]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
gfortran.h (struct gfc_symbol): Moving "interface" member to gfc_typespec (plus fixin...
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d
RS
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
ef330312 46#include "tree-pass.h"
ea900239 47#include "ipa-type-escape.h"
6fb5fa3c 48#include "df.h"
ea900239
DB
49
50/* The aliasing API provided here solves related but different problems:
51
c22cacf3 52 Say there exists (in c)
ea900239
DB
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 90 instances do not escape across the compilation boundary.
ea900239
DB
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99*/
3932261a
MM
100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
3932261a 105
01d28c3f 106 struct S { int i; double d; };
3932261a
MM
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
c22cacf3
MS
112 struct S
113 / \
3932261a 114 / \
c22cacf3
MS
115 |/_ _\|
116 int double
3932261a 117
ac3d9668
RK
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
3bdf5ad1
RK
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
95bd1dd7 124 past immediate descendants, however, since we propagate all
3bdf5ad1 125 grandchildren up one level.
3932261a
MM
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
b604074c 131struct alias_set_entry GTY(())
d4b60170 132{
3932261a 133 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 134 alias_set_type alias_set;
3932261a 135
4c067742
RG
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
139
3932261a 140 /* The children of the alias set. These are not just the immediate
95bd1dd7 141 children, but, in fact, all descendants. So, if we have:
3932261a 142
ca7fd9cd 143 struct T { struct S s; float f; }
3932261a
MM
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
b604074c 147 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c
GK
148};
149typedef struct alias_set_entry *alias_set_entry;
9ae8ffe7 150
ed7a4b4b 151static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 152static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 153static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
154static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156static rtx find_base_value (rtx);
4f588890 157static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04
AJ
158static int insert_subset_children (splay_tree_node, void*);
159static tree find_base_decl (tree);
4862826d 160static alias_set_entry get_alias_set_entry (alias_set_type);
4f588890
KG
161static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
162 bool (*) (const_rtx, bool));
163static int aliases_everything_p (const_rtx);
164static bool nonoverlapping_component_refs_p (const_tree, const_tree);
4682ae04
AJ
165static tree decl_for_component_ref (tree);
166static rtx adjust_offset_for_component_ref (tree, rtx);
4f588890 167static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 168
aa317c97 169static void memory_modified_1 (rtx, const_rtx, void *);
4862826d 170static void record_alias_subset (alias_set_type, alias_set_type);
9ae8ffe7
JL
171
172/* Set up all info needed to perform alias analysis on memory references. */
173
d4b60170 174/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
175#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
41472af8 177/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 183
ea64ef27 184/* Cap the number of passes we make over the insns propagating alias
ac3d9668 185 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 186#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 187
9ae8ffe7
JL
188/* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
ca7fd9cd 196 the stack, frame, and argument pointers.
b3b5ad95
JL
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
2a2c8203 206
08c79682 207static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 208static rtx *new_reg_base_value;
c582d54a
JH
209
210/* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
08c79682 213static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 214
bf1660a6
JL
215/* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
08c79682
KH
219#define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 222
c13e8210 223/* Vector indexed by N giving the initial (unchanging) value known for
bb1acb3e
RH
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
9ae8ffe7
JL
227
228/* Indicates number of valid entries in reg_known_value. */
bb1acb3e 229static GTY(()) unsigned int reg_known_value_size;
9ae8ffe7
JL
230
231/* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
bb1acb3e 243static bool *reg_known_equiv_p;
9ae8ffe7 244
2a2c8203
JC
245/* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 247static bool copying_arguments;
9ae8ffe7 248
1a5640b4
KH
249DEF_VEC_P(alias_set_entry);
250DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
3932261a 252/* The splay-tree used to store the various alias set entries. */
1a5640b4 253static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 254\f
3932261a
MM
255/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
256 such an entry, or NULL otherwise. */
257
9ddb66ca 258static inline alias_set_entry
4862826d 259get_alias_set_entry (alias_set_type alias_set)
3932261a 260{
1a5640b4 261 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
262}
263
ac3d9668
RK
264/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
265 the two MEMs cannot alias each other. */
3932261a 266
9ddb66ca 267static inline int
4f588890 268mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 269{
3932261a
MM
270/* Perform a basic sanity check. Namely, that there are no alias sets
271 if we're not using strict aliasing. This helps to catch bugs
272 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
273 where a MEM is allocated in some way other than by the use of
274 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
275 use alias sets to indicate that spilled registers cannot alias each
276 other, we might need to remove this check. */
298e6adc
NS
277 gcc_assert (flag_strict_aliasing
278 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 279
1da68f56
RK
280 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
281}
3932261a 282
1da68f56
RK
283/* Insert the NODE into the splay tree given by DATA. Used by
284 record_alias_subset via splay_tree_foreach. */
285
286static int
4682ae04 287insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
288{
289 splay_tree_insert ((splay_tree) data, node->key, node->value);
290
291 return 0;
292}
293
c58936b6
DB
294/* Return true if the first alias set is a subset of the second. */
295
296bool
4862826d 297alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
298{
299 alias_set_entry ase;
300
301 /* Everything is a subset of the "aliases everything" set. */
302 if (set2 == 0)
303 return true;
304
305 /* Otherwise, check if set1 is a subset of set2. */
306 ase = get_alias_set_entry (set2);
307 if (ase != 0
a7a512be
RG
308 && ((ase->has_zero_child && set1 == 0)
309 || splay_tree_lookup (ase->children,
310 (splay_tree_key) set1)))
c58936b6
DB
311 return true;
312 return false;
313}
314
1da68f56
RK
315/* Return 1 if the two specified alias sets may conflict. */
316
317int
4862826d 318alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
319{
320 alias_set_entry ase;
321
836f7794
EB
322 /* The easy case. */
323 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 324 return 1;
3932261a 325
3bdf5ad1 326 /* See if the first alias set is a subset of the second. */
1da68f56 327 ase = get_alias_set_entry (set1);
2bf105ab
RK
328 if (ase != 0
329 && (ase->has_zero_child
330 || splay_tree_lookup (ase->children,
1da68f56
RK
331 (splay_tree_key) set2)))
332 return 1;
3932261a
MM
333
334 /* Now do the same, but with the alias sets reversed. */
1da68f56 335 ase = get_alias_set_entry (set2);
2bf105ab
RK
336 if (ase != 0
337 && (ase->has_zero_child
338 || splay_tree_lookup (ase->children,
1da68f56
RK
339 (splay_tree_key) set1)))
340 return 1;
3932261a 341
1da68f56 342 /* The two alias sets are distinct and neither one is the
836f7794 343 child of the other. Therefore, they cannot conflict. */
1da68f56 344 return 0;
3932261a 345}
5399d643 346
836f7794 347/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
348
349int
4862826d 350alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
351{
352 if (set1 == 0 || set2 == 0 || set1 == set2)
353 return 1;
354
355 return 0;
356}
357
1da68f56
RK
358/* Return 1 if any MEM object of type T1 will always conflict (using the
359 dependency routines in this file) with any MEM object of type T2.
360 This is used when allocating temporary storage. If T1 and/or T2 are
361 NULL_TREE, it means we know nothing about the storage. */
362
363int
4682ae04 364objects_must_conflict_p (tree t1, tree t2)
1da68f56 365{
4862826d 366 alias_set_type set1, set2;
82d610ec 367
e8ea2809
RK
368 /* If neither has a type specified, we don't know if they'll conflict
369 because we may be using them to store objects of various types, for
370 example the argument and local variables areas of inlined functions. */
981a4c34 371 if (t1 == 0 && t2 == 0)
e8ea2809
RK
372 return 0;
373
1da68f56
RK
374 /* If they are the same type, they must conflict. */
375 if (t1 == t2
376 /* Likewise if both are volatile. */
377 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
378 return 1;
379
82d610ec
RK
380 set1 = t1 ? get_alias_set (t1) : 0;
381 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 382
836f7794
EB
383 /* We can't use alias_sets_conflict_p because we must make sure
384 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
385 t2 for which a pair of subobjects of these respective subtypes
386 overlaps on the stack. */
836f7794 387 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
388}
389\f
3bdf5ad1
RK
390/* T is an expression with pointer type. Find the DECL on which this
391 expression is based. (For example, in `a[i]' this would be `a'.)
392 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 393 NULL_TREE is returned. */
3bdf5ad1
RK
394
395static tree
4682ae04 396find_base_decl (tree t)
3bdf5ad1 397{
6615c446 398 tree d0, d1;
3bdf5ad1
RK
399
400 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
401 return 0;
402
0b494699
ILT
403 /* If this is a declaration, return it. If T is based on a restrict
404 qualified decl, return that decl. */
6615c446 405 if (DECL_P (t))
0b494699
ILT
406 {
407 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
408 t = DECL_GET_RESTRICT_BASE (t);
409 return t;
410 }
3bdf5ad1
RK
411
412 /* Handle general expressions. It would be nice to deal with
413 COMPONENT_REFs here. If we could tell that `a' and `b' were the
414 same, then `a->f' and `b->f' are also the same. */
415 switch (TREE_CODE_CLASS (TREE_CODE (t)))
416 {
6615c446 417 case tcc_unary:
3bdf5ad1
RK
418 return find_base_decl (TREE_OPERAND (t, 0));
419
6615c446 420 case tcc_binary:
3bdf5ad1
RK
421 /* Return 0 if found in neither or both are the same. */
422 d0 = find_base_decl (TREE_OPERAND (t, 0));
423 d1 = find_base_decl (TREE_OPERAND (t, 1));
424 if (d0 == d1)
425 return d0;
426 else if (d0 == 0)
427 return d1;
428 else if (d1 == 0)
429 return d0;
430 else
431 return 0;
432
3bdf5ad1
RK
433 default:
434 return 0;
435 }
436}
437
2039d7aa
RH
438/* Return true if all nested component references handled by
439 get_inner_reference in T are such that we should use the alias set
440 provided by the object at the heart of T.
441
442 This is true for non-addressable components (which don't have their
443 own alias set), as well as components of objects in alias set zero.
