]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
Daily bump.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
ab780373 42#include "target.h"
3932261a
MM
43
44/* The alias sets assigned to MEMs assist the back-end in determining
45 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
46 different alias sets cannot alias each other, with one important
47 exception. Consider something like:
3932261a
MM
48
49 struct S {int i; double d; };
50
51 a store to an `S' can alias something of either type `int' or type
52 `double'. (However, a store to an `int' cannot alias a `double'
53 and vice versa.) We indicate this via a tree structure that looks
54 like:
55 struct S
56 / \
57 / \
58 |/_ _\|
59 int double
60
ac3d9668
RK
61 (The arrows are directed and point downwards.)
62 In this situation we say the alias set for `struct S' is the
63 `superset' and that those for `int' and `double' are `subsets'.
64
3bdf5ad1
RK
65 To see whether two alias sets can point to the same memory, we must
66 see if either alias set is a subset of the other. We need not trace
e3aafbad 67 past immediate descendents, however, since we propagate all
3bdf5ad1 68 grandchildren up one level.
3932261a
MM
69
70 Alias set zero is implicitly a superset of all other alias sets.
71 However, this is no actual entry for alias set zero. It is an
72 error to attempt to explicitly construct a subset of zero. */
73
d4b60170
RK
74typedef struct alias_set_entry
75{
3932261a 76 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 77 HOST_WIDE_INT alias_set;
3932261a
MM
78
79 /* The children of the alias set. These are not just the immediate
e3aafbad 80 children, but, in fact, all descendents. So, if we have:
3932261a 81
ca7fd9cd 82 struct T { struct S s; float f; }
3932261a
MM
83
84 continuing our example above, the children here will be all of
85 `int', `double', `float', and `struct S'. */
86 splay_tree children;
2bf105ab
RK
87
88 /* Nonzero if would have a child of zero: this effectively makes this
89 alias set the same as alias set zero. */
90 int has_zero_child;
d4b60170 91} *alias_set_entry;
9ae8ffe7 92
3d994c6b
KG
93static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
94static rtx find_symbolic_term PARAMS ((rtx));
a13d4ebf 95rtx get_addr PARAMS ((rtx));
3d994c6b
KG
96static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
97 HOST_WIDE_INT));
98static void record_set PARAMS ((rtx, rtx, void *));
99static rtx find_base_term PARAMS ((rtx));
100static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
101 enum machine_mode));
102static rtx find_base_value PARAMS ((rtx));
103static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
104static int insert_subset_children PARAMS ((splay_tree_node, void*));
738cc472 105static tree find_base_decl PARAMS ((tree));
3bdf5ad1 106static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
eab5c70a 107static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
e38fe8e0 108 int (*) (rtx, int)));
3d994c6b 109static int aliases_everything_p PARAMS ((rtx));
998d7deb
RH
110static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
111static tree decl_for_component_ref PARAMS ((tree));
112static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
a4311dfe 113static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
3d994c6b 114static int write_dependence_p PARAMS ((rtx, rtx, int));
c14b9960
JW
115
116static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
bf6d9fd7 117static int nonlocal_mentioned_p PARAMS ((rtx));
c14b9960
JW
118static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
119static int nonlocal_referenced_p PARAMS ((rtx));
120static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
121static int nonlocal_set_p PARAMS ((rtx));
9ae8ffe7
JL
122
123/* Set up all info needed to perform alias analysis on memory references. */
124
d4b60170 125/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
126#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
41472af8 128/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 134
ea64ef27 135/* Cap the number of passes we make over the insns propagating alias
ac3d9668 136 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 137#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 138
9ae8ffe7
JL
139/* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
ca7fd9cd 147 the stack, frame, and argument pointers.
b3b5ad95
JL
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
2a2c8203 157
e2500fed 158static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 159static rtx *new_reg_base_value;
d4b60170
RK
160static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
bf1660a6
JL
162/* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
9ae8ffe7 166#define REG_BASE_VALUE(X) \
fb6754f0
BS
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 169
de12be17
JC
170/* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178static rtx *alias_invariant;
179
c13e8210
MM
180/* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
9ae8ffe7
JL
184rtx *reg_known_value;
185
186/* Indicates number of valid entries in reg_known_value. */
770ae6cc 187static unsigned int reg_known_value_size;
9ae8ffe7
JL
188
189/* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
9ae8ffe7
JL
201char *reg_known_equiv_p;
202
2a2c8203
JC
203/* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 205static bool copying_arguments;
9ae8ffe7 206
3932261a 207/* The splay-tree used to store the various alias set entries. */
3932261a 208static splay_tree alias_sets;
ac3d9668 209\f
3932261a
MM
210/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213static alias_set_entry
214get_alias_set_entry (alias_set)
3bdf5ad1 215 HOST_WIDE_INT alias_set;
3932261a 216{
d4b60170
RK
217 splay_tree_node sn
218 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 219
d4b60170 220 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
221}
222
ac3d9668
RK
223/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
224 the two MEMs cannot alias each other. */
3932261a 225
ca7fd9cd 226static int
3932261a
MM
227mems_in_disjoint_alias_sets_p (mem1, mem2)
228 rtx mem1;
229 rtx mem2;
230{
ca7fd9cd 231#ifdef ENABLE_CHECKING
3932261a
MM
232/* Perform a basic sanity check. Namely, that there are no alias sets
233 if we're not using strict aliasing. This helps to catch bugs
234 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
235 where a MEM is allocated in some way other than by the use of
236 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
237 use alias sets to indicate that spilled registers cannot alias each
238 other, we might need to remove this check. */
d4b60170
RK
239 if (! flag_strict_aliasing
240 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
241 abort ();
242#endif
243
1da68f56
RK
244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
245}
3932261a 246
1da68f56
RK
247/* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
249
250static int
251insert_subset_children (node, data)
252 splay_tree_node node;
253 void *data;
254{
255 splay_tree_insert ((splay_tree) data, node->key, node->value);
256
257 return 0;
258}
259
260/* Return 1 if the two specified alias sets may conflict. */
261
262int
263alias_sets_conflict_p (set1, set2)
264 HOST_WIDE_INT set1, set2;
265{
266 alias_set_entry ase;
267
268 /* If have no alias set information for one of the operands, we have
269 to assume it can alias anything. */
270 if (set1 == 0 || set2 == 0
271 /* If the two alias sets are the same, they may alias. */
272 || set1 == set2)
273 return 1;
3932261a 274
3bdf5ad1 275 /* See if the first alias set is a subset of the second. */
1da68f56 276 ase = get_alias_set_entry (set1);
2bf105ab
RK
277 if (ase != 0
278 && (ase->has_zero_child
279 || splay_tree_lookup (ase->children,
1da68f56
RK
280 (splay_tree_key) set2)))
281 return 1;
3932261a
MM
282
283 /* Now do the same, but with the alias sets reversed. */
1da68f56 284 ase = get_alias_set_entry (set2);
2bf105ab
RK
285 if (ase != 0
286 && (ase->has_zero_child
287 || splay_tree_lookup (ase->children,
1da68f56
RK
288 (splay_tree_key) set1)))
289 return 1;
3932261a 290
1da68f56 291 /* The two alias sets are distinct and neither one is the
3932261a 292 child of the other. Therefore, they cannot alias. */
1da68f56 293 return 0;
3932261a 294}
1da68f56
RK
295\f
296/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
297 has any readonly fields. If any of the fields have types that
298 contain readonly fields, return true as well. */
3932261a 299
1da68f56
RK
300int
301readonly_fields_p (type)
302 tree type;
3932261a 303{
1da68f56
RK
304 tree field;
305
306 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
307 && TREE_CODE (type) != QUAL_UNION_TYPE)
308 return 0;
309
310 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
311 if (TREE_CODE (field) == FIELD_DECL
312 && (TREE_READONLY (field)
313 || readonly_fields_p (TREE_TYPE (field))))
314 return 1;
3932261a
MM
315
316 return 0;
317}
3bdf5ad1 318\f
1da68f56
RK
319/* Return 1 if any MEM object of type T1 will always conflict (using the
320 dependency routines in this file) with any MEM object of type T2.
321 This is used when allocating temporary storage. If T1 and/or T2 are
322 NULL_TREE, it means we know nothing about the storage. */
323
324int
325objects_must_conflict_p (t1, t2)
326 tree t1, t2;
327{
e8ea2809
RK
328 /* If neither has a type specified, we don't know if they'll conflict
329 because we may be using them to store objects of various types, for
330 example the argument and local variables areas of inlined functions. */
981a4c34 331 if (t1 == 0 && t2 == 0)
e8ea2809
RK
332 return 0;
333
66cce54d
RH
334 /* If one or the other has readonly fields or is readonly,
335 then they may not conflict. */
336 if ((t1 != 0 && readonly_fields_p (t1))
337 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
338 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
339 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
340 return 0;
341
1da68f56
RK
342 /* If they are the same type, they must conflict. */
343 if (t1 == t2
344 /* Likewise if both are volatile. */
345 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
346 return 1;
347
66cce54d
RH
348 /* If one is aggregate and the other is scalar then they may not
349 conflict. */
350 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
351 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
1da68f56
RK
352 return 0;
353
ec5c56db 354 /* Otherwise they conflict only if the alias sets conflict. */
1da68f56
RK
355 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
356 t2 ? get_alias_set (t2) : 0);
357}
358\f
3bdf5ad1
RK
359/* T is an expression with pointer type. Find the DECL on which this
360 expression is based. (For example, in `a[i]' this would be `a'.)
