]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
Daily bump.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1c72c7f6 2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#include "config.h"
670ee920 23#include "system.h"
9ae8ffe7
JL
24#include "rtl.h"
25#include "expr.h"
26#include "regs.h"
27#include "hard-reg-set.h"
28#include "flags.h"
264fac34 29#include "output.h"
2e107e9e 30#include "toplev.h"
3932261a
MM
31#include "splay-tree.h"
32
33/* The alias sets assigned to MEMs assist the back-end in determining
34 which MEMs can alias which other MEMs. In general, two MEMs in
35 different alias sets to not alias each other. There is one
36 exception, however. Consider something like:
37
38 struct S {int i; double d; };
39
40 a store to an `S' can alias something of either type `int' or type
41 `double'. (However, a store to an `int' cannot alias a `double'
42 and vice versa.) We indicate this via a tree structure that looks
43 like:
44 struct S
45 / \
46 / \
47 |/_ _\|
48 int double
49
50 (The arrows are directed and point downwards.) If, when comparing
51 two alias sets, we can hold one set fixed, and trace the other set
52 downwards, and at some point find the first set, the two MEMs can
53 alias one another. In this situation we say the alias set for
54 `struct S' is the `superset' and that those for `int' and `double'
55 are `subsets'.
56
57 Alias set zero is implicitly a superset of all other alias sets.
58 However, this is no actual entry for alias set zero. It is an
59 error to attempt to explicitly construct a subset of zero. */
60
61typedef struct alias_set_entry {
62 /* The alias set number, as stored in MEM_ALIAS_SET. */
63 int alias_set;
64
65 /* The children of the alias set. These are not just the immediate
66 children, but, in fact, all children. So, if we have:
67
68 struct T { struct S s; float f; }
69
70 continuing our example above, the children here will be all of
71 `int', `double', `float', and `struct S'. */
72 splay_tree children;
73}* alias_set_entry;
9ae8ffe7
JL
74
75static rtx canon_rtx PROTO((rtx));
76static int rtx_equal_for_memref_p PROTO((rtx, rtx));
77static rtx find_symbolic_term PROTO((rtx));
78static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
79 HOST_WIDE_INT));
70fec650
JL
80static void record_set PROTO((rtx, rtx));
81static rtx find_base_term PROTO((rtx));
56ee9281
RH
82static int base_alias_check PROTO((rtx, rtx, enum machine_mode,
83 enum machine_mode));
960b4ee6 84static rtx find_base_value PROTO((rtx));
3932261a
MM
85static int mems_in_disjoint_alias_sets_p PROTO((rtx, rtx));
86static int alias_set_compare PROTO((splay_tree_key,
87 splay_tree_key));
88static int insert_subset_children PROTO((splay_tree_node,
89 void*));
90static alias_set_entry get_alias_set_entry PROTO((int));
9ae8ffe7
JL
91
92/* Set up all info needed to perform alias analysis on memory references. */
93
94#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
95
41472af8 96/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
97 different alias sets. We ignore alias sets in functions making use
98 of variable arguments because the va_arg macros on some systems are
99 not legal ANSI C. */
100#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 101 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 102
ea64ef27
JL
103/* Cap the number of passes we make over the insns propagating alias
104 information through set chains.
105
106 10 is a completely arbitrary choice. */
107#define MAX_ALIAS_LOOP_PASSES 10
108
9ae8ffe7
JL
109/* reg_base_value[N] gives an address to which register N is related.
110 If all sets after the first add or subtract to the current value
111 or otherwise modify it so it does not point to a different top level
112 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
113 of the first set.
114
115 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
116 expressions represent certain special values: function arguments and
117 the stack, frame, and argument pointers. The contents of an address
118 expression are not used (but they are descriptive for debugging);
119 only the address and mode matter. Pointer equality, not rtx_equal_p,
120 determines whether two ADDRESS expressions refer to the same base
121 address. The mode determines whether it is a function argument or
122 other special value. */
123
9ae8ffe7 124rtx *reg_base_value;
ec907dd8 125rtx *new_reg_base_value;
9ae8ffe7
JL
126unsigned int reg_base_value_size; /* size of reg_base_value array */
127#define REG_BASE_VALUE(X) \
e51712db 128 ((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 129
de12be17
JC
130/* Vector of known invariant relationships between registers. Set in
131 loop unrolling. Indexed by register number, if nonzero the value
132 is an expression describing this register in terms of another.
