]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
alias.c: Use REG_P...
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
66647d44 3 2007, 2008, 2009 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
ef330312 46#include "tree-pass.h"
ea900239 47#include "ipa-type-escape.h"
6fb5fa3c 48#include "df.h"
ea900239
DB
49
50/* The aliasing API provided here solves related but different problems:
51
c22cacf3 52 Say there exists (in c)
ea900239
DB
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 90 instances do not escape across the compilation boundary.
ea900239
DB
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99*/
3932261a
MM
100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
3932261a 105
01d28c3f 106 struct S { int i; double d; };
3932261a
MM
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
c22cacf3
MS
112 struct S
113 / \
3932261a 114 / \
c22cacf3
MS
115 |/_ _\|
116 int double
3932261a 117
ac3d9668
RK
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
3bdf5ad1
RK
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
95bd1dd7 124 past immediate descendants, however, since we propagate all
3bdf5ad1 125 grandchildren up one level.
3932261a
MM
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
7e5487a2 131struct GTY(()) alias_set_entry_d {
3932261a 132 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 133 alias_set_type alias_set;
3932261a 134
4c067742
RG
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
3932261a 139 /* The children of the alias set. These are not just the immediate
95bd1dd7 140 children, but, in fact, all descendants. So, if we have:
3932261a 141
ca7fd9cd 142 struct T { struct S s; float f; }
3932261a
MM
143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
b604074c 146 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c 147};
7e5487a2 148typedef struct alias_set_entry_d *alias_set_entry;
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
153static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04
AJ
157static int insert_subset_children (splay_tree_node, void*);
158static tree find_base_decl (tree);
4862826d 159static alias_set_entry get_alias_set_entry (alias_set_type);
4f588890
KG
160static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162static int aliases_everything_p (const_rtx);
163static bool nonoverlapping_component_refs_p (const_tree, const_tree);
4682ae04
AJ
164static tree decl_for_component_ref (tree);
165static rtx adjust_offset_for_component_ref (tree, rtx);
4f588890 166static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 167
aa317c97 168static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
169
170/* Set up all info needed to perform alias analysis on memory references. */
171
d4b60170 172/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
173#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
174
41472af8 175/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
176 different alias sets. We ignore alias sets in functions making use
177 of variable arguments because the va_arg macros on some systems are
178 not legal ANSI C. */
179#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 180 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 181
ea64ef27 182/* Cap the number of passes we make over the insns propagating alias
ac3d9668 183 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 184#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 185
9ae8ffe7
JL
186/* reg_base_value[N] gives an address to which register N is related.
187 If all sets after the first add or subtract to the current value
188 or otherwise modify it so it does not point to a different top level
189 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
190 of the first set.
191
192 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
193 expressions represent certain special values: function arguments and
ca7fd9cd 194 the stack, frame, and argument pointers.
b3b5ad95
JL
195
196 The contents of an ADDRESS is not normally used, the mode of the
197 ADDRESS determines whether the ADDRESS is a function argument or some
198 other special value. Pointer equality, not rtx_equal_p, determines whether
199 two ADDRESS expressions refer to the same base address.
200
201 The only use of the contents of an ADDRESS is for determining if the
202 current function performs nonlocal memory memory references for the
203 purposes of marking the function as a constant function. */
2a2c8203 204
08c79682 205static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 206static rtx *new_reg_base_value;
c582d54a
JH
207
208/* We preserve the copy of old array around to avoid amount of garbage
209 produced. About 8% of garbage produced were attributed to this
210 array. */
08c79682 211static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 212
bf1660a6
JL
213/* Static hunks of RTL used by the aliasing code; these are initialized
214 once per function to avoid unnecessary RTL allocations. */
215static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
216
08c79682
KH
217#define REG_BASE_VALUE(X) \
218 (REGNO (X) < VEC_length (rtx, reg_base_value) \
219 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 220
c13e8210 221/* Vector indexed by N giving the initial (unchanging) value known for
bb1acb3e
RH
222 pseudo-register N. This array is initialized in init_alias_analysis,
223 and does not change until end_alias_analysis is called. */
224static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
9ae8ffe7
JL
225
226/* Indicates number of valid entries in reg_known_value. */
bb1acb3e 227static GTY(()) unsigned int reg_known_value_size;
9ae8ffe7
JL
228
229/* Vector recording for each reg_known_value whether it is due to a
230 REG_EQUIV note. Future passes (viz., reload) may replace the
231 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
232 dependences that would be introduced if that happens.
233
234 The REG_EQUIV notes created in assign_parms may mention the arg
235 pointer, and there are explicit insns in the RTL that modify the
236 arg pointer. Thus we must ensure that such insns don't get
237 scheduled across each other because that would invalidate the
238 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
239 wrong, but solving the problem in the scheduler will likely give
240 better code, so we do it here. */
bb1acb3e 241static bool *reg_known_equiv_p;
9ae8ffe7 242
2a2c8203
JC
243/* True when scanning insns from the start of the rtl to the
244 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 245static bool copying_arguments;
9ae8ffe7 246
1a5640b4
KH
247DEF_VEC_P(alias_set_entry);
248DEF_VEC_ALLOC_P(alias_set_entry,gc);
249
3932261a 250/* The splay-tree used to store the various alias set entries. */
1a5640b4 251static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 252\f
3932261a
MM
253/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
254 such an entry, or NULL otherwise. */
255
9ddb66ca 256static inline alias_set_entry
4862826d 257get_alias_set_entry (alias_set_type alias_set)
3932261a 258{
1a5640b4 259 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
260}
261
ac3d9668
RK
262/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
263 the two MEMs cannot alias each other. */
3932261a 264
9ddb66ca 265static inline int
4f588890 266mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 267{
3932261a
MM
268/* Perform a basic sanity check. Namely, that there are no alias sets
269 if we're not using strict aliasing. This helps to catch bugs
270 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
271 where a MEM is allocated in some way other than by the use of
272 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
273 use alias sets to indicate that spilled registers cannot alias each
274 other, we might need to remove this check. */
298e6adc
NS
275 gcc_assert (flag_strict_aliasing
276 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 277
1da68f56
RK
278 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
279}
3932261a 280
1da68f56
RK
281/* Insert the NODE into the splay tree given by DATA. Used by
282 record_alias_subset via splay_tree_foreach. */
283
284static int
4682ae04 285insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
286{
287 splay_tree_insert ((splay_tree) data, node->key, node->value);
288
289 return 0;
290}
291
c58936b6
DB
292/* Return true if the first alias set is a subset of the second. */
293
294bool
4862826d 295alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
296{
297 alias_set_entry ase;
298
299 /* Everything is a subset of the "aliases everything" set. */
300 if (set2 == 0)
301 return true;
302
303 /* Otherwise, check if set1 is a subset of set2. */
304 ase = get_alias_set_entry (set2);
305 if (ase != 0
a7a512be
RG
306 && ((ase->has_zero_child && set1 == 0)
307 || splay_tree_lookup (ase->children,
308 (splay_tree_key) set1)))
c58936b6
DB
309 return true;
310 return false;
311}
312
1da68f56
RK
313/* Return 1 if the two specified alias sets may conflict. */
314
315int
4862826d 316alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
317{
318 alias_set_entry ase;
319
836f7794
EB
320 /* The easy case. */
321 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 322 return 1;
3932261a 323
3bdf5ad1 324 /* See if the first alias set is a subset of the second. */
1da68f56 325 ase = get_alias_set_entry (set1);
2bf105ab
RK
326 if (ase != 0
327 && (ase->has_zero_child
328 || splay_tree_lookup (ase->children,
1da68f56
RK
329 (splay_tree_key) set2)))
330 return 1;
3932261a
MM
331
332 /* Now do the same, but with the alias sets reversed. */
1da68f56 333 ase = get_alias_set_entry (set2);
2bf105ab
RK
334 if (ase != 0
335 && (ase->has_zero_child
336 || splay_tree_lookup (ase->children,
1da68f56
RK
337 (splay_tree_key) set1)))
338 return 1;
3932261a 339
1da68f56 340 /* The two alias sets are distinct and neither one is the
836f7794 341 child of the other. Therefore, they cannot conflict. */
1da68f56 342 return 0;
3932261a 343}
5399d643 344
71a6fe66
BM
345static int
346walk_mems_2 (rtx *x, rtx mem)
347{
348 if (MEM_P (*x))
349 {
350 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
351 return 1;
352
353 return -1;
354 }
355 return 0;
356}
357
358static int
359walk_mems_1 (rtx *x, rtx *pat)
360{
361 if (MEM_P (*x))
362 {
363 /* Visit all MEMs in *PAT and check indepedence. */
364 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
365 /* Indicate that dependence was determined and stop traversal. */
366 return 1;
367
368 return -1;
369 }
370 return 0;
371}
372
373/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
374bool
375insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
376{
377 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
378 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
379 &PATTERN (insn2));
380}
381
836f7794 382/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
383
384int
4862826d 385alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
386{
387 if (set1 == 0 || set2 == 0 || set1 == set2)
388 return 1;
389
390 return 0;
391}
392
1da68f56
RK
393/* Return 1 if any MEM object of type T1 will always conflict (using the
394 dependency routines in this file) with any MEM object of type T2.
395 This is used when allocating temporary storage. If T1 and/or T2 are
396 NULL_TREE, it means we know nothing about the storage. */
397
398int
4682ae04 399objects_must_conflict_p (tree t1, tree t2)
1da68f56 400{
4862826d 401 alias_set_type set1, set2;
82d610ec 402
e8ea2809
RK
403 /* If neither has a type specified, we don't know if they'll conflict
404 because we may be using them to store objects of various types, for
405 example the argument and local variables areas of inlined functions. */
981a4c34 406 if (t1 == 0 && t2 == 0)
e8ea2809
RK
407 return 0;
408
1da68f56
RK
409 /* If they are the same type, they must conflict. */
410 if (t1 == t2
411 /* Likewise if both are volatile. */
412 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
413 return 1;
414
82d610ec
RK
415 set1 = t1 ? get_alias_set (t1) : 0;
416 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 417
836f7794
EB
418 /* We can't use alias_sets_conflict_p because we must make sure
419 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
420 t2 for which a pair of subobjects of these respective subtypes
421 overlaps on the stack. */
836f7794 422 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
423}
424\f
3bdf5ad1
RK
425/* T is an expression with pointer type. Find the DECL on which this
426 expression is based. (For example, in `a[i]' this would be `a'.)
