]> gcc.gnu.org Git - gcc.git/blame - gcc/alias.c
c-pragma.c (apply_pragma_weak): Don't use warning_with_decl.
[gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
3932261a
MM
45
46/* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
3932261a
MM
50
51 struct S {int i; double d; };
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
ac3d9668
RK
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
3bdf5ad1
RK
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
95bd1dd7 69 past immediate descendants, however, since we propagate all
3bdf5ad1 70 grandchildren up one level.
3932261a
MM
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
d4b60170
RK
76typedef struct alias_set_entry
77{
3932261a 78 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 79 HOST_WIDE_INT alias_set;
3932261a
MM
80
81 /* The children of the alias set. These are not just the immediate
95bd1dd7 82 children, but, in fact, all descendants. So, if we have:
3932261a 83
ca7fd9cd 84 struct T { struct S s; float f; }
3932261a
MM
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
2bf105ab
RK
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
d4b60170 93} *alias_set_entry;
9ae8ffe7 94
4682ae04
AJ
95static int rtx_equal_for_memref_p (rtx, rtx);
96static rtx find_symbolic_term (rtx);
4682ae04
AJ
97static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
98static void record_set (rtx, rtx, void *);
99static int base_alias_check (rtx, rtx, enum machine_mode,
100 enum machine_mode);
101static rtx find_base_value (rtx);
102static int mems_in_disjoint_alias_sets_p (rtx, rtx);
103static int insert_subset_children (splay_tree_node, void*);
104static tree find_base_decl (tree);
105static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
106static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
107 int (*) (rtx, int));
108static int aliases_everything_p (rtx);
109static bool nonoverlapping_component_refs_p (tree, tree);
110static tree decl_for_component_ref (tree);
111static rtx adjust_offset_for_component_ref (tree, rtx);
112static int nonoverlapping_memrefs_p (rtx, rtx);
113static int write_dependence_p (rtx, rtx, int);
114
115static int nonlocal_mentioned_p_1 (rtx *, void *);
116static int nonlocal_mentioned_p (rtx);
117static int nonlocal_referenced_p_1 (rtx *, void *);
118static int nonlocal_referenced_p (rtx);
119static int nonlocal_set_p_1 (rtx *, void *);
120static int nonlocal_set_p (rtx);
121static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
122
123/* Set up all info needed to perform alias analysis on memory references. */
124
d4b60170 125/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
126#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
41472af8 128/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 134
ea64ef27 135/* Cap the number of passes we make over the insns propagating alias
ac3d9668 136 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 137#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 138
9ae8ffe7
JL
139/* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
ca7fd9cd 147 the stack, frame, and argument pointers.
b3b5ad95
JL
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
2a2c8203 157
e2500fed 158static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 159static rtx *new_reg_base_value;
d4b60170
RK
160static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
bf1660a6
JL
162/* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
9ae8ffe7 166#define REG_BASE_VALUE(X) \
fb6754f0
BS
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 169
de12be17
JC
170/* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178static rtx *alias_invariant;
179
c13e8210
MM
180/* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
9ae8ffe7
JL
184rtx *reg_known_value;
185
186/* Indicates number of valid entries in reg_known_value. */
770ae6cc 187static unsigned int reg_known_value_size;
9ae8ffe7
JL
188
189/* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
9ae8ffe7
JL
201char *reg_known_equiv_p;
202
2a2c8203
JC
203/* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 205static bool copying_arguments;
9ae8ffe7 206
3932261a 207/* The splay-tree used to store the various alias set entries. */
3932261a 208static splay_tree alias_sets;
ac3d9668 209\f
3932261a
MM
210/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213static alias_set_entry
4682ae04 214get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 215{
d4b60170
RK
216 splay_tree_node sn
217 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 218
d4b60170 219 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
220}
221
ac3d9668
RK
222/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
223 the two MEMs cannot alias each other. */
3932261a 224
ca7fd9cd 225static int
4682ae04 226mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 227{
ca7fd9cd 228#ifdef ENABLE_CHECKING
3932261a
MM
229/* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
d4b60170
RK
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
238 abort ();
239#endif
240
1da68f56
RK
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
242}
3932261a 243
1da68f56
RK
244/* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
246
247static int
4682ae04 248insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
249{
250 splay_tree_insert ((splay_tree) data, node->key, node->value);
251
252 return 0;
253}
254
255/* Return 1 if the two specified alias sets may conflict. */
256
257int
4682ae04 258alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
259{
260 alias_set_entry ase;
261
262 /* If have no alias set information for one of the operands, we have
263 to assume it can alias anything. */
264 if (set1 == 0 || set2 == 0
265 /* If the two alias sets are the same, they may alias. */
266 || set1 == set2)
267 return 1;
3932261a 268
3bdf5ad1 269 /* See if the first alias set is a subset of the second. */
1da68f56 270 ase = get_alias_set_entry (set1);
2bf105ab
RK
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
1da68f56
RK
274 (splay_tree_key) set2)))
275 return 1;
3932261a
MM
276
277 /* Now do the same, but with the alias sets reversed. */
1da68f56 278 ase = get_alias_set_entry (set2);
2bf105ab
RK
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
1da68f56
RK
282 (splay_tree_key) set1)))
283 return 1;
3932261a 284
1da68f56 285 /* The two alias sets are distinct and neither one is the
3932261a 286 child of the other. Therefore, they cannot alias. */
1da68f56 287 return 0;
3932261a 288}
1da68f56
RK
289\f
290/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
291 has any readonly fields. If any of the fields have types that
292 contain readonly fields, return true as well. */
3932261a 293
1da68f56 294int
4682ae04 295readonly_fields_p (tree type)
3932261a 296{
1da68f56
RK
297 tree field;
298
299 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
300 && TREE_CODE (type) != QUAL_UNION_TYPE)
301 return 0;
302
303 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
304 if (TREE_CODE (field) == FIELD_DECL
305 && (TREE_READONLY (field)
306 || readonly_fields_p (TREE_TYPE (field))))
307 return 1;
3932261a
MM
308
309 return 0;
310}
3bdf5ad1 311\f
1da68f56
RK
312/* Return 1 if any MEM object of type T1 will always conflict (using the
313 dependency routines in this file) with any MEM object of type T2.
314 This is used when allocating temporary storage. If T1 and/or T2 are
315 NULL_TREE, it means we know nothing about the storage. */
316
317int
4682ae04 318objects_must_conflict_p (tree t1, tree t2)
1da68f56 319{
82d610ec
RK
320 HOST_WIDE_INT set1, set2;
321
e8ea2809
RK
322 /* If neither has a type specified, we don't know if they'll conflict
323 because we may be using them to store objects of various types, for
324 example the argument and local variables areas of inlined functions. */
981a4c34 325 if (t1 == 0 && t2 == 0)
e8ea2809
RK
326 return 0;
327
66cce54d
RH
328 /* If one or the other has readonly fields or is readonly,
329 then they may not conflict. */
330 if ((t1 != 0 && readonly_fields_p (t1))
331 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
332 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
333 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
334 return 0;
335
1da68f56
RK
336 /* If they are the same type, they must conflict. */
337 if (t1 == t2
338 /* Likewise if both are volatile. */
339 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
340 return 1;
341
82d610ec
RK
342 set1 = t1 ? get_alias_set (t1) : 0;
343 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 344
82d610ec
RK
345 /* Otherwise they conflict if they have no alias set or the same. We
346 can't simply use alias_sets_conflict_p here, because we must make
347 sure that every subtype of t1 will conflict with every subtype of
348 t2 for which a pair of subobjects of these respective subtypes
349 overlaps on the stack. */
350 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
351}
352\f
3bdf5ad1
RK
353/* T is an expression with pointer type. Find the DECL on which this
354 expression is based. (For example, in `a[i]' this would be `a'.)
355 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 356 NULL_TREE is returned. */
3bdf5ad1
RK
357
358static tree
4682ae04 359find_base_decl (tree t)
3bdf5ad1
RK
360{
361 tree d0, d1, d2;
362
363 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
364 return 0;
365
366 /* If this is a declaration, return it. */
367 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
368 return t;
369
370 /* Handle general expressions. It would be nice to deal with
371 COMPONENT_REFs here. If we could tell that `a' and `b' were the
372 same, then `a->f' and `b->f' are also the same. */
373 switch (TREE_CODE_CLASS (TREE_CODE (t)))
374 {
375 case '1':
376 return find_base_decl (TREE_OPERAND (t, 0));
377
378 case '2':
379 /* Return 0 if found in neither or both are the same. */
380 d0 = find_base_decl (TREE_OPERAND (t, 0));
381 d1 = find_base_decl (TREE_OPERAND (t, 1));
382 if (d0 == d1)
383 return d0;
384 else if (d0 == 0)
385 return d1;
386 else if (d1 == 0)
387 return d0;
388 else
389 return 0;
390
391 case '3':
392 d0 = find_base_decl (TREE_OPERAND (t, 0));
393 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
394 d2 = find_base_decl (TREE_OPERAND (t, 2));
395
396 /* Set any nonzero values from the last, then from the first. */
397 if (d1 == 0) d1 = d2;
398 if (d0 == 0) d0 = d1;
399 if (d1 == 0) d1 = d0;
400 if (d2 == 0) d2 = d1;
401
402 /* At this point all are nonzero or all are zero. If all three are the
403 same, return it. Otherwise, return zero. */
404 return (d0 == d1 && d1 == d2) ? d0 : 0;
405
406 default:
407 return 0;
408 }
409}
410
6e24b709
RK
411/* Return 1 if all the nested component references handled by
412 get_inner_reference in T are such that we can address the object in T. */
413
10b76d73 414int
4682ae04 415can_address_p (tree t)
6e24b709
RK
416{
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t))
419 return 1;
420
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t) == BIT_FIELD_REF)
423 return 0;
424
8ac61af7
RK
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
6e24b709
RK
427 else if (TREE_CODE (t) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
430 && can_address_p (TREE_OPERAND (t, 0)))
431 return 1;
432
8ac61af7 433 /* Likewise for arrays. */
b4e3fabb 434 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
437 && can_address_p (TREE_OPERAND (t, 0)))
438 return 1;
439
440 return 0;
441}
442
3bdf5ad1
RK
443/* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
445
446HOST_WIDE_INT
4682ae04 447get_alias_set (tree t)
3bdf5ad1
RK
448{
449 HOST_WIDE_INT set;
3bdf5ad1
RK
450
451 /* If we're not doing any alias analysis, just assume everything
452 aliases everything else. Also return 0 if this or its type is
453 an error. */
454 if (! flag_strict_aliasing || t == error_mark_node
455 || (! TYPE_P (t)
456 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
457 return 0;
458
459 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
460 language-specific routine may make mutually-recursive calls to each other
461 to figure out what to do. At each juncture, we see if this is a tree
462 that the language may need to handle specially. First handle things that
738cc472 463 aren't types. */
f824e5c3 464 if (! TYPE_P (t))
3bdf5ad1 465 {
738cc472
RK
466 tree inner = t;
467 tree placeholder_ptr = 0;
468
8ac61af7
RK
469 /* Remove any nops, then give the language a chance to do
470 something with this tree before we look at it. */
471 STRIP_NOPS (t);
472 set = (*lang_hooks.get_alias_set) (t);
473 if (set != -1)
474 return set;
475
738cc472 476 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 477 restrict-qualified pointer or a "void *". Replace
738cc472 478 PLACEHOLDER_EXPRs. */
8ac61af7 479 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
480 || handled_component_p (inner))
481 {
482 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
483 inner = find_placeholder (inner, &placeholder_ptr);
484 else
485 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
486
487 STRIP_NOPS (inner);
738cc472
RK
488 }
489
490 /* Check for accesses through restrict-qualified pointers. */
491 if (TREE_CODE (inner) == INDIRECT_REF)
492 {
493 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
494
495 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
496 {
e5837c07 497 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
498 if (DECL_POINTER_ALIAS_SET (decl) == -2)
499 {
500 /* No two restricted pointers can point at the same thing.
