]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
Partial fox for PR opt/10776 II
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
3932261a
MM
45
46/* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
3932261a 50
01d28c3f 51 struct S { int i; double d; };
3932261a
MM
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
ac3d9668
RK
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
3bdf5ad1
RK
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
95bd1dd7 69 past immediate descendants, however, since we propagate all
3bdf5ad1 70 grandchildren up one level.
3932261a
MM
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
d4b60170
RK
76typedef struct alias_set_entry
77{
3932261a 78 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 79 HOST_WIDE_INT alias_set;
3932261a
MM
80
81 /* The children of the alias set. These are not just the immediate
95bd1dd7 82 children, but, in fact, all descendants. So, if we have:
3932261a 83
ca7fd9cd 84 struct T { struct S s; float f; }
3932261a
MM
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
2bf105ab
RK
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
d4b60170 93} *alias_set_entry;
9ae8ffe7 94
4682ae04
AJ
95static int rtx_equal_for_memref_p (rtx, rtx);
96static rtx find_symbolic_term (rtx);
4682ae04
AJ
97static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
98static void record_set (rtx, rtx, void *);
99static int base_alias_check (rtx, rtx, enum machine_mode,
100 enum machine_mode);
101static rtx find_base_value (rtx);
102static int mems_in_disjoint_alias_sets_p (rtx, rtx);
103static int insert_subset_children (splay_tree_node, void*);
104static tree find_base_decl (tree);
105static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
106static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
107 int (*) (rtx, int));
108static int aliases_everything_p (rtx);
109static bool nonoverlapping_component_refs_p (tree, tree);
110static tree decl_for_component_ref (tree);
111static rtx adjust_offset_for_component_ref (tree, rtx);
112static int nonoverlapping_memrefs_p (rtx, rtx);
d2399d75 113static int write_dependence_p (rtx, rtx, int, int);
4682ae04
AJ
114
115static int nonlocal_mentioned_p_1 (rtx *, void *);
116static int nonlocal_mentioned_p (rtx);
117static int nonlocal_referenced_p_1 (rtx *, void *);
118static int nonlocal_referenced_p (rtx);
119static int nonlocal_set_p_1 (rtx *, void *);
120static int nonlocal_set_p (rtx);
121static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
122
123/* Set up all info needed to perform alias analysis on memory references. */
124
d4b60170 125/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
126#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
41472af8 128/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 134
ea64ef27 135/* Cap the number of passes we make over the insns propagating alias
ac3d9668 136 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 137#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 138
9ae8ffe7
JL
139/* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
ca7fd9cd 147 the stack, frame, and argument pointers.
b3b5ad95
JL
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
2a2c8203 157
e2500fed 158static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 159static rtx *new_reg_base_value;
d4b60170
RK
160static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
bf1660a6
JL
162/* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
9ae8ffe7 166#define REG_BASE_VALUE(X) \
fb6754f0
BS
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 169
de12be17
JC
170/* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178static rtx *alias_invariant;
179
c13e8210
MM
180/* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
9ae8ffe7
JL
184rtx *reg_known_value;
185
186/* Indicates number of valid entries in reg_known_value. */
770ae6cc 187static unsigned int reg_known_value_size;
9ae8ffe7
JL
188
189/* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
9ae8ffe7
JL
201char *reg_known_equiv_p;
202
2a2c8203
JC
203/* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 205static bool copying_arguments;
9ae8ffe7 206
3932261a 207/* The splay-tree used to store the various alias set entries. */
3932261a 208static splay_tree alias_sets;
ac3d9668 209\f
3932261a
MM
210/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213static alias_set_entry
4682ae04 214get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 215{
d4b60170
RK
216 splay_tree_node sn
217 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 218
d4b60170 219 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
220}
221
ac3d9668
RK
222/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
223 the two MEMs cannot alias each other. */
3932261a 224
ca7fd9cd 225static int
4682ae04 226mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 227{
ca7fd9cd 228#ifdef ENABLE_CHECKING
3932261a
MM
229/* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
d4b60170
RK
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
238 abort ();
239#endif
240
1da68f56
RK
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
242}
3932261a 243
1da68f56
RK
244/* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
246
247static int
4682ae04 248insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
249{
250 splay_tree_insert ((splay_tree) data, node->key, node->value);
251
252 return 0;
253}
254
255/* Return 1 if the two specified alias sets may conflict. */
256
257int
4682ae04 258alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
259{
260 alias_set_entry ase;
261
262 /* If have no alias set information for one of the operands, we have
263 to assume it can alias anything. */
264 if (set1 == 0 || set2 == 0
265 /* If the two alias sets are the same, they may alias. */
266 || set1 == set2)
267 return 1;
3932261a 268
3bdf5ad1 269 /* See if the first alias set is a subset of the second. */
1da68f56 270 ase = get_alias_set_entry (set1);
2bf105ab
RK
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
1da68f56
RK
274 (splay_tree_key) set2)))
275 return 1;
3932261a
MM
276
277 /* Now do the same, but with the alias sets reversed. */
1da68f56 278 ase = get_alias_set_entry (set2);
2bf105ab
RK
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
1da68f56
RK
282 (splay_tree_key) set1)))
283 return 1;
3932261a 284
1da68f56 285 /* The two alias sets are distinct and neither one is the
3932261a 286 child of the other. Therefore, they cannot alias. */
1da68f56 287 return 0;
3932261a 288}
1da68f56
RK
289\f
290/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
291 has any readonly fields. If any of the fields have types that
292 contain readonly fields, return true as well. */
3932261a 293
1da68f56 294int
4682ae04 295readonly_fields_p (tree type)
3932261a 296{
1da68f56
RK
297 tree field;
298
299 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
300 && TREE_CODE (type) != QUAL_UNION_TYPE)
301 return 0;
302
303 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
304 if (TREE_CODE (field) == FIELD_DECL
305 && (TREE_READONLY (field)
306 || readonly_fields_p (TREE_TYPE (field))))
307 return 1;
3932261a
MM
308
309 return 0;
310}
3bdf5ad1 311\f
1da68f56
RK
312/* Return 1 if any MEM object of type T1 will always conflict (using the
313 dependency routines in this file) with any MEM object of type T2.
314 This is used when allocating temporary storage. If T1 and/or T2 are
315 NULL_TREE, it means we know nothing about the storage. */
316
317int
4682ae04 318objects_must_conflict_p (tree t1, tree t2)
1da68f56 319{
82d610ec
RK
320 HOST_WIDE_INT set1, set2;
321
e8ea2809
RK
322 /* If neither has a type specified, we don't know if they'll conflict
323 because we may be using them to store objects of various types, for
324 example the argument and local variables areas of inlined functions. */
981a4c34 325 if (t1 == 0 && t2 == 0)
e8ea2809
RK
326 return 0;
327
66cce54d
RH
328 /* If one or the other has readonly fields or is readonly,
329 then they may not conflict. */
330 if ((t1 != 0 && readonly_fields_p (t1))
331 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
332 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
333 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
334 return 0;
335
1da68f56
RK
336 /* If they are the same type, they must conflict. */
337 if (t1 == t2
338 /* Likewise if both are volatile. */
339 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
340 return 1;
341
82d610ec
RK
342 set1 = t1 ? get_alias_set (t1) : 0;
343 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 344
82d610ec
RK
345 /* Otherwise they conflict if they have no alias set or the same. We
346 can't simply use alias_sets_conflict_p here, because we must make
347 sure that every subtype of t1 will conflict with every subtype of
348 t2 for which a pair of subobjects of these respective subtypes
349 overlaps on the stack. */
350 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
351}
352\f
3bdf5ad1
RK
353/* T is an expression with pointer type. Find the DECL on which this
354 expression is based. (For example, in `a[i]' this would be `a'.)
355 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 356 NULL_TREE is returned. */
3bdf5ad1
RK
357
358static tree
4682ae04 359find_base_decl (tree t)
3bdf5ad1
RK
360{
361 tree d0, d1, d2;
362
363 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
364 return 0;
365
366 /* If this is a declaration, return it. */
367 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
368 return t;
369
370 /* Handle general expressions. It would be nice to deal with
371 COMPONENT_REFs here. If we could tell that `a' and `b' were the
372 same, then `a->f' and `b->f' are also the same. */
373 switch (TREE_CODE_CLASS (TREE_CODE (t)))
374 {
375 case '1':
376 return find_base_decl (TREE_OPERAND (t, 0));
377
378 case '2':
379 /* Return 0 if found in neither or both are the same. */
380 d0 = find_base_decl (TREE_OPERAND (t, 0));
381 d1 = find_base_decl (TREE_OPERAND (t, 1));
382 if (d0 == d1)
383 return d0;
384 else if (d0 == 0)
385 return d1;
386 else if (d1 == 0)
387 return d0;
388 else
389 return 0;
390
391 case '3':
392 d0 = find_base_decl (TREE_OPERAND (t, 0));
393 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
394 d2 = find_base_decl (TREE_OPERAND (t, 2));
395
396 /* Set any nonzero values from the last, then from the first. */
397 if (d1 == 0) d1 = d2;
398 if (d0 == 0) d0 = d1;
399 if (d1 == 0) d1 = d0;
400 if (d2 == 0) d2 = d1;
401
402 /* At this point all are nonzero or all are zero. If all three are the
403 same, return it. Otherwise, return zero. */
404 return (d0 == d1 && d1 == d2) ? d0 : 0;
405
406 default:
407 return 0;
408 }
409}
410
6e24b709
RK
411/* Return 1 if all the nested component references handled by
412 get_inner_reference in T are such that we can address the object in T. */
413
10b76d73 414int
4682ae04 415can_address_p (tree t)
6e24b709
RK
416{
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t))
419 return 1;
420
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t) == BIT_FIELD_REF)
423 return 0;
424
8ac61af7
RK
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
6e24b709
RK
427 else if (TREE_CODE (t) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
430 && can_address_p (TREE_OPERAND (t, 0)))
431 return 1;
432
8ac61af7 433 /* Likewise for arrays. */
b4e3fabb 434 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
437 && can_address_p (TREE_OPERAND (t, 0)))
438 return 1;
439
440 return 0;
441}
442
3bdf5ad1
RK
443/* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
445
446HOST_WIDE_INT
4682ae04 447get_alias_set (tree t)
3bdf5ad1
RK
448{
449 HOST_WIDE_INT set;
3bdf5ad1
RK
450
451 /* If we're not doing any alias analysis, just assume everything
452 aliases everything else. Also return 0 if this or its type is
453 an error. */
454 if (! flag_strict_aliasing || t == error_mark_node
455 || (! TYPE_P (t)
456 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
457 return 0;
458
459 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
460 language-specific routine may make mutually-recursive calls to each other
461 to figure out what to do. At each juncture, we see if this is a tree
462 that the language may need to handle specially. First handle things that
738cc472 463 aren't types. */
f824e5c3 464 if (! TYPE_P (t))
3bdf5ad1 465 {
738cc472
RK
466 tree inner = t;
467 tree placeholder_ptr = 0;
468
8ac61af7
RK
469 /* Remove any nops, then give the language a chance to do
470 something with this tree before we look at it. */
471 STRIP_NOPS (t);
472 set = (*lang_hooks.get_alias_set) (t);
473 if (set != -1)
474 return set;
475
738cc472 476 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 477 restrict-qualified pointer or a "void *". Replace
738cc472 478 PLACEHOLDER_EXPRs. */
8ac61af7 479 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
480 || handled_component_p (inner))
481 {
482 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
483 inner = find_placeholder (inner, &placeholder_ptr);
484 else
485 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
486
487 STRIP_NOPS (inner);
738cc472
RK
488 }
489
490 /* Check for accesses through restrict-qualified pointers. */
491 if (TREE_CODE (inner) == INDIRECT_REF)
492 {
493 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
494
495 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
496 {
e5837c07 497 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
498 if (DECL_POINTER_ALIAS_SET (decl) == -2)
499 {
500 /* No two restricted pointers can point at the same thing.