444 This later point is a special case wherein we wish to override the
445 alias set used by the component, but we don't have per-FIELD_DECL
446 assignable alias sets. */
447
448bool
22ea9ec0 449component_uses_parent_alias_set (const_tree t)
6e24b709 450{
afe84921
RH
451 while (1)
452 {
2039d7aa 453 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 454 if (!handled_component_p (t))
2039d7aa 455 return false;
afe84921
RH
456
457 switch (TREE_CODE (t))
458 {
459 case COMPONENT_REF:
460 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 461 return true;
afe84921
RH
462 break;
463
464 case ARRAY_REF:
465 case ARRAY_RANGE_REF:
466 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 467 return true;
afe84921
RH
468 break;
469
470 case REALPART_EXPR:
471 case IMAGPART_EXPR:
472 break;
473
474 default:
475 /* Bitfields and casts are never addressable. */
2039d7aa 476 return true;
afe84921
RH
477 }
478
479 t = TREE_OPERAND (t, 0);
2039d7aa
RH
480 if (get_alias_set (TREE_TYPE (t)) == 0)
481 return true;
afe84921 482 }
6e24b709
RK
483}
484
3bdf5ad1
RK
485/* Return the alias set for T, which may be either a type or an
486 expression. Call language-specific routine for help, if needed. */
487
4862826d 488alias_set_type
4682ae04 489get_alias_set (tree t)
3bdf5ad1 490{
4862826d 491 alias_set_type set;
3bdf5ad1
RK
492
493 /* If we're not doing any alias analysis, just assume everything
494 aliases everything else. Also return 0 if this or its type is
495 an error. */
496 if (! flag_strict_aliasing || t == error_mark_node
497 || (! TYPE_P (t)
498 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
499 return 0;
500
501 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
502 language-specific routine may make mutually-recursive calls to each other
503 to figure out what to do. At each juncture, we see if this is a tree
504 that the language may need to handle specially. First handle things that
738cc472 505 aren't types. */
f824e5c3 506 if (! TYPE_P (t))
3bdf5ad1 507 {
738cc472 508 tree inner = t;
738cc472 509
8ac61af7
RK
510 /* Remove any nops, then give the language a chance to do
511 something with this tree before we look at it. */
512 STRIP_NOPS (t);
ae2bcd98 513 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
514 if (set != -1)
515 return set;
516
738cc472 517 /* First see if the actual object referenced is an INDIRECT_REF from a
6fce44af
RK
518 restrict-qualified pointer or a "void *". */
519 while (handled_component_p (inner))
738cc472 520 {
6fce44af 521 inner = TREE_OPERAND (inner, 0);
8ac61af7 522 STRIP_NOPS (inner);
738cc472
RK
523 }
524
525 /* Check for accesses through restrict-qualified pointers. */
1b096a0a 526 if (INDIRECT_REF_P (inner))
738cc472 527 {
90310d36
RG
528 tree decl;
529
530 if (TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME)
531 decl = SSA_NAME_VAR (TREE_OPERAND (inner, 0));
532 else
533 decl = find_base_decl (TREE_OPERAND (inner, 0));
738cc472
RK
534
535 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
536 {
e5837c07 537 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
538 if (DECL_POINTER_ALIAS_SET (decl) == -2)
539 {
4f430fb9
MM
540 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
541
738cc472
RK
542 /* No two restricted pointers can point at the same thing.
543 However, a restricted pointer can point at the same thing
544 as an unrestricted pointer, if that unrestricted pointer
545 is based on the restricted pointer. So, we make the
546 alias set for the restricted pointer a subset of the
547 alias set for the type pointed to by the type of the
548 decl. */
4862826d 549 alias_set_type pointed_to_alias_set
4f430fb9 550 = get_alias_set (pointed_to_type);
738cc472
RK
551
552 if (pointed_to_alias_set == 0)
553 /* It's not legal to make a subset of alias set zero. */
e7844ffb 554 DECL_POINTER_ALIAS_SET (decl) = 0;
4f430fb9
MM
555 else if (AGGREGATE_TYPE_P (pointed_to_type))
556 /* For an aggregate, we must treat the restricted
557 pointer the same as an ordinary pointer. If we
558 were to make the type pointed to by the
559 restricted pointer a subset of the pointed-to
560 type, then we would believe that other subsets
561 of the pointed-to type (such as fields of that
562 type) do not conflict with the type pointed to
471854f8 563 by the restricted pointer. */
4f430fb9
MM
564 DECL_POINTER_ALIAS_SET (decl)
565 = pointed_to_alias_set;
738cc472
RK
566 else
567 {
568 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
569 record_alias_subset (pointed_to_alias_set,
570 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
571 }
572 }
573
574 /* We use the alias set indicated in the declaration. */
575 return DECL_POINTER_ALIAS_SET (decl);
576 }
577
578 /* If we have an INDIRECT_REF via a void pointer, we don't
22421b79
RK
579 know anything about what that might alias. Likewise if the
580 pointer is marked that way. */
581 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
582 || (TYPE_REF_CAN_ALIAS_ALL
583 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
738cc472
RK
584 return 0;
585 }
586
3d9b47dc
AN
587 /* For non-addressable fields we return the alias set of the
588 outermost object that could have its address taken. If this
589 is an SFT use the precomputed value. */
590 if (TREE_CODE (t) == STRUCT_FIELD_TAG
591 && SFT_NONADDRESSABLE_P (t))
592 return SFT_ALIAS_SET (t);
593
738cc472 594 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 595 to, processing conversions as above. */
2039d7aa 596 while (component_uses_parent_alias_set (t))
f47e9b4e 597 {
6fce44af 598 t = TREE_OPERAND (t, 0);
8ac61af7
RK
599 STRIP_NOPS (t);
600 }
f824e5c3 601
738cc472
RK
602 /* If we've already determined the alias set for a decl, just return
603 it. This is necessary for C++ anonymous unions, whose component
604 variables don't look like union members (boo!). */
5755cd38 605 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 606 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
607 return MEM_ALIAS_SET (DECL_RTL (t));
608
f824e5c3
RK
609 /* Now all we care about is the type. */
610 t = TREE_TYPE (t);
3bdf5ad1
RK
611 }
612
3bdf5ad1
RK
613 /* Variant qualifiers don't affect the alias set, so get the main
614 variant. If this is a type with a known alias set, return it. */
615 t = TYPE_MAIN_VARIANT (t);
738cc472 616 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
617 return TYPE_ALIAS_SET (t);
618
36784d0e
RG
619 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
620 if (!COMPLETE_TYPE_P (t))
621 {
622 /* For arrays with unknown size the conservative answer is the
623 alias set of the element type. */
624 if (TREE_CODE (t) == ARRAY_TYPE)
625 return get_alias_set (TREE_TYPE (t));
626
627 /* But return zero as a conservative answer for incomplete types. */
628 return 0;
629 }
630
3bdf5ad1 631 /* See if the language has special handling for this type. */
ae2bcd98 632 set = lang_hooks.get_alias_set (t);
8ac61af7 633 if (set != -1)
738cc472 634 return set;
2bf105ab 635
3bdf5ad1
RK
636 /* There are no objects of FUNCTION_TYPE, so there's no point in
637 using up an alias set for them. (There are, of course, pointers
638 and references to functions, but that's different.) */
e11e491d
RG
639 else if (TREE_CODE (t) == FUNCTION_TYPE
640 || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 641 set = 0;
74d86f4f
RH
642
643 /* Unless the language specifies otherwise, let vector types alias
644 their components. This avoids some nasty type punning issues in
645 normal usage. And indeed lets vectors be treated more like an
646 array slice. */
647 else if (TREE_CODE (t) == VECTOR_TYPE)
648 set = get_alias_set (TREE_TYPE (t));
649
3bdf5ad1
RK
650 else
651 /* Otherwise make a new alias set for this type. */
652 set = new_alias_set ();
653
654 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
655
656 /* If this is an aggregate type, we must record any component aliasing
657 information. */
1d79fd2c 658 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
659 record_component_aliases (t);
660
3bdf5ad1
RK
661 return set;
662}
663
664/* Return a brand-new alias set. */
665
4862826d 666alias_set_type
4682ae04 667new_alias_set (void)
3bdf5ad1 668{
3bdf5ad1 669 if (flag_strict_aliasing)
9ddb66ca 670 {
1a5640b4
KH
671 if (alias_sets == 0)
672 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
673 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
674 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 675 }
3bdf5ad1
RK
676 else
677 return 0;
678}
3932261a 679
01d28c3f
JM
680/* Indicate that things in SUBSET can alias things in SUPERSET, but that
681 not everything that aliases SUPERSET also aliases SUBSET. For example,
682 in C, a store to an `int' can alias a load of a structure containing an
683 `int', and vice versa. But it can't alias a load of a 'double' member
684 of the same structure. Here, the structure would be the SUPERSET and
685 `int' the SUBSET. This relationship is also described in the comment at
686 the beginning of this file.