501 However, a restricted pointer can point at the same thing
502 as an unrestricted pointer, if that unrestricted pointer
503 is based on the restricted pointer. So, we make the
504 alias set for the restricted pointer a subset of the
505 alias set for the type pointed to by the type of the
506 decl. */
507 HOST_WIDE_INT pointed_to_alias_set
508 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
509
510 if (pointed_to_alias_set == 0)
511 /* It's not legal to make a subset of alias set zero. */
512 ;
513 else
514 {
515 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
516 record_alias_subset (pointed_to_alias_set,
517 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
518 }
519 }
520
521 /* We use the alias set indicated in the declaration. */
522 return DECL_POINTER_ALIAS_SET (decl);
523 }
524
525 /* If we have an INDIRECT_REF via a void pointer, we don't
526 know anything about what that might alias. */
527 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
528 return 0;
529 }
530
531 /* Otherwise, pick up the outermost object that we could have a pointer
532 to, processing conversion and PLACEHOLDER_EXPR as above. */
533 placeholder_ptr = 0;
8ac61af7 534 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
535 || (handled_component_p (t) && ! can_address_p (t)))
536 {
f47e9b4e 537 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 538 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
539 else
540 t = TREE_OPERAND (t, 0);
f824e5c3 541
8ac61af7
RK
542 STRIP_NOPS (t);
543 }
f824e5c3 544
738cc472
RK
545 /* If we've already determined the alias set for a decl, just return
546 it. This is necessary for C++ anonymous unions, whose component
547 variables don't look like union members (boo!). */
5755cd38
JM
548 if (TREE_CODE (t) == VAR_DECL
549 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
550 return MEM_ALIAS_SET (DECL_RTL (t));
551
f824e5c3
RK
552 /* Now all we care about is the type. */
553 t = TREE_TYPE (t);
3bdf5ad1
RK
554 }
555
3bdf5ad1
RK
556 /* Variant qualifiers don't affect the alias set, so get the main
557 variant. If this is a type with a known alias set, return it. */
558 t = TYPE_MAIN_VARIANT (t);
738cc472 559 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
560 return TYPE_ALIAS_SET (t);
561
562 /* See if the language has special handling for this type. */
8ac61af7
RK
563 set = (*lang_hooks.get_alias_set) (t);
564 if (set != -1)
738cc472 565 return set;
2bf105ab 566
3bdf5ad1
RK
567 /* There are no objects of FUNCTION_TYPE, so there's no point in
568 using up an alias set for them. (There are, of course, pointers
569 and references to functions, but that's different.) */
570 else if (TREE_CODE (t) == FUNCTION_TYPE)
571 set = 0;
74d86f4f
RH
572
573 /* Unless the language specifies otherwise, let vector types alias
574 their components. This avoids some nasty type punning issues in
575 normal usage. And indeed lets vectors be treated more like an
576 array slice. */
577 else if (TREE_CODE (t) == VECTOR_TYPE)
578 set = get_alias_set (TREE_TYPE (t));
579
3bdf5ad1
RK
580 else
581 /* Otherwise make a new alias set for this type. */
582 set = new_alias_set ();
583
584 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
585
586 /* If this is an aggregate type, we must record any component aliasing
587 information. */
1d79fd2c 588 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
589 record_component_aliases (t);
590
3bdf5ad1
RK
591 return set;
592}
593
594/* Return a brand-new alias set. */
595
596HOST_WIDE_INT
4682ae04 597new_alias_set (void)
3bdf5ad1
RK
598{
599 static HOST_WIDE_INT last_alias_set;
600
601 if (flag_strict_aliasing)
602 return ++last_alias_set;
603 else
604 return 0;
605}
3932261a
MM
606
607/* Indicate that things in SUBSET can alias things in SUPERSET, but
608 not vice versa. For example, in C, a store to an `int' can alias a
609 structure containing an `int', but not vice versa. Here, the
610 structure would be the SUPERSET and `int' the SUBSET. This
ca7fd9cd 611 function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
612
613 It is illegal for SUPERSET to be zero; everything is implicitly a
614 subset of alias set zero. */
615
616void
4682ae04 617record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
618{
619 alias_set_entry superset_entry;
620 alias_set_entry subset_entry;
621
f47e9b4e
RK
622 /* It is possible in complex type situations for both sets to be the same,
623 in which case we can ignore this operation. */
624 if (superset == subset)
625 return;
626
3932261a
MM
627 if (superset == 0)
628 abort ();
629
630 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 631 if (superset_entry == 0)
3932261a
MM
632 {
633 /* Create an entry for the SUPERSET, so that we have a place to
634 attach the SUBSET. */
d4b60170
RK
635 superset_entry
636 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
3932261a 637 superset_entry->alias_set = superset;
ca7fd9cd 638 superset_entry->children
30f72379 639 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 640 superset_entry->has_zero_child = 0;
d4b60170 641 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a 642 (splay_tree_value) superset_entry);
3932261a
MM
643 }
644
2bf105ab
RK
645 if (subset == 0)
646 superset_entry->has_zero_child = 1;
647 else
648 {
649 subset_entry = get_alias_set_entry (subset);
650 /* If there is an entry for the subset, enter all of its children
651 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 652 if (subset_entry)
2bf105ab
RK
653 {
654 if (subset_entry->has_zero_child)
655 superset_entry->has_zero_child = 1;
d4b60170 656
2bf105ab
RK
657 splay_tree_foreach (subset_entry->children, insert_subset_children,
658 superset_entry->children);
659 }
3932261a 660
2bf105ab 661 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 662 splay_tree_insert (superset_entry->children,
2bf105ab
RK
663 (splay_tree_key) subset, 0);
664 }
3932261a
MM
665}
666
a0c33338
RK
667/* Record that component types of TYPE, if any, are part of that type for
668 aliasing purposes. For record types, we only record component types
669 for fields that are marked addressable. For array types, we always
670 record the component types, so the front end should not call this
671 function if the individual component aren't addressable. */
672
673void
4682ae04 674record_component_aliases (tree type)
a0c33338 675{
3bdf5ad1 676 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
677 tree field;
678
679 if (superset == 0)
680 return;
681
682 switch (TREE_CODE (type))
683 {
684 case ARRAY_TYPE:
2bf105ab
RK
685 if (! TYPE_NONALIASED_COMPONENT (type))
686 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
687 break;
688
689 case RECORD_TYPE:
690 case UNION_TYPE:
691 case QUAL_UNION_TYPE:
61eece67
DN
692 /* Recursively record aliases for the base classes, if there are any */
693 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
694 {
695 int i;
696 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
697 {
698 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
699 record_alias_subset (superset,
61eece67 700 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
701 }
702 }
a0c33338 703 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 704 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 705 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
706 break;
707
1d79fd2c
JW
708 case COMPLEX_TYPE:
709 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
710 break;
711
a0c33338
RK
712 default:
713 break;
714 }
715}
716
3bdf5ad1
RK
717/* Allocate an alias set for use in storing and reading from the varargs
718 spill area. */
719
720HOST_WIDE_INT
4682ae04 721get_varargs_alias_set (void)
3bdf5ad1
RK
722{
723 static HOST_WIDE_INT set = -1;
724
725 if (set == -1)
726 set = new_alias_set ();
727
728 return set;
729}
730
731/* Likewise, but used for the fixed portions of the frame, e.g., register
732 save areas. */
733
734HOST_WIDE_INT
4682ae04 735get_frame_alias_set (void)
3bdf5ad1
RK
736{
737 static HOST_WIDE_INT set = -1;
738
739 if (set == -1)
740 set = new_alias_set ();
741
742 return set;
743}
744
2a2c8203
JC
745/* Inside SRC, the source of a SET, find a base address. */
746
9ae8ffe7 747static rtx
4682ae04 748find_base_value (rtx src)
9ae8ffe7 749{
713f41f9 750 unsigned int regno;
0aacc8ed 751
9ae8ffe7
JL
752 switch (GET_CODE (src))
753 {
754 case SYMBOL_REF:
755 case LABEL_REF:
756 return src;
757
758 case REG:
fb6754f0 759 regno = REGNO (src);
d4b60170 760 /* At the start of a function, argument registers have known base
2a2c8203
JC
761 values which may be lost later. Returning an ADDRESS
762 expression here allows optimization based on argument values
763 even when the argument registers are used for other purposes. */
713f41f9
BS
764 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
765 return new_reg_base_value[regno];
73774bc7 766
eaf407a5 767 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
768 for non-fixed hard regs since it can result in a circular
769 dependency chain for registers which have values at function entry.
