]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
Daily bump.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
3d994c6b 2 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#include "config.h"
670ee920 23#include "system.h"
9ae8ffe7 24#include "rtl.h"
7790df19 25#include "tree.h"
6baf1cc8 26#include "tm_p.h"
49ad7cfa 27#include "function.h"
ac606739 28#include "insn-flags.h"
9ae8ffe7
JL
29#include "expr.h"
30#include "regs.h"
31#include "hard-reg-set.h"
32#include "flags.h"
264fac34 33#include "output.h"
2e107e9e 34#include "toplev.h"
eab5c70a 35#include "cselib.h"
3932261a 36#include "splay-tree.h"
ac606739 37#include "ggc.h"
3932261a
MM
38
39/* The alias sets assigned to MEMs assist the back-end in determining
40 which MEMs can alias which other MEMs. In general, two MEMs in
41 different alias sets to not alias each other. There is one
42 exception, however. Consider something like:
43
44 struct S {int i; double d; };
45
46 a store to an `S' can alias something of either type `int' or type
47 `double'. (However, a store to an `int' cannot alias a `double'
48 and vice versa.) We indicate this via a tree structure that looks
49 like:
50 struct S
51 / \
52 / \
53 |/_ _\|
54 int double
55
56 (The arrows are directed and point downwards.) If, when comparing
d4b60170 57 two alias sets, we can hold one set fixed, trace the other set
3932261a
MM
58 downwards, and at some point find the first set, the two MEMs can
59 alias one another. In this situation we say the alias set for
60 `struct S' is the `superset' and that those for `int' and `double'
61 are `subsets'.
62
63 Alias set zero is implicitly a superset of all other alias sets.
64 However, this is no actual entry for alias set zero. It is an
65 error to attempt to explicitly construct a subset of zero. */
66
d4b60170
RK
67typedef struct alias_set_entry
68{
3932261a
MM
69 /* The alias set number, as stored in MEM_ALIAS_SET. */
70 int alias_set;
71
72 /* The children of the alias set. These are not just the immediate
73 children, but, in fact, all children. So, if we have:
74
75 struct T { struct S s; float f; }
76
77 continuing our example above, the children here will be all of
78 `int', `double', `float', and `struct S'. */
79 splay_tree children;
d4b60170 80} *alias_set_entry;
9ae8ffe7 81
3d994c6b
KG
82static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
83static rtx find_symbolic_term PARAMS ((rtx));
eab5c70a 84static rtx get_addr PARAMS ((rtx));
3d994c6b
KG
85static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
86 HOST_WIDE_INT));
87static void record_set PARAMS ((rtx, rtx, void *));
88static rtx find_base_term PARAMS ((rtx));
89static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
90 enum machine_mode));
91static rtx find_base_value PARAMS ((rtx));
92static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
93static int insert_subset_children PARAMS ((splay_tree_node, void*));
94static alias_set_entry get_alias_set_entry PARAMS ((int));
eab5c70a
BS
95static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
96 int (*)(rtx)));
3d994c6b
KG
97static int aliases_everything_p PARAMS ((rtx));
98static int write_dependence_p PARAMS ((rtx, rtx, int));
99static int nonlocal_reference_p PARAMS ((rtx));
9ae8ffe7
JL
100
101/* Set up all info needed to perform alias analysis on memory references. */
102
d4b60170 103/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
104#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
105
41472af8 106/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
107 different alias sets. We ignore alias sets in functions making use
108 of variable arguments because the va_arg macros on some systems are
109 not legal ANSI C. */
110#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 111 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 112
ea64ef27
JL
113/* Cap the number of passes we make over the insns propagating alias
114 information through set chains.
115
116 10 is a completely arbitrary choice. */
117#define MAX_ALIAS_LOOP_PASSES 10
118
9ae8ffe7
JL
119/* reg_base_value[N] gives an address to which register N is related.
120 If all sets after the first add or subtract to the current value
121 or otherwise modify it so it does not point to a different top level
122 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
123 of the first set.
124
125 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
126 expressions represent certain special values: function arguments and
b3b5ad95
JL
127 the stack, frame, and argument pointers.
128
129 The contents of an ADDRESS is not normally used, the mode of the
130 ADDRESS determines whether the ADDRESS is a function argument or some
131 other special value. Pointer equality, not rtx_equal_p, determines whether
132 two ADDRESS expressions refer to the same base address.
133
134 The only use of the contents of an ADDRESS is for determining if the
135 current function performs nonlocal memory memory references for the
136 purposes of marking the function as a constant function. */
2a2c8203 137
ac606739
GS
138static rtx *reg_base_value;
139static rtx *new_reg_base_value;
d4b60170
RK
140static unsigned int reg_base_value_size; /* size of reg_base_value array */
141
9ae8ffe7 142#define REG_BASE_VALUE(X) \
e51712db 143 ((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 144
de12be17
JC
145/* Vector of known invariant relationships between registers. Set in
146 loop unrolling. Indexed by register number, if nonzero the value
147 is an expression describing this register in terms of another.
148
149 The length of this array is REG_BASE_VALUE_SIZE.
150
151 Because this array contains only pseudo registers it has no effect
152 after reload. */
153static rtx *alias_invariant;
154
c13e8210
MM
155/* Vector indexed by N giving the initial (unchanging) value known for
156 pseudo-register N. This array is initialized in
157 init_alias_analysis, and does not change until end_alias_analysis
158 is called. */
9ae8ffe7
JL
159rtx *reg_known_value;
160
161/* Indicates number of valid entries in reg_known_value. */
770ae6cc 162static unsigned int reg_known_value_size;
9ae8ffe7
JL
163
164/* Vector recording for each reg_known_value whether it is due to a
165 REG_EQUIV note. Future passes (viz., reload) may replace the
166 pseudo with the equivalent expression and so we account for the
167 dependences that would be introduced if that happens. */
168/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
169 assign_parms mention the arg pointer, and there are explicit insns in the
170 RTL that modify the arg pointer. Thus we must ensure that such insns don't
171 get scheduled across each other because that would invalidate the REG_EQUIV
172 notes. One could argue that the REG_EQUIV notes are wrong, but solving
173 the problem in the scheduler will likely give better code, so we do it
174 here. */
175char *reg_known_equiv_p;
176
2a2c8203
JC
177/* True when scanning insns from the start of the rtl to the
178 NOTE_INSN_FUNCTION_BEG note. */
9ae8ffe7 179
9ae8ffe7
JL
180static int copying_arguments;
181
3932261a
MM
182/* The splay-tree used to store the various alias set entries. */
183
184static splay_tree alias_sets;
185
3932261a
MM
186/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
187 such an entry, or NULL otherwise. */
188
189static alias_set_entry
190get_alias_set_entry (alias_set)
191 int alias_set;
192{
d4b60170
RK
193 splay_tree_node sn
194 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 195
d4b60170 196 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
197}
198
199/* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
200 that the two MEMs cannot alias each other. */
201
202static int
203mems_in_disjoint_alias_sets_p (mem1, mem2)
204 rtx mem1;
205 rtx mem2;
206{
207 alias_set_entry ase;
208
209#ifdef ENABLE_CHECKING
210/* Perform a basic sanity check. Namely, that there are no alias sets
211 if we're not using strict aliasing. This helps to catch bugs
212 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
213 where a MEM is allocated in some way other than by the use of
214 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
215 use alias sets to indicate that spilled registers cannot alias each
216 other, we might need to remove this check. */
d4b60170
RK
217 if (! flag_strict_aliasing
218 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
219 abort ();
220#endif
221
222 /* The code used in varargs macros are often not conforming ANSI C,
223 which can trick the compiler into making incorrect aliasing
224 assumptions in these functions. So, we don't use alias sets in
225 such a function. FIXME: This should be moved into the front-end;
226 it is a language-dependent notion, and there's no reason not to
227 still use these checks to handle globals. */
228 if (current_function_stdarg || current_function_varargs)
229 return 0;
230
d4b60170
RK
231 /* If have no alias set information for one of the MEMs, we have to assume
232 it can alias anything. */
233 if (MEM_ALIAS_SET (mem1) == 0 || MEM_ALIAS_SET (mem2) == 0)
3932261a
MM
234 return 0;
235
d4b60170 236 /* If the two alias sets are the same, they may alias. */
3932261a 237 if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
3932261a
MM
238 return 0;
239
240 /* Iterate through each of the children of the first alias set,
241 comparing it with the second alias set. */
242 ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
d4b60170
RK
243 if (ase != 0 && splay_tree_lookup (ase->children,
244 (splay_tree_key) MEM_ALIAS_SET (mem2)))
3932261a
MM
245 return 0;
246
247 /* Now do the same, but with the alias sets reversed. */
248 ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
d4b60170
RK
249 if (ase != 0 && splay_tree_lookup (ase->children,
250 (splay_tree_key) MEM_ALIAS_SET (mem1)))
3932261a
MM
251 return 0;
252
253 /* The two MEMs are in distinct alias sets, and neither one is the
254 child of the other. Therefore, they cannot alias. */
255 return 1;
256}
257
258/* Insert the NODE into the splay tree given by DATA. Used by
259 record_alias_subset via splay_tree_foreach. */
260
261static int
262insert_subset_children (node, data)
263 splay_tree_node node;
264 void *data;
265{
d4b60170 266 splay_tree_insert ((splay_tree) data, node->key, node->value);
3932261a
MM
267
268 return 0;
269}
270
271/* Indicate that things in SUBSET can alias things in SUPERSET, but
272 not vice versa. For example, in C, a store to an `int' can alias a
273 structure containing an `int', but not vice versa. Here, the
274 structure would be the SUPERSET and `int' the SUBSET. This
275 function should be called only once per SUPERSET/SUBSET pair. At
276 present any given alias set may only be a subset of one superset.