133
134 The length of this array is REG_BASE_VALUE_SIZE.
135
136 Because this array contains only pseudo registers it has no effect
137 after reload. */
138static rtx *alias_invariant;
139
9ae8ffe7
JL
140/* Vector indexed by N giving the initial (unchanging) value known
141 for pseudo-register N. */
142rtx *reg_known_value;
143
144/* Indicates number of valid entries in reg_known_value. */
145static int reg_known_value_size;
146
147/* Vector recording for each reg_known_value whether it is due to a
148 REG_EQUIV note. Future passes (viz., reload) may replace the
149 pseudo with the equivalent expression and so we account for the
150 dependences that would be introduced if that happens. */
151/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
152 assign_parms mention the arg pointer, and there are explicit insns in the
153 RTL that modify the arg pointer. Thus we must ensure that such insns don't
154 get scheduled across each other because that would invalidate the REG_EQUIV
155 notes. One could argue that the REG_EQUIV notes are wrong, but solving
156 the problem in the scheduler will likely give better code, so we do it
157 here. */
158char *reg_known_equiv_p;
159
2a2c8203
JC
160/* True when scanning insns from the start of the rtl to the
161 NOTE_INSN_FUNCTION_BEG note. */
9ae8ffe7 162
9ae8ffe7
JL
163static int copying_arguments;
164
3932261a
MM
165/* The splay-tree used to store the various alias set entries. */
166
167static splay_tree alias_sets;
168
169/* Returns -1, 0, 1 according to whether SET1 is less than, equal to,
170 or greater than SET2. */
171
172static int
173alias_set_compare (set1, set2)
174 splay_tree_key set1;
175 splay_tree_key set2;
176{
177 int s1 = (int) set1;
178 int s2 = (int) set2;
179
180 if (s1 < s2)
181 return -1;
182 else if (s1 > s2)
183 return 1;
184 else
185 return 0;
186}
187
188/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
189 such an entry, or NULL otherwise. */
190
191static alias_set_entry
192get_alias_set_entry (alias_set)
193 int alias_set;
194{
195 splay_tree_node sn =
196 splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
197
198 return sn ? ((alias_set_entry) sn->value) : ((alias_set_entry) 0);
199}
200
201/* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
202 that the two MEMs cannot alias each other. */
203
204static int
205mems_in_disjoint_alias_sets_p (mem1, mem2)
206 rtx mem1;
207 rtx mem2;
208{
209 alias_set_entry ase;
210
211#ifdef ENABLE_CHECKING
212/* Perform a basic sanity check. Namely, that there are no alias sets
213 if we're not using strict aliasing. This helps to catch bugs
214 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
215 where a MEM is allocated in some way other than by the use of
216 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
217 use alias sets to indicate that spilled registers cannot alias each
218 other, we might need to remove this check. */
219 if (!flag_strict_aliasing &&
220 (MEM_ALIAS_SET (mem1) || MEM_ALIAS_SET (mem2)))
221 abort ();
222#endif
223
224 /* The code used in varargs macros are often not conforming ANSI C,
225 which can trick the compiler into making incorrect aliasing
226 assumptions in these functions. So, we don't use alias sets in
227 such a function. FIXME: This should be moved into the front-end;
228 it is a language-dependent notion, and there's no reason not to
229 still use these checks to handle globals. */
230 if (current_function_stdarg || current_function_varargs)
231 return 0;
232
233 if (!MEM_ALIAS_SET (mem1) || !MEM_ALIAS_SET (mem2))
234 /* We have no alias set information for one of the MEMs, so we
235 have to assume it can alias anything. */
236 return 0;
237
238 if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
239 /* The two alias sets are the same, so they may alias. */
240 return 0;
241
242 /* Iterate through each of the children of the first alias set,
243 comparing it with the second alias set. */
244 ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
245 if (ase && splay_tree_lookup (ase->children,
246 (splay_tree_key) MEM_ALIAS_SET (mem2)))
247 return 0;
248
249 /* Now do the same, but with the alias sets reversed. */
250 ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
251 if (ase && splay_tree_lookup (ase->children,
252 (splay_tree_key) MEM_ALIAS_SET (mem1)))
253 return 0;
254
255 /* The two MEMs are in distinct alias sets, and neither one is the
256 child of the other. Therefore, they cannot alias. */
257 return 1;
258}
259
260/* Insert the NODE into the splay tree given by DATA. Used by
261 record_alias_subset via splay_tree_foreach. */
262
263static int
264insert_subset_children (node, data)
265 splay_tree_node node;
266 void *data;
267{
268 splay_tree_insert ((splay_tree) data,
269 node->key,
270 node->value);
271
272 return 0;
273}
274
275/* Indicate that things in SUBSET can alias things in SUPERSET, but
276 not vice versa. For example, in C, a store to an `int' can alias a
277 structure containing an `int', but not vice versa. Here, the
278 structure would be the SUPERSET and `int' the SUBSET. This
279 function should be called only once per SUPERSET/SUBSET pair. At
280 present any given alias set may only be a subset of one superset.
281
282 It is illegal for SUPERSET to be zero; everything is implicitly a
283 subset of alias set zero. */
284
285void
286record_alias_subset (superset, subset)
287 int superset;
288 int subset;
289{
290 alias_set_entry superset_entry;
291 alias_set_entry subset_entry;
292
293 if (superset == 0)
294 abort ();
295
296 superset_entry = get_alias_set_entry (superset);
297 if (!superset_entry)
298 {
299 /* Create an entry for the SUPERSET, so that we have a place to
300 attach the SUBSET. */
301 superset_entry =
302 (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
303 superset_entry->alias_set = superset;
304 superset_entry->children
305 = splay_tree_new (&alias_set_compare, 0, 0);
306 splay_tree_insert (alias_sets,
307 (splay_tree_key) superset,
308 (splay_tree_value) superset_entry);
309
310 }
311
312 subset_entry = get_alias_set_entry (subset);
313 if (subset_entry)
314 /* There is an entry for the subset. Enter all of its children
315 (if they are not already present) as children of the SUPERSET. */
316 splay_tree_foreach (subset_entry->children,
317 &insert_subset_children,
318 superset_entry->children);
319
320 /* Enter the SUBSET itself as a child of the SUPERSET. */
321 splay_tree_insert (superset_entry->children,
322 (splay_tree_key) subset,
323 /*value=*/0);
324}
325
2a2c8203
JC
326/* Inside SRC, the source of a SET, find a base address. */
327
9ae8ffe7
JL
328static rtx
329find_base_value (src)
330 register rtx src;
331{
332 switch (GET_CODE (src))
333 {
334 case SYMBOL_REF:
335 case LABEL_REF:
336 return src;
337
338 case REG:
2a2c8203
JC
339 /* At the start of a function argument registers have known base
340 values which may be lost later. Returning an ADDRESS
341 expression here allows optimization based on argument values
342 even when the argument registers are used for other purposes. */
343 if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
ec907dd8 344 return new_reg_base_value[REGNO (src)];
73774bc7 345
eaf407a5
JL
346 /* If a pseudo has a known base value, return it. Do not do this
347 for hard regs since it can result in a circular dependency
348 chain for registers which have values at function entry.
