elt_loc_list *l;
1496
1497 if (GET_CODE (x) != VALUE)
1498 return x;
1499 v = CSELIB_VAL_PTR (x);
1500 for (l = v->locs; l; l = l->next)
1501 if (CONSTANT_P (l->loc))
1502 return l->loc;
1503 for (l = v->locs; l; l = l->next)
1504 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1505 return l->loc;
1506 if (v->locs)
1507 return v->locs->loc;
1508 return x;
1509}
1510
39cec1ac
MH
1511/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1512 where SIZE is the size in bytes of the memory reference. If ADDR
1513 is not modified by the memory reference then ADDR is returned. */
1514
1515rtx
4682ae04 1516addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1517{
1518 int offset = 0;
ca7fd9cd 1519
39cec1ac
MH
1520 switch (GET_CODE (addr))
1521 {
1522 case PRE_INC:
1523 offset = (n_refs + 1) * size;
1524 break;
1525 case PRE_DEC:
1526 offset = -(n_refs + 1) * size;
1527 break;
1528 case POST_INC:
1529 offset = n_refs * size;
1530 break;
1531 case POST_DEC:
1532 offset = -n_refs * size;
1533 break;
1534
1535 default:
1536 return addr;
1537 }
ca7fd9cd 1538
39cec1ac 1539 if (offset)
45183e03
JH
1540 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1541 GEN_INT (offset));
39cec1ac
MH
1542 else
1543 addr = XEXP (addr, 0);
45183e03 1544 addr = canon_rtx (addr);
39cec1ac
MH
1545
1546 return addr;
1547}
1548
9ae8ffe7
JL
1549/* Return nonzero if X and Y (memory addresses) could reference the
1550 same location in memory. C is an offset accumulator. When
1551 C is nonzero, we are testing aliases between X and Y + C.
1552 XSIZE is the size in bytes of the X reference,
1553 similarly YSIZE is the size in bytes for Y.
45183e03 1554 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1555
1556 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1557 referenced (the reference was BLKmode), so make the most pessimistic
1558 assumptions.
1559
c02f035f
RH
1560 If XSIZE or YSIZE is negative, we may access memory outside the object
1561 being referenced as a side effect. This can happen when using AND to
1562 align memory references, as is done on the Alpha.
1563
9ae8ffe7 1564 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1565 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1566
9ae8ffe7 1567static int
4682ae04 1568memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1569{
eab5c70a
BS
1570 if (GET_CODE (x) == VALUE)
1571 x = get_addr (x);
1572 if (GET_CODE (y) == VALUE)
1573 y = get_addr (y);
9ae8ffe7
JL
1574 if (GET_CODE (x) == HIGH)
1575 x = XEXP (x, 0);
1576 else if (GET_CODE (x) == LO_SUM)
1577 x = XEXP (x, 1);
1578 else
45183e03 1579 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1580 if (GET_CODE (y) == HIGH)
1581 y = XEXP (y, 0);
1582 else if (GET_CODE (y) == LO_SUM)
1583 y = XEXP (y, 1);
1584 else
45183e03 1585 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1586
1587 if (rtx_equal_for_memref_p (x, y))
1588 {
c02f035f 1589 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1590 return 1;
1591 if (c >= 0 && xsize > c)
1592 return 1;
1593 if (c < 0 && ysize+c > 0)
1594 return 1;
1595 return 0;
1596 }
1597
6e73e666
JC
1598 /* This code used to check for conflicts involving stack references and
1599 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1600
1601 if (GET_CODE (x) == PLUS)
1602 {
1603 /* The fact that X is canonicalized means that this
1604 PLUS rtx is canonicalized. */
1605 rtx x0 = XEXP (x, 0);
1606 rtx x1 = XEXP (x, 1);
1607
1608 if (GET_CODE (y) == PLUS)
1609 {
1610 /* The fact that Y is canonicalized means that this
1611 PLUS rtx is canonicalized. */
1612 rtx y0 = XEXP (y, 0);
1613 rtx y1 = XEXP (y, 1);
1614
1615 if (rtx_equal_for_memref_p (x1, y1))
1616 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1617 if (rtx_equal_for_memref_p (x0, y0))
1618 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1619 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1620 {
1621 if (GET_CODE (y1) == CONST_INT)
1622 return memrefs_conflict_p (xsize, x0, ysize, y0,
1623 c - INTVAL (x1) + INTVAL (y1));
1624 else
1625 return memrefs_conflict_p (xsize, x0, ysize, y,
1626 c - INTVAL (x1));
1627 }
9ae8ffe7
JL
1628 else if (GET_CODE (y1) == CONST_INT)
1629 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1630
6e73e666 1631 return 1;
9ae8ffe7
JL
1632 }
1633 else if (GET_CODE (x1) == CONST_INT)
1634 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1635 }
1636 else if (GET_CODE (y) == PLUS)
1637 {
1638 /* The fact that Y is canonicalized means that this
1639 PLUS rtx is canonicalized. */
1640 rtx y0 = XEXP (y, 0);
1641 rtx y1 = XEXP (y, 1);
1642
1643 if (GET_CODE (y1) == CONST_INT)
1644 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1645 else
1646 return 1;
1647 }
1648
1649 if (GET_CODE (x) == GET_CODE (y))
1650 switch (GET_CODE (x))
1651 {
1652 case MULT:
1653 {
1654 /* Handle cases where we expect the second operands to be the
1655 same, and check only whether the first operand would conflict
1656 or not. */
1657 rtx x0, y0;
1658 rtx x1 = canon_rtx (XEXP (x, 1));