277
278 It is illegal for SUPERSET to be zero; everything is implicitly a
279 subset of alias set zero. */
280
281void
282record_alias_subset (superset, subset)
283 int superset;
284 int subset;
285{
286 alias_set_entry superset_entry;
287 alias_set_entry subset_entry;
288
289 if (superset == 0)
290 abort ();
291
292 superset_entry = get_alias_set_entry (superset);
d4b60170 293 if (superset_entry == 0)
3932261a
MM
294 {
295 /* Create an entry for the SUPERSET, so that we have a place to
296 attach the SUBSET. */
d4b60170
RK
297 superset_entry
298 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
3932261a
MM
299 superset_entry->alias_set = superset;
300 superset_entry->children
30f72379 301 = splay_tree_new (splay_tree_compare_ints, 0, 0);
d4b60170 302 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a
MM
303 (splay_tree_value) superset_entry);
304
305 }
306
307 subset_entry = get_alias_set_entry (subset);
d4b60170
RK
308
309 /* If there is an entry for the subset, enter all of its children
310 (if they are not already present) as children of the SUPERSET. */
3932261a 311 if (subset_entry)
3932261a 312 splay_tree_foreach (subset_entry->children,
973838fd 313 insert_subset_children,
3932261a
MM
314 superset_entry->children);
315
316 /* Enter the SUBSET itself as a child of the SUPERSET. */
317 splay_tree_insert (superset_entry->children,
d4b60170 318 (splay_tree_key) subset, 0);
3932261a
MM
319}
320
2a2c8203
JC
321/* Inside SRC, the source of a SET, find a base address. */
322
9ae8ffe7
JL
323static rtx
324find_base_value (src)
325 register rtx src;
326{
327 switch (GET_CODE (src))
328 {
329 case SYMBOL_REF:
330 case LABEL_REF:
331 return src;
332
333 case REG:
d4b60170 334 /* At the start of a function, argument registers have known base
2a2c8203
JC
335 values which may be lost later. Returning an ADDRESS
336 expression here allows optimization based on argument values
337 even when the argument registers are used for other purposes. */
338 if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
ec907dd8 339 return new_reg_base_value[REGNO (src)];
73774bc7 340
eaf407a5
JL
341 /* If a pseudo has a known base value, return it. Do not do this
342 for hard regs since it can result in a circular dependency
343 chain for registers which have values at function entry.
344
345 The test above is not sufficient because the scheduler may move
346 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
347 if (REGNO (src) >= FIRST_PSEUDO_REGISTER
e51712db 348 && (unsigned) REGNO (src) < reg_base_value_size
eaf407a5 349 && reg_base_value[REGNO (src)])
73774bc7
JL
350 return reg_base_value[REGNO (src)];
351
9ae8ffe7
JL
352 return src;
353
354 case MEM:
355 /* Check for an argument passed in memory. Only record in the
356 copying-arguments block; it is too hard to track changes
357 otherwise. */
358 if (copying_arguments
359 && (XEXP (src, 0) == arg_pointer_rtx
360 || (GET_CODE (XEXP (src, 0)) == PLUS
361 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 362 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
363 return 0;
364
365 case CONST:
366 src = XEXP (src, 0);
367 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
368 break;
d4b60170
RK
369
370 /* ... fall through ... */
2a2c8203 371
9ae8ffe7
JL
372 case PLUS:
373 case MINUS:
2a2c8203 374 {
ec907dd8
JL
375 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
376
377 /* If either operand is a REG, then see if we already have
378 a known value for it. */
379 if (GET_CODE (src_0) == REG)
380 {
381 temp = find_base_value (src_0);
d4b60170 382 if (temp != 0)
ec907dd8
JL
383 src_0 = temp;
384 }
385
386 if (GET_CODE (src_1) == REG)
387 {
388 temp = find_base_value (src_1);
d4b60170 389 if (temp!= 0)
ec907dd8
JL
390 src_1 = temp;
391 }
2a2c8203 392
d4b60170 393 /* Guess which operand is the base address:
ec907dd8
JL
394 If either operand is a symbol, then it is the base. If
395 either operand is a CONST_INT, then the other is the base. */
d4b60170 396 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 397 return find_base_value (src_0);
d4b60170 398 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
399 return find_base_value (src_1);
400
d4b60170 401 /* This might not be necessary anymore:
ec907dd8
JL
402 If either operand is a REG that is a known pointer, then it
403 is the base. */
d4b60170 404 else if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
2a2c8203 405 return find_base_value (src_0);
d4b60170 406 else if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
2a2c8203
JC
407 return find_base_value (src_1);
408
9ae8ffe7 409 return 0;
2a2c8203
JC
410 }
411
412 case LO_SUM:
413 /* The standard form is (lo_sum reg sym) so look only at the
414 second operand. */
415 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
416
417 case AND:
418 /* If the second operand is constant set the base
419 address to the first operand. */
2a2c8203
JC
420 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
421 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
422 return 0;
423
de12be17
JC
424 case ZERO_EXTEND:
425 case SIGN_EXTEND: /* used for NT/Alpha pointers */
9ae8ffe7 426 case HIGH:
2a2c8203 427 return find_base_value (XEXP (src, 0));
1d300e19
KG
428
429 default:
430 break;
9ae8ffe7
JL
431 }
432
433 return 0;
434}
435
436/* Called from init_alias_analysis indirectly through note_stores. */
437
d4b60170 438/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
439 register N has been set in this function. */
440static char *reg_seen;
441
13309a5f
JC
442/* Addresses which are known not to alias anything else are identified
443 by a unique integer. */
ec907dd8
JL
444static int unique_id;
445
2a2c8203 446static void
84832317 447record_set (dest, set, data)
9ae8ffe7 448 rtx dest, set;
84832317 449 void *data ATTRIBUTE_UNUSED;
9ae8ffe7 450{
ac606739 451 register unsigned regno;
9ae8ffe7
JL
452 rtx src;
453
454 if (GET_CODE (dest) != REG)
455 return;
456
457 regno = REGNO (dest);
458
ac606739
GS
459 if (regno >= reg_base_value_size)
460 abort ();
461
9ae8ffe7
JL
462 if (set)
463 {
464 /* A CLOBBER wipes out any old value but does not prevent a previously
465 unset register from acquiring a base address (i.e. reg_seen is not
466 set). */
467 if (GET_CODE (set) == CLOBBER)
468 {
ec907dd8 469 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
470 return;
471 }
472 src = SET_SRC (set);
473 }
474 else