349
350 The test above is not sufficient because the scheduler may move
351 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
352 if (REGNO (src) >= FIRST_PSEUDO_REGISTER
e51712db 353 && (unsigned) REGNO (src) < reg_base_value_size
eaf407a5 354 && reg_base_value[REGNO (src)])
73774bc7
JL
355 return reg_base_value[REGNO (src)];
356
9ae8ffe7
JL
357 return src;
358
359 case MEM:
360 /* Check for an argument passed in memory. Only record in the
361 copying-arguments block; it is too hard to track changes
362 otherwise. */
363 if (copying_arguments
364 && (XEXP (src, 0) == arg_pointer_rtx
365 || (GET_CODE (XEXP (src, 0)) == PLUS
366 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 367 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
368 return 0;
369
370 case CONST:
371 src = XEXP (src, 0);
372 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
373 break;
374 /* fall through */
2a2c8203 375
9ae8ffe7
JL
376 case PLUS:
377 case MINUS:
2a2c8203 378 {
ec907dd8
JL
379 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
380
381 /* If either operand is a REG, then see if we already have
382 a known value for it. */
383 if (GET_CODE (src_0) == REG)
384 {
385 temp = find_base_value (src_0);
386 if (temp)
387 src_0 = temp;
388 }
389
390 if (GET_CODE (src_1) == REG)
391 {
392 temp = find_base_value (src_1);
393 if (temp)
394 src_1 = temp;
395 }
2a2c8203
JC
396
397 /* Guess which operand is the base address.
398
ec907dd8
JL
399 If either operand is a symbol, then it is the base. If
400 either operand is a CONST_INT, then the other is the base. */
2a2c8203
JC
401
402 if (GET_CODE (src_1) == CONST_INT
403 || GET_CODE (src_0) == SYMBOL_REF
404 || GET_CODE (src_0) == LABEL_REF
405 || GET_CODE (src_0) == CONST)
406 return find_base_value (src_0);
407
ec907dd8
JL
408 if (GET_CODE (src_0) == CONST_INT
409 || GET_CODE (src_1) == SYMBOL_REF
410 || GET_CODE (src_1) == LABEL_REF
411 || GET_CODE (src_1) == CONST)
412 return find_base_value (src_1);
413
414 /* This might not be necessary anymore.
415
416 If either operand is a REG that is a known pointer, then it
417 is the base. */
2a2c8203
JC
418 if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
419 return find_base_value (src_0);
420
421 if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
422 return find_base_value (src_1);
423
9ae8ffe7 424 return 0;
2a2c8203
JC
425 }
426
427 case LO_SUM:
428 /* The standard form is (lo_sum reg sym) so look only at the
429 second operand. */
430 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
431
432 case AND:
433 /* If the second operand is constant set the base
434 address to the first operand. */
2a2c8203
JC
435 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
436 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
437 return 0;
438
de12be17
JC
439 case ZERO_EXTEND:
440 case SIGN_EXTEND: /* used for NT/Alpha pointers */
9ae8ffe7 441 case HIGH:
2a2c8203 442 return find_base_value (XEXP (src, 0));
1d300e19
KG
443
444 default:
445 break;
9ae8ffe7
JL
446 }
447
448 return 0;
449}
450
451/* Called from init_alias_analysis indirectly through note_stores. */
452
453/* while scanning insns to find base values, reg_seen[N] is nonzero if
454 register N has been set in this function. */
455static char *reg_seen;
456
13309a5f
JC
457/* Addresses which are known not to alias anything else are identified
458 by a unique integer. */
ec907dd8
JL
459static int unique_id;
460
2a2c8203
JC
461static void
462record_set (dest, set)
9ae8ffe7
JL
463 rtx dest, set;
464{
465 register int regno;
466 rtx src;
467
468 if (GET_CODE (dest) != REG)
469 return;
470
471 regno = REGNO (dest);
472
473 if (set)
474 {
475 /* A CLOBBER wipes out any old value but does not prevent a previously
476 unset register from acquiring a base address (i.e. reg_seen is not
477 set). */
478 if (GET_CODE (set) == CLOBBER)
479 {
ec907dd8 480 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
481 return;
482 }
483 src = SET_SRC (set);
484 }
485 else
486 {
9ae8ffe7
JL
487 if (reg_seen[regno])
488 {
ec907dd8 489 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
490 return;
491 }
492 reg_seen[regno] = 1;
38a448ca
RH
493 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
494 GEN_INT (unique_id++));
9ae8ffe7
JL
495 return;
496 }
497
498 /* This is not the first set. If the new value is not related to the
499 old value, forget the base value. Note that the following code is
500 not detected:
501 extern int x, y; int *p = &x; p += (&y-&x);
502 ANSI C does not allow computing the difference of addresses
503 of distinct top level objects. */
ec907dd8 504 if (new_reg_base_value[regno])
9ae8ffe7
JL
505 switch (GET_CODE (src))
506 {
2a2c8203 507 case LO_SUM:
9ae8ffe7
JL
508 case PLUS:
509 case MINUS:
510 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 511 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
512 break;
513 case AND:
514 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 515 new_reg_base_value[regno] = 0;
9ae8ffe7 516 break;
9ae8ffe7 517 default:
ec907dd8 518 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
519 break;
520 }
521 /* If this is the first set of a register, record the value. */
522 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
523 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
524 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
525
526 reg_seen[regno] = 1;
527}
528
529/* Called from loop optimization when a new pseudo-register is created. */
530void
de12be17 531record_base_value (regno, val, invariant)
9ae8ffe7
JL
532 int regno;
533 rtx val;
de12be17 534 int invariant;
9ae8ffe7 535{
e51712db 536 if ((unsigned) regno >= reg_base_value_size)
9ae8ffe7 537 return;
de12be17
JC
538
539 /* If INVARIANT is true then this value also describes an invariant
540 relationship which can be used to deduce that two registers with
541 unknown values are different. */
542 if (invariant && alias_invariant)
543 alias_invariant[regno] = val;
544
9ae8ffe7
JL
545 if (GET_CODE (val) == REG)
546 {
e51712db 547 if ((unsigned) REGNO (val) < reg_base_value_size)
de12be17
JC
548 {
549 reg_base_value[regno] = reg_base_value[REGNO (val)];
550 }
9ae8ffe7
JL
551 return;
552 }
553 reg_base_value[regno] = find_base_value (val);
554}
555
556static rtx
557canon_rtx (x)
558 rtx x;
559{
560 /* Recursively look for equivalences. */
561 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
562 && REGNO (x) < reg_known_value_size)
563 return reg_known_value[REGNO (x)] == x
564 ? x : canon_rtx (reg_known_value[REGNO (x)]);
565 else if (GET_CODE (x) == PLUS)
566 {
567 rtx x0 = canon_rtx (XEXP (x, 0));
568 rtx x1 = canon_rtx (XEXP (x, 1));
569
570 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
571 {
572 /* We can tolerate LO_SUMs being offset here; these
573 rtl are used for nothing other than comparisons. */
574 if (GET_CODE (x0) == CONST_INT)
575 return plus_constant_for_output (x1, INTVAL (x0));
576 else if (GET_CODE (x1) == CONST_INT)
577 return plus_constant_for_output (x0, INTVAL (x1));
38a448ca 578 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
579 }
580 }
581 /* This gives us much better alias analysis when called from
582 the loop optimizer. Note we want to leave the original
583 MEM alone, but need to return the canonicalized MEM with
584 all the flags with their original values. */
585 else if (GET_CODE (x) == MEM)
586 {
587 rtx addr = canon_rtx (XEXP (x, 0));
588 if (addr != XEXP (x, 0))
589 {
38a448ca 590 rtx new = gen_rtx_MEM (GET_MODE (x), addr);
9ae8ffe7
JL
591 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
592 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
593 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
41472af8 594 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
9ae8ffe7
JL
595 x = new;
596 }
597 }
598 return x;
599}
600
601/* Return 1 if X and Y are identical-looking rtx's.