687
688 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
689
690 It is illegal for SUPERSET to be zero; everything is implicitly a
691 subset of alias set zero. */
692
04e2b4d3 693static void
4862826d 694record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
695{
696 alias_set_entry superset_entry;
697 alias_set_entry subset_entry;
698
f47e9b4e
RK
699 /* It is possible in complex type situations for both sets to be the same,
700 in which case we can ignore this operation. */
701 if (superset == subset)
702 return;
703
298e6adc 704 gcc_assert (superset);
3932261a
MM
705
706 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 707 if (superset_entry == 0)
3932261a
MM
708 {
709 /* Create an entry for the SUPERSET, so that we have a place to
710 attach the SUBSET. */
b604074c 711 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
3932261a 712 superset_entry->alias_set = superset;
ca7fd9cd 713 superset_entry->children
b604074c 714 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 715 superset_entry->has_zero_child = 0;
1a5640b4 716 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
717 }
718
2bf105ab
RK
719 if (subset == 0)
720 superset_entry->has_zero_child = 1;
721 else
722 {
723 subset_entry = get_alias_set_entry (subset);
724 /* If there is an entry for the subset, enter all of its children
725 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 726 if (subset_entry)
2bf105ab
RK
727 {
728 if (subset_entry->has_zero_child)
729 superset_entry->has_zero_child = 1;
d4b60170 730
2bf105ab
RK
731 splay_tree_foreach (subset_entry->children, insert_subset_children,
732 superset_entry->children);
733 }
3932261a 734
2bf105ab 735 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 736 splay_tree_insert (superset_entry->children,
2bf105ab
RK
737 (splay_tree_key) subset, 0);
738 }
3932261a
MM
739}
740
a0c33338
RK
741/* Record that component types of TYPE, if any, are part of that type for
742 aliasing purposes. For record types, we only record component types
743 for fields that are marked addressable. For array types, we always
744 record the component types, so the front end should not call this
745 function if the individual component aren't addressable. */
746
747void
4682ae04 748record_component_aliases (tree type)
a0c33338 749{
4862826d 750 alias_set_type superset = get_alias_set (type);
a0c33338
RK
751 tree field;
752
753 if (superset == 0)
754 return;
755
756 switch (TREE_CODE (type))
757 {
758 case ARRAY_TYPE:
2bf105ab
RK
759 if (! TYPE_NONALIASED_COMPONENT (type))
760 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
761 break;
762
763 case RECORD_TYPE:
764 case UNION_TYPE:
765 case QUAL_UNION_TYPE:
6614fd40 766 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 767 if (TYPE_BINFO (type))
ca7fd9cd
KH
768 {
769 int i;
fa743e8c 770 tree binfo, base_binfo;
c22cacf3 771
fa743e8c
NS
772 for (binfo = TYPE_BINFO (type), i = 0;
773 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
774 record_alias_subset (superset,
775 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 776 }
a0c33338 777 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 778 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 779 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
780 break;
781
1d79fd2c
JW
782 case COMPLEX_TYPE:
783 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
784 break;
785
a0c33338
RK
786 default:
787 break;
788 }
789}
790
3bdf5ad1
RK
791/* Allocate an alias set for use in storing and reading from the varargs
792 spill area. */
793
4862826d 794static GTY(()) alias_set_type varargs_set = -1;
f103e34d 795
4862826d 796alias_set_type
4682ae04 797get_varargs_alias_set (void)
3bdf5ad1 798{
cd3ce9b4
JM
799#if 1
800 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
801 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
802 consistently use the varargs alias set for loads from the varargs
803 area. So don't use it anywhere. */
804 return 0;
805#else
f103e34d
GK
806 if (varargs_set == -1)
807 varargs_set = new_alias_set ();
3bdf5ad1 808
f103e34d 809 return varargs_set;
cd3ce9b4 810#endif
3bdf5ad1
RK
811}
812
813/* Likewise, but used for the fixed portions of the frame, e.g., register
814 save areas. */
815
4862826d 816static GTY(()) alias_set_type frame_set = -1;
f103e34d 817
4862826d 818alias_set_type
4682ae04 819get_frame_alias_set (void)
3bdf5ad1 820{
f103e34d
GK
821 if (frame_set == -1)
822 frame_set = new_alias_set ();
3bdf5ad1 823
f103e34d 824 return frame_set;
3bdf5ad1
RK
825}
826
2a2c8203
JC
827/* Inside SRC, the source of a SET, find a base address. */
828
9ae8ffe7 829static rtx
4682ae04 830find_base_value (rtx src)
9ae8ffe7 831{
713f41f9 832 unsigned int regno;
0aacc8ed 833
9ae8ffe7
JL
834 switch (GET_CODE (src))
835 {
836 case SYMBOL_REF:
837 case LABEL_REF:
838 return src;
839
840 case REG:
fb6754f0 841 regno = REGNO (src);
d4b60170 842 /* At the start of a function, argument registers have known base
2a2c8203
JC
843 values which may be lost later. Returning an ADDRESS
844 expression here allows optimization based on argument values
845 even when the argument registers are used for other purposes. */
713f41f9
BS
846 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
847 return new_reg_base_value[regno];
73774bc7 848
eaf407a5 849 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
850 for non-fixed hard regs since it can result in a circular
851 dependency chain for registers which have values at function entry.
eaf407a5
JL
852
853 The test above is not sufficient because the scheduler may move
854 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 855 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 856 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
857 {
858 /* If we're inside init_alias_analysis, use new_reg_base_value
859 to reduce the number of relaxation iterations. */
1afdf91c 860 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 861 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
862 return new_reg_base_value[regno];
863
08c79682
KH
864 if (VEC_index (rtx, reg_base_value, regno))
865 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 866 }
73774bc7 867
e3f049a8 868 return 0;
9ae8ffe7
JL
869
870 case MEM:
871 /* Check for an argument passed in memory. Only record in the
872 copying-arguments block; it is too hard to track changes
873 otherwise. */
874 if (copying_arguments
875 && (XEXP (src, 0) == arg_pointer_rtx
876 || (GET_CODE (XEXP (src, 0)) == PLUS
877 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 878 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
879 return 0;
880
881 case CONST:
882 src = XEXP (src, 0);
883 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
884 break;
d4b60170 885
ec5c56db 886 /* ... fall through ... */
2a2c8203 887
9ae8ffe7
JL
888 case PLUS:
889 case MINUS:
2a2c8203 890 {
ec907dd8
JL
891 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
892
0134bf2d
DE
893 /* If either operand is a REG that is a known pointer, then it
894 is the base. */
895 if (REG_P (src_0) && REG_POINTER (src_0))
896 return find_base_value (src_0);
897 if (REG_P (src_1) && REG_POINTER (src_1))
898 return find_base_value (src_1);
899
ec907dd8
JL
900 /* If either operand is a REG, then see if we already have
901 a known value for it. */
0134bf2d 902 if (REG_P (src_0))
ec907dd8
JL
903 {
904 temp = find_base_value (src_0);
d4b60170 905 if (temp != 0)
ec907dd8
JL
906 src_0 = temp;
907 }
908
0134bf2d 909 if (REG_P (src_1))
ec907dd8
JL
910 {
911 temp = find_base_value (src_1);
d4b60170 912 if (temp!= 0)
ec907dd8
JL
913 src_1 = temp;
914 }
2a2c8203 915
0134bf2d
DE
916 /* If either base is named object or a special address
917 (like an argument or stack reference), then use it for the
918 base term. */
919 if (src_0 != 0
920 && (GET_CODE (src_0) == SYMBOL_REF
921 || GET_CODE (src_0) == LABEL_REF
922 || (GET_CODE (src_0) == ADDRESS
923 && GET_MODE (src_0) != VOIDmode)))
924 return src_0;
925
926 if (src_1 != 0
927 && (GET_CODE (src_1) == SYMBOL_REF
928 || GET_CODE (src_1) == LABEL_REF
929 || (GET_CODE (src_1) == ADDRESS
930 && GET_MODE (src_1) != VOIDmode)))
931 return src_1;
932
d4b60170 933 /* Guess which operand is the base address:
ec907dd8
JL
934 If either operand is a symbol, then it is the base. If
935 either operand is a CONST_INT, then the other is the base. */
d4b60170 936 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 937 return find_base_value (src_0);
d4b60170 938 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
939 return find_base_value (src_1);
940
9ae8ffe7 941 return 0;
2a2c8203
JC
942 }
943
944 case LO_SUM:
945 /* The standard form is (lo_sum reg sym) so look only at the
946 second operand. */
947 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
948
949 case AND:
950 /* If the second operand is constant set the base
ec5c56db 951 address to the first operand. */
2a2c8203
JC
952 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
953 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
954 return 0;
955
61f0131c
R
956 case TRUNCATE:
957 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
958 break;
959 /* Fall through. */
9ae8ffe7 960 case HIGH:
d288e53d
DE
961 case PRE_INC:
962 case PRE_DEC:
963 case POST_INC:
964 case POST_DEC:
965 case PRE_MODIFY:
966 case POST_MODIFY:
2a2c8203 967 return find_base_value (XEXP (src, 0));
1d300e19 968
0aacc8ed
RK
969 case ZERO_EXTEND:
970 case SIGN_EXTEND: /* used for NT/Alpha pointers */
971 {
972 rtx temp = find_base_value (XEXP (src, 0));
973
5ae6cd0d 974 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 975 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
976
977 return temp;
978 }
979
1d300e19
KG
980 default:
981 break;
9ae8ffe7
JL
982 }
983
984 return 0;
985}
986
987/* Called from init_alias_analysis indirectly through note_stores. */
988
d4b60170 989/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
990 register N has been set in this function. */
991static char *reg_seen;
992
13309a5f
JC
993/* Addresses which are known not to alias anything else are identified
994 by a unique integer. */
ec907dd8
JL
995static int unique_id;
996
2a2c8203 997static void
7bc980e1 998record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 999{
b3694847 1000 unsigned regno;
9ae8ffe7 1001 rtx src;
c28b4e40 1002 int n;
9ae8ffe7 1003
f8cfc6aa 1004 if (!REG_P (dest))
9ae8ffe7
JL
1005 return;
1006
fb6754f0 1007 regno = REGNO (dest);
9ae8ffe7 1008
08c79682 1009 gcc_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1010
c28b4e40
JW
1011 /* If this spans multiple hard registers, then we must indicate that every
1012 register has an unusable value. */
1013 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1014 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1015 else
1016 n = 1;
1017 if (n != 1)
1018 {
1019 while (--n >= 0)
1020 {
1021 reg_seen[regno + n] = 1;
1022 new_reg_base_value[regno + n] = 0;
1023 }
1024 return;
1025 }
1026
9ae8ffe7
JL
1027 if (set)
1028 {
1029 /* A CLOBBER wipes out any old value but does not prevent a previously
1030 unset register from acquiring a base address (i.e. reg_seen is not
1031 set). */
1032 if (GET_CODE (set) == CLOBBER)
1033 {
ec907dd8 1034 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1035 return;
1036 }
1037 src = SET_SRC (set);
1038 }
1039 else
1040 {
9ae8ffe7
JL
1041 if (reg_seen[regno])
1042 {
ec907dd8 1043 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1044 return;
1045 }
1046 reg_seen[regno] = 1;
38a448ca
RH
1047 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1048 GEN_INT (unique_id++));
9ae8ffe7
JL
1049 return;
1050 }
1051
5da6f168
RS
1052 /* If this is not the first set of REGNO, see whether the new value
1053 is related to the old one. There are two cases of interest:
1054
1055 (1) The register might be assigned an entirely new value
1056 that has the same base term as the original set.