475 {
9ae8ffe7
JL
476 if (reg_seen[regno])
477 {
ec907dd8 478 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
479 return;
480 }
481 reg_seen[regno] = 1;
38a448ca
RH
482 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
483 GEN_INT (unique_id++));
9ae8ffe7
JL
484 return;
485 }
486
487 /* This is not the first set. If the new value is not related to the
488 old value, forget the base value. Note that the following code is
489 not detected:
490 extern int x, y; int *p = &x; p += (&y-&x);
491 ANSI C does not allow computing the difference of addresses
492 of distinct top level objects. */
ec907dd8 493 if (new_reg_base_value[regno])
9ae8ffe7
JL
494 switch (GET_CODE (src))
495 {
2a2c8203 496 case LO_SUM:
9ae8ffe7
JL
497 case PLUS:
498 case MINUS:
499 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 500 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
501 break;
502 case AND:
503 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 504 new_reg_base_value[regno] = 0;
9ae8ffe7 505 break;
9ae8ffe7 506 default:
ec907dd8 507 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
508 break;
509 }
510 /* If this is the first set of a register, record the value. */
511 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
512 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
513 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
514
515 reg_seen[regno] = 1;
516}
517
518/* Called from loop optimization when a new pseudo-register is created. */
d4b60170 519
9ae8ffe7 520void
de12be17 521record_base_value (regno, val, invariant)
9ae8ffe7
JL
522 int regno;
523 rtx val;
de12be17 524 int invariant;
9ae8ffe7 525{
e51712db 526 if ((unsigned) regno >= reg_base_value_size)
9ae8ffe7 527 return;
de12be17
JC
528
529 /* If INVARIANT is true then this value also describes an invariant
530 relationship which can be used to deduce that two registers with
531 unknown values are different. */
532 if (invariant && alias_invariant)
533 alias_invariant[regno] = val;
534
9ae8ffe7
JL
535 if (GET_CODE (val) == REG)
536 {
e51712db 537 if ((unsigned) REGNO (val) < reg_base_value_size)
d4b60170
RK
538 reg_base_value[regno] = reg_base_value[REGNO (val)];
539
9ae8ffe7
JL
540 return;
541 }
d4b60170 542
9ae8ffe7
JL
543 reg_base_value[regno] = find_base_value (val);
544}
545
db048faf
MM
546/* Returns a canonical version of X, from the point of view alias
547 analysis. (For example, if X is a MEM whose address is a register,
548 and the register has a known value (say a SYMBOL_REF), then a MEM
549 whose address is the SYMBOL_REF is returned.) */
550
551rtx
9ae8ffe7
JL
552canon_rtx (x)
553 rtx x;
554{
555 /* Recursively look for equivalences. */
556 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
557 && REGNO (x) < reg_known_value_size)
558 return reg_known_value[REGNO (x)] == x
559 ? x : canon_rtx (reg_known_value[REGNO (x)]);
560 else if (GET_CODE (x) == PLUS)
561 {
562 rtx x0 = canon_rtx (XEXP (x, 0));
563 rtx x1 = canon_rtx (XEXP (x, 1));
564
565 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
566 {
567 /* We can tolerate LO_SUMs being offset here; these
568 rtl are used for nothing other than comparisons. */
569 if (GET_CODE (x0) == CONST_INT)
570 return plus_constant_for_output (x1, INTVAL (x0));
571 else if (GET_CODE (x1) == CONST_INT)
572 return plus_constant_for_output (x0, INTVAL (x1));
38a448ca 573 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
574 }
575 }
d4b60170 576
9ae8ffe7
JL
577 /* This gives us much better alias analysis when called from
578 the loop optimizer. Note we want to leave the original
579 MEM alone, but need to return the canonicalized MEM with
580 all the flags with their original values. */
581 else if (GET_CODE (x) == MEM)
582 {
583 rtx addr = canon_rtx (XEXP (x, 0));
d4b60170 584
9ae8ffe7
JL
585 if (addr != XEXP (x, 0))
586 {
38a448ca 587 rtx new = gen_rtx_MEM (GET_MODE (x), addr);
d4b60170 588
c6df88cb 589 MEM_COPY_ATTRIBUTES (new, x);
9ae8ffe7
JL
590 x = new;
591 }
592 }
593 return x;
594}
595
596/* Return 1 if X and Y are identical-looking rtx's.
597
598 We use the data in reg_known_value above to see if two registers with
599 different numbers are, in fact, equivalent. */
600
601static int
602rtx_equal_for_memref_p (x, y)
603 rtx x, y;
604{
605 register int i;
606 register int j;
607 register enum rtx_code code;
6f7d635c 608 register const char *fmt;
9ae8ffe7
JL
609
610 if (x == 0 && y == 0)
611 return 1;
612 if (x == 0 || y == 0)
613 return 0;
d4b60170 614
9ae8ffe7
JL
615 x = canon_rtx (x);
616 y = canon_rtx (y);
617
618 if (x == y)
619 return 1;
620
621 code = GET_CODE (x);
622 /* Rtx's of different codes cannot be equal. */
623 if (code != GET_CODE (y))
624 return 0;
625
626 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
627 (REG:SI x) and (REG:HI x) are NOT equivalent. */
628
629 if (GET_MODE (x) != GET_MODE (y))
630 return 0;
631
db048faf
MM
632 /* Some RTL can be compared without a recursive examination. */
633 switch (code)
634 {
635 case REG:
636 return REGNO (x) == REGNO (y);
637
638 case LABEL_REF:
639 return XEXP (x, 0) == XEXP (y, 0);
640
641 case SYMBOL_REF:
642 return XSTR (x, 0) == XSTR (y, 0);
643
644 case CONST_INT:
645 case CONST_DOUBLE:
646 /* There's no need to compare the contents of CONST_DOUBLEs or
647 CONST_INTs because pointer equality is a good enough
648 comparison for these nodes. */
649 return 0;
650
651 case ADDRESSOF:
652 return (REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0))
653 && XINT (x, 1) == XINT (y, 1));
654
655 default:
656 break;
657 }
9ae8ffe7
JL
658
659 /* For commutative operations, the RTX match if the operand match in any
660 order. Also handle the simple binary and unary cases without a loop. */
661 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
662 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
663 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
664 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
665 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
666 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
667 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
668 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
669 else if (GET_RTX_CLASS (code) == '1')
670 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
671
672 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
673 fail to match, return 0 for the whole things.