427 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 428 NULL_TREE is returned. */
3bdf5ad1
RK
429
430static tree
4682ae04 431find_base_decl (tree t)
3bdf5ad1 432{
6615c446 433 tree d0, d1;
3bdf5ad1
RK
434
435 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
436 return 0;
437
4e3825db
MM
438 if (TREE_CODE (t) == SSA_NAME)
439 t = SSA_NAME_VAR (t);
440
0b494699
ILT
441 /* If this is a declaration, return it. If T is based on a restrict
442 qualified decl, return that decl. */
6615c446 443 if (DECL_P (t))
0b494699
ILT
444 {
445 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
446 t = DECL_GET_RESTRICT_BASE (t);
447 return t;
448 }
3bdf5ad1
RK
449
450 /* Handle general expressions. It would be nice to deal with
451 COMPONENT_REFs here. If we could tell that `a' and `b' were the
452 same, then `a->f' and `b->f' are also the same. */
453 switch (TREE_CODE_CLASS (TREE_CODE (t)))
454 {
6615c446 455 case tcc_unary:
3bdf5ad1
RK
456 return find_base_decl (TREE_OPERAND (t, 0));
457
6615c446 458 case tcc_binary:
3bdf5ad1
RK
459 /* Return 0 if found in neither or both are the same. */
460 d0 = find_base_decl (TREE_OPERAND (t, 0));
461 d1 = find_base_decl (TREE_OPERAND (t, 1));
462 if (d0 == d1)
463 return d0;
464 else if (d0 == 0)
465 return d1;
466 else if (d1 == 0)
467 return d0;
468 else
469 return 0;
470
3bdf5ad1
RK
471 default:
472 return 0;
473 }
474}
475
2039d7aa
RH
476/* Return true if all nested component references handled by
477 get_inner_reference in T are such that we should use the alias set
478 provided by the object at the heart of T.
479
480 This is true for non-addressable components (which don't have their
481 own alias set), as well as components of objects in alias set zero.
482 This later point is a special case wherein we wish to override the
483 alias set used by the component, but we don't have per-FIELD_DECL
484 assignable alias sets. */
485
486bool
22ea9ec0 487component_uses_parent_alias_set (const_tree t)
6e24b709 488{
afe84921
RH
489 while (1)
490 {
2039d7aa 491 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 492 if (!handled_component_p (t))
2039d7aa 493 return false;
afe84921
RH
494
495 switch (TREE_CODE (t))
496 {
497 case COMPONENT_REF:
498 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 499 return true;
afe84921
RH
500 break;
501
502 case ARRAY_REF:
503 case ARRAY_RANGE_REF:
504 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 505 return true;
afe84921
RH
506 break;
507
508 case REALPART_EXPR:
509 case IMAGPART_EXPR:
510 break;
511
512 default:
513 /* Bitfields and casts are never addressable. */
2039d7aa 514 return true;
afe84921
RH
515 }
516
517 t = TREE_OPERAND (t, 0);
2039d7aa
RH
518 if (get_alias_set (TREE_TYPE (t)) == 0)
519 return true;
afe84921 520 }
6e24b709
RK
521}
522
5006671f
RG
523/* Return the alias set for the memory pointed to by T, which may be
524 either a type or an expression. Return -1 if there is nothing
525 special about dereferencing T. */
526
527static alias_set_type
528get_deref_alias_set_1 (tree t)
529{
530 /* If we're not doing any alias analysis, just assume everything
531 aliases everything else. */
532 if (!flag_strict_aliasing)
533 return 0;
534
535 if (! TYPE_P (t))
536 {
537 tree decl = find_base_decl (t);
538
539 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
540 {
541 /* If we haven't computed the actual alias set, do it now. */
542 if (DECL_POINTER_ALIAS_SET (decl) == -2)
543 {
544 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
545
546 /* No two restricted pointers can point at the same thing.
547 However, a restricted pointer can point at the same thing
548 as an unrestricted pointer, if that unrestricted pointer
549 is based on the restricted pointer. So, we make the
550 alias set for the restricted pointer a subset of the
551 alias set for the type pointed to by the type of the
552 decl. */
553 alias_set_type pointed_to_alias_set
554 = get_alias_set (pointed_to_type);
555
556 if (pointed_to_alias_set == 0)
557 /* It's not legal to make a subset of alias set zero. */
558 DECL_POINTER_ALIAS_SET (decl) = 0;
559 else if (AGGREGATE_TYPE_P (pointed_to_type))
560 /* For an aggregate, we must treat the restricted
561 pointer the same as an ordinary pointer. If we
562 were to make the type pointed to by the
563 restricted pointer a subset of the pointed-to
564 type, then we would believe that other subsets
565 of the pointed-to type (such as fields of that
566 type) do not conflict with the type pointed to
567 by the restricted pointer. */
568 DECL_POINTER_ALIAS_SET (decl)
569 = pointed_to_alias_set;
570 else
571 {
572 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
573 record_alias_subset (pointed_to_alias_set,
574 DECL_POINTER_ALIAS_SET (decl));
575 }
576 }
577
578 /* We use the alias set indicated in the declaration. */
579 return DECL_POINTER_ALIAS_SET (decl);
580 }
581
582 /* Now all we care about is the type. */
583 t = TREE_TYPE (t);
584 }
585
586 /* If we have an INDIRECT_REF via a void pointer, we don't
587 know anything about what that might alias. Likewise if the
588 pointer is marked that way. */
589 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
590 || TYPE_REF_CAN_ALIAS_ALL (t))
591 return 0;
592
593 return -1;
594}
595
596/* Return the alias set for the memory pointed to by T, which may be
597 either a type or an expression. */
598
599alias_set_type
600get_deref_alias_set (tree t)
601{
602 alias_set_type set = get_deref_alias_set_1 (t);
603
604 /* Fall back to the alias-set of the pointed-to type. */
605 if (set == -1)
606 {
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
609 set = get_alias_set (TREE_TYPE (t));
610 }
611
612 return set;
613}
614
3bdf5ad1
RK
615/* Return the alias set for T, which may be either a type or an
616 expression. Call language-specific routine for help, if needed. */
617
4862826d 618alias_set_type
4682ae04 619get_alias_set (tree t)
3bdf5ad1 620{
4862826d 621 alias_set_type set;
3bdf5ad1
RK
622
623 /* If we're not doing any alias analysis, just assume everything
624 aliases everything else. Also return 0 if this or its type is
625 an error. */
626 if (! flag_strict_aliasing || t == error_mark_node
627 || (! TYPE_P (t)
628 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
629 return 0;
630
631 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
632 language-specific routine may make mutually-recursive calls to each other
633 to figure out what to do. At each juncture, we see if this is a tree
634 that the language may need to handle specially. First handle things that
738cc472 635 aren't types. */
f824e5c3 636 if (! TYPE_P (t))
3bdf5ad1 637 {
738cc472 638 tree inner = t;
738cc472 639
8ac61af7
RK
640 /* Remove any nops, then give the language a chance to do
641 something with this tree before we look at it. */
642 STRIP_NOPS (t);
ae2bcd98 643 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
644 if (set != -1)
645 return set;
646
738cc472 647 /* First see if the actual object referenced is an INDIRECT_REF from a
6fce44af
RK
648 restrict-qualified pointer or a "void *". */
649 while (handled_component_p (inner))
738cc472 650 {
6fce44af 651 inner = TREE_OPERAND (inner, 0);
8ac61af7 652 STRIP_NOPS (inner);
738cc472
RK
653 }
654
1b096a0a 655 if (INDIRECT_REF_P (inner))
738cc472 656 {
5006671f
RG
657 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
658 if (set != -1)
659 return set;
738cc472
RK
660 }
661
662 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 663 to, processing conversions as above. */
2039d7aa 664 while (component_uses_parent_alias_set (t))
f47e9b4e 665 {
6fce44af 666 t = TREE_OPERAND (t, 0);
8ac61af7
RK
667 STRIP_NOPS (t);
668 }
f824e5c3 669
738cc472
RK
670 /* If we've already determined the alias set for a decl, just return
671 it. This is necessary for C++ anonymous unions, whose component
672 variables don't look like union members (boo!). */
5755cd38 673 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 674 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
675 return MEM_ALIAS_SET (DECL_RTL (t));
676
f824e5c3
RK
677 /* Now all we care about is the type. */
678 t = TREE_TYPE (t);
3bdf5ad1
RK
679 }
680
3bdf5ad1 681 /* Variant qualifiers don't affect the alias set, so get the main
791f1714
RG
682 variant. Always use the canonical type as well.
683 If this is a type with a known alias set, return it. */
3bdf5ad1 684 t = TYPE_MAIN_VARIANT (t);
791f1714
RG
685 if (TYPE_CANONICAL (t))
686 t = TYPE_CANONICAL (t);
738cc472 687 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
688 return TYPE_ALIAS_SET (t);
689
36784d0e
RG
690 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
691 if (!COMPLETE_TYPE_P (t))
692 {
693 /* For arrays with unknown size the conservative answer is the
694 alias set of the element type. */
695 if (TREE_CODE (t) == ARRAY_TYPE)
696 return get_alias_set (TREE_TYPE (t));
697
698 /* But return zero as a conservative answer for incomplete types. */
699 return 0;
700 }
701
3bdf5ad1 702 /* See if the language has special handling for this type. */
ae2bcd98 703 set = lang_hooks.get_alias_set (t);
8ac61af7 704 if (set != -1)
738cc472 705 return set;
2bf105ab 706
3bdf5ad1
RK
707 /* There are no objects of FUNCTION_TYPE, so there's no point in
708 using up an alias set for them. (There are, of course, pointers
709 and references to functions, but that's different.) */
e11e491d
RG
710 else if (TREE_CODE (t) == FUNCTION_TYPE
711 || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 712 set = 0;
74d86f4f
RH
713
714 /* Unless the language specifies otherwise, let vector types alias
715 their components. This avoids some nasty type punning issues in
716 normal usage. And indeed lets vectors be treated more like an
717 array slice. */
718 else if (TREE_CODE (t) == VECTOR_TYPE)
719 set = get_alias_set (TREE_TYPE (t));
720
4653cae5
RG
721 /* Unless the language specifies otherwise, treat array types the
722 same as their components. This avoids the asymmetry we get
723 through recording the components. Consider accessing a
724 character(kind=1) through a reference to a character(kind=1)[1:1].
725 Or consider if we want to assign integer(kind=4)[0:D.1387] and
726 integer(kind=4)[4] the same alias set or not.