1057
1058 (2) The set might be a simple self-modification that
1059 cannot change REGNO's base value.
1060
1061 If neither case holds, reject the original base value as invalid.
1062 Note that the following situation is not detected:
1063
c22cacf3 1064 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1065
9ae8ffe7
JL
1066 ANSI C does not allow computing the difference of addresses
1067 of distinct top level objects. */
5da6f168
RS
1068 if (new_reg_base_value[regno] != 0
1069 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1070 switch (GET_CODE (src))
1071 {
2a2c8203 1072 case LO_SUM:
9ae8ffe7
JL
1073 case MINUS:
1074 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1075 new_reg_base_value[regno] = 0;
9ae8ffe7 1076 break;
61f0131c
R
1077 case PLUS:
1078 /* If the value we add in the PLUS is also a valid base value,
1079 this might be the actual base value, and the original value
1080 an index. */
1081 {
1082 rtx other = NULL_RTX;
1083
1084 if (XEXP (src, 0) == dest)
1085 other = XEXP (src, 1);
1086 else if (XEXP (src, 1) == dest)
1087 other = XEXP (src, 0);
1088
1089 if (! other || find_base_value (other))
1090 new_reg_base_value[regno] = 0;
1091 break;
1092 }
9ae8ffe7
JL
1093 case AND:
1094 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1095 new_reg_base_value[regno] = 0;
9ae8ffe7 1096 break;
9ae8ffe7 1097 default:
ec907dd8 1098 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1099 break;
1100 }
1101 /* If this is the first set of a register, record the value. */
1102 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1103 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1104 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1105
1106 reg_seen[regno] = 1;
1107}
1108
bb1acb3e
RH
1109/* If a value is known for REGNO, return it. */
1110
c22cacf3 1111rtx
bb1acb3e
RH
1112get_reg_known_value (unsigned int regno)
1113{
1114 if (regno >= FIRST_PSEUDO_REGISTER)
1115 {
1116 regno -= FIRST_PSEUDO_REGISTER;
1117 if (regno < reg_known_value_size)
1118 return reg_known_value[regno];
1119 }
1120 return NULL;
43fe47ca
JW
1121}
1122
bb1acb3e
RH
1123/* Set it. */
1124
1125static void
1126set_reg_known_value (unsigned int regno, rtx val)
1127{
1128 if (regno >= FIRST_PSEUDO_REGISTER)
1129 {
1130 regno -= FIRST_PSEUDO_REGISTER;
1131 if (regno < reg_known_value_size)
1132 reg_known_value[regno] = val;
1133 }
1134}
1135
1136/* Similarly for reg_known_equiv_p. */
1137
1138bool
1139get_reg_known_equiv_p (unsigned int regno)
1140{
1141 if (regno >= FIRST_PSEUDO_REGISTER)
1142 {
1143 regno -= FIRST_PSEUDO_REGISTER;
1144 if (regno < reg_known_value_size)
1145 return reg_known_equiv_p[regno];
1146 }
1147 return false;
1148}
1149
1150static void
1151set_reg_known_equiv_p (unsigned int regno, bool val)
1152{
1153 if (regno >= FIRST_PSEUDO_REGISTER)
1154 {
1155 regno -= FIRST_PSEUDO_REGISTER;
1156 if (regno < reg_known_value_size)
1157 reg_known_equiv_p[regno] = val;
1158 }
1159}
1160
1161
db048faf
MM
1162/* Returns a canonical version of X, from the point of view alias
1163 analysis. (For example, if X is a MEM whose address is a register,
1164 and the register has a known value (say a SYMBOL_REF), then a MEM
1165 whose address is the SYMBOL_REF is returned.) */
1166
1167rtx
4682ae04 1168canon_rtx (rtx x)
9ae8ffe7
JL
1169{
1170 /* Recursively look for equivalences. */
f8cfc6aa 1171 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1172 {
1173 rtx t = get_reg_known_value (REGNO (x));
1174 if (t == x)
1175 return x;
1176 if (t)
1177 return canon_rtx (t);
1178 }
1179
1180 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1181 {
1182 rtx x0 = canon_rtx (XEXP (x, 0));
1183 rtx x1 = canon_rtx (XEXP (x, 1));
1184
1185 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1186 {
9ae8ffe7 1187 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1188 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1189 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1190 return plus_constant (x0, INTVAL (x1));
38a448ca 1191 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1192 }
1193 }
d4b60170 1194
9ae8ffe7
JL
1195 /* This gives us much better alias analysis when called from
1196 the loop optimizer. Note we want to leave the original
1197 MEM alone, but need to return the canonicalized MEM with
1198 all the flags with their original values. */
3c0cb5de 1199 else if (MEM_P (x))
f1ec5147 1200 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1201
9ae8ffe7
JL
1202 return x;
1203}
1204
1205/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1206 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1207
1208 We use the data in reg_known_value above to see if two registers with
1209 different numbers are, in fact, equivalent. */
1210
1211static int
ed7a4b4b 1212rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1213{
b3694847
SS
1214 int i;
1215 int j;
1216 enum rtx_code code;
1217 const char *fmt;
9ae8ffe7
JL
1218
1219 if (x == 0 && y == 0)
1220 return 1;
1221 if (x == 0 || y == 0)
1222 return 0;
d4b60170 1223
9ae8ffe7
JL
1224 if (x == y)
1225 return 1;
1226
1227 code = GET_CODE (x);
1228 /* Rtx's of different codes cannot be equal. */
1229 if (code != GET_CODE (y))
1230 return 0;
1231
1232 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1233 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1234
1235 if (GET_MODE (x) != GET_MODE (y))
1236 return 0;
1237
db048faf
MM
1238 /* Some RTL can be compared without a recursive examination. */
1239 switch (code)
1240 {
1241 case REG:
1242 return REGNO (x) == REGNO (y);
1243
1244 case LABEL_REF:
1245 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1246
db048faf
MM
1247 case SYMBOL_REF:
1248 return XSTR (x, 0) == XSTR (y, 0);
1249
40e02b4a 1250 case VALUE:
db048faf
MM
1251 case CONST_INT:
1252 case CONST_DOUBLE:
091a3ac7 1253 case CONST_FIXED:
db048faf
MM
1254 /* There's no need to compare the contents of CONST_DOUBLEs or
1255 CONST_INTs because pointer equality is a good enough
1256 comparison for these nodes. */
1257 return 0;
1258
db048faf
MM
1259 default:
1260 break;
1261 }
9ae8ffe7 1262
45183e03
JH
1263 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1264 if (code == PLUS)
9ae8ffe7
JL
1265 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1266 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1267 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1268 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1269 /* For commutative operations, the RTX match if the operand match in any
1270 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1271 if (COMMUTATIVE_P (x))
45183e03
JH
1272 {
1273 rtx xop0 = canon_rtx (XEXP (x, 0));
1274 rtx yop0 = canon_rtx (XEXP (y, 0));
1275 rtx yop1 = canon_rtx (XEXP (y, 1));
1276
1277 return ((rtx_equal_for_memref_p (xop0, yop0)
1278 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1279 || (rtx_equal_for_memref_p (xop0, yop1)
1280 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1281 }
ec8e098d 1282 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1283 {
1284 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1285 canon_rtx (XEXP (y, 0)))
45183e03
JH
1286 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1287 canon_rtx (XEXP (y, 1))));
1288 }
ec8e098d 1289 else if (UNARY_P (x))
45183e03 1290 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1291 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1292
1293 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1294 fail to match, return 0 for the whole things.
1295
1296 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1297
1298 fmt = GET_RTX_FORMAT (code);
1299 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1300 {
1301 switch (fmt[i])
1302 {
9ae8ffe7
JL
1303 case 'i':
1304 if (XINT (x, i) != XINT (y, i))
1305 return 0;
1306 break;
1307
9ae8ffe7
JL
1308 case 'E':
1309 /* Two vectors must have the same length. */
1310 if (XVECLEN (x, i) != XVECLEN (y, i))
1311 return 0;
1312
1313 /* And the corresponding elements must match. */
1314 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1315 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1316 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1317 return 0;
1318 break;
1319
1320 case 'e':
45183e03
JH
1321 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1322 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1323 return 0;
1324 break;
1325
3237ac18
AH
1326 /* This can happen for asm operands. */
1327 case 's':
1328 if (strcmp (XSTR (x, i), XSTR (y, i)))
1329 return 0;
1330 break;
1331
aee21ba9
JL
1332 /* This can happen for an asm which clobbers memory. */
1333 case '0':
1334 break;
1335
9ae8ffe7
JL
1336 /* It is believed that rtx's at this level will never
1337 contain anything but integers and other rtx's,
1338 except for within LABEL_REFs and SYMBOL_REFs. */
1339 default:
298e6adc 1340 gcc_unreachable ();
9ae8ffe7
JL
1341 }
1342 }
1343 return 1;
1344}
1345
94f24ddc 1346rtx
4682ae04 1347find_base_term (rtx x)
9ae8ffe7 1348{
eab5c70a
BS
1349 cselib_val *val;
1350 struct elt_loc_list *l;
1351
b949ea8b
JW
1352#if defined (FIND_BASE_TERM)
1353 /* Try machine-dependent ways to find the base term. */
1354 x = FIND_BASE_TERM (x);
1355#endif
1356
9ae8ffe7
JL
1357 switch (GET_CODE (x))
1358 {
1359 case REG:
1360 return REG_BASE_VALUE (x);
1361
d288e53d
DE
1362 case TRUNCATE:
1363 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1364 return 0;
d288e53d 1365 /* Fall through. */
9ae8ffe7 1366 case HIGH:
6d849a2a
JL
1367 case PRE_INC:
1368 case PRE_DEC:
1369 case POST_INC:
1370 case POST_DEC:
d288e53d
DE
1371 case PRE_MODIFY:
1372 case POST_MODIFY:
6d849a2a
JL
1373 return find_base_term (XEXP (x, 0));
1374
1abade85
RK
1375 case ZERO_EXTEND:
1376 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1377 {
1378 rtx temp = find_base_term (XEXP (x, 0));
1379
5ae6cd0d 1380 if (temp != 0 && CONSTANT_P (temp))
1abade85 1381 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1382
1383 return temp;
1384 }
1385
eab5c70a
BS
1386 case VALUE:
1387 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1388 if (!val)
1389 return 0;
eab5c70a
BS
1390 for (l = val->locs; l; l = l->next)
1391 if ((x = find_base_term (l->loc)) != 0)
1392 return x;
1393 return 0;
1394
9ae8ffe7
JL
1395 case CONST:
1396 x = XEXP (x, 0);
1397 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1398 return 0;
938d968e 1399 /* Fall through. */
9ae8ffe7
JL
1400 case LO_SUM:
1401 case PLUS:
1402 case MINUS:
1403 {
3c567fae
JL
1404 rtx tmp1 = XEXP (x, 0);
1405 rtx tmp2 = XEXP (x, 1);
1406
f5143c46 1407 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1408 the two operands represents the real base address. Otherwise this
1409 routine may return the index register instead of the base register.