eaf407a5
JL
770
771 The test above is not sufficient because the scheduler may move
772 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 773 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
774 && regno < reg_base_value_size)
775 {
776 /* If we're inside init_alias_analysis, use new_reg_base_value
777 to reduce the number of relaxation iterations. */
1afdf91c
RH
778 if (new_reg_base_value && new_reg_base_value[regno]
779 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
780 return new_reg_base_value[regno];
781
782 if (reg_base_value[regno])
783 return reg_base_value[regno];
784 }
73774bc7 785
9ae8ffe7
JL
786 return src;
787
788 case MEM:
789 /* Check for an argument passed in memory. Only record in the
790 copying-arguments block; it is too hard to track changes
791 otherwise. */
792 if (copying_arguments
793 && (XEXP (src, 0) == arg_pointer_rtx
794 || (GET_CODE (XEXP (src, 0)) == PLUS
795 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 796 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
797 return 0;
798
799 case CONST:
800 src = XEXP (src, 0);
801 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
802 break;
d4b60170 803
ec5c56db 804 /* ... fall through ... */
2a2c8203 805
9ae8ffe7
JL
806 case PLUS:
807 case MINUS:
2a2c8203 808 {
ec907dd8
JL
809 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
810
0134bf2d
DE
811 /* If either operand is a REG that is a known pointer, then it
812 is the base. */
813 if (REG_P (src_0) && REG_POINTER (src_0))
814 return find_base_value (src_0);
815 if (REG_P (src_1) && REG_POINTER (src_1))
816 return find_base_value (src_1);
817
ec907dd8
JL
818 /* If either operand is a REG, then see if we already have
819 a known value for it. */
0134bf2d 820 if (REG_P (src_0))
ec907dd8
JL
821 {
822 temp = find_base_value (src_0);
d4b60170 823 if (temp != 0)
ec907dd8
JL
824 src_0 = temp;
825 }
826
0134bf2d 827 if (REG_P (src_1))
ec907dd8
JL
828 {
829 temp = find_base_value (src_1);
d4b60170 830 if (temp!= 0)
ec907dd8
JL
831 src_1 = temp;
832 }
2a2c8203 833
0134bf2d
DE
834 /* If either base is named object or a special address
835 (like an argument or stack reference), then use it for the
836 base term. */
837 if (src_0 != 0
838 && (GET_CODE (src_0) == SYMBOL_REF
839 || GET_CODE (src_0) == LABEL_REF
840 || (GET_CODE (src_0) == ADDRESS
841 && GET_MODE (src_0) != VOIDmode)))
842 return src_0;
843
844 if (src_1 != 0
845 && (GET_CODE (src_1) == SYMBOL_REF
846 || GET_CODE (src_1) == LABEL_REF
847 || (GET_CODE (src_1) == ADDRESS
848 && GET_MODE (src_1) != VOIDmode)))
849 return src_1;
850
d4b60170 851 /* Guess which operand is the base address:
ec907dd8
JL
852 If either operand is a symbol, then it is the base. If
853 either operand is a CONST_INT, then the other is the base. */
d4b60170 854 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 855 return find_base_value (src_0);
d4b60170 856 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
857 return find_base_value (src_1);
858
9ae8ffe7 859 return 0;
2a2c8203
JC
860 }
861
862 case LO_SUM:
863 /* The standard form is (lo_sum reg sym) so look only at the
864 second operand. */
865 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
866
867 case AND:
868 /* If the second operand is constant set the base
ec5c56db 869 address to the first operand. */
2a2c8203
JC
870 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
871 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
872 return 0;
873
61f0131c
R
874 case TRUNCATE:
875 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
876 break;
877 /* Fall through. */
9ae8ffe7 878 case HIGH:
d288e53d
DE
879 case PRE_INC:
880 case PRE_DEC:
881 case POST_INC:
882 case POST_DEC:
883 case PRE_MODIFY:
884 case POST_MODIFY:
2a2c8203 885 return find_base_value (XEXP (src, 0));
1d300e19 886
0aacc8ed
RK
887 case ZERO_EXTEND:
888 case SIGN_EXTEND: /* used for NT/Alpha pointers */
889 {
890 rtx temp = find_base_value (XEXP (src, 0));
891
892#ifdef POINTERS_EXTEND_UNSIGNED
893 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
894 temp = convert_memory_address (Pmode, temp);
895#endif
896
897 return temp;
898 }
899
1d300e19
KG
900 default:
901 break;
9ae8ffe7
JL
902 }
903
904 return 0;
905}
906
907/* Called from init_alias_analysis indirectly through note_stores. */
908
d4b60170 909/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
910 register N has been set in this function. */
911static char *reg_seen;
912
13309a5f
JC
913/* Addresses which are known not to alias anything else are identified
914 by a unique integer. */
ec907dd8
JL
915static int unique_id;
916
2a2c8203 917static void
4682ae04 918record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 919{
b3694847 920 unsigned regno;
9ae8ffe7 921 rtx src;
c28b4e40 922 int n;
9ae8ffe7
JL
923
924 if (GET_CODE (dest) != REG)
925 return;
926
fb6754f0 927 regno = REGNO (dest);
9ae8ffe7 928
ac606739
GS
929 if (regno >= reg_base_value_size)
930 abort ();
931
c28b4e40
JW
932 /* If this spans multiple hard registers, then we must indicate that every
933 register has an unusable value. */
934 if (regno < FIRST_PSEUDO_REGISTER)
935 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
936 else
937 n = 1;
938 if (n != 1)
939 {
940 while (--n >= 0)
941 {
942 reg_seen[regno + n] = 1;
943 new_reg_base_value[regno + n] = 0;
944 }
945 return;
946 }
947
9ae8ffe7
JL
948 if (set)
949 {
950 /* A CLOBBER wipes out any old value but does not prevent a previously
951 unset register from acquiring a base address (i.e. reg_seen is not
952 set). */
953 if (GET_CODE (set) == CLOBBER)
954 {
ec907dd8 955 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
956 return;
957 }
958 src = SET_SRC (set);
959 }
960 else
961 {
9ae8ffe7
JL
962 if (reg_seen[regno])
963 {
ec907dd8 964 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
965 return;
966 }
967 reg_seen[regno] = 1;
38a448ca
RH
968 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
969 GEN_INT (unique_id++));
9ae8ffe7
JL
970 return;
971 }
972
973 /* This is not the first set. If the new value is not related to the
974 old value, forget the base value. Note that the following code is
975 not detected:
976 extern int x, y; int *p = &x; p += (&y-&x);
977 ANSI C does not allow computing the difference of addresses
978 of distinct top level objects. */
ec907dd8 979 if (new_reg_base_value[regno])
9ae8ffe7
JL
980 switch (GET_CODE (src))
981 {
2a2c8203 982 case LO_SUM:
9ae8ffe7
JL
983 case MINUS:
984 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 985 new_reg_base_value[regno] = 0;
9ae8ffe7 986 break;
61f0131c
R
987 case PLUS:
988 /* If the value we add in the PLUS is also a valid base value,
989 this might be the actual base value, and the original value
990 an index. */
991 {
992 rtx other = NULL_RTX;
993
994 if (XEXP (src, 0) == dest)
995 other = XEXP (src, 1);
996 else if (XEXP (src, 1) == dest)
997 other = XEXP (src, 0);
998
999 if (! other || find_base_value (other))
1000 new_reg_base_value[regno] = 0;
1001 break;
1002 }
9ae8ffe7
JL
1003 case AND:
1004 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1005 new_reg_base_value[regno] = 0;
9ae8ffe7 1006 break;
9ae8ffe7 1007 default:
ec907dd8 1008 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1009 break;
1010 }
1011 /* If this is the first set of a register, record the value. */
1012 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1013 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1014 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1015
1016 reg_seen[regno] = 1;
1017}
1018
ac3d9668
RK
1019/* Called from loop optimization when a new pseudo-register is
1020 created. It indicates that REGNO is being set to VAL. f INVARIANT
1021 is true then this value also describes an invariant relationship
1022 which can be used to deduce that two registers with unknown values
1023 are different. */
d4b60170 1024
9ae8ffe7 1025void
4682ae04 1026record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1027{
ac3d9668 1028 if (regno >= reg_base_value_size)
9ae8ffe7 1029 return;
de12be17 1030
de12be17
JC
1031 if (invariant && alias_invariant)
1032 alias_invariant[regno] = val;
1033
9ae8ffe7
JL
1034 if (GET_CODE (val) == REG)
1035 {
fb6754f0
BS
1036 if (REGNO (val) < reg_base_value_size)
1037 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1038
9ae8ffe7
JL
1039 return;
1040 }
d4b60170 1041
9ae8ffe7
JL
1042 reg_base_value[regno] = find_base_value (val);
1043}
1044
43fe47ca
JW
1045/* Clear alias info for a register. This is used if an RTL transformation
1046 changes the value of a register. This is used in flow by AUTO_INC_DEC
1047 optimizations. We don't need to clear reg_base_value, since flow only
1048 changes the offset. */
1049
1050void
4682ae04 1051clear_reg_alias_info (rtx reg)
43fe47ca 1052{
4e1a4144
JW
1053 unsigned int regno = REGNO (reg);
1054
1055 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1056 reg_known_value[regno] = reg;
43fe47ca
JW
1057}
1058
db048faf
MM
1059/* Returns a canonical version of X, from the point of view alias
1060 analysis. (For example, if X is a MEM whose address is a register,
1061 and the register has a known value (say a SYMBOL_REF), then a MEM
1062 whose address is the SYMBOL_REF is returned.) */
1063
1064rtx
4682ae04 1065canon_rtx (rtx x)
9ae8ffe7
JL
1066{
1067 /* Recursively look for equivalences. */
fb6754f0
BS
1068 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1069 && REGNO (x) < reg_known_value_size)
1070 return reg_known_value[REGNO (x)] == x
1071 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1072 else if (GET_CODE (x) == PLUS)
1073 {
1074 rtx x0 = canon_rtx (XEXP (x, 0));
1075 rtx x1 = canon_rtx (XEXP (x, 1));
1076
1077 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1078 {
9ae8ffe7 1079 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1080 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1081 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1082 return plus_constant (x0, INTVAL (x1));
38a448ca 1083 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1084 }
1085 }
d4b60170 1086
9ae8ffe7
JL
1087 /* This gives us much better alias analysis when called from
1088 the loop optimizer. Note we want to leave the original
1089 MEM alone, but need to return the canonicalized MEM with
1090 all the flags with their original values. */
1091 else if (GET_CODE (x) == MEM)
f1ec5147 1092 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1093
9ae8ffe7
JL
1094 return x;
1095}
1096
1097/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1098 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1099
1100 We use the data in reg_known_value above to see if two registers with
1101 different numbers are, in fact, equivalent. */
1102
1103static int
4682ae04 1104rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1105{
b3694847
SS
1106 int i;
1107 int j;
1108 enum rtx_code code;
1109 const char *fmt;
9ae8ffe7
JL
1110
1111 if (x == 0 && y == 0)
1112 return 1;
1113 if (x == 0 || y == 0)
1114 return 0;
d4b60170 1115
9ae8ffe7
JL
1116 if (x == y)
1117 return 1;
1118
1119 code = GET_CODE (x);
1120 /* Rtx's of different codes cannot be equal. */
1121 if (code != GET_CODE (y))
1122 return 0;
1123
1124 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1125 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1126
1127 if (GET_MODE (x) != GET_MODE (y))
1128 return 0;
1129
db048faf
MM
1130 /* Some RTL can be compared without a recursive examination. */
1131 switch (code)
1132 {
ab59db3c
BS
1133 case VALUE:
1134 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1135
db048faf
MM
1136 case REG:
1137 return REGNO (x) == REGNO (y);
1138
1139 case LABEL_REF:
1140 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1141
db048faf
MM
1142 case SYMBOL_REF:
1143 return XSTR (x, 0) == XSTR (y, 0);
1144
1145 case CONST_INT:
1146 case CONST_DOUBLE:
1147 /* There's no need to compare the contents of CONST_DOUBLEs or
1148 CONST_INTs because pointer equality is a good enough
1149 comparison for these nodes. */
1150 return 0;
1151
1152 case ADDRESSOF:
831ecbd4 1153 return (XINT (x, 1) == XINT (y, 1)
45183e03 1154 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1155 XEXP (y, 0)));
db048faf
MM
1156
1157 default:
1158 break;
1159 }
9ae8ffe7 1160
45183e03
JH
1161 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1162 if (code == PLUS)
9ae8ffe7
JL
1163 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1164 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1165 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1166 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1167 /* For commutative operations, the RTX match if the operand match in any
1168 order. Also handle the simple binary and unary cases without a loop. */
1169 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1170 {
1171 rtx xop0 = canon_rtx (XEXP (x, 0));
1172 rtx yop0 = canon_rtx (XEXP (y, 0));
1173 rtx yop1 = canon_rtx (XEXP (y, 1));
1174
1175 return ((rtx_equal_for_memref_p (xop0, yop0)
1176 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1177 || (rtx_equal_for_memref_p (xop0, yop1)
1178 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1179 }
9ae8ffe7 1180 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1181 {
1182 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1183 canon_rtx (XEXP (y, 0)))
45183e03
JH
1184 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1185 canon_rtx (XEXP (y, 1))));
1186 }
9ae8ffe7 1187 else if (GET_RTX_CLASS (code) == '1')
45183e03 1188 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1189 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1190
1191 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1192 fail to match, return 0 for the whole things.