602
603 We use the data in reg_known_value above to see if two registers with
604 different numbers are, in fact, equivalent. */
605
606static int
607rtx_equal_for_memref_p (x, y)
608 rtx x, y;
609{
610 register int i;
611 register int j;
612 register enum rtx_code code;
613 register char *fmt;
614
615 if (x == 0 && y == 0)
616 return 1;
617 if (x == 0 || y == 0)
618 return 0;
619 x = canon_rtx (x);
620 y = canon_rtx (y);
621
622 if (x == y)
623 return 1;
624
625 code = GET_CODE (x);
626 /* Rtx's of different codes cannot be equal. */
627 if (code != GET_CODE (y))
628 return 0;
629
630 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
631 (REG:SI x) and (REG:HI x) are NOT equivalent. */
632
633 if (GET_MODE (x) != GET_MODE (y))
634 return 0;
635
636 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
637
638 if (code == REG)
639 return REGNO (x) == REGNO (y);
640 if (code == LABEL_REF)
641 return XEXP (x, 0) == XEXP (y, 0);
642 if (code == SYMBOL_REF)
643 return XSTR (x, 0) == XSTR (y, 0);
de12be17
JC
644 if (code == CONST_INT)
645 return INTVAL (x) == INTVAL (y);
646 if (code == ADDRESSOF)
647 return REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0)) && XINT (x, 1) == XINT (y, 1);
9ae8ffe7
JL
648
649 /* For commutative operations, the RTX match if the operand match in any
650 order. Also handle the simple binary and unary cases without a loop. */
651 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
652 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
653 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
654 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
655 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
656 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
657 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
658 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
659 else if (GET_RTX_CLASS (code) == '1')
660 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
661
662 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
663 fail to match, return 0 for the whole things.
664
665 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
666
667 fmt = GET_RTX_FORMAT (code);
668 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
669 {
670 switch (fmt[i])
671 {
9ae8ffe7
JL
672 case 'i':
673 if (XINT (x, i) != XINT (y, i))
674 return 0;
675 break;
676
9ae8ffe7
JL
677 case 'E':
678 /* Two vectors must have the same length. */
679 if (XVECLEN (x, i) != XVECLEN (y, i))
680 return 0;
681
682 /* And the corresponding elements must match. */
683 for (j = 0; j < XVECLEN (x, i); j++)
684 if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
685 return 0;
686 break;
687
688 case 'e':
689 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
690 return 0;
691 break;
692
aee21ba9
JL
693 /* This can happen for an asm which clobbers memory. */
694 case '0':
695 break;
696
9ae8ffe7
JL
697 /* It is believed that rtx's at this level will never
698 contain anything but integers and other rtx's,
699 except for within LABEL_REFs and SYMBOL_REFs. */
700 default:
701 abort ();
702 }
703 }
704 return 1;
705}
706
707/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
708 X and return it, or return 0 if none found. */
709
710static rtx
711find_symbolic_term (x)
712 rtx x;
713{
714 register int i;
715 register enum rtx_code code;
716 register char *fmt;
717
718 code = GET_CODE (x);
719 if (code == SYMBOL_REF || code == LABEL_REF)
720 return x;
721 if (GET_RTX_CLASS (code) == 'o')
722 return 0;
723
724 fmt = GET_RTX_FORMAT (code);
725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
726 {
727 rtx t;
728
729 if (fmt[i] == 'e')
730 {
731 t = find_symbolic_term (XEXP (x, i));
732 if (t != 0)
733 return t;
734 }
735 else if (fmt[i] == 'E')
736 break;
737 }
738 return 0;
739}
740
741static rtx
742find_base_term (x)
743 register rtx x;
744{
745 switch (GET_CODE (x))
746 {
747 case REG:
748 return REG_BASE_VALUE (x);
749
de12be17
JC
750 case ZERO_EXTEND:
751 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
9ae8ffe7 752 case HIGH:
6d849a2a
JL
753 case PRE_INC:
754 case PRE_DEC:
755 case POST_INC:
756 case POST_DEC:
757 return find_base_term (XEXP (x, 0));
758
9ae8ffe7
JL
759 case CONST:
760 x = XEXP (x, 0);
761 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
762 return 0;
763 /* fall through */
764 case LO_SUM:
765 case PLUS:
766 case MINUS:
767 {
768 rtx tmp = find_base_term (XEXP (x, 0));
769 if (tmp)
770 return tmp;
771 return find_base_term (XEXP (x, 1));
772 }
773
774 case AND:
775 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
776 return REG_BASE_VALUE (XEXP (x, 0));
777 return 0;
778
779 case SYMBOL_REF:
780 case LABEL_REF:
781 return x;
782
783 default:
784 return 0;
785 }
786}
787
788/* Return 0 if the addresses X and Y are known to point to different
789 objects, 1 if they might be pointers to the same object. */
790
791static int
56ee9281 792base_alias_check (x, y, x_mode, y_mode)
9ae8ffe7 793 rtx x, y;
56ee9281 794 enum machine_mode x_mode, y_mode;
9ae8ffe7
JL
795{
796 rtx x_base = find_base_term (x);
797 rtx y_base = find_base_term (y);
798
1c72c7f6
JC
799 /* If the address itself has no known base see if a known equivalent
800 value has one. If either address still has no known base, nothing
801 is known about aliasing. */
802 if (x_base == 0)
803 {
804 rtx x_c;
805 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
806 return 1;
807 x_base = find_base_term (x_c);
808 if (x_base == 0)
809 return 1;
810 }
9ae8ffe7 811
1c72c7f6
JC
812 if (y_base == 0)
813 {
814 rtx y_c;
815 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
816 return 1;
817 y_base = find_base_term (y_c);
818 if (y_base == 0)
819 return 1;
820 }
821
822 /* If the base addresses are equal nothing is known about aliasing. */
823 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
824 return 1;
825
56ee9281
RH
826 /* The base addresses of the read and write are different expressions.