501 However, a restricted pointer can point at the same thing
502 as an unrestricted pointer, if that unrestricted pointer
503 is based on the restricted pointer. So, we make the
504 alias set for the restricted pointer a subset of the
505 alias set for the type pointed to by the type of the
506 decl. */
507 HOST_WIDE_INT pointed_to_alias_set
508 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
509
510 if (pointed_to_alias_set == 0)
511 /* It's not legal to make a subset of alias set zero. */
512 ;
513 else
514 {
515 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
516 record_alias_subset (pointed_to_alias_set,
517 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
518 }
519 }
520
521 /* We use the alias set indicated in the declaration. */
522 return DECL_POINTER_ALIAS_SET (decl);
523 }
524
525 /* If we have an INDIRECT_REF via a void pointer, we don't
526 know anything about what that might alias. */
527 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
528 return 0;
529 }
530
531 /* Otherwise, pick up the outermost object that we could have a pointer
532 to, processing conversion and PLACEHOLDER_EXPR as above. */
533 placeholder_ptr = 0;
8ac61af7 534 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
535 || (handled_component_p (t) && ! can_address_p (t)))
536 {
f47e9b4e 537 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 538 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
539 else
540 t = TREE_OPERAND (t, 0);
f824e5c3 541
8ac61af7
RK
542 STRIP_NOPS (t);
543 }
f824e5c3 544
738cc472
RK
545 /* If we've already determined the alias set for a decl, just return
546 it. This is necessary for C++ anonymous unions, whose component
547 variables don't look like union members (boo!). */
5755cd38
JM
548 if (TREE_CODE (t) == VAR_DECL
549 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
550 return MEM_ALIAS_SET (DECL_RTL (t));
551
f824e5c3
RK
552 /* Now all we care about is the type. */
553 t = TREE_TYPE (t);
3bdf5ad1
RK
554 }
555
3bdf5ad1
RK
556 /* Variant qualifiers don't affect the alias set, so get the main
557 variant. If this is a type with a known alias set, return it. */
558 t = TYPE_MAIN_VARIANT (t);
738cc472 559 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
560 return TYPE_ALIAS_SET (t);
561
562 /* See if the language has special handling for this type. */
8ac61af7
RK
563 set = (*lang_hooks.get_alias_set) (t);
564 if (set != -1)
738cc472 565 return set;
2bf105ab 566
3bdf5ad1
RK
567 /* There are no objects of FUNCTION_TYPE, so there's no point in
568 using up an alias set for them. (There are, of course, pointers
569 and references to functions, but that's different.) */
570 else if (TREE_CODE (t) == FUNCTION_TYPE)
571 set = 0;
74d86f4f
RH
572
573 /* Unless the language specifies otherwise, let vector types alias
574 their components. This avoids some nasty type punning issues in
575 normal usage. And indeed lets vectors be treated more like an
576 array slice. */
577 else if (TREE_CODE (t) == VECTOR_TYPE)
578 set = get_alias_set (TREE_TYPE (t));
579
3bdf5ad1
RK
580 else
581 /* Otherwise make a new alias set for this type. */
582 set = new_alias_set ();
583
584 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
585
586 /* If this is an aggregate type, we must record any component aliasing
587 information. */
1d79fd2c 588 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
589 record_component_aliases (t);
590
3bdf5ad1
RK
591 return set;
592}
593
594/* Return a brand-new alias set. */
595
596HOST_WIDE_INT
4682ae04 597new_alias_set (void)
3bdf5ad1
RK
598{
599 static HOST_WIDE_INT last_alias_set;
600
601 if (flag_strict_aliasing)
602 return ++last_alias_set;
603 else
604 return 0;
605}
3932261a 606
01d28c3f
JM
607/* Indicate that things in SUBSET can alias things in SUPERSET, but that
608 not everything that aliases SUPERSET also aliases SUBSET. For example,
609 in C, a store to an `int' can alias a load of a structure containing an
610 `int', and vice versa. But it can't alias a load of a 'double' member
611 of the same structure. Here, the structure would be the SUPERSET and
612 `int' the SUBSET. This relationship is also described in the comment at
613 the beginning of this file.
614
615 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
616
617 It is illegal for SUPERSET to be zero; everything is implicitly a
618 subset of alias set zero. */
619
620void
4682ae04 621record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
622{
623 alias_set_entry superset_entry;
624 alias_set_entry subset_entry;
625
f47e9b4e
RK
626 /* It is possible in complex type situations for both sets to be the same,
627 in which case we can ignore this operation. */
628 if (superset == subset)
629 return;
630
3932261a
MM
631 if (superset == 0)
632 abort ();
633
634 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 635 if (superset_entry == 0)
3932261a
MM
636 {
637 /* Create an entry for the SUPERSET, so that we have a place to
638 attach the SUBSET. */
703ad42b 639 superset_entry = xmalloc (sizeof (struct alias_set_entry));
3932261a 640 superset_entry->alias_set = superset;
ca7fd9cd 641 superset_entry->children
30f72379 642 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 643 superset_entry->has_zero_child = 0;
d4b60170 644 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a 645 (splay_tree_value) superset_entry);
3932261a
MM
646 }
647
2bf105ab
RK
648 if (subset == 0)
649 superset_entry->has_zero_child = 1;
650 else
651 {
652 subset_entry = get_alias_set_entry (subset);
653 /* If there is an entry for the subset, enter all of its children
654 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 655 if (subset_entry)
2bf105ab
RK
656 {
657 if (subset_entry->has_zero_child)
658 superset_entry->has_zero_child = 1;
d4b60170 659
2bf105ab
RK
660 splay_tree_foreach (subset_entry->children, insert_subset_children,
661 superset_entry->children);
662 }
3932261a 663
2bf105ab 664 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 665 splay_tree_insert (superset_entry->children,
2bf105ab
RK
666 (splay_tree_key) subset, 0);
667 }
3932261a
MM
668}
669
a0c33338
RK
670/* Record that component types of TYPE, if any, are part of that type for
671 aliasing purposes. For record types, we only record component types
672 for fields that are marked addressable. For array types, we always
673 record the component types, so the front end should not call this
674 function if the individual component aren't addressable. */
675
676void
4682ae04 677record_component_aliases (tree type)
a0c33338 678{
3bdf5ad1 679 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
680 tree field;
681
682 if (superset == 0)
683 return;
684
685 switch (TREE_CODE (type))
686 {
687 case ARRAY_TYPE:
2bf105ab
RK
688 if (! TYPE_NONALIASED_COMPONENT (type))
689 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
690 break;
691
692 case RECORD_TYPE:
693 case UNION_TYPE:
694 case QUAL_UNION_TYPE:
6614fd40 695 /* Recursively record aliases for the base classes, if there are any. */
61eece67 696 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
697 {
698 int i;
699 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
700 {
701 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
702 record_alias_subset (superset,
61eece67 703 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
704 }
705 }
a0c33338 706 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 707 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 708 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
709 break;
710
1d79fd2c
JW
711 case COMPLEX_TYPE:
712 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
713 break;
714
a0c33338
RK
715 default:
716 break;
717 }
718}
719
3bdf5ad1
RK
720/* Allocate an alias set for use in storing and reading from the varargs
721 spill area. */
722
723HOST_WIDE_INT
4682ae04 724get_varargs_alias_set (void)
3bdf5ad1
RK
725{
726 static HOST_WIDE_INT set = -1;
727
728 if (set == -1)
729 set = new_alias_set ();
730
731 return set;
732}
733
734/* Likewise, but used for the fixed portions of the frame, e.g., register
735 save areas. */
736
737HOST_WIDE_INT
4682ae04 738get_frame_alias_set (void)
3bdf5ad1
RK
739{
740 static HOST_WIDE_INT set = -1;
741
742 if (set == -1)
743 set = new_alias_set ();
744
745 return set;
746}
747
2a2c8203
JC
748/* Inside SRC, the source of a SET, find a base address. */
749
9ae8ffe7 750static rtx
4682ae04 751find_base_value (rtx src)
9ae8ffe7 752{
713f41f9 753 unsigned int regno;
0aacc8ed 754
9ae8ffe7
JL
755 switch (GET_CODE (src))
756 {
757 case SYMBOL_REF:
758 case LABEL_REF:
759 return src;
760
761 case REG:
fb6754f0 762 regno = REGNO (src);
d4b60170 763 /* At the start of a function, argument registers have known base
2a2c8203
JC
764 values which may be lost later. Returning an ADDRESS
765 expression here allows optimization based on argument values
766 even when the argument registers are used for other purposes. */
713f41f9
BS
767 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
768 return new_reg_base_value[regno];
73774bc7 769
eaf407a5 770 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
771 for non-fixed hard regs since it can result in a circular
772 dependency chain for registers which have values at function entry.