1193
1194 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1195
1196 fmt = GET_RTX_FORMAT (code);
1197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1198 {
1199 switch (fmt[i])
1200 {
9ae8ffe7
JL
1201 case 'i':
1202 if (XINT (x, i) != XINT (y, i))
1203 return 0;
1204 break;
1205
9ae8ffe7
JL
1206 case 'E':
1207 /* Two vectors must have the same length. */
1208 if (XVECLEN (x, i) != XVECLEN (y, i))
1209 return 0;
1210
1211 /* And the corresponding elements must match. */
1212 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1213 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1214 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1215 return 0;
1216 break;
1217
1218 case 'e':
45183e03
JH
1219 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1220 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1221 return 0;
1222 break;
1223
3237ac18
AH
1224 /* This can happen for asm operands. */
1225 case 's':
1226 if (strcmp (XSTR (x, i), XSTR (y, i)))
1227 return 0;
1228 break;
1229
aee21ba9
JL
1230 /* This can happen for an asm which clobbers memory. */
1231 case '0':
1232 break;
1233
9ae8ffe7
JL
1234 /* It is believed that rtx's at this level will never
1235 contain anything but integers and other rtx's,
1236 except for within LABEL_REFs and SYMBOL_REFs. */
1237 default:
1238 abort ();
1239 }
1240 }
1241 return 1;
1242}
1243
1244/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1245 X and return it, or return 0 if none found. */
1246
1247static rtx
4682ae04 1248find_symbolic_term (rtx x)
9ae8ffe7 1249{
b3694847
SS
1250 int i;
1251 enum rtx_code code;
1252 const char *fmt;
9ae8ffe7
JL
1253
1254 code = GET_CODE (x);
1255 if (code == SYMBOL_REF || code == LABEL_REF)
1256 return x;
1257 if (GET_RTX_CLASS (code) == 'o')
1258 return 0;
1259
1260 fmt = GET_RTX_FORMAT (code);
1261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1262 {
1263 rtx t;
1264
1265 if (fmt[i] == 'e')
1266 {
1267 t = find_symbolic_term (XEXP (x, i));
1268 if (t != 0)
1269 return t;
1270 }
1271 else if (fmt[i] == 'E')
1272 break;
1273 }
1274 return 0;
1275}
1276
94f24ddc 1277rtx
4682ae04 1278find_base_term (rtx x)
9ae8ffe7 1279{
eab5c70a
BS
1280 cselib_val *val;
1281 struct elt_loc_list *l;
1282
b949ea8b
JW
1283#if defined (FIND_BASE_TERM)
1284 /* Try machine-dependent ways to find the base term. */
1285 x = FIND_BASE_TERM (x);
1286#endif
1287
9ae8ffe7
JL
1288 switch (GET_CODE (x))
1289 {
1290 case REG:
1291 return REG_BASE_VALUE (x);
1292
d288e53d
DE
1293 case TRUNCATE:
1294 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1295 return 0;
d288e53d 1296 /* Fall through. */
9ae8ffe7 1297 case HIGH:
6d849a2a
JL
1298 case PRE_INC:
1299 case PRE_DEC:
1300 case POST_INC:
1301 case POST_DEC:
d288e53d
DE
1302 case PRE_MODIFY:
1303 case POST_MODIFY:
6d849a2a
JL
1304 return find_base_term (XEXP (x, 0));
1305
1abade85
RK
1306 case ZERO_EXTEND:
1307 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1308 {
1309 rtx temp = find_base_term (XEXP (x, 0));
1310
1311#ifdef POINTERS_EXTEND_UNSIGNED
1312 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1313 temp = convert_memory_address (Pmode, temp);
1314#endif
1315
1316 return temp;
1317 }
1318
eab5c70a
BS
1319 case VALUE:
1320 val = CSELIB_VAL_PTR (x);
1321 for (l = val->locs; l; l = l->next)
1322 if ((x = find_base_term (l->loc)) != 0)
1323 return x;
1324 return 0;
1325
9ae8ffe7
JL
1326 case CONST:
1327 x = XEXP (x, 0);
1328 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1329 return 0;
1330 /* fall through */
1331 case LO_SUM:
1332 case PLUS:
1333 case MINUS:
1334 {
3c567fae
JL
1335 rtx tmp1 = XEXP (x, 0);
1336 rtx tmp2 = XEXP (x, 1);
1337
f5143c46 1338 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1339 the two operands represents the real base address. Otherwise this
1340 routine may return the index register instead of the base register.
1341
1342 That may cause us to believe no aliasing was possible, when in
1343 fact aliasing is possible.
1344
1345 We use a few simple tests to guess the base register. Additional
1346 tests can certainly be added. For example, if one of the operands
1347 is a shift or multiply, then it must be the index register and the
1348 other operand is the base register. */
ca7fd9cd 1349
b949ea8b
JW
1350 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1351 return find_base_term (tmp2);
1352
3c567fae
JL
1353 /* If either operand is known to be a pointer, then use it
1354 to determine the base term. */
3502dc9c 1355 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1356 return find_base_term (tmp1);
1357
3502dc9c 1358 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1359 return find_base_term (tmp2);
1360
1361 /* Neither operand was known to be a pointer. Go ahead and find the
1362 base term for both operands. */
1363 tmp1 = find_base_term (tmp1);
1364 tmp2 = find_base_term (tmp2);
1365
1366 /* If either base term is named object or a special address
1367 (like an argument or stack reference), then use it for the
1368 base term. */
d4b60170 1369 if (tmp1 != 0
3c567fae
JL
1370 && (GET_CODE (tmp1) == SYMBOL_REF
1371 || GET_CODE (tmp1) == LABEL_REF
1372 || (GET_CODE (tmp1) == ADDRESS
1373 && GET_MODE (tmp1) != VOIDmode)))
1374 return tmp1;
1375
d4b60170 1376 if (tmp2 != 0
3c567fae
JL
1377 && (GET_CODE (tmp2) == SYMBOL_REF
1378 || GET_CODE (tmp2) == LABEL_REF
1379 || (GET_CODE (tmp2) == ADDRESS
1380 && GET_MODE (tmp2) != VOIDmode)))
1381 return tmp2;
1382
1383 /* We could not determine which of the two operands was the
1384 base register and which was the index. So we can determine
1385 nothing from the base alias check. */
1386 return 0;
9ae8ffe7
JL
1387 }
1388
1389 case AND:
d288e53d
DE
1390 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1391 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1392 return 0;
1393
1394 case SYMBOL_REF:
1395 case LABEL_REF:
1396 return x;
1397
d982e46e 1398 case ADDRESSOF:
bb07060a 1399 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1400
9ae8ffe7
JL
1401 default:
1402 return 0;
1403 }
1404}
1405
1406/* Return 0 if the addresses X and Y are known to point to different
1407 objects, 1 if they might be pointers to the same object. */
1408
1409static int
4682ae04
AJ
1410base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1411 enum machine_mode y_mode)
9ae8ffe7
JL
1412{
1413 rtx x_base = find_base_term (x);
1414 rtx y_base = find_base_term (y);
1415
1c72c7f6
JC
1416 /* If the address itself has no known base see if a known equivalent
1417 value has one. If either address still has no known base, nothing
1418 is known about aliasing. */
1419 if (x_base == 0)
1420 {
1421 rtx x_c;
d4b60170 1422
1c72c7f6
JC
1423 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1424 return 1;
d4b60170 1425
1c72c7f6
JC
1426 x_base = find_base_term (x_c);
1427 if (x_base == 0)
1428 return 1;
1429 }
9ae8ffe7 1430
1c72c7f6
JC
1431 if (y_base == 0)
1432 {
1433 rtx y_c;
1434 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1435 return 1;
d4b60170 1436
1c72c7f6
JC
1437 y_base = find_base_term (y_c);
1438 if (y_base == 0)
1439 return 1;
1440 }
1441
1442 /* If the base addresses are equal nothing is known about aliasing. */
1443 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1444 return 1;
1445
ca7fd9cd 1446 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1447 If they are both symbols and they are not accessed via AND, there is
1448 no conflict. We can bring knowledge of object alignment into play
1449 here. For example, on alpha, "char a, b;" can alias one another,
1450 though "char a; long b;" cannot. */
9ae8ffe7 1451 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1452 {
56ee9281
RH
1453 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1454 return 1;
1455 if (GET_CODE (x) == AND
1456 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1457 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1458 return 1;
1459 if (GET_CODE (y) == AND
1460 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1461 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1462 return 1;
b2972551
JL
1463 /* Differing symbols never alias. */
1464 return 0;
c02f035f 1465 }
9ae8ffe7
JL
1466
1467 /* If one address is a stack reference there can be no alias:
1468 stack references using different base registers do not alias,
1469 a stack reference can not alias a parameter, and a stack reference
1470 can not alias a global. */
1471 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1472 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1473 return 0;
1474
1475 if (! flag_argument_noalias)
1476 return 1;
1477
1478 if (flag_argument_noalias > 1)
1479 return 0;
1480
ec5c56db 1481 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1482 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1483}
1484
eab5c70a
BS
1485/* Convert the address X into something we can use. This is done by returning
1486 it unchanged unless it is a value; in the latter case we call cselib to get
1487 a more useful rtx. */
3bdf5ad1 1488
a13d4ebf 1489rtx
4682ae04 1490get_addr (rtx x)
eab5c70a
BS
1491{
1492 cselib_val *v;
1493 struct elt_loc_list *l;
1494
1495 if (GET_CODE (x) != VALUE)
1496 return x;
1497 v = CSELIB_VAL_PTR (x);
1498 for (l = v->locs; l; l = l->next)
1499 if (CONSTANT_P (l->loc))
1500 return l->loc;
1501 for (l = v->locs; l; l = l->next)
1502 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1503 return l->loc;
1504 if (v->locs)
1505 return v->locs->loc;
1506 return x;
1507}
1508
39cec1ac
MH
1509/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1510 where SIZE is the size in bytes of the memory reference. If ADDR
1511 is not modified by the memory reference then ADDR is returned. */
1512
1513rtx
4682ae04 1514addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1515{
1516 int offset = 0;
ca7fd9cd 1517
39cec1ac
MH
1518 switch (GET_CODE (addr))
1519 {
1520 case PRE_INC:
1521 offset = (n_refs + 1) * size;
1522 break;
1523 case PRE_DEC:
1524 offset = -(n_refs + 1) * size;
1525 break;
1526 case POST_INC:
1527 offset = n_refs * size;
1528 break;
1529 case POST_DEC:
1530 offset = -n_refs * size;
1531 break;
1532
1533 default:
1534 return addr;
1535 }
ca7fd9cd 1536
39cec1ac 1537 if (offset)
45183e03
JH
1538 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1539 GEN_INT (offset));
39cec1ac
MH
1540 else
1541 addr = XEXP (addr, 0);
45183e03 1542 addr = canon_rtx (addr);
39cec1ac
MH
1543
1544 return addr;
1545}
1546
9ae8ffe7
JL
1547/* Return nonzero if X and Y (memory addresses) could reference the
1548 same location in memory. C is an offset accumulator. When
1549 C is nonzero, we are testing aliases between X and Y + C.
1550 XSIZE is the size in bytes of the X reference,
1551 similarly YSIZE is the size in bytes for Y.
