]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
system.h: Poison macros obsoleted by earlier patch.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
3932261a
MM
45
46/* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
3932261a
MM
50
51 struct S {int i; double d; };
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
ac3d9668
RK
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
3bdf5ad1
RK
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
95bd1dd7 69 past immediate descendants, however, since we propagate all
3bdf5ad1 70 grandchildren up one level.
3932261a
MM
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
d4b60170
RK
76typedef struct alias_set_entry
77{
3932261a 78 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 79 HOST_WIDE_INT alias_set;
3932261a
MM
80
81 /* The children of the alias set. These are not just the immediate
95bd1dd7 82 children, but, in fact, all descendants. So, if we have:
3932261a 83
ca7fd9cd 84 struct T { struct S s; float f; }
3932261a
MM
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
2bf105ab
RK
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
d4b60170 93} *alias_set_entry;
9ae8ffe7 94
4682ae04
AJ
95static int rtx_equal_for_memref_p (rtx, rtx);
96static rtx find_symbolic_term (rtx);
4682ae04
AJ
97static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
98static void record_set (rtx, rtx, void *);
99static int base_alias_check (rtx, rtx, enum machine_mode,
100 enum machine_mode);
101static rtx find_base_value (rtx);
102static int mems_in_disjoint_alias_sets_p (rtx, rtx);
103static int insert_subset_children (splay_tree_node, void*);
104static tree find_base_decl (tree);
105static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
106static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
107 int (*) (rtx, int));
108static int aliases_everything_p (rtx);
109static bool nonoverlapping_component_refs_p (tree, tree);
110static tree decl_for_component_ref (tree);
111static rtx adjust_offset_for_component_ref (tree, rtx);
112static int nonoverlapping_memrefs_p (rtx, rtx);
d2399d75 113static int write_dependence_p (rtx, rtx, int, int);
4682ae04
AJ
114
115static int nonlocal_mentioned_p_1 (rtx *, void *);
116static int nonlocal_mentioned_p (rtx);
117static int nonlocal_referenced_p_1 (rtx *, void *);
118static int nonlocal_referenced_p (rtx);
119static int nonlocal_set_p_1 (rtx *, void *);
120static int nonlocal_set_p (rtx);
121static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
122
123/* Set up all info needed to perform alias analysis on memory references. */
124
d4b60170 125/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
126#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
41472af8 128/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 134
ea64ef27 135/* Cap the number of passes we make over the insns propagating alias
ac3d9668 136 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 137#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 138
9ae8ffe7
JL
139/* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
ca7fd9cd 147 the stack, frame, and argument pointers.
b3b5ad95
JL
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
2a2c8203 157
e2500fed 158static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 159static rtx *new_reg_base_value;
d4b60170
RK
160static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
bf1660a6
JL
162/* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
9ae8ffe7 166#define REG_BASE_VALUE(X) \
fb6754f0
BS
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 169
de12be17
JC
170/* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178static rtx *alias_invariant;
179
c13e8210
MM
180/* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
9ae8ffe7
JL
184rtx *reg_known_value;
185
186/* Indicates number of valid entries in reg_known_value. */
770ae6cc 187static unsigned int reg_known_value_size;
9ae8ffe7
JL
188
189/* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
9ae8ffe7
JL
201char *reg_known_equiv_p;
202
2a2c8203
JC
203/* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 205static bool copying_arguments;
9ae8ffe7 206
3932261a 207/* The splay-tree used to store the various alias set entries. */
3932261a 208static splay_tree alias_sets;
ac3d9668 209\f
3932261a
MM
210/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213static alias_set_entry
4682ae04 214get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 215{
d4b60170
RK
216 splay_tree_node sn
217 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 218
d4b60170 219 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
220}
221
ac3d9668
RK
222/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
223 the two MEMs cannot alias each other. */
3932261a 224
ca7fd9cd 225static int
4682ae04 226mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 227{
ca7fd9cd 228#ifdef ENABLE_CHECKING
3932261a
MM
229/* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
d4b60170
RK
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
238 abort ();
239#endif
240
1da68f56
RK
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
242}
3932261a 243
1da68f56
RK
244/* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
246
247static int
4682ae04 248insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
249{
250 splay_tree_insert ((splay_tree) data, node->key, node->value);
251
252 return 0;
253}
254
255/* Return 1 if the two specified alias sets may conflict. */
256
257int
4682ae04 258alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
259{
260 alias_set_entry ase;
261
262 /* If have no alias set information for one of the operands, we have
263 to assume it can alias anything. */
264 if (set1 == 0 || set2 == 0
265 /* If the two alias sets are the same, they may alias. */
266 || set1 == set2)
267 return 1;
3932261a 268
3bdf5ad1 269 /* See if the first alias set is a subset of the second. */
1da68f56 270 ase = get_alias_set_entry (set1);
2bf105ab
RK
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
1da68f56
RK
274 (splay_tree_key) set2)))
275 return 1;
3932261a
MM
276
277 /* Now do the same, but with the alias sets reversed. */
1da68f56 278 ase = get_alias_set_entry (set2);
2bf105ab
RK
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
1da68f56
RK
282 (splay_tree_key) set1)))
283 return 1;
3932261a 284
1da68f56 285 /* The two alias sets are distinct and neither one is the
3932261a 286 child of the other. Therefore, they cannot alias. */
1da68f56 287 return 0;
3932261a 288}
1da68f56
RK
289\f
290/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
291 has any readonly fields. If any of the fields have types that
292 contain readonly fields, return true as well. */
3932261a 293
1da68f56 294int
4682ae04 295readonly_fields_p (tree type)
3932261a 296{
1da68f56
RK
297 tree field;
298
299 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
300 && TREE_CODE (type) != QUAL_UNION_TYPE)
301 return 0;
302
303 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
304 if (TREE_CODE (field) == FIELD_DECL
305 && (TREE_READONLY (field)
306 || readonly_fields_p (TREE_TYPE (field))))
307 return 1;
3932261a
MM
308
309 return 0;
310}
3bdf5ad1 311\f
1da68f56
RK
312/* Return 1 if any MEM object of type T1 will always conflict (using the
313 dependency routines in this file) with any MEM object of type T2.
314 This is used when allocating temporary storage. If T1 and/or T2 are
315 NULL_TREE, it means we know nothing about the storage. */
316
317int
4682ae04 318objects_must_conflict_p (tree t1, tree t2)
1da68f56 319{
82d610ec
RK
320 HOST_WIDE_INT set1, set2;
321
e8ea2809
RK
322 /* If neither has a type specified, we don't know if they'll conflict
323 because we may be using them to store objects of various types, for
324 example the argument and local variables areas of inlined functions. */
981a4c34 325 if (t1 == 0 && t2 == 0)
e8ea2809
RK
326 return 0;
327
66cce54d
RH
328 /* If one or the other has readonly fields or is readonly,
329 then they may not conflict. */
330 if ((t1 != 0 && readonly_fields_p (t1))
331 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
332 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
333 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
334 return 0;
335
1da68f56
RK
336 /* If they are the same type, they must conflict. */
337 if (t1 == t2
338 /* Likewise if both are volatile. */
339 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
340 return 1;
341
82d610ec
RK
342 set1 = t1 ? get_alias_set (t1) : 0;
343 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 344
82d610ec
RK
345 /* Otherwise they conflict if they have no alias set or the same. We
346 can't simply use alias_sets_conflict_p here, because we must make
347 sure that every subtype of t1 will conflict with every subtype of
348 t2 for which a pair of subobjects of these respective subtypes
349 overlaps on the stack. */
350 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
351}
352\f
3bdf5ad1
RK
353/* T is an expression with pointer type. Find the DECL on which this
354 expression is based. (For example, in `a[i]' this would be `a'.)
355 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 356 NULL_TREE is returned. */
3bdf5ad1
RK
357
358static tree
4682ae04 359find_base_decl (tree t)
3bdf5ad1
RK
360{
361 tree d0, d1, d2;
362
363 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
364 return 0;
365
366 /* If this is a declaration, return it. */
367 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
368 return t;
369
370 /* Handle general expressions. It would be nice to deal with
371 COMPONENT_REFs here. If we could tell that `a' and `b' were the
372 same, then `a->f' and `b->f' are also the same. */
373 switch (TREE_CODE_CLASS (TREE_CODE (t)))
374 {
375 case '1':
376 return find_base_decl (TREE_OPERAND (t, 0));
377
378 case '2':
379 /* Return 0 if found in neither or both are the same. */
380 d0 = find_base_decl (TREE_OPERAND (t, 0));
381 d1 = find_base_decl (TREE_OPERAND (t, 1));
382 if (d0 == d1)
383 return d0;
384 else if (d0 == 0)
385 return d1;
386 else if (d1 == 0)
387 return d0;
388 else
389 return 0;
390
391 case '3':
392 d0 = find_base_decl (TREE_OPERAND (t, 0));
393 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
394 d2 = find_base_decl (TREE_OPERAND (t, 2));
395
396 /* Set any nonzero values from the last, then from the first. */
397 if (d1 == 0) d1 = d2;
398 if (d0 == 0) d0 = d1;
399 if (d1 == 0) d1 = d0;
400 if (d2 == 0) d2 = d1;
401
402 /* At this point all are nonzero or all are zero. If all three are the
403 same, return it. Otherwise, return zero. */
404 return (d0 == d1 && d1 == d2) ? d0 : 0;
405
406 default:
407 return 0;
408 }
409}
410
6e24b709
RK
411/* Return 1 if all the nested component references handled by
412 get_inner_reference in T are such that we can address the object in T. */
413
10b76d73 414int
4682ae04 415can_address_p (tree t)
6e24b709
RK
416{
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t))
419 return 1;
420
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t) == BIT_FIELD_REF)
423 return 0;
424
8ac61af7
RK
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
6e24b709
RK
427 else if (TREE_CODE (t) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
430 && can_address_p (TREE_OPERAND (t, 0)))
431 return 1;
432
8ac61af7 433 /* Likewise for arrays. */
b4e3fabb 434 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
437 && can_address_p (TREE_OPERAND (t, 0)))
438 return 1;
439
440 return 0;
441}
442
3bdf5ad1
RK
443/* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
445
446HOST_WIDE_INT
4682ae04 447get_alias_set (tree t)
3bdf5ad1
RK
448{
449 HOST_WIDE_INT set;
3bdf5ad1
RK
450
451 /* If we're not doing any alias analysis, just assume everything
452 aliases everything else. Also return 0 if this or its type is
453 an error. */
454 if (! flag_strict_aliasing || t == error_mark_node
455 || (! TYPE_P (t)
456 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
457 return 0;
458
459 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
460 language-specific routine may make mutually-recursive calls to each other
461 to figure out what to do. At each juncture, we see if this is a tree
462 that the language may need to handle specially. First handle things that
738cc472 463 aren't types. */
f824e5c3 464 if (! TYPE_P (t))
3bdf5ad1 465 {
738cc472
RK
466 tree inner = t;
467 tree placeholder_ptr = 0;
468
8ac61af7
RK
469 /* Remove any nops, then give the language a chance to do
470 something with this tree before we look at it. */
471 STRIP_NOPS (t);
472 set = (*lang_hooks.get_alias_set) (t);
473 if (set != -1)
474 return set;
475
738cc472 476 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 477 restrict-qualified pointer or a "void *". Replace
738cc472 478 PLACEHOLDER_EXPRs. */
8ac61af7 479 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
480 || handled_component_p (inner))
481 {
482 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
483 inner = find_placeholder (inner, &placeholder_ptr);
484 else
485 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
486
487 STRIP_NOPS (inner);
738cc472
RK
488 }
489
490 /* Check for accesses through restrict-qualified pointers. */
491 if (TREE_CODE (inner) == INDIRECT_REF)
492 {
493 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
494
495 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
496 {
e5837c07 497 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
498 if (DECL_POINTER_ALIAS_SET (decl) == -2)
499 {
500 /* No two restricted pointers can point at the same thing.