1410
1411 That may cause us to believe no aliasing was possible, when in
1412 fact aliasing is possible.
1413
1414 We use a few simple tests to guess the base register. Additional
1415 tests can certainly be added. For example, if one of the operands
1416 is a shift or multiply, then it must be the index register and the
1417 other operand is the base register. */
ca7fd9cd 1418
b949ea8b
JW
1419 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1420 return find_base_term (tmp2);
1421
3c567fae
JL
1422 /* If either operand is known to be a pointer, then use it
1423 to determine the base term. */
3502dc9c 1424 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1425 return find_base_term (tmp1);
1426
3502dc9c 1427 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1428 return find_base_term (tmp2);
1429
1430 /* Neither operand was known to be a pointer. Go ahead and find the
1431 base term for both operands. */
1432 tmp1 = find_base_term (tmp1);
1433 tmp2 = find_base_term (tmp2);
1434
1435 /* If either base term is named object or a special address
1436 (like an argument or stack reference), then use it for the
1437 base term. */
d4b60170 1438 if (tmp1 != 0
3c567fae
JL
1439 && (GET_CODE (tmp1) == SYMBOL_REF
1440 || GET_CODE (tmp1) == LABEL_REF
1441 || (GET_CODE (tmp1) == ADDRESS
1442 && GET_MODE (tmp1) != VOIDmode)))
1443 return tmp1;
1444
d4b60170 1445 if (tmp2 != 0
3c567fae
JL
1446 && (GET_CODE (tmp2) == SYMBOL_REF
1447 || GET_CODE (tmp2) == LABEL_REF
1448 || (GET_CODE (tmp2) == ADDRESS
1449 && GET_MODE (tmp2) != VOIDmode)))
1450 return tmp2;
1451
1452 /* We could not determine which of the two operands was the
1453 base register and which was the index. So we can determine
1454 nothing from the base alias check. */
1455 return 0;
9ae8ffe7
JL
1456 }
1457
1458 case AND:
d288e53d
DE
1459 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1460 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1461 return 0;
1462
1463 case SYMBOL_REF:
1464 case LABEL_REF:
1465 return x;
1466
1467 default:
1468 return 0;
1469 }
1470}
1471
1472/* Return 0 if the addresses X and Y are known to point to different
1473 objects, 1 if they might be pointers to the same object. */
1474
1475static int
4682ae04
AJ
1476base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1477 enum machine_mode y_mode)
9ae8ffe7
JL
1478{
1479 rtx x_base = find_base_term (x);
1480 rtx y_base = find_base_term (y);
1481
1c72c7f6
JC
1482 /* If the address itself has no known base see if a known equivalent
1483 value has one. If either address still has no known base, nothing
1484 is known about aliasing. */
1485 if (x_base == 0)
1486 {
1487 rtx x_c;
d4b60170 1488
1c72c7f6
JC
1489 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1490 return 1;
d4b60170 1491
1c72c7f6
JC
1492 x_base = find_base_term (x_c);
1493 if (x_base == 0)
1494 return 1;
1495 }
9ae8ffe7 1496
1c72c7f6
JC
1497 if (y_base == 0)
1498 {
1499 rtx y_c;
1500 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1501 return 1;
d4b60170 1502
1c72c7f6
JC
1503 y_base = find_base_term (y_c);
1504 if (y_base == 0)
1505 return 1;
1506 }
1507
1508 /* If the base addresses are equal nothing is known about aliasing. */
1509 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1510 return 1;
1511
ca7fd9cd 1512 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1513 If they are both symbols and they are not accessed via AND, there is
1514 no conflict. We can bring knowledge of object alignment into play
1515 here. For example, on alpha, "char a, b;" can alias one another,
1516 though "char a; long b;" cannot. */
9ae8ffe7 1517 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1518 {
56ee9281
RH
1519 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1520 return 1;
1521 if (GET_CODE (x) == AND
1522 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1523 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1524 return 1;
1525 if (GET_CODE (y) == AND
1526 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1527 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1528 return 1;
b2972551
JL
1529 /* Differing symbols never alias. */
1530 return 0;
c02f035f 1531 }
9ae8ffe7
JL
1532
1533 /* If one address is a stack reference there can be no alias:
1534 stack references using different base registers do not alias,
1535 a stack reference can not alias a parameter, and a stack reference
1536 can not alias a global. */
1537 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1538 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1539 return 0;
1540
1541 if (! flag_argument_noalias)
1542 return 1;
1543
1544 if (flag_argument_noalias > 1)
1545 return 0;
1546
ec5c56db 1547 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1548 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1549}
1550
eab5c70a
BS
1551/* Convert the address X into something we can use. This is done by returning
1552 it unchanged unless it is a value; in the latter case we call cselib to get
1553 a more useful rtx. */
3bdf5ad1 1554
a13d4ebf 1555rtx
4682ae04 1556get_addr (rtx x)
eab5c70a
BS
1557{
1558 cselib_val *v;
1559 struct elt_loc_list *l;
1560
1561 if (GET_CODE (x) != VALUE)
1562 return x;
1563 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1564 if (v)
1565 {
1566 for (l = v->locs; l; l = l->next)
1567 if (CONSTANT_P (l->loc))
1568 return l->loc;
1569 for (l = v->locs; l; l = l->next)
3c0cb5de 1570 if (!REG_P (l->loc) && !MEM_P (l->loc))
40e02b4a
JH
1571 return l->loc;
1572 if (v->locs)
1573 return v->locs->loc;
1574 }
eab5c70a
BS
1575 return x;
1576}
1577
39cec1ac
MH
1578/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1579 where SIZE is the size in bytes of the memory reference. If ADDR
1580 is not modified by the memory reference then ADDR is returned. */
1581
04e2b4d3 1582static rtx
4682ae04 1583addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1584{
1585 int offset = 0;
ca7fd9cd 1586
39cec1ac
MH
1587 switch (GET_CODE (addr))
1588 {
1589 case PRE_INC:
1590 offset = (n_refs + 1) * size;
1591 break;
1592 case PRE_DEC:
1593 offset = -(n_refs + 1) * size;
1594 break;
1595 case POST_INC:
1596 offset = n_refs * size;
1597 break;
1598 case POST_DEC:
1599 offset = -n_refs * size;
1600 break;
1601
1602 default:
1603 return addr;
1604 }
ca7fd9cd 1605
39cec1ac 1606 if (offset)
45183e03 1607 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1608 GEN_INT (offset));
39cec1ac
MH
1609 else
1610 addr = XEXP (addr, 0);
45183e03 1611 addr = canon_rtx (addr);
39cec1ac
MH
1612
1613 return addr;
1614}
1615
9ae8ffe7
JL
1616/* Return nonzero if X and Y (memory addresses) could reference the
1617 same location in memory. C is an offset accumulator. When
1618 C is nonzero, we are testing aliases between X and Y + C.
1619 XSIZE is the size in bytes of the X reference,
1620 similarly YSIZE is the size in bytes for Y.
45183e03 1621 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1622
1623 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1624 referenced (the reference was BLKmode), so make the most pessimistic
1625 assumptions.
1626
c02f035f
RH
1627 If XSIZE or YSIZE is negative, we may access memory outside the object
1628 being referenced as a side effect. This can happen when using AND to
1629 align memory references, as is done on the Alpha.