eaf407a5
JL
773
774 The test above is not sufficient because the scheduler may move
775 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 776 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
777 && regno < reg_base_value_size)
778 {
779 /* If we're inside init_alias_analysis, use new_reg_base_value
780 to reduce the number of relaxation iterations. */
1afdf91c
RH
781 if (new_reg_base_value && new_reg_base_value[regno]
782 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
783 return new_reg_base_value[regno];
784
785 if (reg_base_value[regno])
786 return reg_base_value[regno];
787 }
73774bc7 788
e3f049a8 789 return 0;
9ae8ffe7
JL
790
791 case MEM:
792 /* Check for an argument passed in memory. Only record in the
793 copying-arguments block; it is too hard to track changes
794 otherwise. */
795 if (copying_arguments
796 && (XEXP (src, 0) == arg_pointer_rtx
797 || (GET_CODE (XEXP (src, 0)) == PLUS
798 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 799 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
800 return 0;
801
802 case CONST:
803 src = XEXP (src, 0);
804 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
805 break;
d4b60170 806
ec5c56db 807 /* ... fall through ... */
2a2c8203 808
9ae8ffe7
JL
809 case PLUS:
810 case MINUS:
2a2c8203 811 {
ec907dd8
JL
812 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
813
0134bf2d
DE
814 /* If either operand is a REG that is a known pointer, then it
815 is the base. */
816 if (REG_P (src_0) && REG_POINTER (src_0))
817 return find_base_value (src_0);
818 if (REG_P (src_1) && REG_POINTER (src_1))
819 return find_base_value (src_1);
820
ec907dd8
JL
821 /* If either operand is a REG, then see if we already have
822 a known value for it. */
0134bf2d 823 if (REG_P (src_0))
ec907dd8
JL
824 {
825 temp = find_base_value (src_0);
d4b60170 826 if (temp != 0)
ec907dd8
JL
827 src_0 = temp;
828 }
829
0134bf2d 830 if (REG_P (src_1))
ec907dd8
JL
831 {
832 temp = find_base_value (src_1);
d4b60170 833 if (temp!= 0)
ec907dd8
JL
834 src_1 = temp;
835 }
2a2c8203 836
0134bf2d
DE
837 /* If either base is named object or a special address
838 (like an argument or stack reference), then use it for the
839 base term. */
840 if (src_0 != 0
841 && (GET_CODE (src_0) == SYMBOL_REF
842 || GET_CODE (src_0) == LABEL_REF
843 || (GET_CODE (src_0) == ADDRESS
844 && GET_MODE (src_0) != VOIDmode)))
845 return src_0;
846
847 if (src_1 != 0
848 && (GET_CODE (src_1) == SYMBOL_REF
849 || GET_CODE (src_1) == LABEL_REF
850 || (GET_CODE (src_1) == ADDRESS
851 && GET_MODE (src_1) != VOIDmode)))
852 return src_1;
853
d4b60170 854 /* Guess which operand is the base address:
ec907dd8
JL
855 If either operand is a symbol, then it is the base. If
856 either operand is a CONST_INT, then the other is the base. */
d4b60170 857 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 858 return find_base_value (src_0);
d4b60170 859 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
860 return find_base_value (src_1);
861
9ae8ffe7 862 return 0;
2a2c8203
JC
863 }
864
865 case LO_SUM:
866 /* The standard form is (lo_sum reg sym) so look only at the
867 second operand. */
868 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
869
870 case AND:
871 /* If the second operand is constant set the base
ec5c56db 872 address to the first operand. */
2a2c8203
JC
873 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
874 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
875 return 0;
876
61f0131c
R
877 case TRUNCATE:
878 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
879 break;
880 /* Fall through. */
9ae8ffe7 881 case HIGH:
d288e53d
DE
882 case PRE_INC:
883 case PRE_DEC:
884 case POST_INC:
885 case POST_DEC:
886 case PRE_MODIFY:
887 case POST_MODIFY:
2a2c8203 888 return find_base_value (XEXP (src, 0));
1d300e19 889
0aacc8ed
RK
890 case ZERO_EXTEND:
891 case SIGN_EXTEND: /* used for NT/Alpha pointers */
892 {
893 rtx temp = find_base_value (XEXP (src, 0));
894
5ae6cd0d 895 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 896 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
897
898 return temp;
899 }
900
1d300e19
KG
901 default:
902 break;
9ae8ffe7
JL
903 }
904
905 return 0;
906}
907
908/* Called from init_alias_analysis indirectly through note_stores. */
909
d4b60170 910/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
911 register N has been set in this function. */
912static char *reg_seen;
913
13309a5f
JC
914/* Addresses which are known not to alias anything else are identified
915 by a unique integer. */
ec907dd8
JL
916static int unique_id;
917
2a2c8203 918static void
4682ae04 919record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 920{
b3694847 921 unsigned regno;
9ae8ffe7 922 rtx src;
c28b4e40 923 int n;
9ae8ffe7
JL
924
925 if (GET_CODE (dest) != REG)
926 return;
927
fb6754f0 928 regno = REGNO (dest);
9ae8ffe7 929
ac606739
GS
930 if (regno >= reg_base_value_size)
931 abort ();
932
c28b4e40
JW
933 /* If this spans multiple hard registers, then we must indicate that every
934 register has an unusable value. */
935 if (regno < FIRST_PSEUDO_REGISTER)
936 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
937 else
938 n = 1;
939 if (n != 1)
940 {
941 while (--n >= 0)
942 {
943 reg_seen[regno + n] = 1;
944 new_reg_base_value[regno + n] = 0;
945 }
946 return;
947 }
948
9ae8ffe7
JL
949 if (set)
950 {
951 /* A CLOBBER wipes out any old value but does not prevent a previously
952 unset register from acquiring a base address (i.e. reg_seen is not
953 set). */
954 if (GET_CODE (set) == CLOBBER)
955 {
ec907dd8 956 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
957 return;
958 }
959 src = SET_SRC (set);
960 }
961 else
962 {
9ae8ffe7
JL
963 if (reg_seen[regno])
964 {
ec907dd8 965 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
966 return;
967 }
968 reg_seen[regno] = 1;
38a448ca
RH
969 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
970 GEN_INT (unique_id++));
9ae8ffe7
JL
971 return;
972 }
973
974 /* This is not the first set. If the new value is not related to the
975 old value, forget the base value. Note that the following code is
976 not detected:
977 extern int x, y; int *p = &x; p += (&y-&x);
978 ANSI C does not allow computing the difference of addresses
979 of distinct top level objects. */
ec907dd8 980 if (new_reg_base_value[regno])
9ae8ffe7
JL
981 switch (GET_CODE (src))
982 {
2a2c8203 983 case LO_SUM:
9ae8ffe7
JL
984 case MINUS:
985 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 986 new_reg_base_value[regno] = 0;
9ae8ffe7 987 break;
61f0131c
R
988 case PLUS:
989 /* If the value we add in the PLUS is also a valid base value,
990 this might be the actual base value, and the original value
991 an index. */
992 {
993 rtx other = NULL_RTX;
994
995 if (XEXP (src, 0) == dest)
996 other = XEXP (src, 1);
997 else if (XEXP (src, 1) == dest)
998 other = XEXP (src, 0);
999
1000 if (! other || find_base_value (other))
1001 new_reg_base_value[regno] = 0;
1002 break;
1003 }
9ae8ffe7
JL
1004 case AND:
1005 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1006 new_reg_base_value[regno] = 0;
9ae8ffe7 1007 break;
9ae8ffe7 1008 default:
ec907dd8 1009 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1010 break;
1011 }
1012 /* If this is the first set of a register, record the value. */
1013 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1014 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1015 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1016
1017 reg_seen[regno] = 1;
1018}
1019
ac3d9668
RK
1020/* Called from loop optimization when a new pseudo-register is
1021 created. It indicates that REGNO is being set to VAL. f INVARIANT
1022 is true then this value also describes an invariant relationship
1023 which can be used to deduce that two registers with unknown values
1024 are different. */
d4b60170 1025
9ae8ffe7 1026void
4682ae04 1027record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1028{
ac3d9668 1029 if (regno >= reg_base_value_size)
9ae8ffe7 1030 return;
de12be17 1031
de12be17
JC
1032 if (invariant && alias_invariant)
1033 alias_invariant[regno] = val;
1034
9ae8ffe7
JL
1035 if (GET_CODE (val) == REG)
1036 {
fb6754f0
BS
1037 if (REGNO (val) < reg_base_value_size)
1038 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1039
9ae8ffe7
JL
1040 return;
1041 }
d4b60170 1042
9ae8ffe7
JL
1043 reg_base_value[regno] = find_base_value (val);
1044}
1045
43fe47ca
JW
1046/* Clear alias info for a register. This is used if an RTL transformation
1047 changes the value of a register. This is used in flow by AUTO_INC_DEC
1048 optimizations. We don't need to clear reg_base_value, since flow only
1049 changes the offset. */
1050
1051void
4682ae04 1052clear_reg_alias_info (rtx reg)
43fe47ca 1053{
4e1a4144
JW
1054 unsigned int regno = REGNO (reg);
1055
1056 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1057 reg_known_value[regno] = reg;
43fe47ca
JW
1058}
1059
db048faf
MM
1060/* Returns a canonical version of X, from the point of view alias
1061 analysis. (For example, if X is a MEM whose address is a register,
1062 and the register has a known value (say a SYMBOL_REF), then a MEM
1063 whose address is the SYMBOL_REF is returned.) */
1064
1065rtx
4682ae04 1066canon_rtx (rtx x)
9ae8ffe7
JL
1067{
1068 /* Recursively look for equivalences. */
fb6754f0
BS
1069 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1070 && REGNO (x) < reg_known_value_size)
1071 return reg_known_value[REGNO (x)] == x
1072 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1073 else if (GET_CODE (x) == PLUS)
1074 {
1075 rtx x0 = canon_rtx (XEXP (x, 0));
1076 rtx x1 = canon_rtx (XEXP (x, 1));
1077
1078 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1079 {
9ae8ffe7 1080 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1081 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1082 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1083 return plus_constant (x0, INTVAL (x1));
38a448ca 1084 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1085 }
1086 }
d4b60170 1087
9ae8ffe7
JL
1088 /* This gives us much better alias analysis when called from
1089 the loop optimizer. Note we want to leave the original
1090 MEM alone, but need to return the canonicalized MEM with
1091 all the flags with their original values. */
1092 else if (GET_CODE (x) == MEM)
f1ec5147 1093 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1094
9ae8ffe7
JL
1095 return x;
1096}
1097
1098/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1099 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1100
1101 We use the data in reg_known_value above to see if two registers with
1102 different numbers are, in fact, equivalent. */
1103
1104static int
4682ae04 1105rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1106{
b3694847
SS
1107 int i;
1108 int j;
1109 enum rtx_code code;
1110 const char *fmt;
9ae8ffe7
JL
1111
1112 if (x == 0 && y == 0)
1113 return 1;
1114 if (x == 0 || y == 0)
1115 return 0;
d4b60170 1116
9ae8ffe7
JL
1117 if (x == y)
1118 return 1;
1119
1120 code = GET_CODE (x);
1121 /* Rtx's of different codes cannot be equal. */
1122 if (code != GET_CODE (y))
1123 return 0;
1124
1125 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1126 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1127
1128 if (GET_MODE (x) != GET_MODE (y))
1129 return 0;
1130
db048faf
MM
1131 /* Some RTL can be compared without a recursive examination. */
1132 switch (code)
1133 {
ab59db3c
BS
1134 case VALUE:
1135 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1136
db048faf
MM
1137 case REG:
1138 return REGNO (x) == REGNO (y);
1139
1140 case LABEL_REF:
1141 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1142
db048faf
MM
1143 case SYMBOL_REF:
1144 return XSTR (x, 0) == XSTR (y, 0);
1145
1146 case CONST_INT:
1147 case CONST_DOUBLE:
1148 /* There's no need to compare the contents of CONST_DOUBLEs or
1149 CONST_INTs because pointer equality is a good enough
1150 comparison for these nodes. */
1151 return 0;
1152
1153 case ADDRESSOF:
831ecbd4 1154 return (XINT (x, 1) == XINT (y, 1)
45183e03 1155 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1156 XEXP (y, 0)));
db048faf
MM
1157
1158 default:
1159 break;
1160 }
9ae8ffe7 1161
45183e03
JH
1162 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1163 if (code == PLUS)
9ae8ffe7
JL
1164 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1165 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1166 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1167 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1168 /* For commutative operations, the RTX match if the operand match in any
1169 order. Also handle the simple binary and unary cases without a loop. */
1170 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1171 {
1172 rtx xop0 = canon_rtx (XEXP (x, 0));
1173 rtx yop0 = canon_rtx (XEXP (y, 0));
1174 rtx yop1 = canon_rtx (XEXP (y, 1));
1175
1176 return ((rtx_equal_for_memref_p (xop0, yop0)
1177 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1178 || (rtx_equal_for_memref_p (xop0, yop1)
1179 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1180 }
9ae8ffe7 1181 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1182 {
1183 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1184 canon_rtx (XEXP (y, 0)))
45183e03
JH
1185 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1186 canon_rtx (XEXP (y, 1))));
1187 }
9ae8ffe7 1188 else if (GET_RTX_CLASS (code) == '1')
45183e03 1189 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1190 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1191
1192 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1193 fail to match, return 0 for the whole things.