501 However, a restricted pointer can point at the same thing
502 as an unrestricted pointer, if that unrestricted pointer
503 is based on the restricted pointer. So, we make the
504 alias set for the restricted pointer a subset of the
505 alias set for the type pointed to by the type of the
506 decl. */
507 HOST_WIDE_INT pointed_to_alias_set
508 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
509
510 if (pointed_to_alias_set == 0)
511 /* It's not legal to make a subset of alias set zero. */
512 ;
513 else
514 {
515 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
516 record_alias_subset (pointed_to_alias_set,
517 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
518 }
519 }
520
521 /* We use the alias set indicated in the declaration. */
522 return DECL_POINTER_ALIAS_SET (decl);
523 }
524
525 /* If we have an INDIRECT_REF via a void pointer, we don't
526 know anything about what that might alias. */
527 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
528 return 0;
529 }
530
531 /* Otherwise, pick up the outermost object that we could have a pointer
532 to, processing conversion and PLACEHOLDER_EXPR as above. */
533 placeholder_ptr = 0;
8ac61af7 534 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
535 || (handled_component_p (t) && ! can_address_p (t)))
536 {
f47e9b4e 537 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 538 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
539 else
540 t = TREE_OPERAND (t, 0);
f824e5c3 541
8ac61af7
RK
542 STRIP_NOPS (t);
543 }
f824e5c3 544
738cc472
RK
545 /* If we've already determined the alias set for a decl, just return
546 it. This is necessary for C++ anonymous unions, whose component
547 variables don't look like union members (boo!). */
5755cd38
JM
548 if (TREE_CODE (t) == VAR_DECL
549 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
550 return MEM_ALIAS_SET (DECL_RTL (t));
551
f824e5c3
RK
552 /* Now all we care about is the type. */
553 t = TREE_TYPE (t);
3bdf5ad1
RK
554 }
555
3bdf5ad1
RK
556 /* Variant qualifiers don't affect the alias set, so get the main
557 variant. If this is a type with a known alias set, return it. */
558 t = TYPE_MAIN_VARIANT (t);
738cc472 559 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
560 return TYPE_ALIAS_SET (t);
561
562 /* See if the language has special handling for this type. */
8ac61af7
RK
563 set = (*lang_hooks.get_alias_set) (t);
564 if (set != -1)
738cc472 565 return set;
2bf105ab 566
3bdf5ad1
RK
567 /* There are no objects of FUNCTION_TYPE, so there's no point in
568 using up an alias set for them. (There are, of course, pointers
569 and references to functions, but that's different.) */
570 else if (TREE_CODE (t) == FUNCTION_TYPE)
571 set = 0;
74d86f4f
RH
572
573 /* Unless the language specifies otherwise, let vector types alias
574 their components. This avoids some nasty type punning issues in
575 normal usage. And indeed lets vectors be treated more like an
576 array slice. */
577 else if (TREE_CODE (t) == VECTOR_TYPE)
578 set = get_alias_set (TREE_TYPE (t));
579
3bdf5ad1
RK
580 else
581 /* Otherwise make a new alias set for this type. */
582 set = new_alias_set ();
583
584 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
585
586 /* If this is an aggregate type, we must record any component aliasing
587 information. */
1d79fd2c 588 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
589 record_component_aliases (t);
590
3bdf5ad1
RK
591 return set;
592}
593
594/* Return a brand-new alias set. */
595
596HOST_WIDE_INT
4682ae04 597new_alias_set (void)
3bdf5ad1
RK
598{
599 static HOST_WIDE_INT last_alias_set;
600
601 if (flag_strict_aliasing)
602 return ++last_alias_set;
603 else
604 return 0;
605}
3932261a
MM
606
607/* Indicate that things in SUBSET can alias things in SUPERSET, but
608 not vice versa. For example, in C, a store to an `int' can alias a
609 structure containing an `int', but not vice versa. Here, the
610 structure would be the SUPERSET and `int' the SUBSET. This
ca7fd9cd 611 function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
612
613 It is illegal for SUPERSET to be zero; everything is implicitly a
614 subset of alias set zero. */
615
616void
4682ae04 617record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
618{
619 alias_set_entry superset_entry;
620 alias_set_entry subset_entry;
621
f47e9b4e
RK
622 /* It is possible in complex type situations for both sets to be the same,
623 in which case we can ignore this operation. */
624 if (superset == subset)
625 return;
626
3932261a
MM
627 if (superset == 0)
628 abort ();
629
630 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 631 if (superset_entry == 0)
3932261a
MM
632 {
633 /* Create an entry for the SUPERSET, so that we have a place to
634 attach the SUBSET. */
703ad42b 635 superset_entry = xmalloc (sizeof (struct alias_set_entry));
3932261a 636 superset_entry->alias_set = superset;
ca7fd9cd 637 superset_entry->children
30f72379 638 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 639 superset_entry->has_zero_child = 0;
d4b60170 640 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a 641 (splay_tree_value) superset_entry);
3932261a
MM
642 }
643
2bf105ab
RK
644 if (subset == 0)
645 superset_entry->has_zero_child = 1;
646 else
647 {
648 subset_entry = get_alias_set_entry (subset);
649 /* If there is an entry for the subset, enter all of its children
650 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 651 if (subset_entry)
2bf105ab
RK
652 {
653 if (subset_entry->has_zero_child)
654 superset_entry->has_zero_child = 1;
d4b60170 655
2bf105ab
RK
656 splay_tree_foreach (subset_entry->children, insert_subset_children,
657 superset_entry->children);
658 }
3932261a 659
2bf105ab 660 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 661 splay_tree_insert (superset_entry->children,
2bf105ab
RK
662 (splay_tree_key) subset, 0);
663 }
3932261a
MM
664}
665
a0c33338
RK
666/* Record that component types of TYPE, if any, are part of that type for
667 aliasing purposes. For record types, we only record component types
668 for fields that are marked addressable. For array types, we always
669 record the component types, so the front end should not call this
670 function if the individual component aren't addressable. */
671
672void
4682ae04 673record_component_aliases (tree type)
a0c33338 674{
3bdf5ad1 675 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
676 tree field;
677
678 if (superset == 0)
679 return;
680
681 switch (TREE_CODE (type))
682 {
683 case ARRAY_TYPE:
2bf105ab
RK
684 if (! TYPE_NONALIASED_COMPONENT (type))
685 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
686 break;
687
688 case RECORD_TYPE:
689 case UNION_TYPE:
690 case QUAL_UNION_TYPE:
61eece67
DN
691 /* Recursively record aliases for the base classes, if there are any */
692 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
693 {
694 int i;
695 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
696 {
697 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
698 record_alias_subset (superset,
61eece67 699 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
700 }
701 }
a0c33338 702 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 703 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 704 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
705 break;
706
1d79fd2c
JW
707 case COMPLEX_TYPE:
708 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
709 break;
710
a0c33338
RK
711 default:
712 break;
713 }
714}
715
3bdf5ad1
RK
716/* Allocate an alias set for use in storing and reading from the varargs
717 spill area. */
718
719HOST_WIDE_INT
4682ae04 720get_varargs_alias_set (void)
3bdf5ad1
RK
721{
722 static HOST_WIDE_INT set = -1;
723
724 if (set == -1)
725 set = new_alias_set ();
726
727 return set;
728}
729
730/* Likewise, but used for the fixed portions of the frame, e.g., register
731 save areas. */
732
733HOST_WIDE_INT
4682ae04 734get_frame_alias_set (void)
3bdf5ad1
RK
735{
736 static HOST_WIDE_INT set = -1;
737
738 if (set == -1)
739 set = new_alias_set ();
740
741 return set;
742}
743
2a2c8203
JC
744/* Inside SRC, the source of a SET, find a base address. */
745
9ae8ffe7 746static rtx
4682ae04 747find_base_value (rtx src)
9ae8ffe7 748{
713f41f9 749 unsigned int regno;
0aacc8ed 750
9ae8ffe7
JL
751 switch (GET_CODE (src))
752 {
753 case SYMBOL_REF:
754 case LABEL_REF:
755 return src;
756
757 case REG:
fb6754f0 758 regno = REGNO (src);
d4b60170 759 /* At the start of a function, argument registers have known base
2a2c8203
JC
760 values which may be lost later. Returning an ADDRESS
761 expression here allows optimization based on argument values
762 even when the argument registers are used for other purposes. */
713f41f9
BS
763 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
764 return new_reg_base_value[regno];
73774bc7 765
eaf407a5 766 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
767 for non-fixed hard regs since it can result in a circular
768 dependency chain for registers which have values at function entry.