45183e03 1552 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1553
1554 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1555 referenced (the reference was BLKmode), so make the most pessimistic
1556 assumptions.
1557
c02f035f
RH
1558 If XSIZE or YSIZE is negative, we may access memory outside the object
1559 being referenced as a side effect. This can happen when using AND to
1560 align memory references, as is done on the Alpha.
1561
9ae8ffe7 1562 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1563 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1564
9ae8ffe7 1565static int
4682ae04 1566memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1567{
eab5c70a
BS
1568 if (GET_CODE (x) == VALUE)
1569 x = get_addr (x);
1570 if (GET_CODE (y) == VALUE)
1571 y = get_addr (y);
9ae8ffe7
JL
1572 if (GET_CODE (x) == HIGH)
1573 x = XEXP (x, 0);
1574 else if (GET_CODE (x) == LO_SUM)
1575 x = XEXP (x, 1);
1576 else
45183e03 1577 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1578 if (GET_CODE (y) == HIGH)
1579 y = XEXP (y, 0);
1580 else if (GET_CODE (y) == LO_SUM)
1581 y = XEXP (y, 1);
1582 else
45183e03 1583 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1584
1585 if (rtx_equal_for_memref_p (x, y))
1586 {
c02f035f 1587 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1588 return 1;
1589 if (c >= 0 && xsize > c)
1590 return 1;
1591 if (c < 0 && ysize+c > 0)
1592 return 1;
1593 return 0;
1594 }
1595
6e73e666
JC
1596 /* This code used to check for conflicts involving stack references and
1597 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1598
1599 if (GET_CODE (x) == PLUS)
1600 {
1601 /* The fact that X is canonicalized means that this
1602 PLUS rtx is canonicalized. */
1603 rtx x0 = XEXP (x, 0);
1604 rtx x1 = XEXP (x, 1);
1605
1606 if (GET_CODE (y) == PLUS)
1607 {
1608 /* The fact that Y is canonicalized means that this
1609 PLUS rtx is canonicalized. */
1610 rtx y0 = XEXP (y, 0);
1611 rtx y1 = XEXP (y, 1);
1612
1613 if (rtx_equal_for_memref_p (x1, y1))
1614 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1615 if (rtx_equal_for_memref_p (x0, y0))
1616 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1617 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1618 {
1619 if (GET_CODE (y1) == CONST_INT)
1620 return memrefs_conflict_p (xsize, x0, ysize, y0,
1621 c - INTVAL (x1) + INTVAL (y1));
1622 else
1623 return memrefs_conflict_p (xsize, x0, ysize, y,
1624 c - INTVAL (x1));
1625 }
9ae8ffe7
JL
1626 else if (GET_CODE (y1) == CONST_INT)
1627 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1628
6e73e666 1629 return 1;
9ae8ffe7
JL
1630 }
1631 else if (GET_CODE (x1) == CONST_INT)
1632 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1633 }
1634 else if (GET_CODE (y) == PLUS)
1635 {
1636 /* The fact that Y is canonicalized means that this
1637 PLUS rtx is canonicalized. */
1638 rtx y0 = XEXP (y, 0);
1639 rtx y1 = XEXP (y, 1);
1640
1641 if (GET_CODE (y1) == CONST_INT)
1642 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1643 else
1644 return 1;
1645 }
1646
1647 if (GET_CODE (x) == GET_CODE (y))
1648 switch (GET_CODE (x))
1649 {
1650 case MULT:
1651 {
1652 /* Handle cases where we expect the second operands to be the
1653 same, and check only whether the first operand would conflict
1654 or not. */
1655 rtx x0, y0;
1656 rtx x1 = canon_rtx (XEXP (x, 1));
1657 rtx y1 = canon_rtx (XEXP (y, 1));
1658 if (! rtx_equal_for_memref_p (x1, y1))
1659 return 1;
1660 x0 = canon_rtx (XEXP (x, 0));
1661 y0 = canon_rtx (XEXP (y, 0));
1662 if (rtx_equal_for_memref_p (x0, y0))
1663 return (xsize == 0 || ysize == 0
1664 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1665
1666 /* Can't properly adjust our sizes. */
1667 if (GET_CODE (x1) != CONST_INT)
1668 return 1;
1669 xsize /= INTVAL (x1);
1670 ysize /= INTVAL (x1);
1671 c /= INTVAL (x1);
1672 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1673 }
1d300e19 1674
de12be17
JC
1675 case REG:
1676 /* Are these registers known not to be equal? */
1677 if (alias_invariant)
1678 {
e51712db 1679 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1680 rtx i_x, i_y; /* invariant relationships of X and Y */
1681
1682 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1683 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1684
1685 if (i_x == 0 && i_y == 0)
1686 break;
1687
1688 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1689 ysize, i_y ? i_y : y, c))
1690 return 0;
1691 }
1692 break;
1693
1d300e19
KG
1694 default:
1695 break;
9ae8ffe7
JL
1696 }
1697
1698 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1699 as an access with indeterminate size. Assume that references
56ee9281
RH
1700 besides AND are aligned, so if the size of the other reference is
1701 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1702 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1703 {
02e3377d 1704 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1705 xsize = -1;
45183e03 1706 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1707 }
9ae8ffe7 1708 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1709 {
56ee9281 1710 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1711 may yet be able to determine that we can not overlap. But we
c02f035f 1712 also need to that we are far enough from the end not to overlap
56ee9281 1713 a following reference, so we do nothing with that for now. */
02e3377d 1714 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1715 ysize = -1;
45183e03 1716 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1717 }
9ae8ffe7 1718
b24ea077
JW
1719 if (GET_CODE (x) == ADDRESSOF)
1720 {
1721 if (y == frame_pointer_rtx
1722 || GET_CODE (y) == ADDRESSOF)
1723 return xsize <= 0 || ysize <= 0;
1724 }
1725 if (GET_CODE (y) == ADDRESSOF)
1726 {
1727 if (x == frame_pointer_rtx)
1728 return xsize <= 0 || ysize <= 0;
1729 }
d982e46e 1730
9ae8ffe7
JL
1731 if (CONSTANT_P (x))
1732 {
1733 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1734 {
1735 c += (INTVAL (y) - INTVAL (x));
c02f035f 1736 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1737 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1738 }
1739
1740 if (GET_CODE (x) == CONST)
1741 {
1742 if (GET_CODE (y) == CONST)
1743 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1744 ysize, canon_rtx (XEXP (y, 0)), c);
1745 else
1746 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1747 ysize, y, c);
1748 }
1749 if (GET_CODE (y) == CONST)
1750 return memrefs_conflict_p (xsize, x, ysize,
1751 canon_rtx (XEXP (y, 0)), c);
1752
1753 if (CONSTANT_P (y))
b949ea8b 1754 return (xsize <= 0 || ysize <= 0
c02f035f 1755 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1756 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1757
1758 return 1;
1759 }
1760 return 1;
1761}
1762
1763/* Functions to compute memory dependencies.
1764
1765 Since we process the insns in execution order, we can build tables
1766 to keep track of what registers are fixed (and not aliased), what registers
1767 are varying in known ways, and what registers are varying in unknown
1768 ways.
1769
1770 If both memory references are volatile, then there must always be a
1771 dependence between the two references, since their order can not be
1772 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1773 though.
9ae8ffe7 1774
dc1618bc
RK
1775 A MEM_IN_STRUCT reference at a non-AND varying address can never
1776 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1777 also must allow AND addresses, because they may generate accesses
1778 outside the object being referenced. This is used to generate
1779 aligned addresses from unaligned addresses, for instance, the alpha
1780 storeqi_unaligned pattern. */
9ae8ffe7
JL
1781
1782/* Read dependence: X is read after read in MEM takes place. There can
1783 only be a dependence here if both reads are volatile. */
1784
1785int
4682ae04 1786read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1787{
1788 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1789}
1790
c6df88cb
MM
1791/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1792 MEM2 is a reference to a structure at a varying address, or returns
1793 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1794 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1795 to decide whether or not an address may vary; it should return
eab5c70a
BS
1796 nonzero whenever variation is possible.