1659 rtx y1 = canon_rtx (XEXP (y, 1));
1660 if (! rtx_equal_for_memref_p (x1, y1))
1661 return 1;
1662 x0 = canon_rtx (XEXP (x, 0));
1663 y0 = canon_rtx (XEXP (y, 0));
1664 if (rtx_equal_for_memref_p (x0, y0))
1665 return (xsize == 0 || ysize == 0
1666 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1667
1668 /* Can't properly adjust our sizes. */
1669 if (GET_CODE (x1) != CONST_INT)
1670 return 1;
1671 xsize /= INTVAL (x1);
1672 ysize /= INTVAL (x1);
1673 c /= INTVAL (x1);
1674 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1675 }
1d300e19 1676
de12be17
JC
1677 case REG:
1678 /* Are these registers known not to be equal? */
1679 if (alias_invariant)
1680 {
e51712db 1681 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1682 rtx i_x, i_y; /* invariant relationships of X and Y */
1683
1684 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1685 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1686
1687 if (i_x == 0 && i_y == 0)
1688 break;
1689
1690 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1691 ysize, i_y ? i_y : y, c))
1692 return 0;
1693 }
1694 break;
1695
1d300e19
KG
1696 default:
1697 break;
9ae8ffe7
JL
1698 }
1699
1700 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1701 as an access with indeterminate size. Assume that references
56ee9281
RH
1702 besides AND are aligned, so if the size of the other reference is
1703 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1704 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1705 {
02e3377d 1706 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1707 xsize = -1;
45183e03 1708 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1709 }
9ae8ffe7 1710 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1711 {
56ee9281 1712 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1713 may yet be able to determine that we can not overlap. But we
c02f035f 1714 also need to that we are far enough from the end not to overlap
56ee9281 1715 a following reference, so we do nothing with that for now. */
02e3377d 1716 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1717 ysize = -1;
45183e03 1718 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1719 }
9ae8ffe7 1720
b24ea077
JW
1721 if (GET_CODE (x) == ADDRESSOF)
1722 {
1723 if (y == frame_pointer_rtx
1724 || GET_CODE (y) == ADDRESSOF)
1725 return xsize <= 0 || ysize <= 0;
1726 }
1727 if (GET_CODE (y) == ADDRESSOF)
1728 {
1729 if (x == frame_pointer_rtx)
1730 return xsize <= 0 || ysize <= 0;
1731 }
d982e46e 1732
9ae8ffe7
JL
1733 if (CONSTANT_P (x))
1734 {
1735 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1736 {
1737 c += (INTVAL (y) - INTVAL (x));
c02f035f 1738 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1739 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1740 }
1741
1742 if (GET_CODE (x) == CONST)
1743 {
1744 if (GET_CODE (y) == CONST)
1745 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1746 ysize, canon_rtx (XEXP (y, 0)), c);
1747 else
1748 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1749 ysize, y, c);
1750 }
1751 if (GET_CODE (y) == CONST)
1752 return memrefs_conflict_p (xsize, x, ysize,
1753 canon_rtx (XEXP (y, 0)), c);
1754
1755 if (CONSTANT_P (y))
b949ea8b 1756 return (xsize <= 0 || ysize <= 0
c02f035f 1757 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1758 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1759
1760 return 1;
1761 }
1762 return 1;
1763}
1764
1765/* Functions to compute memory dependencies.
1766
1767 Since we process the insns in execution order, we can build tables
1768 to keep track of what registers are fixed (and not aliased), what registers
1769 are varying in known ways, and what registers are varying in unknown
1770 ways.
1771
1772 If both memory references are volatile, then there must always be a
1773 dependence between the two references, since their order can not be
1774 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1775 though.
9ae8ffe7 1776
dc1618bc
RK
1777 A MEM_IN_STRUCT reference at a non-AND varying address can never
1778 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1779 also must allow AND addresses, because they may generate accesses
1780 outside the object being referenced. This is used to generate
1781 aligned addresses from unaligned addresses, for instance, the alpha
1782 storeqi_unaligned pattern. */
9ae8ffe7
JL
1783
1784/* Read dependence: X is read after read in MEM takes place. There can
1785 only be a dependence here if both reads are volatile. */
1786
1787int
4682ae04 1788read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1789{
1790 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1791}
1792
c6df88cb
MM
1793/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1794 MEM2 is a reference to a structure at a varying address, or returns
1795 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1796 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1797 to decide whether or not an address may vary; it should return
eab5c70a
BS
1798 nonzero whenever variation is possible.