eaf407a5
JL
769
770 The test above is not sufficient because the scheduler may move
771 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 772 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
773 && regno < reg_base_value_size)
774 {
775 /* If we're inside init_alias_analysis, use new_reg_base_value
776 to reduce the number of relaxation iterations. */
1afdf91c
RH
777 if (new_reg_base_value && new_reg_base_value[regno]
778 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
779 return new_reg_base_value[regno];
780
781 if (reg_base_value[regno])
782 return reg_base_value[regno];
783 }
73774bc7 784
e3f049a8 785 return 0;
9ae8ffe7
JL
786
787 case MEM:
788 /* Check for an argument passed in memory. Only record in the
789 copying-arguments block; it is too hard to track changes
790 otherwise. */
791 if (copying_arguments
792 && (XEXP (src, 0) == arg_pointer_rtx
793 || (GET_CODE (XEXP (src, 0)) == PLUS
794 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 795 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
796 return 0;
797
798 case CONST:
799 src = XEXP (src, 0);
800 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
801 break;
d4b60170 802
ec5c56db 803 /* ... fall through ... */
2a2c8203 804
9ae8ffe7
JL
805 case PLUS:
806 case MINUS:
2a2c8203 807 {
ec907dd8
JL
808 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
809
0134bf2d
DE
810 /* If either operand is a REG that is a known pointer, then it
811 is the base. */
812 if (REG_P (src_0) && REG_POINTER (src_0))
813 return find_base_value (src_0);
814 if (REG_P (src_1) && REG_POINTER (src_1))
815 return find_base_value (src_1);
816
ec907dd8
JL
817 /* If either operand is a REG, then see if we already have
818 a known value for it. */
0134bf2d 819 if (REG_P (src_0))
ec907dd8
JL
820 {
821 temp = find_base_value (src_0);
d4b60170 822 if (temp != 0)
ec907dd8
JL
823 src_0 = temp;
824 }
825
0134bf2d 826 if (REG_P (src_1))
ec907dd8
JL
827 {
828 temp = find_base_value (src_1);
d4b60170 829 if (temp!= 0)
ec907dd8
JL
830 src_1 = temp;
831 }
2a2c8203 832
0134bf2d
DE
833 /* If either base is named object or a special address
834 (like an argument or stack reference), then use it for the
835 base term. */
836 if (src_0 != 0
837 && (GET_CODE (src_0) == SYMBOL_REF
838 || GET_CODE (src_0) == LABEL_REF
839 || (GET_CODE (src_0) == ADDRESS
840 && GET_MODE (src_0) != VOIDmode)))
841 return src_0;
842
843 if (src_1 != 0
844 && (GET_CODE (src_1) == SYMBOL_REF
845 || GET_CODE (src_1) == LABEL_REF
846 || (GET_CODE (src_1) == ADDRESS
847 && GET_MODE (src_1) != VOIDmode)))
848 return src_1;
849
d4b60170 850 /* Guess which operand is the base address:
ec907dd8
JL
851 If either operand is a symbol, then it is the base. If
852 either operand is a CONST_INT, then the other is the base. */
d4b60170 853 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 854 return find_base_value (src_0);
d4b60170 855 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
856 return find_base_value (src_1);
857
9ae8ffe7 858 return 0;
2a2c8203
JC
859 }
860
861 case LO_SUM:
862 /* The standard form is (lo_sum reg sym) so look only at the
863 second operand. */
864 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
865
866 case AND:
867 /* If the second operand is constant set the base
ec5c56db 868 address to the first operand. */
2a2c8203
JC
869 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
870 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
871 return 0;
872
61f0131c
R
873 case TRUNCATE:
874 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
875 break;
876 /* Fall through. */
9ae8ffe7 877 case HIGH:
d288e53d
DE
878 case PRE_INC:
879 case PRE_DEC:
880 case POST_INC:
881 case POST_DEC:
882 case PRE_MODIFY:
883 case POST_MODIFY:
2a2c8203 884 return find_base_value (XEXP (src, 0));
1d300e19 885
0aacc8ed
RK
886 case ZERO_EXTEND:
887 case SIGN_EXTEND: /* used for NT/Alpha pointers */
888 {
889 rtx temp = find_base_value (XEXP (src, 0));
890
5ae6cd0d 891 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 892 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
893
894 return temp;
895 }
896
1d300e19
KG
897 default:
898 break;
9ae8ffe7
JL
899 }
900
901 return 0;
902}
903
904/* Called from init_alias_analysis indirectly through note_stores. */
905
d4b60170 906/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
907 register N has been set in this function. */
908static char *reg_seen;
909
13309a5f
JC
910/* Addresses which are known not to alias anything else are identified
911 by a unique integer. */
ec907dd8
JL
912static int unique_id;
913
2a2c8203 914static void
4682ae04 915record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 916{
b3694847 917 unsigned regno;
9ae8ffe7 918 rtx src;
c28b4e40 919 int n;
9ae8ffe7
JL
920
921 if (GET_CODE (dest) != REG)
922 return;
923
fb6754f0 924 regno = REGNO (dest);
9ae8ffe7 925
ac606739
GS
926 if (regno >= reg_base_value_size)
927 abort ();
928
c28b4e40
JW
929 /* If this spans multiple hard registers, then we must indicate that every
930 register has an unusable value. */
931 if (regno < FIRST_PSEUDO_REGISTER)
932 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
933 else
934 n = 1;
935 if (n != 1)
936 {
937 while (--n >= 0)
938 {
939 reg_seen[regno + n] = 1;
940 new_reg_base_value[regno + n] = 0;
941 }
942 return;
943 }
944
9ae8ffe7
JL
945 if (set)
946 {
947 /* A CLOBBER wipes out any old value but does not prevent a previously
948 unset register from acquiring a base address (i.e. reg_seen is not
949 set). */
950 if (GET_CODE (set) == CLOBBER)
951 {
ec907dd8 952 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
953 return;
954 }
955 src = SET_SRC (set);
956 }
957 else
958 {
9ae8ffe7
JL
959 if (reg_seen[regno])
960 {
ec907dd8 961 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
962 return;
963 }
964 reg_seen[regno] = 1;
38a448ca
RH
965 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
966 GEN_INT (unique_id++));
9ae8ffe7
JL
967 return;
968 }
969
970 /* This is not the first set. If the new value is not related to the
971 old value, forget the base value. Note that the following code is
972 not detected:
973 extern int x, y; int *p = &x; p += (&y-&x);
974 ANSI C does not allow computing the difference of addresses
975 of distinct top level objects. */
ec907dd8 976 if (new_reg_base_value[regno])
9ae8ffe7
JL
977 switch (GET_CODE (src))
978 {
2a2c8203 979 case LO_SUM:
9ae8ffe7
JL
980 case MINUS:
981 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 982 new_reg_base_value[regno] = 0;
9ae8ffe7 983 break;
61f0131c
R
984 case PLUS:
985 /* If the value we add in the PLUS is also a valid base value,
986 this might be the actual base value, and the original value
987 an index. */
988 {
989 rtx other = NULL_RTX;
990
991 if (XEXP (src, 0) == dest)
992 other = XEXP (src, 1);
993 else if (XEXP (src, 1) == dest)
994 other = XEXP (src, 0);
995
996 if (! other || find_base_value (other))
997 new_reg_base_value[regno] = 0;
998 break;
999 }
9ae8ffe7
JL
1000 case AND:
1001 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1002 new_reg_base_value[regno] = 0;
9ae8ffe7 1003 break;
9ae8ffe7 1004 default:
ec907dd8 1005 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1006 break;
1007 }
1008 /* If this is the first set of a register, record the value. */
1009 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1010 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1011 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1012
1013 reg_seen[regno] = 1;
1014}
1015
ac3d9668
RK
1016/* Called from loop optimization when a new pseudo-register is
1017 created. It indicates that REGNO is being set to VAL. f INVARIANT
1018 is true then this value also describes an invariant relationship
1019 which can be used to deduce that two registers with unknown values
1020 are different. */
d4b60170 1021
9ae8ffe7 1022void
4682ae04 1023record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1024{
ac3d9668 1025 if (regno >= reg_base_value_size)
9ae8ffe7 1026 return;
de12be17 1027
de12be17
JC
1028 if (invariant && alias_invariant)
1029 alias_invariant[regno] = val;
1030
9ae8ffe7
JL
1031 if (GET_CODE (val) == REG)
1032 {
fb6754f0
BS
1033 if (REGNO (val) < reg_base_value_size)
1034 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1035
9ae8ffe7
JL
1036 return;
1037 }
d4b60170 1038
9ae8ffe7
JL
1039 reg_base_value[regno] = find_base_value (val);
1040}
1041
43fe47ca
JW
1042/* Clear alias info for a register. This is used if an RTL transformation
1043 changes the value of a register. This is used in flow by AUTO_INC_DEC
1044 optimizations. We don't need to clear reg_base_value, since flow only
1045 changes the offset. */
1046
1047void
4682ae04 1048clear_reg_alias_info (rtx reg)
43fe47ca 1049{
4e1a4144
JW
1050 unsigned int regno = REGNO (reg);
1051
1052 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1053 reg_known_value[regno] = reg;
43fe47ca
JW
1054}
1055
db048faf
MM
1056/* Returns a canonical version of X, from the point of view alias
1057 analysis. (For example, if X is a MEM whose address is a register,
1058 and the register has a known value (say a SYMBOL_REF), then a MEM
1059 whose address is the SYMBOL_REF is returned.) */
1060
1061rtx
4682ae04 1062canon_rtx (rtx x)
9ae8ffe7
JL
1063{
1064 /* Recursively look for equivalences. */
fb6754f0
BS
1065 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1066 && REGNO (x) < reg_known_value_size)
1067 return reg_known_value[REGNO (x)] == x
1068 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1069 else if (GET_CODE (x) == PLUS)
1070 {
1071 rtx x0 = canon_rtx (XEXP (x, 0));
1072 rtx x1 = canon_rtx (XEXP (x, 1));
1073
1074 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1075 {
9ae8ffe7 1076 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1077 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1078 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1079 return plus_constant (x0, INTVAL (x1));
38a448ca 1080 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1081 }
1082 }
d4b60170 1083
9ae8ffe7
JL
1084 /* This gives us much better alias analysis when called from
1085 the loop optimizer. Note we want to leave the original
1086 MEM alone, but need to return the canonicalized MEM with
1087 all the flags with their original values. */
1088 else if (GET_CODE (x) == MEM)
f1ec5147 1089 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1090
9ae8ffe7
JL
1091 return x;
1092}
1093
1094/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1095 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1096
1097 We use the data in reg_known_value above to see if two registers with
1098 different numbers are, in fact, equivalent. */
1099
1100static int
4682ae04 1101rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1102{
b3694847
SS
1103 int i;
1104 int j;
1105 enum rtx_code code;
1106 const char *fmt;
9ae8ffe7
JL
1107
1108 if (x == 0 && y == 0)
1109 return 1;
1110 if (x == 0 || y == 0)
1111 return 0;
d4b60170 1112
9ae8ffe7
JL
1113 if (x == y)
1114 return 1;
1115
1116 code = GET_CODE (x);
1117 /* Rtx's of different codes cannot be equal. */
1118 if (code != GET_CODE (y))
1119 return 0;
1120
1121 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1122 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1123
1124 if (GET_MODE (x) != GET_MODE (y))
1125 return 0;
1126
db048faf
MM
1127 /* Some RTL can be compared without a recursive examination. */
1128 switch (code)
1129 {
ab59db3c
BS
1130 case VALUE:
1131 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1132
db048faf
MM
1133 case REG:
1134 return REGNO (x) == REGNO (y);
1135
1136 case LABEL_REF:
1137 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1138
db048faf
MM
1139 case SYMBOL_REF:
1140 return XSTR (x, 0) == XSTR (y, 0);
1141
1142 case CONST_INT:
1143 case CONST_DOUBLE:
1144 /* There's no need to compare the contents of CONST_DOUBLEs or
1145 CONST_INTs because pointer equality is a good enough
1146 comparison for these nodes. */
1147 return 0;
1148
1149 case ADDRESSOF:
831ecbd4 1150 return (XINT (x, 1) == XINT (y, 1)
45183e03 1151 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1152 XEXP (y, 0)));
db048faf
MM
1153
1154 default:
1155 break;
1156 }
9ae8ffe7 1157
45183e03
JH
1158 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1159 if (code == PLUS)
9ae8ffe7
JL
1160 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1161 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1162 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1163 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1164 /* For commutative operations, the RTX match if the operand match in any
1165 order. Also handle the simple binary and unary cases without a loop. */
1166 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1167 {
1168 rtx xop0 = canon_rtx (XEXP (x, 0));
1169 rtx yop0 = canon_rtx (XEXP (y, 0));
1170 rtx yop1 = canon_rtx (XEXP (y, 1));
1171
1172 return ((rtx_equal_for_memref_p (xop0, yop0)
1173 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1174 || (rtx_equal_for_memref_p (xop0, yop1)
1175 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1176 }
9ae8ffe7 1177 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1178 {
1179 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1180 canon_rtx (XEXP (y, 0)))
45183e03
JH
1181 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1182 canon_rtx (XEXP (y, 1))));
1183 }
9ae8ffe7 1184 else if (GET_RTX_CLASS (code) == '1')
45183e03 1185 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1186 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1187
1188 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1189 fail to match, return 0 for the whole things.