1797 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1798
2c72b78f 1799static rtx
4682ae04
AJ
1800fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1801 rtx mem2_addr,
1802 int (*varies_p) (rtx, int))
ca7fd9cd 1803{
3e0abe15
GK
1804 if (! flag_strict_aliasing)
1805 return NULL_RTX;
1806
ca7fd9cd 1807 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1808 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1809 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1810 varying address. */
1811 return mem1;
1812
ca7fd9cd 1813 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1814 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1815 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1816 varying address. */
1817 return mem2;
1818
1819 return NULL_RTX;
1820}
1821
1822/* Returns nonzero if something about the mode or address format MEM1
1823 indicates that it might well alias *anything*. */
1824
2c72b78f 1825static int
4682ae04 1826aliases_everything_p (rtx mem)
c6df88cb 1827{
c6df88cb
MM
1828 if (GET_CODE (XEXP (mem, 0)) == AND)
1829 /* If the address is an AND, its very hard to know at what it is
1830 actually pointing. */
1831 return 1;
ca7fd9cd 1832
c6df88cb
MM
1833 return 0;
1834}
1835
998d7deb
RH
1836/* Return true if we can determine that the fields referenced cannot
1837 overlap for any pair of objects. */
1838
1839static bool
4682ae04 1840nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1841{
1842 tree fieldx, fieldy, typex, typey, orig_y;
1843
1844 do
1845 {
1846 /* The comparison has to be done at a common type, since we don't
d6a7951f 1847 know how the inheritance hierarchy works. */
998d7deb
RH
1848 orig_y = y;
1849 do
1850 {
1851 fieldx = TREE_OPERAND (x, 1);
1852 typex = DECL_FIELD_CONTEXT (fieldx);
1853
1854 y = orig_y;
1855 do
1856 {
1857 fieldy = TREE_OPERAND (y, 1);
1858 typey = DECL_FIELD_CONTEXT (fieldy);
1859
1860 if (typex == typey)
1861 goto found;
1862
1863 y = TREE_OPERAND (y, 0);
1864 }
1865 while (y && TREE_CODE (y) == COMPONENT_REF);
1866
1867 x = TREE_OPERAND (x, 0);
1868 }
1869 while (x && TREE_CODE (x) == COMPONENT_REF);
1870
1871 /* Never found a common type. */
1872 return false;
1873
1874 found:
1875 /* If we're left with accessing different fields of a structure,
1876 then no overlap. */
1877 if (TREE_CODE (typex) == RECORD_TYPE
1878 && fieldx != fieldy)
1879 return true;
1880
1881 /* The comparison on the current field failed. If we're accessing
1882 a very nested structure, look at the next outer level. */
1883 x = TREE_OPERAND (x, 0);
1884 y = TREE_OPERAND (y, 0);
1885 }
1886 while (x && y
1887 && TREE_CODE (x) == COMPONENT_REF
1888 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1889
998d7deb
RH
1890 return false;
1891}
1892
1893/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1894
1895static tree
4682ae04 1896decl_for_component_ref (tree x)
998d7deb
RH
1897{
1898 do
1899 {
1900 x = TREE_OPERAND (x, 0);
1901 }
1902 while (x && TREE_CODE (x) == COMPONENT_REF);
1903
1904 return x && DECL_P (x) ? x : NULL_TREE;
1905}
1906
1907/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1908 offset of the field reference. */
1909
1910static rtx
4682ae04 1911adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1912{
1913 HOST_WIDE_INT ioffset;
1914
1915 if (! offset)
1916 return NULL_RTX;
1917
1918 ioffset = INTVAL (offset);
ca7fd9cd 1919 do
998d7deb
RH
1920 {
1921 tree field = TREE_OPERAND (x, 1);
1922
1923 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1924 return NULL_RTX;
1925 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1926 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1927 / BITS_PER_UNIT));
1928
1929 x = TREE_OPERAND (x, 0);
1930 }
1931 while (x && TREE_CODE (x) == COMPONENT_REF);
1932
1933 return GEN_INT (ioffset);
1934}
1935
95bd1dd7 1936/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1937 X and Y and they do not overlap. */
1938
1939static int
4682ae04 1940nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1941{
998d7deb 1942 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1943 rtx rtlx, rtly;
1944 rtx basex, basey;
998d7deb 1945 rtx moffsetx, moffsety;
a4311dfe
RK
1946 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1947
998d7deb
RH
1948 /* Unless both have exprs, we can't tell anything. */
1949 if (exprx == 0 || expry == 0)
1950 return 0;
1951
1952 /* If both are field references, we may be able to determine something. */
1953 if (TREE_CODE (exprx) == COMPONENT_REF
1954 && TREE_CODE (expry) == COMPONENT_REF
1955 && nonoverlapping_component_refs_p (exprx, expry))
1956 return 1;
1957
1958 /* If the field reference test failed, look at the DECLs involved. */
1959 moffsetx = MEM_OFFSET (x);
1960 if (TREE_CODE (exprx) == COMPONENT_REF)
1961 {
1962 tree t = decl_for_component_ref (exprx);
1963 if (! t)
1964 return 0;
1965 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1966 exprx = t;
1967 }
c67a1cf6
RH
1968 else if (TREE_CODE (exprx) == INDIRECT_REF)
1969 {
1970 exprx = TREE_OPERAND (exprx, 0);
1971 if (flag_argument_noalias < 2
1972 || TREE_CODE (exprx) != PARM_DECL)
1973 return 0;
1974 }
1975
998d7deb
RH
1976 moffsety = MEM_OFFSET (y);
1977 if (TREE_CODE (expry) == COMPONENT_REF)
1978 {
1979 tree t = decl_for_component_ref (expry);
1980 if (! t)
1981 return 0;
1982 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1983 expry = t;
1984 }
c67a1cf6
RH
1985 else if (TREE_CODE (expry) == INDIRECT_REF)
1986 {
1987 expry = TREE_OPERAND (expry, 0);
1988 if (flag_argument_noalias < 2
1989 || TREE_CODE (expry) != PARM_DECL)
1990 return 0;
1991 }
998d7deb
RH
1992
1993 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
1994 return 0;
1995
998d7deb
RH
1996 rtlx = DECL_RTL (exprx);
1997 rtly = DECL_RTL (expry);
a4311dfe 1998
1edcd60b
RK
1999 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2000 can't overlap unless they are the same because we never reuse that part
2001 of the stack frame used for locals for spilled pseudos. */
2002 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2003 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2004 return 1;
2005
2006 /* Get the base and offsets of both decls. If either is a register, we
2007 know both are and are the same, so use that as the base. The only
2008 we can avoid overlap is if we can deduce that they are nonoverlapping
2009 pieces of that decl, which is very rare. */
1edcd60b 2010 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2011 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2012 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2013
1edcd60b 2014 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2015 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2016 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2017
d746694a 2018 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2019 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2020 stack frame. Otherwise a different base means we can't tell if they
2021 overlap or not. */
2022 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2023 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2024 || (CONSTANT_P (basex) && REG_P (basey)
2025 && REGNO_PTR_FRAME_P (REGNO (basey)))
2026 || (CONSTANT_P (basey) && REG_P (basex)
2027 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2028
998d7deb 2029 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2030 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2031 : -1);
998d7deb 2032 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2033 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2034 -1);
2035
0af5bc3e
RK
2036 /* If we have an offset for either memref, it can update the values computed
2037 above. */
998d7deb
RH
2038 if (moffsetx)
2039 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2040 if (moffsety)
2041 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2042
0af5bc3e 2043 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2044 We can't do this if the offset isn't known because we must view this
0af5bc3e 2045 memref as being anywhere inside the DECL's MEM. */
998d7deb 2046 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2047 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2048 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2049 sizey = INTVAL (MEM_SIZE (y));
2050
2051 /* Put the values of the memref with the lower offset in X's values. */
2052 if (offsetx > offsety)
2053 {
2054 tem = offsetx, offsetx = offsety, offsety = tem;
2055 tem = sizex, sizex = sizey, sizey = tem;
2056 }
2057
2058 /* If we don't know the size of the lower-offset value, we can't tell
2059 if they conflict. Otherwise, we do the test. */
a6f7c915 2060 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2061}
2062
9ae8ffe7
JL
2063/* True dependence: X is read after store in MEM takes place. */
2064
2065int
4682ae04
AJ
2066true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2067 int (*varies) (rtx, int))
9ae8ffe7 2068{
b3694847 2069 rtx x_addr, mem_addr;
49982682 2070 rtx base;
9ae8ffe7
JL
2071
2072 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2073 return 1;
2074
c4484b8f
RH
2075 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2076 This is used in epilogue deallocation functions. */
2077 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2078 return 1;
2079 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2080 return 1;
2081
41472af8
MM
2082 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2083 return 0;
2084
b949ea8b
JW
2085 /* Unchanging memory can't conflict with non-unchanging memory.
2086 A non-unchanging read can conflict with a non-unchanging write.
2087 An unchanging read can conflict with an unchanging write since
2088 there may be a single store to this address to initialize it.
ec569656
RK
2089 Note that an unchanging store can conflict with a non-unchanging read
2090 since we have to make conservative assumptions when we have a
2091 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2092 Just fall through to the code below to resolve potential conflicts.
2093 This won't handle all cases optimally, but the possible performance
2094 loss should be negligible. */
ec569656 2095 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2096 return 0;
2097
a4311dfe
RK
2098 if (nonoverlapping_memrefs_p (mem, x))
2099 return 0;
2100
56ee9281
RH
2101 if (mem_mode == VOIDmode)
2102 mem_mode = GET_MODE (mem);
2103
eab5c70a
BS
2104 x_addr = get_addr (XEXP (x, 0));
2105 mem_addr = get_addr (XEXP (mem, 0));
2106
55efb413
JW
2107 base = find_base_term (x_addr);
2108 if (base && (GET_CODE (base) == LABEL_REF
2109 || (GET_CODE (base) == SYMBOL_REF
2110 && CONSTANT_POOL_ADDRESS_P (base))))
2111 return 0;
2112
eab5c70a 2113 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2114 return 0;
2115
eab5c70a
BS
2116 x_addr = canon_rtx (x_addr);
2117 mem_addr = canon_rtx (mem_addr);
6e73e666 2118
0211b6ab
JW
2119 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2120 SIZE_FOR_MODE (x), x_addr, 0))
2121 return 0;
2122
c6df88cb 2123 if (aliases_everything_p (x))
0211b6ab
JW
2124 return 1;
2125
f5143c46 2126 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2127 at MEM_MODE, rather than GET_MODE (MEM). */
2128 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2129 return 1;
2130
2131 /* In true_dependence we also allow BLKmode to alias anything. Why
2132 don't we do this in anti_dependence and output_dependence? */
2133 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2134 return 1;
2135
2136 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2137 varies);
2138}
2139
2140/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2141 Variant of true_dependence which assumes MEM has already been
2142 canonicalized (hence we no longer do that here).
2143 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2144 this value prior to canonicalizing. */
2145
2146int
4682ae04
AJ
2147canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2148 rtx x, int (*varies) (rtx, int))
a13d4ebf 2149{
b3694847 2150 rtx x_addr;
a13d4ebf
AM
2151
2152 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2153 return 1;
2154
0fe854a7
RH
2155 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2156 This is used in epilogue deallocation functions. */
2157 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2158 return 1;
2159 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2160 return 1;
2161
a13d4ebf
AM
2162 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2163 return 0;
2164
2165 /* If X is an unchanging read, then it can't possibly conflict with any
2166 non-unchanging store. It may conflict with an unchanging write though,
2167 because there may be a single store to this address to initialize it.