1194
1195 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1196
1197 fmt = GET_RTX_FORMAT (code);
1198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1199 {
1200 switch (fmt[i])
1201 {
9ae8ffe7
JL
1202 case 'i':
1203 if (XINT (x, i) != XINT (y, i))
1204 return 0;
1205 break;
1206
9ae8ffe7
JL
1207 case 'E':
1208 /* Two vectors must have the same length. */
1209 if (XVECLEN (x, i) != XVECLEN (y, i))
1210 return 0;
1211
1212 /* And the corresponding elements must match. */
1213 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1214 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1215 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1216 return 0;
1217 break;
1218
1219 case 'e':
45183e03
JH
1220 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1221 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1222 return 0;
1223 break;
1224
3237ac18
AH
1225 /* This can happen for asm operands. */
1226 case 's':
1227 if (strcmp (XSTR (x, i), XSTR (y, i)))
1228 return 0;
1229 break;
1230
aee21ba9
JL
1231 /* This can happen for an asm which clobbers memory. */
1232 case '0':
1233 break;
1234
9ae8ffe7
JL
1235 /* It is believed that rtx's at this level will never
1236 contain anything but integers and other rtx's,
1237 except for within LABEL_REFs and SYMBOL_REFs. */
1238 default:
1239 abort ();
1240 }
1241 }
1242 return 1;
1243}
1244
1245/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1246 X and return it, or return 0 if none found. */
1247
1248static rtx
4682ae04 1249find_symbolic_term (rtx x)
9ae8ffe7 1250{
b3694847
SS
1251 int i;
1252 enum rtx_code code;
1253 const char *fmt;
9ae8ffe7
JL
1254
1255 code = GET_CODE (x);
1256 if (code == SYMBOL_REF || code == LABEL_REF)
1257 return x;
1258 if (GET_RTX_CLASS (code) == 'o')
1259 return 0;
1260
1261 fmt = GET_RTX_FORMAT (code);
1262 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1263 {
1264 rtx t;
1265
1266 if (fmt[i] == 'e')
1267 {
1268 t = find_symbolic_term (XEXP (x, i));
1269 if (t != 0)
1270 return t;
1271 }
1272 else if (fmt[i] == 'E')
1273 break;
1274 }
1275 return 0;
1276}
1277
94f24ddc 1278rtx
4682ae04 1279find_base_term (rtx x)
9ae8ffe7 1280{
eab5c70a
BS
1281 cselib_val *val;
1282 struct elt_loc_list *l;
1283
b949ea8b
JW
1284#if defined (FIND_BASE_TERM)
1285 /* Try machine-dependent ways to find the base term. */
1286 x = FIND_BASE_TERM (x);
1287#endif
1288
9ae8ffe7
JL
1289 switch (GET_CODE (x))
1290 {
1291 case REG:
1292 return REG_BASE_VALUE (x);
1293
d288e53d
DE
1294 case TRUNCATE:
1295 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1296 return 0;
d288e53d 1297 /* Fall through. */
9ae8ffe7 1298 case HIGH:
6d849a2a
JL
1299 case PRE_INC:
1300 case PRE_DEC:
1301 case POST_INC:
1302 case POST_DEC:
d288e53d
DE
1303 case PRE_MODIFY:
1304 case POST_MODIFY:
6d849a2a
JL
1305 return find_base_term (XEXP (x, 0));
1306
1abade85
RK
1307 case ZERO_EXTEND:
1308 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1309 {
1310 rtx temp = find_base_term (XEXP (x, 0));
1311
5ae6cd0d 1312 if (temp != 0 && CONSTANT_P (temp))
1abade85 1313 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1314
1315 return temp;
1316 }
1317
eab5c70a
BS
1318 case VALUE:
1319 val = CSELIB_VAL_PTR (x);
1320 for (l = val->locs; l; l = l->next)
1321 if ((x = find_base_term (l->loc)) != 0)
1322 return x;
1323 return 0;
1324
9ae8ffe7
JL
1325 case CONST:
1326 x = XEXP (x, 0);
1327 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1328 return 0;
938d968e 1329 /* Fall through. */
9ae8ffe7
JL
1330 case LO_SUM:
1331 case PLUS:
1332 case MINUS:
1333 {
3c567fae
JL
1334 rtx tmp1 = XEXP (x, 0);
1335 rtx tmp2 = XEXP (x, 1);
1336
f5143c46 1337 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1338 the two operands represents the real base address. Otherwise this
1339 routine may return the index register instead of the base register.
1340
1341 That may cause us to believe no aliasing was possible, when in
1342 fact aliasing is possible.
1343
1344 We use a few simple tests to guess the base register. Additional
1345 tests can certainly be added. For example, if one of the operands
1346 is a shift or multiply, then it must be the index register and the
1347 other operand is the base register. */
ca7fd9cd 1348
b949ea8b
JW
1349 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1350 return find_base_term (tmp2);
1351
3c567fae
JL
1352 /* If either operand is known to be a pointer, then use it
1353 to determine the base term. */
3502dc9c 1354 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1355 return find_base_term (tmp1);
1356
3502dc9c 1357 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1358 return find_base_term (tmp2);
1359
1360 /* Neither operand was known to be a pointer. Go ahead and find the
1361 base term for both operands. */
1362 tmp1 = find_base_term (tmp1);
1363 tmp2 = find_base_term (tmp2);
1364
1365 /* If either base term is named object or a special address
1366 (like an argument or stack reference), then use it for the
1367 base term. */
d4b60170 1368 if (tmp1 != 0
3c567fae
JL
1369 && (GET_CODE (tmp1) == SYMBOL_REF
1370 || GET_CODE (tmp1) == LABEL_REF
1371 || (GET_CODE (tmp1) == ADDRESS
1372 && GET_MODE (tmp1) != VOIDmode)))
1373 return tmp1;
1374
d4b60170 1375 if (tmp2 != 0
3c567fae
JL
1376 && (GET_CODE (tmp2) == SYMBOL_REF
1377 || GET_CODE (tmp2) == LABEL_REF
1378 || (GET_CODE (tmp2) == ADDRESS
1379 && GET_MODE (tmp2) != VOIDmode)))
1380 return tmp2;
1381
1382 /* We could not determine which of the two operands was the
1383 base register and which was the index. So we can determine
1384 nothing from the base alias check. */
1385 return 0;
9ae8ffe7
JL
1386 }
1387
1388 case AND:
d288e53d
DE
1389 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1390 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1391 return 0;
1392
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 return x;
1396
d982e46e 1397 case ADDRESSOF:
bb07060a 1398 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1399
9ae8ffe7
JL
1400 default:
1401 return 0;
1402 }
1403}
1404
1405/* Return 0 if the addresses X and Y are known to point to different
1406 objects, 1 if they might be pointers to the same object. */
1407
1408static int
4682ae04
AJ
1409base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1410 enum machine_mode y_mode)
9ae8ffe7
JL
1411{
1412 rtx x_base = find_base_term (x);
1413 rtx y_base = find_base_term (y);
1414
1c72c7f6
JC
1415 /* If the address itself has no known base see if a known equivalent
1416 value has one. If either address still has no known base, nothing
1417 is known about aliasing. */
1418 if (x_base == 0)
1419 {
1420 rtx x_c;
d4b60170 1421
1c72c7f6
JC
1422 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1423 return 1;
d4b60170 1424
1c72c7f6
JC
1425 x_base = find_base_term (x_c);
1426 if (x_base == 0)
1427 return 1;
1428 }
9ae8ffe7 1429
1c72c7f6
JC
1430 if (y_base == 0)
1431 {
1432 rtx y_c;
1433 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1434 return 1;
d4b60170 1435
1c72c7f6
JC
1436 y_base = find_base_term (y_c);
1437 if (y_base == 0)
1438 return 1;
1439 }
1440
1441 /* If the base addresses are equal nothing is known about aliasing. */
1442 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1443 return 1;
1444
ca7fd9cd 1445 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1446 If they are both symbols and they are not accessed via AND, there is
1447 no conflict. We can bring knowledge of object alignment into play
1448 here. For example, on alpha, "char a, b;" can alias one another,
1449 though "char a; long b;" cannot. */
9ae8ffe7 1450 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1451 {
56ee9281
RH
1452 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1453 return 1;
1454 if (GET_CODE (x) == AND
1455 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1456 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1457 return 1;
1458 if (GET_CODE (y) == AND
1459 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1460 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1461 return 1;
b2972551
JL
1462 /* Differing symbols never alias. */
1463 return 0;
c02f035f 1464 }
9ae8ffe7
JL
1465
1466 /* If one address is a stack reference there can be no alias:
1467 stack references using different base registers do not alias,
1468 a stack reference can not alias a parameter, and a stack reference
1469 can not alias a global. */
1470 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1471 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1472 return 0;
1473
1474 if (! flag_argument_noalias)
1475 return 1;
1476
1477 if (flag_argument_noalias > 1)
1478 return 0;
1479
ec5c56db 1480 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1481 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1482}
1483
eab5c70a
BS
1484/* Convert the address X into something we can use. This is done by returning
1485 it unchanged unless it is a value; in the latter case we call cselib to get
1486 a more useful rtx. */
3bdf5ad1 1487
a13d4ebf 1488rtx
4682ae04 1489get_addr (rtx x)
eab5c70a
BS
1490{
1491 cselib_val *v;
1492 struct elt_loc_list *l;
1493
1494 if (GET_CODE (x) != VALUE)
1495 return x;
1496 v = CSELIB_VAL_PTR (x);
1497 for (l = v->locs; l; l = l->next)
1498 if (CONSTANT_P (l->loc))
1499 return l->loc;
1500 for (l = v->locs; l; l = l->next)
1501 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1502 return l->loc;
1503 if (v->locs)
1504 return v->locs->loc;
1505 return x;
1506}
1507
39cec1ac
MH
1508/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1509 where SIZE is the size in bytes of the memory reference. If ADDR
1510 is not modified by the memory reference then ADDR is returned. */
1511
1512rtx
4682ae04 1513addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1514{
1515 int offset = 0;
ca7fd9cd 1516
39cec1ac
MH
1517 switch (GET_CODE (addr))
1518 {
1519 case PRE_INC:
1520 offset = (n_refs + 1) * size;
1521 break;
1522 case PRE_DEC:
1523 offset = -(n_refs + 1) * size;
1524 break;
1525 case POST_INC:
1526 offset = n_refs * size;
1527 break;
1528 case POST_DEC:
1529 offset = -n_refs * size;
1530 break;
1531
1532 default:
1533 return addr;
1534 }
ca7fd9cd 1535
39cec1ac 1536 if (offset)
45183e03
JH
1537 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1538 GEN_INT (offset));
39cec1ac
MH
1539 else
1540 addr = XEXP (addr, 0);
45183e03 1541 addr = canon_rtx (addr);
39cec1ac
MH
1542
1543 return addr;
1544}
1545
9ae8ffe7
JL
1546/* Return nonzero if X and Y (memory addresses) could reference the
1547 same location in memory. C is an offset accumulator. When
1548 C is nonzero, we are testing aliases between X and Y + C.
1549 XSIZE is the size in bytes of the X reference,
1550 similarly YSIZE is the size in bytes for Y.