1190
1191 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1192
1193 fmt = GET_RTX_FORMAT (code);
1194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1195 {
1196 switch (fmt[i])
1197 {
9ae8ffe7
JL
1198 case 'i':
1199 if (XINT (x, i) != XINT (y, i))
1200 return 0;
1201 break;
1202
9ae8ffe7
JL
1203 case 'E':
1204 /* Two vectors must have the same length. */
1205 if (XVECLEN (x, i) != XVECLEN (y, i))
1206 return 0;
1207
1208 /* And the corresponding elements must match. */
1209 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1210 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1211 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1212 return 0;
1213 break;
1214
1215 case 'e':
45183e03
JH
1216 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1217 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1218 return 0;
1219 break;
1220
3237ac18
AH
1221 /* This can happen for asm operands. */
1222 case 's':
1223 if (strcmp (XSTR (x, i), XSTR (y, i)))
1224 return 0;
1225 break;
1226
aee21ba9
JL
1227 /* This can happen for an asm which clobbers memory. */
1228 case '0':
1229 break;
1230
9ae8ffe7
JL
1231 /* It is believed that rtx's at this level will never
1232 contain anything but integers and other rtx's,
1233 except for within LABEL_REFs and SYMBOL_REFs. */
1234 default:
1235 abort ();
1236 }
1237 }
1238 return 1;
1239}
1240
1241/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1242 X and return it, or return 0 if none found. */
1243
1244static rtx
4682ae04 1245find_symbolic_term (rtx x)
9ae8ffe7 1246{
b3694847
SS
1247 int i;
1248 enum rtx_code code;
1249 const char *fmt;
9ae8ffe7
JL
1250
1251 code = GET_CODE (x);
1252 if (code == SYMBOL_REF || code == LABEL_REF)
1253 return x;
1254 if (GET_RTX_CLASS (code) == 'o')
1255 return 0;
1256
1257 fmt = GET_RTX_FORMAT (code);
1258 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1259 {
1260 rtx t;
1261
1262 if (fmt[i] == 'e')
1263 {
1264 t = find_symbolic_term (XEXP (x, i));
1265 if (t != 0)
1266 return t;
1267 }
1268 else if (fmt[i] == 'E')
1269 break;
1270 }
1271 return 0;
1272}
1273
94f24ddc 1274rtx
4682ae04 1275find_base_term (rtx x)
9ae8ffe7 1276{
eab5c70a
BS
1277 cselib_val *val;
1278 struct elt_loc_list *l;
1279
b949ea8b
JW
1280#if defined (FIND_BASE_TERM)
1281 /* Try machine-dependent ways to find the base term. */
1282 x = FIND_BASE_TERM (x);
1283#endif
1284
9ae8ffe7
JL
1285 switch (GET_CODE (x))
1286 {
1287 case REG:
1288 return REG_BASE_VALUE (x);
1289
d288e53d
DE
1290 case TRUNCATE:
1291 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1292 return 0;
d288e53d 1293 /* Fall through. */
9ae8ffe7 1294 case HIGH:
6d849a2a
JL
1295 case PRE_INC:
1296 case PRE_DEC:
1297 case POST_INC:
1298 case POST_DEC:
d288e53d
DE
1299 case PRE_MODIFY:
1300 case POST_MODIFY:
6d849a2a
JL
1301 return find_base_term (XEXP (x, 0));
1302
1abade85
RK
1303 case ZERO_EXTEND:
1304 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1305 {
1306 rtx temp = find_base_term (XEXP (x, 0));
1307
5ae6cd0d 1308 if (temp != 0 && CONSTANT_P (temp))
1abade85 1309 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1310
1311 return temp;
1312 }
1313
eab5c70a
BS
1314 case VALUE:
1315 val = CSELIB_VAL_PTR (x);
1316 for (l = val->locs; l; l = l->next)
1317 if ((x = find_base_term (l->loc)) != 0)
1318 return x;
1319 return 0;
1320
9ae8ffe7
JL
1321 case CONST:
1322 x = XEXP (x, 0);
1323 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1324 return 0;
938d968e 1325 /* Fall through. */
9ae8ffe7
JL
1326 case LO_SUM:
1327 case PLUS:
1328 case MINUS:
1329 {
3c567fae
JL
1330 rtx tmp1 = XEXP (x, 0);
1331 rtx tmp2 = XEXP (x, 1);
1332
f5143c46 1333 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1334 the two operands represents the real base address. Otherwise this
1335 routine may return the index register instead of the base register.
1336
1337 That may cause us to believe no aliasing was possible, when in
1338 fact aliasing is possible.
1339
1340 We use a few simple tests to guess the base register. Additional
1341 tests can certainly be added. For example, if one of the operands
1342 is a shift or multiply, then it must be the index register and the
1343 other operand is the base register. */
ca7fd9cd 1344
b949ea8b
JW
1345 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1346 return find_base_term (tmp2);
1347
3c567fae
JL
1348 /* If either operand is known to be a pointer, then use it
1349 to determine the base term. */
3502dc9c 1350 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1351 return find_base_term (tmp1);
1352
3502dc9c 1353 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1354 return find_base_term (tmp2);
1355
1356 /* Neither operand was known to be a pointer. Go ahead and find the
1357 base term for both operands. */
1358 tmp1 = find_base_term (tmp1);
1359 tmp2 = find_base_term (tmp2);
1360
1361 /* If either base term is named object or a special address
1362 (like an argument or stack reference), then use it for the
1363 base term. */
d4b60170 1364 if (tmp1 != 0
3c567fae
JL
1365 && (GET_CODE (tmp1) == SYMBOL_REF
1366 || GET_CODE (tmp1) == LABEL_REF
1367 || (GET_CODE (tmp1) == ADDRESS
1368 && GET_MODE (tmp1) != VOIDmode)))
1369 return tmp1;
1370
d4b60170 1371 if (tmp2 != 0
3c567fae
JL
1372 && (GET_CODE (tmp2) == SYMBOL_REF
1373 || GET_CODE (tmp2) == LABEL_REF
1374 || (GET_CODE (tmp2) == ADDRESS
1375 && GET_MODE (tmp2) != VOIDmode)))
1376 return tmp2;
1377
1378 /* We could not determine which of the two operands was the
1379 base register and which was the index. So we can determine
1380 nothing from the base alias check. */
1381 return 0;
9ae8ffe7
JL
1382 }
1383
1384 case AND:
d288e53d
DE
1385 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1386 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1387 return 0;
1388
1389 case SYMBOL_REF:
1390 case LABEL_REF:
1391 return x;
1392
d982e46e 1393 case ADDRESSOF:
bb07060a 1394 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1395
9ae8ffe7
JL
1396 default:
1397 return 0;
1398 }
1399}
1400
1401/* Return 0 if the addresses X and Y are known to point to different
1402 objects, 1 if they might be pointers to the same object. */
1403
1404static int
4682ae04
AJ
1405base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1406 enum machine_mode y_mode)
9ae8ffe7
JL
1407{
1408 rtx x_base = find_base_term (x);
1409 rtx y_base = find_base_term (y);
1410
1c72c7f6
JC
1411 /* If the address itself has no known base see if a known equivalent
1412 value has one. If either address still has no known base, nothing
1413 is known about aliasing. */
1414 if (x_base == 0)
1415 {
1416 rtx x_c;
d4b60170 1417
1c72c7f6
JC
1418 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1419 return 1;
d4b60170 1420
1c72c7f6
JC
1421 x_base = find_base_term (x_c);
1422 if (x_base == 0)
1423 return 1;
1424 }
9ae8ffe7 1425
1c72c7f6
JC
1426 if (y_base == 0)
1427 {
1428 rtx y_c;
1429 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1430 return 1;
d4b60170 1431
1c72c7f6
JC
1432 y_base = find_base_term (y_c);
1433 if (y_base == 0)
1434 return 1;
1435 }
1436
1437 /* If the base addresses are equal nothing is known about aliasing. */
1438 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1439 return 1;
1440
ca7fd9cd 1441 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1442 If they are both symbols and they are not accessed via AND, there is
1443 no conflict. We can bring knowledge of object alignment into play
1444 here. For example, on alpha, "char a, b;" can alias one another,
1445 though "char a; long b;" cannot. */
9ae8ffe7 1446 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1447 {
56ee9281
RH
1448 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1449 return 1;
1450 if (GET_CODE (x) == AND
1451 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1452 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1453 return 1;
1454 if (GET_CODE (y) == AND
1455 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1456 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1457 return 1;
b2972551
JL
1458 /* Differing symbols never alias. */
1459 return 0;
c02f035f 1460 }
9ae8ffe7
JL
1461
1462 /* If one address is a stack reference there can be no alias:
1463 stack references using different base registers do not alias,
1464 a stack reference can not alias a parameter, and a stack reference
1465 can not alias a global. */
1466 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1467 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1468 return 0;
1469
1470 if (! flag_argument_noalias)
1471 return 1;
1472
1473 if (flag_argument_noalias > 1)
1474 return 0;
1475
ec5c56db 1476 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1477 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1478}
1479
eab5c70a
BS
1480/* Convert the address X into something we can use. This is done by returning
1481 it unchanged unless it is a value; in the latter case we call cselib to get
1482 a more useful rtx. */
3bdf5ad1 1483
a13d4ebf 1484rtx
4682ae04 1485get_addr (rtx x)
eab5c70a
BS
1486{
1487 cselib_val *v;
1488 struct elt_loc_list *l;
1489
1490 if (GET_CODE (x) != VALUE)
1491 return x;
1492 v = CSELIB_VAL_PTR (x);
1493 for (l = v->locs; l; l = l->next)
1494 if (CONSTANT_P (l->loc))
1495 return l->loc;
1496 for (l = v->locs; l; l = l->next)
1497 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1498 return l->loc;
1499 if (v->locs)
1500 return v->locs->loc;
1501 return x;
1502}
1503
39cec1ac
MH
1504/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1505 where SIZE is the size in bytes of the memory reference. If ADDR
1506 is not modified by the memory reference then ADDR is returned. */
1507
1508rtx
4682ae04 1509addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1510{
1511 int offset = 0;
ca7fd9cd 1512
39cec1ac
MH
1513 switch (GET_CODE (addr))
1514 {
1515 case PRE_INC:
1516 offset = (n_refs + 1) * size;
1517 break;
1518 case PRE_DEC:
1519 offset = -(n_refs + 1) * size;
1520 break;
1521 case POST_INC:
1522 offset = n_refs * size;
1523 break;
1524 case POST_DEC:
1525 offset = -n_refs * size;
1526 break;
1527
1528 default:
1529 return addr;
1530 }
ca7fd9cd 1531
39cec1ac 1532 if (offset)
45183e03
JH
1533 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1534 GEN_INT (offset));
39cec1ac
MH
1535 else
1536 addr = XEXP (addr, 0);
45183e03 1537 addr = canon_rtx (addr);
39cec1ac
MH
1538
1539 return addr;
1540}
1541
9ae8ffe7
JL
1542/* Return nonzero if X and Y (memory addresses) could reference the
1543 same location in memory. C is an offset accumulator. When
1544 C is nonzero, we are testing aliases between X and Y + C.
1545 XSIZE is the size in bytes of the X reference,
1546 similarly YSIZE is the size in bytes for Y.
