]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
linux-unwind.h (get_regs): Remove type puns.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
66647d44 3 2007, 2008, 2009 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
ef330312 46#include "tree-pass.h"
ea900239 47#include "ipa-type-escape.h"
6fb5fa3c 48#include "df.h"
ea900239
DB
49
50/* The aliasing API provided here solves related but different problems:
51
c22cacf3 52 Say there exists (in c)
ea900239
DB
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 90 instances do not escape across the compilation boundary.
ea900239
DB
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99*/
3932261a
MM
100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
3932261a 105
01d28c3f 106 struct S { int i; double d; };
3932261a
MM
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
c22cacf3
MS
112 struct S
113 / \
3932261a 114 / \
c22cacf3
MS
115 |/_ _\|
116 int double
3932261a 117
ac3d9668
RK
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
3bdf5ad1
RK
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
95bd1dd7 124 past immediate descendants, however, since we propagate all
3bdf5ad1 125 grandchildren up one level.
3932261a
MM
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
d1b38208 131struct GTY(()) alias_set_entry {
3932261a 132 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 133 alias_set_type alias_set;
3932261a 134
4c067742
RG
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
3932261a 139 /* The children of the alias set. These are not just the immediate
95bd1dd7 140 children, but, in fact, all descendants. So, if we have:
3932261a 141
ca7fd9cd 142 struct T { struct S s; float f; }
3932261a
MM
143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
b604074c 146 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c
GK
147};
148typedef struct alias_set_entry *alias_set_entry;
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
153static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04
AJ
157static int insert_subset_children (splay_tree_node, void*);
158static tree find_base_decl (tree);
4862826d 159static alias_set_entry get_alias_set_entry (alias_set_type);
4f588890
KG
160static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162static int aliases_everything_p (const_rtx);
163static bool nonoverlapping_component_refs_p (const_tree, const_tree);
4682ae04
AJ
164static tree decl_for_component_ref (tree);
165static rtx adjust_offset_for_component_ref (tree, rtx);
4f588890 166static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 167
aa317c97 168static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
169
170/* Set up all info needed to perform alias analysis on memory references. */
171
d4b60170 172/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
173#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
174
41472af8 175/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
176 different alias sets. We ignore alias sets in functions making use
177 of variable arguments because the va_arg macros on some systems are
178 not legal ANSI C. */
179#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 180 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 181
ea64ef27 182/* Cap the number of passes we make over the insns propagating alias
ac3d9668 183 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 184#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 185
9ae8ffe7
JL
186/* reg_base_value[N] gives an address to which register N is related.
187 If all sets after the first add or subtract to the current value
188 or otherwise modify it so it does not point to a different top level
189 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
190 of the first set.
191
192 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
193 expressions represent certain special values: function arguments and
ca7fd9cd 194 the stack, frame, and argument pointers.
b3b5ad95
JL
195
196 The contents of an ADDRESS is not normally used, the mode of the
197 ADDRESS determines whether the ADDRESS is a function argument or some
198 other special value. Pointer equality, not rtx_equal_p, determines whether
199 two ADDRESS expressions refer to the same base address.
200
201 The only use of the contents of an ADDRESS is for determining if the
202 current function performs nonlocal memory memory references for the
203 purposes of marking the function as a constant function. */
2a2c8203 204
08c79682 205static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 206static rtx *new_reg_base_value;
c582d54a
JH
207
208/* We preserve the copy of old array around to avoid amount of garbage
209 produced. About 8% of garbage produced were attributed to this
210 array. */
08c79682 211static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 212
bf1660a6
JL
213/* Static hunks of RTL used by the aliasing code; these are initialized
214 once per function to avoid unnecessary RTL allocations. */
215static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
216
08c79682
KH
217#define REG_BASE_VALUE(X) \
218 (REGNO (X) < VEC_length (rtx, reg_base_value) \
219 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 220
c13e8210 221/* Vector indexed by N giving the initial (unchanging) value known for
bb1acb3e
RH
222 pseudo-register N. This array is initialized in init_alias_analysis,
223 and does not change until end_alias_analysis is called. */
224static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
9ae8ffe7
JL
225
226/* Indicates number of valid entries in reg_known_value. */
bb1acb3e 227static GTY(()) unsigned int reg_known_value_size;
9ae8ffe7
JL
228
229/* Vector recording for each reg_known_value whether it is due to a
230 REG_EQUIV note. Future passes (viz., reload) may replace the
231 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
232 dependences that would be introduced if that happens.
233
234 The REG_EQUIV notes created in assign_parms may mention the arg
235 pointer, and there are explicit insns in the RTL that modify the
236 arg pointer. Thus we must ensure that such insns don't get
237 scheduled across each other because that would invalidate the
238 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
239 wrong, but solving the problem in the scheduler will likely give
240 better code, so we do it here. */
bb1acb3e 241static bool *reg_known_equiv_p;
9ae8ffe7 242
2a2c8203
JC
243/* True when scanning insns from the start of the rtl to the
244 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 245static bool copying_arguments;
9ae8ffe7 246
1a5640b4
KH
247DEF_VEC_P(alias_set_entry);
248DEF_VEC_ALLOC_P(alias_set_entry,gc);
249
3932261a 250/* The splay-tree used to store the various alias set entries. */
1a5640b4 251static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 252\f
3932261a
MM
253/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
254 such an entry, or NULL otherwise. */
255
9ddb66ca 256static inline alias_set_entry
4862826d 257get_alias_set_entry (alias_set_type alias_set)
3932261a 258{
1a5640b4 259 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
260}
261
ac3d9668
RK
262/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
263 the two MEMs cannot alias each other. */
3932261a 264
9ddb66ca 265static inline int
4f588890 266mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 267{
3932261a
MM
268/* Perform a basic sanity check. Namely, that there are no alias sets
269 if we're not using strict aliasing. This helps to catch bugs
270 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
271 where a MEM is allocated in some way other than by the use of
272 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
273 use alias sets to indicate that spilled registers cannot alias each
274 other, we might need to remove this check. */
298e6adc
NS
275 gcc_assert (flag_strict_aliasing
276 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 277
1da68f56
RK
278 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
279}
3932261a 280
1da68f56
RK
281/* Insert the NODE into the splay tree given by DATA. Used by
282 record_alias_subset via splay_tree_foreach. */
283
284static int
4682ae04 285insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
286{
287 splay_tree_insert ((splay_tree) data, node->key, node->value);
288
289 return 0;
290}
291
c58936b6
DB
292/* Return true if the first alias set is a subset of the second. */
293
294bool
4862826d 295alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
296{
297 alias_set_entry ase;
298
299 /* Everything is a subset of the "aliases everything" set. */
300 if (set2 == 0)
301 return true;
302
303 /* Otherwise, check if set1 is a subset of set2. */
304 ase = get_alias_set_entry (set2);
305 if (ase != 0
a7a512be
RG
306 && ((ase->has_zero_child && set1 == 0)
307 || splay_tree_lookup (ase->children,
308 (splay_tree_key) set1)))
c58936b6
DB
309 return true;
310 return false;
311}
312
1da68f56
RK
313/* Return 1 if the two specified alias sets may conflict. */
314
315int
4862826d 316alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
317{
318 alias_set_entry ase;
319
836f7794
EB
320 /* The easy case. */
321 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 322 return 1;
3932261a 323
3bdf5ad1 324 /* See if the first alias set is a subset of the second. */
1da68f56 325 ase = get_alias_set_entry (set1);
2bf105ab
RK
326 if (ase != 0
327 && (ase->has_zero_child
328 || splay_tree_lookup (ase->children,
1da68f56
RK
329 (splay_tree_key) set2)))
330 return 1;
3932261a
MM
331
332 /* Now do the same, but with the alias sets reversed. */
1da68f56 333 ase = get_alias_set_entry (set2);
2bf105ab
RK
334 if (ase != 0
335 && (ase->has_zero_child
336 || splay_tree_lookup (ase->children,
1da68f56
RK
337 (splay_tree_key) set1)))
338 return 1;
3932261a 339
1da68f56 340 /* The two alias sets are distinct and neither one is the
836f7794 341 child of the other. Therefore, they cannot conflict. */
1da68f56 342 return 0;
3932261a 343}
5399d643 344
71a6fe66
BM
345static int
346walk_mems_2 (rtx *x, rtx mem)
347{
348 if (MEM_P (*x))
349 {
350 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
351 return 1;
352
353 return -1;
354 }
355 return 0;
356}
357
358static int
359walk_mems_1 (rtx *x, rtx *pat)
360{
361 if (MEM_P (*x))
362 {
363 /* Visit all MEMs in *PAT and check indepedence. */
364 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
365 /* Indicate that dependence was determined and stop traversal. */
366 return 1;
367
368 return -1;
369 }
370 return 0;
371}
372
373/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
374bool
375insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
376{
377 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
378 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
379 &PATTERN (insn2));
380}
381
836f7794 382/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
383
384int
4862826d 385alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
386{
387 if (set1 == 0 || set2 == 0 || set1 == set2)
388 return 1;
389
390 return 0;
391}
392
1da68f56
RK
393/* Return 1 if any MEM object of type T1 will always conflict (using the
394 dependency routines in this file) with any MEM object of type T2.
395 This is used when allocating temporary storage. If T1 and/or T2 are
396 NULL_TREE, it means we know nothing about the storage. */
397
398int
4682ae04 399objects_must_conflict_p (tree t1, tree t2)
1da68f56 400{
4862826d 401 alias_set_type set1, set2;
82d610ec 402
e8ea2809
RK
403 /* If neither has a type specified, we don't know if they'll conflict
404 because we may be using them to store objects of various types, for
405 example the argument and local variables areas of inlined functions. */
981a4c34 406 if (t1 == 0 && t2 == 0)
e8ea2809
RK
407 return 0;
408
1da68f56
RK
409 /* If they are the same type, they must conflict. */
410 if (t1 == t2
411 /* Likewise if both are volatile. */
412 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
413 return 1;
414
82d610ec
RK
415 set1 = t1 ? get_alias_set (t1) : 0;
416 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 417
836f7794
EB
418 /* We can't use alias_sets_conflict_p because we must make sure
419 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
420 t2 for which a pair of subobjects of these respective subtypes
421 overlaps on the stack. */
836f7794 422 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
423}
424\f
3bdf5ad1
RK
425/* T is an expression with pointer type. Find the DECL on which this
426 expression is based. (For example, in `a[i]' this would be `a'.)