1630
9ae8ffe7 1631 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1632 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1633
9ae8ffe7 1634static int
4682ae04 1635memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1636{
eab5c70a
BS
1637 if (GET_CODE (x) == VALUE)
1638 x = get_addr (x);
1639 if (GET_CODE (y) == VALUE)
1640 y = get_addr (y);
9ae8ffe7
JL
1641 if (GET_CODE (x) == HIGH)
1642 x = XEXP (x, 0);
1643 else if (GET_CODE (x) == LO_SUM)
1644 x = XEXP (x, 1);
1645 else
45183e03 1646 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1647 if (GET_CODE (y) == HIGH)
1648 y = XEXP (y, 0);
1649 else if (GET_CODE (y) == LO_SUM)
1650 y = XEXP (y, 1);
1651 else
45183e03 1652 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1653
1654 if (rtx_equal_for_memref_p (x, y))
1655 {
c02f035f 1656 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1657 return 1;
1658 if (c >= 0 && xsize > c)
1659 return 1;
1660 if (c < 0 && ysize+c > 0)
1661 return 1;
1662 return 0;
1663 }
1664
6e73e666
JC
1665 /* This code used to check for conflicts involving stack references and
1666 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1667
1668 if (GET_CODE (x) == PLUS)
1669 {
1670 /* The fact that X is canonicalized means that this
1671 PLUS rtx is canonicalized. */
1672 rtx x0 = XEXP (x, 0);
1673 rtx x1 = XEXP (x, 1);
1674
1675 if (GET_CODE (y) == PLUS)
1676 {
1677 /* The fact that Y is canonicalized means that this
1678 PLUS rtx is canonicalized. */
1679 rtx y0 = XEXP (y, 0);
1680 rtx y1 = XEXP (y, 1);
1681
1682 if (rtx_equal_for_memref_p (x1, y1))
1683 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1684 if (rtx_equal_for_memref_p (x0, y0))
1685 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1686 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1687 {
1688 if (GET_CODE (y1) == CONST_INT)
1689 return memrefs_conflict_p (xsize, x0, ysize, y0,
1690 c - INTVAL (x1) + INTVAL (y1));
1691 else
1692 return memrefs_conflict_p (xsize, x0, ysize, y,
1693 c - INTVAL (x1));
1694 }
9ae8ffe7
JL
1695 else if (GET_CODE (y1) == CONST_INT)
1696 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1697
6e73e666 1698 return 1;
9ae8ffe7
JL
1699 }
1700 else if (GET_CODE (x1) == CONST_INT)
1701 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1702 }
1703 else if (GET_CODE (y) == PLUS)
1704 {
1705 /* The fact that Y is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx y0 = XEXP (y, 0);
1708 rtx y1 = XEXP (y, 1);
1709
1710 if (GET_CODE (y1) == CONST_INT)
1711 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1712 else
1713 return 1;
1714 }
1715
1716 if (GET_CODE (x) == GET_CODE (y))
1717 switch (GET_CODE (x))
1718 {
1719 case MULT:
1720 {
1721 /* Handle cases where we expect the second operands to be the
1722 same, and check only whether the first operand would conflict
1723 or not. */
1724 rtx x0, y0;
1725 rtx x1 = canon_rtx (XEXP (x, 1));
1726 rtx y1 = canon_rtx (XEXP (y, 1));
1727 if (! rtx_equal_for_memref_p (x1, y1))
1728 return 1;
1729 x0 = canon_rtx (XEXP (x, 0));
1730 y0 = canon_rtx (XEXP (y, 0));
1731 if (rtx_equal_for_memref_p (x0, y0))
1732 return (xsize == 0 || ysize == 0
1733 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1734
1735 /* Can't properly adjust our sizes. */
1736 if (GET_CODE (x1) != CONST_INT)
1737 return 1;
1738 xsize /= INTVAL (x1);
1739 ysize /= INTVAL (x1);
1740 c /= INTVAL (x1);
1741 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1742 }
1d300e19
KG
1743
1744 default:
1745 break;
9ae8ffe7
JL
1746 }
1747
1748 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1749 as an access with indeterminate size. Assume that references
56ee9281
RH
1750 besides AND are aligned, so if the size of the other reference is
1751 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1752 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1753 {
02e3377d 1754 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1755 xsize = -1;
45183e03 1756 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1757 }
9ae8ffe7 1758 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1759 {
56ee9281 1760 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1761 may yet be able to determine that we can not overlap. But we
c02f035f 1762 also need to that we are far enough from the end not to overlap
56ee9281 1763 a following reference, so we do nothing with that for now. */
02e3377d 1764 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1765 ysize = -1;
45183e03 1766 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1767 }
9ae8ffe7
JL
1768
1769 if (CONSTANT_P (x))
1770 {
1771 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1772 {
1773 c += (INTVAL (y) - INTVAL (x));
c02f035f 1774 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1775 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1776 }
1777
1778 if (GET_CODE (x) == CONST)
1779 {
1780 if (GET_CODE (y) == CONST)
1781 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1782 ysize, canon_rtx (XEXP (y, 0)), c);
1783 else
1784 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1785 ysize, y, c);
1786 }
1787 if (GET_CODE (y) == CONST)
1788 return memrefs_conflict_p (xsize, x, ysize,
1789 canon_rtx (XEXP (y, 0)), c);
1790
1791 if (CONSTANT_P (y))
b949ea8b 1792 return (xsize <= 0 || ysize <= 0
c02f035f 1793 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1794 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1795
1796 return 1;
1797 }
1798 return 1;
1799}
1800
1801/* Functions to compute memory dependencies.
1802
1803 Since we process the insns in execution order, we can build tables
1804 to keep track of what registers are fixed (and not aliased), what registers
1805 are varying in known ways, and what registers are varying in unknown
1806 ways.
1807
1808 If both memory references are volatile, then there must always be a
1809 dependence between the two references, since their order can not be
1810 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1811 though.
9ae8ffe7 1812
dc1618bc
RK
1813 A MEM_IN_STRUCT reference at a non-AND varying address can never
1814 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1815 also must allow AND addresses, because they may generate accesses
1816 outside the object being referenced. This is used to generate
1817 aligned addresses from unaligned addresses, for instance, the alpha
1818 storeqi_unaligned pattern. */
9ae8ffe7
JL
1819
1820/* Read dependence: X is read after read in MEM takes place. There can
1821 only be a dependence here if both reads are volatile. */
1822
1823int
4f588890 1824read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7
JL
1825{
1826 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1827}
1828
c6df88cb
MM
1829/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1830 MEM2 is a reference to a structure at a varying address, or returns
1831 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1832 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1833 to decide whether or not an address may vary; it should return
eab5c70a
BS
1834 nonzero whenever variation is possible.
1835 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1836
4f588890
KG
1837static const_rtx
1838fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
4682ae04 1839 rtx mem2_addr,
4f588890 1840 bool (*varies_p) (const_rtx, bool))
ca7fd9cd 1841{
3e0abe15
GK
1842 if (! flag_strict_aliasing)
1843 return NULL_RTX;
1844
afa8f0fb
AP
1845 if (MEM_ALIAS_SET (mem2)
1846 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1847 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1848 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1849 varying address. */
1850 return mem1;
1851
afa8f0fb
AP
1852 if (MEM_ALIAS_SET (mem1)
1853 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1854 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1855 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1856 varying address. */
1857 return mem2;
1858
1859 return NULL_RTX;
1860}
1861
1862/* Returns nonzero if something about the mode or address format MEM1
1863 indicates that it might well alias *anything*. */
1864
2c72b78f 1865static int
4f588890 1866aliases_everything_p (const_rtx mem)
c6df88cb 1867{
c6df88cb 1868 if (GET_CODE (XEXP (mem, 0)) == AND)
35fd3193 1869 /* If the address is an AND, it's very hard to know at what it is
c6df88cb
MM
1870 actually pointing. */
1871 return 1;
ca7fd9cd 1872
c6df88cb
MM
1873 return 0;
1874}
1875
998d7deb
RH
1876/* Return true if we can determine that the fields referenced cannot
1877 overlap for any pair of objects. */
1878
1879static bool
4f588890 1880nonoverlapping_component_refs_p (const_tree x, const_tree y)
998d7deb 1881{
4f588890 1882 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb
RH
1883
1884 do
1885 {
1886 /* The comparison has to be done at a common type, since we don't
d6a7951f 1887 know how the inheritance hierarchy works. */
998d7deb
RH
1888 orig_y = y;
1889 do
1890 {
1891 fieldx = TREE_OPERAND (x, 1);
c05a0766 1892 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
1893
1894 y = orig_y;
1895 do
1896 {
1897 fieldy = TREE_OPERAND (y, 1);
c05a0766 1898 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
1899
1900 if (typex == typey)
1901 goto found;
1902
1903 y = TREE_OPERAND (y, 0);
1904 }
1905 while (y && TREE_CODE (y) == COMPONENT_REF);
1906
1907 x = TREE_OPERAND (x, 0);
1908 }
1909 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 1910 /* Never found a common type. */
c05a0766 1911 return false;
998d7deb
RH
1912
1913 found:
1914 /* If we're left with accessing different fields of a structure,
1915 then no overlap. */
1916 if (TREE_CODE (typex) == RECORD_TYPE
1917 && fieldx != fieldy)
1918 return true;
1919
1920 /* The comparison on the current field failed. If we're accessing