45183e03 1547 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1548
1549 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1550 referenced (the reference was BLKmode), so make the most pessimistic
1551 assumptions.
1552
c02f035f
RH
1553 If XSIZE or YSIZE is negative, we may access memory outside the object
1554 being referenced as a side effect. This can happen when using AND to
1555 align memory references, as is done on the Alpha.
1556
9ae8ffe7 1557 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1558 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1559
9ae8ffe7 1560static int
4682ae04 1561memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1562{
eab5c70a
BS
1563 if (GET_CODE (x) == VALUE)
1564 x = get_addr (x);
1565 if (GET_CODE (y) == VALUE)
1566 y = get_addr (y);
9ae8ffe7
JL
1567 if (GET_CODE (x) == HIGH)
1568 x = XEXP (x, 0);
1569 else if (GET_CODE (x) == LO_SUM)
1570 x = XEXP (x, 1);
1571 else
45183e03 1572 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1573 if (GET_CODE (y) == HIGH)
1574 y = XEXP (y, 0);
1575 else if (GET_CODE (y) == LO_SUM)
1576 y = XEXP (y, 1);
1577 else
45183e03 1578 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1579
1580 if (rtx_equal_for_memref_p (x, y))
1581 {
c02f035f 1582 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1583 return 1;
1584 if (c >= 0 && xsize > c)
1585 return 1;
1586 if (c < 0 && ysize+c > 0)
1587 return 1;
1588 return 0;
1589 }
1590
6e73e666
JC
1591 /* This code used to check for conflicts involving stack references and
1592 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1593
1594 if (GET_CODE (x) == PLUS)
1595 {
1596 /* The fact that X is canonicalized means that this
1597 PLUS rtx is canonicalized. */
1598 rtx x0 = XEXP (x, 0);
1599 rtx x1 = XEXP (x, 1);
1600
1601 if (GET_CODE (y) == PLUS)
1602 {
1603 /* The fact that Y is canonicalized means that this
1604 PLUS rtx is canonicalized. */
1605 rtx y0 = XEXP (y, 0);
1606 rtx y1 = XEXP (y, 1);
1607
1608 if (rtx_equal_for_memref_p (x1, y1))
1609 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1610 if (rtx_equal_for_memref_p (x0, y0))
1611 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1612 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1613 {
1614 if (GET_CODE (y1) == CONST_INT)
1615 return memrefs_conflict_p (xsize, x0, ysize, y0,
1616 c - INTVAL (x1) + INTVAL (y1));
1617 else
1618 return memrefs_conflict_p (xsize, x0, ysize, y,
1619 c - INTVAL (x1));
1620 }
9ae8ffe7
JL
1621 else if (GET_CODE (y1) == CONST_INT)
1622 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1623
6e73e666 1624 return 1;
9ae8ffe7
JL
1625 }
1626 else if (GET_CODE (x1) == CONST_INT)
1627 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1628 }
1629 else if (GET_CODE (y) == PLUS)
1630 {
1631 /* The fact that Y is canonicalized means that this
1632 PLUS rtx is canonicalized. */
1633 rtx y0 = XEXP (y, 0);
1634 rtx y1 = XEXP (y, 1);
1635
1636 if (GET_CODE (y1) == CONST_INT)
1637 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1638 else
1639 return 1;
1640 }
1641
1642 if (GET_CODE (x) == GET_CODE (y))
1643 switch (GET_CODE (x))
1644 {
1645 case MULT:
1646 {
1647 /* Handle cases where we expect the second operands to be the
1648 same, and check only whether the first operand would conflict
1649 or not. */
1650 rtx x0, y0;
1651 rtx x1 = canon_rtx (XEXP (x, 1));
1652 rtx y1 = canon_rtx (XEXP (y, 1));
1653 if (! rtx_equal_for_memref_p (x1, y1))
1654 return 1;
1655 x0 = canon_rtx (XEXP (x, 0));
1656 y0 = canon_rtx (XEXP (y, 0));
1657 if (rtx_equal_for_memref_p (x0, y0))
1658 return (xsize == 0 || ysize == 0
1659 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1660
1661 /* Can't properly adjust our sizes. */
1662 if (GET_CODE (x1) != CONST_INT)
1663 return 1;
1664 xsize /= INTVAL (x1);
1665 ysize /= INTVAL (x1);
1666 c /= INTVAL (x1);
1667 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1668 }
1d300e19 1669
de12be17
JC
1670 case REG:
1671 /* Are these registers known not to be equal? */
1672 if (alias_invariant)
1673 {
e51712db 1674 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1675 rtx i_x, i_y; /* invariant relationships of X and Y */
1676
1677 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1678 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1679
1680 if (i_x == 0 && i_y == 0)
1681 break;
1682
1683 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1684 ysize, i_y ? i_y : y, c))
1685 return 0;
1686 }
1687 break;
1688
1d300e19
KG
1689 default:
1690 break;
9ae8ffe7
JL
1691 }
1692
1693 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1694 as an access with indeterminate size. Assume that references
56ee9281
RH
1695 besides AND are aligned, so if the size of the other reference is
1696 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1697 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1698 {
02e3377d 1699 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1700 xsize = -1;
45183e03 1701 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1702 }
9ae8ffe7 1703 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1704 {
56ee9281 1705 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1706 may yet be able to determine that we can not overlap. But we
c02f035f 1707 also need to that we are far enough from the end not to overlap
56ee9281 1708 a following reference, so we do nothing with that for now. */
02e3377d 1709 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1710 ysize = -1;
45183e03 1711 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1712 }
9ae8ffe7 1713
b24ea077
JW
1714 if (GET_CODE (x) == ADDRESSOF)
1715 {
1716 if (y == frame_pointer_rtx
1717 || GET_CODE (y) == ADDRESSOF)
1718 return xsize <= 0 || ysize <= 0;
1719 }
1720 if (GET_CODE (y) == ADDRESSOF)
1721 {
1722 if (x == frame_pointer_rtx)
1723 return xsize <= 0 || ysize <= 0;
1724 }
d982e46e 1725
9ae8ffe7
JL
1726 if (CONSTANT_P (x))
1727 {
1728 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1729 {
1730 c += (INTVAL (y) - INTVAL (x));
c02f035f 1731 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1732 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1733 }
1734
1735 if (GET_CODE (x) == CONST)
1736 {
1737 if (GET_CODE (y) == CONST)
1738 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1739 ysize, canon_rtx (XEXP (y, 0)), c);
1740 else
1741 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1742 ysize, y, c);
1743 }
1744 if (GET_CODE (y) == CONST)
1745 return memrefs_conflict_p (xsize, x, ysize,
1746 canon_rtx (XEXP (y, 0)), c);
1747
1748 if (CONSTANT_P (y))
b949ea8b 1749 return (xsize <= 0 || ysize <= 0
c02f035f 1750 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1751 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1752
1753 return 1;
1754 }
1755 return 1;
1756}
1757
1758/* Functions to compute memory dependencies.
1759
1760 Since we process the insns in execution order, we can build tables
1761 to keep track of what registers are fixed (and not aliased), what registers
1762 are varying in known ways, and what registers are varying in unknown
1763 ways.
1764
1765 If both memory references are volatile, then there must always be a
1766 dependence between the two references, since their order can not be
1767 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1768 though.
9ae8ffe7 1769
dc1618bc
RK
1770 A MEM_IN_STRUCT reference at a non-AND varying address can never
1771 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1772 also must allow AND addresses, because they may generate accesses
1773 outside the object being referenced. This is used to generate
1774 aligned addresses from unaligned addresses, for instance, the alpha
1775 storeqi_unaligned pattern. */
9ae8ffe7
JL
1776
1777/* Read dependence: X is read after read in MEM takes place. There can
1778 only be a dependence here if both reads are volatile. */
1779
1780int
4682ae04 1781read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1782{
1783 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1784}
1785
c6df88cb
MM
1786/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1787 MEM2 is a reference to a structure at a varying address, or returns
1788 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1789 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1790 to decide whether or not an address may vary; it should return
eab5c70a
BS
1791 nonzero whenever variation is possible.