45183e03 1551 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1552
1553 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1554 referenced (the reference was BLKmode), so make the most pessimistic
1555 assumptions.
1556
c02f035f
RH
1557 If XSIZE or YSIZE is negative, we may access memory outside the object
1558 being referenced as a side effect. This can happen when using AND to
1559 align memory references, as is done on the Alpha.
1560
9ae8ffe7 1561 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1562 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1563
9ae8ffe7 1564static int
4682ae04 1565memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1566{
eab5c70a
BS
1567 if (GET_CODE (x) == VALUE)
1568 x = get_addr (x);
1569 if (GET_CODE (y) == VALUE)
1570 y = get_addr (y);
9ae8ffe7
JL
1571 if (GET_CODE (x) == HIGH)
1572 x = XEXP (x, 0);
1573 else if (GET_CODE (x) == LO_SUM)
1574 x = XEXP (x, 1);
1575 else
45183e03 1576 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1577 if (GET_CODE (y) == HIGH)
1578 y = XEXP (y, 0);
1579 else if (GET_CODE (y) == LO_SUM)
1580 y = XEXP (y, 1);
1581 else
45183e03 1582 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1583
1584 if (rtx_equal_for_memref_p (x, y))
1585 {
c02f035f 1586 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1587 return 1;
1588 if (c >= 0 && xsize > c)
1589 return 1;
1590 if (c < 0 && ysize+c > 0)
1591 return 1;
1592 return 0;
1593 }
1594
6e73e666
JC
1595 /* This code used to check for conflicts involving stack references and
1596 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1597
1598 if (GET_CODE (x) == PLUS)
1599 {
1600 /* The fact that X is canonicalized means that this
1601 PLUS rtx is canonicalized. */
1602 rtx x0 = XEXP (x, 0);
1603 rtx x1 = XEXP (x, 1);
1604
1605 if (GET_CODE (y) == PLUS)
1606 {
1607 /* The fact that Y is canonicalized means that this
1608 PLUS rtx is canonicalized. */
1609 rtx y0 = XEXP (y, 0);
1610 rtx y1 = XEXP (y, 1);
1611
1612 if (rtx_equal_for_memref_p (x1, y1))
1613 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1614 if (rtx_equal_for_memref_p (x0, y0))
1615 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1616 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1617 {
1618 if (GET_CODE (y1) == CONST_INT)
1619 return memrefs_conflict_p (xsize, x0, ysize, y0,
1620 c - INTVAL (x1) + INTVAL (y1));
1621 else
1622 return memrefs_conflict_p (xsize, x0, ysize, y,
1623 c - INTVAL (x1));
1624 }
9ae8ffe7
JL
1625 else if (GET_CODE (y1) == CONST_INT)
1626 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1627
6e73e666 1628 return 1;
9ae8ffe7
JL
1629 }
1630 else if (GET_CODE (x1) == CONST_INT)
1631 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1632 }
1633 else if (GET_CODE (y) == PLUS)
1634 {
1635 /* The fact that Y is canonicalized means that this
1636 PLUS rtx is canonicalized. */
1637 rtx y0 = XEXP (y, 0);
1638 rtx y1 = XEXP (y, 1);
1639
1640 if (GET_CODE (y1) == CONST_INT)
1641 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1642 else
1643 return 1;
1644 }
1645
1646 if (GET_CODE (x) == GET_CODE (y))
1647 switch (GET_CODE (x))
1648 {
1649 case MULT:
1650 {
1651 /* Handle cases where we expect the second operands to be the
1652 same, and check only whether the first operand would conflict
1653 or not. */
1654 rtx x0, y0;
1655 rtx x1 = canon_rtx (XEXP (x, 1));
1656 rtx y1 = canon_rtx (XEXP (y, 1));
1657 if (! rtx_equal_for_memref_p (x1, y1))
1658 return 1;
1659 x0 = canon_rtx (XEXP (x, 0));
1660 y0 = canon_rtx (XEXP (y, 0));
1661 if (rtx_equal_for_memref_p (x0, y0))
1662 return (xsize == 0 || ysize == 0
1663 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1664
1665 /* Can't properly adjust our sizes. */
1666 if (GET_CODE (x1) != CONST_INT)
1667 return 1;
1668 xsize /= INTVAL (x1);
1669 ysize /= INTVAL (x1);
1670 c /= INTVAL (x1);
1671 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1672 }
1d300e19 1673
de12be17
JC
1674 case REG:
1675 /* Are these registers known not to be equal? */
1676 if (alias_invariant)
1677 {
e51712db 1678 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1679 rtx i_x, i_y; /* invariant relationships of X and Y */
1680
1681 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1682 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1683
1684 if (i_x == 0 && i_y == 0)
1685 break;
1686
1687 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1688 ysize, i_y ? i_y : y, c))
1689 return 0;
1690 }
1691 break;
1692
1d300e19
KG
1693 default:
1694 break;
9ae8ffe7
JL
1695 }
1696
1697 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1698 as an access with indeterminate size. Assume that references
56ee9281
RH
1699 besides AND are aligned, so if the size of the other reference is
1700 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1701 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1702 {
02e3377d 1703 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1704 xsize = -1;
45183e03 1705 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1706 }
9ae8ffe7 1707 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1708 {
56ee9281 1709 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1710 may yet be able to determine that we can not overlap. But we
c02f035f 1711 also need to that we are far enough from the end not to overlap
56ee9281 1712 a following reference, so we do nothing with that for now. */
02e3377d 1713 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1714 ysize = -1;
45183e03 1715 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1716 }
9ae8ffe7 1717
b24ea077
JW
1718 if (GET_CODE (x) == ADDRESSOF)
1719 {
1720 if (y == frame_pointer_rtx
1721 || GET_CODE (y) == ADDRESSOF)
1722 return xsize <= 0 || ysize <= 0;
1723 }
1724 if (GET_CODE (y) == ADDRESSOF)
1725 {
1726 if (x == frame_pointer_rtx)
1727 return xsize <= 0 || ysize <= 0;
1728 }
d982e46e 1729
9ae8ffe7
JL
1730 if (CONSTANT_P (x))
1731 {
1732 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1733 {
1734 c += (INTVAL (y) - INTVAL (x));
c02f035f 1735 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1736 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1737 }
1738
1739 if (GET_CODE (x) == CONST)
1740 {
1741 if (GET_CODE (y) == CONST)
1742 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1743 ysize, canon_rtx (XEXP (y, 0)), c);
1744 else
1745 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1746 ysize, y, c);
1747 }
1748 if (GET_CODE (y) == CONST)
1749 return memrefs_conflict_p (xsize, x, ysize,
1750 canon_rtx (XEXP (y, 0)), c);
1751
1752 if (CONSTANT_P (y))
b949ea8b 1753 return (xsize <= 0 || ysize <= 0
c02f035f 1754 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1755 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1756
1757 return 1;
1758 }
1759 return 1;
1760}
1761
1762/* Functions to compute memory dependencies.
1763
1764 Since we process the insns in execution order, we can build tables
1765 to keep track of what registers are fixed (and not aliased), what registers
1766 are varying in known ways, and what registers are varying in unknown
1767 ways.
1768
1769 If both memory references are volatile, then there must always be a
1770 dependence between the two references, since their order can not be
1771 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1772 though.
9ae8ffe7 1773
dc1618bc
RK
1774 A MEM_IN_STRUCT reference at a non-AND varying address can never
1775 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1776 also must allow AND addresses, because they may generate accesses
1777 outside the object being referenced. This is used to generate
1778 aligned addresses from unaligned addresses, for instance, the alpha
1779 storeqi_unaligned pattern. */
9ae8ffe7
JL
1780
1781/* Read dependence: X is read after read in MEM takes place. There can
1782 only be a dependence here if both reads are volatile. */
1783
1784int
4682ae04 1785read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1786{
1787 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1788}
1789
c6df88cb
MM
1790/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1791 MEM2 is a reference to a structure at a varying address, or returns
1792 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1793 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1794 to decide whether or not an address may vary; it should return
eab5c70a
BS
1795 nonzero whenever variation is possible.