1921 a very nested structure, look at the next outer level. */
1922 x = TREE_OPERAND (x, 0);
1923 y = TREE_OPERAND (y, 0);
1924 }
1925 while (x && y
1926 && TREE_CODE (x) == COMPONENT_REF
1927 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1928
998d7deb
RH
1929 return false;
1930}
1931
1932/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1933
1934static tree
4682ae04 1935decl_for_component_ref (tree x)
998d7deb
RH
1936{
1937 do
1938 {
1939 x = TREE_OPERAND (x, 0);
1940 }
1941 while (x && TREE_CODE (x) == COMPONENT_REF);
1942
1943 return x && DECL_P (x) ? x : NULL_TREE;
1944}
1945
1946/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1947 offset of the field reference. */
1948
1949static rtx
4682ae04 1950adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1951{
1952 HOST_WIDE_INT ioffset;
1953
1954 if (! offset)
1955 return NULL_RTX;
1956
1957 ioffset = INTVAL (offset);
ca7fd9cd 1958 do
998d7deb 1959 {
44de5aeb 1960 tree offset = component_ref_field_offset (x);
998d7deb
RH
1961 tree field = TREE_OPERAND (x, 1);
1962
44de5aeb 1963 if (! host_integerp (offset, 1))
998d7deb 1964 return NULL_RTX;
44de5aeb 1965 ioffset += (tree_low_cst (offset, 1)
998d7deb
RH
1966 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1967 / BITS_PER_UNIT));
1968
1969 x = TREE_OPERAND (x, 0);
1970 }
1971 while (x && TREE_CODE (x) == COMPONENT_REF);
1972
1973 return GEN_INT (ioffset);
1974}
1975
95bd1dd7 1976/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1977 X and Y and they do not overlap. */
1978
2e4e39f6 1979int
4f588890 1980nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
a4311dfe 1981{
998d7deb 1982 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1983 rtx rtlx, rtly;
1984 rtx basex, basey;
998d7deb 1985 rtx moffsetx, moffsety;
a4311dfe
RK
1986 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1987
998d7deb
RH
1988 /* Unless both have exprs, we can't tell anything. */
1989 if (exprx == 0 || expry == 0)
1990 return 0;
c22cacf3 1991
998d7deb
RH
1992 /* If both are field references, we may be able to determine something. */
1993 if (TREE_CODE (exprx) == COMPONENT_REF
1994 && TREE_CODE (expry) == COMPONENT_REF
1995 && nonoverlapping_component_refs_p (exprx, expry))
1996 return 1;
1997
c22cacf3 1998
998d7deb
RH
1999 /* If the field reference test failed, look at the DECLs involved. */
2000 moffsetx = MEM_OFFSET (x);
2001 if (TREE_CODE (exprx) == COMPONENT_REF)
2002 {
ea900239
DB
2003 if (TREE_CODE (expry) == VAR_DECL
2004 && POINTER_TYPE_P (TREE_TYPE (expry)))
2005 {
2006 tree field = TREE_OPERAND (exprx, 1);
2007 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2008 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2009 TREE_TYPE (field)))
c22cacf3 2010 return 1;
ea900239
DB
2011 }
2012 {
2013 tree t = decl_for_component_ref (exprx);
2014 if (! t)
2015 return 0;
2016 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2017 exprx = t;
2018 }
998d7deb 2019 }
1b096a0a 2020 else if (INDIRECT_REF_P (exprx))
c67a1cf6
RH
2021 {
2022 exprx = TREE_OPERAND (exprx, 0);
2023 if (flag_argument_noalias < 2
2024 || TREE_CODE (exprx) != PARM_DECL)
2025 return 0;
2026 }
2027
998d7deb
RH
2028 moffsety = MEM_OFFSET (y);
2029 if (TREE_CODE (expry) == COMPONENT_REF)
2030 {
ea900239
DB
2031 if (TREE_CODE (exprx) == VAR_DECL
2032 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2033 {
2034 tree field = TREE_OPERAND (expry, 1);
2035 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2036 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2037 TREE_TYPE (field)))
c22cacf3 2038 return 1;
ea900239
DB
2039 }
2040 {
2041 tree t = decl_for_component_ref (expry);
2042 if (! t)
2043 return 0;
2044 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2045 expry = t;
2046 }
998d7deb 2047 }
1b096a0a 2048 else if (INDIRECT_REF_P (expry))
c67a1cf6
RH
2049 {
2050 expry = TREE_OPERAND (expry, 0);
2051 if (flag_argument_noalias < 2
2052 || TREE_CODE (expry) != PARM_DECL)
2053 return 0;
2054 }
998d7deb
RH
2055
2056 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2057 return 0;
2058
998d7deb
RH
2059 rtlx = DECL_RTL (exprx);
2060 rtly = DECL_RTL (expry);
a4311dfe 2061
1edcd60b
RK
2062 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2063 can't overlap unless they are the same because we never reuse that part
2064 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2065 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2066 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2067 return 1;
2068
2069 /* Get the base and offsets of both decls. If either is a register, we
2070 know both are and are the same, so use that as the base. The only
2071 we can avoid overlap is if we can deduce that they are nonoverlapping
2072 pieces of that decl, which is very rare. */
3c0cb5de 2073 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2074 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2075 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2076
3c0cb5de 2077 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2078 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2079 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2080
d746694a 2081 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2082 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2083 stack frame. Otherwise a different base means we can't tell if they
2084 overlap or not. */
2085 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2086 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2087 || (CONSTANT_P (basex) && REG_P (basey)
2088 && REGNO_PTR_FRAME_P (REGNO (basey)))
2089 || (CONSTANT_P (basey) && REG_P (basex)
2090 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2091
3c0cb5de 2092 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2093 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2094 : -1);
3c0cb5de 2095 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2096 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2097 -1);
2098
0af5bc3e
RK
2099 /* If we have an offset for either memref, it can update the values computed
2100 above. */
998d7deb
RH
2101 if (moffsetx)
2102 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2103 if (moffsety)
2104 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2105
0af5bc3e 2106 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2107 We can't do this if the offset isn't known because we must view this
0af5bc3e 2108 memref as being anywhere inside the DECL's MEM. */
998d7deb 2109 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2110 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2111 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2112 sizey = INTVAL (MEM_SIZE (y));
2113
2114 /* Put the values of the memref with the lower offset in X's values. */
2115 if (offsetx > offsety)
2116 {
2117 tem = offsetx, offsetx = offsety, offsety = tem;
2118 tem = sizex, sizex = sizey, sizey = tem;
2119 }
2120
2121 /* If we don't know the size of the lower-offset value, we can't tell
2122 if they conflict. Otherwise, we do the test. */
a6f7c915 2123 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2124}
2125
9ae8ffe7
JL
2126/* True dependence: X is read after store in MEM takes place. */
2127
2128int
4f588890
KG
2129true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2130 bool (*varies) (const_rtx, bool))
9ae8ffe7 2131{
b3694847 2132 rtx x_addr, mem_addr;
49982682 2133 rtx base;
9ae8ffe7
JL
2134
2135 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2136 return 1;
2137
c4484b8f 2138 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2139 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2140 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2141 return 1;
2142 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2143 return 1;
9cd9e512
RH
2144 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2145 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2146 return 1;
c4484b8f 2147
41472af8
MM
2148 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2149 return 0;
2150
389fdba0
RH
2151 /* Read-only memory is by definition never modified, and therefore can't
2152 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2153 but stupid user tricks can produce them, so don't die. */
389fdba0 2154 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2155 return 0;
2156
a4311dfe
RK
2157 if (nonoverlapping_memrefs_p (mem, x))
2158 return 0;
2159
56ee9281
RH
2160 if (mem_mode == VOIDmode)
2161 mem_mode = GET_MODE (mem);
2162
eab5c70a
BS
2163 x_addr = get_addr (XEXP (x, 0));
2164 mem_addr = get_addr (XEXP (mem, 0));
2165
55efb413
JW
2166 base = find_base_term (x_addr);
2167 if (base && (GET_CODE (base) == LABEL_REF
2168 || (GET_CODE (base) == SYMBOL_REF
2169 && CONSTANT_POOL_ADDRESS_P (base))))
2170 return 0;
2171
eab5c70a 2172 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2173 return 0;
2174
eab5c70a
BS
2175 x_addr = canon_rtx (x_addr);
2176 mem_addr = canon_rtx (mem_addr);
6e73e666 2177
0211b6ab
JW
2178 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2179 SIZE_FOR_MODE (x), x_addr, 0))
2180 return 0;
2181
c6df88cb 2182 if (aliases_everything_p (x))
0211b6ab
JW
2183 return 1;
2184
f5143c46 2185 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2186 at MEM_MODE, rather than GET_MODE (MEM). */
2187 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2188 return 1;
2189
2190 /* In true_dependence we also allow BLKmode to alias anything. Why
2191 don't we do this in anti_dependence and output_dependence? */
2192 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2193 return 1;
2194
2195 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2196 varies);
2197}
2198
2199/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2200 Variant of true_dependence which assumes MEM has already been
2201 canonicalized (hence we no longer do that here).