727 Just be pragmatic here and make sure the array and its element
728 type get the same alias set assigned. */
729 else if (TREE_CODE (t) == ARRAY_TYPE
730 && !TYPE_NONALIASED_COMPONENT (t))
731 set = get_alias_set (TREE_TYPE (t));
732
3bdf5ad1
RK
733 else
734 /* Otherwise make a new alias set for this type. */
735 set = new_alias_set ();
736
737 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
738
739 /* If this is an aggregate type, we must record any component aliasing
740 information. */
1d79fd2c 741 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
742 record_component_aliases (t);
743
3bdf5ad1
RK
744 return set;
745}
746
747/* Return a brand-new alias set. */
748
4862826d 749alias_set_type
4682ae04 750new_alias_set (void)
3bdf5ad1 751{
3bdf5ad1 752 if (flag_strict_aliasing)
9ddb66ca 753 {
1a5640b4
KH
754 if (alias_sets == 0)
755 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
756 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
757 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 758 }
3bdf5ad1
RK
759 else
760 return 0;
761}
3932261a 762
01d28c3f
JM
763/* Indicate that things in SUBSET can alias things in SUPERSET, but that
764 not everything that aliases SUPERSET also aliases SUBSET. For example,
765 in C, a store to an `int' can alias a load of a structure containing an
766 `int', and vice versa. But it can't alias a load of a 'double' member
767 of the same structure. Here, the structure would be the SUPERSET and
768 `int' the SUBSET. This relationship is also described in the comment at
769 the beginning of this file.
770
771 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
772
773 It is illegal for SUPERSET to be zero; everything is implicitly a
774 subset of alias set zero. */
775
794511d2 776void
4862826d 777record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
778{
779 alias_set_entry superset_entry;
780 alias_set_entry subset_entry;
781
f47e9b4e
RK
782 /* It is possible in complex type situations for both sets to be the same,
783 in which case we can ignore this operation. */
784 if (superset == subset)
785 return;
786
298e6adc 787 gcc_assert (superset);
3932261a
MM
788
789 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 790 if (superset_entry == 0)
3932261a
MM
791 {
792 /* Create an entry for the SUPERSET, so that we have a place to
793 attach the SUBSET. */
7e5487a2 794 superset_entry = GGC_NEW (struct alias_set_entry_d);
3932261a 795 superset_entry->alias_set = superset;
ca7fd9cd 796 superset_entry->children
b604074c 797 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 798 superset_entry->has_zero_child = 0;
1a5640b4 799 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
800 }
801
2bf105ab
RK
802 if (subset == 0)
803 superset_entry->has_zero_child = 1;
804 else
805 {
806 subset_entry = get_alias_set_entry (subset);
807 /* If there is an entry for the subset, enter all of its children
808 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 809 if (subset_entry)
2bf105ab
RK
810 {
811 if (subset_entry->has_zero_child)
812 superset_entry->has_zero_child = 1;
d4b60170 813
2bf105ab
RK
814 splay_tree_foreach (subset_entry->children, insert_subset_children,
815 superset_entry->children);
816 }
3932261a 817
2bf105ab 818 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 819 splay_tree_insert (superset_entry->children,
2bf105ab
RK
820 (splay_tree_key) subset, 0);
821 }
3932261a
MM
822}
823
a0c33338
RK
824/* Record that component types of TYPE, if any, are part of that type for
825 aliasing purposes. For record types, we only record component types
b5487346
EB
826 for fields that are not marked non-addressable. For array types, we
827 only record the component type if it is not marked non-aliased. */
a0c33338
RK
828
829void
4682ae04 830record_component_aliases (tree type)
a0c33338 831{
4862826d 832 alias_set_type superset = get_alias_set (type);
a0c33338
RK
833 tree field;
834
835 if (superset == 0)
836 return;
837
838 switch (TREE_CODE (type))
839 {
a0c33338
RK
840 case RECORD_TYPE:
841 case UNION_TYPE:
842 case QUAL_UNION_TYPE:
6614fd40 843 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 844 if (TYPE_BINFO (type))
ca7fd9cd
KH
845 {
846 int i;
fa743e8c 847 tree binfo, base_binfo;
c22cacf3 848
fa743e8c
NS
849 for (binfo = TYPE_BINFO (type), i = 0;
850 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
851 record_alias_subset (superset,
852 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 853 }
a0c33338 854 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b5487346 855 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 856 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
857 break;
858
1d79fd2c
JW
859 case COMPLEX_TYPE:
860 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
861 break;
862
4653cae5
RG
863 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
864 element type. */
865
a0c33338
RK
866 default:
867 break;
868 }
869}
870
3bdf5ad1
RK
871/* Allocate an alias set for use in storing and reading from the varargs
872 spill area. */
873
4862826d 874static GTY(()) alias_set_type varargs_set = -1;
f103e34d 875
4862826d 876alias_set_type
4682ae04 877get_varargs_alias_set (void)
3bdf5ad1 878{
cd3ce9b4
JM
879#if 1
880 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
881 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
882 consistently use the varargs alias set for loads from the varargs
883 area. So don't use it anywhere. */
884 return 0;
885#else
f103e34d
GK
886 if (varargs_set == -1)
887 varargs_set = new_alias_set ();
3bdf5ad1 888
f103e34d 889 return varargs_set;
cd3ce9b4 890#endif
3bdf5ad1
RK
891}
892
893/* Likewise, but used for the fixed portions of the frame, e.g., register
894 save areas. */
895
4862826d 896static GTY(()) alias_set_type frame_set = -1;
f103e34d 897
4862826d 898alias_set_type
4682ae04 899get_frame_alias_set (void)
3bdf5ad1 900{
f103e34d
GK
901 if (frame_set == -1)
902 frame_set = new_alias_set ();
3bdf5ad1 903
f103e34d 904 return frame_set;
3bdf5ad1
RK
905}
906
2a2c8203
JC
907/* Inside SRC, the source of a SET, find a base address. */
908
9ae8ffe7 909static rtx
4682ae04 910find_base_value (rtx src)
9ae8ffe7 911{
713f41f9 912 unsigned int regno;
0aacc8ed 913
53451050
RS
914#if defined (FIND_BASE_TERM)
915 /* Try machine-dependent ways to find the base term. */
916 src = FIND_BASE_TERM (src);
917#endif
918
9ae8ffe7
JL
919 switch (GET_CODE (src))
920 {
921 case SYMBOL_REF:
922 case LABEL_REF:
923 return src;
924
925 case REG:
fb6754f0 926 regno = REGNO (src);
d4b60170 927 /* At the start of a function, argument registers have known base
2a2c8203
JC
928 values which may be lost later. Returning an ADDRESS
929 expression here allows optimization based on argument values
930 even when the argument registers are used for other purposes. */
713f41f9
BS
931 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
932 return new_reg_base_value[regno];
73774bc7 933
eaf407a5 934 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
935 for non-fixed hard regs since it can result in a circular
936 dependency chain for registers which have values at function entry.
eaf407a5
JL
937
938 The test above is not sufficient because the scheduler may move
939 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 940 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 941 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
942 {
943 /* If we're inside init_alias_analysis, use new_reg_base_value
944 to reduce the number of relaxation iterations. */
1afdf91c 945 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 946 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
947 return new_reg_base_value[regno];
948
08c79682
KH
949 if (VEC_index (rtx, reg_base_value, regno))
950 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 951 }
73774bc7 952
e3f049a8 953 return 0;
9ae8ffe7
JL
954
955 case MEM:
956 /* Check for an argument passed in memory. Only record in the
957 copying-arguments block; it is too hard to track changes
958 otherwise. */
959 if (copying_arguments
960 && (XEXP (src, 0) == arg_pointer_rtx
961 || (GET_CODE (XEXP (src, 0)) == PLUS
962 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 963 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
964 return 0;
965
966 case CONST:
967 src = XEXP (src, 0);
968 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
969 break;
d4b60170 970
ec5c56db 971 /* ... fall through ... */
2a2c8203 972
9ae8ffe7
JL
973 case PLUS:
974 case MINUS:
2a2c8203 975 {
ec907dd8
JL
976 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
977
0134bf2d
DE
978 /* If either operand is a REG that is a known pointer, then it
979 is the base. */
980 if (REG_P (src_0) && REG_POINTER (src_0))
981 return find_base_value (src_0);
982 if (REG_P (src_1) && REG_POINTER (src_1))
983 return find_base_value (src_1);
984
ec907dd8
JL
985 /* If either operand is a REG, then see if we already have
986 a known value for it. */
0134bf2d 987 if (REG_P (src_0))
ec907dd8
JL
988 {
989 temp = find_base_value (src_0);
d4b60170 990 if (temp != 0)
ec907dd8
JL
991 src_0 = temp;
992 }
993
0134bf2d 994 if (REG_P (src_1))
ec907dd8
JL
995 {
996 temp = find_base_value (src_1);
d4b60170 997 if (temp!= 0)
ec907dd8
JL
998 src_1 = temp;
999 }
2a2c8203 1000
0134bf2d
DE
1001 /* If either base is named object or a special address
1002 (like an argument or stack reference), then use it for the
1003 base term. */
1004 if (src_0 != 0
1005 && (GET_CODE (src_0) == SYMBOL_REF
1006 || GET_CODE (src_0) == LABEL_REF
1007 || (GET_CODE (src_0) == ADDRESS
1008 && GET_MODE (src_0) != VOIDmode)))
1009 return src_0;
1010
1011 if (src_1 != 0
1012 && (GET_CODE (src_1) == SYMBOL_REF
1013 || GET_CODE (src_1) == LABEL_REF
1014 || (GET_CODE (src_1) == ADDRESS
1015 && GET_MODE (src_1) != VOIDmode)))
1016 return src_1;
1017
d4b60170 1018 /* Guess which operand is the base address:
ec907dd8
JL
1019 If either operand is a symbol, then it is the base. If
1020 either operand is a CONST_INT, then the other is the base. */
481683e1 1021 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1022 return find_base_value (src_0);
481683e1 1023 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1024 return find_base_value (src_1);
1025
9ae8ffe7 1026 return 0;
2a2c8203
JC
1027 }
1028
1029 case LO_SUM:
1030 /* The standard form is (lo_sum reg sym) so look only at the
1031 second operand. */
1032 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1033
1034 case AND:
1035 /* If the second operand is constant set the base
ec5c56db 1036 address to the first operand. */
481683e1 1037 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1038 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1039 return 0;
1040
61f0131c
R
1041 case TRUNCATE:
1042 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1043 break;
1044 /* Fall through. */
9ae8ffe7 1045 case HIGH:
d288e53d
DE
1046 case PRE_INC:
1047 case PRE_DEC:
1048 case POST_INC:
1049 case POST_DEC:
1050 case PRE_MODIFY:
1051 case POST_MODIFY:
2a2c8203 1052 return find_base_value (XEXP (src, 0));
1d300e19 1053
0aacc8ed
RK
1054 case ZERO_EXTEND:
1055 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1056 {
1057 rtx temp = find_base_value (XEXP (src, 0));
1058
5ae6cd0d 1059 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1060 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1061
1062 return temp;
1063 }
1064
1d300e19
KG
1065 default:
1066 break;
9ae8ffe7
JL
1067 }
1068
1069 return 0;
1070}
1071
1072/* Called from init_alias_analysis indirectly through note_stores. */
1073
d4b60170 1074/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
1075 register N has been set in this function. */
1076static char *reg_seen;
1077
13309a5f
JC
1078/* Addresses which are known not to alias anything else are identified
1079 by a unique integer. */
ec907dd8
JL
1080static int unique_id;
1081
2a2c8203 1082static void
7bc980e1 1083record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1084{
b3694847 1085 unsigned regno;
9ae8ffe7 1086 rtx src;
c28b4e40 1087 int n;
9ae8ffe7 1088
f8cfc6aa 1089 if (!REG_P (dest))
9ae8ffe7
JL
1090 return;
1091
fb6754f0 1092 regno = REGNO (dest);
9ae8ffe7 1093
08c79682 1094 gcc_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1095
c28b4e40
JW
1096 /* If this spans multiple hard registers, then we must indicate that every
1097 register has an unusable value. */
1098 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1099 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1100 else
1101 n = 1;
1102 if (n != 1)
1103 {
1104 while (--n >= 0)
1105 {
1106 reg_seen[regno + n] = 1;
1107 new_reg_base_value[regno + n] = 0;
1108 }
1109 return;
1110 }
1111
9ae8ffe7
JL
1112 if (set)
1113 {
1114 /* A CLOBBER wipes out any old value but does not prevent a previously
1115 unset register from acquiring a base address (i.e. reg_seen is not
1116 set). */
1117 if (GET_CODE (set) == CLOBBER)
1118 {
ec907dd8 1119 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1120 return;
1121 }
1122 src = SET_SRC (set);
1123 }
1124 else
1125 {
9ae8ffe7
JL
1126 if (reg_seen[regno])
1127 {
ec907dd8 1128 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1129 return;
1130 }
1131 reg_seen[regno] = 1;
38a448ca
RH
1132 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1133 GEN_INT (unique_id++));
9ae8ffe7
JL
1134 return;
1135 }
1136
5da6f168
RS
1137 /* If this is not the first set of REGNO, see whether the new value
1138 is related to the old one. There are two cases of interest:
1139
1140 (1) The register might be assigned an entirely new value
1141 that has the same base term as the original set.