1792 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1793
2c72b78f 1794static rtx
4682ae04
AJ
1795fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1796 rtx mem2_addr,
1797 int (*varies_p) (rtx, int))
ca7fd9cd 1798{
3e0abe15
GK
1799 if (! flag_strict_aliasing)
1800 return NULL_RTX;
1801
ca7fd9cd 1802 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1803 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1804 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1805 varying address. */
1806 return mem1;
1807
ca7fd9cd 1808 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1809 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1810 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1811 varying address. */
1812 return mem2;
1813
1814 return NULL_RTX;
1815}
1816
1817/* Returns nonzero if something about the mode or address format MEM1
1818 indicates that it might well alias *anything*. */
1819
2c72b78f 1820static int
4682ae04 1821aliases_everything_p (rtx mem)
c6df88cb 1822{
c6df88cb
MM
1823 if (GET_CODE (XEXP (mem, 0)) == AND)
1824 /* If the address is an AND, its very hard to know at what it is
1825 actually pointing. */
1826 return 1;
ca7fd9cd 1827
c6df88cb
MM
1828 return 0;
1829}
1830
998d7deb
RH
1831/* Return true if we can determine that the fields referenced cannot
1832 overlap for any pair of objects. */
1833
1834static bool
4682ae04 1835nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1836{
1837 tree fieldx, fieldy, typex, typey, orig_y;
1838
1839 do
1840 {
1841 /* The comparison has to be done at a common type, since we don't
d6a7951f 1842 know how the inheritance hierarchy works. */
998d7deb
RH
1843 orig_y = y;
1844 do
1845 {
1846 fieldx = TREE_OPERAND (x, 1);
1847 typex = DECL_FIELD_CONTEXT (fieldx);
1848
1849 y = orig_y;
1850 do
1851 {
1852 fieldy = TREE_OPERAND (y, 1);
1853 typey = DECL_FIELD_CONTEXT (fieldy);
1854
1855 if (typex == typey)
1856 goto found;
1857
1858 y = TREE_OPERAND (y, 0);
1859 }
1860 while (y && TREE_CODE (y) == COMPONENT_REF);
1861
1862 x = TREE_OPERAND (x, 0);
1863 }
1864 while (x && TREE_CODE (x) == COMPONENT_REF);
1865
1866 /* Never found a common type. */
1867 return false;
1868
1869 found:
1870 /* If we're left with accessing different fields of a structure,
1871 then no overlap. */
1872 if (TREE_CODE (typex) == RECORD_TYPE
1873 && fieldx != fieldy)
1874 return true;
1875
1876 /* The comparison on the current field failed. If we're accessing
1877 a very nested structure, look at the next outer level. */
1878 x = TREE_OPERAND (x, 0);
1879 y = TREE_OPERAND (y, 0);
1880 }
1881 while (x && y
1882 && TREE_CODE (x) == COMPONENT_REF
1883 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1884
998d7deb
RH
1885 return false;
1886}
1887
1888/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1889
1890static tree
4682ae04 1891decl_for_component_ref (tree x)
998d7deb
RH
1892{
1893 do
1894 {
1895 x = TREE_OPERAND (x, 0);
1896 }
1897 while (x && TREE_CODE (x) == COMPONENT_REF);
1898
1899 return x && DECL_P (x) ? x : NULL_TREE;
1900}
1901
1902/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1903 offset of the field reference. */
1904
1905static rtx
4682ae04 1906adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1907{
1908 HOST_WIDE_INT ioffset;
1909
1910 if (! offset)
1911 return NULL_RTX;
1912
1913 ioffset = INTVAL (offset);
ca7fd9cd 1914 do
998d7deb
RH
1915 {
1916 tree field = TREE_OPERAND (x, 1);
1917
1918 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1919 return NULL_RTX;
1920 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1921 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1922 / BITS_PER_UNIT));
1923
1924 x = TREE_OPERAND (x, 0);
1925 }
1926 while (x && TREE_CODE (x) == COMPONENT_REF);
1927
1928 return GEN_INT (ioffset);
1929}
1930
95bd1dd7 1931/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1932 X and Y and they do not overlap. */
1933
1934static int
4682ae04 1935nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1936{
998d7deb 1937 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1938 rtx rtlx, rtly;
1939 rtx basex, basey;
998d7deb 1940 rtx moffsetx, moffsety;
a4311dfe
RK
1941 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1942
998d7deb
RH
1943 /* Unless both have exprs, we can't tell anything. */
1944 if (exprx == 0 || expry == 0)
1945 return 0;
1946
1947 /* If both are field references, we may be able to determine something. */
1948 if (TREE_CODE (exprx) == COMPONENT_REF
1949 && TREE_CODE (expry) == COMPONENT_REF
1950 && nonoverlapping_component_refs_p (exprx, expry))
1951 return 1;
1952
1953 /* If the field reference test failed, look at the DECLs involved. */
1954 moffsetx = MEM_OFFSET (x);
1955 if (TREE_CODE (exprx) == COMPONENT_REF)
1956 {
1957 tree t = decl_for_component_ref (exprx);
1958 if (! t)
1959 return 0;
1960 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1961 exprx = t;
1962 }
c67a1cf6
RH
1963 else if (TREE_CODE (exprx) == INDIRECT_REF)
1964 {
1965 exprx = TREE_OPERAND (exprx, 0);
1966 if (flag_argument_noalias < 2
1967 || TREE_CODE (exprx) != PARM_DECL)
1968 return 0;
1969 }
1970
998d7deb
RH
1971 moffsety = MEM_OFFSET (y);
1972 if (TREE_CODE (expry) == COMPONENT_REF)
1973 {
1974 tree t = decl_for_component_ref (expry);
1975 if (! t)
1976 return 0;
1977 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1978 expry = t;
1979 }
c67a1cf6
RH
1980 else if (TREE_CODE (expry) == INDIRECT_REF)
1981 {
1982 expry = TREE_OPERAND (expry, 0);
1983 if (flag_argument_noalias < 2
1984 || TREE_CODE (expry) != PARM_DECL)
1985 return 0;
1986 }
998d7deb
RH
1987
1988 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
1989 return 0;
1990
998d7deb
RH
1991 rtlx = DECL_RTL (exprx);
1992 rtly = DECL_RTL (expry);
a4311dfe 1993
1edcd60b
RK
1994 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1995 can't overlap unless they are the same because we never reuse that part
1996 of the stack frame used for locals for spilled pseudos. */
1997 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
1998 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
1999 return 1;
2000
2001 /* Get the base and offsets of both decls. If either is a register, we
2002 know both are and are the same, so use that as the base. The only
2003 we can avoid overlap is if we can deduce that they are nonoverlapping
2004 pieces of that decl, which is very rare. */
1edcd60b 2005 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2006 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2007 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2008
1edcd60b 2009 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2010 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2011 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2012
d746694a 2013 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2014 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2015 stack frame. Otherwise a different base means we can't tell if they
2016 overlap or not. */
2017 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2018 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2019 || (CONSTANT_P (basex) && REG_P (basey)
2020 && REGNO_PTR_FRAME_P (REGNO (basey)))
2021 || (CONSTANT_P (basey) && REG_P (basex)
2022 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2023
998d7deb 2024 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2025 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2026 : -1);
998d7deb 2027 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2028 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2029 -1);
2030
0af5bc3e
RK
2031 /* If we have an offset for either memref, it can update the values computed
2032 above. */
998d7deb
RH
2033 if (moffsetx)
2034 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2035 if (moffsety)
2036 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2037
0af5bc3e 2038 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2039 We can't do this if the offset isn't known because we must view this
0af5bc3e 2040 memref as being anywhere inside the DECL's MEM. */
998d7deb 2041 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2042 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2043 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2044 sizey = INTVAL (MEM_SIZE (y));
2045
2046 /* Put the values of the memref with the lower offset in X's values. */
2047 if (offsetx > offsety)
2048 {
2049 tem = offsetx, offsetx = offsety, offsety = tem;
2050 tem = sizex, sizex = sizey, sizey = tem;
2051 }
2052
2053 /* If we don't know the size of the lower-offset value, we can't tell
2054 if they conflict. Otherwise, we do the test. */
a6f7c915 2055 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2056}
2057
9ae8ffe7
JL
2058/* True dependence: X is read after store in MEM takes place. */
2059
2060int
4682ae04
AJ
2061true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2062 int (*varies) (rtx, int))
9ae8ffe7 2063{
b3694847 2064 rtx x_addr, mem_addr;
49982682 2065 rtx base;
9ae8ffe7
JL
2066
2067 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2068 return 1;
2069
c4484b8f
RH
2070 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2071 This is used in epilogue deallocation functions. */
2072 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2073 return 1;
2074 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2075 return 1;
2076
41472af8
MM
2077 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2078 return 0;
2079
b949ea8b
JW
2080 /* Unchanging memory can't conflict with non-unchanging memory.
2081 A non-unchanging read can conflict with a non-unchanging write.
2082 An unchanging read can conflict with an unchanging write since
2083 there may be a single store to this address to initialize it.
ec569656
RK
2084 Note that an unchanging store can conflict with a non-unchanging read
2085 since we have to make conservative assumptions when we have a
2086 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2087 Just fall through to the code below to resolve potential conflicts.
2088 This won't handle all cases optimally, but the possible performance
2089 loss should be negligible. */
ec569656 2090 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2091 return 0;
2092
a4311dfe
RK
2093 if (nonoverlapping_memrefs_p (mem, x))
2094 return 0;
2095
56ee9281
RH
2096 if (mem_mode == VOIDmode)
2097 mem_mode = GET_MODE (mem);
2098
eab5c70a
BS
2099 x_addr = get_addr (XEXP (x, 0));
2100 mem_addr = get_addr (XEXP (mem, 0));
2101
55efb413
JW
2102 base = find_base_term (x_addr);
2103 if (base && (GET_CODE (base) == LABEL_REF
2104 || (GET_CODE (base) == SYMBOL_REF
2105 && CONSTANT_POOL_ADDRESS_P (base))))
2106 return 0;
2107
eab5c70a 2108 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2109 return 0;
2110
eab5c70a
BS
2111 x_addr = canon_rtx (x_addr);
2112 mem_addr = canon_rtx (mem_addr);
6e73e666 2113
0211b6ab
JW
2114 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2115 SIZE_FOR_MODE (x), x_addr, 0))
2116 return 0;
2117
c6df88cb 2118 if (aliases_everything_p (x))
0211b6ab
JW
2119 return 1;
2120
f5143c46 2121 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2122 at MEM_MODE, rather than GET_MODE (MEM). */
2123 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2124 return 1;
2125
2126 /* In true_dependence we also allow BLKmode to alias anything. Why
2127 don't we do this in anti_dependence and output_dependence? */
2128 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2129 return 1;
2130
2131 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2132 varies);
2133}
2134
2135/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2136 Variant of true_dependence which assumes MEM has already been
2137 canonicalized (hence we no longer do that here).
2138 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2139 this value prior to canonicalizing. */
2140
2141int
4682ae04
AJ
2142canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2143 rtx x, int (*varies) (rtx, int))
a13d4ebf 2144{
b3694847 2145 rtx x_addr;
a13d4ebf
AM
2146
2147 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2148 return 1;
2149
0fe854a7
RH
2150 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2151 This is used in epilogue deallocation functions. */
2152 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2153 return 1;
2154 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2155 return 1;
2156
a13d4ebf
AM
2157 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2158 return 0;
2159
2160 /* If X is an unchanging read, then it can't possibly conflict with any
2161 non-unchanging store. It may conflict with an unchanging write though,
2162 because there may be a single store to this address to initialize it.