674
675 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
676
677 fmt = GET_RTX_FORMAT (code);
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 switch (fmt[i])
681 {
9ae8ffe7
JL
682 case 'i':
683 if (XINT (x, i) != XINT (y, i))
684 return 0;
685 break;
686
9ae8ffe7
JL
687 case 'E':
688 /* Two vectors must have the same length. */
689 if (XVECLEN (x, i) != XVECLEN (y, i))
690 return 0;
691
692 /* And the corresponding elements must match. */
693 for (j = 0; j < XVECLEN (x, i); j++)
d4b60170
RK
694 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
695 XVECEXP (y, i, j)) == 0)
9ae8ffe7
JL
696 return 0;
697 break;
698
699 case 'e':
700 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
701 return 0;
702 break;
703
aee21ba9
JL
704 /* This can happen for an asm which clobbers memory. */
705 case '0':
706 break;
707
9ae8ffe7
JL
708 /* It is believed that rtx's at this level will never
709 contain anything but integers and other rtx's,
710 except for within LABEL_REFs and SYMBOL_REFs. */
711 default:
712 abort ();
713 }
714 }
715 return 1;
716}
717
718/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
719 X and return it, or return 0 if none found. */
720
721static rtx
722find_symbolic_term (x)
723 rtx x;
724{
725 register int i;
726 register enum rtx_code code;
6f7d635c 727 register const char *fmt;
9ae8ffe7
JL
728
729 code = GET_CODE (x);
730 if (code == SYMBOL_REF || code == LABEL_REF)
731 return x;
732 if (GET_RTX_CLASS (code) == 'o')
733 return 0;
734
735 fmt = GET_RTX_FORMAT (code);
736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
737 {
738 rtx t;
739
740 if (fmt[i] == 'e')
741 {
742 t = find_symbolic_term (XEXP (x, i));
743 if (t != 0)
744 return t;
745 }
746 else if (fmt[i] == 'E')
747 break;
748 }
749 return 0;
750}
751
752static rtx
753find_base_term (x)
754 register rtx x;
755{
eab5c70a
BS
756 cselib_val *val;
757 struct elt_loc_list *l;
758
9ae8ffe7
JL
759 switch (GET_CODE (x))
760 {
761 case REG:
762 return REG_BASE_VALUE (x);
763
de12be17
JC
764 case ZERO_EXTEND:
765 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
9ae8ffe7 766 case HIGH:
6d849a2a
JL
767 case PRE_INC:
768 case PRE_DEC:
769 case POST_INC:
770 case POST_DEC:
771 return find_base_term (XEXP (x, 0));
772
eab5c70a
BS
773 case VALUE:
774 val = CSELIB_VAL_PTR (x);
775 for (l = val->locs; l; l = l->next)
776 if ((x = find_base_term (l->loc)) != 0)
777 return x;
778 return 0;
779
9ae8ffe7
JL
780 case CONST:
781 x = XEXP (x, 0);
782 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
783 return 0;
784 /* fall through */
785 case LO_SUM:
786 case PLUS:
787 case MINUS:
788 {
3c567fae
JL
789 rtx tmp1 = XEXP (x, 0);
790 rtx tmp2 = XEXP (x, 1);
791
792 /* This is a litle bit tricky since we have to determine which of
793 the two operands represents the real base address. Otherwise this
794 routine may return the index register instead of the base register.
795
796 That may cause us to believe no aliasing was possible, when in
797 fact aliasing is possible.
798
799 We use a few simple tests to guess the base register. Additional
800 tests can certainly be added. For example, if one of the operands
801 is a shift or multiply, then it must be the index register and the
802 other operand is the base register. */
803
804 /* If either operand is known to be a pointer, then use it
805 to determine the base term. */
806 if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
807 return find_base_term (tmp1);
808
809 if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
810 return find_base_term (tmp2);
811
812 /* Neither operand was known to be a pointer. Go ahead and find the
813 base term for both operands. */
814 tmp1 = find_base_term (tmp1);
815 tmp2 = find_base_term (tmp2);
816
817 /* If either base term is named object or a special address
818 (like an argument or stack reference), then use it for the
819 base term. */
d4b60170 820 if (tmp1 != 0
3c567fae
JL
821 && (GET_CODE (tmp1) == SYMBOL_REF
822 || GET_CODE (tmp1) == LABEL_REF
823 || (GET_CODE (tmp1) == ADDRESS
824 && GET_MODE (tmp1) != VOIDmode)))
825 return tmp1;
826
d4b60170 827 if (tmp2 != 0
3c567fae
JL
828 && (GET_CODE (tmp2) == SYMBOL_REF
829 || GET_CODE (tmp2) == LABEL_REF
830 || (GET_CODE (tmp2) == ADDRESS
831 && GET_MODE (tmp2) != VOIDmode)))
832 return tmp2;
833
834 /* We could not determine which of the two operands was the
835 base register and which was the index. So we can determine
836 nothing from the base alias check. */
837 return 0;
9ae8ffe7
JL
838 }
839
840 case AND:
841 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
842 return REG_BASE_VALUE (XEXP (x, 0));
843 return 0;
844
845 case SYMBOL_REF:
846 case LABEL_REF:
847 return x;
848
849 default:
850 return 0;
851 }
852}
853
854/* Return 0 if the addresses X and Y are known to point to different
855 objects, 1 if they might be pointers to the same object. */
856
857static int
56ee9281 858base_alias_check (x, y, x_mode, y_mode)
9ae8ffe7 859 rtx x, y;
56ee9281 860 enum machine_mode x_mode, y_mode;
9ae8ffe7
JL
861{
862 rtx x_base = find_base_term (x);
863 rtx y_base = find_base_term (y);
864
1c72c7f6
JC
865 /* If the address itself has no known base see if a known equivalent
866 value has one. If either address still has no known base, nothing
867 is known about aliasing. */
868 if (x_base == 0)
869 {
870 rtx x_c;
d4b60170 871
1c72c7f6
JC
872 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
873 return 1;
d4b60170 874
1c72c7f6
JC
875 x_base = find_base_term (x_c);
876 if (x_base == 0)
877 return 1;
878 }
9ae8ffe7 879
1c72c7f6
JC
880 if (y_base == 0)
881 {
882 rtx y_c;
883 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
884 return 1;
d4b60170 885
1c72c7f6
JC
886 y_base = find_base_term (y_c);
887 if (y_base == 0)
888 return 1;
889 }
890
891 /* If the base addresses are equal nothing is known about aliasing. */
892 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
893 return 1;
894
56ee9281
RH
895 /* The base addresses of the read and write are different expressions.