361 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 362 NULL_TREE is returned. */
3bdf5ad1
RK
363
364static tree
365find_base_decl (t)
366 tree t;
367{
368 tree d0, d1, d2;
369
370 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
371 return 0;
372
373 /* If this is a declaration, return it. */
374 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
375 return t;
376
377 /* Handle general expressions. It would be nice to deal with
378 COMPONENT_REFs here. If we could tell that `a' and `b' were the
379 same, then `a->f' and `b->f' are also the same. */
380 switch (TREE_CODE_CLASS (TREE_CODE (t)))
381 {
382 case '1':
383 return find_base_decl (TREE_OPERAND (t, 0));
384
385 case '2':
386 /* Return 0 if found in neither or both are the same. */
387 d0 = find_base_decl (TREE_OPERAND (t, 0));
388 d1 = find_base_decl (TREE_OPERAND (t, 1));
389 if (d0 == d1)
390 return d0;
391 else if (d0 == 0)
392 return d1;
393 else if (d1 == 0)
394 return d0;
395 else
396 return 0;
397
398 case '3':
399 d0 = find_base_decl (TREE_OPERAND (t, 0));
400 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
401 d2 = find_base_decl (TREE_OPERAND (t, 2));
402
403 /* Set any nonzero values from the last, then from the first. */
404 if (d1 == 0) d1 = d2;
405 if (d0 == 0) d0 = d1;
406 if (d1 == 0) d1 = d0;
407 if (d2 == 0) d2 = d1;
408
409 /* At this point all are nonzero or all are zero. If all three are the
410 same, return it. Otherwise, return zero. */
411 return (d0 == d1 && d1 == d2) ? d0 : 0;
412
413 default:
414 return 0;
415 }
416}
417
6e24b709
RK
418/* Return 1 if all the nested component references handled by
419 get_inner_reference in T are such that we can address the object in T. */
420
10b76d73 421int
6e24b709
RK
422can_address_p (t)
423 tree t;
424{
425 /* If we're at the end, it is vacuously addressable. */
426 if (! handled_component_p (t))
427 return 1;
428
429 /* Bitfields are never addressable. */
430 else if (TREE_CODE (t) == BIT_FIELD_REF)
431 return 0;
432
8ac61af7
RK
433 /* Fields are addressable unless they are marked as nonaddressable or
434 the containing type has alias set 0. */
6e24b709
RK
435 else if (TREE_CODE (t) == COMPONENT_REF
436 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 437 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
438 && can_address_p (TREE_OPERAND (t, 0)))
439 return 1;
440
8ac61af7 441 /* Likewise for arrays. */
b4e3fabb 442 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 443 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 444 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
445 && can_address_p (TREE_OPERAND (t, 0)))
446 return 1;
447
448 return 0;
449}
450
3bdf5ad1
RK
451/* Return the alias set for T, which may be either a type or an
452 expression. Call language-specific routine for help, if needed. */
453
454HOST_WIDE_INT
455get_alias_set (t)
456 tree t;
457{
458 HOST_WIDE_INT set;
3bdf5ad1
RK
459
460 /* If we're not doing any alias analysis, just assume everything
461 aliases everything else. Also return 0 if this or its type is
462 an error. */
463 if (! flag_strict_aliasing || t == error_mark_node
464 || (! TYPE_P (t)
465 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
466 return 0;
467
468 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
469 language-specific routine may make mutually-recursive calls to each other
470 to figure out what to do. At each juncture, we see if this is a tree
471 that the language may need to handle specially. First handle things that
738cc472 472 aren't types. */
f824e5c3 473 if (! TYPE_P (t))
3bdf5ad1 474 {
738cc472
RK
475 tree inner = t;
476 tree placeholder_ptr = 0;
477
8ac61af7
RK
478 /* Remove any nops, then give the language a chance to do
479 something with this tree before we look at it. */
480 STRIP_NOPS (t);
481 set = (*lang_hooks.get_alias_set) (t);
482 if (set != -1)
483 return set;
484
738cc472 485 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 486 restrict-qualified pointer or a "void *". Replace
738cc472 487 PLACEHOLDER_EXPRs. */
8ac61af7 488 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
489 || handled_component_p (inner))
490 {
491 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
492 inner = find_placeholder (inner, &placeholder_ptr);
493 else
494 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
495
496 STRIP_NOPS (inner);
738cc472
RK
497 }
498
499 /* Check for accesses through restrict-qualified pointers. */
500 if (TREE_CODE (inner) == INDIRECT_REF)
501 {
502 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
503
504 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
505 {
e5837c07 506 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
507 if (DECL_POINTER_ALIAS_SET (decl) == -2)
508 {
509 /* No two restricted pointers can point at the same thing.
510 However, a restricted pointer can point at the same thing
511 as an unrestricted pointer, if that unrestricted pointer
512 is based on the restricted pointer. So, we make the
513 alias set for the restricted pointer a subset of the
514 alias set for the type pointed to by the type of the
515 decl. */
516 HOST_WIDE_INT pointed_to_alias_set
517 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
518
519 if (pointed_to_alias_set == 0)
520 /* It's not legal to make a subset of alias set zero. */
521 ;
522 else
523 {
524 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
525 record_alias_subset (pointed_to_alias_set,
526 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
527 }
528 }
529
530 /* We use the alias set indicated in the declaration. */
531 return DECL_POINTER_ALIAS_SET (decl);
532 }
533
534 /* If we have an INDIRECT_REF via a void pointer, we don't
535 know anything about what that might alias. */
536 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
537 return 0;
538 }
539
540 /* Otherwise, pick up the outermost object that we could have a pointer
541 to, processing conversion and PLACEHOLDER_EXPR as above. */
542 placeholder_ptr = 0;
8ac61af7 543 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
544 || (handled_component_p (t) && ! can_address_p (t)))
545 {
f47e9b4e 546 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 547 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
548 else
549 t = TREE_OPERAND (t, 0);
f824e5c3 550
8ac61af7
RK
551 STRIP_NOPS (t);
552 }
f824e5c3 553
738cc472
RK
554 /* If we've already determined the alias set for a decl, just return
555 it. This is necessary for C++ anonymous unions, whose component
556 variables don't look like union members (boo!). */
5755cd38
JM
557 if (TREE_CODE (t) == VAR_DECL
558 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
559 return MEM_ALIAS_SET (DECL_RTL (t));
560
f824e5c3
RK
561 /* Now all we care about is the type. */
562 t = TREE_TYPE (t);
3bdf5ad1
RK
563 }
564
3bdf5ad1
RK
565 /* Variant qualifiers don't affect the alias set, so get the main
566 variant. If this is a type with a known alias set, return it. */
567 t = TYPE_MAIN_VARIANT (t);
738cc472 568 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
569 return TYPE_ALIAS_SET (t);
570
571 /* See if the language has special handling for this type. */
8ac61af7
RK
572 set = (*lang_hooks.get_alias_set) (t);
573 if (set != -1)
738cc472 574 return set;
2bf105ab 575
3bdf5ad1
RK
576 /* There are no objects of FUNCTION_TYPE, so there's no point in
577 using up an alias set for them. (There are, of course, pointers
578 and references to functions, but that's different.) */
579 else if (TREE_CODE (t) == FUNCTION_TYPE)
580 set = 0;
74d86f4f
RH
581
582 /* Unless the language specifies otherwise, let vector types alias
583 their components. This avoids some nasty type punning issues in
584 normal usage. And indeed lets vectors be treated more like an
585 array slice. */
586 else if (TREE_CODE (t) == VECTOR_TYPE)
587 set = get_alias_set (TREE_TYPE (t));
588
3bdf5ad1
RK
589 else
590 /* Otherwise make a new alias set for this type. */
591 set = new_alias_set ();
592
593 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
594
595 /* If this is an aggregate type, we must record any component aliasing
596 information. */
1d79fd2c 597 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
598 record_component_aliases (t);
599
3bdf5ad1
RK
600 return set;
601}
602
603/* Return a brand-new alias set. */
604
605HOST_WIDE_INT
606new_alias_set ()
607{
608 static HOST_WIDE_INT last_alias_set;
609
610 if (flag_strict_aliasing)
611 return ++last_alias_set;
612 else
613 return 0;
614}
3932261a
MM
615
616/* Indicate that things in SUBSET can alias things in SUPERSET, but
617 not vice versa. For example, in C, a store to an `int' can alias a
618 structure containing an `int', but not vice versa. Here, the
619 structure would be the SUPERSET and `int' the SUBSET. This
ca7fd9cd 620 function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
621
622 It is illegal for SUPERSET to be zero; everything is implicitly a
623 subset of alias set zero. */
624
625void
626record_alias_subset (superset, subset)
3bdf5ad1
RK
627 HOST_WIDE_INT superset;
628 HOST_WIDE_INT subset;
3932261a
MM
629{
630 alias_set_entry superset_entry;
631 alias_set_entry subset_entry;
632
f47e9b4e
RK
633 /* It is possible in complex type situations for both sets to be the same,
634 in which case we can ignore this operation. */
635 if (superset == subset)
636 return;
637
3932261a
MM
638 if (superset == 0)
639 abort ();
640
641 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 642 if (superset_entry == 0)
3932261a
MM
643 {
644 /* Create an entry for the SUPERSET, so that we have a place to
645 attach the SUBSET. */
d4b60170
RK
646 superset_entry
647 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
3932261a 648 superset_entry->alias_set = superset;
ca7fd9cd 649 superset_entry->children
30f72379 650 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 651 superset_entry->has_zero_child = 0;
d4b60170 652 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a 653 (splay_tree_value) superset_entry);
3932261a
MM
654 }
655
2bf105ab
RK
656 if (subset == 0)
657 superset_entry->has_zero_child = 1;
658 else
659 {
660 subset_entry = get_alias_set_entry (subset);
661 /* If there is an entry for the subset, enter all of its children
662 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 663 if (subset_entry)
2bf105ab
RK
664 {
665 if (subset_entry->has_zero_child)
666 superset_entry->has_zero_child = 1;
d4b60170 667
2bf105ab
RK
668 splay_tree_foreach (subset_entry->children, insert_subset_children,
669 superset_entry->children);
670 }
3932261a 671
2bf105ab 672 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 673 splay_tree_insert (superset_entry->children,
2bf105ab
RK
674 (splay_tree_key) subset, 0);
675 }
3932261a
MM
676}
677
a0c33338
RK
678/* Record that component types of TYPE, if any, are part of that type for
679 aliasing purposes. For record types, we only record component types
680 for fields that are marked addressable. For array types, we always
681 record the component types, so the front end should not call this
682 function if the individual component aren't addressable. */
683
684void
685record_component_aliases (type)
686 tree type;
687{
3bdf5ad1 688 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
689 tree field;
690
691 if (superset == 0)
692 return;
693
694 switch (TREE_CODE (type))
695 {
696 case ARRAY_TYPE:
2bf105ab
RK
697 if (! TYPE_NONALIASED_COMPONENT (type))
698 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
699 break;
700
701 case RECORD_TYPE:
702 case UNION_TYPE:
703 case QUAL_UNION_TYPE:
61eece67
DN
704 /* Recursively record aliases for the base classes, if there are any */
705 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
706 {
707 int i;
708 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
709 {
710 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
711 record_alias_subset (superset,
61eece67 712 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
713 }
714 }
a0c33338 715 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 716 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 717 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
718 break;
719
1d79fd2c
JW
720 case COMPLEX_TYPE:
721 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
722 break;
723
a0c33338
RK
724 default:
725 break;
726 }
727}
728
3bdf5ad1
RK
729/* Allocate an alias set for use in storing and reading from the varargs
730 spill area. */
731
732HOST_WIDE_INT
733get_varargs_alias_set ()
734{
735 static HOST_WIDE_INT set = -1;
736
737 if (set == -1)
738 set = new_alias_set ();
739
740 return set;
741}
742
743/* Likewise, but used for the fixed portions of the frame, e.g., register
744 save areas. */
745
746HOST_WIDE_INT
747get_frame_alias_set ()
748{
749 static HOST_WIDE_INT set = -1;
750
751 if (set == -1)
752 set = new_alias_set ();
753
754 return set;
755}
756
2a2c8203
JC
757/* Inside SRC, the source of a SET, find a base address. */
758
9ae8ffe7
JL
759static rtx
760find_base_value (src)
b3694847 761 rtx src;
9ae8ffe7 762{
713f41f9 763 unsigned int regno;
0aacc8ed 764
9ae8ffe7
JL
765 switch (GET_CODE (src))
766 {
767 case SYMBOL_REF:
768 case LABEL_REF:
769 return src;
770
771 case REG:
fb6754f0 772 regno = REGNO (src);
d4b60170 773 /* At the start of a function, argument registers have known base
2a2c8203
JC
774 values which may be lost later. Returning an ADDRESS
775 expression here allows optimization based on argument values
776 even when the argument registers are used for other purposes. */
713f41f9
BS
777 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
778 return new_reg_base_value[regno];
73774bc7 779
eaf407a5 780 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
781 for non-fixed hard regs since it can result in a circular
782 dependency chain for registers which have values at function entry.