827 If they are both symbols and they are not accessed via AND, there is
828 no conflict. We can bring knowledge of object alignment into play
829 here. For example, on alpha, "char a, b;" can alias one another,
830 though "char a; long b;" cannot. */
9ae8ffe7 831 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 832 {
56ee9281
RH
833 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
834 return 1;
835 if (GET_CODE (x) == AND
836 && (GET_CODE (XEXP (x, 1)) != CONST_INT
837 || GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
838 return 1;
839 if (GET_CODE (y) == AND
840 && (GET_CODE (XEXP (y, 1)) != CONST_INT
841 || GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
842 return 1;
c02f035f 843 }
9ae8ffe7
JL
844
845 /* If one address is a stack reference there can be no alias:
846 stack references using different base registers do not alias,
847 a stack reference can not alias a parameter, and a stack reference
848 can not alias a global. */
849 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
850 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
851 return 0;
852
853 if (! flag_argument_noalias)
854 return 1;
855
856 if (flag_argument_noalias > 1)
857 return 0;
858
859 /* Weak noalias assertion (arguments are distinct, but may match globals). */
860 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
861}
862
863/* Return nonzero if X and Y (memory addresses) could reference the
864 same location in memory. C is an offset accumulator. When
865 C is nonzero, we are testing aliases between X and Y + C.
866 XSIZE is the size in bytes of the X reference,
867 similarly YSIZE is the size in bytes for Y.
868
869 If XSIZE or YSIZE is zero, we do not know the amount of memory being
870 referenced (the reference was BLKmode), so make the most pessimistic
871 assumptions.
872
c02f035f
RH
873 If XSIZE or YSIZE is negative, we may access memory outside the object
874 being referenced as a side effect. This can happen when using AND to
875 align memory references, as is done on the Alpha.
876
9ae8ffe7 877 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 878 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7
JL
879
880
881static int
882memrefs_conflict_p (xsize, x, ysize, y, c)
883 register rtx x, y;
884 int xsize, ysize;
885 HOST_WIDE_INT c;
886{
887 if (GET_CODE (x) == HIGH)
888 x = XEXP (x, 0);
889 else if (GET_CODE (x) == LO_SUM)
890 x = XEXP (x, 1);
891 else
892 x = canon_rtx (x);
893 if (GET_CODE (y) == HIGH)
894 y = XEXP (y, 0);
895 else if (GET_CODE (y) == LO_SUM)
896 y = XEXP (y, 1);
897 else
898 y = canon_rtx (y);
899
900 if (rtx_equal_for_memref_p (x, y))
901 {
c02f035f 902 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
903 return 1;
904 if (c >= 0 && xsize > c)
905 return 1;
906 if (c < 0 && ysize+c > 0)
907 return 1;
908 return 0;
909 }
910
6e73e666
JC
911 /* This code used to check for conflicts involving stack references and
912 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
913
914 if (GET_CODE (x) == PLUS)
915 {
916 /* The fact that X is canonicalized means that this
917 PLUS rtx is canonicalized. */
918 rtx x0 = XEXP (x, 0);
919 rtx x1 = XEXP (x, 1);
920
921 if (GET_CODE (y) == PLUS)
922 {
923 /* The fact that Y is canonicalized means that this
924 PLUS rtx is canonicalized. */
925 rtx y0 = XEXP (y, 0);
926 rtx y1 = XEXP (y, 1);
927
928 if (rtx_equal_for_memref_p (x1, y1))
929 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
930 if (rtx_equal_for_memref_p (x0, y0))
931 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
932 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
933 {
934 if (GET_CODE (y1) == CONST_INT)
935 return memrefs_conflict_p (xsize, x0, ysize, y0,
936 c - INTVAL (x1) + INTVAL (y1));
937 else
938 return memrefs_conflict_p (xsize, x0, ysize, y,
939 c - INTVAL (x1));
940 }
9ae8ffe7
JL
941 else if (GET_CODE (y1) == CONST_INT)
942 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
943
6e73e666 944 return 1;
9ae8ffe7
JL
945 }
946 else if (GET_CODE (x1) == CONST_INT)
947 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
948 }
949 else if (GET_CODE (y) == PLUS)
950 {
951 /* The fact that Y is canonicalized means that this
952 PLUS rtx is canonicalized. */
953 rtx y0 = XEXP (y, 0);
954 rtx y1 = XEXP (y, 1);
955
956 if (GET_CODE (y1) == CONST_INT)
957 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
958 else
959 return 1;
960 }
961
962 if (GET_CODE (x) == GET_CODE (y))
963 switch (GET_CODE (x))
964 {
965 case MULT:
966 {
967 /* Handle cases where we expect the second operands to be the
968 same, and check only whether the first operand would conflict
969 or not. */
970 rtx x0, y0;
971 rtx x1 = canon_rtx (XEXP (x, 1));
972 rtx y1 = canon_rtx (XEXP (y, 1));
973 if (! rtx_equal_for_memref_p (x1, y1))
974 return 1;
975 x0 = canon_rtx (XEXP (x, 0));
976 y0 = canon_rtx (XEXP (y, 0));
977 if (rtx_equal_for_memref_p (x0, y0))
978 return (xsize == 0 || ysize == 0
979 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
980
981 /* Can't properly adjust our sizes. */
982 if (GET_CODE (x1) != CONST_INT)
983 return 1;
984 xsize /= INTVAL (x1);
985 ysize /= INTVAL (x1);
986 c /= INTVAL (x1);
987 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
988 }
1d300e19 989
de12be17
JC
990 case REG:
991 /* Are these registers known not to be equal? */
992 if (alias_invariant)
993 {
e51712db 994 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
995 rtx i_x, i_y; /* invariant relationships of X and Y */
996
997 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
998 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
999
1000 if (i_x == 0 && i_y == 0)