1796 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1797
2c72b78f 1798static rtx
4682ae04
AJ
1799fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1800 rtx mem2_addr,
1801 int (*varies_p) (rtx, int))
ca7fd9cd 1802{
3e0abe15
GK
1803 if (! flag_strict_aliasing)
1804 return NULL_RTX;
1805
ca7fd9cd 1806 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1807 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1808 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1809 varying address. */
1810 return mem1;
1811
ca7fd9cd 1812 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1813 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1814 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1815 varying address. */
1816 return mem2;
1817
1818 return NULL_RTX;
1819}
1820
1821/* Returns nonzero if something about the mode or address format MEM1
1822 indicates that it might well alias *anything*. */
1823
2c72b78f 1824static int
4682ae04 1825aliases_everything_p (rtx mem)
c6df88cb 1826{
c6df88cb
MM
1827 if (GET_CODE (XEXP (mem, 0)) == AND)
1828 /* If the address is an AND, its very hard to know at what it is
1829 actually pointing. */
1830 return 1;
ca7fd9cd 1831
c6df88cb
MM
1832 return 0;
1833}
1834
998d7deb
RH
1835/* Return true if we can determine that the fields referenced cannot
1836 overlap for any pair of objects. */
1837
1838static bool
4682ae04 1839nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1840{
1841 tree fieldx, fieldy, typex, typey, orig_y;
1842
1843 do
1844 {
1845 /* The comparison has to be done at a common type, since we don't
d6a7951f 1846 know how the inheritance hierarchy works. */
998d7deb
RH
1847 orig_y = y;
1848 do
1849 {
1850 fieldx = TREE_OPERAND (x, 1);
1851 typex = DECL_FIELD_CONTEXT (fieldx);
1852
1853 y = orig_y;
1854 do
1855 {
1856 fieldy = TREE_OPERAND (y, 1);
1857 typey = DECL_FIELD_CONTEXT (fieldy);
1858
1859 if (typex == typey)
1860 goto found;
1861
1862 y = TREE_OPERAND (y, 0);
1863 }
1864 while (y && TREE_CODE (y) == COMPONENT_REF);
1865
1866 x = TREE_OPERAND (x, 0);
1867 }
1868 while (x && TREE_CODE (x) == COMPONENT_REF);
1869
1870 /* Never found a common type. */
1871 return false;
1872
1873 found:
1874 /* If we're left with accessing different fields of a structure,
1875 then no overlap. */
1876 if (TREE_CODE (typex) == RECORD_TYPE
1877 && fieldx != fieldy)
1878 return true;
1879
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x = TREE_OPERAND (x, 0);
1883 y = TREE_OPERAND (y, 0);
1884 }
1885 while (x && y
1886 && TREE_CODE (x) == COMPONENT_REF
1887 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1888
998d7deb
RH
1889 return false;
1890}
1891
1892/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1893
1894static tree
4682ae04 1895decl_for_component_ref (tree x)
998d7deb
RH
1896{
1897 do
1898 {
1899 x = TREE_OPERAND (x, 0);
1900 }
1901 while (x && TREE_CODE (x) == COMPONENT_REF);
1902
1903 return x && DECL_P (x) ? x : NULL_TREE;
1904}
1905
1906/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1907 offset of the field reference. */
1908
1909static rtx
4682ae04 1910adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1911{
1912 HOST_WIDE_INT ioffset;
1913
1914 if (! offset)
1915 return NULL_RTX;
1916
1917 ioffset = INTVAL (offset);
ca7fd9cd 1918 do
998d7deb
RH
1919 {
1920 tree field = TREE_OPERAND (x, 1);
1921
1922 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1923 return NULL_RTX;
1924 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1925 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1926 / BITS_PER_UNIT));
1927
1928 x = TREE_OPERAND (x, 0);
1929 }
1930 while (x && TREE_CODE (x) == COMPONENT_REF);
1931
1932 return GEN_INT (ioffset);
1933}
1934
95bd1dd7 1935/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1936 X and Y and they do not overlap. */
1937
1938static int
4682ae04 1939nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1940{
998d7deb 1941 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1942 rtx rtlx, rtly;
1943 rtx basex, basey;
998d7deb 1944 rtx moffsetx, moffsety;
a4311dfe
RK
1945 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1946
998d7deb
RH
1947 /* Unless both have exprs, we can't tell anything. */
1948 if (exprx == 0 || expry == 0)
1949 return 0;
1950
1951 /* If both are field references, we may be able to determine something. */
1952 if (TREE_CODE (exprx) == COMPONENT_REF
1953 && TREE_CODE (expry) == COMPONENT_REF
1954 && nonoverlapping_component_refs_p (exprx, expry))
1955 return 1;
1956
1957 /* If the field reference test failed, look at the DECLs involved. */
1958 moffsetx = MEM_OFFSET (x);
1959 if (TREE_CODE (exprx) == COMPONENT_REF)
1960 {
1961 tree t = decl_for_component_ref (exprx);
1962 if (! t)
1963 return 0;
1964 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1965 exprx = t;
1966 }
c67a1cf6
RH
1967 else if (TREE_CODE (exprx) == INDIRECT_REF)
1968 {
1969 exprx = TREE_OPERAND (exprx, 0);
1970 if (flag_argument_noalias < 2
1971 || TREE_CODE (exprx) != PARM_DECL)
1972 return 0;
1973 }
1974
998d7deb
RH
1975 moffsety = MEM_OFFSET (y);
1976 if (TREE_CODE (expry) == COMPONENT_REF)
1977 {
1978 tree t = decl_for_component_ref (expry);
1979 if (! t)
1980 return 0;
1981 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1982 expry = t;
1983 }
c67a1cf6
RH
1984 else if (TREE_CODE (expry) == INDIRECT_REF)
1985 {
1986 expry = TREE_OPERAND (expry, 0);
1987 if (flag_argument_noalias < 2
1988 || TREE_CODE (expry) != PARM_DECL)
1989 return 0;
1990 }
998d7deb
RH
1991
1992 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
1993 return 0;
1994
998d7deb
RH
1995 rtlx = DECL_RTL (exprx);
1996 rtly = DECL_RTL (expry);
a4311dfe 1997
1edcd60b
RK
1998 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1999 can't overlap unless they are the same because we never reuse that part
2000 of the stack frame used for locals for spilled pseudos. */
2001 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2002 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2003 return 1;
2004
2005 /* Get the base and offsets of both decls. If either is a register, we
2006 know both are and are the same, so use that as the base. The only
2007 we can avoid overlap is if we can deduce that they are nonoverlapping
2008 pieces of that decl, which is very rare. */
1edcd60b 2009 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2010 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2011 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2012
1edcd60b 2013 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2014 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2015 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2016
d746694a 2017 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2018 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2019 stack frame. Otherwise a different base means we can't tell if they
2020 overlap or not. */
2021 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2022 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2023 || (CONSTANT_P (basex) && REG_P (basey)
2024 && REGNO_PTR_FRAME_P (REGNO (basey)))
2025 || (CONSTANT_P (basey) && REG_P (basex)
2026 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2027
998d7deb 2028 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2029 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2030 : -1);
998d7deb 2031 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2032 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2033 -1);
2034
0af5bc3e
RK
2035 /* If we have an offset for either memref, it can update the values computed
2036 above. */
998d7deb
RH
2037 if (moffsetx)
2038 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2039 if (moffsety)
2040 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2041
0af5bc3e 2042 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2043 We can't do this if the offset isn't known because we must view this
0af5bc3e 2044 memref as being anywhere inside the DECL's MEM. */
998d7deb 2045 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2046 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2047 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2048 sizey = INTVAL (MEM_SIZE (y));
2049
2050 /* Put the values of the memref with the lower offset in X's values. */
2051 if (offsetx > offsety)
2052 {
2053 tem = offsetx, offsetx = offsety, offsety = tem;
2054 tem = sizex, sizex = sizey, sizey = tem;
2055 }
2056
2057 /* If we don't know the size of the lower-offset value, we can't tell
2058 if they conflict. Otherwise, we do the test. */
a6f7c915 2059 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2060}
2061
9ae8ffe7
JL
2062/* True dependence: X is read after store in MEM takes place. */
2063
2064int
4682ae04
AJ
2065true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2066 int (*varies) (rtx, int))
9ae8ffe7 2067{
b3694847 2068 rtx x_addr, mem_addr;
49982682 2069 rtx base;
9ae8ffe7
JL
2070
2071 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2072 return 1;
2073
c4484b8f
RH
2074 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2075 This is used in epilogue deallocation functions. */
2076 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2077 return 1;
2078 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2079 return 1;
2080
41472af8
MM
2081 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2082 return 0;
2083
b949ea8b
JW
2084 /* Unchanging memory can't conflict with non-unchanging memory.
2085 A non-unchanging read can conflict with a non-unchanging write.
2086 An unchanging read can conflict with an unchanging write since
2087 there may be a single store to this address to initialize it.
ec569656
RK
2088 Note that an unchanging store can conflict with a non-unchanging read
2089 since we have to make conservative assumptions when we have a
2090 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2091 Just fall through to the code below to resolve potential conflicts.
2092 This won't handle all cases optimally, but the possible performance
2093 loss should be negligible. */
ec569656 2094 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2095 return 0;
2096
a4311dfe
RK
2097 if (nonoverlapping_memrefs_p (mem, x))
2098 return 0;
2099
56ee9281
RH
2100 if (mem_mode == VOIDmode)
2101 mem_mode = GET_MODE (mem);
2102
eab5c70a
BS
2103 x_addr = get_addr (XEXP (x, 0));
2104 mem_addr = get_addr (XEXP (mem, 0));
2105
55efb413
JW
2106 base = find_base_term (x_addr);
2107 if (base && (GET_CODE (base) == LABEL_REF
2108 || (GET_CODE (base) == SYMBOL_REF
2109 && CONSTANT_POOL_ADDRESS_P (base))))
2110 return 0;
2111
eab5c70a 2112 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2113 return 0;
2114
eab5c70a
BS
2115 x_addr = canon_rtx (x_addr);
2116 mem_addr = canon_rtx (mem_addr);
6e73e666 2117
0211b6ab
JW
2118 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2119 SIZE_FOR_MODE (x), x_addr, 0))
2120 return 0;
2121
c6df88cb 2122 if (aliases_everything_p (x))
0211b6ab
JW
2123 return 1;
2124
f5143c46 2125 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2126 at MEM_MODE, rather than GET_MODE (MEM). */
2127 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2128 return 1;
2129
2130 /* In true_dependence we also allow BLKmode to alias anything. Why
2131 don't we do this in anti_dependence and output_dependence? */
2132 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2133 return 1;
2134
2135 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2136 varies);
2137}
2138
2139/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2140 Variant of true_dependence which assumes MEM has already been
2141 canonicalized (hence we no longer do that here).
2142 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2143 this value prior to canonicalizing. */
2144
2145int
4682ae04
AJ
2146canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2147 rtx x, int (*varies) (rtx, int))
a13d4ebf 2148{
b3694847 2149 rtx x_addr;
a13d4ebf
AM
2150
2151 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2152 return 1;
2153
0fe854a7
RH
2154 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2155 This is used in epilogue deallocation functions. */
2156 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2157 return 1;
2158 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2159 return 1;
2160
a13d4ebf
AM
2161 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2162 return 0;
2163
2164 /* If X is an unchanging read, then it can't possibly conflict with any
2165 non-unchanging store. It may conflict with an unchanging write though,
2166 because there may be a single store to this address to initialize it.