1799 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1800
2c72b78f 1801static rtx
4682ae04
AJ
1802fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1803 rtx mem2_addr,
1804 int (*varies_p) (rtx, int))
ca7fd9cd 1805{
3e0abe15
GK
1806 if (! flag_strict_aliasing)
1807 return NULL_RTX;
1808
ca7fd9cd 1809 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1810 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1811 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1812 varying address. */
1813 return mem1;
1814
ca7fd9cd 1815 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1816 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1817 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1818 varying address. */
1819 return mem2;
1820
1821 return NULL_RTX;
1822}
1823
1824/* Returns nonzero if something about the mode or address format MEM1
1825 indicates that it might well alias *anything*. */
1826
2c72b78f 1827static int
4682ae04 1828aliases_everything_p (rtx mem)
c6df88cb 1829{
c6df88cb
MM
1830 if (GET_CODE (XEXP (mem, 0)) == AND)
1831 /* If the address is an AND, its very hard to know at what it is
1832 actually pointing. */
1833 return 1;
ca7fd9cd 1834
c6df88cb
MM
1835 return 0;
1836}
1837
998d7deb
RH
1838/* Return true if we can determine that the fields referenced cannot
1839 overlap for any pair of objects. */
1840
1841static bool
4682ae04 1842nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1843{
1844 tree fieldx, fieldy, typex, typey, orig_y;
1845
1846 do
1847 {
1848 /* The comparison has to be done at a common type, since we don't
d6a7951f 1849 know how the inheritance hierarchy works. */
998d7deb
RH
1850 orig_y = y;
1851 do
1852 {
1853 fieldx = TREE_OPERAND (x, 1);
1854 typex = DECL_FIELD_CONTEXT (fieldx);
1855
1856 y = orig_y;
1857 do
1858 {
1859 fieldy = TREE_OPERAND (y, 1);
1860 typey = DECL_FIELD_CONTEXT (fieldy);
1861
1862 if (typex == typey)
1863 goto found;
1864
1865 y = TREE_OPERAND (y, 0);
1866 }
1867 while (y && TREE_CODE (y) == COMPONENT_REF);
1868
1869 x = TREE_OPERAND (x, 0);
1870 }
1871 while (x && TREE_CODE (x) == COMPONENT_REF);
1872
1873 /* Never found a common type. */
1874 return false;
1875
1876 found:
1877 /* If we're left with accessing different fields of a structure,
1878 then no overlap. */
1879 if (TREE_CODE (typex) == RECORD_TYPE
1880 && fieldx != fieldy)
1881 return true;
1882
1883 /* The comparison on the current field failed. If we're accessing
1884 a very nested structure, look at the next outer level. */
1885 x = TREE_OPERAND (x, 0);
1886 y = TREE_OPERAND (y, 0);
1887 }
1888 while (x && y
1889 && TREE_CODE (x) == COMPONENT_REF
1890 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1891
998d7deb
RH
1892 return false;
1893}
1894
1895/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1896
1897static tree
4682ae04 1898decl_for_component_ref (tree x)
998d7deb
RH
1899{
1900 do
1901 {
1902 x = TREE_OPERAND (x, 0);
1903 }
1904 while (x && TREE_CODE (x) == COMPONENT_REF);
1905
1906 return x && DECL_P (x) ? x : NULL_TREE;
1907}
1908
1909/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1910 offset of the field reference. */
1911
1912static rtx
4682ae04 1913adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1914{
1915 HOST_WIDE_INT ioffset;
1916
1917 if (! offset)
1918 return NULL_RTX;
1919
1920 ioffset = INTVAL (offset);
ca7fd9cd 1921 do
998d7deb
RH
1922 {
1923 tree field = TREE_OPERAND (x, 1);
1924
1925 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1926 return NULL_RTX;
1927 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1928 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1929 / BITS_PER_UNIT));
1930
1931 x = TREE_OPERAND (x, 0);
1932 }
1933 while (x && TREE_CODE (x) == COMPONENT_REF);
1934
1935 return GEN_INT (ioffset);
1936}
1937
95bd1dd7 1938/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1939 X and Y and they do not overlap. */
1940
1941static int
4682ae04 1942nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1943{
998d7deb 1944 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1945 rtx rtlx, rtly;
1946 rtx basex, basey;
998d7deb 1947 rtx moffsetx, moffsety;
a4311dfe
RK
1948 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1949
998d7deb
RH
1950 /* Unless both have exprs, we can't tell anything. */
1951 if (exprx == 0 || expry == 0)
1952 return 0;
1953
1954 /* If both are field references, we may be able to determine something. */
1955 if (TREE_CODE (exprx) == COMPONENT_REF
1956 && TREE_CODE (expry) == COMPONENT_REF
1957 && nonoverlapping_component_refs_p (exprx, expry))
1958 return 1;
1959
1960 /* If the field reference test failed, look at the DECLs involved. */
1961 moffsetx = MEM_OFFSET (x);
1962 if (TREE_CODE (exprx) == COMPONENT_REF)
1963 {
1964 tree t = decl_for_component_ref (exprx);
1965 if (! t)
1966 return 0;
1967 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1968 exprx = t;
1969 }
c67a1cf6
RH
1970 else if (TREE_CODE (exprx) == INDIRECT_REF)
1971 {
1972 exprx = TREE_OPERAND (exprx, 0);
1973 if (flag_argument_noalias < 2
1974 || TREE_CODE (exprx) != PARM_DECL)
1975 return 0;
1976 }
1977
998d7deb
RH
1978 moffsety = MEM_OFFSET (y);
1979 if (TREE_CODE (expry) == COMPONENT_REF)
1980 {
1981 tree t = decl_for_component_ref (expry);
1982 if (! t)
1983 return 0;
1984 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1985 expry = t;
1986 }
c67a1cf6
RH
1987 else if (TREE_CODE (expry) == INDIRECT_REF)
1988 {
1989 expry = TREE_OPERAND (expry, 0);
1990 if (flag_argument_noalias < 2
1991 || TREE_CODE (expry) != PARM_DECL)
1992 return 0;
1993 }
998d7deb
RH
1994
1995 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
1996 return 0;
1997
998d7deb
RH
1998 rtlx = DECL_RTL (exprx);
1999 rtly = DECL_RTL (expry);
a4311dfe 2000
1edcd60b
RK
2001 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2002 can't overlap unless they are the same because we never reuse that part
2003 of the stack frame used for locals for spilled pseudos. */
2004 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2005 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2006 return 1;
2007
2008 /* Get the base and offsets of both decls. If either is a register, we
2009 know both are and are the same, so use that as the base. The only
2010 we can avoid overlap is if we can deduce that they are nonoverlapping
2011 pieces of that decl, which is very rare. */
1edcd60b 2012 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2013 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2014 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2015
1edcd60b 2016 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2017 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2018 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2019
d746694a 2020 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2021 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2022 stack frame. Otherwise a different base means we can't tell if they
2023 overlap or not. */
2024 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2025 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2026 || (CONSTANT_P (basex) && REG_P (basey)
2027 && REGNO_PTR_FRAME_P (REGNO (basey)))
2028 || (CONSTANT_P (basey) && REG_P (basex)
2029 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2030
998d7deb 2031 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2032 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2033 : -1);
998d7deb 2034 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2035 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2036 -1);
2037
0af5bc3e
RK
2038 /* If we have an offset for either memref, it can update the values computed
2039 above. */
998d7deb
RH
2040 if (moffsetx)
2041 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2042 if (moffsety)
2043 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2044
0af5bc3e 2045 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2046 We can't do this if the offset isn't known because we must view this
0af5bc3e 2047 memref as being anywhere inside the DECL's MEM. */
998d7deb 2048 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2049 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2050 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2051 sizey = INTVAL (MEM_SIZE (y));
2052
2053 /* Put the values of the memref with the lower offset in X's values. */
2054 if (offsetx > offsety)
2055 {
2056 tem = offsetx, offsetx = offsety, offsety = tem;
2057 tem = sizex, sizex = sizey, sizey = tem;
2058 }
2059
2060 /* If we don't know the size of the lower-offset value, we can't tell
2061 if they conflict. Otherwise, we do the test. */
a6f7c915 2062 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2063}
2064
9ae8ffe7
JL
2065/* True dependence: X is read after store in MEM takes place. */
2066
2067int
4682ae04
AJ
2068true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2069 int (*varies) (rtx, int))
9ae8ffe7 2070{
b3694847 2071 rtx x_addr, mem_addr;
49982682 2072 rtx base;
9ae8ffe7
JL
2073
2074 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2075 return 1;
2076
c4484b8f
RH
2077 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2078 This is used in epilogue deallocation functions. */
2079 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2080 return 1;
2081 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2082 return 1;
2083
41472af8
MM
2084 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2085 return 0;
2086
b949ea8b
JW
2087 /* Unchanging memory can't conflict with non-unchanging memory.