427 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 428 NULL_TREE is returned. */
3bdf5ad1
RK
429
430static tree
4682ae04 431find_base_decl (tree t)
3bdf5ad1 432{
6615c446 433 tree d0, d1;
3bdf5ad1
RK
434
435 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
436 return 0;
437
0b494699
ILT
438 /* If this is a declaration, return it. If T is based on a restrict
439 qualified decl, return that decl. */
6615c446 440 if (DECL_P (t))
0b494699
ILT
441 {
442 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
443 t = DECL_GET_RESTRICT_BASE (t);
444 return t;
445 }
3bdf5ad1
RK
446
447 /* Handle general expressions. It would be nice to deal with
448 COMPONENT_REFs here. If we could tell that `a' and `b' were the
449 same, then `a->f' and `b->f' are also the same. */
450 switch (TREE_CODE_CLASS (TREE_CODE (t)))
451 {
6615c446 452 case tcc_unary:
3bdf5ad1
RK
453 return find_base_decl (TREE_OPERAND (t, 0));
454
6615c446 455 case tcc_binary:
3bdf5ad1
RK
456 /* Return 0 if found in neither or both are the same. */
457 d0 = find_base_decl (TREE_OPERAND (t, 0));
458 d1 = find_base_decl (TREE_OPERAND (t, 1));
459 if (d0 == d1)
460 return d0;
461 else if (d0 == 0)
462 return d1;
463 else if (d1 == 0)
464 return d0;
465 else
466 return 0;
467
3bdf5ad1
RK
468 default:
469 return 0;
470 }
471}
472
2039d7aa
RH
473/* Return true if all nested component references handled by
474 get_inner_reference in T are such that we should use the alias set
475 provided by the object at the heart of T.
476
477 This is true for non-addressable components (which don't have their
478 own alias set), as well as components of objects in alias set zero.
479 This later point is a special case wherein we wish to override the
480 alias set used by the component, but we don't have per-FIELD_DECL
481 assignable alias sets. */
482
483bool
22ea9ec0 484component_uses_parent_alias_set (const_tree t)
6e24b709 485{
afe84921
RH
486 while (1)
487 {
2039d7aa 488 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 489 if (!handled_component_p (t))
2039d7aa 490 return false;
afe84921
RH
491
492 switch (TREE_CODE (t))
493 {
494 case COMPONENT_REF:
495 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 496 return true;
afe84921
RH
497 break;
498
499 case ARRAY_REF:
500 case ARRAY_RANGE_REF:
501 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 502 return true;
afe84921
RH
503 break;
504
505 case REALPART_EXPR:
506 case IMAGPART_EXPR:
507 break;
508
509 default:
510 /* Bitfields and casts are never addressable. */
2039d7aa 511 return true;
afe84921
RH
512 }
513
514 t = TREE_OPERAND (t, 0);
2039d7aa
RH
515 if (get_alias_set (TREE_TYPE (t)) == 0)
516 return true;
afe84921 517 }
6e24b709
RK
518}
519
5006671f
RG
520/* Return the alias set for the memory pointed to by T, which may be
521 either a type or an expression. Return -1 if there is nothing
522 special about dereferencing T. */
523
524static alias_set_type
525get_deref_alias_set_1 (tree t)
526{
527 /* If we're not doing any alias analysis, just assume everything
528 aliases everything else. */
529 if (!flag_strict_aliasing)
530 return 0;
531
532 if (! TYPE_P (t))
533 {
534 tree decl = find_base_decl (t);
535
536 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
537 {
538 /* If we haven't computed the actual alias set, do it now. */
539 if (DECL_POINTER_ALIAS_SET (decl) == -2)
540 {
541 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
542
543 /* No two restricted pointers can point at the same thing.
544 However, a restricted pointer can point at the same thing
545 as an unrestricted pointer, if that unrestricted pointer
546 is based on the restricted pointer. So, we make the
547 alias set for the restricted pointer a subset of the
548 alias set for the type pointed to by the type of the
549 decl. */
550 alias_set_type pointed_to_alias_set
551 = get_alias_set (pointed_to_type);
552
553 if (pointed_to_alias_set == 0)
554 /* It's not legal to make a subset of alias set zero. */
555 DECL_POINTER_ALIAS_SET (decl) = 0;
556 else if (AGGREGATE_TYPE_P (pointed_to_type))
557 /* For an aggregate, we must treat the restricted
558 pointer the same as an ordinary pointer. If we
559 were to make the type pointed to by the
560 restricted pointer a subset of the pointed-to
561 type, then we would believe that other subsets
562 of the pointed-to type (such as fields of that
563 type) do not conflict with the type pointed to
564 by the restricted pointer. */
565 DECL_POINTER_ALIAS_SET (decl)
566 = pointed_to_alias_set;
567 else
568 {
569 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
570 record_alias_subset (pointed_to_alias_set,
571 DECL_POINTER_ALIAS_SET (decl));
572 }
573 }
574
575 /* We use the alias set indicated in the declaration. */
576 return DECL_POINTER_ALIAS_SET (decl);
577 }
578
579 /* Now all we care about is the type. */
580 t = TREE_TYPE (t);
581 }
582
583 /* If we have an INDIRECT_REF via a void pointer, we don't
584 know anything about what that might alias. Likewise if the
585 pointer is marked that way. */
586 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
587 || TYPE_REF_CAN_ALIAS_ALL (t))
588 return 0;
589
590 return -1;
591}
592
593/* Return the alias set for the memory pointed to by T, which may be
594 either a type or an expression. */
595
596alias_set_type
597get_deref_alias_set (tree t)
598{
599 alias_set_type set = get_deref_alias_set_1 (t);
600
601 /* Fall back to the alias-set of the pointed-to type. */
602 if (set == -1)
603 {
604 if (! TYPE_P (t))
605 t = TREE_TYPE (t);
606 set = get_alias_set (TREE_TYPE (t));
607 }
608
609 return set;
610}
611
3bdf5ad1
RK
612/* Return the alias set for T, which may be either a type or an
613 expression. Call language-specific routine for help, if needed. */
614
4862826d 615alias_set_type
4682ae04 616get_alias_set (tree t)
3bdf5ad1 617{
4862826d 618 alias_set_type set;
3bdf5ad1
RK
619
620 /* If we're not doing any alias analysis, just assume everything
621 aliases everything else. Also return 0 if this or its type is
622 an error. */
623 if (! flag_strict_aliasing || t == error_mark_node
624 || (! TYPE_P (t)
625 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
626 return 0;
627
628 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
629 language-specific routine may make mutually-recursive calls to each other
630 to figure out what to do. At each juncture, we see if this is a tree
631 that the language may need to handle specially. First handle things that
738cc472 632 aren't types. */
f824e5c3 633 if (! TYPE_P (t))
3bdf5ad1 634 {
738cc472 635 tree inner = t;
738cc472 636
8ac61af7
RK
637 /* Remove any nops, then give the language a chance to do
638 something with this tree before we look at it. */
639 STRIP_NOPS (t);
ae2bcd98 640 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
641 if (set != -1)
642 return set;
643
738cc472 644 /* First see if the actual object referenced is an INDIRECT_REF from a
6fce44af
RK
645 restrict-qualified pointer or a "void *". */
646 while (handled_component_p (inner))
738cc472 647 {
6fce44af 648 inner = TREE_OPERAND (inner, 0);
8ac61af7 649 STRIP_NOPS (inner);
738cc472
RK
650 }
651
1b096a0a 652 if (INDIRECT_REF_P (inner))
738cc472 653 {
5006671f
RG
654 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
655 if (set != -1)
656 return set;
738cc472
RK
657 }
658
659 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 660 to, processing conversions as above. */
2039d7aa 661 while (component_uses_parent_alias_set (t))
f47e9b4e 662 {
6fce44af 663 t = TREE_OPERAND (t, 0);
8ac61af7
RK
664 STRIP_NOPS (t);
665 }
f824e5c3 666
738cc472
RK
667 /* If we've already determined the alias set for a decl, just return
668 it. This is necessary for C++ anonymous unions, whose component
669 variables don't look like union members (boo!). */
5755cd38 670 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 671 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
672 return MEM_ALIAS_SET (DECL_RTL (t));
673
f824e5c3
RK
674 /* Now all we care about is the type. */
675 t = TREE_TYPE (t);
3bdf5ad1
RK
676 }
677
3bdf5ad1 678 /* Variant qualifiers don't affect the alias set, so get the main
791f1714
RG
679 variant. Always use the canonical type as well.
680 If this is a type with a known alias set, return it. */
3bdf5ad1 681 t = TYPE_MAIN_VARIANT (t);
791f1714
RG
682 if (TYPE_CANONICAL (t))
683 t = TYPE_CANONICAL (t);
738cc472 684 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
685 return TYPE_ALIAS_SET (t);
686
36784d0e
RG
687 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
688 if (!COMPLETE_TYPE_P (t))
689 {
690 /* For arrays with unknown size the conservative answer is the
691 alias set of the element type. */
692 if (TREE_CODE (t) == ARRAY_TYPE)
693 return get_alias_set (TREE_TYPE (t));
694
695 /* But return zero as a conservative answer for incomplete types. */
696 return 0;
697 }
698
3bdf5ad1 699 /* See if the language has special handling for this type. */
ae2bcd98 700 set = lang_hooks.get_alias_set (t);
8ac61af7 701 if (set != -1)
738cc472 702 return set;
2bf105ab 703
3bdf5ad1
RK
704 /* There are no objects of FUNCTION_TYPE, so there's no point in
705 using up an alias set for them. (There are, of course, pointers
706 and references to functions, but that's different.) */
e11e491d
RG
707 else if (TREE_CODE (t) == FUNCTION_TYPE
708 || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 709 set = 0;
74d86f4f
RH
710
711 /* Unless the language specifies otherwise, let vector types alias
712 their components. This avoids some nasty type punning issues in
713 normal usage. And indeed lets vectors be treated more like an
714 array slice. */
715 else if (TREE_CODE (t) == VECTOR_TYPE)
716 set = get_alias_set (TREE_TYPE (t));
717
4653cae5
RG
718 /* Unless the language specifies otherwise, treat array types the
719 same as their components. This avoids the asymmetry we get
720 through recording the components. Consider accessing a
721 character(kind=1) through a reference to a character(kind=1)[1:1].
722 Or consider if we want to assign integer(kind=4)[0:D.1387] and
723 integer(kind=4)[4] the same alias set or not.