2168 Just fall through to the code below to resolve the case where we have
2169 both an unchanging read and an unchanging write. This won't handle all
2170 cases optimally, but the possible performance loss should be
2171 negligible. */
2172 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2173 return 0;
2174
a4311dfe
RK
2175 if (nonoverlapping_memrefs_p (x, mem))
2176 return 0;
2177
a13d4ebf
AM
2178 x_addr = get_addr (XEXP (x, 0));
2179
2180 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2181 return 0;
2182
2183 x_addr = canon_rtx (x_addr);
2184 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2185 SIZE_FOR_MODE (x), x_addr, 0))
2186 return 0;
2187
2188 if (aliases_everything_p (x))
2189 return 1;
2190
f5143c46 2191 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2192 at MEM_MODE, rather than GET_MODE (MEM). */
2193 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2194 return 1;
0211b6ab 2195
c6df88cb
MM
2196 /* In true_dependence we also allow BLKmode to alias anything. Why
2197 don't we do this in anti_dependence and output_dependence? */
2198 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2199 return 1;
0211b6ab 2200
eab5c70a
BS
2201 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2202 varies);
9ae8ffe7
JL
2203}
2204
da7d8304
KH
2205/* Returns nonzero if a write to X might alias a previous read from
2206 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2207
2c72b78f 2208static int
4682ae04 2209write_dependence_p (rtx mem, rtx x, int writep)
9ae8ffe7 2210{
6e73e666 2211 rtx x_addr, mem_addr;
c6df88cb 2212 rtx fixed_scalar;
49982682 2213 rtx base;
6e73e666 2214
9ae8ffe7
JL
2215 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2216 return 1;
2217
c4484b8f
RH
2218 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2219 This is used in epilogue deallocation functions. */
2220 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2221 return 1;
2222 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2223 return 1;
2224
eab5c70a
BS
2225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2226 return 0;
2227
b949ea8b
JW
2228 /* Unchanging memory can't conflict with non-unchanging memory. */
2229 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2230 return 0;
2231
9ae8ffe7
JL
2232 /* If MEM is an unchanging read, then it can't possibly conflict with
2233 the store to X, because there is at most one store to MEM, and it must
2234 have occurred somewhere before MEM. */
55efb413
JW
2235 if (! writep && RTX_UNCHANGING_P (mem))
2236 return 0;
2237
a4311dfe
RK
2238 if (nonoverlapping_memrefs_p (x, mem))
2239 return 0;
2240
55efb413
JW
2241 x_addr = get_addr (XEXP (x, 0));
2242 mem_addr = get_addr (XEXP (mem, 0));
2243
49982682
JW
2244 if (! writep)
2245 {
55efb413 2246 base = find_base_term (mem_addr);
49982682
JW
2247 if (base && (GET_CODE (base) == LABEL_REF
2248 || (GET_CODE (base) == SYMBOL_REF
2249 && CONSTANT_POOL_ADDRESS_P (base))))
2250 return 0;
2251 }
2252
eab5c70a
BS
2253 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2254 GET_MODE (mem)))
41472af8
MM
2255 return 0;
2256
eab5c70a
BS
2257 x_addr = canon_rtx (x_addr);
2258 mem_addr = canon_rtx (mem_addr);
6e73e666 2259
c6df88cb
MM
2260 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2261 SIZE_FOR_MODE (x), x_addr, 0))
2262 return 0;
2263
ca7fd9cd 2264 fixed_scalar
eab5c70a
BS
2265 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2266 rtx_addr_varies_p);
2267
c6df88cb
MM
2268 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2269 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2270}
2271
2272/* Anti dependence: X is written after read in MEM takes place. */
2273
2274int
4682ae04 2275anti_dependence (rtx mem, rtx x)
c6df88cb
MM
2276{
2277 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2278}
2279
2280/* Output dependence: X is written after store in MEM takes place. */
2281
2282int
4682ae04 2283output_dependence (rtx mem, rtx x)
9ae8ffe7 2284{
c6df88cb 2285 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2286}
c14b9960
JW
2287\f
2288/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2289 something which is not local to the function and is not constant. */
7790df19
JW
2290
2291static int
4682ae04 2292nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2293{
c14b9960 2294 rtx x = *loc;
7790df19 2295 rtx base;
7790df19
JW
2296 int regno;
2297
c14b9960
JW
2298 if (! x)
2299 return 0;
7790df19 2300
c14b9960 2301 switch (GET_CODE (x))
7790df19
JW
2302 {
2303 case SUBREG:
2304 if (GET_CODE (SUBREG_REG (x)) == REG)
2305 {
2306 /* Global registers are not local. */
2307 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2308 && global_regs[subreg_regno (x)])
7790df19
JW
2309 return 1;
2310 return 0;
2311 }
2312 break;
2313
2314 case REG:
2315 regno = REGNO (x);
2316 /* Global registers are not local. */
2317 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2318 return 1;
2319 return 0;
2320
2321 case SCRATCH:
2322 case PC:
2323 case CC0:
2324 case CONST_INT:
2325 case CONST_DOUBLE:
69ef87e2 2326 case CONST_VECTOR:
7790df19
JW
2327 case CONST:
2328 case LABEL_REF:
2329 return 0;
2330
2331 case SYMBOL_REF:
2332 /* Constants in the function's constants pool are constant. */
2333 if (CONSTANT_POOL_ADDRESS_P (x))
2334 return 0;
2335 return 1;
2336
2337 case CALL:
bf6d9fd7 2338 /* Non-constant calls and recursion are not local. */
7790df19
JW
2339 return 1;
2340
2341 case MEM:
2342 /* Be overly conservative and consider any volatile memory
2343 reference as not local. */
2344 if (MEM_VOLATILE_P (x))
2345 return 1;
2346 base = find_base_term (XEXP (x, 0));
2347 if (base)
2348 {
b3b5ad95
JL
2349 /* A Pmode ADDRESS could be a reference via the structure value
2350 address or static chain. Such memory references are nonlocal.
2351
2352 Thus, we have to examine the contents of the ADDRESS to find
2353 out if this is a local reference or not. */
2354 if (GET_CODE (base) == ADDRESS
2355 && GET_MODE (base) == Pmode
2356 && (XEXP (base, 0) == stack_pointer_rtx
2357 || XEXP (base, 0) == arg_pointer_rtx
2358#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2359 || XEXP (base, 0) == hard_frame_pointer_rtx
2360#endif
2361 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2362 return 0;
2363 /* Constants in the function's constant pool are constant. */
2364 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2365 return 0;
2366 }
2367 return 1;
2368
bf6d9fd7 2369 case UNSPEC_VOLATILE:
7790df19 2370 case ASM_INPUT:
7790df19
JW
2371 return 1;
2372
bf6d9fd7
JW
2373 case ASM_OPERANDS:
2374 if (MEM_VOLATILE_P (x))
2375 return 1;
2376
2377 /* FALLTHROUGH */
2378
7790df19
JW
2379 default:
2380 break;
2381 }
2382
c14b9960
JW
2383 return 0;
2384}
2385
da7d8304 2386/* Returns nonzero if X might mention something which is not
c14b9960 2387 local to the function and is not constant. */
7790df19 2388
c14b9960 2389static int
4682ae04 2390nonlocal_mentioned_p (rtx x)
c14b9960 2391{
c14b9960
JW
2392 if (INSN_P (x))
2393 {
2394 if (GET_CODE (x) == CALL_INSN)
2395 {
2396 if (! CONST_OR_PURE_CALL_P (x))
2397 return 1;
2398 x = CALL_INSN_FUNCTION_USAGE (x);
2399 if (x == 0)
2400 return 0;
ca7fd9cd 2401 }
c14b9960 2402 else
ca7fd9cd 2403 x = PATTERN (x);
c14b9960
JW
2404 }
2405
2406 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2407}
2408
2409/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2410 something which is not local to the function and is not constant. */
2411
2412static int
4682ae04 2413nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2414{
2415 rtx x = *loc;
2416
2417 if (! x)
2418 return 0;
2419
2420 switch (GET_CODE (x))
2421 {
2422 case MEM:
2423 case REG:
2424 case SYMBOL_REF:
2425 case SUBREG:
2426 return nonlocal_mentioned_p (x);
2427
2428 case CALL:
2429 /* Non-constant calls and recursion are not local. */
2430 return 1;
2431
2432 case SET:
2433 if (nonlocal_mentioned_p (SET_SRC (x)))
2434 return 1;
2435
2436 if (GET_CODE (SET_DEST (x)) == MEM)
2437 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2438
2439 /* If the destination is anything other than a CC0, PC,
2440 MEM, REG, or a SUBREG of a REG that occupies all of
2441 the REG, then X references nonlocal memory if it is
2442 mentioned in the destination. */
2443 if (GET_CODE (SET_DEST (x)) != CC0
2444 && GET_CODE (SET_DEST (x)) != PC
2445 && GET_CODE (SET_DEST (x)) != REG
2446 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2447 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2448 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2449 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2450 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2451 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2452 return nonlocal_mentioned_p (SET_DEST (x));
2453 return 0;
2454
2455 case CLOBBER:
2456 if (GET_CODE (XEXP (x, 0)) == MEM)
2457 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2458 return 0;
2459
2460 case USE:
2461 return nonlocal_mentioned_p (XEXP (x, 0));
2462
2463 case ASM_INPUT:
2464 case UNSPEC_VOLATILE:
2465 return 1;
2466
2467 case ASM_OPERANDS:
2468 if (MEM_VOLATILE_P (x))
2469 return 1;
2470
2471 /* FALLTHROUGH */
2472
2473 default:
2474 break;
2475 }
2476
2477 return 0;
2478}
2479
da7d8304 2480/* Returns nonzero if X might reference something which is not
c14b9960
JW
2481 local to the function and is not constant. */
2482
2483static int
4682ae04 2484nonlocal_referenced_p (rtx x)
c14b9960 2485{
c14b9960
JW
2486 if (INSN_P (x))
2487 {
2488 if (GET_CODE (x) == CALL_INSN)
2489 {
2490 if (! CONST_OR_PURE_CALL_P (x))
2491 return 1;
2492 x = CALL_INSN_FUNCTION_USAGE (x);
2493 if (x == 0)
2494 return 0;
ca7fd9cd 2495 }
c14b9960 2496 else
ca7fd9cd 2497 x = PATTERN (x);
c14b9960
JW
2498 }
2499
2500 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2501}
2502
2503/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2504 something which is not local to the function and is not constant. */
2505
2506static int
4682ae04 2507nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2508{
2509 rtx x = *loc;
2510
2511 if (! x)
2512 return 0;
2513
2514 switch (GET_CODE (x))
2515 {
2516 case CALL:
2517 /* Non-constant calls and recursion are not local. */
2518 return 1;
2519
2520 case PRE_INC:
2521 case PRE_DEC:
2522 case POST_INC:
2523 case POST_DEC:
2524 case PRE_MODIFY:
2525 case POST_MODIFY:
2526 return nonlocal_mentioned_p (XEXP (x, 0));
2527
2528 case SET:
2529 if (nonlocal_mentioned_p (SET_DEST (x)))
2530 return 1;
2531 return nonlocal_set_p (SET_SRC (x));
2532
2533 case CLOBBER:
2534 return nonlocal_mentioned_p (XEXP (x, 0));
2535
2536 case USE:
2537 return 0;
2538
2539 case ASM_INPUT:
2540 case UNSPEC_VOLATILE:
2541 return 1;
2542
2543 case ASM_OPERANDS:
2544 if (MEM_VOLATILE_P (x))
2545 return 1;
2546
2547 /* FALLTHROUGH */
2548
2549 default:
2550 break;
2551 }
7790df19
JW
2552
2553 return 0;
2554}
2555
da7d8304 2556/* Returns nonzero if X might set something which is not
c14b9960
JW
2557 local to the function and is not constant. */
2558
2559static int
4682ae04 2560nonlocal_set_p (rtx x)
c14b9960 2561{
c14b9960
JW
2562 if (INSN_P (x))
2563 {
2564 if (GET_CODE (x) == CALL_INSN)
2565 {
2566 if (! CONST_OR_PURE_CALL_P (x))
2567 return 1;
2568 x = CALL_INSN_FUNCTION_USAGE (x);
2569 if (x == 0)
2570 return 0;
ca7fd9cd 2571 }
c14b9960 2572 else
ca7fd9cd 2573 x = PATTERN (x);
c14b9960
JW
2574 }
2575
2576 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2577}
2578
c57ddcf1 2579/* Mark the function if it is pure or constant. */
7790df19
JW
2580
2581void
4682ae04 2582mark_constant_function (void)
7790df19
JW
2583{
2584 rtx insn;
c14b9960 2585 int nonlocal_memory_referenced;
7790df19 2586
ab780373 2587 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2588 || DECL_IS_PURE (current_function_decl)
7790df19 2589 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2590 || current_function_has_nonlocal_goto
2591 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2592 return;
2593
e004f2f7 2594 /* A loop might not return which counts as a side effect. */
0ecf09f9 2595 if (mark_dfs_back_edges ())
e004f2f7
JW
2596 return;
2597
c14b9960 2598 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2599
2600 init_alias_analysis ();