2088 A non-unchanging read can conflict with a non-unchanging write.
2089 An unchanging read can conflict with an unchanging write since
2090 there may be a single store to this address to initialize it.
ec569656
RK
2091 Note that an unchanging store can conflict with a non-unchanging read
2092 since we have to make conservative assumptions when we have a
2093 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2094 Just fall through to the code below to resolve potential conflicts.
2095 This won't handle all cases optimally, but the possible performance
2096 loss should be negligible. */
ec569656 2097 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2098 return 0;
2099
a4311dfe
RK
2100 if (nonoverlapping_memrefs_p (mem, x))
2101 return 0;
2102
56ee9281
RH
2103 if (mem_mode == VOIDmode)
2104 mem_mode = GET_MODE (mem);
2105
eab5c70a
BS
2106 x_addr = get_addr (XEXP (x, 0));
2107 mem_addr = get_addr (XEXP (mem, 0));
2108
55efb413
JW
2109 base = find_base_term (x_addr);
2110 if (base && (GET_CODE (base) == LABEL_REF
2111 || (GET_CODE (base) == SYMBOL_REF
2112 && CONSTANT_POOL_ADDRESS_P (base))))
2113 return 0;
2114
eab5c70a 2115 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2116 return 0;
2117
eab5c70a
BS
2118 x_addr = canon_rtx (x_addr);
2119 mem_addr = canon_rtx (mem_addr);
6e73e666 2120
0211b6ab
JW
2121 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2122 SIZE_FOR_MODE (x), x_addr, 0))
2123 return 0;
2124
c6df88cb 2125 if (aliases_everything_p (x))
0211b6ab
JW
2126 return 1;
2127
f5143c46 2128 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2129 at MEM_MODE, rather than GET_MODE (MEM). */
2130 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2131 return 1;
2132
2133 /* In true_dependence we also allow BLKmode to alias anything. Why
2134 don't we do this in anti_dependence and output_dependence? */
2135 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2136 return 1;
2137
2138 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2139 varies);
2140}
2141
2142/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2143 Variant of true_dependence which assumes MEM has already been
2144 canonicalized (hence we no longer do that here).
2145 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2146 this value prior to canonicalizing. */
2147
2148int
4682ae04
AJ
2149canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2150 rtx x, int (*varies) (rtx, int))
a13d4ebf 2151{
b3694847 2152 rtx x_addr;
a13d4ebf
AM
2153
2154 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2155 return 1;
2156
0fe854a7
RH
2157 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2158 This is used in epilogue deallocation functions. */
2159 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2160 return 1;
2161 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2162 return 1;
2163
a13d4ebf
AM
2164 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2165 return 0;
2166
2167 /* If X is an unchanging read, then it can't possibly conflict with any
2168 non-unchanging store. It may conflict with an unchanging write though,
2169 because there may be a single store to this address to initialize it.