eaf407a5
JL
783
784 The test above is not sufficient because the scheduler may move
785 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 786 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
787 && regno < reg_base_value_size)
788 {
789 /* If we're inside init_alias_analysis, use new_reg_base_value
790 to reduce the number of relaxation iterations. */
1afdf91c
RH
791 if (new_reg_base_value && new_reg_base_value[regno]
792 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
793 return new_reg_base_value[regno];
794
795 if (reg_base_value[regno])
796 return reg_base_value[regno];
797 }
73774bc7 798
9ae8ffe7
JL
799 return src;
800
801 case MEM:
802 /* Check for an argument passed in memory. Only record in the
803 copying-arguments block; it is too hard to track changes
804 otherwise. */
805 if (copying_arguments
806 && (XEXP (src, 0) == arg_pointer_rtx
807 || (GET_CODE (XEXP (src, 0)) == PLUS
808 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 809 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
810 return 0;
811
812 case CONST:
813 src = XEXP (src, 0);
814 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
815 break;
d4b60170 816
ec5c56db 817 /* ... fall through ... */
2a2c8203 818
9ae8ffe7
JL
819 case PLUS:
820 case MINUS:
2a2c8203 821 {
ec907dd8
JL
822 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
823
0134bf2d
DE
824 /* If either operand is a REG that is a known pointer, then it
825 is the base. */
826 if (REG_P (src_0) && REG_POINTER (src_0))
827 return find_base_value (src_0);
828 if (REG_P (src_1) && REG_POINTER (src_1))
829 return find_base_value (src_1);
830
ec907dd8
JL
831 /* If either operand is a REG, then see if we already have
832 a known value for it. */
0134bf2d 833 if (REG_P (src_0))
ec907dd8
JL
834 {
835 temp = find_base_value (src_0);
d4b60170 836 if (temp != 0)
ec907dd8
JL
837 src_0 = temp;
838 }
839
0134bf2d 840 if (REG_P (src_1))
ec907dd8
JL
841 {
842 temp = find_base_value (src_1);
d4b60170 843 if (temp!= 0)
ec907dd8
JL
844 src_1 = temp;
845 }
2a2c8203 846
0134bf2d
DE
847 /* If either base is named object or a special address
848 (like an argument or stack reference), then use it for the
849 base term. */
850 if (src_0 != 0
851 && (GET_CODE (src_0) == SYMBOL_REF
852 || GET_CODE (src_0) == LABEL_REF
853 || (GET_CODE (src_0) == ADDRESS
854 && GET_MODE (src_0) != VOIDmode)))
855 return src_0;
856
857 if (src_1 != 0
858 && (GET_CODE (src_1) == SYMBOL_REF
859 || GET_CODE (src_1) == LABEL_REF
860 || (GET_CODE (src_1) == ADDRESS
861 && GET_MODE (src_1) != VOIDmode)))
862 return src_1;
863
d4b60170 864 /* Guess which operand is the base address:
ec907dd8
JL
865 If either operand is a symbol, then it is the base. If
866 either operand is a CONST_INT, then the other is the base. */
d4b60170 867 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 868 return find_base_value (src_0);
d4b60170 869 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
870 return find_base_value (src_1);
871
9ae8ffe7 872 return 0;
2a2c8203
JC
873 }
874
875 case LO_SUM:
876 /* The standard form is (lo_sum reg sym) so look only at the
877 second operand. */
878 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
879
880 case AND:
881 /* If the second operand is constant set the base
ec5c56db 882 address to the first operand. */
2a2c8203
JC
883 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
884 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
885 return 0;
886
61f0131c
R
887 case TRUNCATE:
888 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
889 break;
890 /* Fall through. */
9ae8ffe7 891 case HIGH:
d288e53d
DE
892 case PRE_INC:
893 case PRE_DEC:
894 case POST_INC:
895 case POST_DEC:
896 case PRE_MODIFY:
897 case POST_MODIFY:
2a2c8203 898 return find_base_value (XEXP (src, 0));
1d300e19 899
0aacc8ed
RK
900 case ZERO_EXTEND:
901 case SIGN_EXTEND: /* used for NT/Alpha pointers */
902 {
903 rtx temp = find_base_value (XEXP (src, 0));
904
905#ifdef POINTERS_EXTEND_UNSIGNED
906 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
907 temp = convert_memory_address (Pmode, temp);
908#endif
909
910 return temp;
911 }
912
1d300e19
KG
913 default:
914 break;
9ae8ffe7
JL
915 }
916
917 return 0;
918}
919
920/* Called from init_alias_analysis indirectly through note_stores. */
921
d4b60170 922/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
923 register N has been set in this function. */
924static char *reg_seen;
925
13309a5f
JC
926/* Addresses which are known not to alias anything else are identified
927 by a unique integer. */
ec907dd8
JL
928static int unique_id;
929
2a2c8203 930static void
84832317 931record_set (dest, set, data)
9ae8ffe7 932 rtx dest, set;
84832317 933 void *data ATTRIBUTE_UNUSED;
9ae8ffe7 934{
b3694847 935 unsigned regno;
9ae8ffe7 936 rtx src;
c28b4e40 937 int n;
9ae8ffe7
JL
938
939 if (GET_CODE (dest) != REG)
940 return;
941
fb6754f0 942 regno = REGNO (dest);
9ae8ffe7 943
ac606739
GS
944 if (regno >= reg_base_value_size)
945 abort ();
946
c28b4e40
JW
947 /* If this spans multiple hard registers, then we must indicate that every
948 register has an unusable value. */
949 if (regno < FIRST_PSEUDO_REGISTER)
950 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
951 else
952 n = 1;
953 if (n != 1)
954 {
955 while (--n >= 0)
956 {
957 reg_seen[regno + n] = 1;
958 new_reg_base_value[regno + n] = 0;
959 }
960 return;
961 }
962
9ae8ffe7
JL
963 if (set)
964 {
965 /* A CLOBBER wipes out any old value but does not prevent a previously
966 unset register from acquiring a base address (i.e. reg_seen is not
967 set). */
968 if (GET_CODE (set) == CLOBBER)
969 {
ec907dd8 970 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
971 return;
972 }
973 src = SET_SRC (set);
974 }
975 else
976 {
9ae8ffe7
JL
977 if (reg_seen[regno])
978 {
ec907dd8 979 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
980 return;
981 }
982 reg_seen[regno] = 1;
38a448ca
RH
983 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
984 GEN_INT (unique_id++));
9ae8ffe7
JL
985 return;
986 }
987
988 /* This is not the first set. If the new value is not related to the
989 old value, forget the base value. Note that the following code is
990 not detected:
991 extern int x, y; int *p = &x; p += (&y-&x);
992 ANSI C does not allow computing the difference of addresses
993 of distinct top level objects. */
ec907dd8 994 if (new_reg_base_value[regno])
9ae8ffe7
JL
995 switch (GET_CODE (src))
996 {
2a2c8203 997 case LO_SUM:
9ae8ffe7
JL
998 case MINUS:
999 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1000 new_reg_base_value[regno] = 0;
9ae8ffe7 1001 break;
61f0131c
R
1002 case PLUS:
1003 /* If the value we add in the PLUS is also a valid base value,
1004 this might be the actual base value, and the original value
1005 an index. */
1006 {
1007 rtx other = NULL_RTX;
1008
1009 if (XEXP (src, 0) == dest)
1010 other = XEXP (src, 1);
1011 else if (XEXP (src, 1) == dest)
1012 other = XEXP (src, 0);
1013
1014 if (! other || find_base_value (other))
1015 new_reg_base_value[regno] = 0;
1016 break;
1017 }
9ae8ffe7
JL
1018 case AND:
1019 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1020 new_reg_base_value[regno] = 0;
9ae8ffe7 1021 break;
9ae8ffe7 1022 default:
ec907dd8 1023 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1024 break;
1025 }
1026 /* If this is the first set of a register, record the value. */
1027 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1028 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1029 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1030
1031 reg_seen[regno] = 1;
1032}
1033
ac3d9668
RK
1034/* Called from loop optimization when a new pseudo-register is
1035 created. It indicates that REGNO is being set to VAL. f INVARIANT
1036 is true then this value also describes an invariant relationship
1037 which can be used to deduce that two registers with unknown values
1038 are different. */
d4b60170 1039
9ae8ffe7 1040void
de12be17 1041record_base_value (regno, val, invariant)
ac3d9668 1042 unsigned int regno;
9ae8ffe7 1043 rtx val;
de12be17 1044 int invariant;
9ae8ffe7 1045{
ac3d9668 1046 if (regno >= reg_base_value_size)
9ae8ffe7 1047 return;
de12be17 1048
de12be17
JC
1049 if (invariant && alias_invariant)
1050 alias_invariant[regno] = val;
1051
9ae8ffe7
JL
1052 if (GET_CODE (val) == REG)
1053 {
fb6754f0
BS
1054 if (REGNO (val) < reg_base_value_size)
1055 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1056
9ae8ffe7
JL
1057 return;
1058 }
d4b60170 1059
9ae8ffe7
JL
1060 reg_base_value[regno] = find_base_value (val);
1061}
1062
43fe47ca
JW
1063/* Clear alias info for a register. This is used if an RTL transformation
1064 changes the value of a register. This is used in flow by AUTO_INC_DEC
1065 optimizations. We don't need to clear reg_base_value, since flow only
1066 changes the offset. */
1067
1068void
5197bd50
RK
1069clear_reg_alias_info (reg)
1070 rtx reg;
43fe47ca 1071{
4e1a4144
JW
1072 unsigned int regno = REGNO (reg);
1073
1074 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1075 reg_known_value[regno] = reg;
43fe47ca
JW
1076}
1077
db048faf
MM
1078/* Returns a canonical version of X, from the point of view alias
1079 analysis. (For example, if X is a MEM whose address is a register,
1080 and the register has a known value (say a SYMBOL_REF), then a MEM
1081 whose address is the SYMBOL_REF is returned.) */
1082
1083rtx
9ae8ffe7
JL
1084canon_rtx (x)
1085 rtx x;
1086{
1087 /* Recursively look for equivalences. */
fb6754f0
BS
1088 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1089 && REGNO (x) < reg_known_value_size)
1090 return reg_known_value[REGNO (x)] == x
1091 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1092 else if (GET_CODE (x) == PLUS)
1093 {
1094 rtx x0 = canon_rtx (XEXP (x, 0));
1095 rtx x1 = canon_rtx (XEXP (x, 1));
1096
1097 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1098 {
9ae8ffe7 1099 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1100 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1101 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1102 return plus_constant (x0, INTVAL (x1));
38a448ca 1103 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1104 }
1105 }
d4b60170 1106
9ae8ffe7
JL
1107 /* This gives us much better alias analysis when called from
1108 the loop optimizer. Note we want to leave the original
1109 MEM alone, but need to return the canonicalized MEM with
1110 all the flags with their original values. */
1111 else if (GET_CODE (x) == MEM)
f1ec5147 1112 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1113
9ae8ffe7
JL
1114 return x;
1115}
1116
1117/* Return 1 if X and Y are identical-looking rtx's.