1001 break;
1002
1003 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1004 ysize, i_y ? i_y : y, c))
1005 return 0;
1006 }
1007 break;
1008
1d300e19
KG
1009 default:
1010 break;
9ae8ffe7
JL
1011 }
1012
1013 /* Treat an access through an AND (e.g. a subword access on an Alpha)
56ee9281
RH
1014 as an access with indeterminate size. Assume that references
1015 besides AND are aligned, so if the size of the other reference is
1016 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1017 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281
RH
1018 {
1019 if (ysize < -INTVAL (XEXP (x, 1)))
1020 xsize = -1;
1021 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1022 }
9ae8ffe7 1023 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1024 {
56ee9281 1025 /* ??? If we are indexing far enough into the array/structure, we
c02f035f
RH
1026 may yet be able to determine that we can not overlap. But we
1027 also need to that we are far enough from the end not to overlap
56ee9281
RH
1028 a following reference, so we do nothing with that for now. */
1029 if (xsize < -INTVAL (XEXP (y, 1)))
1030 ysize = -1;
1031 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
c02f035f 1032 }
9ae8ffe7
JL
1033
1034 if (CONSTANT_P (x))
1035 {
1036 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1037 {
1038 c += (INTVAL (y) - INTVAL (x));
c02f035f 1039 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1040 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1041 }
1042
1043 if (GET_CODE (x) == CONST)
1044 {
1045 if (GET_CODE (y) == CONST)
1046 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1047 ysize, canon_rtx (XEXP (y, 0)), c);
1048 else
1049 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1050 ysize, y, c);
1051 }
1052 if (GET_CODE (y) == CONST)
1053 return memrefs_conflict_p (xsize, x, ysize,
1054 canon_rtx (XEXP (y, 0)), c);
1055
1056 if (CONSTANT_P (y))
c02f035f
RH
1057 return (xsize < 0 || ysize < 0
1058 || (rtx_equal_for_memref_p (x, y)
1059 && (xsize == 0 || ysize == 0
1060 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1061
1062 return 1;
1063 }
1064 return 1;
1065}
1066
1067/* Functions to compute memory dependencies.
1068
1069 Since we process the insns in execution order, we can build tables
1070 to keep track of what registers are fixed (and not aliased), what registers
1071 are varying in known ways, and what registers are varying in unknown
1072 ways.
1073
1074 If both memory references are volatile, then there must always be a
1075 dependence between the two references, since their order can not be
1076 changed. A volatile and non-volatile reference can be interchanged
1077 though.
1078
fa8b6024 1079 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
9ae8ffe7
JL
1080 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
1081 allow QImode aliasing because the ANSI C standard allows character
1082 pointers to alias anything. We are assuming that characters are
fa8b6024
JW
1083 always QImode here. We also must allow AND addresses, because they may
1084 generate accesses outside the object being referenced. This is used to
1085 generate aligned addresses from unaligned addresses, for instance, the
1086 alpha storeqi_unaligned pattern. */
9ae8ffe7
JL
1087
1088/* Read dependence: X is read after read in MEM takes place. There can
1089 only be a dependence here if both reads are volatile. */
1090
1091int
1092read_dependence (mem, x)
1093 rtx mem;
1094 rtx x;
1095{
1096 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1097}
1098
1099/* True dependence: X is read after store in MEM takes place. */
1100
1101int
1102true_dependence (mem, mem_mode, x, varies)
1103 rtx mem;
1104 enum machine_mode mem_mode;
1105 rtx x;
960b4ee6 1106 int (*varies) PROTO((rtx));
9ae8ffe7 1107{
6e73e666 1108 register rtx x_addr, mem_addr;
9ae8ffe7
JL
1109
1110 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1111 return 1;
1112
41472af8
MM
1113 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1114 return 0;
1115
9ae8ffe7
JL
1116 /* If X is an unchanging read, then it can't possibly conflict with any
1117 non-unchanging store. It may conflict with an unchanging write though,
1118 because there may be a single store to this address to initialize it.
1119 Just fall through to the code below to resolve the case where we have
1120 both an unchanging read and an unchanging write. This won't handle all
1121 cases optimally, but the possible performance loss should be
1122 negligible. */
1123 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1124 return 0;
1125
56ee9281
RH
1126 if (mem_mode == VOIDmode)
1127 mem_mode = GET_MODE (mem);
1128
1129 if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x), mem_mode))
1c72c7f6
JC
1130 return 0;
1131
6e73e666
JC
1132 x_addr = canon_rtx (XEXP (x, 0));
1133 mem_addr = canon_rtx (XEXP (mem, 0));
1134
0211b6ab
JW
1135 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
1136 SIZE_FOR_MODE (x), x_addr, 0))
1137 return 0;
1138
1139 /* If both references are struct references, or both are not, nothing
1140 is known about aliasing.
1141
1142 If either reference is QImode or BLKmode, ANSI C permits aliasing.
1143
1144 If both addresses are constant, or both are not, nothing is known
1145 about aliasing. */
1146 if (MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (mem)
1147 || mem_mode == QImode || mem_mode == BLKmode
1148 || GET_MODE (x) == QImode || GET_MODE (x) == BLKmode
1149 || GET_CODE (x_addr) == AND || GET_CODE (mem_addr) == AND
1150 || varies (x_addr) == varies (mem_addr))
1151 return 1;
1152
1153 /* One memory reference is to a constant address, one is not.