2170 Just fall through to the code below to resolve the case where we have
2171 both an unchanging read and an unchanging write. This won't handle all
2172 cases optimally, but the possible performance loss should be
2173 negligible. */
2174 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2175 return 0;
2176
a4311dfe
RK
2177 if (nonoverlapping_memrefs_p (x, mem))
2178 return 0;
2179
a13d4ebf
AM
2180 x_addr = get_addr (XEXP (x, 0));
2181
2182 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2183 return 0;
2184
2185 x_addr = canon_rtx (x_addr);
2186 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2187 SIZE_FOR_MODE (x), x_addr, 0))
2188 return 0;
2189
2190 if (aliases_everything_p (x))
2191 return 1;
2192
f5143c46 2193 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2194 at MEM_MODE, rather than GET_MODE (MEM). */
2195 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2196 return 1;
0211b6ab 2197
c6df88cb
MM
2198 /* In true_dependence we also allow BLKmode to alias anything. Why
2199 don't we do this in anti_dependence and output_dependence? */
2200 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2201 return 1;
0211b6ab 2202
eab5c70a
BS
2203 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2204 varies);
9ae8ffe7
JL
2205}
2206
da7d8304 2207/* Returns nonzero if a write to X might alias a previous read from
83a00410 2208 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
d2399d75 2209 honor the RTX_UNCHANGING_P flags on X and MEM. */
9ae8ffe7 2210
2c72b78f 2211static int
d2399d75 2212write_dependence_p (rtx mem, rtx x, int writep, int constp)
9ae8ffe7 2213{
6e73e666 2214 rtx x_addr, mem_addr;
c6df88cb 2215 rtx fixed_scalar;
49982682 2216 rtx base;
6e73e666 2217
9ae8ffe7
JL
2218 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2219 return 1;
2220
c4484b8f
RH
2221 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2222 This is used in epilogue deallocation functions. */
2223 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2224 return 1;
2225 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2226 return 1;
2227
eab5c70a
BS
2228 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2229 return 0;
2230
d2399d75
RS
2231 if (constp)
2232 {
2233 /* Unchanging memory can't conflict with non-unchanging memory. */
2234 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2235 return 0;
b949ea8b 2236
d2399d75
RS
2237 /* If MEM is an unchanging read, then it can't possibly conflict with
2238 the store to X, because there is at most one store to MEM, and it
2239 must have occurred somewhere before MEM. */
2240 if (! writep && RTX_UNCHANGING_P (mem))
2241 return 0;
2242 }
55efb413 2243
a4311dfe
RK
2244 if (nonoverlapping_memrefs_p (x, mem))
2245 return 0;
2246
55efb413
JW
2247 x_addr = get_addr (XEXP (x, 0));
2248 mem_addr = get_addr (XEXP (mem, 0));
2249
49982682
JW
2250 if (! writep)
2251 {
55efb413 2252 base = find_base_term (mem_addr);
49982682
JW
2253 if (base && (GET_CODE (base) == LABEL_REF
2254 || (GET_CODE (base) == SYMBOL_REF
2255 && CONSTANT_POOL_ADDRESS_P (base))))
2256 return 0;
2257 }
2258
eab5c70a
BS
2259 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2260 GET_MODE (mem)))
41472af8
MM
2261 return 0;
2262
eab5c70a
BS
2263 x_addr = canon_rtx (x_addr);
2264 mem_addr = canon_rtx (mem_addr);
6e73e666 2265
c6df88cb
MM
2266 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2267 SIZE_FOR_MODE (x), x_addr, 0))
2268 return 0;
2269
ca7fd9cd 2270 fixed_scalar
eab5c70a
BS
2271 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2272 rtx_addr_varies_p);
2273
c6df88cb
MM
2274 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2275 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2276}
2277
2278/* Anti dependence: X is written after read in MEM takes place. */
2279
2280int
4682ae04 2281anti_dependence (rtx mem, rtx x)
c6df88cb 2282{
d2399d75 2283 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
9ae8ffe7
JL
2284}
2285
2286/* Output dependence: X is written after store in MEM takes place. */
2287
2288int
4682ae04 2289output_dependence (rtx mem, rtx x)
9ae8ffe7 2290{
d2399d75
RS
2291 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2292}
2293
2294/* Unchanging anti dependence: Like anti_dependence but ignores
2295 the UNCHANGING_RTX_P property on const variable references. */
2296
2297int
2298unchanging_anti_dependence (rtx mem, rtx x)
2299{
2300 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
9ae8ffe7 2301}
c14b9960
JW
2302\f
2303/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2304 something which is not local to the function and is not constant. */
7790df19
JW
2305
2306static int
4682ae04 2307nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2308{
c14b9960 2309 rtx x = *loc;
7790df19 2310 rtx base;
7790df19
JW
2311 int regno;
2312
c14b9960
JW
2313 if (! x)
2314 return 0;
7790df19 2315
c14b9960 2316 switch (GET_CODE (x))
7790df19
JW
2317 {
2318 case SUBREG:
2319 if (GET_CODE (SUBREG_REG (x)) == REG)
2320 {
2321 /* Global registers are not local. */
2322 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2323 && global_regs[subreg_regno (x)])
7790df19
JW
2324 return 1;
2325 return 0;
2326 }
2327 break;
2328
2329 case REG:
2330 regno = REGNO (x);
2331 /* Global registers are not local. */
2332 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2333 return 1;
2334 return 0;
2335
2336 case SCRATCH:
2337 case PC:
2338 case CC0:
2339 case CONST_INT:
2340 case CONST_DOUBLE:
69ef87e2 2341 case CONST_VECTOR:
7790df19
JW
2342 case CONST:
2343 case LABEL_REF:
2344 return 0;
2345
2346 case SYMBOL_REF:
2347 /* Constants in the function's constants pool are constant. */
2348 if (CONSTANT_POOL_ADDRESS_P (x))
2349 return 0;
2350 return 1;
2351
2352 case CALL:
bf6d9fd7 2353 /* Non-constant calls and recursion are not local. */
7790df19
JW
2354 return 1;
2355
2356 case MEM:
2357 /* Be overly conservative and consider any volatile memory
2358 reference as not local. */
2359 if (MEM_VOLATILE_P (x))
2360 return 1;
2361 base = find_base_term (XEXP (x, 0));
2362 if (base)
2363 {
b3b5ad95
JL
2364 /* A Pmode ADDRESS could be a reference via the structure value
2365 address or static chain. Such memory references are nonlocal.