1118
1119 We use the data in reg_known_value above to see if two registers with
1120 different numbers are, in fact, equivalent. */
1121
1122static int
1123rtx_equal_for_memref_p (x, y)
1124 rtx x, y;
1125{
b3694847
SS
1126 int i;
1127 int j;
1128 enum rtx_code code;
1129 const char *fmt;
9ae8ffe7
JL
1130
1131 if (x == 0 && y == 0)
1132 return 1;
1133 if (x == 0 || y == 0)
1134 return 0;
d4b60170 1135
9ae8ffe7
JL
1136 x = canon_rtx (x);
1137 y = canon_rtx (y);
1138
1139 if (x == y)
1140 return 1;
1141
1142 code = GET_CODE (x);
1143 /* Rtx's of different codes cannot be equal. */
1144 if (code != GET_CODE (y))
1145 return 0;
1146
1147 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1148 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1149
1150 if (GET_MODE (x) != GET_MODE (y))
1151 return 0;
1152
db048faf
MM
1153 /* Some RTL can be compared without a recursive examination. */
1154 switch (code)
1155 {
ab59db3c
BS
1156 case VALUE:
1157 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1158
db048faf
MM
1159 case REG:
1160 return REGNO (x) == REGNO (y);
1161
1162 case LABEL_REF:
1163 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1164
db048faf
MM
1165 case SYMBOL_REF:
1166 return XSTR (x, 0) == XSTR (y, 0);
1167
1168 case CONST_INT:
1169 case CONST_DOUBLE:
1170 /* There's no need to compare the contents of CONST_DOUBLEs or
1171 CONST_INTs because pointer equality is a good enough
1172 comparison for these nodes. */
1173 return 0;
1174
1175 case ADDRESSOF:
831ecbd4
RK
1176 return (XINT (x, 1) == XINT (y, 1)
1177 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
db048faf
MM
1178
1179 default:
1180 break;
1181 }
9ae8ffe7
JL
1182
1183 /* For commutative operations, the RTX match if the operand match in any
1184 order. Also handle the simple binary and unary cases without a loop. */
1185 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1186 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1187 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1188 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1189 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1190 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1191 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1192 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1193 else if (GET_RTX_CLASS (code) == '1')
1194 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1195
1196 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1197 fail to match, return 0 for the whole things.
1198
1199 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1200
1201 fmt = GET_RTX_FORMAT (code);
1202 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1203 {
1204 switch (fmt[i])
1205 {
9ae8ffe7
JL
1206 case 'i':
1207 if (XINT (x, i) != XINT (y, i))
1208 return 0;
1209 break;
1210
9ae8ffe7
JL
1211 case 'E':
1212 /* Two vectors must have the same length. */
1213 if (XVECLEN (x, i) != XVECLEN (y, i))
1214 return 0;
1215
1216 /* And the corresponding elements must match. */
1217 for (j = 0; j < XVECLEN (x, i); j++)
d4b60170
RK
1218 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1219 XVECEXP (y, i, j)) == 0)
9ae8ffe7
JL
1220 return 0;
1221 break;
1222
1223 case 'e':
1224 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1225 return 0;
1226 break;
1227
3237ac18
AH
1228 /* This can happen for asm operands. */
1229 case 's':
1230 if (strcmp (XSTR (x, i), XSTR (y, i)))
1231 return 0;
1232 break;
1233
aee21ba9
JL
1234 /* This can happen for an asm which clobbers memory. */
1235 case '0':
1236 break;
1237
9ae8ffe7
JL
1238 /* It is believed that rtx's at this level will never
1239 contain anything but integers and other rtx's,
1240 except for within LABEL_REFs and SYMBOL_REFs. */
1241 default:
1242 abort ();
1243 }
1244 }
1245 return 1;
1246}
1247
1248/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1249 X and return it, or return 0 if none found. */
1250
1251static rtx
1252find_symbolic_term (x)
1253 rtx x;
1254{
b3694847
SS
1255 int i;
1256 enum rtx_code code;
1257 const char *fmt;
9ae8ffe7
JL
1258
1259 code = GET_CODE (x);
1260 if (code == SYMBOL_REF || code == LABEL_REF)
1261 return x;
1262 if (GET_RTX_CLASS (code) == 'o')
1263 return 0;
1264
1265 fmt = GET_RTX_FORMAT (code);
1266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 {
1268 rtx t;
1269
1270 if (fmt[i] == 'e')
1271 {
1272 t = find_symbolic_term (XEXP (x, i));
1273 if (t != 0)
1274 return t;
1275 }
1276 else if (fmt[i] == 'E')
1277 break;
1278 }
1279 return 0;
1280}
1281
1282static rtx
1283find_base_term (x)
b3694847 1284 rtx x;
9ae8ffe7 1285{
eab5c70a
BS
1286 cselib_val *val;
1287 struct elt_loc_list *l;
1288
b949ea8b
JW
1289#if defined (FIND_BASE_TERM)
1290 /* Try machine-dependent ways to find the base term. */
1291 x = FIND_BASE_TERM (x);
1292#endif
1293
9ae8ffe7
JL
1294 switch (GET_CODE (x))
1295 {
1296 case REG:
1297 return REG_BASE_VALUE (x);
1298
d288e53d
DE
1299 case TRUNCATE:
1300 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1301 return 0;
d288e53d 1302 /* Fall through. */
9ae8ffe7 1303 case HIGH:
6d849a2a
JL
1304 case PRE_INC:
1305 case PRE_DEC:
1306 case POST_INC:
1307 case POST_DEC:
d288e53d
DE
1308 case PRE_MODIFY:
1309 case POST_MODIFY:
6d849a2a
JL
1310 return find_base_term (XEXP (x, 0));
1311
1abade85
RK
1312 case ZERO_EXTEND:
1313 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1314 {
1315 rtx temp = find_base_term (XEXP (x, 0));
1316
1317#ifdef POINTERS_EXTEND_UNSIGNED
1318 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1319 temp = convert_memory_address (Pmode, temp);
1320#endif
1321
1322 return temp;
1323 }
1324
eab5c70a
BS
1325 case VALUE:
1326 val = CSELIB_VAL_PTR (x);
1327 for (l = val->locs; l; l = l->next)
1328 if ((x = find_base_term (l->loc)) != 0)
1329 return x;
1330 return 0;
1331
9ae8ffe7
JL
1332 case CONST:
1333 x = XEXP (x, 0);
1334 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1335 return 0;
1336 /* fall through */
1337 case LO_SUM:
1338 case PLUS:
1339 case MINUS:
1340 {
3c567fae
JL
1341 rtx tmp1 = XEXP (x, 0);
1342 rtx tmp2 = XEXP (x, 1);
1343
f5143c46 1344 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1345 the two operands represents the real base address. Otherwise this
1346 routine may return the index register instead of the base register.
1347
1348 That may cause us to believe no aliasing was possible, when in
1349 fact aliasing is possible.
1350
1351 We use a few simple tests to guess the base register. Additional
1352 tests can certainly be added. For example, if one of the operands
1353 is a shift or multiply, then it must be the index register and the
1354 other operand is the base register. */
ca7fd9cd 1355
b949ea8b
JW
1356 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1357 return find_base_term (tmp2);
1358
3c567fae
JL
1359 /* If either operand is known to be a pointer, then use it
1360 to determine the base term. */
3502dc9c 1361 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1362 return find_base_term (tmp1);
1363
3502dc9c 1364 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1365 return find_base_term (tmp2);
1366
1367 /* Neither operand was known to be a pointer. Go ahead and find the
1368 base term for both operands. */
1369 tmp1 = find_base_term (tmp1);
1370 tmp2 = find_base_term (tmp2);
1371
1372 /* If either base term is named object or a special address
1373 (like an argument or stack reference), then use it for the
1374 base term. */
d4b60170 1375 if (tmp1 != 0
3c567fae
JL
1376 && (GET_CODE (tmp1) == SYMBOL_REF
1377 || GET_CODE (tmp1) == LABEL_REF
1378 || (GET_CODE (tmp1) == ADDRESS
1379 && GET_MODE (tmp1) != VOIDmode)))
1380 return tmp1;
1381
d4b60170 1382 if (tmp2 != 0
3c567fae
JL
1383 && (GET_CODE (tmp2) == SYMBOL_REF
1384 || GET_CODE (tmp2) == LABEL_REF
1385 || (GET_CODE (tmp2) == ADDRESS
1386 && GET_MODE (tmp2) != VOIDmode)))
1387 return tmp2;
1388
1389 /* We could not determine which of the two operands was the
1390 base register and which was the index. So we can determine
1391 nothing from the base alias check. */
1392 return 0;
9ae8ffe7
JL
1393 }
1394
1395 case AND:
d288e53d
DE
1396 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1397 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1398 return 0;
1399
1400 case SYMBOL_REF:
1401 case LABEL_REF:
1402 return x;
1403
d982e46e 1404 case ADDRESSOF:
bb07060a 1405 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1406
9ae8ffe7
JL
1407 default:
1408 return 0;
1409 }
1410}
1411
1412/* Return 0 if the addresses X and Y are known to point to different
1413 objects, 1 if they might be pointers to the same object. */
1414
1415static int
56ee9281 1416base_alias_check (x, y, x_mode, y_mode)
9ae8ffe7 1417 rtx x, y;
56ee9281 1418 enum machine_mode x_mode, y_mode;
9ae8ffe7
JL
1419{
1420 rtx x_base = find_base_term (x);
1421 rtx y_base = find_base_term (y);
1422
1c72c7f6
JC
1423 /* If the address itself has no known base see if a known equivalent
1424 value has one. If either address still has no known base, nothing
1425 is known about aliasing. */
1426 if (x_base == 0)
1427 {
1428 rtx x_c;
d4b60170 1429
1c72c7f6
JC
1430 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1431 return 1;
d4b60170 1432
1c72c7f6
JC
1433 x_base = find_base_term (x_c);
1434 if (x_base == 0)
1435 return 1;
1436 }
9ae8ffe7 1437
1c72c7f6
JC
1438 if (y_base == 0)
1439 {
1440 rtx y_c;
1441 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1442 return 1;
d4b60170 1443
1c72c7f6
JC
1444 y_base = find_base_term (y_c);
1445 if (y_base == 0)
1446 return 1;
1447 }
1448
1449 /* If the base addresses are equal nothing is known about aliasing. */
1450 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1451 return 1;
1452
ca7fd9cd 1453 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1454 If they are both symbols and they are not accessed via AND, there is
1455 no conflict. We can bring knowledge of object alignment into play
1456 here. For example, on alpha, "char a, b;" can alias one another,
1457 though "char a; long b;" cannot. */
9ae8ffe7 1458 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1459 {
56ee9281
RH
1460 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1461 return 1;
1462 if (GET_CODE (x) == AND
1463 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1464 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1465 return 1;
1466 if (GET_CODE (y) == AND
1467 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1468 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1469 return 1;
b2972551
JL
1470 /* Differing symbols never alias. */
1471 return 0;
c02f035f 1472 }
9ae8ffe7
JL
1473
1474 /* If one address is a stack reference there can be no alias:
1475 stack references using different base registers do not alias,
1476 a stack reference can not alias a parameter, and a stack reference
1477 can not alias a global. */
1478 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1479 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1480 return 0;
1481
1482 if (! flag_argument_noalias)
1483 return 1;
1484
1485 if (flag_argument_noalias > 1)
1486 return 0;
1487
ec5c56db 1488 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1489 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1490}
1491
eab5c70a
BS
1492/* Convert the address X into something we can use. This is done by returning
1493 it unchanged unless it is a value; in the latter case we call cselib to get
1494 a more useful rtx. */
3bdf5ad1 1495
a13d4ebf 1496rtx
eab5c70a
BS
1497get_addr (x)
1498 rtx x;
1499{
1500 cselib_val *v;
1501 struct elt_loc_list *l;
1502
1503 if (GET_CODE (x) != VALUE)
1504 return x;
1505 v = CSELIB_VAL_PTR (x);
1506 for (l = v->locs; l; l = l->next)
1507 if (CONSTANT_P (l->loc))
1508 return l->loc;
1509 for (l = v->locs; l; l = l->next)
1510 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1511 return l->loc;
1512 if (v->locs)
1513 return v->locs->loc;
1514 return x;
1515}
1516
39cec1ac
MH
1517/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1518 where SIZE is the size in bytes of the memory reference. If ADDR
1519 is not modified by the memory reference then ADDR is returned. */
1520
1521rtx
1522addr_side_effect_eval (addr, size, n_refs)
1523 rtx addr;
1524 int size;
1525 int n_refs;
1526{
1527 int offset = 0;
ca7fd9cd 1528
39cec1ac
MH
1529 switch (GET_CODE (addr))
1530 {
1531 case PRE_INC:
1532 offset = (n_refs + 1) * size;
1533 break;
1534 case PRE_DEC:
1535 offset = -(n_refs + 1) * size;
1536 break;
1537 case POST_INC:
1538 offset = n_refs * size;
1539 break;
1540 case POST_DEC:
1541 offset = -n_refs * size;
1542 break;
1543
1544 default:
1545 return addr;
1546 }
ca7fd9cd 1547
39cec1ac
MH
1548 if (offset)
1549 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1550 else
1551 addr = XEXP (addr, 0);
1552
1553 return addr;