1154 One is to a structure, the other is not.
1155
1156 If either memory reference is a variable structure the other is a
1157 fixed scalar and there is no aliasing. */
1158 if ((MEM_IN_STRUCT_P (mem) && varies (mem_addr))
1159 || (MEM_IN_STRUCT_P (x) && varies (x_addr)))
1160 return 0;
1161
1162 return 1;
9ae8ffe7
JL
1163}
1164
1165/* Anti dependence: X is written after read in MEM takes place. */
1166
1167int
1168anti_dependence (mem, x)
1169 rtx mem;
1170 rtx x;
1171{
6e73e666
JC
1172 rtx x_addr, mem_addr;
1173
9ae8ffe7
JL
1174 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1175 return 1;
1176
9ae8ffe7
JL
1177 /* If MEM is an unchanging read, then it can't possibly conflict with
1178 the store to X, because there is at most one store to MEM, and it must
1179 have occurred somewhere before MEM. */
9ae8ffe7
JL
1180 if (RTX_UNCHANGING_P (mem))
1181 return 0;
1182
56ee9281
RH
1183 if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x),
1184 GET_MODE (mem)))
1c72c7f6
JC
1185 return 0;
1186
1187 x = canon_rtx (x);
1188 mem = canon_rtx (mem);
1189
41472af8
MM
1190 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1191 return 0;
1192
6e73e666
JC
1193 x_addr = XEXP (x, 0);
1194 mem_addr = XEXP (mem, 0);
1195
0211b6ab
JW
1196 return (memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
1197 SIZE_FOR_MODE (x), x_addr, 0)
1198 && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
1199 && GET_MODE (mem) != QImode
1200 && GET_CODE (mem_addr) != AND
1201 && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
1202 && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
1203 && GET_MODE (x) != QImode
1204 && GET_CODE (x_addr) != AND
1205 && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem)));
9ae8ffe7
JL
1206}
1207
1208/* Output dependence: X is written after store in MEM takes place. */
1209
1210int
1211output_dependence (mem, x)
1212 register rtx mem;
1213 register rtx x;
1214{
1215 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1216 return 1;
1217
56ee9281
RH
1218 if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x),
1219 GET_MODE (mem)))
6e73e666
JC
1220 return 0;
1221
1c72c7f6
JC
1222 x = canon_rtx (x);
1223 mem = canon_rtx (mem);
1224
41472af8
MM
1225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1226 return 0;
1227
0211b6ab
JW
1228 return (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
1229 SIZE_FOR_MODE (x), XEXP (x, 0), 0)
1230 && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
1231 && GET_MODE (mem) != QImode
1232 && GET_CODE (XEXP (mem, 0)) != AND
1233 && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
1234 && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
1235 && GET_MODE (x) != QImode
1236 && GET_CODE (XEXP (x, 0)) != AND
1237 && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem)));
9ae8ffe7
JL
1238}
1239
6e73e666
JC
1240
1241static HARD_REG_SET argument_registers;
1242
1243void
1244init_alias_once ()
1245{
1246 register int i;
1247
1248#ifndef OUTGOING_REGNO
1249#define OUTGOING_REGNO(N) N
1250#endif
1251 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1252 /* Check whether this register can hold an incoming pointer
1253 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1254 numbers, so translate if necessary due to register windows. */
1255 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
1256 && HARD_REGNO_MODE_OK (i, Pmode))
1257 SET_HARD_REG_BIT (argument_registers, i);
3932261a
MM
1258
1259 alias_sets = splay_tree_new (&alias_set_compare, 0, 0);
6e73e666
JC
1260}
1261
9ae8ffe7
JL
1262void
1263init_alias_analysis ()
1264{
1265 int maxreg = max_reg_num ();
ea64ef27 1266 int changed, pass;
9ae8ffe7 1267 register int i;
e51712db 1268 register unsigned int ui;
9ae8ffe7 1269 register rtx insn;
9ae8ffe7
JL
1270
1271 reg_known_value_size = maxreg;
1272
1273 reg_known_value
1274 = (rtx *) oballoc ((maxreg - FIRST_PSEUDO_REGISTER) * sizeof (rtx))
1275 - FIRST_PSEUDO_REGISTER;
1276 reg_known_equiv_p =
1277 oballoc (maxreg - FIRST_PSEUDO_REGISTER) - FIRST_PSEUDO_REGISTER;
1278 bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
1279 (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
1280 bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
1281 (maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
1282
6e73e666
JC
1283 /* Overallocate reg_base_value to allow some growth during loop
1284 optimization. Loop unrolling can create a large number of
1285 registers. */
1286 reg_base_value_size = maxreg * 2;
1287 reg_base_value = (rtx *)oballoc (reg_base_value_size * sizeof (rtx));
1288 new_reg_base_value = (rtx *)alloca (reg_base_value_size * sizeof (rtx));
1289 reg_seen = (char *)alloca (reg_base_value_size);
1290 bzero ((char *) reg_base_value, reg_base_value_size * sizeof (rtx));
de12be17
JC
1291 if (! reload_completed && flag_unroll_loops)
1292 {
1293 alias_invariant = (rtx *)xrealloc (alias_invariant,
1294 reg_base_value_size * sizeof (rtx));
1295 bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
1296 }
1297
ec907dd8
JL
1298
1299 /* The basic idea is that each pass through this loop will use the
1300 "constant" information from the previous pass to propagate alias
1301 information through another level of assignments.
1302
1303 This could get expensive if the assignment chains are long. Maybe
1304 we should throttle the number of iterations, possibly based on
6e73e666 1305 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
1306
1307 We could propagate more information in the first pass by making use
1308 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
1309 for a pseudo is "constant".
1310
1311 A program with an uninitialized variable can cause an infinite loop
1312 here. Instead of doing a full dataflow analysis to detect such problems
1313 we just cap the number of iterations for the loop.