2167 Just fall through to the code below to resolve the case where we have
2168 both an unchanging read and an unchanging write. This won't handle all
2169 cases optimally, but the possible performance loss should be
2170 negligible. */
2171 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2172 return 0;
2173
a4311dfe
RK
2174 if (nonoverlapping_memrefs_p (x, mem))
2175 return 0;
2176
a13d4ebf
AM
2177 x_addr = get_addr (XEXP (x, 0));
2178
2179 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2180 return 0;
2181
2182 x_addr = canon_rtx (x_addr);
2183 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2184 SIZE_FOR_MODE (x), x_addr, 0))
2185 return 0;
2186
2187 if (aliases_everything_p (x))
2188 return 1;
2189
f5143c46 2190 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2191 at MEM_MODE, rather than GET_MODE (MEM). */
2192 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2193 return 1;
0211b6ab 2194
c6df88cb
MM
2195 /* In true_dependence we also allow BLKmode to alias anything. Why
2196 don't we do this in anti_dependence and output_dependence? */
2197 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2198 return 1;
0211b6ab 2199
eab5c70a
BS
2200 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2201 varies);
9ae8ffe7
JL
2202}
2203
da7d8304 2204/* Returns nonzero if a write to X might alias a previous read from
83a00410 2205 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
d2399d75 2206 honor the RTX_UNCHANGING_P flags on X and MEM. */
9ae8ffe7 2207
2c72b78f 2208static int
d2399d75 2209write_dependence_p (rtx mem, rtx x, int writep, int constp)
9ae8ffe7 2210{
6e73e666 2211 rtx x_addr, mem_addr;
c6df88cb 2212 rtx fixed_scalar;
49982682 2213 rtx base;
6e73e666 2214
9ae8ffe7
JL
2215 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2216 return 1;
2217
c4484b8f
RH
2218 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2219 This is used in epilogue deallocation functions. */
2220 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2221 return 1;
2222 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2223 return 1;
2224
eab5c70a
BS
2225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2226 return 0;
2227
d2399d75
RS
2228 if (constp)
2229 {
2230 /* Unchanging memory can't conflict with non-unchanging memory. */
2231 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2232 return 0;
b949ea8b 2233
d2399d75
RS
2234 /* If MEM is an unchanging read, then it can't possibly conflict with
2235 the store to X, because there is at most one store to MEM, and it
2236 must have occurred somewhere before MEM. */
2237 if (! writep && RTX_UNCHANGING_P (mem))
2238 return 0;
2239 }
55efb413 2240
a4311dfe
RK
2241 if (nonoverlapping_memrefs_p (x, mem))
2242 return 0;
2243
55efb413
JW
2244 x_addr = get_addr (XEXP (x, 0));
2245 mem_addr = get_addr (XEXP (mem, 0));
2246
49982682
JW
2247 if (! writep)
2248 {
55efb413 2249 base = find_base_term (mem_addr);
49982682
JW
2250 if (base && (GET_CODE (base) == LABEL_REF
2251 || (GET_CODE (base) == SYMBOL_REF
2252 && CONSTANT_POOL_ADDRESS_P (base))))
2253 return 0;
2254 }
2255
eab5c70a
BS
2256 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2257 GET_MODE (mem)))
41472af8
MM
2258 return 0;
2259
eab5c70a
BS
2260 x_addr = canon_rtx (x_addr);
2261 mem_addr = canon_rtx (mem_addr);
6e73e666 2262
c6df88cb
MM
2263 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2264 SIZE_FOR_MODE (x), x_addr, 0))
2265 return 0;
2266
ca7fd9cd 2267 fixed_scalar
eab5c70a
BS
2268 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2269 rtx_addr_varies_p);
2270
c6df88cb
MM
2271 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2272 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2273}
2274
2275/* Anti dependence: X is written after read in MEM takes place. */
2276
2277int
4682ae04 2278anti_dependence (rtx mem, rtx x)
c6df88cb 2279{
d2399d75 2280 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
9ae8ffe7
JL
2281}
2282
2283/* Output dependence: X is written after store in MEM takes place. */
2284
2285int
4682ae04 2286output_dependence (rtx mem, rtx x)
9ae8ffe7 2287{
d2399d75
RS
2288 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2289}
2290
2291/* Unchanging anti dependence: Like anti_dependence but ignores
2292 the UNCHANGING_RTX_P property on const variable references. */
2293
2294int
2295unchanging_anti_dependence (rtx mem, rtx x)
2296{
2297 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
9ae8ffe7 2298}
c14b9960
JW
2299\f
2300/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2301 something which is not local to the function and is not constant. */
7790df19
JW
2302
2303static int
4682ae04 2304nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2305{
c14b9960 2306 rtx x = *loc;
7790df19 2307 rtx base;
7790df19
JW
2308 int regno;
2309
c14b9960
JW
2310 if (! x)
2311 return 0;
7790df19 2312
c14b9960 2313 switch (GET_CODE (x))
7790df19
JW
2314 {
2315 case SUBREG:
2316 if (GET_CODE (SUBREG_REG (x)) == REG)
2317 {
2318 /* Global registers are not local. */
2319 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2320 && global_regs[subreg_regno (x)])
7790df19
JW
2321 return 1;
2322 return 0;
2323 }
2324 break;
2325
2326 case REG:
2327 regno = REGNO (x);
2328 /* Global registers are not local. */
2329 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2330 return 1;
2331 return 0;
2332
2333 case SCRATCH:
2334 case PC:
2335 case CC0:
2336 case CONST_INT:
2337 case CONST_DOUBLE:
69ef87e2 2338 case CONST_VECTOR:
7790df19
JW
2339 case CONST:
2340 case LABEL_REF:
2341 return 0;
2342
2343 case SYMBOL_REF:
2344 /* Constants in the function's constants pool are constant. */
2345 if (CONSTANT_POOL_ADDRESS_P (x))
2346 return 0;
2347 return 1;
2348
2349 case CALL:
bf6d9fd7 2350 /* Non-constant calls and recursion are not local. */
7790df19
JW
2351 return 1;
2352
2353 case MEM:
2354 /* Be overly conservative and consider any volatile memory
2355 reference as not local. */
2356 if (MEM_VOLATILE_P (x))
2357 return 1;
2358 base = find_base_term (XEXP (x, 0));
2359 if (base)
2360 {
b3b5ad95
JL
2361 /* A Pmode ADDRESS could be a reference via the structure value
2362 address or static chain. Such memory references are nonlocal.
2363
2364 Thus, we have to examine the contents of the ADDRESS to find
2365 out if this is a local reference or not. */
2366 if (GET_CODE (base) == ADDRESS
2367 && GET_MODE (base) == Pmode
2368 && (XEXP (base, 0) == stack_pointer_rtx
2369 || XEXP (base, 0) == arg_pointer_rtx
2370#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2371 || XEXP (base, 0) == hard_frame_pointer_rtx
2372#endif
2373 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2374 return 0;
2375 /* Constants in the function's constant pool are constant. */
2376 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2377 return 0;
2378 }
2379 return 1;
2380
bf6d9fd7 2381 case UNSPEC_VOLATILE:
7790df19 2382 case ASM_INPUT:
7790df19
JW
2383 return 1;
2384
bf6d9fd7
JW
2385 case ASM_OPERANDS:
2386 if (MEM_VOLATILE_P (x))
2387 return 1;
2388
5d3cc252 2389 /* Fall through. */
bf6d9fd7 2390
7790df19
JW
2391 default:
2392 break;
2393 }
2394
c14b9960
JW
2395 return 0;
2396}
2397
da7d8304 2398/* Returns nonzero if X might mention something which is not
c14b9960 2399 local to the function and is not constant. */
7790df19 2400
c14b9960 2401static int
4682ae04 2402nonlocal_mentioned_p (rtx x)
c14b9960 2403{
c14b9960
JW
2404 if (INSN_P (x))
2405 {
2406 if (GET_CODE (x) == CALL_INSN)
2407 {
2408 if (! CONST_OR_PURE_CALL_P (x))
2409 return 1;
2410 x = CALL_INSN_FUNCTION_USAGE (x);
2411 if (x == 0)
2412 return 0;
ca7fd9cd 2413 }
c14b9960 2414 else
ca7fd9cd 2415 x = PATTERN (x);
c14b9960
JW
2416 }
2417
2418 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2419}
2420
2421/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2422 something which is not local to the function and is not constant. */
2423
2424static int
4682ae04 2425nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2426{
2427 rtx x = *loc;
2428
2429 if (! x)
2430 return 0;
2431
2432 switch (GET_CODE (x))
2433 {
2434 case MEM:
2435 case REG:
2436 case SYMBOL_REF:
2437 case SUBREG:
2438 return nonlocal_mentioned_p (x);
2439
2440 case CALL:
2441 /* Non-constant calls and recursion are not local. */
2442 return 1;
2443
2444 case SET:
2445 if (nonlocal_mentioned_p (SET_SRC (x)))
2446 return 1;
2447
2448 if (GET_CODE (SET_DEST (x)) == MEM)
2449 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2450
2451 /* If the destination is anything other than a CC0, PC,
2452 MEM, REG, or a SUBREG of a REG that occupies all of
2453 the REG, then X references nonlocal memory if it is
2454 mentioned in the destination. */
2455 if (GET_CODE (SET_DEST (x)) != CC0
2456 && GET_CODE (SET_DEST (x)) != PC
2457 && GET_CODE (SET_DEST (x)) != REG
2458 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2459 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2460 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2461 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2462 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2463 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2464 return nonlocal_mentioned_p (SET_DEST (x));
2465 return 0;
2466
2467 case CLOBBER:
2468 if (GET_CODE (XEXP (x, 0)) == MEM)
2469 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2470 return 0;
2471
2472 case USE:
2473 return nonlocal_mentioned_p (XEXP (x, 0));
2474
2475 case ASM_INPUT:
2476 case UNSPEC_VOLATILE:
2477 return 1;
2478
2479 case ASM_OPERANDS:
2480 if (MEM_VOLATILE_P (x))
2481 return 1;
2482
5d3cc252 2483 /* Fall through. */
c14b9960
JW
2484
2485 default:
2486 break;
2487 }
2488
2489 return 0;
2490}
2491
da7d8304 2492/* Returns nonzero if X might reference something which is not
c14b9960
JW
2493 local to the function and is not constant. */
2494
2495static int
4682ae04 2496nonlocal_referenced_p (rtx x)
c14b9960 2497{
c14b9960
JW
2498 if (INSN_P (x))
2499 {
2500 if (GET_CODE (x) == CALL_INSN)
2501 {
2502 if (! CONST_OR_PURE_CALL_P (x))
2503 return 1;
2504 x = CALL_INSN_FUNCTION_USAGE (x);
2505 if (x == 0)
2506 return 0;
ca7fd9cd 2507 }
c14b9960 2508 else
ca7fd9cd 2509 x = PATTERN (x);
c14b9960
JW
2510 }
2511
2512 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2513}
2514
2515/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2516 something which is not local to the function and is not constant. */
2517
2518static int
4682ae04 2519nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2520{
2521 rtx x = *loc;
2522
2523 if (! x)
2524 return 0;
2525
2526 switch (GET_CODE (x))
2527 {
2528 case CALL:
2529 /* Non-constant calls and recursion are not local. */
2530 return 1;
2531
2532 case PRE_INC:
2533 case PRE_DEC:
2534 case POST_INC:
2535 case POST_DEC:
2536 case PRE_MODIFY:
2537 case POST_MODIFY:
2538 return nonlocal_mentioned_p (XEXP (x, 0));
2539
2540 case SET:
2541 if (nonlocal_mentioned_p (SET_DEST (x)))
2542 return 1;
2543 return nonlocal_set_p (SET_SRC (x));
2544
2545 case CLOBBER:
2546 return nonlocal_mentioned_p (XEXP (x, 0));
2547
2548 case USE:
2549 return 0;
2550
2551 case ASM_INPUT:
2552 case UNSPEC_VOLATILE:
2553 return 1;
2554
2555 case ASM_OPERANDS:
2556 if (MEM_VOLATILE_P (x))
2557 return 1;
2558
5d3cc252 2559 /* Fall through. */
c14b9960
JW
2560
2561 default:
2562 break;
2563 }
7790df19
JW
2564
2565 return 0;
2566}
2567
da7d8304 2568/* Returns nonzero if X might set something which is not
c14b9960
JW
2569 local to the function and is not constant. */
2570
2571static int
4682ae04 2572nonlocal_set_p (rtx x)
c14b9960 2573{
c14b9960
JW
2574 if (INSN_P (x))
2575 {
2576 if (GET_CODE (x) == CALL_INSN)
2577 {
2578 if (! CONST_OR_PURE_CALL_P (x))
2579 return 1;
2580 x = CALL_INSN_FUNCTION_USAGE (x);
2581 if (x == 0)
2582 return 0;
ca7fd9cd 2583 }
c14b9960 2584 else
ca7fd9cd 2585 x = PATTERN (x);
c14b9960
JW
2586 }
2587
2588 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2589}
2590
c57ddcf1 2591/* Mark the function if it is pure or constant. */
7790df19
JW
2592
2593void
4682ae04 2594mark_constant_function (void)
7790df19
JW
2595{
2596 rtx insn;
c14b9960 2597 int nonlocal_memory_referenced;
7790df19 2598
ab780373 2599 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2600 || DECL_IS_PURE (current_function_decl)
7790df19 2601 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2602 || current_function_has_nonlocal_goto
2603 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2604 return;