1554}
1555
9ae8ffe7
JL
1556/* Return nonzero if X and Y (memory addresses) could reference the
1557 same location in memory. C is an offset accumulator. When
1558 C is nonzero, we are testing aliases between X and Y + C.
1559 XSIZE is the size in bytes of the X reference,
1560 similarly YSIZE is the size in bytes for Y.
1561
1562 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1563 referenced (the reference was BLKmode), so make the most pessimistic
1564 assumptions.
1565
c02f035f
RH
1566 If XSIZE or YSIZE is negative, we may access memory outside the object
1567 being referenced as a side effect. This can happen when using AND to
1568 align memory references, as is done on the Alpha.
1569
9ae8ffe7 1570 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1571 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1572
9ae8ffe7
JL
1573static int
1574memrefs_conflict_p (xsize, x, ysize, y, c)
b3694847 1575 rtx x, y;
9ae8ffe7
JL
1576 int xsize, ysize;
1577 HOST_WIDE_INT c;
1578{
eab5c70a
BS
1579 if (GET_CODE (x) == VALUE)
1580 x = get_addr (x);
1581 if (GET_CODE (y) == VALUE)
1582 y = get_addr (y);
9ae8ffe7
JL
1583 if (GET_CODE (x) == HIGH)
1584 x = XEXP (x, 0);
1585 else if (GET_CODE (x) == LO_SUM)
1586 x = XEXP (x, 1);
1587 else
39cec1ac 1588 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
9ae8ffe7
JL
1589 if (GET_CODE (y) == HIGH)
1590 y = XEXP (y, 0);
1591 else if (GET_CODE (y) == LO_SUM)
1592 y = XEXP (y, 1);
1593 else
39cec1ac 1594 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
9ae8ffe7
JL
1595
1596 if (rtx_equal_for_memref_p (x, y))
1597 {
c02f035f 1598 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1599 return 1;
1600 if (c >= 0 && xsize > c)
1601 return 1;
1602 if (c < 0 && ysize+c > 0)
1603 return 1;
1604 return 0;
1605 }
1606
6e73e666
JC
1607 /* This code used to check for conflicts involving stack references and
1608 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1609
1610 if (GET_CODE (x) == PLUS)
1611 {
1612 /* The fact that X is canonicalized means that this
1613 PLUS rtx is canonicalized. */
1614 rtx x0 = XEXP (x, 0);
1615 rtx x1 = XEXP (x, 1);
1616
1617 if (GET_CODE (y) == PLUS)
1618 {
1619 /* The fact that Y is canonicalized means that this
1620 PLUS rtx is canonicalized. */
1621 rtx y0 = XEXP (y, 0);
1622 rtx y1 = XEXP (y, 1);
1623
1624 if (rtx_equal_for_memref_p (x1, y1))
1625 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1626 if (rtx_equal_for_memref_p (x0, y0))
1627 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1628 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1629 {
1630 if (GET_CODE (y1) == CONST_INT)
1631 return memrefs_conflict_p (xsize, x0, ysize, y0,
1632 c - INTVAL (x1) + INTVAL (y1));
1633 else
1634 return memrefs_conflict_p (xsize, x0, ysize, y,
1635 c - INTVAL (x1));
1636 }
9ae8ffe7
JL
1637 else if (GET_CODE (y1) == CONST_INT)
1638 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1639
6e73e666 1640 return 1;
9ae8ffe7
JL
1641 }
1642 else if (GET_CODE (x1) == CONST_INT)
1643 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1644 }
1645 else if (GET_CODE (y) == PLUS)
1646 {
1647 /* The fact that Y is canonicalized means that this
1648 PLUS rtx is canonicalized. */
1649 rtx y0 = XEXP (y, 0);
1650 rtx y1 = XEXP (y, 1);
1651
1652 if (GET_CODE (y1) == CONST_INT)
1653 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1654 else
1655 return 1;
1656 }
1657
1658 if (GET_CODE (x) == GET_CODE (y))
1659 switch (GET_CODE (x))
1660 {
1661 case MULT:
1662 {
1663 /* Handle cases where we expect the second operands to be the
1664 same, and check only whether the first operand would conflict
1665 or not. */
1666 rtx x0, y0;
1667 rtx x1 = canon_rtx (XEXP (x, 1));
1668 rtx y1 = canon_rtx (XEXP (y, 1));
1669 if (! rtx_equal_for_memref_p (x1, y1))
1670 return 1;
1671 x0 = canon_rtx (XEXP (x, 0));
1672 y0 = canon_rtx (XEXP (y, 0));
1673 if (rtx_equal_for_memref_p (x0, y0))
1674 return (xsize == 0 || ysize == 0
1675 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1676
1677 /* Can't properly adjust our sizes. */
1678 if (GET_CODE (x1) != CONST_INT)
1679 return 1;
1680 xsize /= INTVAL (x1);
1681 ysize /= INTVAL (x1);
1682 c /= INTVAL (x1);
1683 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1684 }
1d300e19 1685
de12be17
JC
1686 case REG:
1687 /* Are these registers known not to be equal? */
1688 if (alias_invariant)
1689 {
e51712db 1690 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1691 rtx i_x, i_y; /* invariant relationships of X and Y */
1692
1693 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1694 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1695
1696 if (i_x == 0 && i_y == 0)
1697 break;
1698
1699 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1700 ysize, i_y ? i_y : y, c))
1701 return 0;
1702 }
1703 break;
1704
1d300e19
KG
1705 default:
1706 break;
9ae8ffe7
JL
1707 }
1708
1709 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1710 as an access with indeterminate size. Assume that references
56ee9281
RH
1711 besides AND are aligned, so if the size of the other reference is
1712 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1713 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1714 {
02e3377d 1715 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281
RH
1716 xsize = -1;
1717 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1718 }
9ae8ffe7 1719 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1720 {
56ee9281 1721 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1722 may yet be able to determine that we can not overlap. But we
c02f035f 1723 also need to that we are far enough from the end not to overlap
56ee9281 1724 a following reference, so we do nothing with that for now. */
02e3377d 1725 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281
RH
1726 ysize = -1;
1727 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
c02f035f 1728 }
9ae8ffe7 1729
b24ea077
JW
1730 if (GET_CODE (x) == ADDRESSOF)
1731 {
1732 if (y == frame_pointer_rtx
1733 || GET_CODE (y) == ADDRESSOF)
1734 return xsize <= 0 || ysize <= 0;
1735 }
1736 if (GET_CODE (y) == ADDRESSOF)
1737 {
1738 if (x == frame_pointer_rtx)
1739 return xsize <= 0 || ysize <= 0;
1740 }
d982e46e 1741
9ae8ffe7
JL
1742 if (CONSTANT_P (x))
1743 {
1744 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1745 {
1746 c += (INTVAL (y) - INTVAL (x));
c02f035f 1747 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1748 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1749 }
1750
1751 if (GET_CODE (x) == CONST)
1752 {
1753 if (GET_CODE (y) == CONST)
1754 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1755 ysize, canon_rtx (XEXP (y, 0)), c);
1756 else
1757 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1758 ysize, y, c);
1759 }
1760 if (GET_CODE (y) == CONST)
1761 return memrefs_conflict_p (xsize, x, ysize,
1762 canon_rtx (XEXP (y, 0)), c);
1763
1764 if (CONSTANT_P (y))
b949ea8b 1765 return (xsize <= 0 || ysize <= 0
c02f035f 1766 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1767 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1768
1769 return 1;
1770 }
1771 return 1;
1772}
1773
1774/* Functions to compute memory dependencies.
1775
1776 Since we process the insns in execution order, we can build tables
1777 to keep track of what registers are fixed (and not aliased), what registers
1778 are varying in known ways, and what registers are varying in unknown
1779 ways.
1780
1781 If both memory references are volatile, then there must always be a
1782 dependence between the two references, since their order can not be
1783 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1784 though.
9ae8ffe7 1785
dc1618bc
RK
1786 A MEM_IN_STRUCT reference at a non-AND varying address can never
1787 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1788 also must allow AND addresses, because they may generate accesses
1789 outside the object being referenced. This is used to generate
1790 aligned addresses from unaligned addresses, for instance, the alpha
1791 storeqi_unaligned pattern. */
9ae8ffe7
JL
1792
1793/* Read dependence: X is read after read in MEM takes place. There can
1794 only be a dependence here if both reads are volatile. */
1795
1796int
1797read_dependence (mem, x)
1798 rtx mem;
1799 rtx x;
1800{
1801 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1802}
1803
c6df88cb
MM
1804/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1805 MEM2 is a reference to a structure at a varying address, or returns
1806 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1807 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1808 to decide whether or not an address may vary; it should return
eab5c70a
BS
1809 nonzero whenever variation is possible.