2601
c14b9960 2602 /* Determine if this is a constant or pure function. */
7790df19
JW
2603
2604 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2605 {
2606 if (! INSN_P (insn))
2607 continue;
bf6d9fd7 2608
c14b9960
JW
2609 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2610 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2611 break;
7790df19 2612
c14b9960
JW
2613 if (! nonlocal_memory_referenced)
2614 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2615 }
ca7fd9cd 2616
c14b9960 2617 end_alias_analysis ();
ca7fd9cd 2618
7790df19 2619 /* Mark the function. */
ca7fd9cd 2620
c14b9960
JW
2621 if (insn)
2622 ;
2623 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2624 {
2625 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2626 DECL_IS_PURE (current_function_decl) = 1;
2627 }
c14b9960 2628 else
c57ddcf1
RS
2629 {
2630 cgraph_rtl_info (current_function_decl)->const_function = 1;
2631 TREE_READONLY (current_function_decl) = 1;
2632 }
7790df19 2633}
c14b9960 2634\f
6e73e666 2635
6e73e666 2636void
4682ae04 2637init_alias_once (void)
6e73e666 2638{
b3694847 2639 int i;
6e73e666
JC
2640
2641#ifndef OUTGOING_REGNO
2642#define OUTGOING_REGNO(N) N
2643#endif
2644 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2645 /* Check whether this register can hold an incoming pointer
2646 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2647 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2648 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2649 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2650 static_reg_base_value[i]
2651 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2652
bf1660a6
JL
2653 static_reg_base_value[STACK_POINTER_REGNUM]
2654 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2655 static_reg_base_value[ARG_POINTER_REGNUM]
2656 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2657 static_reg_base_value[FRAME_POINTER_REGNUM]
2658 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2659#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2660 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2661 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2662#endif
7f243674
JL
2663
2664 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
bf1660a6
JL
2665}
2666
7b52eede
JH
2667/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2668 to be memory reference. */
2669static bool memory_modified;
2670static void
4682ae04 2671memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2672{
2673 if (GET_CODE (x) == MEM)
2674 {
2675 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2676 memory_modified = true;
2677 }
2678}
2679
2680
2681/* Return true when INSN possibly modify memory contents of MEM
2682 (ie address can be modified). */
2683bool
4682ae04 2684memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2685{
2686 if (!INSN_P (insn))
2687 return false;
2688 memory_modified = false;
2689 note_stores (PATTERN (insn), memory_modified_1, mem);
2690 return memory_modified;
2691}
2692
c13e8210
MM
2693/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2694 array. */
2695
9ae8ffe7 2696void
4682ae04 2697init_alias_analysis (void)
9ae8ffe7
JL
2698{
2699 int maxreg = max_reg_num ();
ea64ef27 2700 int changed, pass;
b3694847
SS
2701 int i;
2702 unsigned int ui;
2703 rtx insn;
9ae8ffe7 2704
0d446150
JH
2705 timevar_push (TV_ALIAS_ANALYSIS);
2706
9ae8ffe7
JL
2707 reg_known_value_size = maxreg;
2708
ca7fd9cd 2709 reg_known_value
e05e2395
MM
2710 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2711 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2712 reg_known_equiv_p
e05e2395 2713 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2714 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2715
6e73e666
JC
2716 /* Overallocate reg_base_value to allow some growth during loop
2717 optimization. Loop unrolling can create a large number of
2718 registers. */
2719 reg_base_value_size = maxreg * 2;
e2500fed
GK
2720 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2721 * sizeof (rtx));
ac606739 2722
e05e2395
MM
2723 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2724 reg_seen = (char *) xmalloc (reg_base_value_size);
b17d5d7c 2725 if (! reload_completed && flag_old_unroll_loops)
de12be17 2726 {
ac606739 2727 /* ??? Why are we realloc'ing if we're just going to zero it? */
de12be17
JC
2728 alias_invariant = (rtx *)xrealloc (alias_invariant,
2729 reg_base_value_size * sizeof (rtx));
961192e1 2730 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2731 }
ec907dd8
JL
2732
2733 /* The basic idea is that each pass through this loop will use the
2734 "constant" information from the previous pass to propagate alias
2735 information through another level of assignments.
2736
2737 This could get expensive if the assignment chains are long. Maybe
2738 we should throttle the number of iterations, possibly based on
6e73e666 2739 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2740
2741 We could propagate more information in the first pass by making use
2742 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2743 for a pseudo is "constant".
2744
2745 A program with an uninitialized variable can cause an infinite loop
2746 here. Instead of doing a full dataflow analysis to detect such problems
2747 we just cap the number of iterations for the loop.
2748
2749 The state of the arrays for the set chain in question does not matter
2750 since the program has undefined behavior. */
6e73e666 2751
ea64ef27 2752 pass = 0;
6e73e666 2753 do
ec907dd8
JL
2754 {
2755 /* Assume nothing will change this iteration of the loop. */
2756 changed = 0;
2757
ec907dd8
JL
2758 /* We want to assign the same IDs each iteration of this loop, so
2759 start counting from zero each iteration of the loop. */
2760 unique_id = 0;
2761
f5143c46 2762 /* We're at the start of the function each iteration through the
ec907dd8 2763 loop, so we're copying arguments. */
83bbd9b6 2764 copying_arguments = true;
9ae8ffe7 2765
6e73e666 2766 /* Wipe the potential alias information clean for this pass. */
961192e1 2767 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2768
6e73e666 2769 /* Wipe the reg_seen array clean. */
961192e1 2770 memset ((char *) reg_seen, 0, reg_base_value_size);
9ae8ffe7 2771
6e73e666
JC
2772 /* Mark all hard registers which may contain an address.
2773 The stack, frame and argument pointers may contain an address.
2774 An argument register which can hold a Pmode value may contain
2775 an address even if it is not in BASE_REGS.
8072f69c 2776
6e73e666
JC
2777 The address expression is VOIDmode for an argument and
2778 Pmode for other registers. */
2779
7f243674
JL
2780 memcpy (new_reg_base_value, static_reg_base_value,
2781 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2782
ec907dd8
JL
2783 /* Walk the insns adding values to the new_reg_base_value array. */
2784 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2785 {
2c3c49de 2786 if (INSN_P (insn))
ec907dd8 2787 {
6e73e666 2788 rtx note, set;
efc9bd41
RK
2789
2790#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2791 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2792 insn chain until after reload has completed. Thus,
2793 there is no sense wasting time checking if INSN is in
2794 the prologue/epilogue until after reload has completed. */
2795 if (reload_completed
2796 && prologue_epilogue_contains (insn))
efc9bd41
RK
2797 continue;
2798#endif
2799
ec907dd8
JL
2800 /* If this insn has a noalias note, process it, Otherwise,
2801 scan for sets. A simple set will have no side effects
ec5c56db 2802 which could change the base value of any other register. */
6e73e666 2803
ec907dd8 2804 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2805 && REG_NOTES (insn) != 0
2806 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2807 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2808 else
84832317 2809 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2810
2811 set = single_set (insn);
2812
2813 if (set != 0
2814 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2815 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2816 {
fb6754f0 2817 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2818 rtx src = SET_SRC (set);
2819
2820 if (REG_NOTES (insn) != 0
2821 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2822 && REG_N_SETS (regno) == 1)
2823 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2824 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2825 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2826 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2827 {
2828 reg_known_value[regno] = XEXP (note, 0);
2829 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2830 }
2831 else if (REG_N_SETS (regno) == 1
2832 && GET_CODE (src) == PLUS
2833 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2834 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2835 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2836 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2837 {
2838 rtx op0 = XEXP (src, 0);
bb2cf916 2839 op0 = reg_known_value[REGNO (op0)];
713f41f9 2840 reg_known_value[regno]
ed8908e7 2841 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2842 reg_known_equiv_p[regno] = 0;
2843 }
2844 else if (REG_N_SETS (regno) == 1
2845 && ! rtx_varies_p (src, 1))
2846 {
2847 reg_known_value[regno] = src;
2848 reg_known_equiv_p[regno] = 0;
2849 }
6e73e666 2850 }
ec907dd8
JL
2851 }
2852 else if (GET_CODE (insn) == NOTE
2853 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2854 copying_arguments = false;
6e73e666 2855 }
ec907dd8 2856
6e73e666 2857 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2858 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2859 {
e51712db
KG
2860 if (new_reg_base_value[ui]
2861 && new_reg_base_value[ui] != reg_base_value[ui]
2862 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2863 {
e51712db 2864 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2865 changed = 1;
ec907dd8 2866 }
9ae8ffe7 2867 }
9ae8ffe7 2868 }
6e73e666 2869 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2870
2871 /* Fill in the remaining entries. */
2872 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2873 if (reg_known_value[i] == 0)
2874 reg_known_value[i] = regno_reg_rtx[i];
2875
9ae8ffe7
JL
2876 /* Simplify the reg_base_value array so that no register refers to
2877 another register, except to special registers indirectly through
2878 ADDRESS expressions.
2879
2880 In theory this loop can take as long as O(registers^2), but unless
2881 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2882 time.
2883
2884 This loop may not be needed any longer now that the main loop does
2885 a better job at propagating alias information. */
2886 pass = 0;
9ae8ffe7
JL
2887 do
2888 {
2889 changed = 0;
ea64ef27 2890 pass++;
e51712db 2891 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2892 {
e51712db 2893 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2894 if (base && GET_CODE (base) == REG)
2895 {
fb6754f0 2896 unsigned int base_regno = REGNO (base);
e51712db
KG
2897 if (base_regno == ui) /* register set from itself */
2898 reg_base_value[ui] = 0;
9ae8ffe7 2899 else
e51712db 2900 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2901 changed = 1;
2902 }
2903 }
2904 }
ea64ef27 2905 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2906
e05e2395
MM
2907 /* Clean up. */
2908 free (new_reg_base_value);
ec907dd8 2909 new_reg_base_value = 0;
e05e2395 2910 free (reg_seen);
9ae8ffe7 2911 reg_seen = 0;
0d446150 2912 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2913}
2914
2915void
4682ae04 2916end_alias_analysis (void)
9ae8ffe7 2917{
e05e2395 2918 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2919 reg_known_value = 0;
ac606739 2920 reg_known_value_size = 0;
e05e2395
MM
2921 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2922 reg_known_equiv_p = 0;
e2500fed 2923 reg_base_value = 0;
9ae8ffe7 2924 reg_base_value_size = 0;
de12be17
JC
2925 if (alias_invariant)
2926 {
ac606739 2927 free (alias_invariant);
de12be17
JC
2928 alias_invariant = 0;
2929 }
9ae8ffe7 2930}
e2500fed
GK
2931
2932#include "gt-alias.h"
This page took 1.233805 seconds and 5 git commands to generate.