1142
1143 (2) The set might be a simple self-modification that
1144 cannot change REGNO's base value.
1145
1146 If neither case holds, reject the original base value as invalid.
1147 Note that the following situation is not detected:
1148
c22cacf3 1149 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1150
9ae8ffe7
JL
1151 ANSI C does not allow computing the difference of addresses
1152 of distinct top level objects. */
5da6f168
RS
1153 if (new_reg_base_value[regno] != 0
1154 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1155 switch (GET_CODE (src))
1156 {
2a2c8203 1157 case LO_SUM:
9ae8ffe7
JL
1158 case MINUS:
1159 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1160 new_reg_base_value[regno] = 0;
9ae8ffe7 1161 break;
61f0131c
R
1162 case PLUS:
1163 /* If the value we add in the PLUS is also a valid base value,
1164 this might be the actual base value, and the original value
1165 an index. */
1166 {
1167 rtx other = NULL_RTX;
1168
1169 if (XEXP (src, 0) == dest)
1170 other = XEXP (src, 1);
1171 else if (XEXP (src, 1) == dest)
1172 other = XEXP (src, 0);
1173
1174 if (! other || find_base_value (other))
1175 new_reg_base_value[regno] = 0;
1176 break;
1177 }
9ae8ffe7 1178 case AND:
481683e1 1179 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1180 new_reg_base_value[regno] = 0;
9ae8ffe7 1181 break;
9ae8ffe7 1182 default:
ec907dd8 1183 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1184 break;
1185 }
1186 /* If this is the first set of a register, record the value. */
1187 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1188 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1189 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1190
1191 reg_seen[regno] = 1;
1192}
1193
bb1acb3e
RH
1194/* If a value is known for REGNO, return it. */
1195
c22cacf3 1196rtx
bb1acb3e
RH
1197get_reg_known_value (unsigned int regno)
1198{
1199 if (regno >= FIRST_PSEUDO_REGISTER)
1200 {
1201 regno -= FIRST_PSEUDO_REGISTER;
1202 if (regno < reg_known_value_size)
1203 return reg_known_value[regno];
1204 }
1205 return NULL;
43fe47ca
JW
1206}
1207
bb1acb3e
RH
1208/* Set it. */
1209
1210static void
1211set_reg_known_value (unsigned int regno, rtx val)
1212{
1213 if (regno >= FIRST_PSEUDO_REGISTER)
1214 {
1215 regno -= FIRST_PSEUDO_REGISTER;
1216 if (regno < reg_known_value_size)
1217 reg_known_value[regno] = val;
1218 }
1219}
1220
1221/* Similarly for reg_known_equiv_p. */
1222
1223bool
1224get_reg_known_equiv_p (unsigned int regno)
1225{
1226 if (regno >= FIRST_PSEUDO_REGISTER)
1227 {
1228 regno -= FIRST_PSEUDO_REGISTER;
1229 if (regno < reg_known_value_size)
1230 return reg_known_equiv_p[regno];
1231 }
1232 return false;
1233}
1234
1235static void
1236set_reg_known_equiv_p (unsigned int regno, bool val)
1237{
1238 if (regno >= FIRST_PSEUDO_REGISTER)
1239 {
1240 regno -= FIRST_PSEUDO_REGISTER;
1241 if (regno < reg_known_value_size)
1242 reg_known_equiv_p[regno] = val;
1243 }
1244}
1245
1246
db048faf
MM
1247/* Returns a canonical version of X, from the point of view alias
1248 analysis. (For example, if X is a MEM whose address is a register,
1249 and the register has a known value (say a SYMBOL_REF), then a MEM
1250 whose address is the SYMBOL_REF is returned.) */
1251
1252rtx
4682ae04 1253canon_rtx (rtx x)
9ae8ffe7
JL
1254{
1255 /* Recursively look for equivalences. */
f8cfc6aa 1256 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1257 {
1258 rtx t = get_reg_known_value (REGNO (x));
1259 if (t == x)
1260 return x;
1261 if (t)
1262 return canon_rtx (t);
1263 }
1264
1265 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1266 {
1267 rtx x0 = canon_rtx (XEXP (x, 0));
1268 rtx x1 = canon_rtx (XEXP (x, 1));
1269
1270 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1271 {
481683e1 1272 if (CONST_INT_P (x0))
ed8908e7 1273 return plus_constant (x1, INTVAL (x0));
481683e1 1274 else if (CONST_INT_P (x1))
ed8908e7 1275 return plus_constant (x0, INTVAL (x1));
38a448ca 1276 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1277 }
1278 }
d4b60170 1279
9ae8ffe7
JL
1280 /* This gives us much better alias analysis when called from
1281 the loop optimizer. Note we want to leave the original
1282 MEM alone, but need to return the canonicalized MEM with
1283 all the flags with their original values. */
3c0cb5de 1284 else if (MEM_P (x))
f1ec5147 1285 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1286
9ae8ffe7
JL
1287 return x;
1288}
1289
1290/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1291 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1292
1293 We use the data in reg_known_value above to see if two registers with
1294 different numbers are, in fact, equivalent. */
1295
1296static int
ed7a4b4b 1297rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1298{
b3694847
SS
1299 int i;
1300 int j;
1301 enum rtx_code code;
1302 const char *fmt;
9ae8ffe7
JL
1303
1304 if (x == 0 && y == 0)
1305 return 1;
1306 if (x == 0 || y == 0)
1307 return 0;
d4b60170 1308
9ae8ffe7
JL
1309 if (x == y)
1310 return 1;
1311
1312 code = GET_CODE (x);
1313 /* Rtx's of different codes cannot be equal. */
1314 if (code != GET_CODE (y))
1315 return 0;
1316
1317 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1318 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1319
1320 if (GET_MODE (x) != GET_MODE (y))
1321 return 0;
1322
db048faf
MM
1323 /* Some RTL can be compared without a recursive examination. */
1324 switch (code)
1325 {
1326 case REG:
1327 return REGNO (x) == REGNO (y);
1328
1329 case LABEL_REF:
1330 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1331
db048faf
MM
1332 case SYMBOL_REF:
1333 return XSTR (x, 0) == XSTR (y, 0);
1334
40e02b4a 1335 case VALUE:
db048faf
MM
1336 case CONST_INT:
1337 case CONST_DOUBLE:
091a3ac7 1338 case CONST_FIXED:
db048faf
MM
1339 /* There's no need to compare the contents of CONST_DOUBLEs or
1340 CONST_INTs because pointer equality is a good enough
1341 comparison for these nodes. */
1342 return 0;
1343
db048faf
MM
1344 default:
1345 break;
1346 }
9ae8ffe7 1347
45183e03
JH
1348 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1349 if (code == PLUS)
9ae8ffe7
JL
1350 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1351 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1352 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1353 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1354 /* For commutative operations, the RTX match if the operand match in any
1355 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1356 if (COMMUTATIVE_P (x))
45183e03
JH
1357 {
1358 rtx xop0 = canon_rtx (XEXP (x, 0));
1359 rtx yop0 = canon_rtx (XEXP (y, 0));
1360 rtx yop1 = canon_rtx (XEXP (y, 1));
1361
1362 return ((rtx_equal_for_memref_p (xop0, yop0)
1363 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1364 || (rtx_equal_for_memref_p (xop0, yop1)
1365 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1366 }
ec8e098d 1367 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1368 {
1369 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1370 canon_rtx (XEXP (y, 0)))
45183e03
JH
1371 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1372 canon_rtx (XEXP (y, 1))));
1373 }
ec8e098d 1374 else if (UNARY_P (x))
45183e03 1375 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1376 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1377
1378 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1379 fail to match, return 0 for the whole things.