1810 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1811
2c72b78f 1812static rtx
eab5c70a
BS
1813fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1814 rtx mem1, mem2;
1815 rtx mem1_addr, mem2_addr;
e38fe8e0 1816 int (*varies_p) PARAMS ((rtx, int));
ca7fd9cd 1817{
3e0abe15
GK
1818 if (! flag_strict_aliasing)
1819 return NULL_RTX;
1820
ca7fd9cd 1821 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1822 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1823 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1824 varying address. */
1825 return mem1;
1826
ca7fd9cd 1827 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1828 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1829 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1830 varying address. */
1831 return mem2;
1832
1833 return NULL_RTX;
1834}
1835
1836/* Returns nonzero if something about the mode or address format MEM1
1837 indicates that it might well alias *anything*. */
1838
2c72b78f 1839static int
c6df88cb
MM
1840aliases_everything_p (mem)
1841 rtx mem;
1842{
c6df88cb
MM
1843 if (GET_CODE (XEXP (mem, 0)) == AND)
1844 /* If the address is an AND, its very hard to know at what it is
1845 actually pointing. */
1846 return 1;
ca7fd9cd 1847
c6df88cb
MM
1848 return 0;
1849}
1850
998d7deb
RH
1851/* Return true if we can determine that the fields referenced cannot
1852 overlap for any pair of objects. */
1853
1854static bool
1855nonoverlapping_component_refs_p (x, y)
1856 tree x, y;
1857{
1858 tree fieldx, fieldy, typex, typey, orig_y;
1859
1860 do
1861 {
1862 /* The comparison has to be done at a common type, since we don't
d6a7951f 1863 know how the inheritance hierarchy works. */
998d7deb
RH
1864 orig_y = y;
1865 do
1866 {
1867 fieldx = TREE_OPERAND (x, 1);
1868 typex = DECL_FIELD_CONTEXT (fieldx);
1869
1870 y = orig_y;
1871 do
1872 {
1873 fieldy = TREE_OPERAND (y, 1);
1874 typey = DECL_FIELD_CONTEXT (fieldy);
1875
1876 if (typex == typey)
1877 goto found;
1878
1879 y = TREE_OPERAND (y, 0);
1880 }
1881 while (y && TREE_CODE (y) == COMPONENT_REF);
1882
1883 x = TREE_OPERAND (x, 0);
1884 }
1885 while (x && TREE_CODE (x) == COMPONENT_REF);
1886
1887 /* Never found a common type. */
1888 return false;
1889
1890 found:
1891 /* If we're left with accessing different fields of a structure,
1892 then no overlap. */
1893 if (TREE_CODE (typex) == RECORD_TYPE
1894 && fieldx != fieldy)
1895 return true;
1896
1897 /* The comparison on the current field failed. If we're accessing
1898 a very nested structure, look at the next outer level. */
1899 x = TREE_OPERAND (x, 0);
1900 y = TREE_OPERAND (y, 0);
1901 }
1902 while (x && y
1903 && TREE_CODE (x) == COMPONENT_REF
1904 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1905
998d7deb
RH
1906 return false;
1907}
1908
1909/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1910
1911static tree
1912decl_for_component_ref (x)
1913 tree x;
1914{
1915 do
1916 {
1917 x = TREE_OPERAND (x, 0);
1918 }
1919 while (x && TREE_CODE (x) == COMPONENT_REF);
1920
1921 return x && DECL_P (x) ? x : NULL_TREE;
1922}
1923
1924/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1925 offset of the field reference. */
1926
1927static rtx
1928adjust_offset_for_component_ref (x, offset)
1929 tree x;
1930 rtx offset;
1931{
1932 HOST_WIDE_INT ioffset;
1933
1934 if (! offset)
1935 return NULL_RTX;
1936
1937 ioffset = INTVAL (offset);
ca7fd9cd 1938 do
998d7deb
RH
1939 {
1940 tree field = TREE_OPERAND (x, 1);
1941
1942 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1943 return NULL_RTX;
1944 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1945 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1946 / BITS_PER_UNIT));
1947
1948 x = TREE_OPERAND (x, 0);
1949 }
1950 while (x && TREE_CODE (x) == COMPONENT_REF);
1951
1952 return GEN_INT (ioffset);
1953}
1954
1955/* Return nonzero if we can deterimine the exprs corresponding to memrefs
a4311dfe
RK
1956 X and Y and they do not overlap. */
1957
1958static int
1959nonoverlapping_memrefs_p (x, y)
1960 rtx x, y;
1961{
998d7deb 1962 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1963 rtx rtlx, rtly;
1964 rtx basex, basey;
998d7deb 1965 rtx moffsetx, moffsety;
a4311dfe
RK
1966 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1967
998d7deb
RH
1968 /* Unless both have exprs, we can't tell anything. */
1969 if (exprx == 0 || expry == 0)
1970 return 0;
1971
1972 /* If both are field references, we may be able to determine something. */
1973 if (TREE_CODE (exprx) == COMPONENT_REF
1974 && TREE_CODE (expry) == COMPONENT_REF
1975 && nonoverlapping_component_refs_p (exprx, expry))
1976 return 1;
1977
1978 /* If the field reference test failed, look at the DECLs involved. */
1979 moffsetx = MEM_OFFSET (x);
1980 if (TREE_CODE (exprx) == COMPONENT_REF)
1981 {
1982 tree t = decl_for_component_ref (exprx);
1983 if (! t)
1984 return 0;
1985 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1986 exprx = t;
1987 }
c67a1cf6
RH
1988 else if (TREE_CODE (exprx) == INDIRECT_REF)
1989 {
1990 exprx = TREE_OPERAND (exprx, 0);
1991 if (flag_argument_noalias < 2
1992 || TREE_CODE (exprx) != PARM_DECL)
1993 return 0;
1994 }
1995
998d7deb
RH
1996 moffsety = MEM_OFFSET (y);
1997 if (TREE_CODE (expry) == COMPONENT_REF)
1998 {
1999 tree t = decl_for_component_ref (expry);
2000 if (! t)
2001 return 0;
2002 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2003 expry = t;
2004 }
c67a1cf6
RH
2005 else if (TREE_CODE (expry) == INDIRECT_REF)
2006 {
2007 expry = TREE_OPERAND (expry, 0);
2008 if (flag_argument_noalias < 2
2009 || TREE_CODE (expry) != PARM_DECL)
2010 return 0;
2011 }
998d7deb
RH
2012
2013 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2014 return 0;
2015
998d7deb
RH
2016 rtlx = DECL_RTL (exprx);
2017 rtly = DECL_RTL (expry);
a4311dfe 2018
1edcd60b
RK
2019 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2020 can't overlap unless they are the same because we never reuse that part
2021 of the stack frame used for locals for spilled pseudos. */
2022 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2023 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2024 return 1;
2025
2026 /* Get the base and offsets of both decls. If either is a register, we
2027 know both are and are the same, so use that as the base. The only
2028 we can avoid overlap is if we can deduce that they are nonoverlapping
2029 pieces of that decl, which is very rare. */
1edcd60b 2030 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2031 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2032 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2033
1edcd60b 2034 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2035 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2036 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2037
d746694a 2038 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2039 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2040 stack frame. Otherwise a different base means we can't tell if they
2041 overlap or not. */
2042 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2043 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2044 || (CONSTANT_P (basex) && REG_P (basey)
2045 && REGNO_PTR_FRAME_P (REGNO (basey)))
2046 || (CONSTANT_P (basey) && REG_P (basex)
2047 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2048
998d7deb 2049 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2050 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2051 : -1);
998d7deb 2052 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2053 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2054 -1);
2055
0af5bc3e
RK
2056 /* If we have an offset for either memref, it can update the values computed
2057 above. */
998d7deb
RH
2058 if (moffsetx)
2059 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2060 if (moffsety)
2061 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2062
0af5bc3e 2063 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2064 We can't do this if the offset isn't known because we must view this
0af5bc3e 2065 memref as being anywhere inside the DECL's MEM. */
998d7deb 2066 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2067 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2068 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2069 sizey = INTVAL (MEM_SIZE (y));
2070
2071 /* Put the values of the memref with the lower offset in X's values. */
2072 if (offsetx > offsety)
2073 {
2074 tem = offsetx, offsetx = offsety, offsety = tem;
2075 tem = sizex, sizex = sizey, sizey = tem;
2076 }
2077
2078 /* If we don't know the size of the lower-offset value, we can't tell
2079 if they conflict. Otherwise, we do the test. */
a6f7c915 2080 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2081}
2082
9ae8ffe7
JL
2083/* True dependence: X is read after store in MEM takes place. */
2084
2085int
2086true_dependence (mem, mem_mode, x, varies)
2087 rtx mem;
2088 enum machine_mode mem_mode;
2089 rtx x;
e38fe8e0 2090 int (*varies) PARAMS ((rtx, int));
9ae8ffe7 2091{
b3694847 2092 rtx x_addr, mem_addr;
49982682 2093 rtx base;
9ae8ffe7
JL
2094
2095 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2096 return 1;
2097
c4484b8f
RH
2098 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2099 This is used in epilogue deallocation functions. */
2100 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2101 return 1;
2102 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2103 return 1;
2104
41472af8
MM
2105 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2106 return 0;
2107
b949ea8b
JW
2108 /* Unchanging memory can't conflict with non-unchanging memory.
2109 A non-unchanging read can conflict with a non-unchanging write.
2110 An unchanging read can conflict with an unchanging write since
2111 there may be a single store to this address to initialize it.
ec569656
RK
2112 Note that an unchanging store can conflict with a non-unchanging read
2113 since we have to make conservative assumptions when we have a
2114 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2115 Just fall through to the code below to resolve potential conflicts.
2116 This won't handle all cases optimally, but the possible performance
2117 loss should be negligible. */
ec569656 2118 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2119 return 0;
2120
a4311dfe
RK
2121 if (nonoverlapping_memrefs_p (mem, x))
2122 return 0;
2123
56ee9281
RH
2124 if (mem_mode == VOIDmode)
2125 mem_mode = GET_MODE (mem);
2126
eab5c70a
BS
2127 x_addr = get_addr (XEXP (x, 0));
2128 mem_addr = get_addr (XEXP (mem, 0));
2129
55efb413
JW
2130 base = find_base_term (x_addr);
2131 if (base && (GET_CODE (base) == LABEL_REF
2132 || (GET_CODE (base) == SYMBOL_REF
2133 && CONSTANT_POOL_ADDRESS_P (base))))
2134 return 0;
2135
eab5c70a 2136 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2137 return 0;
2138
eab5c70a
BS
2139 x_addr = canon_rtx (x_addr);
2140 mem_addr = canon_rtx (mem_addr);
6e73e666 2141
0211b6ab
JW
2142 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2143 SIZE_FOR_MODE (x), x_addr, 0))
2144 return 0;
2145
c6df88cb 2146 if (aliases_everything_p (x))
0211b6ab
JW
2147 return 1;
2148
f5143c46 2149 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2150 at MEM_MODE, rather than GET_MODE (MEM). */
2151 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2152 return 1;
2153
2154 /* In true_dependence we also allow BLKmode to alias anything. Why
2155 don't we do this in anti_dependence and output_dependence? */
2156 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2157 return 1;
2158
2159 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2160 varies);
2161}
2162
2163/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2164 Variant of true_dependence which assumes MEM has already been
2165 canonicalized (hence we no longer do that here).
2166 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2167 this value prior to canonicalizing. */
2168
2169int
2170canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2171 rtx mem, mem_addr, x;
2172 enum machine_mode mem_mode;
2173 int (*varies) PARAMS ((rtx, int));
2174{
b3694847 2175 rtx x_addr;
a13d4ebf
AM
2176
2177 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2178 return 1;
2179
0fe854a7
RH
2180 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2181 This is used in epilogue deallocation functions. */
2182 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2183 return 1;
2184 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2185 return 1;
2186
a13d4ebf
AM
2187 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2188 return 0;
2189
2190 /* If X is an unchanging read, then it can't possibly conflict with any
2191 non-unchanging store. It may conflict with an unchanging write though,
2192 because there may be a single store to this address to initialize it.