2163 Just fall through to the code below to resolve the case where we have
2164 both an unchanging read and an unchanging write. This won't handle all
2165 cases optimally, but the possible performance loss should be
2166 negligible. */
2167 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2168 return 0;
2169
a4311dfe
RK
2170 if (nonoverlapping_memrefs_p (x, mem))
2171 return 0;
2172
a13d4ebf
AM
2173 x_addr = get_addr (XEXP (x, 0));
2174
2175 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2176 return 0;
2177
2178 x_addr = canon_rtx (x_addr);
2179 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2180 SIZE_FOR_MODE (x), x_addr, 0))
2181 return 0;
2182
2183 if (aliases_everything_p (x))
2184 return 1;
2185
f5143c46 2186 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2187 at MEM_MODE, rather than GET_MODE (MEM). */
2188 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2189 return 1;
0211b6ab 2190
c6df88cb
MM
2191 /* In true_dependence we also allow BLKmode to alias anything. Why
2192 don't we do this in anti_dependence and output_dependence? */
2193 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2194 return 1;
0211b6ab 2195
eab5c70a
BS
2196 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2197 varies);
9ae8ffe7
JL
2198}
2199
da7d8304 2200/* Returns nonzero if a write to X might alias a previous read from
83a00410 2201 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
d2399d75 2202 honor the RTX_UNCHANGING_P flags on X and MEM. */
9ae8ffe7 2203
2c72b78f 2204static int
d2399d75 2205write_dependence_p (rtx mem, rtx x, int writep, int constp)
9ae8ffe7 2206{
6e73e666 2207 rtx x_addr, mem_addr;
c6df88cb 2208 rtx fixed_scalar;
49982682 2209 rtx base;
6e73e666 2210
9ae8ffe7
JL
2211 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2212 return 1;
2213
c4484b8f
RH
2214 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2215 This is used in epilogue deallocation functions. */
2216 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2217 return 1;
2218 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2219 return 1;
2220
eab5c70a
BS
2221 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2222 return 0;
2223
d2399d75
RS
2224 if (constp)
2225 {
2226 /* Unchanging memory can't conflict with non-unchanging memory. */
2227 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2228 return 0;
b949ea8b 2229
d2399d75
RS
2230 /* If MEM is an unchanging read, then it can't possibly conflict with
2231 the store to X, because there is at most one store to MEM, and it
2232 must have occurred somewhere before MEM. */
2233 if (! writep && RTX_UNCHANGING_P (mem))
2234 return 0;
2235 }
55efb413 2236
a4311dfe
RK
2237 if (nonoverlapping_memrefs_p (x, mem))
2238 return 0;
2239
55efb413
JW
2240 x_addr = get_addr (XEXP (x, 0));
2241 mem_addr = get_addr (XEXP (mem, 0));
2242
49982682
JW
2243 if (! writep)
2244 {
55efb413 2245 base = find_base_term (mem_addr);
49982682
JW
2246 if (base && (GET_CODE (base) == LABEL_REF
2247 || (GET_CODE (base) == SYMBOL_REF
2248 && CONSTANT_POOL_ADDRESS_P (base))))
2249 return 0;
2250 }
2251
eab5c70a
BS
2252 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2253 GET_MODE (mem)))
41472af8
MM
2254 return 0;
2255
eab5c70a
BS
2256 x_addr = canon_rtx (x_addr);
2257 mem_addr = canon_rtx (mem_addr);
6e73e666 2258
c6df88cb
MM
2259 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2260 SIZE_FOR_MODE (x), x_addr, 0))
2261 return 0;
2262
ca7fd9cd 2263 fixed_scalar
eab5c70a
BS
2264 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2265 rtx_addr_varies_p);
2266
c6df88cb
MM
2267 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2268 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2269}
2270
2271/* Anti dependence: X is written after read in MEM takes place. */
2272
2273int
4682ae04 2274anti_dependence (rtx mem, rtx x)
c6df88cb 2275{
d2399d75 2276 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
9ae8ffe7
JL
2277}
2278
2279/* Output dependence: X is written after store in MEM takes place. */
2280
2281int
4682ae04 2282output_dependence (rtx mem, rtx x)
9ae8ffe7 2283{
d2399d75
RS
2284 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2285}
2286
2287/* Unchanging anti dependence: Like anti_dependence but ignores
2288 the UNCHANGING_RTX_P property on const variable references. */
2289
2290int
2291unchanging_anti_dependence (rtx mem, rtx x)
2292{
2293 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
9ae8ffe7 2294}
c14b9960
JW
2295\f
2296/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2297 something which is not local to the function and is not constant. */
7790df19
JW
2298
2299static int
4682ae04 2300nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2301{
c14b9960 2302 rtx x = *loc;
7790df19 2303 rtx base;
7790df19
JW
2304 int regno;
2305
c14b9960
JW
2306 if (! x)
2307 return 0;
7790df19 2308
c14b9960 2309 switch (GET_CODE (x))
7790df19
JW
2310 {
2311 case SUBREG:
2312 if (GET_CODE (SUBREG_REG (x)) == REG)
2313 {
2314 /* Global registers are not local. */
2315 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2316 && global_regs[subreg_regno (x)])
7790df19
JW
2317 return 1;
2318 return 0;
2319 }
2320 break;
2321
2322 case REG:
2323 regno = REGNO (x);
2324 /* Global registers are not local. */
2325 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2326 return 1;
2327 return 0;
2328
2329 case SCRATCH:
2330 case PC:
2331 case CC0:
2332 case CONST_INT:
2333 case CONST_DOUBLE:
69ef87e2 2334 case CONST_VECTOR:
7790df19
JW
2335 case CONST:
2336 case LABEL_REF:
2337 return 0;
2338
2339 case SYMBOL_REF:
2340 /* Constants in the function's constants pool are constant. */
2341 if (CONSTANT_POOL_ADDRESS_P (x))
2342 return 0;
2343 return 1;
2344
2345 case CALL:
bf6d9fd7 2346 /* Non-constant calls and recursion are not local. */
7790df19
JW
2347 return 1;
2348
2349 case MEM:
2350 /* Be overly conservative and consider any volatile memory
2351 reference as not local. */
2352 if (MEM_VOLATILE_P (x))
2353 return 1;
2354 base = find_base_term (XEXP (x, 0));
2355 if (base)
2356 {
b3b5ad95
JL
2357 /* A Pmode ADDRESS could be a reference via the structure value
2358 address or static chain. Such memory references are nonlocal.
2359
2360 Thus, we have to examine the contents of the ADDRESS to find
2361 out if this is a local reference or not. */
2362 if (GET_CODE (base) == ADDRESS
2363 && GET_MODE (base) == Pmode
2364 && (XEXP (base, 0) == stack_pointer_rtx
2365 || XEXP (base, 0) == arg_pointer_rtx
2366#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2367 || XEXP (base, 0) == hard_frame_pointer_rtx
2368#endif
2369 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2370 return 0;
2371 /* Constants in the function's constant pool are constant. */
2372 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2373 return 0;
2374 }
2375 return 1;
2376
bf6d9fd7 2377 case UNSPEC_VOLATILE:
7790df19 2378 case ASM_INPUT:
7790df19
JW
2379 return 1;
2380
bf6d9fd7
JW
2381 case ASM_OPERANDS:
2382 if (MEM_VOLATILE_P (x))
2383 return 1;
2384
2385 /* FALLTHROUGH */
2386
7790df19
JW
2387 default:
2388 break;
2389 }
2390
c14b9960
JW
2391 return 0;
2392}
2393
da7d8304 2394/* Returns nonzero if X might mention something which is not
c14b9960 2395 local to the function and is not constant. */
7790df19 2396
c14b9960 2397static int
4682ae04 2398nonlocal_mentioned_p (rtx x)
c14b9960 2399{
c14b9960
JW
2400 if (INSN_P (x))
2401 {
2402 if (GET_CODE (x) == CALL_INSN)
2403 {
2404 if (! CONST_OR_PURE_CALL_P (x))
2405 return 1;
2406 x = CALL_INSN_FUNCTION_USAGE (x);
2407 if (x == 0)
2408 return 0;
ca7fd9cd 2409 }
c14b9960 2410 else
ca7fd9cd 2411 x = PATTERN (x);
c14b9960
JW
2412 }
2413
2414 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2415}
2416
2417/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2418 something which is not local to the function and is not constant. */
2419
2420static int
4682ae04 2421nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2422{
2423 rtx x = *loc;
2424
2425 if (! x)
2426 return 0;
2427
2428 switch (GET_CODE (x))
2429 {
2430 case MEM:
2431 case REG:
2432 case SYMBOL_REF:
2433 case SUBREG:
2434 return nonlocal_mentioned_p (x);
2435
2436 case CALL:
2437 /* Non-constant calls and recursion are not local. */
2438 return 1;
2439
2440 case SET:
2441 if (nonlocal_mentioned_p (SET_SRC (x)))
2442 return 1;
2443
2444 if (GET_CODE (SET_DEST (x)) == MEM)
2445 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2446
2447 /* If the destination is anything other than a CC0, PC,
2448 MEM, REG, or a SUBREG of a REG that occupies all of
2449 the REG, then X references nonlocal memory if it is
2450 mentioned in the destination. */
2451 if (GET_CODE (SET_DEST (x)) != CC0
2452 && GET_CODE (SET_DEST (x)) != PC
2453 && GET_CODE (SET_DEST (x)) != REG
2454 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2455 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2456 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2457 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2458 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2459 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2460 return nonlocal_mentioned_p (SET_DEST (x));
2461 return 0;
2462
2463 case CLOBBER:
2464 if (GET_CODE (XEXP (x, 0)) == MEM)
2465 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2466 return 0;
2467
2468 case USE:
2469 return nonlocal_mentioned_p (XEXP (x, 0));
2470
2471 case ASM_INPUT:
2472 case UNSPEC_VOLATILE:
2473 return 1;
2474
2475 case ASM_OPERANDS:
2476 if (MEM_VOLATILE_P (x))
2477 return 1;
2478
2479 /* FALLTHROUGH */
2480
2481 default:
2482 break;
2483 }
2484
2485 return 0;
2486}
2487
da7d8304 2488/* Returns nonzero if X might reference something which is not
c14b9960
JW
2489 local to the function and is not constant. */
2490
2491static int
4682ae04 2492nonlocal_referenced_p (rtx x)
c14b9960 2493{
c14b9960
JW
2494 if (INSN_P (x))
2495 {
2496 if (GET_CODE (x) == CALL_INSN)
2497 {
2498 if (! CONST_OR_PURE_CALL_P (x))
2499 return 1;
2500 x = CALL_INSN_FUNCTION_USAGE (x);
2501 if (x == 0)
2502 return 0;
ca7fd9cd 2503 }
c14b9960 2504 else
ca7fd9cd 2505 x = PATTERN (x);
c14b9960
JW
2506 }
2507
2508 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2509}
2510
2511/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2512 something which is not local to the function and is not constant. */
2513
2514static int
4682ae04 2515nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2516{
2517 rtx x = *loc;
2518
2519 if (! x)
2520 return 0;
2521
2522 switch (GET_CODE (x))
2523 {
2524 case CALL:
2525 /* Non-constant calls and recursion are not local. */
2526 return 1;
2527
2528 case PRE_INC:
2529 case PRE_DEC:
2530 case POST_INC:
2531 case POST_DEC:
2532 case PRE_MODIFY:
2533 case POST_MODIFY:
2534 return nonlocal_mentioned_p (XEXP (x, 0));
2535
2536 case SET:
2537 if (nonlocal_mentioned_p (SET_DEST (x)))
2538 return 1;
2539 return nonlocal_set_p (SET_SRC (x));
2540
2541 case CLOBBER:
2542 return nonlocal_mentioned_p (XEXP (x, 0));
2543
2544 case USE:
2545 return 0;
2546
2547 case ASM_INPUT:
2548 case UNSPEC_VOLATILE:
2549 return 1;
2550
2551 case ASM_OPERANDS:
2552 if (MEM_VOLATILE_P (x))
2553 return 1;
2554
2555 /* FALLTHROUGH */
2556
2557 default:
2558 break;
2559 }
7790df19
JW
2560
2561 return 0;
2562}
2563
da7d8304 2564/* Returns nonzero if X might set something which is not
c14b9960
JW
2565 local to the function and is not constant. */
2566
2567static int
4682ae04 2568nonlocal_set_p (rtx x)
c14b9960 2569{
c14b9960
JW
2570 if (INSN_P (x))
2571 {
2572 if (GET_CODE (x) == CALL_INSN)
2573 {
2574 if (! CONST_OR_PURE_CALL_P (x))
2575 return 1;
2576 x = CALL_INSN_FUNCTION_USAGE (x);
2577 if (x == 0)
2578 return 0;
ca7fd9cd 2579 }
c14b9960 2580 else
ca7fd9cd 2581 x = PATTERN (x);
c14b9960
JW
2582 }
2583
2584 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2585}
2586
c57ddcf1 2587/* Mark the function if it is pure or constant. */
7790df19
JW
2588
2589void
4682ae04 2590mark_constant_function (void)
7790df19
JW
2591{
2592 rtx insn;
c14b9960 2593 int nonlocal_memory_referenced;
7790df19 2594
ab780373 2595 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2596 || DECL_IS_PURE (current_function_decl)
7790df19 2597 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2598 || current_function_has_nonlocal_goto
2599 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2600 return;
2601