724 Just be pragmatic here and make sure the array and its element
725 type get the same alias set assigned. */
726 else if (TREE_CODE (t) == ARRAY_TYPE
727 && !TYPE_NONALIASED_COMPONENT (t))
728 set = get_alias_set (TREE_TYPE (t));
729
3bdf5ad1
RK
730 else
731 /* Otherwise make a new alias set for this type. */
732 set = new_alias_set ();
733
734 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
735
736 /* If this is an aggregate type, we must record any component aliasing
737 information. */
1d79fd2c 738 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
739 record_component_aliases (t);
740
3bdf5ad1
RK
741 return set;
742}
743
744/* Return a brand-new alias set. */
745
4862826d 746alias_set_type
4682ae04 747new_alias_set (void)
3bdf5ad1 748{
3bdf5ad1 749 if (flag_strict_aliasing)
9ddb66ca 750 {
1a5640b4
KH
751 if (alias_sets == 0)
752 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
753 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
754 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 755 }
3bdf5ad1
RK
756 else
757 return 0;
758}
3932261a 759
01d28c3f
JM
760/* Indicate that things in SUBSET can alias things in SUPERSET, but that
761 not everything that aliases SUPERSET also aliases SUBSET. For example,
762 in C, a store to an `int' can alias a load of a structure containing an
763 `int', and vice versa. But it can't alias a load of a 'double' member
764 of the same structure. Here, the structure would be the SUPERSET and
765 `int' the SUBSET. This relationship is also described in the comment at
766 the beginning of this file.
767
768 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
769
770 It is illegal for SUPERSET to be zero; everything is implicitly a
771 subset of alias set zero. */
772
794511d2 773void
4862826d 774record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
775{
776 alias_set_entry superset_entry;
777 alias_set_entry subset_entry;
778
f47e9b4e
RK
779 /* It is possible in complex type situations for both sets to be the same,
780 in which case we can ignore this operation. */
781 if (superset == subset)
782 return;
783
298e6adc 784 gcc_assert (superset);
3932261a
MM
785
786 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 787 if (superset_entry == 0)
3932261a
MM
788 {
789 /* Create an entry for the SUPERSET, so that we have a place to
790 attach the SUBSET. */
f883e0a7 791 superset_entry = GGC_NEW (struct alias_set_entry);
3932261a 792 superset_entry->alias_set = superset;
ca7fd9cd 793 superset_entry->children
b604074c 794 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 795 superset_entry->has_zero_child = 0;
1a5640b4 796 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
797 }
798
2bf105ab
RK
799 if (subset == 0)
800 superset_entry->has_zero_child = 1;
801 else
802 {
803 subset_entry = get_alias_set_entry (subset);
804 /* If there is an entry for the subset, enter all of its children
805 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 806 if (subset_entry)
2bf105ab
RK
807 {
808 if (subset_entry->has_zero_child)
809 superset_entry->has_zero_child = 1;
d4b60170 810
2bf105ab
RK
811 splay_tree_foreach (subset_entry->children, insert_subset_children,
812 superset_entry->children);
813 }
3932261a 814
2bf105ab 815 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 816 splay_tree_insert (superset_entry->children,
2bf105ab
RK
817 (splay_tree_key) subset, 0);
818 }
3932261a
MM
819}
820
a0c33338
RK
821/* Record that component types of TYPE, if any, are part of that type for
822 aliasing purposes. For record types, we only record component types
b5487346
EB
823 for fields that are not marked non-addressable. For array types, we
824 only record the component type if it is not marked non-aliased. */
a0c33338
RK
825
826void
4682ae04 827record_component_aliases (tree type)
a0c33338 828{
4862826d 829 alias_set_type superset = get_alias_set (type);
a0c33338
RK
830 tree field;
831
832 if (superset == 0)
833 return;
834
835 switch (TREE_CODE (type))
836 {
a0c33338
RK
837 case RECORD_TYPE:
838 case UNION_TYPE:
839 case QUAL_UNION_TYPE:
6614fd40 840 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 841 if (TYPE_BINFO (type))
ca7fd9cd
KH
842 {
843 int i;
fa743e8c 844 tree binfo, base_binfo;
c22cacf3 845
fa743e8c
NS
846 for (binfo = TYPE_BINFO (type), i = 0;
847 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
848 record_alias_subset (superset,
849 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 850 }
a0c33338 851 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b5487346 852 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 853 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
854 break;
855
1d79fd2c
JW
856 case COMPLEX_TYPE:
857 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
858 break;
859
4653cae5
RG
860 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
861 element type. */
862
a0c33338
RK
863 default:
864 break;
865 }
866}
867
3bdf5ad1
RK
868/* Allocate an alias set for use in storing and reading from the varargs
869 spill area. */
870
4862826d 871static GTY(()) alias_set_type varargs_set = -1;
f103e34d 872
4862826d 873alias_set_type
4682ae04 874get_varargs_alias_set (void)
3bdf5ad1 875{
cd3ce9b4
JM
876#if 1
877 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
878 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
879 consistently use the varargs alias set for loads from the varargs
880 area. So don't use it anywhere. */
881 return 0;
882#else
f103e34d
GK
883 if (varargs_set == -1)
884 varargs_set = new_alias_set ();
3bdf5ad1 885
f103e34d 886 return varargs_set;
cd3ce9b4 887#endif
3bdf5ad1
RK
888}
889
890/* Likewise, but used for the fixed portions of the frame, e.g., register
891 save areas. */
892
4862826d 893static GTY(()) alias_set_type frame_set = -1;
f103e34d 894
4862826d 895alias_set_type
4682ae04 896get_frame_alias_set (void)
3bdf5ad1 897{
f103e34d
GK
898 if (frame_set == -1)
899 frame_set = new_alias_set ();
3bdf5ad1 900
f103e34d 901 return frame_set;
3bdf5ad1
RK
902}
903
2a2c8203
JC
904/* Inside SRC, the source of a SET, find a base address. */
905
9ae8ffe7 906static rtx
4682ae04 907find_base_value (rtx src)
9ae8ffe7 908{
713f41f9 909 unsigned int regno;
0aacc8ed 910
53451050
RS
911#if defined (FIND_BASE_TERM)
912 /* Try machine-dependent ways to find the base term. */
913 src = FIND_BASE_TERM (src);
914#endif
915
9ae8ffe7
JL
916 switch (GET_CODE (src))
917 {
918 case SYMBOL_REF:
919 case LABEL_REF:
920 return src;
921
922 case REG:
fb6754f0 923 regno = REGNO (src);
d4b60170 924 /* At the start of a function, argument registers have known base
2a2c8203
JC
925 values which may be lost later. Returning an ADDRESS
926 expression here allows optimization based on argument values
927 even when the argument registers are used for other purposes. */
713f41f9
BS
928 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
929 return new_reg_base_value[regno];
73774bc7 930
eaf407a5 931 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
932 for non-fixed hard regs since it can result in a circular
933 dependency chain for registers which have values at function entry.
eaf407a5
JL
934
935 The test above is not sufficient because the scheduler may move
936 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 937 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 938 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
939 {
940 /* If we're inside init_alias_analysis, use new_reg_base_value
941 to reduce the number of relaxation iterations. */
1afdf91c 942 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 943 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
944 return new_reg_base_value[regno];
945
08c79682
KH
946 if (VEC_index (rtx, reg_base_value, regno))
947 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 948 }
73774bc7 949
e3f049a8 950 return 0;
9ae8ffe7
JL
951
952 case MEM:
953 /* Check for an argument passed in memory. Only record in the
954 copying-arguments block; it is too hard to track changes
955 otherwise. */
956 if (copying_arguments
957 && (XEXP (src, 0) == arg_pointer_rtx
958 || (GET_CODE (XEXP (src, 0)) == PLUS
959 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 960 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
961 return 0;
962
963 case CONST:
964 src = XEXP (src, 0);
965 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
966 break;
d4b60170 967
ec5c56db 968 /* ... fall through ... */
2a2c8203 969
9ae8ffe7
JL
970 case PLUS:
971 case MINUS:
2a2c8203 972 {
ec907dd8
JL
973 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
974
0134bf2d
DE
975 /* If either operand is a REG that is a known pointer, then it
976 is the base. */
977 if (REG_P (src_0) && REG_POINTER (src_0))
978 return find_base_value (src_0);
979 if (REG_P (src_1) && REG_POINTER (src_1))
980 return find_base_value (src_1);
981
ec907dd8
JL
982 /* If either operand is a REG, then see if we already have
983 a known value for it. */
0134bf2d 984 if (REG_P (src_0))
ec907dd8
JL
985 {
986 temp = find_base_value (src_0);
d4b60170 987 if (temp != 0)
ec907dd8
JL
988 src_0 = temp;
989 }
990
0134bf2d 991 if (REG_P (src_1))
ec907dd8
JL
992 {
993 temp = find_base_value (src_1);
d4b60170 994 if (temp!= 0)
ec907dd8
JL
995 src_1 = temp;
996 }
2a2c8203 997
0134bf2d
DE
998 /* If either base is named object or a special address
999 (like an argument or stack reference), then use it for the
1000 base term. */
1001 if (src_0 != 0
1002 && (GET_CODE (src_0) == SYMBOL_REF
1003 || GET_CODE (src_0) == LABEL_REF
1004 || (GET_CODE (src_0) == ADDRESS
1005 && GET_MODE (src_0) != VOIDmode)))
1006 return src_0;
1007
1008 if (src_1 != 0
1009 && (GET_CODE (src_1) == SYMBOL_REF
1010 || GET_CODE (src_1) == LABEL_REF
1011 || (GET_CODE (src_1) == ADDRESS
1012 && GET_MODE (src_1) != VOIDmode)))
1013 return src_1;
1014
d4b60170 1015 /* Guess which operand is the base address:
ec907dd8
JL
1016 If either operand is a symbol, then it is the base. If
1017 either operand is a CONST_INT, then the other is the base. */
d4b60170 1018 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 1019 return find_base_value (src_0);
d4b60170 1020 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
1021 return find_base_value (src_1);
1022
9ae8ffe7 1023 return 0;
2a2c8203
JC
1024 }
1025
1026 case LO_SUM:
1027 /* The standard form is (lo_sum reg sym) so look only at the
1028 second operand. */
1029 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1030
1031 case AND:
1032 /* If the second operand is constant set the base
ec5c56db 1033 address to the first operand. */
2a2c8203
JC
1034 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
1035 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1036 return 0;
1037
61f0131c
R
1038 case TRUNCATE:
1039 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1040 break;
1041 /* Fall through. */
9ae8ffe7 1042 case HIGH:
d288e53d
DE
1043 case PRE_INC:
1044 case PRE_DEC:
1045 case POST_INC:
1046 case POST_DEC:
1047 case PRE_MODIFY:
1048 case POST_MODIFY:
2a2c8203 1049 return find_base_value (XEXP (src, 0));
1d300e19 1050
0aacc8ed
RK
1051 case ZERO_EXTEND:
1052 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1053 {
1054 rtx temp = find_base_value (XEXP (src, 0));
1055
5ae6cd0d 1056 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1057 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1058
1059 return temp;
1060 }
1061
1d300e19
KG
1062 default:
1063 break;
9ae8ffe7
JL
1064 }
1065
1066 return 0;
1067}
1068
1069/* Called from init_alias_analysis indirectly through note_stores. */
1070
d4b60170 1071/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
1072 register N has been set in this function. */
1073static char *reg_seen;
1074
13309a5f
JC
1075/* Addresses which are known not to alias anything else are identified
1076 by a unique integer. */
ec907dd8
JL
1077static int unique_id;
1078
2a2c8203 1079static void
7bc980e1 1080record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1081{
b3694847 1082 unsigned regno;
9ae8ffe7 1083 rtx src;
c28b4e40 1084 int n;
9ae8ffe7 1085
f8cfc6aa 1086 if (!REG_P (dest))
9ae8ffe7
JL
1087 return;
1088
fb6754f0 1089 regno = REGNO (dest);
9ae8ffe7 1090
08c79682 1091 gcc_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1092
c28b4e40
JW
1093 /* If this spans multiple hard registers, then we must indicate that every
1094 register has an unusable value. */
1095 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1096 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1097 else
1098 n = 1;
1099 if (n != 1)
1100 {
1101 while (--n >= 0)
1102 {
1103 reg_seen[regno + n] = 1;
1104 new_reg_base_value[regno + n] = 0;
1105 }
1106 return;
1107 }
1108
9ae8ffe7
JL
1109 if (set)
1110 {
1111 /* A CLOBBER wipes out any old value but does not prevent a previously
1112 unset register from acquiring a base address (i.e. reg_seen is not
1113 set). */
1114 if (GET_CODE (set) == CLOBBER)
1115 {
ec907dd8 1116 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1117 return;
1118 }
1119 src = SET_SRC (set);
1120 }
1121 else
1122 {
9ae8ffe7
JL
1123 if (reg_seen[regno])
1124 {
ec907dd8 1125 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1126 return;
1127 }
1128 reg_seen[regno] = 1;
38a448ca
RH
1129 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1130 GEN_INT (unique_id++));
9ae8ffe7
JL
1131 return;
1132 }
1133
5da6f168
RS
1134 /* If this is not the first set of REGNO, see whether the new value
1135 is related to the old one. There are two cases of interest:
1136
1137 (1) The register might be assigned an entirely new value
1138 that has the same base term as the original set.