2193 Just fall through to the code below to resolve the case where we have
2194 both an unchanging read and an unchanging write. This won't handle all
2195 cases optimally, but the possible performance loss should be
2196 negligible. */
2197 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2198 return 0;
2199
a4311dfe
RK
2200 if (nonoverlapping_memrefs_p (x, mem))
2201 return 0;
2202
a13d4ebf
AM
2203 x_addr = get_addr (XEXP (x, 0));
2204
2205 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2206 return 0;
2207
2208 x_addr = canon_rtx (x_addr);
2209 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2210 SIZE_FOR_MODE (x), x_addr, 0))
2211 return 0;
2212
2213 if (aliases_everything_p (x))
2214 return 1;
2215
f5143c46 2216 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2217 at MEM_MODE, rather than GET_MODE (MEM). */
2218 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2219 return 1;
0211b6ab 2220
c6df88cb
MM
2221 /* In true_dependence we also allow BLKmode to alias anything. Why
2222 don't we do this in anti_dependence and output_dependence? */
2223 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2224 return 1;
0211b6ab 2225
eab5c70a
BS
2226 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2227 varies);
9ae8ffe7
JL
2228}
2229
da7d8304
KH
2230/* Returns nonzero if a write to X might alias a previous read from
2231 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2232
2c72b78f 2233static int
c6df88cb 2234write_dependence_p (mem, x, writep)
9ae8ffe7
JL
2235 rtx mem;
2236 rtx x;
c6df88cb 2237 int writep;
9ae8ffe7 2238{
6e73e666 2239 rtx x_addr, mem_addr;
c6df88cb 2240 rtx fixed_scalar;
49982682 2241 rtx base;
6e73e666 2242
9ae8ffe7
JL
2243 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2244 return 1;
2245
c4484b8f
RH
2246 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2247 This is used in epilogue deallocation functions. */
2248 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2249 return 1;
2250 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2251 return 1;
2252
eab5c70a
BS
2253 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2254 return 0;
2255
b949ea8b
JW
2256 /* Unchanging memory can't conflict with non-unchanging memory. */
2257 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2258 return 0;
2259
9ae8ffe7
JL
2260 /* If MEM is an unchanging read, then it can't possibly conflict with
2261 the store to X, because there is at most one store to MEM, and it must
2262 have occurred somewhere before MEM. */
55efb413
JW
2263 if (! writep && RTX_UNCHANGING_P (mem))
2264 return 0;
2265
a4311dfe
RK
2266 if (nonoverlapping_memrefs_p (x, mem))
2267 return 0;
2268
55efb413
JW
2269 x_addr = get_addr (XEXP (x, 0));
2270 mem_addr = get_addr (XEXP (mem, 0));
2271
49982682
JW
2272 if (! writep)
2273 {
55efb413 2274 base = find_base_term (mem_addr);
49982682
JW
2275 if (base && (GET_CODE (base) == LABEL_REF
2276 || (GET_CODE (base) == SYMBOL_REF
2277 && CONSTANT_POOL_ADDRESS_P (base))))
2278 return 0;
2279 }
2280
eab5c70a
BS
2281 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2282 GET_MODE (mem)))
41472af8
MM
2283 return 0;
2284
eab5c70a
BS
2285 x_addr = canon_rtx (x_addr);
2286 mem_addr = canon_rtx (mem_addr);
6e73e666 2287
c6df88cb
MM
2288 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2289 SIZE_FOR_MODE (x), x_addr, 0))
2290 return 0;
2291
ca7fd9cd 2292 fixed_scalar
eab5c70a
BS
2293 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2294 rtx_addr_varies_p);
2295
c6df88cb
MM
2296 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2297 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2298}
2299
2300/* Anti dependence: X is written after read in MEM takes place. */
2301
2302int
2303anti_dependence (mem, x)
2304 rtx mem;
2305 rtx x;
2306{
2307 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2308}
2309
2310/* Output dependence: X is written after store in MEM takes place. */
2311
2312int
2313output_dependence (mem, x)
b3694847
SS
2314 rtx mem;
2315 rtx x;
9ae8ffe7 2316{
c6df88cb 2317 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2318}
c14b9960
JW
2319\f
2320/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2321 something which is not local to the function and is not constant. */
7790df19
JW
2322
2323static int
c14b9960
JW
2324nonlocal_mentioned_p_1 (loc, data)
2325 rtx *loc;
2326 void *data ATTRIBUTE_UNUSED;
7790df19 2327{
c14b9960 2328 rtx x = *loc;
7790df19 2329 rtx base;
7790df19
JW
2330 int regno;
2331
c14b9960
JW
2332 if (! x)
2333 return 0;
7790df19 2334
c14b9960 2335 switch (GET_CODE (x))
7790df19
JW
2336 {
2337 case SUBREG:
2338 if (GET_CODE (SUBREG_REG (x)) == REG)
2339 {
2340 /* Global registers are not local. */
2341 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2342 && global_regs[subreg_regno (x)])
7790df19
JW
2343 return 1;
2344 return 0;
2345 }
2346 break;
2347
2348 case REG:
2349 regno = REGNO (x);
2350 /* Global registers are not local. */
2351 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2352 return 1;
2353 return 0;
2354
2355 case SCRATCH:
2356 case PC:
2357 case CC0:
2358 case CONST_INT:
2359 case CONST_DOUBLE:
69ef87e2 2360 case CONST_VECTOR:
7790df19
JW
2361 case CONST:
2362 case LABEL_REF:
2363 return 0;
2364
2365 case SYMBOL_REF:
2366 /* Constants in the function's constants pool are constant. */
2367 if (CONSTANT_POOL_ADDRESS_P (x))
2368 return 0;
2369 return 1;
2370
2371 case CALL:
bf6d9fd7 2372 /* Non-constant calls and recursion are not local. */
7790df19
JW
2373 return 1;
2374
2375 case MEM:
2376 /* Be overly conservative and consider any volatile memory
2377 reference as not local. */
2378 if (MEM_VOLATILE_P (x))
2379 return 1;
2380 base = find_base_term (XEXP (x, 0));
2381 if (base)
2382 {
b3b5ad95
JL
2383 /* A Pmode ADDRESS could be a reference via the structure value
2384 address or static chain. Such memory references are nonlocal.
2385
2386 Thus, we have to examine the contents of the ADDRESS to find
2387 out if this is a local reference or not. */
2388 if (GET_CODE (base) == ADDRESS
2389 && GET_MODE (base) == Pmode
2390 && (XEXP (base, 0) == stack_pointer_rtx
2391 || XEXP (base, 0) == arg_pointer_rtx
2392#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2393 || XEXP (base, 0) == hard_frame_pointer_rtx
2394#endif
2395 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2396 return 0;
2397 /* Constants in the function's constant pool are constant. */
2398 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2399 return 0;
2400 }
2401 return 1;
2402
bf6d9fd7 2403 case UNSPEC_VOLATILE:
7790df19 2404 case ASM_INPUT:
7790df19
JW
2405 return 1;
2406
bf6d9fd7
JW
2407 case ASM_OPERANDS:
2408 if (MEM_VOLATILE_P (x))
2409 return 1;
2410
2411 /* FALLTHROUGH */
2412
7790df19
JW
2413 default:
2414 break;
2415 }
2416
c14b9960
JW
2417 return 0;
2418}
2419
da7d8304 2420/* Returns nonzero if X might mention something which is not
c14b9960 2421 local to the function and is not constant. */
7790df19 2422
c14b9960
JW
2423static int
2424nonlocal_mentioned_p (x)
2425 rtx x;
2426{
2427
2428 if (INSN_P (x))
2429 {
2430 if (GET_CODE (x) == CALL_INSN)
2431 {
2432 if (! CONST_OR_PURE_CALL_P (x))
2433 return 1;
2434 x = CALL_INSN_FUNCTION_USAGE (x);
2435 if (x == 0)
2436 return 0;
ca7fd9cd 2437 }
c14b9960 2438 else
ca7fd9cd 2439 x = PATTERN (x);
c14b9960
JW
2440 }
2441
2442 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2443}
2444
2445/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2446 something which is not local to the function and is not constant. */
2447
2448static int
2449nonlocal_referenced_p_1 (loc, data)
2450 rtx *loc;
2451 void *data ATTRIBUTE_UNUSED;
2452{
2453 rtx x = *loc;
2454
2455 if (! x)
2456 return 0;
2457
2458 switch (GET_CODE (x))
2459 {
2460 case MEM:
2461 case REG:
2462 case SYMBOL_REF:
2463 case SUBREG:
2464 return nonlocal_mentioned_p (x);
2465
2466 case CALL:
2467 /* Non-constant calls and recursion are not local. */
2468 return 1;
2469
2470 case SET:
2471 if (nonlocal_mentioned_p (SET_SRC (x)))
2472 return 1;
2473
2474 if (GET_CODE (SET_DEST (x)) == MEM)
2475 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2476
2477 /* If the destination is anything other than a CC0, PC,
2478 MEM, REG, or a SUBREG of a REG that occupies all of
2479 the REG, then X references nonlocal memory if it is
2480 mentioned in the destination. */
2481 if (GET_CODE (SET_DEST (x)) != CC0
2482 && GET_CODE (SET_DEST (x)) != PC
2483 && GET_CODE (SET_DEST (x)) != REG
2484 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2485 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2486 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2487 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2488 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2489 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2490 return nonlocal_mentioned_p (SET_DEST (x));
2491 return 0;
2492
2493 case CLOBBER:
2494 if (GET_CODE (XEXP (x, 0)) == MEM)
2495 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2496 return 0;
2497
2498 case USE:
2499 return nonlocal_mentioned_p (XEXP (x, 0));
2500
2501 case ASM_INPUT:
2502 case UNSPEC_VOLATILE:
2503 return 1;
2504
2505 case ASM_OPERANDS:
2506 if (MEM_VOLATILE_P (x))
2507 return 1;
2508
2509 /* FALLTHROUGH */
2510
2511 default:
2512 break;
2513 }
2514
2515 return 0;
2516}
2517
da7d8304 2518/* Returns nonzero if X might reference something which is not
c14b9960
JW
2519 local to the function and is not constant. */
2520
2521static int
2522nonlocal_referenced_p (x)
2523 rtx x;
2524{
2525
2526 if (INSN_P (x))
2527 {
2528 if (GET_CODE (x) == CALL_INSN)
2529 {
2530 if (! CONST_OR_PURE_CALL_P (x))
2531 return 1;
2532 x = CALL_INSN_FUNCTION_USAGE (x);
2533 if (x == 0)
2534 return 0;
ca7fd9cd 2535 }
c14b9960 2536 else
ca7fd9cd 2537 x = PATTERN (x);
c14b9960
JW
2538 }
2539
2540 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2541}
2542
2543/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2544 something which is not local to the function and is not constant. */
2545
2546static int
2547nonlocal_set_p_1 (loc, data)
2548 rtx *loc;
2549 void *data ATTRIBUTE_UNUSED;
2550{
2551 rtx x = *loc;
2552
2553 if (! x)
2554 return 0;
2555
2556 switch (GET_CODE (x))
2557 {
2558 case CALL:
2559 /* Non-constant calls and recursion are not local. */
2560 return 1;
2561
2562 case PRE_INC:
2563 case PRE_DEC:
2564 case POST_INC:
2565 case POST_DEC:
2566 case PRE_MODIFY:
2567 case POST_MODIFY:
2568 return nonlocal_mentioned_p (XEXP (x, 0));
2569
2570 case SET:
2571 if (nonlocal_mentioned_p (SET_DEST (x)))
2572 return 1;
2573 return nonlocal_set_p (SET_SRC (x));
2574
2575 case CLOBBER:
2576 return nonlocal_mentioned_p (XEXP (x, 0));
2577
2578 case USE:
2579 return 0;
2580
2581 case ASM_INPUT:
2582 case UNSPEC_VOLATILE:
2583 return 1;
2584
2585 case ASM_OPERANDS:
2586 if (MEM_VOLATILE_P (x))
2587 return 1;
2588
2589 /* FALLTHROUGH */
2590
2591 default:
2592 break;
2593 }
7790df19
JW
2594
2595 return 0;
2596}
2597
da7d8304 2598/* Returns nonzero if X might set something which is not
c14b9960
JW
2599 local to the function and is not constant. */
2600
2601static int
2602nonlocal_set_p (x)
2603 rtx x;
2604{
2605
2606 if (INSN_P (x))
2607 {
2608 if (GET_CODE (x) == CALL_INSN)
2609 {
2610 if (! CONST_OR_PURE_CALL_P (x))
2611 return 1;
2612 x = CALL_INSN_FUNCTION_USAGE (x);
2613 if (x == 0)
2614 return 0;
ca7fd9cd 2615 }
c14b9960 2616 else
ca7fd9cd 2617 x = PATTERN (x);
c14b9960
JW
2618 }
2619
2620 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2621}
2622
7790df19
JW
2623/* Mark the function if it is constant. */
2624
2625void
2626mark_constant_function ()
2627{
2628 rtx insn;
c14b9960 2629 int nonlocal_memory_referenced;
7790df19 2630