1380
1381 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1382
1383 fmt = GET_RTX_FORMAT (code);
1384 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1385 {
1386 switch (fmt[i])
1387 {
9ae8ffe7
JL
1388 case 'i':
1389 if (XINT (x, i) != XINT (y, i))
1390 return 0;
1391 break;
1392
9ae8ffe7
JL
1393 case 'E':
1394 /* Two vectors must have the same length. */
1395 if (XVECLEN (x, i) != XVECLEN (y, i))
1396 return 0;
1397
1398 /* And the corresponding elements must match. */
1399 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1400 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1401 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1402 return 0;
1403 break;
1404
1405 case 'e':
45183e03
JH
1406 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1407 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1408 return 0;
1409 break;
1410
3237ac18
AH
1411 /* This can happen for asm operands. */
1412 case 's':
1413 if (strcmp (XSTR (x, i), XSTR (y, i)))
1414 return 0;
1415 break;
1416
aee21ba9
JL
1417 /* This can happen for an asm which clobbers memory. */
1418 case '0':
1419 break;
1420
9ae8ffe7
JL
1421 /* It is believed that rtx's at this level will never
1422 contain anything but integers and other rtx's,
1423 except for within LABEL_REFs and SYMBOL_REFs. */
1424 default:
298e6adc 1425 gcc_unreachable ();
9ae8ffe7
JL
1426 }
1427 }
1428 return 1;
1429}
1430
94f24ddc 1431rtx
4682ae04 1432find_base_term (rtx x)
9ae8ffe7 1433{
eab5c70a
BS
1434 cselib_val *val;
1435 struct elt_loc_list *l;
1436
b949ea8b
JW
1437#if defined (FIND_BASE_TERM)
1438 /* Try machine-dependent ways to find the base term. */
1439 x = FIND_BASE_TERM (x);
1440#endif
1441
9ae8ffe7
JL
1442 switch (GET_CODE (x))
1443 {
1444 case REG:
1445 return REG_BASE_VALUE (x);
1446
d288e53d
DE
1447 case TRUNCATE:
1448 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1449 return 0;
d288e53d 1450 /* Fall through. */
9ae8ffe7 1451 case HIGH:
6d849a2a
JL
1452 case PRE_INC:
1453 case PRE_DEC:
1454 case POST_INC:
1455 case POST_DEC:
d288e53d
DE
1456 case PRE_MODIFY:
1457 case POST_MODIFY:
6d849a2a
JL
1458 return find_base_term (XEXP (x, 0));
1459
1abade85
RK
1460 case ZERO_EXTEND:
1461 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1462 {
1463 rtx temp = find_base_term (XEXP (x, 0));
1464
5ae6cd0d 1465 if (temp != 0 && CONSTANT_P (temp))
1abade85 1466 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1467
1468 return temp;
1469 }
1470
eab5c70a
BS
1471 case VALUE:
1472 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1473 if (!val)
1474 return 0;
eab5c70a
BS
1475 for (l = val->locs; l; l = l->next)
1476 if ((x = find_base_term (l->loc)) != 0)
1477 return x;
1478 return 0;
1479
023f059b
JJ
1480 case LO_SUM:
1481 /* The standard form is (lo_sum reg sym) so look only at the
1482 second operand. */
1483 return find_base_term (XEXP (x, 1));
1484
9ae8ffe7
JL
1485 case CONST:
1486 x = XEXP (x, 0);
1487 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1488 return 0;
938d968e 1489 /* Fall through. */
9ae8ffe7
JL
1490 case PLUS:
1491 case MINUS:
1492 {
3c567fae
JL
1493 rtx tmp1 = XEXP (x, 0);
1494 rtx tmp2 = XEXP (x, 1);
1495
f5143c46 1496 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1497 the two operands represents the real base address. Otherwise this
1498 routine may return the index register instead of the base register.
1499
1500 That may cause us to believe no aliasing was possible, when in
1501 fact aliasing is possible.
1502
1503 We use a few simple tests to guess the base register. Additional
1504 tests can certainly be added. For example, if one of the operands
1505 is a shift or multiply, then it must be the index register and the
1506 other operand is the base register. */
ca7fd9cd 1507
b949ea8b
JW
1508 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1509 return find_base_term (tmp2);
1510
3c567fae
JL
1511 /* If either operand is known to be a pointer, then use it
1512 to determine the base term. */
3502dc9c 1513 if (REG_P (tmp1) && REG_POINTER (tmp1))
7eba2d1f
LM
1514 {
1515 rtx base = find_base_term (tmp1);
1516 if (base)
1517 return base;
1518 }
3c567fae 1519
3502dc9c 1520 if (REG_P (tmp2) && REG_POINTER (tmp2))
7eba2d1f
LM
1521 {
1522 rtx base = find_base_term (tmp2);
1523 if (base)
1524 return base;
1525 }
3c567fae
JL
1526
1527 /* Neither operand was known to be a pointer. Go ahead and find the
1528 base term for both operands. */
1529 tmp1 = find_base_term (tmp1);
1530 tmp2 = find_base_term (tmp2);
1531
1532 /* If either base term is named object or a special address
1533 (like an argument or stack reference), then use it for the
1534 base term. */
d4b60170 1535 if (tmp1 != 0
3c567fae
JL
1536 && (GET_CODE (tmp1) == SYMBOL_REF
1537 || GET_CODE (tmp1) == LABEL_REF
1538 || (GET_CODE (tmp1) == ADDRESS
1539 && GET_MODE (tmp1) != VOIDmode)))
1540 return tmp1;
1541
d4b60170 1542 if (tmp2 != 0
3c567fae
JL
1543 && (GET_CODE (tmp2) == SYMBOL_REF
1544 || GET_CODE (tmp2) == LABEL_REF
1545 || (GET_CODE (tmp2) == ADDRESS
1546 && GET_MODE (tmp2) != VOIDmode)))
1547 return tmp2;
1548
1549 /* We could not determine which of the two operands was the
1550 base register and which was the index. So we can determine
1551 nothing from the base alias check. */
1552 return 0;
9ae8ffe7
JL
1553 }
1554
1555 case AND:
481683e1 1556 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 1557 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1558 return 0;
1559
1560 case SYMBOL_REF:
1561 case LABEL_REF:
1562 return x;
1563
1564 default:
1565 return 0;
1566 }
1567}
1568
1569/* Return 0 if the addresses X and Y are known to point to different
1570 objects, 1 if they might be pointers to the same object. */
1571
1572static int
4682ae04
AJ
1573base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1574 enum machine_mode y_mode)
9ae8ffe7
JL
1575{
1576 rtx x_base = find_base_term (x);
1577 rtx y_base = find_base_term (y);
1578
1c72c7f6
JC
1579 /* If the address itself has no known base see if a known equivalent
1580 value has one. If either address still has no known base, nothing
1581 is known about aliasing. */
1582 if (x_base == 0)
1583 {
1584 rtx x_c;
d4b60170 1585
1c72c7f6
JC
1586 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1587 return 1;
d4b60170 1588
1c72c7f6
JC
1589 x_base = find_base_term (x_c);
1590 if (x_base == 0)
1591 return 1;
1592 }
9ae8ffe7 1593
1c72c7f6
JC
1594 if (y_base == 0)
1595 {
1596 rtx y_c;
1597 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1598 return 1;
d4b60170 1599
1c72c7f6
JC
1600 y_base = find_base_term (y_c);
1601 if (y_base == 0)
1602 return 1;
1603 }
1604
1605 /* If the base addresses are equal nothing is known about aliasing. */
1606 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1607 return 1;
1608
435da628
UB
1609 /* The base addresses are different expressions. If they are not accessed
1610 via AND, there is no conflict. We can bring knowledge of object
1611 alignment into play here. For example, on alpha, "char a, b;" can
1612 alias one another, though "char a; long b;" cannot. AND addesses may
1613 implicitly alias surrounding objects; i.e. unaligned access in DImode
1614 via AND address can alias all surrounding object types except those
1615 with aligment 8 or higher. */
1616 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1617 return 1;
1618 if (GET_CODE (x) == AND
481683e1 1619 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
1620 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1621 return 1;
1622 if (GET_CODE (y) == AND
481683e1 1623 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
1624 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1625 return 1;
1626
1627 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1628 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1629 return 0;
9ae8ffe7
JL
1630
1631 /* If one address is a stack reference there can be no alias:
1632 stack references using different base registers do not alias,
1633 a stack reference can not alias a parameter, and a stack reference
1634 can not alias a global. */
1635 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1636 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1637 return 0;
1638
1639 if (! flag_argument_noalias)
1640 return 1;
1641
1642 if (flag_argument_noalias > 1)
1643 return 0;
1644
ec5c56db 1645 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1646 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1647}
1648
eab5c70a
BS
1649/* Convert the address X into something we can use. This is done by returning
1650 it unchanged unless it is a value; in the latter case we call cselib to get
1651 a more useful rtx. */
3bdf5ad1 1652
a13d4ebf 1653rtx
4682ae04 1654get_addr (rtx x)
eab5c70a
BS
1655{
1656 cselib_val *v;
1657 struct elt_loc_list *l;
1658
1659 if (GET_CODE (x) != VALUE)
1660 return x;
1661 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1662 if (v)
1663 {
1664 for (l = v->locs; l; l = l->next)
1665 if (CONSTANT_P (l->loc))
1666 return l->loc;
1667 for (l = v->locs; l; l = l->next)
3c0cb5de 1668 if (!REG_P (l->loc) && !MEM_P (l->loc))
40e02b4a
JH
1669 return l->loc;
1670 if (v->locs)
1671 return v->locs->loc;
1672 }
eab5c70a
BS
1673 return x;
1674}
1675
39cec1ac
MH
1676/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1677 where SIZE is the size in bytes of the memory reference. If ADDR
1678 is not modified by the memory reference then ADDR is returned. */
1679
04e2b4d3 1680static rtx
4682ae04 1681addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1682{
1683 int offset = 0;
ca7fd9cd 1684
39cec1ac
MH
1685 switch (GET_CODE (addr))
1686 {
1687 case PRE_INC:
1688 offset = (n_refs + 1) * size;
1689 break;
1690 case PRE_DEC:
1691 offset = -(n_refs + 1) * size;
1692 break;
1693 case POST_INC:
1694 offset = n_refs * size;
1695 break;
1696 case POST_DEC:
1697 offset = -n_refs * size;
1698 break;
1699
1700 default:
1701 return addr;
1702 }
ca7fd9cd 1703
39cec1ac 1704 if (offset)
45183e03 1705 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1706 GEN_INT (offset));
39cec1ac
MH
1707 else
1708 addr = XEXP (addr, 0);
45183e03 1709 addr = canon_rtx (addr);
39cec1ac
MH
1710
1711 return addr;
1712}
1713
9ae8ffe7
JL
1714/* Return nonzero if X and Y (memory addresses) could reference the
1715 same location in memory. C is an offset accumulator. When
1716 C is nonzero, we are testing aliases between X and Y + C.
1717 XSIZE is the size in bytes of the X reference,
1718 similarly YSIZE is the size in bytes for Y.
45183e03 1719 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1720
1721 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1722 referenced (the reference was BLKmode), so make the most pessimistic
1723 assumptions.