2366
2367 Thus, we have to examine the contents of the ADDRESS to find
2368 out if this is a local reference or not. */
2369 if (GET_CODE (base) == ADDRESS
2370 && GET_MODE (base) == Pmode
2371 && (XEXP (base, 0) == stack_pointer_rtx
2372 || XEXP (base, 0) == arg_pointer_rtx
2373#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2374 || XEXP (base, 0) == hard_frame_pointer_rtx
2375#endif
2376 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2377 return 0;
2378 /* Constants in the function's constant pool are constant. */
2379 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2380 return 0;
2381 }
2382 return 1;
2383
bf6d9fd7 2384 case UNSPEC_VOLATILE:
7790df19 2385 case ASM_INPUT:
7790df19
JW
2386 return 1;
2387
bf6d9fd7
JW
2388 case ASM_OPERANDS:
2389 if (MEM_VOLATILE_P (x))
2390 return 1;
2391
5d3cc252 2392 /* Fall through. */
bf6d9fd7 2393
7790df19
JW
2394 default:
2395 break;
2396 }
2397
c14b9960
JW
2398 return 0;
2399}
2400
da7d8304 2401/* Returns nonzero if X might mention something which is not
c14b9960 2402 local to the function and is not constant. */
7790df19 2403
c14b9960 2404static int
4682ae04 2405nonlocal_mentioned_p (rtx x)
c14b9960 2406{
c14b9960
JW
2407 if (INSN_P (x))
2408 {
2409 if (GET_CODE (x) == CALL_INSN)
2410 {
2411 if (! CONST_OR_PURE_CALL_P (x))
2412 return 1;
2413 x = CALL_INSN_FUNCTION_USAGE (x);
2414 if (x == 0)
2415 return 0;
ca7fd9cd 2416 }
c14b9960 2417 else
ca7fd9cd 2418 x = PATTERN (x);
c14b9960
JW
2419 }
2420
2421 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2422}
2423
2424/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2425 something which is not local to the function and is not constant. */
2426
2427static int
4682ae04 2428nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2429{
2430 rtx x = *loc;
2431
2432 if (! x)
2433 return 0;
2434
2435 switch (GET_CODE (x))
2436 {
2437 case MEM:
2438 case REG:
2439 case SYMBOL_REF:
2440 case SUBREG:
2441 return nonlocal_mentioned_p (x);
2442
2443 case CALL:
2444 /* Non-constant calls and recursion are not local. */
2445 return 1;
2446
2447 case SET:
2448 if (nonlocal_mentioned_p (SET_SRC (x)))
2449 return 1;
2450
2451 if (GET_CODE (SET_DEST (x)) == MEM)
2452 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2453
2454 /* If the destination is anything other than a CC0, PC,
2455 MEM, REG, or a SUBREG of a REG that occupies all of
2456 the REG, then X references nonlocal memory if it is
2457 mentioned in the destination. */
2458 if (GET_CODE (SET_DEST (x)) != CC0
2459 && GET_CODE (SET_DEST (x)) != PC
2460 && GET_CODE (SET_DEST (x)) != REG
2461 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2462 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2463 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2464 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2465 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2466 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2467 return nonlocal_mentioned_p (SET_DEST (x));
2468 return 0;
2469
2470 case CLOBBER:
2471 if (GET_CODE (XEXP (x, 0)) == MEM)
2472 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2473 return 0;
2474
2475 case USE:
2476 return nonlocal_mentioned_p (XEXP (x, 0));
2477
2478 case ASM_INPUT:
2479 case UNSPEC_VOLATILE:
2480 return 1;
2481
2482 case ASM_OPERANDS:
2483 if (MEM_VOLATILE_P (x))
2484 return 1;
2485
5d3cc252 2486 /* Fall through. */
c14b9960
JW
2487
2488 default:
2489 break;
2490 }
2491
2492 return 0;
2493}
2494
da7d8304 2495/* Returns nonzero if X might reference something which is not
c14b9960
JW
2496 local to the function and is not constant. */
2497
2498static int
4682ae04 2499nonlocal_referenced_p (rtx x)
c14b9960 2500{
c14b9960
JW
2501 if (INSN_P (x))
2502 {
2503 if (GET_CODE (x) == CALL_INSN)
2504 {
2505 if (! CONST_OR_PURE_CALL_P (x))
2506 return 1;
2507 x = CALL_INSN_FUNCTION_USAGE (x);
2508 if (x == 0)
2509 return 0;
ca7fd9cd 2510 }
c14b9960 2511 else
ca7fd9cd 2512 x = PATTERN (x);
c14b9960
JW
2513 }
2514
2515 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2516}
2517
2518/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2519 something which is not local to the function and is not constant. */
2520
2521static int
4682ae04 2522nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2523{
2524 rtx x = *loc;
2525
2526 if (! x)
2527 return 0;
2528
2529 switch (GET_CODE (x))
2530 {
2531 case CALL:
2532 /* Non-constant calls and recursion are not local. */
2533 return 1;
2534
2535 case PRE_INC:
2536 case PRE_DEC:
2537 case POST_INC:
2538 case POST_DEC:
2539 case PRE_MODIFY:
2540 case POST_MODIFY:
2541 return nonlocal_mentioned_p (XEXP (x, 0));
2542
2543 case SET:
2544 if (nonlocal_mentioned_p (SET_DEST (x)))
2545 return 1;
2546 return nonlocal_set_p (SET_SRC (x));
2547
2548 case CLOBBER:
2549 return nonlocal_mentioned_p (XEXP (x, 0));
2550
2551 case USE:
2552 return 0;
2553
2554 case ASM_INPUT:
2555 case UNSPEC_VOLATILE:
2556 return 1;
2557
2558 case ASM_OPERANDS:
2559 if (MEM_VOLATILE_P (x))
2560 return 1;
2561
5d3cc252 2562 /* Fall through. */
c14b9960
JW
2563
2564 default:
2565 break;
2566 }
7790df19
JW
2567
2568 return 0;
2569}
2570
da7d8304 2571/* Returns nonzero if X might set something which is not
c14b9960
JW
2572 local to the function and is not constant. */
2573
2574static int
4682ae04 2575nonlocal_set_p (rtx x)
c14b9960 2576{
c14b9960
JW
2577 if (INSN_P (x))
2578 {
2579 if (GET_CODE (x) == CALL_INSN)
2580 {
2581 if (! CONST_OR_PURE_CALL_P (x))
2582 return 1;
2583 x = CALL_INSN_FUNCTION_USAGE (x);
2584 if (x == 0)
2585 return 0;
ca7fd9cd 2586 }
c14b9960 2587 else
ca7fd9cd 2588 x = PATTERN (x);
c14b9960
JW
2589 }
2590
2591 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2592}
2593
c57ddcf1 2594/* Mark the function if it is pure or constant. */
7790df19
JW
2595
2596void
4682ae04 2597mark_constant_function (void)
7790df19