896 If they are both symbols and they are not accessed via AND, there is
897 no conflict. We can bring knowledge of object alignment into play
898 here. For example, on alpha, "char a, b;" can alias one another,
899 though "char a; long b;" cannot. */
9ae8ffe7 900 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 901 {
56ee9281
RH
902 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
903 return 1;
904 if (GET_CODE (x) == AND
905 && (GET_CODE (XEXP (x, 1)) != CONST_INT
906 || GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
907 return 1;
908 if (GET_CODE (y) == AND
909 && (GET_CODE (XEXP (y, 1)) != CONST_INT
910 || GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
911 return 1;
b2972551
JL
912 /* Differing symbols never alias. */
913 return 0;
c02f035f 914 }
9ae8ffe7
JL
915
916 /* If one address is a stack reference there can be no alias:
917 stack references using different base registers do not alias,
918 a stack reference can not alias a parameter, and a stack reference
919 can not alias a global. */
920 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
921 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
922 return 0;
923
924 if (! flag_argument_noalias)
925 return 1;
926
927 if (flag_argument_noalias > 1)
928 return 0;
929
930 /* Weak noalias assertion (arguments are distinct, but may match globals). */
931 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
932}
933
eab5c70a
BS
934/* Convert the address X into something we can use. This is done by returning
935 it unchanged unless it is a value; in the latter case we call cselib to get
936 a more useful rtx. */
937static rtx
938get_addr (x)
939 rtx x;
940{
941 cselib_val *v;
942 struct elt_loc_list *l;
943
944 if (GET_CODE (x) != VALUE)
945 return x;
946 v = CSELIB_VAL_PTR (x);
947 for (l = v->locs; l; l = l->next)
948 if (CONSTANT_P (l->loc))
949 return l->loc;
950 for (l = v->locs; l; l = l->next)
951 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
952 return l->loc;
953 if (v->locs)
954 return v->locs->loc;
955 return x;
956}
957
39cec1ac
MH
958/* Return the address of the (N_REFS + 1)th memory reference to ADDR
959 where SIZE is the size in bytes of the memory reference. If ADDR
960 is not modified by the memory reference then ADDR is returned. */
961
962rtx
963addr_side_effect_eval (addr, size, n_refs)
964 rtx addr;
965 int size;
966 int n_refs;
967{
968 int offset = 0;
969
970 switch (GET_CODE (addr))
971 {
972 case PRE_INC:
973 offset = (n_refs + 1) * size;
974 break;
975 case PRE_DEC:
976 offset = -(n_refs + 1) * size;
977 break;
978 case POST_INC:
979 offset = n_refs * size;
980 break;
981 case POST_DEC:
982 offset = -n_refs * size;
983 break;
984
985 default:
986 return addr;
987 }
988
989 if (offset)
990 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
991 else
992 addr = XEXP (addr, 0);
993
994 return addr;
995}
996
9ae8ffe7
JL
997/* Return nonzero if X and Y (memory addresses) could reference the
998 same location in memory. C is an offset accumulator. When
999 C is nonzero, we are testing aliases between X and Y + C.
1000 XSIZE is the size in bytes of the X reference,
1001 similarly YSIZE is the size in bytes for Y.
1002
1003 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1004 referenced (the reference was BLKmode), so make the most pessimistic
1005 assumptions.
1006
c02f035f
RH
1007 If XSIZE or YSIZE is negative, we may access memory outside the object
1008 being referenced as a side effect. This can happen when using AND to
1009 align memory references, as is done on the Alpha.
1010
9ae8ffe7 1011 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1012 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1013
9ae8ffe7
JL
1014static int
1015memrefs_conflict_p (xsize, x, ysize, y, c)
1016 register rtx x, y;
1017 int xsize, ysize;
1018 HOST_WIDE_INT c;
1019{
eab5c70a
BS
1020 if (GET_CODE (x) == VALUE)
1021 x = get_addr (x);
1022 if (GET_CODE (y) == VALUE)
1023 y = get_addr (y);
9ae8ffe7
JL
1024 if (GET_CODE (x) == HIGH)
1025 x = XEXP (x, 0);
1026 else if (GET_CODE (x) == LO_SUM)
1027 x = XEXP (x, 1);
1028 else
39cec1ac 1029 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
9ae8ffe7
JL
1030 if (GET_CODE (y) == HIGH)
1031 y = XEXP (y, 0);
1032 else if (GET_CODE (y) == LO_SUM)
1033 y = XEXP (y, 1);
1034 else
39cec1ac 1035 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
9ae8ffe7
JL
1036
1037 if (rtx_equal_for_memref_p (x, y))
1038 {
c02f035f 1039 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1040 return 1;
1041 if (c >= 0 && xsize > c)
1042 return 1;
1043 if (c < 0 && ysize+c > 0)
1044 return 1;
1045 return 0;
1046 }
1047
6e73e666
JC
1048 /* This code used to check for conflicts involving stack references and
1049 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1050
1051 if (GET_CODE (x) == PLUS)
1052 {
1053 /* The fact that X is canonicalized means that this
1054 PLUS rtx is canonicalized. */
1055 rtx x0 = XEXP (x, 0);
1056 rtx x1 = XEXP (x, 1);
1057
1058 if (GET_CODE (y) == PLUS)
1059 {
1060 /* The fact that Y is canonicalized means that this
1061 PLUS rtx is canonicalized. */
1062 rtx y0 = XEXP (y, 0);
1063 rtx y1 = XEXP (y, 1);
1064
1065 if (rtx_equal_for_memref_p (x1, y1))
1066 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1067 if (rtx_equal_for_memref_p (x0, y0))
1068 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1069 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1070 {
1071 if (GET_CODE (y1) == CONST_INT)
1072 return memrefs_conflict_p (xsize, x0, ysize, y0,
1073 c - INTVAL (x1) + INTVAL (y1));
1074 else
1075 return memrefs_conflict_p (xsize, x0, ysize, y,
1076 c - INTVAL (x1));
1077 }
9ae8ffe7
JL
1078 else if (GET_CODE (y1) == CONST_INT)
1079 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1080
6e73e666 1081 return 1;
9ae8ffe7
JL
1082 }
1083 else if (GET_CODE (x1) == CONST_INT)
1084 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1085 }
1086 else if (GET_CODE (y) == PLUS)
1087 {
1088 /* The fact that Y is canonicalized means that this
1089 PLUS rtx is canonicalized. */
1090 rtx y0 = XEXP (y, 0);
1091 rtx y1 = XEXP (y, 1);
1092
1093 if (GET_CODE (y1) == CONST_INT)
1094 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1095 else
1096 return 1;
1097 }
1098
1099 if (GET_CODE (x) == GET_CODE (y))
1100 switch (GET_CODE (x))
1101 {
1102 case MULT:
1103 {
1104 /* Handle cases where we expect the second operands to be the
1105 same, and check only whether the first operand would conflict
1106 or not. */
1107 rtx x0, y0;
1108 rtx x1 = canon_rtx (XEXP (x, 1));
1109 rtx y1 = canon_rtx (XEXP (y, 1));
1110 if (! rtx_equal_for_memref_p (x1, y1))
1111 return 1;
1112 x0 = canon_rtx (XEXP (x, 0));
1113 y0 = canon_rtx (XEXP (y, 0));
1114 if (rtx_equal_for_memref_p (x0, y0))
1115 return (xsize == 0 || ysize == 0
1116 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1117
1118 /* Can't properly adjust our sizes. */
1119 if (GET_CODE (x1) != CONST_INT)
1120 return 1;
1121 xsize /= INTVAL (x1);
1122 ysize /= INTVAL (x1);
1123 c /= INTVAL (x1);
1124 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1125 }
1d300e19 1126
de12be17
JC
1127 case REG:
1128 /* Are these registers known not to be equal? */
1129 if (alias_invariant)
1130 {
e51712db 1131 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1132 rtx i_x, i_y; /* invariant relationships of X and Y */
1133
1134 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1135 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1136
1137 if (i_x == 0 && i_y == 0)
1138 break;
1139
1140 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1141 ysize, i_y ? i_y : y, c))
1142 return 0;
1143 }
1144 break;
1145
1d300e19
KG
1146 default:
1147 break;
9ae8ffe7
JL
1148 }
1149
1150 /* Treat an access through an AND (e.g. a subword access on an Alpha)
56ee9281
RH
1151 as an access with indeterminate size. Assume that references
1152 besides AND are aligned, so if the size of the other reference is
1153 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1154 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1155 {
02e3377d 1156 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281
RH
1157 xsize = -1;
1158 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1159 }
9ae8ffe7 1160 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1161 {
56ee9281 1162 /* ??? If we are indexing far enough into the array/structure, we
c02f035f
RH
1163 may yet be able to determine that we can not overlap. But we
1164 also need to that we are far enough from the end not to overlap
56ee9281 1165 a following reference, so we do nothing with that for now. */
02e3377d 1166 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281
RH
1167 ysize = -1;
1168 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
c02f035f 1169 }
9ae8ffe7
JL
1170
1171 if (CONSTANT_P (x))
1172 {
1173 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1174 {
1175 c += (INTVAL (y) - INTVAL (x));
c02f035f 1176 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1177 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1178 }
1179
1180 if (GET_CODE (x) == CONST)
1181 {
1182 if (GET_CODE (y) == CONST)
1183 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1184 ysize, canon_rtx (XEXP (y, 0)), c);
1185 else
1186 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1187 ysize, y, c);
1188 }
1189 if (GET_CODE (y) == CONST)
1190 return memrefs_conflict_p (xsize, x, ysize,
1191 canon_rtx (XEXP (y, 0)), c);
1192
1193 if (CONSTANT_P (y))
c02f035f
RH
1194 return (xsize < 0 || ysize < 0
1195 || (rtx_equal_for_memref_p (x, y)
1196 && (xsize == 0 || ysize == 0
1197 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1198
1199 return 1;
1200 }
1201 return 1;
1202}
1203
1204/* Functions to compute memory dependencies.