1724
c02f035f
RH
1725 If XSIZE or YSIZE is negative, we may access memory outside the object
1726 being referenced as a side effect. This can happen when using AND to
1727 align memory references, as is done on the Alpha.
1728
9ae8ffe7 1729 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1730 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1731
9ae8ffe7 1732static int
4682ae04 1733memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1734{
eab5c70a
BS
1735 if (GET_CODE (x) == VALUE)
1736 x = get_addr (x);
1737 if (GET_CODE (y) == VALUE)
1738 y = get_addr (y);
9ae8ffe7
JL
1739 if (GET_CODE (x) == HIGH)
1740 x = XEXP (x, 0);
1741 else if (GET_CODE (x) == LO_SUM)
1742 x = XEXP (x, 1);
1743 else
45183e03 1744 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1745 if (GET_CODE (y) == HIGH)
1746 y = XEXP (y, 0);
1747 else if (GET_CODE (y) == LO_SUM)
1748 y = XEXP (y, 1);
1749 else
45183e03 1750 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1751
1752 if (rtx_equal_for_memref_p (x, y))
1753 {
c02f035f 1754 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1755 return 1;
1756 if (c >= 0 && xsize > c)
1757 return 1;
1758 if (c < 0 && ysize+c > 0)
1759 return 1;
1760 return 0;
1761 }
1762
6e73e666
JC
1763 /* This code used to check for conflicts involving stack references and
1764 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1765
1766 if (GET_CODE (x) == PLUS)
1767 {
1768 /* The fact that X is canonicalized means that this
1769 PLUS rtx is canonicalized. */
1770 rtx x0 = XEXP (x, 0);
1771 rtx x1 = XEXP (x, 1);
1772
1773 if (GET_CODE (y) == PLUS)
1774 {
1775 /* The fact that Y is canonicalized means that this
1776 PLUS rtx is canonicalized. */
1777 rtx y0 = XEXP (y, 0);
1778 rtx y1 = XEXP (y, 1);
1779
1780 if (rtx_equal_for_memref_p (x1, y1))
1781 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1782 if (rtx_equal_for_memref_p (x0, y0))
1783 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 1784 if (CONST_INT_P (x1))
63be02db 1785 {
481683e1 1786 if (CONST_INT_P (y1))
63be02db
JM
1787 return memrefs_conflict_p (xsize, x0, ysize, y0,
1788 c - INTVAL (x1) + INTVAL (y1));
1789 else
1790 return memrefs_conflict_p (xsize, x0, ysize, y,
1791 c - INTVAL (x1));
1792 }
481683e1 1793 else if (CONST_INT_P (y1))
9ae8ffe7
JL
1794 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1795
6e73e666 1796 return 1;
9ae8ffe7 1797 }
481683e1 1798 else if (CONST_INT_P (x1))
9ae8ffe7
JL
1799 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1800 }
1801 else if (GET_CODE (y) == PLUS)
1802 {
1803 /* The fact that Y is canonicalized means that this
1804 PLUS rtx is canonicalized. */
1805 rtx y0 = XEXP (y, 0);
1806 rtx y1 = XEXP (y, 1);
1807
481683e1 1808 if (CONST_INT_P (y1))
9ae8ffe7
JL
1809 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1810 else
1811 return 1;
1812 }
1813
1814 if (GET_CODE (x) == GET_CODE (y))
1815 switch (GET_CODE (x))
1816 {
1817 case MULT:
1818 {
1819 /* Handle cases where we expect the second operands to be the
1820 same, and check only whether the first operand would conflict
1821 or not. */
1822 rtx x0, y0;
1823 rtx x1 = canon_rtx (XEXP (x, 1));
1824 rtx y1 = canon_rtx (XEXP (y, 1));
1825 if (! rtx_equal_for_memref_p (x1, y1))
1826 return 1;
1827 x0 = canon_rtx (XEXP (x, 0));
1828 y0 = canon_rtx (XEXP (y, 0));
1829 if (rtx_equal_for_memref_p (x0, y0))
1830 return (xsize == 0 || ysize == 0
1831 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1832
1833 /* Can't properly adjust our sizes. */
481683e1 1834 if (!CONST_INT_P (x1))
9ae8ffe7
JL
1835 return 1;
1836 xsize /= INTVAL (x1);
1837 ysize /= INTVAL (x1);
1838 c /= INTVAL (x1);
1839 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1840 }
1d300e19
KG
1841
1842 default:
1843 break;
9ae8ffe7
JL
1844 }
1845
1846 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1847 as an access with indeterminate size. Assume that references
56ee9281
RH
1848 besides AND are aligned, so if the size of the other reference is
1849 at least as large as the alignment, assume no other overlap. */
481683e1 1850 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 1851 {
02e3377d 1852 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1853 xsize = -1;
45183e03 1854 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1855 }
481683e1 1856 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 1857 {
56ee9281 1858 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1859 may yet be able to determine that we can not overlap. But we
c02f035f 1860 also need to that we are far enough from the end not to overlap
56ee9281 1861 a following reference, so we do nothing with that for now. */
02e3377d 1862 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1863 ysize = -1;
45183e03 1864 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1865 }
9ae8ffe7
JL
1866
1867 if (CONSTANT_P (x))
1868 {
481683e1 1869 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
1870 {
1871 c += (INTVAL (y) - INTVAL (x));
c02f035f 1872 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1873 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1874 }
1875
1876 if (GET_CODE (x) == CONST)
1877 {
1878 if (GET_CODE (y) == CONST)
1879 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1880 ysize, canon_rtx (XEXP (y, 0)), c);
1881 else
1882 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1883 ysize, y, c);
1884 }
1885 if (GET_CODE (y) == CONST)
1886 return memrefs_conflict_p (xsize, x, ysize,
1887 canon_rtx (XEXP (y, 0)), c);
1888
1889 if (CONSTANT_P (y))
b949ea8b 1890 return (xsize <= 0 || ysize <= 0
c02f035f 1891 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1892 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1893
1894 return 1;
1895 }
1896 return 1;
1897}
1898
1899/* Functions to compute memory dependencies.
1900
1901 Since we process the insns in execution order, we can build tables
1902 to keep track of what registers are fixed (and not aliased), what registers
1903 are varying in known ways, and what registers are varying in unknown
1904 ways.
1905
1906 If both memory references are volatile, then there must always be a
1907 dependence between the two references, since their order can not be
1908 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1909 though.
9ae8ffe7 1910
dc1618bc
RK
1911 A MEM_IN_STRUCT reference at a non-AND varying address can never
1912 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1913 also must allow AND addresses, because they may generate accesses
1914 outside the object being referenced. This is used to generate
1915 aligned addresses from unaligned addresses, for instance, the alpha
1916 storeqi_unaligned pattern. */
9ae8ffe7
JL
1917
1918/* Read dependence: X is read after read in MEM takes place. There can
1919 only be a dependence here if both reads are volatile. */
1920
1921int
4f588890 1922read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7
JL
1923{
1924 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1925}
1926
c6df88cb
MM
1927/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1928 MEM2 is a reference to a structure at a varying address, or returns
1929 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1930 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1931 to decide whether or not an address may vary; it should return
eab5c70a
BS
1932 nonzero whenever variation is possible.
1933 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1934
4f588890
KG
1935static const_rtx
1936fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
4682ae04 1937 rtx mem2_addr,
4f588890 1938 bool (*varies_p) (const_rtx, bool))
ca7fd9cd 1939{
3e0abe15
GK
1940 if (! flag_strict_aliasing)
1941 return NULL_RTX;
1942
afa8f0fb
AP
1943 if (MEM_ALIAS_SET (mem2)
1944 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1945 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1946 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1947 varying address. */
1948 return mem1;
1949
afa8f0fb
AP
1950 if (MEM_ALIAS_SET (mem1)
1951 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1952 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1953 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1954 varying address. */
1955 return mem2;
1956
1957 return NULL_RTX;
1958}
1959
1960/* Returns nonzero if something about the mode or address format MEM1
1961 indicates that it might well alias *anything*. */
1962
2c72b78f 1963static int
4f588890 1964aliases_everything_p (const_rtx mem)
c6df88cb 1965{
c6df88cb 1966 if (GET_CODE (XEXP (mem, 0)) == AND)
35fd3193 1967 /* If the address is an AND, it's very hard to know at what it is
c6df88cb
MM
1968 actually pointing. */
1969 return 1;
ca7fd9cd 1970
c6df88cb
MM
1971 return 0;
1972}
1973
998d7deb
RH
1974/* Return true if we can determine that the fields referenced cannot
1975 overlap for any pair of objects. */
1976
1977static bool
4f588890 1978nonoverlapping_component_refs_p (const_tree x, const_tree y)
998d7deb 1979{
4f588890 1980 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb
RH
1981
1982 do
1983 {
1984 /* The comparison has to be done at a common type, since we don't
d6a7951f 1985 know how the inheritance hierarchy works. */
998d7deb
RH
1986 orig_y = y;
1987 do
1988 {
1989 fieldx = TREE_OPERAND (x, 1);
c05a0766 1990 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
1991
1992 y = orig_y;
1993 do
1994 {
1995 fieldy = TREE_OPERAND (y, 1);
c05a0766 1996 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
1997
1998 if (typex == typey)
1999 goto found;
2000
2001 y = TREE_OPERAND (y, 0);
2002 }
2003 while (y && TREE_CODE (y) == COMPONENT_REF);
2004
2005 x = TREE_OPERAND (x, 0);
2006 }
2007 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 2008 /* Never found a common type. */
c05a0766 2009 return false;
998d7deb
RH
2010
2011 found:
2012 /* If we're left with accessing different fields of a structure,
2013 then no overlap. */
2014 if (TREE_CODE (typex) == RECORD_TYPE
2015 && fieldx != fieldy)
2016 return true;
2017