2605
e004f2f7 2606 /* A loop might not return which counts as a side effect. */
0ecf09f9 2607 if (mark_dfs_back_edges ())
e004f2f7
JW
2608 return;
2609
c14b9960 2610 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2611
2612 init_alias_analysis ();
2613
c14b9960 2614 /* Determine if this is a constant or pure function. */
7790df19
JW
2615
2616 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2617 {
2618 if (! INSN_P (insn))
2619 continue;
bf6d9fd7 2620
c14b9960
JW
2621 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2622 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2623 break;
7790df19 2624
c14b9960
JW
2625 if (! nonlocal_memory_referenced)
2626 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2627 }
ca7fd9cd 2628
c14b9960 2629 end_alias_analysis ();
ca7fd9cd 2630
7790df19 2631 /* Mark the function. */
ca7fd9cd 2632
c14b9960
JW
2633 if (insn)
2634 ;
2635 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2636 {
2637 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2638 DECL_IS_PURE (current_function_decl) = 1;
2639 }
c14b9960 2640 else
c57ddcf1
RS
2641 {
2642 cgraph_rtl_info (current_function_decl)->const_function = 1;
2643 TREE_READONLY (current_function_decl) = 1;
2644 }
7790df19 2645}
c14b9960 2646\f
6e73e666 2647
6e73e666 2648void
4682ae04 2649init_alias_once (void)
6e73e666 2650{
b3694847 2651 int i;
6e73e666
JC
2652
2653#ifndef OUTGOING_REGNO
2654#define OUTGOING_REGNO(N) N
2655#endif
2656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2657 /* Check whether this register can hold an incoming pointer
2658 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2659 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2660 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2661 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2662 static_reg_base_value[i]
2663 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2664
bf1660a6
JL
2665 static_reg_base_value[STACK_POINTER_REGNUM]
2666 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2667 static_reg_base_value[ARG_POINTER_REGNUM]
2668 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2669 static_reg_base_value[FRAME_POINTER_REGNUM]
2670 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2671#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2672 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2673 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2674#endif
7f243674
JL
2675
2676 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
bf1660a6
JL
2677}
2678
7b52eede
JH
2679/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2680 to be memory reference. */
2681static bool memory_modified;
2682static void
4682ae04 2683memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2684{
2685 if (GET_CODE (x) == MEM)
2686 {
2687 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2688 memory_modified = true;
2689 }
2690}
2691
2692
2693/* Return true when INSN possibly modify memory contents of MEM
2694 (ie address can be modified). */
2695bool
4682ae04 2696memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2697{
2698 if (!INSN_P (insn))
2699 return false;
2700 memory_modified = false;
2701 note_stores (PATTERN (insn), memory_modified_1, mem);
2702 return memory_modified;
2703}
2704
c13e8210
MM
2705/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2706 array. */
2707
9ae8ffe7 2708void
4682ae04 2709init_alias_analysis (void)
9ae8ffe7
JL
2710{
2711 int maxreg = max_reg_num ();
ea64ef27 2712 int changed, pass;
b3694847
SS
2713 int i;
2714 unsigned int ui;
2715 rtx insn;
9ae8ffe7 2716
0d446150
JH
2717 timevar_push (TV_ALIAS_ANALYSIS);
2718
9ae8ffe7
JL
2719 reg_known_value_size = maxreg;
2720
ca7fd9cd 2721 reg_known_value
e05e2395
MM
2722 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2723 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2724 reg_known_equiv_p
e05e2395 2725 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2726 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2727
6e73e666
JC
2728 /* Overallocate reg_base_value to allow some growth during loop
2729 optimization. Loop unrolling can create a large number of
2730 registers. */
2731 reg_base_value_size = maxreg * 2;
703ad42b 2732 reg_base_value = ggc_alloc_cleared (reg_base_value_size * sizeof (rtx));
ac606739 2733
703ad42b
KG
2734 new_reg_base_value = xmalloc (reg_base_value_size * sizeof (rtx));
2735 reg_seen = xmalloc (reg_base_value_size);
b17d5d7c 2736 if (! reload_completed && flag_old_unroll_loops)
de12be17 2737 {
ac606739 2738 /* ??? Why are we realloc'ing if we're just going to zero it? */
703ad42b
KG
2739 alias_invariant = xrealloc (alias_invariant,
2740 reg_base_value_size * sizeof (rtx));
2741 memset (alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2742 }
ec907dd8
JL
2743
2744 /* The basic idea is that each pass through this loop will use the
2745 "constant" information from the previous pass to propagate alias
2746 information through another level of assignments.
2747
2748 This could get expensive if the assignment chains are long. Maybe
2749 we should throttle the number of iterations, possibly based on
6e73e666 2750 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2751
2752 We could propagate more information in the first pass by making use
2753 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2754 for a pseudo is "constant".
2755
2756 A program with an uninitialized variable can cause an infinite loop
2757 here. Instead of doing a full dataflow analysis to detect such problems
2758 we just cap the number of iterations for the loop.
2759
2760 The state of the arrays for the set chain in question does not matter
2761 since the program has undefined behavior. */
6e73e666 2762
ea64ef27 2763 pass = 0;
6e73e666 2764 do
ec907dd8
JL
2765 {
2766 /* Assume nothing will change this iteration of the loop. */
2767 changed = 0;
2768
ec907dd8
JL
2769 /* We want to assign the same IDs each iteration of this loop, so
2770 start counting from zero each iteration of the loop. */
2771 unique_id = 0;
2772
f5143c46 2773 /* We're at the start of the function each iteration through the
ec907dd8 2774 loop, so we're copying arguments. */
83bbd9b6 2775 copying_arguments = true;
9ae8ffe7 2776
6e73e666 2777 /* Wipe the potential alias information clean for this pass. */
703ad42b 2778 memset (new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2779
6e73e666 2780 /* Wipe the reg_seen array clean. */
703ad42b 2781 memset (reg_seen, 0, reg_base_value_size);
9ae8ffe7 2782
6e73e666
JC
2783 /* Mark all hard registers which may contain an address.
2784 The stack, frame and argument pointers may contain an address.
2785 An argument register which can hold a Pmode value may contain
2786 an address even if it is not in BASE_REGS.
8072f69c 2787
6e73e666
JC
2788 The address expression is VOIDmode for an argument and
2789 Pmode for other registers. */
2790
7f243674
JL
2791 memcpy (new_reg_base_value, static_reg_base_value,
2792 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2793
ec907dd8
JL
2794 /* Walk the insns adding values to the new_reg_base_value array. */
2795 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2796 {
2c3c49de 2797 if (INSN_P (insn))
ec907dd8 2798 {
6e73e666 2799 rtx note, set;
efc9bd41
RK
2800
2801#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2802 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2803 insn chain until after reload has completed. Thus,
2804 there is no sense wasting time checking if INSN is in
2805 the prologue/epilogue until after reload has completed. */
2806 if (reload_completed
2807 && prologue_epilogue_contains (insn))
efc9bd41
RK
2808 continue;
2809#endif
2810
ec907dd8
JL
2811 /* If this insn has a noalias note, process it, Otherwise,
2812 scan for sets. A simple set will have no side effects
ec5c56db 2813 which could change the base value of any other register. */
6e73e666 2814
ec907dd8 2815 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2816 && REG_NOTES (insn) != 0
2817 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2818 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2819 else
84832317 2820 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2821
2822 set = single_set (insn);
2823
2824 if (set != 0
2825 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2826 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2827 {
fb6754f0 2828 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2829 rtx src = SET_SRC (set);
2830
2831 if (REG_NOTES (insn) != 0
2832 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2833 && REG_N_SETS (regno) == 1)
2834 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2835 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2836 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2837 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2838 {
2839 reg_known_value[regno] = XEXP (note, 0);
2840 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2841 }
2842 else if (REG_N_SETS (regno) == 1
2843 && GET_CODE (src) == PLUS
2844 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2845 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2846 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2847 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2848 {
2849 rtx op0 = XEXP (src, 0);
bb2cf916 2850 op0 = reg_known_value[REGNO (op0)];
713f41f9 2851 reg_known_value[regno]
ed8908e7 2852 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2853 reg_known_equiv_p[regno] = 0;
2854 }
2855 else if (REG_N_SETS (regno) == 1
2856 && ! rtx_varies_p (src, 1))
2857 {
2858 reg_known_value[regno] = src;
2859 reg_known_equiv_p[regno] = 0;
2860 }
6e73e666 2861 }
ec907dd8
JL
2862 }
2863 else if (GET_CODE (insn) == NOTE
2864 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2865 copying_arguments = false;
6e73e666 2866 }
ec907dd8 2867
6e73e666 2868 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2869 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2870 {
e51712db
KG
2871 if (new_reg_base_value[ui]
2872 && new_reg_base_value[ui] != reg_base_value[ui]
2873 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2874 {
e51712db 2875 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2876 changed = 1;
ec907dd8 2877 }
9ae8ffe7 2878 }
9ae8ffe7 2879 }
6e73e666 2880 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2881
2882 /* Fill in the remaining entries. */
2883 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2884 if (reg_known_value[i] == 0)
2885 reg_known_value[i] = regno_reg_rtx[i];
2886
9ae8ffe7
JL
2887 /* Simplify the reg_base_value array so that no register refers to
2888 another register, except to special registers indirectly through
2889 ADDRESS expressions.
2890
2891 In theory this loop can take as long as O(registers^2), but unless
2892 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2893 time.
2894
2895 This loop may not be needed any longer now that the main loop does
2896 a better job at propagating alias information. */
2897 pass = 0;
9ae8ffe7
JL
2898 do
2899 {
2900 changed = 0;
ea64ef27 2901 pass++;
e51712db 2902 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2903 {
e51712db 2904 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2905 if (base && GET_CODE (base) == REG)
2906 {
fb6754f0 2907 unsigned int base_regno = REGNO (base);
e51712db
KG
2908 if (base_regno == ui) /* register set from itself */
2909 reg_base_value[ui] = 0;
9ae8ffe7 2910 else
e51712db 2911 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2912 changed = 1;
2913 }
2914 }
2915 }
ea64ef27 2916 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2917
e05e2395
MM
2918 /* Clean up. */
2919 free (new_reg_base_value);
ec907dd8 2920 new_reg_base_value = 0;
e05e2395 2921 free (reg_seen);
9ae8ffe7 2922 reg_seen = 0;
0d446150 2923 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2924}
2925
2926void
4682ae04 2927end_alias_analysis (void)
9ae8ffe7 2928{
e05e2395 2929 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2930 reg_known_value = 0;
ac606739 2931 reg_known_value_size = 0;
e05e2395
MM
2932 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2933 reg_known_equiv_p = 0;
e2500fed 2934 reg_base_value = 0;
9ae8ffe7 2935 reg_base_value_size = 0;
de12be17
JC
2936 if (alias_invariant)
2937 {
ac606739 2938 free (alias_invariant);
de12be17
JC
2939 alias_invariant = 0;
2940 }
9ae8ffe7 2941}
e2500fed
GK
2942
2943#include "gt-alias.h"
This page took 1.360647 seconds and 5 git commands to generate.