1314
1315 The state of the arrays for the set chain in question does not matter
1316 since the program has undefined behavior. */
6e73e666 1317
ea64ef27 1318 pass = 0;
6e73e666 1319 do
ec907dd8
JL
1320 {
1321 /* Assume nothing will change this iteration of the loop. */
1322 changed = 0;
1323
ec907dd8
JL
1324 /* We want to assign the same IDs each iteration of this loop, so
1325 start counting from zero each iteration of the loop. */
1326 unique_id = 0;
1327
1328 /* We're at the start of the funtion each iteration through the
1329 loop, so we're copying arguments. */
1330 copying_arguments = 1;
9ae8ffe7 1331
6e73e666
JC
1332 /* Wipe the potential alias information clean for this pass. */
1333 bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
8072f69c 1334
6e73e666
JC
1335 /* Wipe the reg_seen array clean. */
1336 bzero ((char *) reg_seen, reg_base_value_size);
9ae8ffe7 1337
6e73e666
JC
1338 /* Mark all hard registers which may contain an address.
1339 The stack, frame and argument pointers may contain an address.
1340 An argument register which can hold a Pmode value may contain
1341 an address even if it is not in BASE_REGS.
8072f69c 1342
6e73e666
JC
1343 The address expression is VOIDmode for an argument and
1344 Pmode for other registers. */
1345
1346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1347 if (TEST_HARD_REG_BIT (argument_registers, i))
38a448ca
RH
1348 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
1349 gen_rtx_REG (Pmode, i));
6e73e666
JC
1350
1351 new_reg_base_value[STACK_POINTER_REGNUM]
38a448ca 1352 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
6e73e666 1353 new_reg_base_value[ARG_POINTER_REGNUM]
38a448ca 1354 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
6e73e666 1355 new_reg_base_value[FRAME_POINTER_REGNUM]
38a448ca 1356 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2a2c8203 1357#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6e73e666 1358 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
38a448ca 1359 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2a2c8203 1360#endif
6e73e666
JC
1361 if (struct_value_incoming_rtx
1362 && GET_CODE (struct_value_incoming_rtx) == REG)
1363 new_reg_base_value[REGNO (struct_value_incoming_rtx)]
38a448ca 1364 = gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
6e73e666
JC
1365
1366 if (static_chain_rtx
1367 && GET_CODE (static_chain_rtx) == REG)
1368 new_reg_base_value[REGNO (static_chain_rtx)]
38a448ca 1369 = gen_rtx_ADDRESS (Pmode, static_chain_rtx);
ec907dd8
JL
1370
1371 /* Walk the insns adding values to the new_reg_base_value array. */
1372 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 1373 {
6e73e666 1374 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
ec907dd8 1375 {
6e73e666 1376 rtx note, set;
ec907dd8
JL
1377 /* If this insn has a noalias note, process it, Otherwise,
1378 scan for sets. A simple set will have no side effects
1379 which could change the base value of any other register. */
6e73e666 1380
ec907dd8 1381 if (GET_CODE (PATTERN (insn)) == SET
6e73e666 1382 && (find_reg_note (insn, REG_NOALIAS, NULL_RTX)))
9f8f10de 1383 record_set (SET_DEST (PATTERN (insn)), NULL_RTX);
ec907dd8
JL
1384 else
1385 note_stores (PATTERN (insn), record_set);
6e73e666
JC
1386
1387 set = single_set (insn);
1388
1389 if (set != 0
1390 && GET_CODE (SET_DEST (set)) == REG
1391 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
1392 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1393 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)
1394 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
1395 && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1396 {
1397 int regno = REGNO (SET_DEST (set));
1398 reg_known_value[regno] = XEXP (note, 0);
1399 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
1400 }
ec907dd8
JL
1401 }
1402 else if (GET_CODE (insn) == NOTE
1403 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
1404 copying_arguments = 0;
6e73e666 1405 }
ec907dd8 1406
6e73e666 1407 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 1408 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 1409 {
e51712db
KG
1410 if (new_reg_base_value[ui]
1411 && new_reg_base_value[ui] != reg_base_value[ui]
1412 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 1413 {
e51712db 1414 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 1415 changed = 1;
ec907dd8 1416 }
9ae8ffe7 1417 }
9ae8ffe7 1418 }
6e73e666 1419 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
1420
1421 /* Fill in the remaining entries. */
1422 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
1423 if (reg_known_value[i] == 0)
1424 reg_known_value[i] = regno_reg_rtx[i];
1425
9ae8ffe7
JL
1426 /* Simplify the reg_base_value array so that no register refers to
1427 another register, except to special registers indirectly through
1428 ADDRESS expressions.
1429
1430 In theory this loop can take as long as O(registers^2), but unless
1431 there are very long dependency chains it will run in close to linear
ea64ef27
JL
1432 time.
1433
1434 This loop may not be needed any longer now that the main loop does
1435 a better job at propagating alias information. */
1436 pass = 0;
9ae8ffe7
JL
1437 do
1438 {
1439 changed = 0;
ea64ef27 1440 pass++;
e51712db 1441 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 1442 {
e51712db 1443 rtx base = reg_base_value[ui];
9ae8ffe7
JL
1444 if (base && GET_CODE (base) == REG)
1445 {
e51712db
KG
1446 unsigned int base_regno = REGNO (base);
1447 if (base_regno == ui) /* register set from itself */
1448 reg_base_value[ui] = 0;
9ae8ffe7 1449 else
e51712db 1450 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
1451 changed = 1;
1452 }
1453 }
1454 }
ea64ef27 1455 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 1456
ec907dd8 1457 new_reg_base_value = 0;
9ae8ffe7
JL
1458 reg_seen = 0;
1459}
1460
1461void
1462end_alias_analysis ()
1463{
1464 reg_known_value = 0;
1465 reg_base_value = 0;
1466 reg_base_value_size = 0;
de12be17
JC
1467 if (alias_invariant)
1468 {
1469 free ((char *)alias_invariant);
1470 alias_invariant = 0;
1471 }
9ae8ffe7 1472}
This page took 0.351092 seconds and 5 git commands to generate.