JW
2598{
2599 rtx insn;
c14b9960 2600 int nonlocal_memory_referenced;
7790df19 2601
ab780373 2602 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2603 || DECL_IS_PURE (current_function_decl)
7790df19 2604 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2605 || current_function_has_nonlocal_goto
2606 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2607 return;
2608
e004f2f7 2609 /* A loop might not return which counts as a side effect. */
0ecf09f9 2610 if (mark_dfs_back_edges ())
e004f2f7
JW
2611 return;
2612
c14b9960 2613 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2614
2615 init_alias_analysis ();
2616
c14b9960 2617 /* Determine if this is a constant or pure function. */
7790df19
JW
2618
2619 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2620 {
2621 if (! INSN_P (insn))
2622 continue;
bf6d9fd7 2623
c14b9960
JW
2624 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2625 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2626 break;
7790df19 2627
c14b9960
JW
2628 if (! nonlocal_memory_referenced)
2629 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2630 }
ca7fd9cd 2631
c14b9960 2632 end_alias_analysis ();
ca7fd9cd 2633
7790df19 2634 /* Mark the function. */
ca7fd9cd 2635
c14b9960
JW
2636 if (insn)
2637 ;
2638 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2639 {
2640 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2641 DECL_IS_PURE (current_function_decl) = 1;
2642 }
c14b9960 2643 else
c57ddcf1
RS
2644 {
2645 cgraph_rtl_info (current_function_decl)->const_function = 1;
2646 TREE_READONLY (current_function_decl) = 1;
2647 }
7790df19 2648}
c14b9960 2649\f
6e73e666 2650
6e73e666 2651void
4682ae04 2652init_alias_once (void)
6e73e666 2653{
b3694847 2654 int i;
6e73e666
JC
2655
2656#ifndef OUTGOING_REGNO
2657#define OUTGOING_REGNO(N) N
2658#endif
2659 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2660 /* Check whether this register can hold an incoming pointer
2661 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2662 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2663 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2664 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2665 static_reg_base_value[i]
2666 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2667
bf1660a6
JL
2668 static_reg_base_value[STACK_POINTER_REGNUM]
2669 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2670 static_reg_base_value[ARG_POINTER_REGNUM]
2671 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2672 static_reg_base_value[FRAME_POINTER_REGNUM]
2673 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2674#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2675 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2676 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2677#endif
2678}
2679
7b52eede
JH
2680/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2681 to be memory reference. */
2682static bool memory_modified;
2683static void
4682ae04 2684memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2685{
2686 if (GET_CODE (x) == MEM)
2687 {
2688 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2689 memory_modified = true;
2690 }
2691}
2692
2693
2694/* Return true when INSN possibly modify memory contents of MEM
2695 (ie address can be modified). */
2696bool
4682ae04 2697memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2698{
2699 if (!INSN_P (insn))
2700 return false;
2701 memory_modified = false;
2702 note_stores (PATTERN (insn), memory_modified_1, mem);
2703 return memory_modified;
2704}
2705
c13e8210
MM
2706/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2707 array. */
2708
9ae8ffe7 2709void
4682ae04 2710init_alias_analysis (void)
9ae8ffe7
JL
2711{
2712 int maxreg = max_reg_num ();
ea64ef27 2713 int changed, pass;
b3694847
SS
2714 int i;
2715 unsigned int ui;
2716 rtx insn;
9ae8ffe7 2717
0d446150
JH
2718 timevar_push (TV_ALIAS_ANALYSIS);
2719
9ae8ffe7
JL
2720 reg_known_value_size = maxreg;
2721
ca7fd9cd 2722 reg_known_value
e05e2395
MM
2723 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2724 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2725 reg_known_equiv_p
e05e2395 2726 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2727 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2728
6e73e666
JC
2729 /* Overallocate reg_base_value to allow some growth during loop
2730 optimization. Loop unrolling can create a large number of
2731 registers. */
2732 reg_base_value_size = maxreg * 2;
703ad42b 2733 reg_base_value = ggc_alloc_cleared (reg_base_value_size * sizeof (rtx));
ac606739 2734
703ad42b
KG
2735 new_reg_base_value = xmalloc (reg_base_value_size * sizeof (rtx));
2736 reg_seen = xmalloc (reg_base_value_size);
b17d5d7c 2737 if (! reload_completed && flag_old_unroll_loops)
de12be17 2738 {
ac606739 2739 /* ??? Why are we realloc'ing if we're just going to zero it? */
703ad42b
KG
2740 alias_invariant = xrealloc (alias_invariant,
2741 reg_base_value_size * sizeof (rtx));
2742 memset (alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2743 }
ec907dd8
JL
2744
2745 /* The basic idea is that each pass through this loop will use the
2746 "constant" information from the previous pass to propagate alias
2747 information through another level of assignments.
2748
2749 This could get expensive if the assignment chains are long. Maybe
2750 we should throttle the number of iterations, possibly based on
6e73e666 2751 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2752
2753 We could propagate more information in the first pass by making use
2754 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2755 for a pseudo is "constant".
2756
2757 A program with an uninitialized variable can cause an infinite loop
2758 here. Instead of doing a full dataflow analysis to detect such problems
2759 we just cap the number of iterations for the loop.