1139
1140 (2) The set might be a simple self-modification that
1141 cannot change REGNO's base value.
1142
1143 If neither case holds, reject the original base value as invalid.
1144 Note that the following situation is not detected:
1145
c22cacf3 1146 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1147
9ae8ffe7
JL
1148 ANSI C does not allow computing the difference of addresses
1149 of distinct top level objects. */
5da6f168
RS
1150 if (new_reg_base_value[regno] != 0
1151 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1152 switch (GET_CODE (src))
1153 {
2a2c8203 1154 case LO_SUM:
9ae8ffe7
JL
1155 case MINUS:
1156 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1157 new_reg_base_value[regno] = 0;
9ae8ffe7 1158 break;
61f0131c
R
1159 case PLUS:
1160 /* If the value we add in the PLUS is also a valid base value,
1161 this might be the actual base value, and the original value
1162 an index. */
1163 {
1164 rtx other = NULL_RTX;
1165
1166 if (XEXP (src, 0) == dest)
1167 other = XEXP (src, 1);
1168 else if (XEXP (src, 1) == dest)
1169 other = XEXP (src, 0);
1170
1171 if (! other || find_base_value (other))
1172 new_reg_base_value[regno] = 0;
1173 break;
1174 }
9ae8ffe7
JL
1175 case AND:
1176 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1177 new_reg_base_value[regno] = 0;
9ae8ffe7 1178 break;
9ae8ffe7 1179 default:
ec907dd8 1180 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1181 break;
1182 }
1183 /* If this is the first set of a register, record the value. */
1184 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1185 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1186 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1187
1188 reg_seen[regno] = 1;
1189}
1190
bb1acb3e
RH
1191/* If a value is known for REGNO, return it. */
1192
c22cacf3 1193rtx
bb1acb3e
RH
1194get_reg_known_value (unsigned int regno)
1195{
1196 if (regno >= FIRST_PSEUDO_REGISTER)
1197 {
1198 regno -= FIRST_PSEUDO_REGISTER;
1199 if (regno < reg_known_value_size)
1200 return reg_known_value[regno];
1201 }
1202 return NULL;
43fe47ca
JW
1203}
1204
bb1acb3e
RH
1205/* Set it. */
1206
1207static void
1208set_reg_known_value (unsigned int regno, rtx val)
1209{
1210 if (regno >= FIRST_PSEUDO_REGISTER)
1211 {
1212 regno -= FIRST_PSEUDO_REGISTER;
1213 if (regno < reg_known_value_size)
1214 reg_known_value[regno] = val;
1215 }
1216}
1217
1218/* Similarly for reg_known_equiv_p. */
1219
1220bool
1221get_reg_known_equiv_p (unsigned int regno)
1222{
1223 if (regno >= FIRST_PSEUDO_REGISTER)
1224 {
1225 regno -= FIRST_PSEUDO_REGISTER;
1226 if (regno < reg_known_value_size)
1227 return reg_known_equiv_p[regno];
1228 }
1229 return false;
1230}
1231
1232static void
1233set_reg_known_equiv_p (unsigned int regno, bool val)
1234{
1235 if (regno >= FIRST_PSEUDO_REGISTER)
1236 {
1237 regno -= FIRST_PSEUDO_REGISTER;
1238 if (regno < reg_known_value_size)
1239 reg_known_equiv_p[regno] = val;
1240 }
1241}
1242
1243
db048faf
MM
1244/* Returns a canonical version of X, from the point of view alias
1245 analysis. (For example, if X is a MEM whose address is a register,
1246 and the register has a known value (say a SYMBOL_REF), then a MEM
1247 whose address is the SYMBOL_REF is returned.) */
1248
1249rtx
4682ae04 1250canon_rtx (rtx x)
9ae8ffe7
JL
1251{
1252 /* Recursively look for equivalences. */
f8cfc6aa 1253 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1254 {
1255 rtx t = get_reg_known_value (REGNO (x));
1256 if (t == x)
1257 return x;
1258 if (t)
1259 return canon_rtx (t);
1260 }
1261
1262 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1263 {
1264 rtx x0 = canon_rtx (XEXP (x, 0));
1265 rtx x1 = canon_rtx (XEXP (x, 1));
1266
1267 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1268 {
9ae8ffe7 1269 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1270 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1271 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1272 return plus_constant (x0, INTVAL (x1));
38a448ca 1273 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1274 }
1275 }
d4b60170 1276
9ae8ffe7
JL
1277 /* This gives us much better alias analysis when called from
1278 the loop optimizer. Note we want to leave the original
1279 MEM alone, but need to return the canonicalized MEM with
1280 all the flags with their original values. */
3c0cb5de 1281 else if (MEM_P (x))
f1ec5147 1282 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1283
9ae8ffe7
JL
1284 return x;
1285}
1286
1287/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1288 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1289
1290 We use the data in reg_known_value above to see if two registers with
1291 different numbers are, in fact, equivalent. */
1292
1293static int
ed7a4b4b 1294rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1295{
b3694847
SS
1296 int i;
1297 int j;
1298 enum rtx_code code;
1299 const char *fmt;
9ae8ffe7
JL
1300
1301 if (x == 0 && y == 0)
1302 return 1;
1303 if (x == 0 || y == 0)
1304 return 0;
d4b60170 1305
9ae8ffe7
JL
1306 if (x == y)
1307 return 1;
1308
1309 code = GET_CODE (x);
1310 /* Rtx's of different codes cannot be equal. */
1311 if (code != GET_CODE (y))
1312 return 0;
1313
1314 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1315 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1316
1317 if (GET_MODE (x) != GET_MODE (y))
1318 return 0;
1319
db048faf
MM
1320 /* Some RTL can be compared without a recursive examination. */
1321 switch (code)
1322 {
1323 case REG:
1324 return REGNO (x) == REGNO (y);
1325
1326 case LABEL_REF:
1327 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1328
db048faf
MM
1329 case SYMBOL_REF:
1330 return XSTR (x, 0) == XSTR (y, 0);
1331
40e02b4a 1332 case VALUE:
db048faf
MM
1333 case CONST_INT:
1334 case CONST_DOUBLE:
091a3ac7 1335 case CONST_FIXED:
db048faf
MM
1336 /* There's no need to compare the contents of CONST_DOUBLEs or
1337 CONST_INTs because pointer equality is a good enough
1338 comparison for these nodes. */
1339 return 0;
1340
db048faf
MM
1341 default:
1342 break;
1343 }
9ae8ffe7 1344
45183e03
JH
1345 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1346 if (code == PLUS)
9ae8ffe7
JL
1347 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1348 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1349 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1350 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1351 /* For commutative operations, the RTX match if the operand match in any
1352 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1353 if (COMMUTATIVE_P (x))
45183e03
JH
1354 {
1355 rtx xop0 = canon_rtx (XEXP (x, 0));
1356 rtx yop0 = canon_rtx (XEXP (y, 0));
1357 rtx yop1 = canon_rtx (XEXP (y, 1));
1358
1359 return ((rtx_equal_for_memref_p (xop0, yop0)
1360 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1361 || (rtx_equal_for_memref_p (xop0, yop1)
1362 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1363 }
ec8e098d 1364 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1365 {
1366 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1367 canon_rtx (XEXP (y, 0)))
45183e03
JH
1368 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1369 canon_rtx (XEXP (y, 1))));
1370 }
ec8e098d 1371 else if (UNARY_P (x))
45183e03 1372 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1373 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1374
1375 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1376 fail to match, return 0 for the whole things.