1205
1206 Since we process the insns in execution order, we can build tables
1207 to keep track of what registers are fixed (and not aliased), what registers
1208 are varying in known ways, and what registers are varying in unknown
1209 ways.
1210
1211 If both memory references are volatile, then there must always be a
1212 dependence between the two references, since their order can not be
1213 changed. A volatile and non-volatile reference can be interchanged
1214 though.
1215
fa8b6024 1216 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
9ae8ffe7
JL
1217 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
1218 allow QImode aliasing because the ANSI C standard allows character
1219 pointers to alias anything. We are assuming that characters are
fa8b6024
JW
1220 always QImode here. We also must allow AND addresses, because they may
1221 generate accesses outside the object being referenced. This is used to
1222 generate aligned addresses from unaligned addresses, for instance, the
1223 alpha storeqi_unaligned pattern. */
9ae8ffe7
JL
1224
1225/* Read dependence: X is read after read in MEM takes place. There can
1226 only be a dependence here if both reads are volatile. */
1227
1228int
1229read_dependence (mem, x)
1230 rtx mem;
1231 rtx x;
1232{
1233 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1234}
1235
c6df88cb
MM
1236/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1237 MEM2 is a reference to a structure at a varying address, or returns
1238 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1239 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1240 to decide whether or not an address may vary; it should return
eab5c70a
BS
1241 nonzero whenever variation is possible.
1242 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1243
2c72b78f 1244static rtx
eab5c70a
BS
1245fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1246 rtx mem1, mem2;
1247 rtx mem1_addr, mem2_addr;
3d994c6b 1248 int (*varies_p) PARAMS ((rtx));
eab5c70a 1249{
c6df88cb
MM
1250 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1251 && !varies_p (mem1_addr) && varies_p (mem2_addr))
1252 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1253 varying address. */
1254 return mem1;
1255
1256 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1257 && varies_p (mem1_addr) && !varies_p (mem2_addr))
1258 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1259 varying address. */
1260 return mem2;
1261
1262 return NULL_RTX;
1263}
1264
1265/* Returns nonzero if something about the mode or address format MEM1
1266 indicates that it might well alias *anything*. */
1267
2c72b78f 1268static int
c6df88cb
MM
1269aliases_everything_p (mem)
1270 rtx mem;
1271{
1272 if (GET_MODE (mem) == QImode)
1273 /* ANSI C says that a `char*' can point to anything. */
1274 return 1;
1275
1276 if (GET_CODE (XEXP (mem, 0)) == AND)
1277 /* If the address is an AND, its very hard to know at what it is
1278 actually pointing. */
1279 return 1;
1280
1281 return 0;
1282}
1283
9ae8ffe7
JL
1284/* True dependence: X is read after store in MEM takes place. */
1285
1286int
1287true_dependence (mem, mem_mode, x, varies)
1288 rtx mem;
1289 enum machine_mode mem_mode;
1290 rtx x;
3d994c6b 1291 int (*varies) PARAMS ((rtx));
9ae8ffe7 1292{
6e73e666 1293 register rtx x_addr, mem_addr;
9ae8ffe7
JL
1294
1295 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1296 return 1;
1297
41472af8
MM
1298 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1299 return 0;
1300
9ae8ffe7
JL
1301 /* If X is an unchanging read, then it can't possibly conflict with any
1302 non-unchanging store. It may conflict with an unchanging write though,
1303 because there may be a single store to this address to initialize it.
1304 Just fall through to the code below to resolve the case where we have
1305 both an unchanging read and an unchanging write. This won't handle all
1306 cases optimally, but the possible performance loss should be
1307 negligible. */
1308 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1309 return 0;
1310
56ee9281
RH
1311 if (mem_mode == VOIDmode)
1312 mem_mode = GET_MODE (mem);
1313
eab5c70a
BS
1314 x_addr = get_addr (XEXP (x, 0));
1315 mem_addr = get_addr (XEXP (mem, 0));
1316
1317 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
1318 return 0;
1319
eab5c70a
BS
1320 x_addr = canon_rtx (x_addr);
1321 mem_addr = canon_rtx (mem_addr);
6e73e666 1322
0211b6ab
JW
1323 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
1324 SIZE_FOR_MODE (x), x_addr, 0))
1325 return 0;
1326
c6df88cb 1327 if (aliases_everything_p (x))
0211b6ab
JW
1328 return 1;
1329
c6df88cb
MM
1330 /* We cannot use aliases_everyting_p to test MEM, since we must look
1331 at MEM_MODE, rather than GET_MODE (MEM). */
1332 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
1333 return 1;
0211b6ab 1334
c6df88cb
MM
1335 /* In true_dependence we also allow BLKmode to alias anything. Why
1336 don't we do this in anti_dependence and output_dependence? */
1337 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
1338 return 1;
0211b6ab 1339
eab5c70a
BS
1340 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1341 varies);
9ae8ffe7
JL
1342}
1343
c6df88cb
MM
1344/* Returns non-zero if a write to X might alias a previous read from
1345 (or, if WRITEP is non-zero, a write to) MEM. */
9ae8ffe7 1346
2c72b78f 1347static int
c6df88cb 1348write_dependence_p (mem, x, writep)
9ae8ffe7
JL
1349 rtx mem;
1350 rtx x;
c6df88cb 1351 int writep;
9ae8ffe7 1352{
6e73e666 1353 rtx x_addr, mem_addr;
c6df88cb 1354 rtx fixed_scalar;
6e73e666 1355
9ae8ffe7
JL
1356 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1357 return 1;
1358
eab5c70a
BS
1359 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1360 return 0;
1361
9ae8ffe7
JL
1362 /* If MEM is an unchanging read, then it can't possibly conflict with
1363 the store to X, because there is at most one store to MEM, and it must
1364 have occurred somewhere before MEM. */
c6df88cb 1365 if (!writep && RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
1366 return 0;
1367
eab5c70a
BS
1368 x_addr = get_addr (XEXP (x, 0));
1369 mem_addr = get_addr (XEXP (mem, 0));
1c72c7f6 1370
eab5c70a
BS
1371 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
1372 GET_MODE (mem)))
41472af8
MM
1373 return 0;
1374
eab5c70a
BS
1375 x_addr = canon_rtx (x_addr);
1376 mem_addr = canon_rtx (mem_addr);
6e73e666 1377
c6df88cb
MM
1378 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
1379 SIZE_FOR_MODE (x), x_addr, 0))
1380 return 0;
1381
1382 fixed_scalar
eab5c70a
BS
1383 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1384 rtx_addr_varies_p);
1385
c6df88cb
MM
1386 return (!(fixed_scalar == mem && !aliases_everything_p (x))
1387 && !(fixed_scalar == x && !aliases_everything_p (mem)));
1388}
1389
1390/* Anti dependence: X is written after read in MEM takes place. */
1391
1392int
1393anti_dependence (mem, x)
1394 rtx mem;
1395 rtx x;
1396{