ab780373 2631 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2632 || DECL_IS_PURE (current_function_decl)
7790df19 2633 || TREE_THIS_VOLATILE (current_function_decl)
c14b9960 2634 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode
ab780373
RH
2635 || current_function_has_nonlocal_goto
2636 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2637 return;
2638
e004f2f7 2639 /* A loop might not return which counts as a side effect. */
0ecf09f9 2640 if (mark_dfs_back_edges ())
e004f2f7
JW
2641 return;
2642
c14b9960 2643 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2644
2645 init_alias_analysis ();
2646
c14b9960 2647 /* Determine if this is a constant or pure function. */
7790df19
JW
2648
2649 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2650 {
2651 if (! INSN_P (insn))
2652 continue;
bf6d9fd7 2653
c14b9960
JW
2654 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2655 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2656 break;
7790df19 2657
c14b9960
JW
2658 if (! nonlocal_memory_referenced)
2659 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2660 }
ca7fd9cd 2661
c14b9960 2662 end_alias_analysis ();
ca7fd9cd 2663
7790df19 2664 /* Mark the function. */
ca7fd9cd 2665
c14b9960
JW
2666 if (insn)
2667 ;
2668 else if (nonlocal_memory_referenced)
2669 DECL_IS_PURE (current_function_decl) = 1;
2670 else
bf6d9fd7 2671 TREE_READONLY (current_function_decl) = 1;
7790df19 2672}
c14b9960 2673\f
6e73e666 2674
6e73e666
JC
2675void
2676init_alias_once ()
2677{
b3694847 2678 int i;
6e73e666
JC
2679
2680#ifndef OUTGOING_REGNO
2681#define OUTGOING_REGNO(N) N
2682#endif
2683 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2684 /* Check whether this register can hold an incoming pointer
2685 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2686 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2687 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2688 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2689 static_reg_base_value[i]
2690 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2691
bf1660a6
JL
2692 static_reg_base_value[STACK_POINTER_REGNUM]
2693 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2694 static_reg_base_value[ARG_POINTER_REGNUM]
2695 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2696 static_reg_base_value[FRAME_POINTER_REGNUM]
2697 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2698#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2699 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2700 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2701#endif
7f243674
JL
2702
2703 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
bf1660a6
JL
2704}
2705
c13e8210
MM
2706/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2707 array. */
2708
9ae8ffe7
JL
2709void
2710init_alias_analysis ()
2711{
2712 int maxreg = max_reg_num ();
ea64ef27 2713 int changed, pass;
b3694847
SS
2714 int i;
2715 unsigned int ui;
2716 rtx insn;
9ae8ffe7
JL
2717
2718 reg_known_value_size = maxreg;
2719
ca7fd9cd 2720 reg_known_value
e05e2395
MM
2721 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2722 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2723 reg_known_equiv_p
e05e2395 2724 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2725 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2726
6e73e666
JC
2727 /* Overallocate reg_base_value to allow some growth during loop
2728 optimization. Loop unrolling can create a large number of
2729 registers. */
2730 reg_base_value_size = maxreg * 2;
e2500fed
GK
2731 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2732 * sizeof (rtx));
ac606739 2733
e05e2395
MM
2734 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2735 reg_seen = (char *) xmalloc (reg_base_value_size);
de12be17
JC
2736 if (! reload_completed && flag_unroll_loops)
2737 {
ac606739 2738 /* ??? Why are we realloc'ing if we're just going to zero it? */
de12be17
JC
2739 alias_invariant = (rtx *)xrealloc (alias_invariant,
2740 reg_base_value_size * sizeof (rtx));
961192e1 2741 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2742 }
ec907dd8
JL
2743
2744 /* The basic idea is that each pass through this loop will use the
2745 "constant" information from the previous pass to propagate alias
2746 information through another level of assignments.
2747
2748 This could get expensive if the assignment chains are long. Maybe
2749 we should throttle the number of iterations, possibly based on
6e73e666 2750 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2751
2752 We could propagate more information in the first pass by making use
2753 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2754 for a pseudo is "constant".
2755
2756 A program with an uninitialized variable can cause an infinite loop
2757 here. Instead of doing a full dataflow analysis to detect such problems
2758 we just cap the number of iterations for the loop.
2759
2760 The state of the arrays for the set chain in question does not matter
2761 since the program has undefined behavior. */
6e73e666 2762
ea64ef27 2763 pass = 0;
6e73e666 2764 do
ec907dd8
JL
2765 {
2766 /* Assume nothing will change this iteration of the loop. */
2767 changed = 0;
2768
ec907dd8
JL
2769 /* We want to assign the same IDs each iteration of this loop, so
2770 start counting from zero each iteration of the loop. */
2771 unique_id = 0;
2772
f5143c46 2773 /* We're at the start of the function each iteration through the
ec907dd8 2774 loop, so we're copying arguments. */
83bbd9b6 2775 copying_arguments = true;
9ae8ffe7 2776
6e73e666 2777 /* Wipe the potential alias information clean for this pass. */
961192e1 2778 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2779
6e73e666 2780 /* Wipe the reg_seen array clean. */
961192e1 2781 memset ((char *) reg_seen, 0, reg_base_value_size);
9ae8ffe7 2782
6e73e666
JC
2783 /* Mark all hard registers which may contain an address.
2784 The stack, frame and argument pointers may contain an address.
2785 An argument register which can hold a Pmode value may contain
2786 an address even if it is not in BASE_REGS.
8072f69c 2787
6e73e666
JC
2788 The address expression is VOIDmode for an argument and
2789 Pmode for other registers. */
2790
7f243674
JL
2791 memcpy (new_reg_base_value, static_reg_base_value,
2792 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2793
ec907dd8
JL
2794 /* Walk the insns adding values to the new_reg_base_value array. */
2795 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2796 {
2c3c49de 2797 if (INSN_P (insn))
ec907dd8 2798 {
6e73e666 2799 rtx note, set;
efc9bd41
RK
2800
2801#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2802 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2803 insn chain until after reload has completed. Thus,
2804 there is no sense wasting time checking if INSN is in
2805 the prologue/epilogue until after reload has completed. */
2806 if (reload_completed
2807 && prologue_epilogue_contains (insn))
efc9bd41
RK
2808 continue;
2809#endif
2810
ec907dd8
JL
2811 /* If this insn has a noalias note, process it, Otherwise,
2812 scan for sets. A simple set will have no side effects
ec5c56db 2813 which could change the base value of any other register. */
6e73e666 2814
ec907dd8 2815 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2816 && REG_NOTES (insn) != 0
2817 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2818 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2819 else
84832317 2820 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2821
2822 set = single_set (insn);
2823
2824 if (set != 0
2825 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2826 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2827 {
fb6754f0 2828 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2829 rtx src = SET_SRC (set);
2830
2831 if (REG_NOTES (insn) != 0
2832 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2833 && REG_N_SETS (regno) == 1)
2834 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2835 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2836 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2837 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2838 {
2839 reg_known_value[regno] = XEXP (note, 0);
2840 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2841 }
2842 else if (REG_N_SETS (regno) == 1
2843 && GET_CODE (src) == PLUS
2844 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2845 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2846 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2847 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2848 {
2849 rtx op0 = XEXP (src, 0);
bb2cf916 2850 op0 = reg_known_value[REGNO (op0)];
713f41f9 2851 reg_known_value[regno]
ed8908e7 2852 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2853 reg_known_equiv_p[regno] = 0;
2854 }
2855 else if (REG_N_SETS (regno) == 1
2856 && ! rtx_varies_p (src, 1))
2857 {
2858 reg_known_value[regno] = src;
2859 reg_known_equiv_p[regno] = 0;
2860 }
6e73e666 2861 }
ec907dd8
JL
2862 }
2863 else if (GET_CODE (insn) == NOTE
2864 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2865 copying_arguments = false;
6e73e666 2866 }
ec907dd8 2867
6e73e666 2868 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2869 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2870 {
e51712db
KG
2871 if (new_reg_base_value[ui]
2872 && new_reg_base_value[ui] != reg_base_value[ui]
2873 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2874 {
e51712db 2875 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2876 changed = 1;
ec907dd8 2877 }
9ae8ffe7 2878 }
9ae8ffe7 2879 }
6e73e666 2880 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2881
2882 /* Fill in the remaining entries. */
2883 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2884 if (reg_known_value[i] == 0)
2885 reg_known_value[i] = regno_reg_rtx[i];
2886
9ae8ffe7
JL
2887 /* Simplify the reg_base_value array so that no register refers to
2888 another register, except to special registers indirectly through
2889 ADDRESS expressions.
2890
2891 In theory this loop can take as long as O(registers^2), but unless
2892 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2893 time.
2894
2895 This loop may not be needed any longer now that the main loop does
2896 a better job at propagating alias information. */
2897 pass = 0;
9ae8ffe7
JL
2898 do
2899 {
2900 changed = 0;
ea64ef27 2901 pass++;
e51712db 2902 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2903 {
e51712db 2904 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2905 if (base && GET_CODE (base) == REG)
2906 {
fb6754f0 2907 unsigned int base_regno = REGNO (base);
e51712db
KG
2908 if (base_regno == ui) /* register set from itself */
2909 reg_base_value[ui] = 0;
9ae8ffe7 2910 else
e51712db 2911 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2912 changed = 1;
2913 }
2914 }
2915 }
ea64ef27 2916 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2917
e05e2395
MM
2918 /* Clean up. */
2919 free (new_reg_base_value);
ec907dd8 2920 new_reg_base_value = 0;
e05e2395 2921 free (reg_seen);
9ae8ffe7
JL
2922 reg_seen = 0;
2923}
2924
2925void
2926end_alias_analysis ()
2927{
e05e2395 2928 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2929 reg_known_value = 0;
ac606739 2930 reg_known_value_size = 0;
e05e2395
MM
2931 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2932 reg_known_equiv_p = 0;
e2500fed 2933 reg_base_value = 0;
9ae8ffe7 2934 reg_base_value_size = 0;
de12be17
JC
2935 if (alias_invariant)
2936 {
ac606739 2937 free (alias_invariant);
de12be17
JC
2938 alias_invariant = 0;
2939 }
9ae8ffe7 2940}
e2500fed
GK
2941
2942#include "gt-alias.h"
This page took 1.164154 seconds and 5 git commands to generate.