1377
1378 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1379
1380 fmt = GET_RTX_FORMAT (code);
1381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1382 {
1383 switch (fmt[i])
1384 {
9ae8ffe7
JL
1385 case 'i':
1386 if (XINT (x, i) != XINT (y, i))
1387 return 0;
1388 break;
1389
9ae8ffe7
JL
1390 case 'E':
1391 /* Two vectors must have the same length. */
1392 if (XVECLEN (x, i) != XVECLEN (y, i))
1393 return 0;
1394
1395 /* And the corresponding elements must match. */
1396 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1397 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1398 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1399 return 0;
1400 break;
1401
1402 case 'e':
45183e03
JH
1403 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1404 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1405 return 0;
1406 break;
1407
3237ac18
AH
1408 /* This can happen for asm operands. */
1409 case 's':
1410 if (strcmp (XSTR (x, i), XSTR (y, i)))
1411 return 0;
1412 break;
1413
aee21ba9
JL
1414 /* This can happen for an asm which clobbers memory. */
1415 case '0':
1416 break;
1417
9ae8ffe7
JL
1418 /* It is believed that rtx's at this level will never
1419 contain anything but integers and other rtx's,
1420 except for within LABEL_REFs and SYMBOL_REFs. */
1421 default:
298e6adc 1422 gcc_unreachable ();
9ae8ffe7
JL
1423 }
1424 }
1425 return 1;
1426}
1427
94f24ddc 1428rtx
4682ae04 1429find_base_term (rtx x)
9ae8ffe7 1430{
eab5c70a
BS
1431 cselib_val *val;
1432 struct elt_loc_list *l;
1433
b949ea8b
JW
1434#if defined (FIND_BASE_TERM)
1435 /* Try machine-dependent ways to find the base term. */
1436 x = FIND_BASE_TERM (x);
1437#endif
1438
9ae8ffe7
JL
1439 switch (GET_CODE (x))
1440 {
1441 case REG:
1442 return REG_BASE_VALUE (x);
1443
d288e53d
DE
1444 case TRUNCATE:
1445 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1446 return 0;
d288e53d 1447 /* Fall through. */
9ae8ffe7 1448 case HIGH:
6d849a2a
JL
1449 case PRE_INC:
1450 case PRE_DEC:
1451 case POST_INC:
1452 case POST_DEC:
d288e53d
DE
1453 case PRE_MODIFY:
1454 case POST_MODIFY:
6d849a2a
JL
1455 return find_base_term (XEXP (x, 0));
1456
1abade85
RK
1457 case ZERO_EXTEND:
1458 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1459 {
1460 rtx temp = find_base_term (XEXP (x, 0));
1461
5ae6cd0d 1462 if (temp != 0 && CONSTANT_P (temp))
1abade85 1463 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1464
1465 return temp;
1466 }
1467
eab5c70a
BS
1468 case VALUE:
1469 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1470 if (!val)
1471 return 0;
eab5c70a
BS
1472 for (l = val->locs; l; l = l->next)
1473 if ((x = find_base_term (l->loc)) != 0)
1474 return x;
1475 return 0;
1476
9ae8ffe7
JL
1477 case CONST:
1478 x = XEXP (x, 0);
1479 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1480 return 0;
938d968e 1481 /* Fall through. */
9ae8ffe7 1482 case LO_SUM:
be6568d8
LM
1483 /* The standard form is (lo_sum reg sym) so look only at the
1484 second operand. */
1485 return find_base_term (XEXP (x, 1));
9ae8ffe7
JL
1486 case PLUS:
1487 case MINUS:
1488 {
3c567fae
JL
1489 rtx tmp1 = XEXP (x, 0);
1490 rtx tmp2 = XEXP (x, 1);
1491
f5143c46 1492 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1493 the two operands represents the real base address. Otherwise this
1494 routine may return the index register instead of the base register.
1495
1496 That may cause us to believe no aliasing was possible, when in
1497 fact aliasing is possible.
1498
1499 We use a few simple tests to guess the base register. Additional
1500 tests can certainly be added. For example, if one of the operands
1501 is a shift or multiply, then it must be the index register and the
1502 other operand is the base register. */
ca7fd9cd 1503
b949ea8b
JW
1504 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1505 return find_base_term (tmp2);
1506
3c567fae
JL
1507 /* If either operand is known to be a pointer, then use it
1508 to determine the base term. */
3502dc9c 1509 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1510 return find_base_term (tmp1);
1511
3502dc9c 1512 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1513 return find_base_term (tmp2);
1514
1515 /* Neither operand was known to be a pointer. Go ahead and find the
1516 base term for both operands. */
1517 tmp1 = find_base_term (tmp1);
1518 tmp2 = find_base_term (tmp2);
1519
1520 /* If either base term is named object or a special address
1521 (like an argument or stack reference), then use it for the
1522 base term. */
d4b60170 1523 if (tmp1 != 0
3c567fae
JL
1524 && (GET_CODE (tmp1) == SYMBOL_REF
1525 || GET_CODE (tmp1) == LABEL_REF
1526 || (GET_CODE (tmp1) == ADDRESS
1527 && GET_MODE (tmp1) != VOIDmode)))
1528 return tmp1;
1529
d4b60170 1530 if (tmp2 != 0
3c567fae
JL
1531 && (GET_CODE (tmp2) == SYMBOL_REF
1532 || GET_CODE (tmp2) == LABEL_REF
1533 || (GET_CODE (tmp2) == ADDRESS
1534 && GET_MODE (tmp2) != VOIDmode)))
1535 return tmp2;
1536
1537 /* We could not determine which of the two operands was the
1538 base register and which was the index. So we can determine
1539 nothing from the base alias check. */
1540 return 0;
9ae8ffe7
JL
1541 }
1542
1543 case AND:
d288e53d
DE
1544 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1545 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1546 return 0;
1547
1548 case SYMBOL_REF:
1549 case LABEL_REF:
1550 return x;
1551
1552 default:
1553 return 0;
1554 }
1555}
1556
1557/* Return 0 if the addresses X and Y are known to point to different
1558 objects, 1 if they might be pointers to the same object. */
1559
1560static int
4682ae04
AJ
1561base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1562 enum machine_mode y_mode)
9ae8ffe7
JL
1563{
1564 rtx x_base = find_base_term (x);
1565 rtx y_base = find_base_term (y);
1566
1c72c7f6
JC
1567 /* If the address itself has no known base see if a known equivalent
1568 value has one. If either address still has no known base, nothing
1569 is known about aliasing. */
1570 if (x_base == 0)
1571 {
1572 rtx x_c;
d4b60170 1573
1c72c7f6
JC
1574 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1575 return 1;
d4b60170 1576
1c72c7f6
JC
1577 x_base = find_base_term (x_c);
1578 if (x_base == 0)
1579 return 1;
1580 }
9ae8ffe7 1581
1c72c7f6
JC
1582 if (y_base == 0)
1583 {
1584 rtx y_c;
1585 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1586 return 1;
d4b60170 1587
1c72c7f6
JC
1588 y_base = find_base_term (y_c);
1589 if (y_base == 0)
1590 return 1;
1591 }
1592
1593 /* If the base addresses are equal nothing is known about aliasing. */
1594 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1595 return 1;
1596
435da628
UB
1597 /* The base addresses are different expressions. If they are not accessed
1598 via AND, there is no conflict. We can bring knowledge of object
1599 alignment into play here. For example, on alpha, "char a, b;" can
1600 alias one another, though "char a; long b;" cannot. AND addesses may
1601 implicitly alias surrounding objects; i.e. unaligned access in DImode
1602 via AND address can alias all surrounding object types except those
1603 with aligment 8 or higher. */
1604 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1605 return 1;
1606 if (GET_CODE (x) == AND
1607 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1608 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1609 return 1;
1610 if (GET_CODE (y) == AND
1611 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1612 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1613 return 1;
1614
1615 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1616 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1617 return 0;
9ae8ffe7
JL
1618
1619 /* If one address is a stack reference there can be no alias:
1620 stack references using different base registers do not alias,
1621 a stack reference can not alias a parameter, and a stack reference
1622 can not alias a global. */
1623 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1624 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1625 return 0;
1626
1627 if (! flag_argument_noalias)
1628 return 1;
1629
1630 if (flag_argument_noalias > 1)
1631 return 0;
1632
ec5c56db 1633 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1634 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1635}
1636
eab5c70a
BS
1637/* Convert the address X into something we can use. This is done by returning
1638 it unchanged unless it is a value; in the latter case we call cselib to get
1639 a more useful rtx. */
3bdf5ad1 1640
a13d4ebf 1641rtx
4682ae04 1642get_addr (rtx x)
eab5c70a
BS
1643{
1644 cselib_val *v;
1645 struct elt_loc_list *l;
1646
1647 if (GET_CODE (x) != VALUE)
1648 return x;
1649 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1650 if (v)
1651 {
1652 for (l = v->locs; l; l = l->next)
1653 if (CONSTANT_P (l->loc))
1654 return l->loc;
1655 for (l = v->locs; l; l = l->next)
3c0cb5de 1656 if (!REG_P (l->loc) && !MEM_P (l->loc))
40e02b4a
JH
1657 return l->loc;
1658 if (v->locs)
1659 return v->locs->loc;
1660 }
eab5c70a
BS
1661 return x;
1662}
1663
39cec1ac
MH
1664/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1665 where SIZE is the size in bytes of the memory reference. If ADDR
1666 is not modified by the memory reference then ADDR is returned. */
1667
04e2b4d3 1668static rtx
4682ae04 1669addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1670{
1671 int offset = 0;
ca7fd9cd 1672
39cec1ac
MH
1673 switch (GET_CODE (addr))
1674 {
1675 case PRE_INC:
1676 offset = (n_refs + 1) * size;
1677 break;
1678 case PRE_DEC:
1679 offset = -(n_refs + 1) * size;
1680 break;
1681 case POST_INC:
1682 offset = n_refs * size;
1683 break;
1684 case POST_DEC:
1685 offset = -n_refs * size;
1686 break;
1687
1688 default:
1689 return addr;
1690 }
ca7fd9cd 1691
39cec1ac 1692 if (offset)
45183e03 1693 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1694 GEN_INT (offset));
39cec1ac
MH
1695 else
1696 addr = XEXP (addr, 0);
45183e03 1697 addr = canon_rtx (addr);
39cec1ac
MH
1698
1699 return addr;
1700}
1701
9ae8ffe7
JL
1702/* Return nonzero if X and Y (memory addresses) could reference the
1703 same location in memory. C is an offset accumulator. When
1704 C is nonzero, we are testing aliases between X and Y + C.
1705 XSIZE is the size in bytes of the X reference,
1706 similarly YSIZE is the size in bytes for Y.
45183e03 1707 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1708
1709 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1710 referenced (the reference was BLKmode), so make the most pessimistic
1711 assumptions.
1712
c02f035f
RH
1713 If XSIZE or YSIZE is negative, we may access memory outside the object
1714 being referenced as a side effect. This can happen when using AND to
1715 align memory references, as is done on the Alpha.