e004f2f7 2602 /* A loop might not return which counts as a side effect. */
0ecf09f9 2603 if (mark_dfs_back_edges ())
e004f2f7
JW
2604 return;
2605
c14b9960 2606 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2607
2608 init_alias_analysis ();
2609
c14b9960 2610 /* Determine if this is a constant or pure function. */
7790df19
JW
2611
2612 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2613 {
2614 if (! INSN_P (insn))
2615 continue;
bf6d9fd7 2616
c14b9960
JW
2617 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2618 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2619 break;
7790df19 2620
c14b9960
JW
2621 if (! nonlocal_memory_referenced)
2622 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2623 }
ca7fd9cd 2624
c14b9960 2625 end_alias_analysis ();
ca7fd9cd 2626
7790df19 2627 /* Mark the function. */
ca7fd9cd 2628
c14b9960
JW
2629 if (insn)
2630 ;
2631 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2632 {
2633 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2634 DECL_IS_PURE (current_function_decl) = 1;
2635 }
c14b9960 2636 else
c57ddcf1
RS
2637 {
2638 cgraph_rtl_info (current_function_decl)->const_function = 1;
2639 TREE_READONLY (current_function_decl) = 1;
2640 }
7790df19 2641}
c14b9960 2642\f
6e73e666 2643
6e73e666 2644void
4682ae04 2645init_alias_once (void)
6e73e666 2646{
b3694847 2647 int i;
6e73e666
JC
2648
2649#ifndef OUTGOING_REGNO
2650#define OUTGOING_REGNO(N) N
2651#endif
2652 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2653 /* Check whether this register can hold an incoming pointer
2654 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2655 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2656 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2657 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2658 static_reg_base_value[i]
2659 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2660
bf1660a6
JL
2661 static_reg_base_value[STACK_POINTER_REGNUM]
2662 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2663 static_reg_base_value[ARG_POINTER_REGNUM]
2664 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2665 static_reg_base_value[FRAME_POINTER_REGNUM]
2666 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2667#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2668 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2669 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2670#endif
7f243674
JL
2671
2672 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
bf1660a6
JL
2673}
2674
7b52eede
JH
2675/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2676 to be memory reference. */
2677static bool memory_modified;
2678static void
4682ae04 2679memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2680{
2681 if (GET_CODE (x) == MEM)
2682 {
2683 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2684 memory_modified = true;
2685 }
2686}
2687
2688
2689/* Return true when INSN possibly modify memory contents of MEM
2690 (ie address can be modified). */
2691bool
4682ae04 2692memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2693{
2694 if (!INSN_P (insn))
2695 return false;
2696 memory_modified = false;
2697 note_stores (PATTERN (insn), memory_modified_1, mem);
2698 return memory_modified;
2699}
2700
c13e8210
MM
2701/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2702 array. */
2703
9ae8ffe7 2704void
4682ae04 2705init_alias_analysis (void)
9ae8ffe7
JL
2706{
2707 int maxreg = max_reg_num ();
ea64ef27 2708 int changed, pass;
b3694847
SS
2709 int i;
2710 unsigned int ui;
2711 rtx insn;
9ae8ffe7 2712
0d446150
JH
2713 timevar_push (TV_ALIAS_ANALYSIS);
2714
9ae8ffe7
JL
2715 reg_known_value_size = maxreg;
2716
ca7fd9cd 2717 reg_known_value
e05e2395
MM
2718 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2719 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2720 reg_known_equiv_p
e05e2395 2721 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2722 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2723
6e73e666
JC
2724 /* Overallocate reg_base_value to allow some growth during loop
2725 optimization. Loop unrolling can create a large number of
2726 registers. */
2727 reg_base_value_size = maxreg * 2;
703ad42b 2728 reg_base_value = ggc_alloc_cleared (reg_base_value_size * sizeof (rtx));
ac606739 2729
703ad42b
KG
2730 new_reg_base_value = xmalloc (reg_base_value_size * sizeof (rtx));
2731 reg_seen = xmalloc (reg_base_value_size);
b17d5d7c 2732 if (! reload_completed && flag_old_unroll_loops)
de12be17 2733 {
ac606739 2734 /* ??? Why are we realloc'ing if we're just going to zero it? */
703ad42b
KG
2735 alias_invariant = xrealloc (alias_invariant,
2736 reg_base_value_size * sizeof (rtx));
2737 memset (alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2738 }
ec907dd8
JL
2739
2740 /* The basic idea is that each pass through this loop will use the
2741 "constant" information from the previous pass to propagate alias
2742 information through another level of assignments.
2743
2744 This could get expensive if the assignment chains are long. Maybe
2745 we should throttle the number of iterations, possibly based on
6e73e666 2746 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2747
2748 We could propagate more information in the first pass by making use
2749 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2750 for a pseudo is "constant".
2751
2752 A program with an uninitialized variable can cause an infinite loop
2753 here. Instead of doing a full dataflow analysis to detect such problems
2754 we just cap the number of iterations for the loop.
2755
2756 The state of the arrays for the set chain in question does not matter
2757 since the program has undefined behavior. */
6e73e666 2758
ea64ef27 2759 pass = 0;
6e73e666 2760 do
ec907dd8
JL
2761 {
2762 /* Assume nothing will change this iteration of the loop. */
2763 changed = 0;
2764
ec907dd8
JL
2765 /* We want to assign the same IDs each iteration of this loop, so
2766 start counting from zero each iteration of the loop. */
2767 unique_id = 0;
2768
f5143c46 2769 /* We're at the start of the function each iteration through the
ec907dd8 2770 loop, so we're copying arguments. */
83bbd9b6 2771 copying_arguments = true;
9ae8ffe7 2772
6e73e666 2773 /* Wipe the potential alias information clean for this pass. */
703ad42b 2774 memset (new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2775
6e73e666 2776 /* Wipe the reg_seen array clean. */
703ad42b 2777 memset (reg_seen, 0, reg_base_value_size);
9ae8ffe7 2778
6e73e666
JC
2779 /* Mark all hard registers which may contain an address.
2780 The stack, frame and argument pointers may contain an address.
2781 An argument register which can hold a Pmode value may contain
2782 an address even if it is not in BASE_REGS.
8072f69c 2783
6e73e666
JC
2784 The address expression is VOIDmode for an argument and
2785 Pmode for other registers. */
2786
7f243674
JL
2787 memcpy (new_reg_base_value, static_reg_base_value,
2788 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2789
ec907dd8
JL
2790 /* Walk the insns adding values to the new_reg_base_value array. */
2791 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2792 {
2c3c49de 2793 if (INSN_P (insn))
ec907dd8 2794 {
6e73e666 2795 rtx note, set;
efc9bd41
RK
2796
2797#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2798 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2799 insn chain until after reload has completed. Thus,
2800 there is no sense wasting time checking if INSN is in
2801 the prologue/epilogue until after reload has completed. */
2802 if (reload_completed
2803 && prologue_epilogue_contains (insn))
efc9bd41
RK
2804 continue;
2805#endif
2806
ec907dd8
JL
2807 /* If this insn has a noalias note, process it, Otherwise,
2808 scan for sets. A simple set will have no side effects
ec5c56db 2809 which could change the base value of any other register. */
6e73e666 2810
ec907dd8 2811 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2812 && REG_NOTES (insn) != 0
2813 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2814 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2815 else
84832317 2816 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2817
2818 set = single_set (insn);
2819
2820 if (set != 0
2821 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2822 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2823 {
fb6754f0 2824 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2825 rtx src = SET_SRC (set);
2826
2827 if (REG_NOTES (insn) != 0
2828 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2829 && REG_N_SETS (regno) == 1)
2830 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2831 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2832 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2833 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2834 {
2835 reg_known_value[regno] = XEXP (note, 0);
2836 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2837 }
2838 else if (REG_N_SETS (regno) == 1
2839 && GET_CODE (src) == PLUS
2840 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2841 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2842 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2843 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2844 {
2845 rtx op0 = XEXP (src, 0);
bb2cf916 2846 op0 = reg_known_value[REGNO (op0)];
713f41f9 2847 reg_known_value[regno]
ed8908e7 2848 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2849 reg_known_equiv_p[regno] = 0;
2850 }
2851 else if (REG_N_SETS (regno) == 1
2852 && ! rtx_varies_p (src, 1))
2853 {
2854 reg_known_value[regno] = src;
2855 reg_known_equiv_p[regno] = 0;
2856 }
6e73e666 2857 }
ec907dd8
JL
2858 }
2859 else if (GET_CODE (insn) == NOTE
2860 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2861 copying_arguments = false;
6e73e666 2862 }
ec907dd8 2863
6e73e666 2864 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2865 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2866 {
e51712db
KG
2867 if (new_reg_base_value[ui]
2868 && new_reg_base_value[ui] != reg_base_value[ui]
2869 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2870 {
e51712db 2871 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2872 changed = 1;
ec907dd8 2873 }
9ae8ffe7 2874 }
9ae8ffe7 2875 }
6e73e666 2876 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2877
2878 /* Fill in the remaining entries. */
2879 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2880 if (reg_known_value[i] == 0)
2881 reg_known_value[i] = regno_reg_rtx[i];
2882
9ae8ffe7
JL
2883 /* Simplify the reg_base_value array so that no register refers to
2884 another register, except to special registers indirectly through
2885 ADDRESS expressions.
2886
2887 In theory this loop can take as long as O(registers^2), but unless
2888 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2889 time.
2890
2891 This loop may not be needed any longer now that the main loop does
2892 a better job at propagating alias information. */
2893 pass = 0;
9ae8ffe7
JL
2894 do
2895 {
2896 changed = 0;
ea64ef27 2897 pass++;
e51712db 2898 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2899 {
e51712db 2900 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2901 if (base && GET_CODE (base) == REG)
2902 {
fb6754f0 2903 unsigned int base_regno = REGNO (base);
e51712db
KG
2904 if (base_regno == ui) /* register set from itself */
2905 reg_base_value[ui] = 0;
9ae8ffe7 2906 else
e51712db 2907 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2908 changed = 1;
2909 }
2910 }
2911 }
ea64ef27 2912 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2913
e05e2395
MM
2914 /* Clean up. */
2915 free (new_reg_base_value);
ec907dd8 2916 new_reg_base_value = 0;
e05e2395 2917 free (reg_seen);
9ae8ffe7 2918 reg_seen = 0;
0d446150 2919 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2920}
2921
2922void
4682ae04 2923end_alias_analysis (void)
9ae8ffe7 2924{
e05e2395 2925 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2926 reg_known_value = 0;
ac606739 2927 reg_known_value_size = 0;
e05e2395
MM
2928 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2929 reg_known_equiv_p = 0;
e2500fed 2930 reg_base_value = 0;
9ae8ffe7 2931 reg_base_value_size = 0;
de12be17
JC
2932 if (alias_invariant)
2933 {
ac606739 2934 free (alias_invariant);
de12be17
JC
2935 alias_invariant = 0;
2936 }
9ae8ffe7 2937}
e2500fed
GK
2938
2939#include "gt-alias.h"
This page took 1.325516 seconds and 5 git commands to generate.