2018 /* The comparison on the current field failed. If we're accessing
2019 a very nested structure, look at the next outer level. */
2020 x = TREE_OPERAND (x, 0);
2021 y = TREE_OPERAND (y, 0);
2022 }
2023 while (x && y
2024 && TREE_CODE (x) == COMPONENT_REF
2025 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2026
998d7deb
RH
2027 return false;
2028}
2029
2030/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2031
2032static tree
4682ae04 2033decl_for_component_ref (tree x)
998d7deb
RH
2034{
2035 do
2036 {
2037 x = TREE_OPERAND (x, 0);
2038 }
2039 while (x && TREE_CODE (x) == COMPONENT_REF);
2040
2041 return x && DECL_P (x) ? x : NULL_TREE;
2042}
2043
2044/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2045 offset of the field reference. */
2046
2047static rtx
4682ae04 2048adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
2049{
2050 HOST_WIDE_INT ioffset;
2051
2052 if (! offset)
2053 return NULL_RTX;
2054
2055 ioffset = INTVAL (offset);
ca7fd9cd 2056 do
998d7deb 2057 {
44de5aeb 2058 tree offset = component_ref_field_offset (x);
998d7deb
RH
2059 tree field = TREE_OPERAND (x, 1);
2060
44de5aeb 2061 if (! host_integerp (offset, 1))
998d7deb 2062 return NULL_RTX;
44de5aeb 2063 ioffset += (tree_low_cst (offset, 1)
998d7deb
RH
2064 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2065 / BITS_PER_UNIT));
2066
2067 x = TREE_OPERAND (x, 0);
2068 }
2069 while (x && TREE_CODE (x) == COMPONENT_REF);
2070
2071 return GEN_INT (ioffset);
2072}
2073
95bd1dd7 2074/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
2075 X and Y and they do not overlap. */
2076
2e4e39f6 2077int
4f588890 2078nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
a4311dfe 2079{
998d7deb 2080 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2081 rtx rtlx, rtly;
2082 rtx basex, basey;
998d7deb 2083 rtx moffsetx, moffsety;
a4311dfe
RK
2084 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2085
998d7deb
RH
2086 /* Unless both have exprs, we can't tell anything. */
2087 if (exprx == 0 || expry == 0)
2088 return 0;
c22cacf3 2089
998d7deb
RH
2090 /* If both are field references, we may be able to determine something. */
2091 if (TREE_CODE (exprx) == COMPONENT_REF
2092 && TREE_CODE (expry) == COMPONENT_REF
2093 && nonoverlapping_component_refs_p (exprx, expry))
2094 return 1;
2095
c22cacf3 2096
998d7deb
RH
2097 /* If the field reference test failed, look at the DECLs involved. */
2098 moffsetx = MEM_OFFSET (x);
2099 if (TREE_CODE (exprx) == COMPONENT_REF)
2100 {
ea900239
DB
2101 if (TREE_CODE (expry) == VAR_DECL
2102 && POINTER_TYPE_P (TREE_TYPE (expry)))
2103 {
2104 tree field = TREE_OPERAND (exprx, 1);
2105 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2106 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2107 TREE_TYPE (field)))
c22cacf3 2108 return 1;
ea900239
DB
2109 }
2110 {
2111 tree t = decl_for_component_ref (exprx);
2112 if (! t)
2113 return 0;
2114 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2115 exprx = t;
2116 }
998d7deb 2117 }
1b096a0a 2118 else if (INDIRECT_REF_P (exprx))
c67a1cf6
RH
2119 {
2120 exprx = TREE_OPERAND (exprx, 0);
2121 if (flag_argument_noalias < 2
2122 || TREE_CODE (exprx) != PARM_DECL)
2123 return 0;
2124 }
2125
998d7deb
RH
2126 moffsety = MEM_OFFSET (y);
2127 if (TREE_CODE (expry) == COMPONENT_REF)
2128 {
ea900239
DB
2129 if (TREE_CODE (exprx) == VAR_DECL
2130 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2131 {
2132 tree field = TREE_OPERAND (expry, 1);
2133 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2134 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2135 TREE_TYPE (field)))
c22cacf3 2136 return 1;
ea900239
DB
2137 }
2138 {
2139 tree t = decl_for_component_ref (expry);
2140 if (! t)
2141 return 0;
2142 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2143 expry = t;
2144 }
998d7deb 2145 }
1b096a0a 2146 else if (INDIRECT_REF_P (expry))
c67a1cf6
RH
2147 {
2148 expry = TREE_OPERAND (expry, 0);
2149 if (flag_argument_noalias < 2
2150 || TREE_CODE (expry) != PARM_DECL)
2151 return 0;
2152 }
998d7deb
RH
2153
2154 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2155 return 0;
2156
998d7deb
RH
2157 rtlx = DECL_RTL (exprx);
2158 rtly = DECL_RTL (expry);
a4311dfe 2159
1edcd60b
RK
2160 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2161 can't overlap unless they are the same because we never reuse that part
2162 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2163 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2164 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2165 return 1;
2166
2167 /* Get the base and offsets of both decls. If either is a register, we
2168 know both are and are the same, so use that as the base. The only
2169 we can avoid overlap is if we can deduce that they are nonoverlapping
2170 pieces of that decl, which is very rare. */
3c0cb5de 2171 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2172 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2173 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2174
3c0cb5de 2175 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2176 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2177 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2178
d746694a 2179 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2180 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2181 stack frame. Otherwise a different base means we can't tell if they
2182 overlap or not. */
2183 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2184 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2185 || (CONSTANT_P (basex) && REG_P (basey)
2186 && REGNO_PTR_FRAME_P (REGNO (basey)))
2187 || (CONSTANT_P (basey) && REG_P (basex)
2188 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2189
3c0cb5de 2190 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2191 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2192 : -1);
3c0cb5de 2193 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2194 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2195 -1);
2196
0af5bc3e
RK
2197 /* If we have an offset for either memref, it can update the values computed
2198 above. */
998d7deb
RH
2199 if (moffsetx)
2200 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2201 if (moffsety)
2202 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2203
0af5bc3e 2204 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2205 We can't do this if the offset isn't known because we must view this
0af5bc3e 2206 memref as being anywhere inside the DECL's MEM. */
998d7deb 2207 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2208 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2209 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2210 sizey = INTVAL (MEM_SIZE (y));
2211
2212 /* Put the values of the memref with the lower offset in X's values. */
2213 if (offsetx > offsety)
2214 {
2215 tem = offsetx, offsetx = offsety, offsety = tem;
2216 tem = sizex, sizex = sizey, sizey = tem;
2217 }
2218
2219 /* If we don't know the size of the lower-offset value, we can't tell
2220 if they conflict. Otherwise, we do the test. */
a6f7c915 2221 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2222}
2223
9ae8ffe7
JL
2224/* True dependence: X is read after store in MEM takes place. */
2225
2226int
4f588890
KG
2227true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2228 bool (*varies) (const_rtx, bool))
9ae8ffe7 2229{
b3694847 2230 rtx x_addr, mem_addr;
49982682 2231 rtx base;
9ae8ffe7
JL
2232
2233 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2234 return 1;
2235
c4484b8f 2236 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2237 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2238 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2239 return 1;
2240 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2241 return 1;
9cd9e512
RH
2242 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2243 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2244 return 1;
c4484b8f 2245
41472af8
MM
2246 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2247 return 0;
2248
389fdba0
RH
2249 /* Read-only memory is by definition never modified, and therefore can't
2250 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2251 but stupid user tricks can produce them, so don't die. */
389fdba0 2252 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2253 return 0;
2254
a4311dfe
RK
2255 if (nonoverlapping_memrefs_p (mem, x))
2256 return 0;
2257
56ee9281
RH
2258 if (mem_mode == VOIDmode)
2259 mem_mode = GET_MODE (mem);
2260
eab5c70a
BS
2261 x_addr = get_addr (XEXP (x, 0));
2262 mem_addr = get_addr (XEXP (mem, 0));
2263
55efb413
JW
2264 base = find_base_term (x_addr);
2265 if (base && (GET_CODE (base) == LABEL_REF
2266 || (GET_CODE (base) == SYMBOL_REF
2267 && CONSTANT_POOL_ADDRESS_P (base))))
2268 return 0;
2269
eab5c70a 2270 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2271 return 0;
2272
eab5c70a
BS
2273 x_addr = canon_rtx (x_addr);
2274 mem_addr = canon_rtx (mem_addr);
6e73e666 2275
0211b6ab
JW
2276 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2277 SIZE_FOR_MODE (x), x_addr, 0))
2278 return 0;
2279
c6df88cb 2280 if (aliases_everything_p (x))
0211b6ab
JW
2281 return 1;
2282
f5143c46 2283 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2284 at MEM_MODE, rather than GET_MODE (MEM). */
2285 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2286 return 1;
2287
2288 /* In true_dependence we also allow BLKmode to alias anything. Why
2289 don't we do this in anti_dependence and output_dependence? */
2290 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2291 return 1;
2292
2293 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2294 varies);
2295}
2296
2297/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2298 Variant of true_dependence which assumes MEM has already been
2299 canonicalized (hence we no longer do that here).
2300 The mem_addr argument has been added, since true_dependence computed
6216f94e
JJ
2301 this value prior to canonicalizing.