1716
9ae8ffe7 1717 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1718 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1719
9ae8ffe7 1720static int
4682ae04 1721memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1722{
eab5c70a
BS
1723 if (GET_CODE (x) == VALUE)
1724 x = get_addr (x);
1725 if (GET_CODE (y) == VALUE)
1726 y = get_addr (y);
9ae8ffe7
JL
1727 if (GET_CODE (x) == HIGH)
1728 x = XEXP (x, 0);
1729 else if (GET_CODE (x) == LO_SUM)
1730 x = XEXP (x, 1);
1731 else
45183e03 1732 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1733 if (GET_CODE (y) == HIGH)
1734 y = XEXP (y, 0);
1735 else if (GET_CODE (y) == LO_SUM)
1736 y = XEXP (y, 1);
1737 else
45183e03 1738 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1739
1740 if (rtx_equal_for_memref_p (x, y))
1741 {
c02f035f 1742 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1743 return 1;
1744 if (c >= 0 && xsize > c)
1745 return 1;
1746 if (c < 0 && ysize+c > 0)
1747 return 1;
1748 return 0;
1749 }
1750
6e73e666
JC
1751 /* This code used to check for conflicts involving stack references and
1752 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1753
1754 if (GET_CODE (x) == PLUS)
1755 {
1756 /* The fact that X is canonicalized means that this
1757 PLUS rtx is canonicalized. */
1758 rtx x0 = XEXP (x, 0);
1759 rtx x1 = XEXP (x, 1);
1760
1761 if (GET_CODE (y) == PLUS)
1762 {
1763 /* The fact that Y is canonicalized means that this
1764 PLUS rtx is canonicalized. */
1765 rtx y0 = XEXP (y, 0);
1766 rtx y1 = XEXP (y, 1);
1767
1768 if (rtx_equal_for_memref_p (x1, y1))
1769 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1770 if (rtx_equal_for_memref_p (x0, y0))
1771 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1772 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1773 {
1774 if (GET_CODE (y1) == CONST_INT)
1775 return memrefs_conflict_p (xsize, x0, ysize, y0,
1776 c - INTVAL (x1) + INTVAL (y1));
1777 else
1778 return memrefs_conflict_p (xsize, x0, ysize, y,
1779 c - INTVAL (x1));
1780 }
9ae8ffe7
JL
1781 else if (GET_CODE (y1) == CONST_INT)
1782 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1783
6e73e666 1784 return 1;
9ae8ffe7
JL
1785 }
1786 else if (GET_CODE (x1) == CONST_INT)
1787 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1788 }
1789 else if (GET_CODE (y) == PLUS)
1790 {
1791 /* The fact that Y is canonicalized means that this
1792 PLUS rtx is canonicalized. */
1793 rtx y0 = XEXP (y, 0);
1794 rtx y1 = XEXP (y, 1);
1795
1796 if (GET_CODE (y1) == CONST_INT)
1797 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1798 else
1799 return 1;
1800 }
1801
1802 if (GET_CODE (x) == GET_CODE (y))
1803 switch (GET_CODE (x))
1804 {
1805 case MULT:
1806 {
1807 /* Handle cases where we expect the second operands to be the
1808 same, and check only whether the first operand would conflict
1809 or not. */
1810 rtx x0, y0;
1811 rtx x1 = canon_rtx (XEXP (x, 1));
1812 rtx y1 = canon_rtx (XEXP (y, 1));
1813 if (! rtx_equal_for_memref_p (x1, y1))
1814 return 1;
1815 x0 = canon_rtx (XEXP (x, 0));
1816 y0 = canon_rtx (XEXP (y, 0));
1817 if (rtx_equal_for_memref_p (x0, y0))
1818 return (xsize == 0 || ysize == 0
1819 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1820
1821 /* Can't properly adjust our sizes. */
1822 if (GET_CODE (x1) != CONST_INT)
1823 return 1;
1824 xsize /= INTVAL (x1);
1825 ysize /= INTVAL (x1);
1826 c /= INTVAL (x1);
1827 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1828 }
1d300e19
KG
1829
1830 default:
1831 break;
9ae8ffe7
JL
1832 }
1833
1834 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1835 as an access with indeterminate size. Assume that references
56ee9281
RH
1836 besides AND are aligned, so if the size of the other reference is
1837 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1838 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1839 {
02e3377d 1840 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1841 xsize = -1;
45183e03 1842 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1843 }
9ae8ffe7 1844 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1845 {
56ee9281 1846 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1847 may yet be able to determine that we can not overlap. But we
c02f035f 1848 also need to that we are far enough from the end not to overlap
56ee9281 1849 a following reference, so we do nothing with that for now. */
02e3377d 1850 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1851 ysize = -1;
45183e03 1852 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1853 }
9ae8ffe7
JL
1854
1855 if (CONSTANT_P (x))
1856 {
1857 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1858 {
1859 c += (INTVAL (y) - INTVAL (x));
c02f035f 1860 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1861 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1862 }
1863
1864 if (GET_CODE (x) == CONST)
1865 {
1866 if (GET_CODE (y) == CONST)
1867 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1868 ysize, canon_rtx (XEXP (y, 0)), c);
1869 else
1870 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1871 ysize, y, c);
1872 }
1873 if (GET_CODE (y) == CONST)
1874 return memrefs_conflict_p (xsize, x, ysize,
1875 canon_rtx (XEXP (y, 0)), c);
1876
1877 if (CONSTANT_P (y))
b949ea8b 1878 return (xsize <= 0 || ysize <= 0
c02f035f 1879 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1880 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1881
1882 return 1;
1883 }
1884 return 1;
1885}
1886
1887/* Functions to compute memory dependencies.
1888
1889 Since we process the insns in execution order, we can build tables
1890 to keep track of what registers are fixed (and not aliased), what registers
1891 are varying in known ways, and what registers are varying in unknown
1892 ways.
1893
1894 If both memory references are volatile, then there must always be a
1895 dependence between the two references, since their order can not be
1896 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1897 though.
9ae8ffe7 1898
dc1618bc
RK
1899 A MEM_IN_STRUCT reference at a non-AND varying address can never
1900 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1901 also must allow AND addresses, because they may generate accesses
1902 outside the object being referenced. This is used to generate
1903 aligned addresses from unaligned addresses, for instance, the alpha
1904 storeqi_unaligned pattern. */
9ae8ffe7
JL
1905
1906/* Read dependence: X is read after read in MEM takes place. There can
1907 only be a dependence here if both reads are volatile. */
1908
1909int
4f588890 1910read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7
JL
1911{
1912 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1913}
1914
c6df88cb
MM
1915/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1916 MEM2 is a reference to a structure at a varying address, or returns
1917 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1918 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1919 to decide whether or not an address may vary; it should return
eab5c70a
BS
1920 nonzero whenever variation is possible.
1921 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1922
4f588890
KG
1923static const_rtx
1924fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
4682ae04 1925 rtx mem2_addr,
4f588890 1926 bool (*varies_p) (const_rtx, bool))
ca7fd9cd 1927{
3e0abe15
GK
1928 if (! flag_strict_aliasing)
1929 return NULL_RTX;
1930
afa8f0fb
AP
1931 if (MEM_ALIAS_SET (mem2)
1932 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1933 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1934 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1935 varying address. */
1936 return mem1;
1937
afa8f0fb
AP
1938 if (MEM_ALIAS_SET (mem1)
1939 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1940 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1941 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1942 varying address. */
1943 return mem2;
1944
1945 return NULL_RTX;
1946}
1947
1948/* Returns nonzero if something about the mode or address format MEM1
1949 indicates that it might well alias *anything*. */
1950
2c72b78f 1951static int
4f588890 1952aliases_everything_p (const_rtx mem)
c6df88cb 1953{
c6df88cb 1954 if (GET_CODE (XEXP (mem, 0)) == AND)
35fd3193 1955 /* If the address is an AND, it's very hard to know at what it is
c6df88cb
MM
1956 actually pointing. */
1957 return 1;
ca7fd9cd 1958
c6df88cb
MM
1959 return 0;
1960}
1961
998d7deb
RH
1962/* Return true if we can determine that the fields referenced cannot
1963 overlap for any pair of objects. */
1964
1965static bool
4f588890 1966nonoverlapping_component_refs_p (const_tree x, const_tree y)
998d7deb 1967{
4f588890 1968 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb
RH
1969
1970 do
1971 {
1972 /* The comparison has to be done at a common type, since we don't
d6a7951f 1973 know how the inheritance hierarchy works. */
998d7deb
RH
1974 orig_y = y;
1975 do
1976 {
1977 fieldx = TREE_OPERAND (x, 1);
c05a0766 1978 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
1979
1980 y = orig_y;
1981 do
1982 {
1983 fieldy = TREE_OPERAND (y, 1);
c05a0766 1984 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
1985
1986 if (typex == typey)
1987 goto found;
1988
1989 y = TREE_OPERAND (y, 0);
1990 }
1991 while (y && TREE_CODE (y) == COMPONENT_REF);
1992
1993 x = TREE_OPERAND (x, 0);
1994 }
1995 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 1996 /* Never found a common type. */
c05a0766 1997 return false;
998d7deb
RH
1998
1999 found:
2000 /* If we're left with accessing different fields of a structure,
2001 then no overlap. */
2002 if (TREE_CODE (typex) == RECORD_TYPE
2003 && fieldx != fieldy)
2004 return true;
2005
2006 /* The comparison on the current field failed. If we're accessing