2202 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2203 this value prior to canonicalizing. */
2204
2205int
4f588890
KG
2206canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2207 const_rtx x, bool (*varies) (const_rtx, bool))
a13d4ebf 2208{
b3694847 2209 rtx x_addr;
a13d4ebf
AM
2210
2211 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2212 return 1;
2213
0fe854a7
RH
2214 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2215 This is used in epilogue deallocation functions. */
2216 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2217 return 1;
2218 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2219 return 1;
9cd9e512
RH
2220 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2221 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2222 return 1;
0fe854a7 2223
a13d4ebf
AM
2224 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2225 return 0;
2226
389fdba0
RH
2227 /* Read-only memory is by definition never modified, and therefore can't
2228 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2229 but stupid user tricks can produce them, so don't die. */
389fdba0 2230 if (MEM_READONLY_P (x))
a13d4ebf
AM
2231 return 0;
2232
a4311dfe
RK
2233 if (nonoverlapping_memrefs_p (x, mem))
2234 return 0;
2235
a13d4ebf
AM
2236 x_addr = get_addr (XEXP (x, 0));
2237
2238 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2239 return 0;
2240
2241 x_addr = canon_rtx (x_addr);
2242 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2243 SIZE_FOR_MODE (x), x_addr, 0))
2244 return 0;
2245
2246 if (aliases_everything_p (x))
2247 return 1;
2248
f5143c46 2249 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2250 at MEM_MODE, rather than GET_MODE (MEM). */
2251 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2252 return 1;
0211b6ab 2253
c6df88cb
MM
2254 /* In true_dependence we also allow BLKmode to alias anything. Why
2255 don't we do this in anti_dependence and output_dependence? */
2256 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2257 return 1;
0211b6ab 2258
eab5c70a
BS
2259 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2260 varies);
9ae8ffe7
JL
2261}
2262
da7d8304 2263/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2264 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2265
2c72b78f 2266static int
4f588890 2267write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2268{
6e73e666 2269 rtx x_addr, mem_addr;
4f588890 2270 const_rtx fixed_scalar;
49982682 2271 rtx base;
6e73e666 2272
9ae8ffe7
JL
2273 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2274 return 1;
2275
c4484b8f
RH
2276 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2277 This is used in epilogue deallocation functions. */
2278 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2279 return 1;
2280 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2281 return 1;
9cd9e512
RH
2282 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2283 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2284 return 1;
c4484b8f 2285
eab5c70a
BS
2286 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2287 return 0;
2288
389fdba0
RH
2289 /* A read from read-only memory can't conflict with read-write memory. */
2290 if (!writep && MEM_READONLY_P (mem))
2291 return 0;
55efb413 2292
a4311dfe
RK
2293 if (nonoverlapping_memrefs_p (x, mem))
2294 return 0;
2295
55efb413
JW
2296 x_addr = get_addr (XEXP (x, 0));
2297 mem_addr = get_addr (XEXP (mem, 0));
2298
49982682
JW
2299 if (! writep)
2300 {
55efb413 2301 base = find_base_term (mem_addr);
49982682
JW
2302 if (base && (GET_CODE (base) == LABEL_REF
2303 || (GET_CODE (base) == SYMBOL_REF
2304 && CONSTANT_POOL_ADDRESS_P (base))))
2305 return 0;
2306 }
2307
eab5c70a
BS
2308 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2309 GET_MODE (mem)))
41472af8
MM
2310 return 0;
2311
eab5c70a
BS
2312 x_addr = canon_rtx (x_addr);
2313 mem_addr = canon_rtx (mem_addr);
6e73e666 2314
c6df88cb
MM
2315 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2316 SIZE_FOR_MODE (x), x_addr, 0))
2317 return 0;
2318
ca7fd9cd 2319 fixed_scalar
eab5c70a
BS
2320 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2321 rtx_addr_varies_p);
2322
c6df88cb
MM
2323 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2324 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2325}
2326
2327/* Anti dependence: X is written after read in MEM takes place. */
2328
2329int
4f588890 2330anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2331{
389fdba0 2332 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2333}
2334
2335/* Output dependence: X is written after store in MEM takes place. */
2336
2337int
4f588890 2338output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2339{
389fdba0 2340 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2341}
c14b9960 2342\f
6e73e666 2343
6e73e666 2344void
b5deb7b6 2345init_alias_target (void)
6e73e666 2346{
b3694847 2347 int i;
6e73e666 2348
b5deb7b6
SL
2349 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2350
6e73e666
JC
2351 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2352 /* Check whether this register can hold an incoming pointer
2353 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2354 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2355 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2356 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2357 static_reg_base_value[i]
2358 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2359
bf1660a6
JL
2360 static_reg_base_value[STACK_POINTER_REGNUM]
2361 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2362 static_reg_base_value[ARG_POINTER_REGNUM]
2363 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2364 static_reg_base_value[FRAME_POINTER_REGNUM]
2365 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2366#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2367 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2368 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2369#endif
2370}
2371
7b52eede
JH
2372/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2373 to be memory reference. */
2374static bool memory_modified;
2375static void
aa317c97 2376memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2377{
3c0cb5de 2378 if (MEM_P (x))
7b52eede 2379 {
9678086d 2380 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2381 memory_modified = true;
2382 }
2383}
2384
2385
2386/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2387 (i.e. address can be modified). */
7b52eede 2388bool
9678086d 2389memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2390{
2391 if (!INSN_P (insn))
2392 return false;
2393 memory_modified = false;
aa317c97 2394 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2395 return memory_modified;
2396}
2397
c13e8210
MM
2398/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2399 array. */
2400
9ae8ffe7 2401void
4682ae04 2402init_alias_analysis (void)
9ae8ffe7 2403{
c582d54a 2404 unsigned int maxreg = max_reg_num ();
ea64ef27 2405 int changed, pass;
b3694847
SS
2406 int i;
2407 unsigned int ui;
2408 rtx insn;
9ae8ffe7 2409
0d446150
JH
2410 timevar_push (TV_ALIAS_ANALYSIS);
2411
bb1acb3e
RH
2412 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2413 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2414 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
9ae8ffe7 2415
08c79682 2416 /* If we have memory allocated from the previous run, use it. */
c582d54a 2417 if (old_reg_base_value)
08c79682
KH
2418 reg_base_value = old_reg_base_value;
2419
2420 if (reg_base_value)
2421 VEC_truncate (rtx, reg_base_value, 0);
2422
a590ac65 2423 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2424
5ed6ace5
MD
2425 new_reg_base_value = XNEWVEC (rtx, maxreg);
2426 reg_seen = XNEWVEC (char, maxreg);
ec907dd8
JL
2427
2428 /* The basic idea is that each pass through this loop will use the
2429 "constant" information from the previous pass to propagate alias
2430 information through another level of assignments.
2431
2432 This could get expensive if the assignment chains are long. Maybe
2433 we should throttle the number of iterations, possibly based on
6e73e666 2434 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2435
2436 We could propagate more information in the first pass by making use
6fb5fa3c 2437 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2438 for a pseudo is "constant".
2439
2440 A program with an uninitialized variable can cause an infinite loop
2441 here. Instead of doing a full dataflow analysis to detect such problems
2442 we just cap the number of iterations for the loop.
2443
2444 The state of the arrays for the set chain in question does not matter
2445 since the program has undefined behavior. */
6e73e666 2446
ea64ef27 2447 pass = 0;
6e73e666 2448 do
ec907dd8
JL
2449 {
2450 /* Assume nothing will change this iteration of the loop. */
2451 changed = 0;
2452
ec907dd8
JL
2453 /* We want to assign the same IDs each iteration of this loop, so
2454 start counting from zero each iteration of the loop. */
2455 unique_id = 0;
2456
f5143c46 2457 /* We're at the start of the function each iteration through the
ec907dd8 2458 loop, so we're copying arguments. */
83bbd9b6 2459 copying_arguments = true;
9ae8ffe7 2460
6e73e666 2461 /* Wipe the potential alias information clean for this pass. */
c582d54a 2462 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2463
6e73e666 2464 /* Wipe the reg_seen array clean. */
c582d54a 2465 memset (reg_seen, 0, maxreg);
9ae8ffe7 2466
6e73e666
JC
2467 /* Mark all hard registers which may contain an address.
2468 The stack, frame and argument pointers may contain an address.
2469 An argument register which can hold a Pmode value may contain
2470 an address even if it is not in BASE_REGS.
8072f69c 2471
6e73e666
JC
2472 The address expression is VOIDmode for an argument and
2473 Pmode for other registers. */
2474
7f243674
JL
2475 memcpy (new_reg_base_value, static_reg_base_value,
2476 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2477
ec907dd8
JL
2478 /* Walk the insns adding values to the new_reg_base_value array. */
2479 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2480 {
2c3c49de 2481 if (INSN_P (insn))
ec907dd8 2482 {
6e73e666 2483 rtx note, set;
efc9bd41
RK
2484
2485#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2486 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2487 insn chain until after reload has completed. Thus,
2488 there is no sense wasting time checking if INSN is in
2489 the prologue/epilogue until after reload has completed. */
2490 if (reload_completed
2491 && prologue_epilogue_contains (insn))
efc9bd41
RK
2492 continue;
2493#endif
2494
ec907dd8 2495 /* If this insn has a noalias note, process it, Otherwise,
c22cacf3
MS
2496 scan for sets. A simple set will have no side effects
2497 which could change the base value of any other register. */
6e73e666 2498
ec907dd8 2499 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2500 && REG_NOTES (insn) != 0
2501 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2502 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2503 else
84832317 2504 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2505
2506 set = single_set (insn);
2507
2508 if (set != 0
f8cfc6aa 2509 && REG_P (SET_DEST (set))
fb6754f0 2510 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2511 {
fb6754f0 2512 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2513 rtx src = SET_SRC (set);
bb1acb3e 2514 rtx t;
713f41f9 2515
a31830a7
SB
2516 note = find_reg_equal_equiv_note (insn);
2517 if (note && REG_NOTE_KIND (note) == REG_EQUAL
6fb5fa3c 2518 && DF_REG_DEF_COUNT (regno) != 1)
a31830a7
SB
2519 note = NULL_RTX;
2520
2521 if (note != NULL_RTX
713f41f9 2522 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2523 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2524 && ! reg_overlap_mentioned_p (SET_DEST (set),
2525 XEXP (note, 0)))
713f41f9 2526 {
bb1acb3e
RH
2527 set_reg_known_value (regno, XEXP (note, 0));
2528 set_reg_known_equiv_p (regno,
2529 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9 2530 }
6fb5fa3c 2531 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9 2532 && GET_CODE (src) == PLUS
f8cfc6aa 2533 && REG_P (XEXP (src, 0))
bb1acb3e 2534 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
713f41f9
BS
2535 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2536 {
bb1acb3e
RH
2537 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2538 set_reg_known_value (regno, t);
2539 set_reg_known_equiv_p (regno, 0);
713f41f9 2540 }
6fb5fa3c 2541 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9
BS
2542 && ! rtx_varies_p (src, 1))
2543 {
bb1acb3e
RH
2544 set_reg_known_value (regno, src);
2545 set_reg_known_equiv_p (regno, 0);
713f41f9 2546 }
6e73e666 2547 }
ec907dd8 2548 }
4b4bf941 2549 else if (NOTE_P (insn)
a38e7aa5 2550 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2551 copying_arguments = false;
6e73e666 2552 }
ec907dd8 2553
6e73e666 2554 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2555 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2556
c582d54a 2557 for (ui = 0; ui < maxreg; ui++)
6e73e666 2558 {
e51712db 2559 if (new_reg_base_value[ui]
08c79682 2560 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2561 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2562 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2563 {
08c79682 2564 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2565 changed = 1;
ec907dd8 2566 }
9ae8ffe7 2567 }
9ae8ffe7 2568 }
6e73e666 2569 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2570
2571 /* Fill in the remaining entries. */
bb1acb3e 2572 for (i = 0; i < (int)reg_known_value_size; i++)
9ae8ffe7 2573 if (reg_known_value[i] == 0)
bb1acb3e 2574 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
9ae8ffe7 2575
e05e2395
MM
2576 /* Clean up. */
2577 free (new_reg_base_value);
ec907dd8 2578 new_reg_base_value = 0;
e05e2395 2579 free (reg_seen);
9ae8ffe7 2580 reg_seen = 0;
0d446150 2581 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2582}
2583
2584void
4682ae04 2585end_alias_analysis (void)
9ae8ffe7 2586{
c582d54a 2587 old_reg_base_value = reg_base_value;
bb1acb3e 2588 ggc_free (reg_known_value);
9ae8ffe7 2589 reg_known_value = 0;
ac606739 2590 reg_known_value_size = 0;
bb1acb3e 2591 free (reg_known_equiv_p);
e05e2395 2592 reg_known_equiv_p = 0;
9ae8ffe7 2593}
e2500fed
GK
2594
2595#include "gt-alias.h"
This page took 2.227133 seconds and 5 git commands to generate.