2760
2761 The state of the arrays for the set chain in question does not matter
2762 since the program has undefined behavior. */
6e73e666 2763
ea64ef27 2764 pass = 0;
6e73e666 2765 do
ec907dd8
JL
2766 {
2767 /* Assume nothing will change this iteration of the loop. */
2768 changed = 0;
2769
ec907dd8
JL
2770 /* We want to assign the same IDs each iteration of this loop, so
2771 start counting from zero each iteration of the loop. */
2772 unique_id = 0;
2773
f5143c46 2774 /* We're at the start of the function each iteration through the
ec907dd8 2775 loop, so we're copying arguments. */
83bbd9b6 2776 copying_arguments = true;
9ae8ffe7 2777
6e73e666 2778 /* Wipe the potential alias information clean for this pass. */
703ad42b 2779 memset (new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2780
6e73e666 2781 /* Wipe the reg_seen array clean. */
703ad42b 2782 memset (reg_seen, 0, reg_base_value_size);
9ae8ffe7 2783
6e73e666
JC
2784 /* Mark all hard registers which may contain an address.
2785 The stack, frame and argument pointers may contain an address.
2786 An argument register which can hold a Pmode value may contain
2787 an address even if it is not in BASE_REGS.
8072f69c 2788
6e73e666
JC
2789 The address expression is VOIDmode for an argument and
2790 Pmode for other registers. */
2791
7f243674
JL
2792 memcpy (new_reg_base_value, static_reg_base_value,
2793 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2794
ec907dd8
JL
2795 /* Walk the insns adding values to the new_reg_base_value array. */
2796 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2797 {
2c3c49de 2798 if (INSN_P (insn))
ec907dd8 2799 {
6e73e666 2800 rtx note, set;
efc9bd41
RK
2801
2802#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2803 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2804 insn chain until after reload has completed. Thus,
2805 there is no sense wasting time checking if INSN is in
2806 the prologue/epilogue until after reload has completed. */
2807 if (reload_completed
2808 && prologue_epilogue_contains (insn))
efc9bd41
RK
2809 continue;
2810#endif
2811
ec907dd8
JL
2812 /* If this insn has a noalias note, process it, Otherwise,
2813 scan for sets. A simple set will have no side effects
ec5c56db 2814 which could change the base value of any other register. */
6e73e666 2815
ec907dd8 2816 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2817 && REG_NOTES (insn) != 0
2818 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2819 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2820 else
84832317 2821 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2822
2823 set = single_set (insn);
2824
2825 if (set != 0
2826 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2827 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2828 {
fb6754f0 2829 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2830 rtx src = SET_SRC (set);
2831
2832 if (REG_NOTES (insn) != 0
2833 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2834 && REG_N_SETS (regno) == 1)
2835 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2836 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2837 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2838 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2839 {
2840 reg_known_value[regno] = XEXP (note, 0);
2841 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2842 }
2843 else if (REG_N_SETS (regno) == 1
2844 && GET_CODE (src) == PLUS
2845 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2846 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2847 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2848 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2849 {
2850 rtx op0 = XEXP (src, 0);
bb2cf916 2851 op0 = reg_known_value[REGNO (op0)];
713f41f9 2852 reg_known_value[regno]
ed8908e7 2853 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2854 reg_known_equiv_p[regno] = 0;
2855 }
2856 else if (REG_N_SETS (regno) == 1
2857 && ! rtx_varies_p (src, 1))
2858 {
2859 reg_known_value[regno] = src;
2860 reg_known_equiv_p[regno] = 0;
2861 }
6e73e666 2862 }
ec907dd8
JL
2863 }
2864 else if (GET_CODE (insn) == NOTE
2865 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2866 copying_arguments = false;
6e73e666 2867 }
ec907dd8 2868
6e73e666 2869 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2870 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2871 {
e51712db
KG
2872 if (new_reg_base_value[ui]
2873 && new_reg_base_value[ui] != reg_base_value[ui]
2874 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2875 {
e51712db 2876 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2877 changed = 1;
ec907dd8 2878 }
9ae8ffe7 2879 }
9ae8ffe7 2880 }
6e73e666 2881 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2882
2883 /* Fill in the remaining entries. */
2884 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2885 if (reg_known_value[i] == 0)
2886 reg_known_value[i] = regno_reg_rtx[i];
2887
9ae8ffe7
JL
2888 /* Simplify the reg_base_value array so that no register refers to
2889 another register, except to special registers indirectly through
2890 ADDRESS expressions.
2891
2892 In theory this loop can take as long as O(registers^2), but unless
2893 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2894 time.
2895
2896 This loop may not be needed any longer now that the main loop does
2897 a better job at propagating alias information. */
2898 pass = 0;
9ae8ffe7
JL
2899 do
2900 {
2901 changed = 0;
ea64ef27 2902 pass++;
e51712db 2903 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2904 {
e51712db 2905 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2906 if (base && GET_CODE (base) == REG)
2907 {
fb6754f0 2908 unsigned int base_regno = REGNO (base);
e51712db
KG
2909 if (base_regno == ui) /* register set from itself */
2910 reg_base_value[ui] = 0;
9ae8ffe7 2911 else
e51712db 2912 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2913 changed = 1;
2914 }
2915 }
2916 }
ea64ef27 2917 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2918
e05e2395
MM
2919 /* Clean up. */
2920 free (new_reg_base_value);
ec907dd8 2921 new_reg_base_value = 0;
e05e2395 2922 free (reg_seen);
9ae8ffe7 2923 reg_seen = 0;
0d446150 2924 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2925}
2926
2927void
4682ae04 2928end_alias_analysis (void)
9ae8ffe7 2929{
e05e2395 2930 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2931 reg_known_value = 0;
ac606739 2932 reg_known_value_size = 0;
e05e2395
MM
2933 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2934 reg_known_equiv_p = 0;
e2500fed 2935 reg_base_value = 0;
9ae8ffe7 2936 reg_base_value_size = 0;
de12be17
JC
2937 if (alias_invariant)
2938 {
ac606739 2939 free (alias_invariant);
de12be17
JC
2940 alias_invariant = 0;
2941 }
9ae8ffe7 2942}
e2500fed
GK
2943
2944#include "gt-alias.h"
This page took 1.334208 seconds and 5 git commands to generate.