2007 a very nested structure, look at the next outer level. */
2008 x = TREE_OPERAND (x, 0);
2009 y = TREE_OPERAND (y, 0);
2010 }
2011 while (x && y
2012 && TREE_CODE (x) == COMPONENT_REF
2013 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2014
998d7deb
RH
2015 return false;
2016}
2017
2018/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2019
2020static tree
4682ae04 2021decl_for_component_ref (tree x)
998d7deb
RH
2022{
2023 do
2024 {
2025 x = TREE_OPERAND (x, 0);
2026 }
2027 while (x && TREE_CODE (x) == COMPONENT_REF);
2028
2029 return x && DECL_P (x) ? x : NULL_TREE;
2030}
2031
2032/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2033 offset of the field reference. */
2034
2035static rtx
4682ae04 2036adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
2037{
2038 HOST_WIDE_INT ioffset;
2039
2040 if (! offset)
2041 return NULL_RTX;
2042
2043 ioffset = INTVAL (offset);
ca7fd9cd 2044 do
998d7deb 2045 {
44de5aeb 2046 tree offset = component_ref_field_offset (x);
998d7deb
RH
2047 tree field = TREE_OPERAND (x, 1);
2048
44de5aeb 2049 if (! host_integerp (offset, 1))
998d7deb 2050 return NULL_RTX;
44de5aeb 2051 ioffset += (tree_low_cst (offset, 1)
998d7deb
RH
2052 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2053 / BITS_PER_UNIT));
2054
2055 x = TREE_OPERAND (x, 0);
2056 }
2057 while (x && TREE_CODE (x) == COMPONENT_REF);
2058
2059 return GEN_INT (ioffset);
2060}
2061
95bd1dd7 2062/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
2063 X and Y and they do not overlap. */
2064
2e4e39f6 2065int
4f588890 2066nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
a4311dfe 2067{
998d7deb 2068 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2069 rtx rtlx, rtly;
2070 rtx basex, basey;
998d7deb 2071 rtx moffsetx, moffsety;
a4311dfe
RK
2072 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2073
998d7deb
RH
2074 /* Unless both have exprs, we can't tell anything. */
2075 if (exprx == 0 || expry == 0)
2076 return 0;
c22cacf3 2077
998d7deb
RH
2078 /* If both are field references, we may be able to determine something. */
2079 if (TREE_CODE (exprx) == COMPONENT_REF
2080 && TREE_CODE (expry) == COMPONENT_REF
2081 && nonoverlapping_component_refs_p (exprx, expry))
2082 return 1;
2083
c22cacf3 2084
998d7deb
RH
2085 /* If the field reference test failed, look at the DECLs involved. */
2086 moffsetx = MEM_OFFSET (x);
2087 if (TREE_CODE (exprx) == COMPONENT_REF)
2088 {
ea900239
DB
2089 if (TREE_CODE (expry) == VAR_DECL
2090 && POINTER_TYPE_P (TREE_TYPE (expry)))
2091 {
2092 tree field = TREE_OPERAND (exprx, 1);
2093 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2094 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2095 TREE_TYPE (field)))
c22cacf3 2096 return 1;
ea900239
DB
2097 }
2098 {
2099 tree t = decl_for_component_ref (exprx);
2100 if (! t)
2101 return 0;
2102 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2103 exprx = t;
2104 }
998d7deb 2105 }
1b096a0a 2106 else if (INDIRECT_REF_P (exprx))
c67a1cf6
RH
2107 {
2108 exprx = TREE_OPERAND (exprx, 0);
2109 if (flag_argument_noalias < 2
2110 || TREE_CODE (exprx) != PARM_DECL)
2111 return 0;
2112 }
2113
998d7deb
RH
2114 moffsety = MEM_OFFSET (y);
2115 if (TREE_CODE (expry) == COMPONENT_REF)
2116 {
ea900239
DB
2117 if (TREE_CODE (exprx) == VAR_DECL
2118 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2119 {
2120 tree field = TREE_OPERAND (expry, 1);
2121 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2122 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2123 TREE_TYPE (field)))
c22cacf3 2124 return 1;
ea900239
DB
2125 }
2126 {
2127 tree t = decl_for_component_ref (expry);
2128 if (! t)
2129 return 0;
2130 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2131 expry = t;
2132 }
998d7deb 2133 }
1b096a0a 2134 else if (INDIRECT_REF_P (expry))
c67a1cf6
RH
2135 {
2136 expry = TREE_OPERAND (expry, 0);
2137 if (flag_argument_noalias < 2
2138 || TREE_CODE (expry) != PARM_DECL)
2139 return 0;
2140 }
998d7deb
RH
2141
2142 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2143 return 0;
2144
998d7deb
RH
2145 rtlx = DECL_RTL (exprx);
2146 rtly = DECL_RTL (expry);
a4311dfe 2147
1edcd60b
RK
2148 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2149 can't overlap unless they are the same because we never reuse that part
2150 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2151 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2152 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2153 return 1;
2154
2155 /* Get the base and offsets of both decls. If either is a register, we
2156 know both are and are the same, so use that as the base. The only
2157 we can avoid overlap is if we can deduce that they are nonoverlapping
2158 pieces of that decl, which is very rare. */
3c0cb5de 2159 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2160 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2161 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2162
3c0cb5de 2163 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2164 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2165 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2166
d746694a 2167 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2168 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2169 stack frame. Otherwise a different base means we can't tell if they
2170 overlap or not. */
2171 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2172 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2173 || (CONSTANT_P (basex) && REG_P (basey)
2174 && REGNO_PTR_FRAME_P (REGNO (basey)))
2175 || (CONSTANT_P (basey) && REG_P (basex)
2176 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2177
3c0cb5de 2178 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2179 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2180 : -1);
3c0cb5de 2181 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2182 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2183 -1);
2184
0af5bc3e
RK
2185 /* If we have an offset for either memref, it can update the values computed
2186 above. */
998d7deb
RH
2187 if (moffsetx)
2188 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2189 if (moffsety)
2190 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2191
0af5bc3e 2192 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2193 We can't do this if the offset isn't known because we must view this
0af5bc3e 2194 memref as being anywhere inside the DECL's MEM. */
998d7deb 2195 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2196 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2197 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2198 sizey = INTVAL (MEM_SIZE (y));
2199
2200 /* Put the values of the memref with the lower offset in X's values. */
2201 if (offsetx > offsety)
2202 {
2203 tem = offsetx, offsetx = offsety, offsety = tem;
2204 tem = sizex, sizex = sizey, sizey = tem;
2205 }
2206
2207 /* If we don't know the size of the lower-offset value, we can't tell
2208 if they conflict. Otherwise, we do the test. */
a6f7c915 2209 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2210}
2211
9ae8ffe7
JL
2212/* True dependence: X is read after store in MEM takes place. */
2213
2214int
4f588890
KG
2215true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2216 bool (*varies) (const_rtx, bool))
9ae8ffe7 2217{
b3694847 2218 rtx x_addr, mem_addr;
49982682 2219 rtx base;
9ae8ffe7
JL
2220
2221 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2222 return 1;
2223
c4484b8f 2224 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2225 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2226 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2227 return 1;
2228 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2229 return 1;
9cd9e512
RH
2230 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2231 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2232 return 1;
c4484b8f 2233
41472af8
MM
2234 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2235 return 0;
2236
389fdba0
RH
2237 /* Read-only memory is by definition never modified, and therefore can't
2238 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2239 but stupid user tricks can produce them, so don't die. */
389fdba0 2240 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2241 return 0;
2242
a4311dfe
RK
2243 if (nonoverlapping_memrefs_p (mem, x))
2244 return 0;
2245
56ee9281
RH
2246 if (mem_mode == VOIDmode)
2247 mem_mode = GET_MODE (mem);
2248
eab5c70a
BS
2249 x_addr = get_addr (XEXP (x, 0));
2250 mem_addr = get_addr (XEXP (mem, 0));
2251
55efb413
JW
2252 base = find_base_term (x_addr);
2253 if (base && (GET_CODE (base) == LABEL_REF
2254 || (GET_CODE (base) == SYMBOL_REF
2255 && CONSTANT_POOL_ADDRESS_P (base))))
2256 return 0;
2257
eab5c70a 2258 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2259 return 0;
2260
eab5c70a
BS
2261 x_addr = canon_rtx (x_addr);
2262 mem_addr = canon_rtx (mem_addr);
6e73e666 2263
0211b6ab
JW
2264 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2265 SIZE_FOR_MODE (x), x_addr, 0))
2266 return 0;
2267
c6df88cb 2268 if (aliases_everything_p (x))
0211b6ab
JW
2269 return 1;
2270
f5143c46 2271 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2272 at MEM_MODE, rather than GET_MODE (MEM). */
2273 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2274 return 1;
2275
2276 /* In true_dependence we also allow BLKmode to alias anything. Why
2277 don't we do this in anti_dependence and output_dependence? */
2278 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2279 return 1;
2280
2281 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2282 varies);
2283}
2284
2285/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2286 Variant of true_dependence which assumes MEM has already been
2287 canonicalized (hence we no longer do that here).