1397 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
1398}
1399
1400/* Output dependence: X is written after store in MEM takes place. */
1401
1402int
1403output_dependence (mem, x)
1404 register rtx mem;
1405 register rtx x;
1406{
c6df88cb 1407 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7
JL
1408}
1409
7790df19
JW
1410/* Returns non-zero if X might refer to something which is not
1411 local to the function and is not constant. */
1412
1413static int
1414nonlocal_reference_p (x)
1415 rtx x;
1416{
1417 rtx base;
1418 register RTX_CODE code;
1419 int regno;
1420
1421 code = GET_CODE (x);
1422
1423 if (GET_RTX_CLASS (code) == 'i')
1424 {
2a8f6b90
JH
1425 /* Constant functions can be constant if they don't use
1426 scratch memory used to mark function w/o side effects. */
7790df19 1427 if (code == CALL_INSN && CONST_CALL_P (x))
2a8f6b90
JH
1428 {
1429 x = CALL_INSN_FUNCTION_USAGE (x);
1430 if (!x) return 0;
1431 }
1432 else
1433 x = PATTERN (x);
7790df19
JW
1434 code = GET_CODE (x);
1435 }
1436
1437 switch (code)
1438 {
1439 case SUBREG:
1440 if (GET_CODE (SUBREG_REG (x)) == REG)
1441 {
1442 /* Global registers are not local. */
1443 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
1444 && global_regs[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)])
1445 return 1;
1446 return 0;
1447 }
1448 break;
1449
1450 case REG:
1451 regno = REGNO (x);
1452 /* Global registers are not local. */
1453 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1454 return 1;
1455 return 0;
1456
1457 case SCRATCH:
1458 case PC:
1459 case CC0:
1460 case CONST_INT:
1461 case CONST_DOUBLE:
1462 case CONST:
1463 case LABEL_REF:
1464 return 0;
1465
1466 case SYMBOL_REF:
1467 /* Constants in the function's constants pool are constant. */
1468 if (CONSTANT_POOL_ADDRESS_P (x))
1469 return 0;
1470 return 1;
1471
1472 case CALL:
1473 /* Recursion introduces no additional considerations. */
1474 if (GET_CODE (XEXP (x, 0)) == MEM
1475 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1476 && strcmp(XSTR (XEXP (XEXP (x, 0), 0), 0),
1477 IDENTIFIER_POINTER (
1478 DECL_ASSEMBLER_NAME (current_function_decl))) == 0)
1479 return 0;
1480 return 1;
1481
1482 case MEM:
1483 /* Be overly conservative and consider any volatile memory
1484 reference as not local. */
1485 if (MEM_VOLATILE_P (x))
1486 return 1;
1487 base = find_base_term (XEXP (x, 0));
1488 if (base)
1489 {
b3b5ad95
JL
1490 /* A Pmode ADDRESS could be a reference via the structure value
1491 address or static chain. Such memory references are nonlocal.
1492
1493 Thus, we have to examine the contents of the ADDRESS to find
1494 out if this is a local reference or not. */
1495 if (GET_CODE (base) == ADDRESS
1496 && GET_MODE (base) == Pmode
1497 && (XEXP (base, 0) == stack_pointer_rtx
1498 || XEXP (base, 0) == arg_pointer_rtx
1499#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1500 || XEXP (base, 0) == hard_frame_pointer_rtx
1501#endif
1502 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
1503 return 0;
1504 /* Constants in the function's constant pool are constant. */
1505 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
1506 return 0;
1507 }
1508 return 1;
1509
1510 case ASM_INPUT:
1511 case ASM_OPERANDS:
1512 return 1;
1513
1514 default:
1515 break;
1516 }
1517
1518 /* Recursively scan the operands of this expression. */
1519
1520 {
499b1098 1521 register const char *fmt = GET_RTX_FORMAT (code);
7790df19
JW
1522 register int i;
1523
1524 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1525 {
2a8f6b90 1526 if (fmt[i] == 'e' && XEXP (x, i))
7790df19
JW
1527 {
1528 if (nonlocal_reference_p (XEXP (x, i)))
1529 return 1;
1530 }
d4757e6a 1531 else if (fmt[i] == 'E')
7790df19
JW
1532 {
1533 register int j;
1534 for (j = 0; j < XVECLEN (x, i); j++)
1535 if (nonlocal_reference_p (XVECEXP (x, i, j)))
1536 return 1;
1537 }
1538 }
1539 }
1540
1541 return 0;
1542}
1543
1544/* Mark the function if it is constant. */
1545
1546void
1547mark_constant_function ()
1548{
1549 rtx insn;
1550
1551 if (TREE_PUBLIC (current_function_decl)
1552 || TREE_READONLY (current_function_decl)
1553 || TREE_THIS_VOLATILE (current_function_decl)
1554 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
1555 return;
1556
1557 /* Determine if this is a constant function. */
1558
1559 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1560 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1561 && nonlocal_reference_p (insn))
1562 return;
1563
1564 /* Mark the function. */
1565
1566 TREE_READONLY (current_function_decl) = 1;
1567}
1568
6e73e666
JC
1569
1570static HARD_REG_SET argument_registers;
1571
1572void
1573init_alias_once ()
1574{
1575 register int i;
1576
1577#ifndef OUTGOING_REGNO
1578#define OUTGOING_REGNO(N) N
1579#endif
1580 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1581 /* Check whether this register can hold an incoming pointer
1582 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1583 numbers, so translate if necessary due to register windows. */
1584 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
1585 && HARD_REGNO_MODE_OK (i, Pmode))
1586 SET_HARD_REG_BIT (argument_registers, i);
3932261a 1587
30f72379 1588 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
6e73e666
JC
1589}
1590
c13e8210
MM
1591/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
1592 array. */
1593
9ae8ffe7
JL
1594void
1595init_alias_analysis ()
1596{
1597 int maxreg = max_reg_num ();
ea64ef27 1598 int changed, pass;
9ae8ffe7 1599 register int i;
e51712db 1600 register unsigned int ui;
9ae8ffe7 1601 register rtx insn;
9ae8ffe7
JL
1602
1603 reg_known_value_size = maxreg;
1604
e05e2395
MM
1605 reg_known_value
1606 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
1607 - FIRST_PSEUDO_REGISTER;
1608 reg_known_equiv_p
1609 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 1610 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 1611
6e73e666
JC
1612 /* Overallocate reg_base_value to allow some growth during loop
1613 optimization. Loop unrolling can create a large number of
1614 registers. */
1615 reg_base_value_size = maxreg * 2;
ac606739
GS
1616 reg_base_value = (rtx *) xcalloc (reg_base_value_size, sizeof (rtx));
1617 if (ggc_p)
1618 ggc_add_rtx_root (reg_base_value, reg_base_value_size);
1619
e05e2395
MM
1620 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
1621 reg_seen = (char *) xmalloc (reg_base_value_size);
de12be17
JC
1622 if (! reload_completed && flag_unroll_loops)
1623 {
ac606739 1624 /* ??? Why are we realloc'ing if we're just going to zero it? */
de12be17
JC
1625 alias_invariant = (rtx *)xrealloc (alias_invariant,
1626 reg_base_value_size * sizeof (rtx));
1627 bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
1628 }
1629
ec907dd8
JL
1630
1631 /* The basic idea is that each pass through this loop will use the
1632 "constant" information from the previous pass to propagate alias
1633 information through another level of assignments.