2302 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
a13d4ebf
AM
2303
2304int
4f588890 2305canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
6216f94e 2306 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
a13d4ebf 2307{
a13d4ebf
AM
2308 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2309 return 1;
2310
0fe854a7
RH
2311 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2312 This is used in epilogue deallocation functions. */
2313 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2314 return 1;
2315 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2316 return 1;
9cd9e512
RH
2317 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2318 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2319 return 1;
0fe854a7 2320
a13d4ebf
AM
2321 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2322 return 0;
2323
389fdba0
RH
2324 /* Read-only memory is by definition never modified, and therefore can't
2325 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2326 but stupid user tricks can produce them, so don't die. */
389fdba0 2327 if (MEM_READONLY_P (x))
a13d4ebf
AM
2328 return 0;
2329
a4311dfe
RK
2330 if (nonoverlapping_memrefs_p (x, mem))
2331 return 0;
2332
6216f94e
JJ
2333 if (! x_addr)
2334 x_addr = get_addr (XEXP (x, 0));
a13d4ebf
AM
2335
2336 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2337 return 0;
2338
2339 x_addr = canon_rtx (x_addr);
2340 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2341 SIZE_FOR_MODE (x), x_addr, 0))
2342 return 0;
2343
2344 if (aliases_everything_p (x))
2345 return 1;
2346
f5143c46 2347 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2348 at MEM_MODE, rather than GET_MODE (MEM). */
2349 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2350 return 1;
0211b6ab 2351
c6df88cb
MM
2352 /* In true_dependence we also allow BLKmode to alias anything. Why
2353 don't we do this in anti_dependence and output_dependence? */
2354 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2355 return 1;
0211b6ab 2356
eab5c70a
BS
2357 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2358 varies);
9ae8ffe7
JL
2359}
2360
da7d8304 2361/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2362 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2363
2c72b78f 2364static int
4f588890 2365write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2366{
6e73e666 2367 rtx x_addr, mem_addr;
4f588890 2368 const_rtx fixed_scalar;
49982682 2369 rtx base;
6e73e666 2370
9ae8ffe7
JL
2371 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2372 return 1;
2373
c4484b8f
RH
2374 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2375 This is used in epilogue deallocation functions. */
2376 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2377 return 1;
2378 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2379 return 1;
9cd9e512
RH
2380 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2381 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2382 return 1;
c4484b8f 2383
389fdba0
RH
2384 /* A read from read-only memory can't conflict with read-write memory. */
2385 if (!writep && MEM_READONLY_P (mem))
2386 return 0;
55efb413 2387
a4311dfe
RK
2388 if (nonoverlapping_memrefs_p (x, mem))
2389 return 0;
2390
55efb413
JW
2391 x_addr = get_addr (XEXP (x, 0));
2392 mem_addr = get_addr (XEXP (mem, 0));
2393
49982682
JW
2394 if (! writep)
2395 {
55efb413 2396 base = find_base_term (mem_addr);
49982682
JW
2397 if (base && (GET_CODE (base) == LABEL_REF
2398 || (GET_CODE (base) == SYMBOL_REF
2399 && CONSTANT_POOL_ADDRESS_P (base))))
2400 return 0;
2401 }
2402
eab5c70a
BS
2403 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2404 GET_MODE (mem)))
41472af8
MM
2405 return 0;
2406
eab5c70a
BS
2407 x_addr = canon_rtx (x_addr);
2408 mem_addr = canon_rtx (mem_addr);
6e73e666 2409
c6df88cb
MM
2410 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2411 SIZE_FOR_MODE (x), x_addr, 0))
2412 return 0;
2413
ca7fd9cd 2414 fixed_scalar
eab5c70a
BS
2415 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2416 rtx_addr_varies_p);
2417
c6df88cb
MM
2418 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2419 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2420}
2421
2422/* Anti dependence: X is written after read in MEM takes place. */
2423
2424int
4f588890 2425anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2426{
389fdba0 2427 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2428}
2429
2430/* Output dependence: X is written after store in MEM takes place. */
2431
2432int
4f588890 2433output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2434{
389fdba0 2435 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2436}
c14b9960 2437\f
6e73e666 2438
6e73e666 2439void
b5deb7b6 2440init_alias_target (void)
6e73e666 2441{
b3694847 2442 int i;
6e73e666 2443
b5deb7b6
SL
2444 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2445
6e73e666
JC
2446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2447 /* Check whether this register can hold an incoming pointer
2448 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2449 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2450 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2451 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2452 static_reg_base_value[i]
2453 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2454
bf1660a6
JL
2455 static_reg_base_value[STACK_POINTER_REGNUM]
2456 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2457 static_reg_base_value[ARG_POINTER_REGNUM]
2458 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2459 static_reg_base_value[FRAME_POINTER_REGNUM]
2460 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2461#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2462 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2463 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2464#endif
2465}
2466
7b52eede
JH
2467/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2468 to be memory reference. */
2469static bool memory_modified;
2470static void
aa317c97 2471memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2472{
3c0cb5de 2473 if (MEM_P (x))
7b52eede 2474 {
9678086d 2475 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2476 memory_modified = true;
2477 }
2478}
2479
2480
2481/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2482 (i.e. address can be modified). */
7b52eede 2483bool
9678086d 2484memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2485{
2486 if (!INSN_P (insn))
2487 return false;
2488 memory_modified = false;
aa317c97 2489 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2490 return memory_modified;
2491}
2492
c13e8210
MM
2493/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2494 array. */
2495
9ae8ffe7 2496void
4682ae04 2497init_alias_analysis (void)
9ae8ffe7 2498{
c582d54a 2499 unsigned int maxreg = max_reg_num ();
ea64ef27 2500 int changed, pass;
b3694847
SS
2501 int i;
2502 unsigned int ui;
2503 rtx insn;
9ae8ffe7 2504
0d446150
JH
2505 timevar_push (TV_ALIAS_ANALYSIS);
2506
bb1acb3e 2507 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
f883e0a7
KG
2508 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2509 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
9ae8ffe7 2510
08c79682 2511 /* If we have memory allocated from the previous run, use it. */
c582d54a 2512 if (old_reg_base_value)
08c79682
KH
2513 reg_base_value = old_reg_base_value;
2514
2515 if (reg_base_value)
2516 VEC_truncate (rtx, reg_base_value, 0);
2517
a590ac65 2518 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2519
5ed6ace5
MD
2520 new_reg_base_value = XNEWVEC (rtx, maxreg);
2521 reg_seen = XNEWVEC (char, maxreg);
ec907dd8
JL
2522
2523 /* The basic idea is that each pass through this loop will use the
2524 "constant" information from the previous pass to propagate alias
2525 information through another level of assignments.
2526
2527 This could get expensive if the assignment chains are long. Maybe
2528 we should throttle the number of iterations, possibly based on
6e73e666 2529 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2530
2531 We could propagate more information in the first pass by making use
6fb5fa3c 2532 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2533 for a pseudo is "constant".
2534
2535 A program with an uninitialized variable can cause an infinite loop
2536 here. Instead of doing a full dataflow analysis to detect such problems
2537 we just cap the number of iterations for the loop.
2538
2539 The state of the arrays for the set chain in question does not matter
2540 since the program has undefined behavior. */
6e73e666 2541
ea64ef27 2542 pass = 0;
6e73e666 2543 do
ec907dd8
JL
2544 {
2545 /* Assume nothing will change this iteration of the loop. */
2546 changed = 0;
2547
ec907dd8
JL
2548 /* We want to assign the same IDs each iteration of this loop, so
2549 start counting from zero each iteration of the loop. */
2550 unique_id = 0;
2551
f5143c46 2552 /* We're at the start of the function each iteration through the
ec907dd8 2553 loop, so we're copying arguments. */
83bbd9b6 2554 copying_arguments = true;
9ae8ffe7 2555
6e73e666 2556 /* Wipe the potential alias information clean for this pass. */
c582d54a 2557 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2558
6e73e666 2559 /* Wipe the reg_seen array clean. */
c582d54a 2560 memset (reg_seen, 0, maxreg);
9ae8ffe7 2561
6e73e666
JC
2562 /* Mark all hard registers which may contain an address.
2563 The stack, frame and argument pointers may contain an address.
2564 An argument register which can hold a Pmode value may contain
2565 an address even if it is not in BASE_REGS.
8072f69c 2566
6e73e666
JC
2567 The address expression is VOIDmode for an argument and
2568 Pmode for other registers. */
2569
7f243674
JL
2570 memcpy (new_reg_base_value, static_reg_base_value,
2571 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2572
ec907dd8
JL
2573 /* Walk the insns adding values to the new_reg_base_value array. */
2574 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2575 {
2c3c49de 2576 if (INSN_P (insn))
ec907dd8 2577 {
6e73e666 2578 rtx note, set;
efc9bd41
RK
2579
2580#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2581 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2582 insn chain until after reload has completed. Thus,
2583 there is no sense wasting time checking if INSN is in
2584 the prologue/epilogue until after reload has completed. */
2585 if (reload_completed
2586 && prologue_epilogue_contains (insn))
efc9bd41
RK
2587 continue;
2588#endif
2589
ec907dd8 2590 /* If this insn has a noalias note, process it, Otherwise,
c22cacf3
MS
2591 scan for sets. A simple set will have no side effects
2592 which could change the base value of any other register. */
6e73e666 2593
ec907dd8 2594 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2595 && REG_NOTES (insn) != 0
2596 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2597 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2598 else
84832317 2599 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2600
2601 set = single_set (insn);
2602
2603 if (set != 0
f8cfc6aa 2604 && REG_P (SET_DEST (set))
fb6754f0 2605 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2606 {
fb6754f0 2607 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2608 rtx src = SET_SRC (set);
bb1acb3e 2609 rtx t;
713f41f9 2610
a31830a7
SB
2611 note = find_reg_equal_equiv_note (insn);
2612 if (note && REG_NOTE_KIND (note) == REG_EQUAL
6fb5fa3c 2613 && DF_REG_DEF_COUNT (regno) != 1)
a31830a7
SB
2614 note = NULL_RTX;
2615
2616 if (note != NULL_RTX
713f41f9 2617 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2618 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2619 && ! reg_overlap_mentioned_p (SET_DEST (set),
2620 XEXP (note, 0)))
713f41f9 2621 {
bb1acb3e
RH
2622 set_reg_known_value (regno, XEXP (note, 0));
2623 set_reg_known_equiv_p (regno,
2624 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9 2625 }
6fb5fa3c 2626 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9 2627 && GET_CODE (src) == PLUS
f8cfc6aa 2628 && REG_P (XEXP (src, 0))
bb1acb3e 2629 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
481683e1 2630 && CONST_INT_P (XEXP (src, 1)))
713f41f9 2631 {
bb1acb3e
RH
2632 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2633 set_reg_known_value (regno, t);
2634 set_reg_known_equiv_p (regno, 0);
713f41f9 2635 }
6fb5fa3c 2636 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9
BS
2637 && ! rtx_varies_p (src, 1))
2638 {
bb1acb3e
RH
2639 set_reg_known_value (regno, src);
2640 set_reg_known_equiv_p (regno, 0);
713f41f9 2641 }
6e73e666 2642 }
ec907dd8 2643 }
4b4bf941 2644 else if (NOTE_P (insn)
a38e7aa5 2645 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2646 copying_arguments = false;
6e73e666 2647 }
ec907dd8 2648
6e73e666 2649 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2650 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2651
c582d54a 2652 for (ui = 0; ui < maxreg; ui++)
6e73e666 2653 {
e51712db 2654 if (new_reg_base_value[ui]
08c79682 2655 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2656 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2657 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2658 {
08c79682 2659 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2660 changed = 1;
ec907dd8 2661 }
9ae8ffe7 2662 }
9ae8ffe7 2663 }
6e73e666 2664 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2665
2666 /* Fill in the remaining entries. */
bb1acb3e 2667 for (i = 0; i < (int)reg_known_value_size; i++)
9ae8ffe7 2668 if (reg_known_value[i] == 0)
bb1acb3e 2669 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
9ae8ffe7 2670
e05e2395
MM
2671 /* Clean up. */
2672 free (new_reg_base_value);
ec907dd8 2673 new_reg_base_value = 0;
e05e2395 2674 free (reg_seen);
9ae8ffe7 2675 reg_seen = 0;
0d446150 2676 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2677}
2678
2679void
4682ae04 2680end_alias_analysis (void)
9ae8ffe7 2681{
c582d54a 2682 old_reg_base_value = reg_base_value;
bb1acb3e 2683 ggc_free (reg_known_value);
9ae8ffe7 2684 reg_known_value = 0;
ac606739 2685 reg_known_value_size = 0;
bb1acb3e 2686 free (reg_known_equiv_p);
e05e2395 2687 reg_known_equiv_p = 0;
9ae8ffe7 2688}
e2500fed
GK
2689
2690#include "gt-alias.h"
This page took 2.367022 seconds and 5 git commands to generate.