2288 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2289 this value prior to canonicalizing. */
2290
2291int
4f588890
KG
2292canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2293 const_rtx x, bool (*varies) (const_rtx, bool))
a13d4ebf 2294{
b3694847 2295 rtx x_addr;
a13d4ebf
AM
2296
2297 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2298 return 1;
2299
0fe854a7
RH
2300 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2301 This is used in epilogue deallocation functions. */
2302 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2303 return 1;
2304 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2305 return 1;
9cd9e512
RH
2306 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2307 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2308 return 1;
0fe854a7 2309
a13d4ebf
AM
2310 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2311 return 0;
2312
389fdba0
RH
2313 /* Read-only memory is by definition never modified, and therefore can't
2314 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2315 but stupid user tricks can produce them, so don't die. */
389fdba0 2316 if (MEM_READONLY_P (x))
a13d4ebf
AM
2317 return 0;
2318
a4311dfe
RK
2319 if (nonoverlapping_memrefs_p (x, mem))
2320 return 0;
2321
a13d4ebf
AM
2322 x_addr = get_addr (XEXP (x, 0));
2323
2324 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2325 return 0;
2326
2327 x_addr = canon_rtx (x_addr);
2328 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2329 SIZE_FOR_MODE (x), x_addr, 0))
2330 return 0;
2331
2332 if (aliases_everything_p (x))
2333 return 1;
2334
f5143c46 2335 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2336 at MEM_MODE, rather than GET_MODE (MEM). */
2337 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2338 return 1;
0211b6ab 2339
c6df88cb
MM
2340 /* In true_dependence we also allow BLKmode to alias anything. Why
2341 don't we do this in anti_dependence and output_dependence? */
2342 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2343 return 1;
0211b6ab 2344
eab5c70a
BS
2345 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2346 varies);
9ae8ffe7
JL
2347}
2348
da7d8304 2349/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2350 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2351
2c72b78f 2352static int
4f588890 2353write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2354{
6e73e666 2355 rtx x_addr, mem_addr;
4f588890 2356 const_rtx fixed_scalar;
49982682 2357 rtx base;
6e73e666 2358
9ae8ffe7
JL
2359 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2360 return 1;
2361
c4484b8f
RH
2362 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2363 This is used in epilogue deallocation functions. */
2364 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2365 return 1;
2366 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2367 return 1;
9cd9e512
RH
2368 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2369 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2370 return 1;
c4484b8f 2371
eab5c70a
BS
2372 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2373 return 0;
2374
389fdba0
RH
2375 /* A read from read-only memory can't conflict with read-write memory. */
2376 if (!writep && MEM_READONLY_P (mem))
2377 return 0;
55efb413 2378
a4311dfe
RK
2379 if (nonoverlapping_memrefs_p (x, mem))
2380 return 0;
2381
55efb413
JW
2382 x_addr = get_addr (XEXP (x, 0));
2383 mem_addr = get_addr (XEXP (mem, 0));
2384
49982682
JW
2385 if (! writep)
2386 {
55efb413 2387 base = find_base_term (mem_addr);
49982682
JW
2388 if (base && (GET_CODE (base) == LABEL_REF
2389 || (GET_CODE (base) == SYMBOL_REF
2390 && CONSTANT_POOL_ADDRESS_P (base))))
2391 return 0;
2392 }
2393
eab5c70a
BS
2394 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2395 GET_MODE (mem)))
41472af8
MM
2396 return 0;
2397
eab5c70a
BS
2398 x_addr = canon_rtx (x_addr);
2399 mem_addr = canon_rtx (mem_addr);
6e73e666 2400
c6df88cb
MM
2401 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2402 SIZE_FOR_MODE (x), x_addr, 0))
2403 return 0;
2404
ca7fd9cd 2405 fixed_scalar
eab5c70a
BS
2406 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2407 rtx_addr_varies_p);
2408
c6df88cb
MM
2409 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2410 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2411}
2412
2413/* Anti dependence: X is written after read in MEM takes place. */
2414
2415int
4f588890 2416anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2417{
389fdba0 2418 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2419}
2420
2421/* Output dependence: X is written after store in MEM takes place. */
2422
2423int
4f588890 2424output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2425{
389fdba0 2426 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2427}
c14b9960 2428\f
6e73e666 2429
6e73e666 2430void
b5deb7b6 2431init_alias_target (void)
6e73e666 2432{
b3694847 2433 int i;
6e73e666 2434
b5deb7b6
SL
2435 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2436
6e73e666
JC
2437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2438 /* Check whether this register can hold an incoming pointer
2439 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2440 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2441 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2442 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2443 static_reg_base_value[i]
2444 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2445
bf1660a6
JL
2446 static_reg_base_value[STACK_POINTER_REGNUM]
2447 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2448 static_reg_base_value[ARG_POINTER_REGNUM]
2449 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2450 static_reg_base_value[FRAME_POINTER_REGNUM]
2451 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2452#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2453 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2454 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2455#endif
2456}
2457
7b52eede
JH
2458/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2459 to be memory reference. */
2460static bool memory_modified;
2461static void
aa317c97 2462memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2463{
3c0cb5de 2464 if (MEM_P (x))
7b52eede 2465 {
9678086d 2466 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2467 memory_modified = true;
2468 }
2469}
2470
2471
2472/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2473 (i.e. address can be modified). */
7b52eede 2474bool
9678086d 2475memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2476{
2477 if (!INSN_P (insn))
2478 return false;
2479 memory_modified = false;
aa317c97 2480 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2481 return memory_modified;
2482}
2483
c13e8210
MM
2484/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2485 array. */
2486
9ae8ffe7 2487void
4682ae04 2488init_alias_analysis (void)
9ae8ffe7 2489{
c582d54a 2490 unsigned int maxreg = max_reg_num ();
ea64ef27 2491 int changed, pass;
b3694847
SS
2492 int i;
2493 unsigned int ui;
2494 rtx insn;
9ae8ffe7 2495
0d446150
JH
2496 timevar_push (TV_ALIAS_ANALYSIS);
2497
bb1acb3e 2498 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
f883e0a7
KG
2499 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2500 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
9ae8ffe7 2501
08c79682 2502 /* If we have memory allocated from the previous run, use it. */
c582d54a 2503 if (old_reg_base_value)
08c79682
KH
2504 reg_base_value = old_reg_base_value;
2505
2506 if (reg_base_value)
2507 VEC_truncate (rtx, reg_base_value, 0);
2508
a590ac65 2509 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2510
5ed6ace5
MD
2511 new_reg_base_value = XNEWVEC (rtx, maxreg);
2512 reg_seen = XNEWVEC (char, maxreg);
ec907dd8
JL
2513
2514 /* The basic idea is that each pass through this loop will use the
2515 "constant" information from the previous pass to propagate alias
2516 information through another level of assignments.
2517
2518 This could get expensive if the assignment chains are long. Maybe
2519 we should throttle the number of iterations, possibly based on
6e73e666 2520 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2521
2522 We could propagate more information in the first pass by making use
6fb5fa3c 2523 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2524 for a pseudo is "constant".
2525
2526 A program with an uninitialized variable can cause an infinite loop
2527 here. Instead of doing a full dataflow analysis to detect such problems
2528 we just cap the number of iterations for the loop.
2529
2530 The state of the arrays for the set chain in question does not matter
2531 since the program has undefined behavior. */
6e73e666 2532
ea64ef27 2533 pass = 0;
6e73e666 2534 do
ec907dd8
JL
2535 {
2536 /* Assume nothing will change this iteration of the loop. */
2537 changed = 0;
2538
ec907dd8
JL
2539 /* We want to assign the same IDs each iteration of this loop, so
2540 start counting from zero each iteration of the loop. */
2541 unique_id = 0;
2542
f5143c46 2543 /* We're at the start of the function each iteration through the
ec907dd8 2544 loop, so we're copying arguments. */
83bbd9b6 2545 copying_arguments = true;
9ae8ffe7 2546
6e73e666 2547 /* Wipe the potential alias information clean for this pass. */
c582d54a 2548 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2549
6e73e666 2550 /* Wipe the reg_seen array clean. */
c582d54a 2551 memset (reg_seen, 0, maxreg);
9ae8ffe7 2552
6e73e666
JC
2553 /* Mark all hard registers which may contain an address.
2554 The stack, frame and argument pointers may contain an address.
2555 An argument register which can hold a Pmode value may contain
2556 an address even if it is not in BASE_REGS.
8072f69c 2557
6e73e666
JC
2558 The address expression is VOIDmode for an argument and
2559 Pmode for other registers. */
2560
7f243674
JL
2561 memcpy (new_reg_base_value, static_reg_base_value,
2562 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2563
ec907dd8
JL
2564 /* Walk the insns adding values to the new_reg_base_value array. */
2565 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2566 {
2c3c49de 2567 if (INSN_P (insn))
ec907dd8 2568 {
6e73e666 2569 rtx note, set;
efc9bd41
RK
2570
2571#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2572 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2573 insn chain until after reload has completed. Thus,
2574 there is no sense wasting time checking if INSN is in
2575 the prologue/epilogue until after reload has completed. */
2576 if (reload_completed
2577 && prologue_epilogue_contains (insn))
efc9bd41
RK
2578 continue;
2579#endif
2580
ec907dd8 2581 /* If this insn has a noalias note, process it, Otherwise,
c22cacf3
MS
2582 scan for sets. A simple set will have no side effects
2583 which could change the base value of any other register. */
6e73e666 2584
ec907dd8 2585 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2586 && REG_NOTES (insn) != 0
2587 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2588 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2589 else
84832317 2590 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2591
2592 set = single_set (insn);
2593
2594 if (set != 0
f8cfc6aa 2595 && REG_P (SET_DEST (set))
fb6754f0 2596 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2597 {
fb6754f0 2598 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2599 rtx src = SET_SRC (set);
bb1acb3e 2600 rtx t;
713f41f9 2601
a31830a7
SB
2602 note = find_reg_equal_equiv_note (insn);
2603 if (note && REG_NOTE_KIND (note) == REG_EQUAL
6fb5fa3c 2604 && DF_REG_DEF_COUNT (regno) != 1)
a31830a7
SB
2605 note = NULL_RTX;
2606
2607 if (note != NULL_RTX
713f41f9 2608 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2609 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2610 && ! reg_overlap_mentioned_p (SET_DEST (set),
2611 XEXP (note, 0)))
713f41f9 2612 {
bb1acb3e
RH
2613 set_reg_known_value (regno, XEXP (note, 0));
2614 set_reg_known_equiv_p (regno,
2615 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9 2616 }
6fb5fa3c 2617 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9 2618 && GET_CODE (src) == PLUS
f8cfc6aa 2619 && REG_P (XEXP (src, 0))
bb1acb3e 2620 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
713f41f9
BS
2621 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2622 {
bb1acb3e
RH
2623 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2624 set_reg_known_value (regno, t);
2625 set_reg_known_equiv_p (regno, 0);
713f41f9 2626 }
6fb5fa3c 2627 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9
BS
2628 && ! rtx_varies_p (src, 1))
2629 {
bb1acb3e
RH
2630 set_reg_known_value (regno, src);
2631 set_reg_known_equiv_p (regno, 0);
713f41f9 2632 }
6e73e666 2633 }
ec907dd8 2634 }
4b4bf941 2635 else if (NOTE_P (insn)
a38e7aa5 2636 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2637 copying_arguments = false;
6e73e666 2638 }
ec907dd8 2639
6e73e666 2640 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2641 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2642
c582d54a 2643 for (ui = 0; ui < maxreg; ui++)
6e73e666 2644 {
e51712db 2645 if (new_reg_base_value[ui]
08c79682 2646 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2647 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2648 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2649 {
08c79682 2650 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2651 changed = 1;
ec907dd8 2652 }
9ae8ffe7 2653 }
9ae8ffe7 2654 }
6e73e666 2655 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2656
2657 /* Fill in the remaining entries. */
bb1acb3e 2658 for (i = 0; i < (int)reg_known_value_size; i++)
9ae8ffe7 2659 if (reg_known_value[i] == 0)
bb1acb3e 2660 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
9ae8ffe7 2661
e05e2395
MM
2662 /* Clean up. */
2663 free (new_reg_base_value);
ec907dd8 2664 new_reg_base_value = 0;
e05e2395 2665 free (reg_seen);
9ae8ffe7 2666 reg_seen = 0;
0d446150 2667 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2668}
2669
2670void
4682ae04 2671end_alias_analysis (void)
9ae8ffe7 2672{
c582d54a 2673 old_reg_base_value = reg_base_value;
bb1acb3e 2674 ggc_free (reg_known_value);
9ae8ffe7 2675 reg_known_value = 0;
ac606739 2676 reg_known_value_size = 0;
bb1acb3e 2677 free (reg_known_equiv_p);
e05e2395 2678 reg_known_equiv_p = 0;
9ae8ffe7 2679}
e2500fed
GK
2680
2681#include "gt-alias.h"
This page took 2.077298 seconds and 5 git commands to generate.