1634
1635 This could get expensive if the assignment chains are long. Maybe
1636 we should throttle the number of iterations, possibly based on
6e73e666 1637 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
1638
1639 We could propagate more information in the first pass by making use
1640 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
1641 for a pseudo is "constant".
1642
1643 A program with an uninitialized variable can cause an infinite loop
1644 here. Instead of doing a full dataflow analysis to detect such problems
1645 we just cap the number of iterations for the loop.
1646
1647 The state of the arrays for the set chain in question does not matter
1648 since the program has undefined behavior. */
6e73e666 1649
ea64ef27 1650 pass = 0;
6e73e666 1651 do
ec907dd8
JL
1652 {
1653 /* Assume nothing will change this iteration of the loop. */
1654 changed = 0;
1655
ec907dd8
JL
1656 /* We want to assign the same IDs each iteration of this loop, so
1657 start counting from zero each iteration of the loop. */
1658 unique_id = 0;
1659
1660 /* We're at the start of the funtion each iteration through the
1661 loop, so we're copying arguments. */
1662 copying_arguments = 1;
9ae8ffe7 1663
6e73e666
JC
1664 /* Wipe the potential alias information clean for this pass. */
1665 bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
8072f69c 1666
6e73e666
JC
1667 /* Wipe the reg_seen array clean. */
1668 bzero ((char *) reg_seen, reg_base_value_size);
9ae8ffe7 1669
6e73e666
JC
1670 /* Mark all hard registers which may contain an address.
1671 The stack, frame and argument pointers may contain an address.
1672 An argument register which can hold a Pmode value may contain
1673 an address even if it is not in BASE_REGS.
8072f69c 1674
6e73e666
JC
1675 The address expression is VOIDmode for an argument and
1676 Pmode for other registers. */
1677
1678 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1679 if (TEST_HARD_REG_BIT (argument_registers, i))
38a448ca
RH
1680 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
1681 gen_rtx_REG (Pmode, i));
6e73e666
JC
1682
1683 new_reg_base_value[STACK_POINTER_REGNUM]
38a448ca 1684 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
6e73e666 1685 new_reg_base_value[ARG_POINTER_REGNUM]
38a448ca 1686 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
6e73e666 1687 new_reg_base_value[FRAME_POINTER_REGNUM]
38a448ca 1688 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2a2c8203 1689#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6e73e666 1690 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
38a448ca 1691 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2a2c8203 1692#endif
6e73e666
JC
1693 if (struct_value_incoming_rtx
1694 && GET_CODE (struct_value_incoming_rtx) == REG)
1695 new_reg_base_value[REGNO (struct_value_incoming_rtx)]
38a448ca 1696 = gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
6e73e666
JC
1697
1698 if (static_chain_rtx
1699 && GET_CODE (static_chain_rtx) == REG)
1700 new_reg_base_value[REGNO (static_chain_rtx)]
38a448ca 1701 = gen_rtx_ADDRESS (Pmode, static_chain_rtx);
ec907dd8
JL
1702
1703 /* Walk the insns adding values to the new_reg_base_value array. */
1704 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 1705 {
950fe843 1706#if defined (HAVE_prologue) || defined (HAVE_epilogue)
5c7675e9
RH
1707 if (prologue_epilogue_contains (insn))
1708 continue;
950fe843 1709#endif
6e73e666 1710 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
ec907dd8 1711 {
6e73e666 1712 rtx note, set;
ec907dd8
JL
1713 /* If this insn has a noalias note, process it, Otherwise,
1714 scan for sets. A simple set will have no side effects
1715 which could change the base value of any other register. */
6e73e666 1716
ec907dd8 1717 if (GET_CODE (PATTERN (insn)) == SET
6e73e666 1718 && (find_reg_note (insn, REG_NOALIAS, NULL_RTX)))
84832317 1719 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 1720 else
84832317 1721 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
1722
1723 set = single_set (insn);
1724
1725 if (set != 0
1726 && GET_CODE (SET_DEST (set)) == REG
1727 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
1728 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1729 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)
1730 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
6ba14f92
R
1731 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
1732 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
6e73e666
JC
1733 {
1734 int regno = REGNO (SET_DEST (set));
1735 reg_known_value[regno] = XEXP (note, 0);
1736 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
1737 }
ec907dd8
JL
1738 }
1739 else if (GET_CODE (insn) == NOTE
1740 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
1741 copying_arguments = 0;
6e73e666 1742 }
ec907dd8 1743
6e73e666 1744 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 1745 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 1746 {
e51712db
KG
1747 if (new_reg_base_value[ui]
1748 && new_reg_base_value[ui] != reg_base_value[ui]
1749 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 1750 {
e51712db 1751 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 1752 changed = 1;
ec907dd8 1753 }
9ae8ffe7 1754 }
9ae8ffe7 1755 }
6e73e666 1756 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
1757
1758 /* Fill in the remaining entries. */
1759 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
1760 if (reg_known_value[i] == 0)
1761 reg_known_value[i] = regno_reg_rtx[i];
1762
9ae8ffe7
JL
1763 /* Simplify the reg_base_value array so that no register refers to
1764 another register, except to special registers indirectly through
1765 ADDRESS expressions.
1766
1767 In theory this loop can take as long as O(registers^2), but unless
1768 there are very long dependency chains it will run in close to linear
ea64ef27
JL
1769 time.
1770
1771 This loop may not be needed any longer now that the main loop does
1772 a better job at propagating alias information. */
1773 pass = 0;
9ae8ffe7
JL
1774 do
1775 {
1776 changed = 0;
ea64ef27 1777 pass++;
e51712db 1778 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 1779 {
e51712db 1780 rtx base = reg_base_value[ui];
9ae8ffe7
JL
1781 if (base && GET_CODE (base) == REG)
1782 {
e51712db
KG
1783 unsigned int base_regno = REGNO (base);
1784 if (base_regno == ui) /* register set from itself */
1785 reg_base_value[ui] = 0;
9ae8ffe7 1786 else
e51712db 1787 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
1788 changed = 1;
1789 }
1790 }
1791 }
ea64ef27 1792 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 1793
e05e2395
MM
1794 /* Clean up. */
1795 free (new_reg_base_value);
ec907dd8 1796 new_reg_base_value = 0;
e05e2395 1797 free (reg_seen);
9ae8ffe7
JL
1798 reg_seen = 0;
1799}
1800
1801void
1802end_alias_analysis ()
1803{
e05e2395 1804 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 1805 reg_known_value = 0;
ac606739 1806 reg_known_value_size = 0;
e05e2395
MM
1807 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
1808 reg_known_equiv_p = 0;
ac606739
GS
1809 if (reg_base_value)
1810 {
1811 if (ggc_p)
1812 ggc_del_root (reg_base_value);
1813 free (reg_base_value);
1814 reg_base_value = 0;
1815 }
9ae8ffe7 1816 reg_base_value_size = 0;
de12be17
JC
1817 if (alias_invariant)
1818 {
ac606739 1819 free (alias_invariant);
de12be17
JC
1820 alias_invariant = 0;
1821 }
9ae8ffe7 1822}
This page took 0.58772 seconds and 5 git commands to generate.